EFFECTIVENESS OF AMENDMENTS AND MICROBIAL TREATMENTS ON PLANT GROWTH IN URBAN GARDEN SOILS

BY

KEVIN SUMMERVILLE

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN THE

ENVIRONMENTAL SCIENCE PROGRAM

YOUNGSTOWN STATE UNIVERSITY

MAY, 2017

EFFECTIVENESS OF AMENDMENTS AND MICROBIAL TREATMENTS ON PLANT GROWTH IN URBAN GARDEN SOILS

Kevin Summerville

I hereby release this **thesis** to the public. I understand that this: **thesis** will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

Kevin Summerville Student		Date	
Approvals:			
	Felicia Armstrong, Thesis Advisor	Date	
	Dawna Cerney, Committee Member	Date	
	Colleen McLean, Committee Member	Date	
	Rich Ciotola, Committee Member	Date	
	Dr. Salvatore A. Sanders, Dean of Graduate Studies	Date	

Contents

Chapter 1 Introduction	1
Chapter 2 Literature Review	4
Nutrients and Soil Properties	6
Microbial Soil-Plant Environment	14
Compost Amendments	
Biosolids effects on soil physical and chemical properties	
Chapter 3 Materials and Methods	
3.1 Site and Soil Description	
3.2 Soil Amendment/Microbial Treatment Description	
3.3 Plant Growth and Harvesting Description	
3.4 Particle Size Analysis	
3.5 pH and Conductivity Analysis	
3.6 Organic Matter Analysis	
3.7 Total Metal Analysis for Soil	
3.8 Plant Available (Mehlich III) Analysis for Soil	
3.9 Total Nitrogen Analysis	
3.10 Inorganic Nitrogen Analysis	
3.11 Plant Tissue Analysis	
3.12 Soil Microbe Analysis	
3.13 Statistical Analysis	
Chapter 4 Results and Discussions	
4.1 Particle Size Analysis Results	
4.2 pH and Electrical Conductivity	
4.3 Organic Matter Results	40
4.4 Soil Nitrogen Compounds Analysis Results	
4.5 Soil Melich III (Plant Available) Analysis Results	
4.6 Soil Microbial Analysis	
4.7 Soil Total Nutrient Analysis Results	
4.8 Plant Biomass Results	

4.9 Plant Tissue Analysis	51
4.10 Pearson Correlation	54
4.11 Backwards Stepwise Regression	59
4.12 ANOVA	66
4.13 General Discussion	83
4.14 Future Research	86
Chapter 5 Conclusion	87
Acknowledgements	89
References	90
Appendix A: Soil Mehlich III and Plant Tissue Analyses	89

Table 1 Ranges for Macronutrients extracted using Mehlich III (Heckman et al, 2000)	. 8
Table 2 Descriptions of amendments and microbial treatments used in soil	25
Table 3 Output from the Hydrometer Particle Size Calculator with % sand, silt and clay for the	
Oakhill soil	38
Table 4 Oakhill soil treatment and corresponding average pH and electrical conductivity	39
Table 5 Average organic matter percentages for each amendment and /or treatment Erro)r!
Bookmark not defined.	
Table 6 Total nitrogen, ammonium (NH ₄), nitrate (NO ₃) for each amendment and/or treatment	41
Table 7 Mehlich III nutrient concentrations in tomato soils	43
Table 8 Mehlich III nutrient concentrations in radish soils	44
Table 9 Mehlich III nutrient concentrations in lettuce soils	45
Table 10 Average Percentage of Plate Coverage from Microbial Platings	46
Table 11 Total nutrient concentrations in tomato soils	47
Table 12 Total nutrient concentrations in radish soils	47
Table 13 Total nutrient concentrations in lettuce soils	48
Table 14 Nutrient Concentrations found in Tomato Stems	52
Table 15 Nutrient Concentrations found in Radish Roots	53
Table 16 Nutrient Concentrations found in Lettuce Shoots	54
Table 17 Pearsons Correlations between Lettuce Root Biomass and Soil Properties	55
Table 18 Pearsons Correlations between Lettuce Root Biomass and Nutrient Concentration in	
Lettuce Root Tissue	55
Table 19 Pearsons Correlations between Lettuce Shoot Biomass and Soil Properties	56
Table 20 Pearsons Correlations between Lettuce Shoot Biomass and Nutrient Concentration in	
Lettuce Shoot Tissue	56
Table 21 Pearsons Correlations between Radish Shoot Biomass and Soil Properties	57
Table 22 Pearsons Correlations between Radish Shoot Biomass and Nutrient Concentration in	
Radish Shoot Tissue	57
Table 23 Pearsons Correlations between Tomato Root Biomass and Soil Properties	58
Table 24 Pearsons Correlations between Tomato Root Biomass and Nutrient Concentration in	
Tomato Root Tissue	58
Table 25 Pearsons Correlations between Tomato Shoot Biomass and Soil Properties	59
Table 26 Pearsons Correlations between Tomato Shoot Biomass and Nutrient Concentration in	
Tomato Leaf Tissue	59
Table 27 Backward Stepwise Regression of Significant Nutrient Concentrations in Soil and	
Lettuce Root Biomass	60
Table 28 Backward Stepwise Regression of Significant Nutrient Concentration in Lettuce Root	•
Tissue and Lettuce Root Biomass	61
Table 29 Backward Stepwise Regression of Significant Nutrient Concentrations in Soil and	
Lettuce Shoot Biomass	61

