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ABSTRACT

Monitoring posts quality on the Stack Overflow website is of critical importance to make
the experience smooth for its users. It strongly disapproves unproductive discussion and
un-related questions being posted. Questions can get closed for several reasons ranging
from questions that are un-related to programming, to questions that do not lead to a
productive answer. Manual moderation of the site’s content is a tedious task as
approximately seventeen thousand new questions are posted every day. Therefore,
leveraging machine learning algorithms to identify the bad questions would be a very
smart and time-saving method for the community. The goal of this thesis is to build a
machine learning classifier that could predict if a question will be closed or not, given the
various textual and post related features. A training model was created using Apache
Spark’s Machine Learning Libraries. This model could not only predict the closed

questions with good accuracy, but computes the result in a very small time-frame.
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CHAPTER 1. INTRODUCTION

Stack Overflow website is an essential and a growing resource among the
community of coders all over the world developed and maintained by the Stack Exchange
Company. Computer programmers use it to post various questions and answers related to
programming. The website, one of the most popular question and answer websites, has
slowly evolved into a repository of knowledge. Questions seeking input on some efficient
and time-saving methods of coding a particular problem, on getting help on solving
various bottlenecks in coding or why code behave in a certain way are commonly seen.
To retain its best form, questions posted on the website have to be on-topic, relevant and
specific. Before posting any questions, users are required to search the website for similar
questions.

Moderation on Stack Overflow is done using badge system. Moderators are
elected through popular vote and through regular elections. Users willing to serve as
moderator need to earn badges to build their reputation. Considering the influx of
approximately 11.80 questions per minute each and every day, moderation has been
increasingly becoming tedious. Also, around 800 questions are estimated to be closed on
every given week day as of mid-2015 which shows the amount of workload on
moderators. As of February 2016, Stack Overflow website has 19 moderators with each
one handling around 0.62 questions every minute.

Moderators monitor the website for bad questions. However, bad questions do not
get closed immediately, but go through a step by step process. There are several reasons
as to why a question gets closed. Moderators close questions for following reasons — off-

topic, duplicate, too localized, not a real question and not constructive. The main reason
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why questions get closed every day is duplication. As users do not have the patience to
search the website thoroughly, exact-duplicates of questions that were previously posted
are often submitted. Questions not related to programming are marked ‘off-topic’. Other
questions seek for opinion on one’s thought and do not really help in any research effort
and therefore are closed as ‘not constructive’. Classifying each submitted question in
one of the five categories mentioned above can be done automatically by using
text mining and machine learning algorithms. By taking into account all the features
responsible for a question being closed, a machine learning classifier model can be
created and used for automated detection of the low quality posts.

The goal of this thesis is to extract relevant features from the Stack Exchange data
dump and to build a machine learning algorithm capable of predicting which questions
are going to be closed. Numerical features of each posted question are created and labels
based on its closed or open status are assigned to each question The dataset derived is
trained using machine learning algorithms to find the associated pattern between the
features, and thereby built a classifier that could predict a closed question [1]. The
problem is defined as a binary classification problem and implemented using

classification and regression methods.

1.1 Research Motivation and Aim

Previously, researchers used textual features to predict the closed questions using
various machine learning algorithms. Data is growing faster and it demands for efficient
data analysis tools. With the rise of distributed computing in the big data field, we wanted

to leverage its scalability and utilize its machine learning algorithms to give better results.



Currently, Stack Overflow includes 12 million questions, 19 million answers and
47 million comments all available to download as data dump of size 70GB. The data is
made publically under the Creative Commons cc-by-sa 3.0 license. That means everyone
is free to share this database and adapt it for any purpose, even commercially as long as
they properly cite the work. Given the availability and size of the dataset many
researchers from fields such as information retrieval, text mining and machine learning
have been working with this dataset. Out of the 12 million questions only 503342
questions were ever closed, which means a 4.195%.

Correa et al proposed a method that predicts closed questions by using a machine
learning framework [2]. They used features such as question title, tags, body and code
snippet and community value and information such as favorite votes, closure time and
question status. The classification algorithms they compared were Support Vector
Machines, Naive Bayes’ and Logistic Regression and Stochastic Gradient Boosted Trees.
They found that Stochastic Gradient Boosted Trees gives the best performance out of all
classifiers. The algorithm was able to classify 76.5% of closed questions and 69.1% of
non-closed questions accurately, which is not very high.

Ponzaneli et al proposed an approach to identify low quality posts on the website
[3]. Stack Overflow has a system which could automatically identify low quality posts
and put them in a review queue. Their approach relies only on the textual features of the
post and results in low precision as it does not consider many other important features of
the post and community related aspects of the user. So there is a chance of misclassifying
the posts and results in waste of moderator’s time. In their research, they used features

related to the post as well as community related aspects of the user. These features are



collected from the Stack Overflow metrics and the authors also included some readability
metrics and popularity metrics such as community-related aspects. They applied their
approach to resolve the Stack Overflow queue by removing the misclassified posts. Their
results shown that, they could reduce the size of the review queue and yielded less
number of false positives.

