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Amino Acid Properties Provide Insight to a Protein’s Subcellular Location

by Brian POWELL

Current approaches of predicting subcellular locations of proteins located in a cell
have made some advances but are far from perfect. Accurately predicting these
locations result in better annotations of that protein and provide clearer pictures of
its functions. We approach this problem by using a chaos game representation of
the sequence based on physical and chemical properties of amino acids. We then
split the resulting graph into two related discrete series, which is then subjected to
wavelet transformation. The wavelet transformation data is then used as input for
our classification algorithms. We observe the accuracy of how well each property
predicts the correct subcellular location. We aim to achieve above the threshold of
45 percent accuracy, which is the average of existing general sub-cellular predic-
tors. For our study protein sequences were obtained from Uniprot’s freely acces-
sible repositories. We parsed data from five different classes, consisting of plant,
fungal, mammal, human, and rodent proteins. We accommodate 10 subcellular
locations: Nucleus, Membrane, Cytoplasm, Endoplasmic Reticulum, Secreted, Mi-
tochondria, Cell Membrane, Vacuole, Golgi Apparatus, and Chloroplast. Protein
sequences comprised of 20 amino acids are sorted into groups of four based on the
selected property of amino acids. These groups allow the sequence to be plotted
using 2-dimension chaos game theory. The resulting graph retains the sequence
order in numerical form. Looking at the graph with a human eye we can’t deduce
any information. To address this, we split the graph into two related discrete series
based on the x-axis and y-axis. We then use a 3-level Haar wavelet transformation.
Each level provides us with a detail coefficient vector the length of our sequence.
For each detail coefficient vector we calculate the mean, min, max, and standard
deviation. This provides us with 24 features to be used as input for classification.
We run a variety of classifiers to assess the importance of amino acid properties.

HTTP://WWW.YSU.EDU
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Chapter 1

Introduction

1.1 The Birth of Bioinformatics

1.1.1 Overview

Bioinformatics is an interdisciplinary field, combining two or more other fields. For
bioinformatics researchers should have a grasp on biology, computer science, and
statistics. Questions that are conceived in biology are challenged using an infor-
matic approach. To be able to apply this approach, all you need is data readable
by a computer and a hypothesis. The first data available was at the top level of
biology, the genome, or collection of genes in a species.

DNA sequencing started in the 1970’s but the field was slow to catch on. Be-
ing able to sequence DNA was one entry point into the field and only a limited
number of questions were feasible. As time passed and biology books grew thicker
and computers doubled their efficiency so did our yearning for knowledge of ev-
erything that the naked eye can’t see. Then in 1990, the Human Genome Project
became a reality. This was not on a study on the biological details of a lab mouse
or insect, but the most intelligent species on Earth. The project unleashed an abun-
dant amount of information in areas of physiology, evolution, and human devel-
opment [1]. After sorting and organizing through genomic data, scientists soon hit
the realization that they had to go deeper to understand the genomic data. Much
like reverse engineering of an operating system or a modern day engine, we know
what they do, but how do they work? The focus of this study lies a few levels lower
than the genome. To give an overview:

• Genome - Study of structure, function, and expression of all genes

• Transcriptome - The study of mRNA within an organism

• Proteome - Study of but not limited to the function and location of proteins
in an organism

• Metabolome - Study of metaobolites, which are low molecular weight com-
pounds found in the system, and exhibit significance response to environ-
mental factors [2]
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The proteome is able to provide us with the supplemental information that is sought
after. The collection of proteins are manufactured in the cell, not ingested through
food, and provide insight to which genes are activated simply be telling the cell
to make that protein. "Proteomics will add to our understanding of the biochem-
istry of proteins, processes and pathways for years to come" [3]. Just a little over
a decade later from that statement, and the Human genome project, we currently
have a draft of the Human proteome [4]. With that nearing completion, tools that
operate in the scope of proteomics should be polished to the highest potential.