Table 30 Backward Stepwise Regression of Significant Nutrient Concentrations in Lettuce Sh				
Tissue and Lettuce Shoot Biomass				
Table 31 Backward Stepwise Regression of Significant Nutrient Concentrations in Soil Tissue and Radish Shoot Biomass				
Tissue and Tomato Root Biomass				
Table 33 Backward Stepwise Regression of Significant Nutrient Concentrations in Soil and				
Tomato Root Biomass	65			
Table 34 Post Hoc Test for ANOVA of Lettuce Shoot Biomass between Control and Treatmen	its. 67			
Table 35 Post Hoc Test for ANOVA of Mehlich III, Ca (Top) K (Bottom) between Control and	d			
Treatments	69			
Table 36 Post Hoc Test for ANOVA of Mehlich III, Mg (Top) P (Bottom) between Control an Treatments.	d 70			
Table 37 Post Hoc Test for ANOVA of Mehlich III S (Top) and Total Ca (Bottom) between				
Control and Treatments	72			
Table 38 Post Hoc Test for ANOVA of Radish Root Biomass between Control and Treatments	5.			
	73			
Table 39 Hoc Test for ANOVA of Mehlich III, Ca (Top) K (Bottom) between Control and	74			
Table 40 Post Hoc Test for ANOVA of Mehlich III Mg (Top) S (Bottom) between Control ar	nd d			
Treatments	76			
Table 41 Post Hoc Test for ANOVA of Tomato Shoot Biomass between Control and Treatmer	nts			
	77			
Table 42 Post Hoc Test for ANOVA of Mehlich III, Ca (Top) Fe (Bottom) between Control as	nd			
Treatments	79			
Table 43 Post Hoc Test for ANOVA of Mehlich III, Mg (Top) K (Bottom) between Control and	nd			
Treatments	81			
Table 44 Post Hoc Test for ANOVA of Mehlich III, Mn (Top) P (Bottom) between Control ar	ıd			
Treatments	82			
Table 45 Post Hoc Test for ANOVA of Mehlich III S between Control and Treatments	83			
Table 46 Nutrient Concentrations in Tomato Roots	89			
Table 47 Nutrient Concentrations in Tomato Roots Continued 1	90			
Table 48 Nutrient Concentrations in Tomato Roots Continued 2	91			
Table 49 Nutrient Concentrations in Tomato Stems	92			
Table 50 Nutrient Concentrations in Tomato Stems Continued 1	93			
Table 51 Nutrient Concentrations in Tomato Stems Continued 2	94			
Table 52 Nutrient Concentrations in Tomato Leaves	95			
Table 53 Nutrient Concentrations in Tomato Leaves Continued 1	96			
Table 54 Nutrient Concentrations in Tomato Leaves Continued 2	97			