Galina et al built a classifier that predicts whether or not a question will be closed
given that the question is submitted [4]. Three methods were compared during their
research. They are Random Forests, Support Vector Machines and Vowpal Wabbit’s
online latent Dirichlet allocation algorithm. They used a set of features extracted from the
user table such as reputation, the number of up votes it received, the number of down
votes it received and number of questions answered by the user are taken into account.
Also, they included post related features such as number of blocks of the code, number of
links in the body of a post, number of digits, number of sentences, the ratio of upper and
lower text characters. Besides, some baseline features such as number of un-deleted
questions by the owner at the time of post creation, length of the title, length of the body,
number of tags, age of the user and reputation of the user at the time of post creation are
used from the baseline model provided by Kaggle. To select the most important features
out of these, they implemented a method to estimate the relative importance of features
by constructing trees of randomly selected features. The latent Dirichlet allocation
algorithm gave them the best result and yielded them position 5 in the leaderboard with
0.31467 points.

Calefato et al researched in a different direction by proposing that emotional style

of a post is related to the way it is perceived [5]. The dataset used is from the Stack



Overflow data dump updated on September 2014. The research focused on many factors
that the users could implement while reacting to a question. Substantial evidence was
established that factors such as information, presentation style and time impact on the
success of answers. Their study presents evidence based guidelines which users can
follow to improve the chances of getting their answer accepted. This is the first study to
show how nuances in language used can affect the success of a post.

In this thesis, we mostly used textual features along with some features related to
the popularity of the post such Answer Count, Comment Count, Favorite Count, Closed
Date and View Count. This research work is different than others because, we not only
focused on deriving features to build a dataframe of labeled point vectors, but also
focused on the efficient analysis part of the ever increasing data at hand. Stack
Overflow’s database has huge amount of data which when completely analyzed, would
yield better insights over the data. We developed a training model in Apache Spark using
Python and leveraged its pre-built machine learning library to predict the closed

questions.

1.2 Organization

Each chapter hereafter, describes the thesis in more detail. Chapter 2 describes the
dataset used and its structure, Chapter 3 describes the machine learning algorithms used
to obtain the classifier and the method involved. Chapter 4 talks about the extracted
features and Chapter 5 show the experiment and results. Finally, Chapter 6 concludes and

discusses the scope of future work.



CHAPTER 2. DATASET AND ITS STRUCTURE

The dataset used for this task is obtained from the Stack Exchange Archives. All
the questions and answers posted on the Stack Overflow website are stored in a huge
database. This database contains information about all the users, posts and related activity
on the website. There are a total of 19 tables in the database to store this entire data. The
tables are named Posts, Users, Comments, Badges, CloseAsOffTopicResonTypes,
PendingFlags, PostFeedBack, PostHistory, PostLinks, PostsWithDeleted, PostTags,
ReviewRejectionReasons, ReviewTaskResults, Tags, ReviewTasks, SuggestedEdits,
SuggestedEditVotes, TagSynonyms and Votes. To perform the data analysis for this
thesis, we used data from the table Posts. This table has 20 fields which gives information
about the details and activity related to each post. Table 1 in the next page describes it in
more detail.

We downloaded an xml file which is a subset of the entire data from the Posts
table. The small file holds 99,997 rows containing information about the details of the
posts and has the same meta-structure as the Posts table. A post can either be a question
asked or an answer posted to a question. The posts that were marked as closed carries the
date it was closed in its respective field. With the help of this information, in order to
classify the posts as open and closed we assigned labels for them. The open questions are

marked with a label 0 and closed questions are marked with a label 1.



Table 1: Description of the Posts Table

List of Fields Data Description
Type

Id int Tells us the unique Id of a post

Tags text Shows various tags associated that describe what
a post is about

Title text Describes the title of a post

Body text Describes the body of a post

AnswerCount int Shows the number of answers to a post

CommentCount int Shows the number of comments to a post

FavoriteCount int Shows the number of people that marked the post
as their favorite

Score int Shows the score a post received

ViewCount int Shows the number of views a post received

AcceptedAnswerld int Preset only if PostTypeld is 1. Tells us the Id of a
particular answer if the question has an accepted
answer

PostTypeld int 1 if the post is a question
2 if the posts is an answer

ParentID int Preset only if PostTypeld is 2. Tells us the Id of a
the question to which the answer is related to

CommunityOwnedDate | datetime Shows the date and time and is present only of the
post is community wikied

OwnerUserld int Shows the user id of the author of the post

LastEditorUserld int Shows the user id of the last person that edited the
post

LastEditorDisplayName | text Shows the user name of the last person that edited
the post

LastEditDate datetime Shows the date and time of the latest edit on the
post

LastActivityDate datetime | Shows the date and time of the latest activity on a
post

CreationDate datetime Shows the date and time of the creation of the
post

ClosedDate datetime Shows the date and time when the post is closed




Out of the 99,997 posts in our file, 2373 posts were identified as closed and the

rest are open as shown in the Table 2 below. Eleven out of twenty fields present in the

file were used to extract the textual and other related features.