1.1.2 Areas of Proteomics

There are different branches of computationally trying to predict information about
proteins to alleviate the work required by experimental researchers. Protein-protein
interactions (PPIs), where either long or short relationships between two or more
proteins emerge due to biochemical events. Proteins often work together to ac-
complish their function, and these interactions highlight the relationships that are
formed repeatedly. While the objective is to predict the interaction, inherently the
function is cultivated as well. Similar to the wide array of tools available for subcel-
lular location prediction, PPI tools rely on methods ranging from protein structure
to text mining [5]. Another being the subcellular localization of proteins. Over
the years, several ideologies and tools have been created and published. There
have been findings that have turned into facts already in this area. For example,
we know that classical secretory proteins almost always contain an N-terminal.
Machine learning has alleviated much of this process, revealing trends to the re-
searcher.

1.2 History of Subcellular Prediction

The history of subcellular predicted is still in its infancy. With the rapid growth of
sequencing methods, the availability of data is longer an issue. Dating back to 1997,
Cedano began exploring that amino acid composition and the cellular location of
a protein demonstrates a relationship. Their analysis covers among the following
five protein locations: integral membrane proteins, anchored membrane proteins,
extracellular proteins, intracellular proteins and nuclear proteins [8]. Similar to
the foundation of our experiment, Andrade states in 1998, "Within each subcellu-
lar compartment of a given cell type, proteins have co-evolved with the physio-
chemical environment so that they are stable and functional in that environment.
However, the general features of the nuclear, cytoplasmic, and extracellular envi-
ronments discussed above have been constant factors throughout eukaryotic evo-
lution" [10]. Due to the difficulty of the similarities of protein function and structure
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TABLE 1.1: Survey of Prediction Tools

Tool Notes
PredPlantPTS1 [14] Focuses on Plant Kingdom

Predotar[15] Uses the N-terminal to determine Membrane bound Proteins
MitoMiner [16] Targets prediction of mitchondria proteins

WoLF PSORT [17] General predictor
MetazSecKB [11] Mammal KnowledgeBase using multiple tools

FunSecKB [12] Fungi KnowledgeBase using multiple tools
ProtLock [8] Amino Acid composition

PredAlgo [18] Focuses on green algae
ProLoc-GO [19] Utilizes Gene Ontology (GO) annotations

PredSL [20] General Predictor

from sequence, bioinformatics hits an obstacle when more proteins diverge in se-
quence, reducing the effects of sequence homology. Using a large-scale analysis,
sequence similarity and identity are fully explored to exemplify this statement [9].

1.2.1 Types of Tools

For subcellular prediction a wide range of approaches can be taken for this compu-
tationally difficult problem. The first approach is writing your own algorithm, in-
corporating any features you think will accurately represent that protein’s location
without too much overhead. Various features have been used, such as sequence ho-
mology, N-terminal existence, sequence manipulation, functional domains, protein
families, and amino acid properties to an extent. Different combinations of these
features have been used on various types of proteome data, such as prokaryote,
eukaryote, bacteria, specific kingdoms, or just specific locations.

Another approach to predict subcellular locations is to incorporate many exist-
ing tools into a master algorithm that uses those results to best fit a protein with it’s
predicted location. This approach can be considerably better due to the amount of
tools created by researchers, and the location or special interest that the tool focuses
on. Working examples of this approach are the Secreteome Knowledgebases [11],
[12].

1.2.2 Existing Methods and Tools

If the location of a protein is known, or we know where it’s traveling to, under-
standing it’s function is natively easier. A majority of the tools are based on se-
quence analysis. These methods are limited in capacity, and accuracy due to relying
on sequence homology [13], which emphasizes the need to understand what other
properties determine where, and what a protein’s function is. To demonstrate the
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variety of existing methods, we surveyed existing tools and the differences among
them 1.1.

1.3 Computational Problems

The computational prediction of subcellular localization of proteins is challenging.
Not in terms of computational power, but zoning in on what determines a proteins
location. At the core can we be given a protein sequence, and identify its subcel-
lular location? To be able to do that a method has to be able to consider multiple
facets and incorporate that into it’s prediction. For example, a protein is manu-
factured in the cytoplasm. Therefore even annotated proteins that we use for our
model can be in accurate depending on the lifecycle of the protein. Proteins com-
monly translocate, or move from one location to another to fulfill it’s function. Can
the model predict both of these locations or is it limited to one, or evolve to the
state where it can predict an origin location and where the protein will be going?
Achieving this would be paramount in medical research, opening the doorway for
the delivery of medicine effectively.