Table 55 Nutrient Concentrations in Radish Roots	
Table 56 Nutrient Concentrations in Radish Roots Continued 1	99
Table 57 Nutrient Concentrations in Radish Roots Continued 2	100
Table 58 Nutrient Concentrations in Radish Shoots	101
Table 59 Nutrient Concentrations in Radish Shoots Continued 1	102
Table 60 Nutrient Concentrations in Radish Shoots Continued 2	103
Table 61 Nutrient Concentrations in Lettuce Roots	104
Table 62 Nutrient Concentrations in Lettuce Roots Continued 1	105
Table 63 Nutrient Concentrations in Lettuce Roots Continued 2	106
Table 64 Nutrient Concentrations in Lettuce Shoots	107
Table 65 Nutrient Concentrations in Lettuce Shoots Continued 1	108
Table 66 Nutrient Concentrations in Lettuce Shoots Continued 2	109
Table 67 Mehlich III Concentrations in Lettuce Soils	110
Table 68 Mehlich III Concentrations in Lettuce Soils Continued	111
Table 69 Mehlich III Concentrations in Radish Soils	112
Table 70 Mehlich III Concentrations in Radish Soils Continued	113
Table 71 Mehlich III Concentrations in Tomato Soils	
Table 72 Mehlich III Concentrations in Tomato Soils Continued	115

Chapter 1 Introduction

Cities and urban areas constantly go through periods of growth and recession; often these oscillations are on a small scale and in a fairly balanced manner. When thriving areas suffer economic hardship and experience rapid or sustained job loss urban areas are often left with abandoned industry, housing and buildings which turn to blight and further worsens a bad situation. This is a situation which happened in the City of Youngstown, Ohio starting in the late 1960's, when the thriving steel industry slowed and eventually all but ceased. (Posey 2013).

With the steady decline of Youngstown's main industry, the city turned from a once thriving considerably wealthy middle class area to a poverty stricken city with an ever declining population. Today a large portion of the residents of Youngstown, Ohio live below the federal poverty line, earning less than \$24,000 a year for a family of four (Murthy 2016). Many of the areas within the city where these residents live also have a high percentage ~25% of vacant buildings and lots (CityData 2013). These factors coupled with the city's ongoing plan to remove abandoned buildings and houses, (blight) is creating vacant parcels of land.

The decades of economic decline have also resulted in many of the residents lacking accessibility to nutritional food as there are not any grocery stores, farmers' markets, or healthy food providers within an accessible distance or at costs that a large portion of the population can afford on a regular basis. For these reasons the USDA classifies the city of Youngstown as a food desert. Food deserts are areas void of access to nutritional food; fresh produce or healthy whole foods for reasons of availability, affordability, or limited access for reasons of distance or lack of transportation (USDA

2016). These devoid areas known as food deserts occur most typically in cities and localities where urban sprawl is significant and poverty levels of the population are elevated. (Mead 2008). All these factors combined have created problems no doubt but an opportunity for residents as well. The vacant space that communities can take advantage of to establish urban gardens and obtain nutritional food for at least part of the year which they would otherwise lack (Mahoning Land Bank, 2017).

One of many tools to combat against food deserts is the establishment of urban gardens and urban farms. The installation of urban gardens can provide communities in food deserts access to fresh, nutritional, locally grown food. This is something that many residents may not have the means to afford or conveniently access otherwise. Urban gardens are beneficial to communities for their role in providing communities a platform to work together, save money, eat healthier and act as a learning mechanism (Vitiello et al 2014).

Often, blighted areas, where buildings once stood, have poor soil quality that is not ideally suited for growing gardens. The parcels often have soil of poor physical and chemical quality due to the overall composition, compaction and lack of nutrients available for the plants. The poor soil quality is due to the initial development of the site which involves the process of excavating the topsoil prior to building. Additionally if the site is developed for industry, soil compaction can become a major issue as a result of large industrial buildings and the use of heavy equipment compacting the soil throughout the life of the site (Craul 1999). Without addressing the issue of soil quality, the time and effort put forth during the growing season can be met with poor crop yields.