Table 2: Original Dataset

Total Posts Open Posts Closed Posts Percentage of
Closed Questions
Count 99997 97624 2373 2.37

As we started working on the dataset and applied machine learning algorithms

upon it we observed some peculiar results. As we delved deeper into the dataset we found

that the results are not as expected due to the dataset being highly skewed. As the above

table suggests, 97.63% of the posts are open and only 2.37% are closed. This excessive

difference in the categories we considered made the dataset highly unbalanced and as a

result the machine learning algorithms did not have enough examples from both the

categories to train well. Therefore we did some pre-processing wherein we replaced some

open posts with the closed ones so that we could get a comparatively balanced dataset.

The Table 3 below shows the modified dataset.

Table 3: Modified Dataset

Total Posts Open Posts Closed Posts Percentage of
Closed Questions
Count 99997 84468 15529 15.52




Table 4 below gives a label wise description of some statistics about various
features of the dataset. One observation worth taking note is, the average values of 8 out
of 10 fields in the following table are greater for the label 1 than that of the label 0. It tells
us that irrespective of how many views, answers and comments a post receives, if it is not

in accordance with the framed guidelines, it will eventually be closed.

Table 4: Average values of some features in the Dataset

Fields Label ‘1’ | Label ‘0’
Views 18601 2551
Number of words in the text 86.37 76.81
Number of sentences in the code | 0.36 0.91
Favorite count 29.95 1.73
Comment count 1.36 0.78
Answer count 9.93 0.94
Tags 2.62 0.64
Score 32.70 10.81
Number of occurences of “?’ 0.01 0.04
Number of occurences of ‘I’ 2.2 1.26




CHAPTER 3. FEATURE EXTRACTION
Feature extraction is the process of building derived values from a dataset which
are informative and non-redundant and those that could help in gaining insights into the
dataset. This process is used widely in the natural text processing and textual analysis

methods.

3.1 Parsing the Data

The text and code components of the body of a post play a vital role in defining
the question. We see a lot of instances such as users posting all of their code and seeking
help as to where they went wrong. Such questions are not encouraged by the website
since its purpose is not to debug but rather, to gain insights on different methods to code a
program. So there can be a partial relationship between the length of the code and the
status of the question, provided other factors as well. Therefore, in order to calculate the
effect of the aforementioned features on a question being closed, we had to parse the
body of the post into text and code components [6]. The parsed body of a post could be
seen in the Figure 1 in the next page. Features such as the lengths of the text and code are

analyzed afterwards.



ell, here's what I have tried:

var ts = new TimeSpan(DateTime.UtcNow.Ticks -
dt.Ticks)

double delta = Math.Abs(ts.TotalSeconds)

if (delta &amp;lt; 60)

return ts.Seconds ==

elseif (delta &amp;lt; 120)

return “a minute ago”

But there are many more methods of doing this such
as the ones using DateTime and TimeStamp. I have
one in my mind:

Int months = Convert.Tolnt32
(Math.Floor((double)ts.Days / 365))
int years = Convert.ToInt32
(Math.Floor((double)ts.Days / 365))

Suggestions? Comments? Ways to improve this
algorithm?

Figure 1: Parsed Text and Code from a Post



3.2 Extracted Features

The original data file we used for this purpose has a set of 20 fields as discussed

in the Chapter 2. For building a machine learning model for this task, we decided to use

textual features and post statistics such as the number of views, answers, comments and

favorite count it received. We were able to derive 12 features which were used in

previous researches conducted by Correa et al [2] and Lezina et al [4]. They are all

shown in the Table 5 below. The table describes the features and explains what each of

these features is.

Table 5: Features Calculated from the Dataset

Features Explanation

Number of Tags Every question has to be assigned some Tags to let
others know which language or which technology it is
associated with. The maximum count is 5

Length of the Code Block Number of sentences in the code block

Length of the Text Block Number if sentences in the text block

Number of Words Number of words in the Text Block

Number of occurrences of ‘I’

We calculated how many times the user used the word
‘I’ in the body or in the Title

Number of occurrences of “?’

The number of times the user used the word ‘?” in the
body or in the Title is calculated

Post Score

The score the posts received so far

View Count

Number of views the post received

Answer Count

Number of answers on each post

Comment Count

Number of comments on each post

Favorite count

Number of people that marked the question as favorite

ClosedCreationDateDifference

The number of days elapsed from the day the question
was posted till the day it was closed.




CHAPTER 4. MACHINE LEARNING ALGORTHMS AND
METHOD USED

In this thesis, we trained the following three machine learning algorithms on the

dataframe built from the extracted features:

4.1 Support Vector Machines with Stochastic Gradient Descent

Support Vector Machines are supervised learning models available in machine
learning that could be used for binary classification. An SVM model classifies given set
of training examples into set of mapped points and divides them into different categories
by forming a hyper-plane in between the categories [7] [8]. Intuitively, a hyper plane that
is more distant from the nearest training-data point of any class gives a good separation

basis.