1.3.1 Benefits

There is an abundance of proteins that do not have their function annotated, this is
partly caused by orphan genes not being analyzed as part of an organism’s genome
[22]. Predicting these proteins without having to catalog each and every orphan
gene, saves an invaluable amount of time a wet-lab researcher has to spend tag-
ging and then sequencing those proteins. Furthermore, "Shortfalls in the ability of
bioinformatics to predict both the existence and function of genes have also illus-
trated the need for protein analysis" [23]. Annotating the protein and then linking
it to it’s parent gene, will validate the existence and the function of the genes in
question.

1.3.2 Objectives

Our objective is to find relationships between the location a protein is found and
the overall composition of a sequence based on the properties of amino acids. Each
amino acid has a unique mass, hydrophobicity, defined as the tendency to repel
water, and other traits. These properties compromise a protein’s overall properties
and have to influence the way a protein behaves as there is no controlling brain
unit on a protein. At the molecule level, physical and chemical traits, and outside
influences should determine where a protein goes.
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1.3.3 Approach

We use an approach similar to the experiment conducted by Jia for predicting pro-
tein to protein interactions [24]. To incorporate the properties of amino acids, but
retain sequence order information we embrace chaos game theory. By placing the
amino acids into groups based on the selected property value, we can uniquely
plot each sequence. Reading in these coordinates into two separate times series
of namely x and y, we can pull out a set of discrete numbers after performing a
wavelet transformation. To expand our feature set, we apply basic mathematic
operations (mean,average,minimum,maximum,standard deviation) on the num-
ber set.
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Chapter 2

Data Collection

2.1 Universal Protein Resource

To start our experiment we require a large quantity of protein sequences with sub-
cellular locations annotated to create our models. The Universal Protein Resource
(UniProt) is an online repository that curates this protein information from sub-
missions from researchers, publications, or automatic annotations. UniProt is a
conjunction of two original knowledgebases, Swiss-Prot and TrEMBL. The differ-
ences between the two are that Swiss-Prot is manually annotated information and
TrEMBL is of predicted origin [25]. For this experiment we only used proteins with
a Swiss-Prot label as attempting to build prediction models on predictions that can
not be verified. UniProt gives you the option of downloading the protein sequences
categorized by biological kingdoms, and for single species where sufficient data
exists. We will be building models for the following protein categories: Fungal
Proteins, Plant Proteins, Mammal Proteins. In addition to Mammal Proteins, the
two subsets of Human Proteins and Rodent Proteins will be examined.

2.2 Preprocessing

The raw files from UniProt will need to undergo some transformations before being
able to be used. A single entry for a protein contains roughly 500 lines of informa-
tion. To accomplish this stage we will parse out only the information we need, the
protein identifier, the sequence, and the subcellular comments which are bundled
in the comments section among other things, see 2.1. We used a script called swis-
sknife, which was developed by researchers from either the European Bioinfor-
matics Institute or Swiss Institute of Bioinformatics, and can be downloaded at this
link https://sourceforge.net/projects/swissknife/files/latest/
download. We used this information to create our dataset, and arranged the in-
formation using the FASTA format standard. At minimum, the FASTA format is
an identifier line beginning with a greater than symbol (>) followed by a new line
with the matching sequence. See 2.2, this enables our dataset to be easily parsed
into our own experiment and accepted by other existing tools.

https://sourceforge.net/projects/swissknife/files/latest/download
https://sourceforge.net/projects/swissknife/files/latest/download
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FIGURE 2.1: View of comments section of a protein entry.

FIGURE 2.2: The entry transformed into fasta format.
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TABLE 2.1: Subcellular location counts for our datasets.