Figure 2: Typical Representation of an SVM model



From the Figure 2 in the previous page, the assumption of SVM is that there can
be several hyper-planes dividing the represented by the thin lines, but intuitively the
plane with the largest margin (thick line) has the best generalization

SVMs derive their name from the concept of support vectors, which are training
points that are not classified with acute probability or are correctly classified but fall
inside the margin region. ‘Margin’ is a measure of how distantly a hyper plane separates
the data points. So, it is basically the distance between the hyper plane and the closest
point in the dataset. Therefore, once the margin is defined, an SVM model’s goal would
be to find a hyper plane that separates by the maximum margin from a training set {(Xi,
yi)} n i=1, where x; are the observed data and y; the labels [9]. The support vector
machines algorithm with stochastic gradient descent is different from the usual gradient
descents present. It is another way around by which we find the gradient with respect to a

single randomly chosen dataset.

4.2 Naive Bayes

The Bayes’ theorem is the basis for Naive Bayes. It’s a classification technique
wherein the set of predictors of a particular item are assumed to be independent of each
other. A Naive Bayes classifier assumes that the presence of a particular feature in a class
does not depend on any other feature [10]. For example, a living thing may be considered
to be a human if it is has two hands and two legs, with a round head on the top. Even if
these features are inter-dependent or related to other features in some manner, all of these
properties independently contribute to the probability that this living thing is a human and

that is why it is prefixed with ‘Naive’ and was termed Naive Bayes’ algorithm.



Bayes theorem provides a way of calculating posterior probability P(c|x). The

equation below explains the formula:

P (x|c)P(c)

P(clx) = PQO)

Where,
P(c|x) is the posterior probability
P(x) is the likelihood
P(c) is the class prior probability
P(x|c) is the predictor prior probability
The model is easy to build and works perfectly for very large data sets. This
algorithm is most widely and successfully used among all the other classifiers and
machine learning algorithms out there. Along with simplicity, Naive Bayes is known

to outdo some deep machine learning algorithms and classification methods as well.

4.3 Logistic Regression

Logistic regression is a classification method in machine learning and is a form of
Regression Analysis. It makes use of one or more predictor variables that may be either
continuous or categorical. It measures the relationship between the categorical dependent
variable and one or more predictors/independent variables by calculating/predicting the
probabilities using a cumulative logistic distribution - a type of logistic function [11].
Logistic regression can be divided into multiple types, namely binomial, multinomial or
ordinal. Binary logistic regression or Binomial is applied in those problems wherein the

observed outcome for a dependent variable can have only two possible outcomes namely,



yes or no, good or bad, win or lose. Multinomial logistic regression comes into play
where the outcome can have more than or three possible types (e.g., vitamin A vs.
vitamin B vs. vitamin C) that are not in a specific order. The third one, Ordinal logistic
regression deals with dependent variables that are in an ordered fashion.

In binary logistic regression, the outcome is usually assigned as 0 or 1, where a 1
refers to a positive outcome and a 0 refers to a negative outcome. For example, in this
case study that we made, closed questions were assigned a 1 even though they don’t
mean to be positive since they are the ones to be filtered out. Contrarily, the open
questions were assigned a value 0 as this leads to a more straightforward
interpretation. Similarly, if an observed outcome for the dependent variable is apparently
the possible outcome (referred to as a success) it is usually assigned a value 1 and the
contrary outcome (referred to as a failure) as 0. Logistic regression predicts the odds of
being a positive or negative based on the values of predictors. The odds are defined as the
probability that a particular outcome is a yes divided by the probability that it is a no.

Logistic Regression is a method of learning functions of the form f: X —Y, or
P(Y|X) in the case where Y is discrete-valued, and X = (X1....... Xn) is any vector
containing continuous or discrete variables [12]. The Figure 3 in the next page
demonstrates the form Logistic Regression takes. It is a Sigmoid curve defined by Y =

1/(1+ Exp(-X)), where

10



0.5 Y = 1/{1+ exp(-X)

Lng
=
Ln

Figure 3: Form assumed by Logistic Regression

The parametric model assumed by Logistic Regression can be explained by the

following equations:

1
PO =11%) = 1+exp(Wo+X i, Wi Xi) M
P(Y = 0[X) - exp(Wo+),;-, Wi Xi) 2)

1+exp(Wo+X L, Wi Xi)

In the above equations 1 and 2, Y is discrete-valued and a Boolean variable, X
______ Xp 1s any vector containing discrete or continuous variables and where
(Wo.....w;) are the vectors of parameters to be estimated. Logistic Regression assumes a

parametric form for the distribution P(Y|X), then directly estimates its parameters from

the training data.
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We used Apache Spark’s machine learning library to train the above discussed
machine learning algorithms on the dataset. Apache Spark is an open source cluster
computing framework which provides faster data analytics and proven performance on
large scale datasets. It is proved to out-perform the previously popular big data platform
Hadoop by a scale of 10 to 100 times [13]. The bigger the amount of data, the better the
algorithm performed. Apache Spark’s prime feature is the Resilient Distributed Dataset
and the abstractions it provides. It is a logical collection of data partitioned across various
machines. The task is split across various nodes and the assignment is carried out. Similar
to Hadoop, there is less chance of node failure in Apache Spark as well since it uses
Hadoop Distributed File System to store the data [14]. With a combination of in-memory
data analysis and lazy evaluation Apache Spark quickly rose into usage. Lazy evaluation
is a method of analyzing the data only when the need arises. The functions in Spark are
termed as Actions and Transformations. Whenever a transformation is called upon, the
data is read and stored. No further processing is done until an Action is called upon the
data. It is at this stage the interpreter performs the data analysis. It is deemed to be a very
good alternative to Hadoop’s two-stage MapReduce programming style which is
comparatively slower in computation as a result of disk storage [16].

Spark version 1.6.1 can be used in Python, Scala, and Java or R environments.
We implemented the Python API to calculate the features and implement the algorithms.
Besides the speed and ease of computation, it provides us with higher levels of libraries
for Machine Learning, SQL, Dataframes, GraphX - for plotting graphs, Streaming and
many more tools to accomplish wide range of tasks. It can be integrated with HDFS

making it easy for users to migrate from Hadoop.
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We have implemented some of the Python libraries to derive features out of the
large chunk of text from the data file [17]. The dataset available on the Stack Overflow’s
website is an xml file which led us to use Python’s Ixml for the task. It is a natural text
processing library that can be used to sort out code and text [18]. We coded accordingly
so that the body of the post is separated in to blocks of code and text. Textual Analysis is
done with the help of both Python libraries and Spark’s Core. Apache Spark offers rich
library of machine learning algorithms and utilities, including classification, collaborative

filtering, clustering, regression and dimensionality reduction.
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CHAPTER 5. EXPERIMENT AND RESULTS

Using the derived features and a label assigned to each post based on the
question’s status, a Spark dataframe of labeled point vectors is created. It basically
represents the attributes derived out of every post in the data file. We applied the
algorithms provided by the Spark’s Machine Learning Library on this dataframe. The
task 1s performed using the supervised learning algorithms choosing a binary
classification method. We tested the data on NaiveBayes, Support Vector Machine with
Stochastic Gradient and Logistic Regression all of which fall under classification and
regression methods.

We found that there is something else to be taken care of before applying machine
learning algorithms on this dataset. The obtained dataframe has various numerical
features of varying ranges. So in order to balance the effect of the features uniformly
before applying the machine learning model on them, we need to scale all of those
features in between 0 and 1. Doing so, there wouldn’t be a scope for some features being
over-weighed while calculating the accuracy in the prediction step. Both the original
dataframe and the scaled dataframe are listed out in the Appendix section. The first and
last few rows are listed out to get a better understanding at the resultant dataframe. The
code written to filter the data, extract the features and train the machine learning
algorithms on the dataframe derived out of the features can be found as well in the

Appendix section of this document.
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A supervised learning algorithm is one in which the training label has a known

class. The model is trained in such a way that it needs to make predictions and will be

corrected if the resultant predictions are not as expected. The training process carries on

until the desired accuracy is obtained. This trained model is then applied in the test

dataset. We split the data into just two sets — a training set and test set in the ratio of 70

and 30. The accuracy obtained from each of the algorithms is different, Naive Bayes

outperforming others by a small margin. Table 6 below describes various statistics related

to the confusion matrix calculated out of the predicted dataset.

Table 6: Classification Statistics

Statistics SVM Logistic Regression | Naive Bayes
Area under ROC 0. 9249487 0.9483218 0.9574136
Accuracy 0.9021556 0.9249406 0.9345574

Confusion Matrix

Dense Matrix
(2,2, [24064.0, 0.0,
4250.0, 210.0], 0)

Dense Matrix
(2, 2, [24064.0, 0.0,
2791.0, 1669.0], 0)

Dense Matrix
(2,2, [24064.0, 0.0,
2108.0, 2352.0], 0)

Precision 1 1 1
Recall 0.849 0.896 0.919
F-measure 0.918 0.945 0.958

The Figure 5 in the next page shows the various accuracies obtained from the all

three machine learning algorithm tested against varying percentage of training dataset.
The x-axis bears different percentages of the training dataset which starts from a split of
5:95 and continues up to a corresponding value of 80:20 and the y-axis bears the

corresponding accuracy values.
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Figure 4: Percentage Training Data vs Accuracy

It can be observed from the above graph that Naive Bayes performed best out of

the three algorithms followed by Logistic Regression and Support Vector Machines.

Python’s matplotlib is used to plot the data.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

Stack Overflow is a popular Question and Answer website for programmers
around the world and evolved as a dispensable knowledge repository. The website
framed some rules and guidelines to be followed while using it. However, it is often
violated and affects the quality of the website. Therefore, questions deemed to be unfit on
the site are marked as closed by moderators and experienced eligible users. A study was
conducted to build a machine learning classifier that could predict the closed questions on
Stack Overflow. Naive Bayes performed the best of out of all the three models tested and
predicted with an accuracy of 0.9345.