Location Plant Fungal Mammal Human Rodent

Nucleus 4132 6386 2484 3758 4399
Cytoplasm 3005 7697 3358 3505 5286
Endoplasmic 642 1647 650 601 1032
Secreted 1916 1979 2864 1474 2321
Mitochondria 1450 4049 3010 846 1839
Cell membrane 1540 839 1784 2124 2788
Golgi 458 592 340 388 557
Membrane 1994 1521 1416 1975 2575
Vacuole 439 590 0 0 0
Chloroplast 15062 0 0 0 0

2.3 Requirements

Traditionally for protein sequences, they are considered to be complete with the
identified start and stop codons. The start codon (AUG), represented by M in a
peptide sequence, is a pre-existing requirement for many tools for a protein to be
considered a non-fragment. For this experiment, we allow protein sequences that
do not have to be part of the dataset. Although not very common, it has been
experimentally verified that proteins can have different start codons [26]. We use
image analysis for obtaining our features, and therefore need a threshold sequence
length of at least 30 amino acids. Anything shorter than this creates too sparse of
an image. To consider a subcellular location in the dataset, it must contain at least
300 proteins to provide an ample sample for the classifier.

2.4 Locations

Location definitions can vary in different contexts and be placed under different
constraints. We adhere closely to the locations depicted in 2.3, with a few ex-
ceptions. The constraints we had to formulate our definitions around were how
Uniprot’s annotations often listed locations in pairs. For example, plastid is grouped
with chloroplast in nearly every occurance. The same applies to cell membrane,
and plasma membrane. We have a category tilted simply as membrane, and this in-
cludes a range of membrane locations, namely single, and multi-pass membranes.
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FIGURE 2.3: Locations in a cell visualized.
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Chapter 3

Experiment

3.1 Representing Sequences

Protein sequences are simplistic when they are represented by their amino acid let-
ters, that correspond to 3 letter nucleotide codons, all of which is decipherable by
people and computers. Even though it is understood by us, no additional knowl-
edge about the protein is acquired by reading its sequence. For example, if we gave
the prediction model the protein sequence and it is observed subcellular location,
the model would look for very similar sequences in a string matching approach to
predict locations. While homologous sequences can share the same attributes, this
does not accurately represent all proteins. Just quickly browsing a repository we
observe that sequences vary by length and composition, yet can be found in the
same location as another protein.

3.1.1 Amino Acid Composition

Amino Acid Composition (AAC) is the first method devised to circumvent this. A
sequence is transformed into an array of 20 numbers, each representing an amino
acid. Each number is calculated by taking the total number of that amino acid in
the sequence, and dividing it by the sequence length [28].

3.1.2 Pseudo Amino Acid Composition

One of the pitfalls of AAC is that you lose sequence order information. A sequence
that has the same AAC as another sequence could be completely different in struc-
ture and order. Chou’s Pseudo Amino Acid Composition (PseAA) addresses this
by expanding the algorithm. Instead of tallying the counts of single amino acid
residues, the algorithm looks at two residues at one time. Amino acids in positions
1, and 2 would be counted as a group, then 2, and 3. This occurs for three iterations,
each time incrementing the distance in between the two residues [29].
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FIGURE 3.1: A protein sequence plotted using Chaos Game theory
based on hydrophobic values.

3.1.3 Hidden Markov Models

Hidden Markov Models (HMM) have been around for a long time, and used ex-
tensively in other fields. This statistical model behaves like a bayesian network,
but looks for hidden states. In bioinformatics, HMM’s have a prominent presence
in predicting a protein’s transmembrane topology, resulting in the tool TMHMM
[30].

3.1.4 Chaos Game Theory

To represent the sequences we have chosen a chaos game representation. This is
restricted to a two-dimensional representation, meaning the vertex can only move
along the x or y axis. For predicting protein-protein interactions this method is
utilized, but they transformed the sequence into it’s corresponding nucleotide rep-
resentation [24].
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TABLE 3.1: Categorizing Amino Acid Properties

Hydrophobic Single Letter Amino Acid
Group 1 FIWLVM
Group 2 YCNA
Group 3 THGSQBZ
Group 4 RKDEPD

Acceptor Single Letter Amino Acid
Group 1 ACGILMFPV
Group 2 DEBZ
Group 3 RKW
Group 4 NQHSTY

Mass Single Letter Amino Acid
Group 1 GA
Group 2 SPVTC
Group 3 ILNDBQKEZMH
Group 4 FRYW

Pka1 Single Letter Amino Acid
Group 1 DBCNFPH
Group 2 EZTQYSKR
Group 3 MVGLAI
Group 4 W

pI Single Letter Amino Acid
Group 1 DEBZ
Group 2 CNFTQYSM
Group 3 WVGLAIP
Group 4 HKR

3.1.5 Amino Acid Properties

For our experiment, we have chosen the following five amino acid properties:

Hydrophobicity - How soluble a given amino acid is

Acceptor - How an amino acid behaves with hydrogen bonds

Mass - The weight of an amino acid

Pka1 - The carboxyl group pH level of an amino acid

pI - Isoelectic point; pH level necessary for amino acid to be neutral

Since we are restricted to a two-dimensional plane, each amino acid is sorted into
a group based on its attribute.

3.2 Wavelets

With a plot for each protein, we can begin to extract features to use as input for our
classifiers. To achieve this we will use a type of wavelet for their prowess in analyz-
ing images, or in our case an image of a graph. The Haar wavelet, albeit the most
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TABLE 3.2: Classification Algorithms

Classifier Parameters
K-Nearest Neighbors Neighbors = Number of Locations
Linear Support Vector Classification Error Term = 0.025
RBF SVM Gamma = 2, Error Term = 1
Decision Tree Max Depth = 5
Random Forest Max Depth = 5, Estimators = 10
Neural Net
AdaBoost
Naive Bayes
Quadratic Discriminant Analysis

simple of wavelets, provides us with sufficient features generated from its rescaled
square shaped functions [31]. We implemented this wavelet transformation using
a python library, http://pywavelets.readthedocs.io/en/latest/ref/
dwt-discrete-wavelet-transform.html. Additionally, we did three levels
of decomposition which results in one approximation coefficient and three coeffi-
cients for each the x and y axis resulting in six coefficients. To expand our feature
list, we observed the minimum, maximum, mean, and standard deviation for each
coefficient presenting us with twenty-four features.

3.3 Classifiers

For the classification models, we chose to use sklearn’s vast library of classifiers
[32]. Our data was split using their stratified shuffle split function, which preserves
the ratio of classes of each fold. With the larger classes having as many as ten times
more samples than the smaller classes, this allows the classifier to adequately train
for each class. We selected 9 classifiers to run our predictions. It has been observed
in this field, that different classifiers can perform notably better than others [33],
[34]. Listed in table 3.2 are the classifiers selected and their parameters, if any.

http://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
http://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
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Chapter 4

Discussion

4.1 Results

Observing the accuracies, it appears that the plant predictions performed better
than the other datasets by 15%. Upon reviewing the confusion matrix, the classi-
fiers overfitted for chloroplast. Excluding the plant kingdom, the other classifiers
performed respectfully. The property PKA1 achieved the highest accuracies re-
gardless of the kingdom. When using machine learning, other metrics are required
to adequately represent how well the model performed. A high accuracy alone can
depict excellent or mediocre performance. The metrics we include are: Accuracy
(Correct Predictions / Total Predictions), Precision (Correct Predictions / Correct
Predictions + False Positives), F1-score (2 * (Precision * Recall) / (Precision + Re-
call)), and Support (Total true samples for specific classes). For prediction models
with the highest accuracy we will list these metrics to further examine the results.

4.1.1 Location Evaluation

Viewing the location metrics from the three kingdoms is sufficient enough to see
that accuracy alone is misleading, without having to read a confusion matrix. You
can see how the plant accuracy reported a high number, with the large support
number of 4519 and getting the majority of those correct. The precision metric
(53%) provides a better reading than the accuracy (94%). Observing the fungal and
mammal metrics, it appears there is a correlation between the number of samples

TABLE 4.1: Average Accuracy by Group.

Group Accuracy
Plant 46%
Fungi 31%
Mammal 33%
Human 28%
Rodent 28%
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TABLE 4.2: Best Performing Classifiers.

Group Property Classifier Accuracy Precision F1-Score Support
Plant PKA1 Neural Net 51% 40% 40% 9192
Fungi PKA1 Adaboost 35% 30% 29% 7590
Mammal PKA1 QDA 41% 42% 40% 4772
Human PKA1 QDA 34% 33% 32% 4402
Rodent PKA1 QDA 33% 32% 31% 6240

FIGURE 4.1: Adaboost - Fungi
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FIGURE 4.2: QDA - Fungi

FIGURE 4.3: QDA - Human
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FIGURE 4.4: QDA - Rodent

FIGURE 4.5: QDA - Mammal
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FIGURE 4.6: Neural Net - Plant
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TABLE 4.3: Plant Location Classification Metrics.