It was found that some questions were classified as open even though they were
actually closed. The post and text definitely play an important role in getting a question
closed but the user comments should not be overlooked. After careful observation it was
found that many questions were closed due to the communication in between the users.
Therefore, in later stages, we would like to include more number of features to get more
precise analysis of the data at hand. Community related features and user communication
analysis can be added in the further research. Features related to the User such as the
number of up-votes the user received, users’ closed question history and features related
to user’s account can be added in the further research. Another important feature is the
code content. The code content is as important as the length of the code in the post.
Gaining more insights in to the user characteristics would definitely help in efficiently

analyzing low quality posts.
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APPENDIX

DATAFRAME

0 0 | £ | l 0 | i £5 £ | ¥ | 02822692
0 0 | ¢ £ /) - | G 9z i / b | bLLTT68T
| £¢ | 0 0 G 0 { 9 181 6} G ¢ | 07le768%
0 0 { l | 8 0 0 | 8¢ 8 ¢ G | £692268C
0 0 | | | Gl | 0 l a8 L} p 7| 1892268T
0 0 | 7 0 L 0 0 £ 66 6¢ ¢ G | 2L¥Ti68T
0 0 | 4 | i 0 0 b L l 0 ¥ | 9vvezest
0 0 | 9 | gl 4 4 b 68 8 | ¥ | 16622692
| G682 { | 0l 165 Gg { 0l £el bl L G [/
0 0 £l 0 b | G58YC Gg | { 1£ b 0 € 17/
0 0 8¢ 9l A T Pal | l 6.1 Gt €l G 6}
0 0 8 0 0F | £65¢ 89 | | ¢l 7 0 b L}
0 0 8 0 G | 16595 b G b 16 6¢ l ¥ 9l
0 0 tE | 8 | B9IEAS 80¢ | 0 Gl b ¢ | 1/
0 0 20} G ¢ | 1£968 6lE £ 0 78 G | b £
0 0 £y Hl I£ | £0Z68 118 | { 74 1} | ¢ b
0 0 95z G 8y |G0bEee A { { 12 £ | € 6
0 0 l 0 G | ¢i60! 0p} b b 96 [} G 7 9
0 0 1é | Eb | 888l¢ 43 | G 59 Gl £ 4 1
Pl
- “ﬂmﬂm R e T T s |00 |10 [peB (paD (0o | o
suy | maip wnu |wnu |[spiom |suas | spuas
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SCALED DATAFRAME

0 1150 0000 | Z500 | 6000 | 0000 | 2000 | 600 |GZh0 |8kl0 | 2L00 910 | 0000 | lLZz682
0 150 0000 0000 0000 0000 | €000 | 8LO0 |O0SL0 |[EHO ¢900 pOLO | 0520 02177687
| 0690 0000 00¢0 £000 0000 | €000 | 0000 |Ge00O {0200 200 ¢h00 | 000} £6922687
0 L1570 0000 600 £000 0000 | €000 | 0000 |GZLO | 1500 G500 €800 | 05L0 18722687
0 1150 0000 | PLO [ 0000 | 0000 | €000 {0000 |GL00 | /500 1EL0 ¢00 | 000 | ZLvZees?
0 50 0000 1500 £000 0000 | €000 | 0000 |OOLO | M¥0O £000 0000 | 05L0 %2682
0 50 0000 L0 £000 0000 | €000 | 8LO0 |00LO |ES00 200 1c00 | 0520 L6ETZ68T
0 1150 0000 | 9800 [ 0000 | OOOO | €000 | 8LO0 |GZh0 |6¥00 | FMOO 1200 | 050 | 98¢7z68?
| 0610 0000 6600 ¢e00 F000 | 6100 | 8100 (0560 | 800 G500 910 | 000} L[4
0 50 000 0000 £L00 6100 | 6100 | 6000 (0500 |9100 0100 0000 | 0050 11/
0 1150 000 | 500 | €00 | 0200 | 0%00 | 6000 |GLLO | L0 | £800 120 | 000} 6}
0 1150 000 | 0000 | 2E00 | 0200 | 2200 | 6000 |[G200 | €000 | OKOO | 0000 | 0SL0 L}
0 50 1000 0000 9100 PPO0 | SO0 | G900 [00LO | 8500 1600 910 | 0520 gl
0 50 9000 6600 G600 9900 | €900 | 6000 {0000 | 5000 0100 ¢k00 | 0000 14!
0 1150 800 | €kl0 | €00 | 0L00 | ¥600 | 00 [0000 | ZOO [ FLOO 1200 | 0SL0 gl
0 1150 0800 | PIE0 | 8600 | 000 | 9620 | 6000 |0S00 | LOO | ¥EOOC 1200 | 0520 1!
0 50 Gv0 0 EFL0 ¢5h0 GLLO | 6¥¢0 | 8L00 [0%00 | 6000 1000 00 | 0050 6
0 50 1000 0000 9100 6000 | €¥00 | 900 ([00LO | 8500 5500 FOLO | 0520 9
0 1150 G000 | 6200 | OO | LMOO [ G600 | 6O0Q |[GZLO | BEOD [ B8KOO €900 | 08L0 1

Pl

Higaleq ]
e i T R Rl R ol ol Nl S I
paso|y | aliwo) .
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CODE

The following lines of code display step by step procedure of the feature
extraction from the downloaded file and training a machine learning model that builds the
classifier. As mentioned previously, Spark’s Python application programming interface,

MILib and Python libraries are used in the process.