Location precision Accuracy f1-score support
Nucleus 0.41 0.22 0.29 1240

Cytoplasm 0.30 0.06 0.10 901
ER 0.00 0.00 0.00 193

Secreted 0.41 0.19 0.26 575
Mitochondria 0.00 0.00 0.00 435

Cell membrane 0.23 0.01 0.01 462
Golgi Apparatus 0.00 0.00 0.00 137

Chloroplast 0.53 0.94 0.68 4519
Membrane 0.22 0.03 0.06 598

Vacuole 0.00 0.00 0.00 132

TABLE 4.4: Fungal Location Classification Metrics.

Location precision Accuracy f1-score support
Nucleus 0.43 0.49 0.46 1916

Cytoplasm 0.33 0.65 0.44 2309
ER 0.00 0.00 0.00 494

Secreted 0.23 0.22 0.23 594
Mitochondria 0.23 0.04 0.07 1215

Cell membrane 0.14 0.01 0.02 252
Golgi Apparatus 0.50 0.01 0.01 177

Membrane 0.21 0.04 0.07 456
Vacuole 0.17 0.01 0.01 177

and f1-score. From this we conclude that with a larger data set our predictions
could improve.

4.2 WoLF PSORT Benchmark

We chose to run our datasets against WoLF PSORT, a general predictor. This eval-
uation will check the integrity of our dataset, and compare how our classifications
performed. Unlike our straightforward approach, WoLF PSORT uses a variety of
class features, such as sorting signals, amino acid composition, and functional mo-
tifs [17]. This tool covers many of the same areas that we predicted, with the in-
clusion of peroxisome. Our datasets did not contain enough proteins located in
the peroxisome to build a model around. An additional restraint we placed on this
benchmark was limiting the WoLF PSORT results to one location to match our ex-
periment. Normally WoLF PSORT predicts several locations for one protein, listing
a confidence score to the location.
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TABLE 4.5: Mammal Location Classification Metrics.

Location precision Accuracy f1-score support
Nucleus 0.52 0.26 0.35 745

Cytoplasm 0.35 0.57 0.43 1008
ER 0.21 0.08 0.11 195

Secreted 0.46 0.48 0.47 859
Mitochondria 0.60 0.55 0.58 903

Cell membrane 0.28 0.35 0.31 535
Golgi Apparatus 0.18 0.11 0.13 102

Membrane 0.27 0.14 0.19 425

TABLE 4.6: WoLF PSORT Performance

Location Abbreviations
Secreted S

Cytoplasm C
Cell membrane Cm

Peroxisome P
Mitochondria M

Nucleus N
Golgi Apparatus G

Endoplasmic Reticulum E
Vacuole V

Chloroplast Ch

WoLF PSORT Accuracy
Plant 15%
Fungi 61%

Mammal 43%
Human 56%
Rodent 56%



22 Chapter 4. Discussion

TABLE 4.7: WoLF PSORT Confusion Matrices.

Plant

Pr
ed

ic
te

d
C

la
ss

S 502 94 53 6 21 116 2 9 696
C 257 1105 224 45 193 727 22 38 4648

Cm 86 174 327 9 66 215 7 6 1457
P 8 16 2 25 3 11 0 0 62
M 56 125 42 5 95 111 18 14 743
N 222 570 227 20 172 1842 27 19 2587
G 2 8 5 0 4 6 1 0 9
E 33 18 16 3 7 20 0 15 221

Ch 637 800 385 33 314 1025 35 44 3798

S C Cm P M N G E Ch

Actual Class

4.2.1 Plant

For the plant dataset, WoLF PSORT classified the locations poorly, exhibiting the
same behavior as our prediction model. Although not to the same degree, as many
other locations were predicted to have proteins, but with mixed results. Therefore
the dataset can not be blamed because the WoLF PSORT tool has models built into
its algorithm, and does not train on our skewed data. The cytoplasm effect is also
evident here, responsible for most of the incorrect predictions, including 4,648 from
chloroplast alone.

4.2.2 Fungi

Scoring a 61% accuracy, albeit for 8 locations instead of 10 like plant, the tool fared
rather well. Again, cytoplasm led the prediction totals for three locations, including
its own. For individual locations the tool varied it’s accuracy, recording a 91% true
positive rate for secreted proteins, but a 26% for peroxisome proteins. This increase
for secreted proteins can be attributed to looking for N-terminal which is present
on classical secretory proteins.

4.2.3 Mammal and Mammal subsets

In the mammal kingdom the accuracies dipped compared to fungi, but are still
insightful for multiclass prediction. The behavior was actually the opposite of our
model, with accuracy rising when handling single specie datasets, which should
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Fungi

Pr
ed

ic
te

d
C

la
ss

S 1806 92 170 4 25 22 63 60
C 112 2934 76 48 151 763 21 22

Cm 13 55 348 1 28 79 56 28
P 1 12 0 6 2 1 1 0
M 26 649 59 18 1490 403 16 9
N 13 3746 176 20 312 5107 80 23
G 2 8 5 0 4 6 1 0
E 6 4 10 0 1 9 29 15

S C Cm P M N G E

Actual Class

Mammal

Pr
ed

ic
te

d
C

la
ss

S 1806 92 170 4 25 22 63 60
C 112 2934 76 48 151 763 21 22

Cm 13 55 348 1 28 79 56 28
P 1 12 0 6 2 1 1 0
M 26 649 59 18 1490 403 16 9
N 13 3746 176 20 312 5107 80 23
G 2 8 5 0 4 6 1 0
E 6 4 10 0 1 9 29 15

S C Cm P M N G E

Actual Class

encourage a higher precision level. This encapsulates the differences between the
two models, where ours bases predictions off of a single feature source, and where
theirs is fine tuned, and have a different set of requirements for each location.
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Human

Pr
ed

ic
te

d
C

la
ss

S 1806 92 170 4 25 22 63 60
C 112 2934 76 48 151 763 21 22

Cm 13 55 348 1 28 79 56 28
P 1 12 0 6 2 1 1 0
M 26 649 59 18 1490 403 16 9
N 13 3746 176 20 312 5107 80 23
G 2 8 5 0 4 6 1 0
E 6 4 10 0 1 9 29 15

S C Cm P M N G E

Actual Class

Rodent

Pr
ed

ic
te

d
C

la
ss

S 1806 92 170 4 25 22 63 60
C 112 2934 76 48 151 763 21 22

Cm 13 55 348 1 28 79 56 28
P 1 12 0 6 2 1 1 0
M 26 649 59 18 1490 403 16 9
N 13 3746 176 20 312 5107 80 23
G 2 8 5 0 4 6 1 0
E 6 4 10 0 1 9 29 15

S C Cm P M N G E

Actual Class
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Chapter 5

Conclusion

Not all amino acid properties performed as well as others, but they do provide in-
sight for predicting subcellular locations. It’s became clear that the property Pka1
contains more information than the others, and that quantitative discriminant anal-
ysis was the best fit for the features extracted from the wavelet transformations. It’s
evident to see why prediction tools use a variety of approaches to designing an al-
gorithm to boost accuracy. Although simply using amino acid properties holds
some information about where the protein resides, the biological nature of this
problem is too complex to approach in that manner.

5.0.1 The Cytoplasm effect

Most of the incorrect predictions were classified as cytoplasm. Labeling those as
incorrect may not be the most accurate observation. Proteins originate in the cy-
toplasm, and then make their way to their desired location, and even then they
could cross the cytoplasm again if they translocate. Our experiment has flaws in
two areas. The first, upon annotating proteins in a cell, they might not be in their
desired location, and this is impossible to account for until we are able to annotate
proteins by viewing a live cell in action. The second, proteins are bound to share
the same attributes as other proteins that remain in the cytoplasm since they are
incepted there.

5.1 Future Directions

Expanding on this experiment in the future, we would allow the chaos game plot
to be of varying dimensions. This allows for better groupings of properties, rather
than forcing four classes. We would have the freedom to gracefully select the de-
sired amount. Image analysis of the chaos game plot could be improved, whether
it be a larger step size or smaller plot, the whitespace was prominent in all plots
regardless of sequence length. Even decomposing the amino acids into their re-
spective nucleotide composition and using those properties to expand sequences
is under consideration.
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