sgqlContext = SQLContext (sc)

from pyspark.sqgl.types import *
from pyspark.sqgl.functions import *
import re

textFile = sc.textFile("/home/datascience/Downloads/Posts.small.xml™)
#

postsXml = textFile.map( lambda line: line.strip() ).

filter( lambda line: line != "<posts>" and line != "</posts>").

filter( lambda line: not line.startswith ("<?xml version="))

#

from datetime import datetime

def days(dl, d2):

dl = datetime.datetime.strptime(dl, "%Y-%m-%d")
d2 = datetime.datetime.strptime(d2, "%Y-2m-3d")
return ((dl - d2) .days)

import datetime, dateutil.parser
def parsedate(x):

d = dateutil.parser.parse (x)
return d.strftime('SY-%m-%d")

#
postsRDD = postsXml.map( lambda s: pyspark.sqgl.Row (
Id = re.search('Id=".+?"", s).group(0)[4:-11,

Label = 1.0 if re.search('ClosedDate=".+?"", s) != None else 0.0,
Score = re.search('Score=".+?"", s).group(0)[7:-11,

Text = ((re.search('Body=".+2"", s).group(0)[6:-1] if
re.search('Body=".+2?"", s) != None else "")+ " " +

(re.search('Title=".+2"", s).group(0)[7:-1] if re.search('Title=".+2"",
s) !'= None else "")),
Tags = re.search('Tags=".+?"", s).group(0)[6:-1] if

re.search(Tags=".+?"", s) != None else 0 ,

ViewCount = re.search('ViewCount="_.+2"", s).group(0)[11:-1] if
re.search(ViewCount=".4+?2"", s) != None else 0,

AnswerCount = re.search('AnswerCount=".+2"", s).group(0)[13:-1] if
re.search (AnswerCount=".+2""', s) !'= None else O,

CommentCount = re.search('CommentCount=".+2"", s).group(0)[14:-1] if
re.search (CommentCount=".4+?"", s) != None else 0,

FavoriteCount = re.search('FavoriteCount=".+2"", s).group(0)[15:-1] if
re.search(FavoriteCount=".4+?""', s) != None else 0,
ClosedCreationDateDiff = (days(parsedate(re.search('ClosedDate=".+2"",
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s) .group(0) [13:-11),
parsedate (re.search('CreationDate=".+2"", s).group(0)[16:-1])) if
re.search('ClosedDate=".+?""', s) != None else 0)))

#

import lxml.etree

al = postsRDD.map(lambda (a,j,b,c,d,e,f,g,h,i):

(d,u"".join(h) .encode('utf-8"') .decode('utf-8"),q,f,i,a,b,c,e,j))
a2 = al.map(lambda (a,b,c,d,e,f,g,h,1i,J): (a, b.replace("s&lt;",
"<"),c.replace("&lt;", "<"),d,e,f,g,h,1,]))

a3 = a2.map(lambda (a,b,c,d,e,f,g,h,i,j): (a, b.replace("&gt;",
">"),c.replace("cgt;", ">"),d,e,f,g,h,1,]))

def parsefunc (x):

html = lxml.etree.HTML (x)

code block = html.xpath('//code/text ()')#prints the code

#text block = html.xpath('// /text()")

text block = html.xpath('//*[not (self::code)]/text()"')#prints the rest
a4 = u''.join(x for x in code block).encode('utf-8").decode('utf-8")
#converted lxml.eTree elements into list of strings to obtain a
DataFrame

a5 = len(code block)

a6 = u''.join(x for x in text block).encode('utf-8").decode('utf-8")

a7 = len(text block)
a8 = u''.join(text block).encode('utf-8').decode('utf-8").split (' ')
a9 = 1len(al)

al0 = u''.join(text block) .split ()
numOfI = 0
numOfQue = 0

numOfExclam = 0

for x in al0:

if = 'I"':
numOfI +=1
elif x == "?':

numOfQue +=1

return (a4,ab5,a6,a7,a9, numOfI,numOfQue)
def tags(x):

tags = ''.join(map(str, x))

return tags.count('<')

all

a3.collect()

al2 = map(lambda (a,b,c,d,e,f,g,h,i,j): (a, tags(c), parsefunc(b),
d,e,f,g9,h,1,3), all)

#
import pandas as pd
columns = ['tags', 'sents@code', 'sents@text', 'words@text', 'numOfI',

'numOfQ"', 'Score', 'ViewCount', 'AnsCount', 'CommentCount',
'FavoriteCount', 'ClosedCreationDateDiff', 'label']

index = map(lambda x: x[0], al2)
data = map(lambda x: (x[1], x[2]1[1]1, x[2]11[3]1, x[2]11[41, x[2]1[51,
x[21[6], xI[31, x[4]1, x[5]1, x[6]l, x[71, x[9], x[8]), al2)
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df = pd.DataFrame (data = data, columns = columns, index = index)
df.index.name = 'Id’
df

#

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler ()

df scaled = pd.DataFrame(scaler.fit transform(df), columns=df.columns,
index = df.index)

df scaled

#

featuresDF = sglContext.createDataFrame (df scaled)
featuresDF.registerTempTable ("featuresTable™)
featuresRDD = featuresDF.rdd

#

from pyspark.mllib.classification import SVMWithSGD, SVMModel
from pyspark.mllib.regression import LabeledPoint

def parsePoint(line):

values = [float(x) for x in line]

return LabeledPoint (values[-1], values[0:-1])

data = featuresRDD.map (parsePoint)

# Split data aproximately into training (70%) and test (30%)
training, test = data.randomSplit([0.7, 0.3], seed=0)

# Train a naive Bayes model.

model = SVMWithSGD.train(training, 1.0)

labelsAndPreds = test.map(lambda p: (p.label,

model .predict (p.features)))

metrics = BinaryClassificationMetrics (predictionAndLabels)

print ("Area under ROC = %$s" % metrics.areaUnderROC)

accuracy =1.0 * labelsAndPreds.filter(lambda (v, p): v == p).count() /
test.count ()

accuracy

#

from pyspark.mllib.evaluation import MulticlassMetrics
metrics = MulticlassMetrics (predictionAndLabels)
confusionMatrix = metrics.confusionMatrix
confusionMatrix ()

#

from pyspark.mllib.classification import NaiveBayes, NaiveBayesModel
from pyspark.mllib.linalg import Vectors

from pyspark.mllib.regression import LabeledPoint

def parseline(line):

values = [float(x) for x in line]

label = values[-1]

features = values[0:-1]

return LabeledPoint (label, features)

data = featuresRDDIl.map (parselLine)

# Split data aproximately into training (70%) and test (30%)
training, test = data.randomSplit([0.7, 0.3], seed=0)
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# Train a naive Bayes model.

model = NaiveBayes.train(training, 1.0)

# Make prediction and test accuracy.

predictionAndLabel = test.map(lambda p: (model.predict(p.features),
p.label))

metrics = BinaryClassificationMetrics (predictionAndLabels)

print ("Area under ROC = %$s" % metrics.areaUnderROC)

accuracy = 1.0 * predictionAndLabel.filter (lambda (x, v): x ==

v) .count () / test.count()

accuracy

#

from pyspark.mllib.evaluation import MulticlassMetrics
metrics = MulticlassMetrics (predictionAndLabels)
confusionMatrix = metrics.confusionMatrix
confusionMatrix ()

#

from pyspark.mllib.classification import LogisticRegressionWithLBFGS,
LogisticRegressionModel

from pyspark.mllib.regression import LabeledPoint

def parsePoint(line):

values = [float(x) for x in line]

return LabeledPoint (values[-1], values[0:-1])

data = featuresRDD.map (parsePoint)

# Split data aproximately into training (70%) and test (30%)
training, test = data.randomSplit([0.7, 0.3], seed=0)

# Train a naive Bayes model.

model = LogisticRegressionWithLBFGS.train(training, 1.0)
labelsAndPreds = test.map(lambda p: (p.label,

model.predict (p.features)))

metrics = BinaryClassificationMetrics (predictionAndLabels)

print ("Area under ROC = %s" % metrics.areaUnderROC)

accuracy =1.0 * labelsAndPreds.filter(lambda (v, p): v == p).count() /
test.count ()

accuracy

#

from pyspark.mllib.evaluation import MulticlassMetrics
metrics = MulticlassMetrics (predictionAndLabels)
confusionMatrix = metrics.confusionMatrix
confusionMatrix ()
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Smatplotlib inline

import matplotlib

import numpy as np

import matplotlib.pyplot as plt

x= [5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80]

y= [0.90339, 0.90330, 0.90322, 0.90316, 0.90305,0.90297, 0.90281,
0.90292, 0.90301, 0.90287, 0.90274, 0.90265, 0.90239, 0.90215, 0.90259,
0.90330]

xl= [5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80]

yl= [0.92566, 0.92548, 0.92515, 0.92520, 0.92501,0.92512, 0.92485,
0.92516, 0.92503, 0.92489, 0.92518, 0.92532, 0.92504, 0.92494, 0.92499,
0.92479]

x2= [5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80]

y2= [0.93546, 0.93518, 0.93495, 0.93470, 0.93480,0.93496, 0.93505,
0.93528, 0.93495, 0.93495, 0.93520, 0.93532, 0.93504, 0.93455, 0.93428,
0.93491]

fig = plt.figure(figsize=(10,8))

plt.axis ([0, 90, 0.90000, 0.940001])

axes = fig.add subplot (111)

axes.plot(x, V)

axes.plot(xl, vyl)

axes.plot(x2, y2)

axes.plot (x,y,color="red", linestyle='dashed', linewidth=3,
marker='o',markerfacecolor="'blue', markersize=5)
axes.plot(xl,yl,color="green", linestyle='dashed', linewidth=3,
marker='o',markerfacecolor="'blue', markersize=5)

axes.plot (x2,y2,color="yellow", linestyle='dashed', linewidth=3,
marker='o',markerfacecolor="'blue', markersize=5)

axes.set title('Accuracy Variation')

axes.grid()

axes.set xlabel ('percentage of training set')
axes.set ylabel ('Accuracy')

plt.show ()
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