Unsatisfactory yields can discourage residents from continuing the practice of urban gardening in future seasons.

Many urban gardens have been established in Youngstown primarily as raised bed gardens and although this is a method which can fix the issue of soil quality it might not always be the best or most cost effective approach. As more communities establish gardens in urban settings and interest in the practice gains momentum it is important to evaluate different options and compare each against the other for cost effectiveness, efficiency, and environmental impacts. In addition, it is important to provide multiple options as no one solution will be a perfect fit to address the conditions of depleted soil quality in all instances at all times.

A wide variety of amendments have been used in past studies to improve poor soil quality in urban locations. These amendments focus on improving the urban soil's physical, chemical, and biological properties. The effects that amendments will have on soil quality depends on a variety of factors. The type of amendment chosen, the amount, and method of application will lead to varying final results in physical, chemical and biological parameters. Not only will the amendment and parameters associated with the amendment matter but the initial state of the soil and its various parameters must be kept in consideration. Various types of compost have shown to be capable amendments to improve soil quality in physical, chemical and biological activity (USCC 2001).

Compost has been shown to improve the soil quality from a physical standpoint by increasing the available water capacity (AWC), increasing the total C and organic matter (Beniston et al. 2014). Compost also improves the soils chemical quality since it is nutrient rich material. Compost contains compounds that are mainly organic forms of

nutritional compounds that the plants can use over an extended period of time. In addition to containing such compounds, compost can increase nutrition is by increasing the soil electrical conductivity (EC). This provides additional sites on the soil surface where ionic compounds can adsorb and lay readily available for plants to absorb. Compost has been shown to increase the three primary nutrients (N, P, K) especially when derived from at least in some part manure (De Lucia et al. 2013).

The City of Youngstown had contacted Youngstown State University regarding a vacant lot of land in the Oakhill community, located west of downtown Youngstown. They requested an analysis of the soil conditions of the lot be conducted so the community could use the parcel for a community garden. Efforts by the City of Youngstown, the Land-bank, and neighborhood partnership groups removed many of the houses leaving the lots clear of structures. Many of these lots were used for playgrounds, green space, basketball courts, and raised bed gardens. The City would like to see the expansion of urban gardens to not only provide fresh produce to the neighborhood but also provide a source of income for the residents. This study focused on using various soil amendments on soil from Oakhill vacant parcels to improve soil quality and increase plant growth for the establishment of an urban garden.

Chapter 2 Literature Review

Background of Youngstown

Youngstown, Ohio was once known as the Steel Valley. During its most prosperous decades, the 1930's through the 1950's Youngstown had a population of around 170,000 and a viable steel industry serving as the economic motor of the city. The steel industry started to decline in the 1960's with the most devastating blow coming to the industry on the 19th day of September in 1977 when the Campbell Works closed. Many see that day as the beginning of the end of the steel industry in the valley. Between 1976 and 1986 additional steel mills closed or reduced production output and laid off workers and 40,000 jobs were lost during that time period (High 2002).

Throughout the decline of the steel industry and after there have always been attempts to revitalize Youngstown whether it be by bringing steel back or trying to generate new industry and take the city in a new direction. Towards the later part of the 90's and early 2000' Youngstown established the Youngstown 2010 plan. The plan established a plan to repurpose land to try and create industry and generate new business. There has been some success with the establishment of new businesses but nothing has been able to drive an increase in population. As of June 1, 2016, the estimated population of the Youngstown metropolitan area is 547,700, an average decline of 2,900, or 0.5 percent, annually since 2010 (HUDuser.gov 2017).

Another goal of the 2010 plan was and is to deal with the blight across the city from industries of the past. Through federal grant money the city is removing this blight and creating a more aesthetically pleasing appearance in an attempt to improve the city. The Land Bank was awarded a \$4.27 million for the Neighborhood Initiative Program (NIP). This is a demolition grant awarded in early 2014 funded by the Ohio Housing Financing Agency. An additional \$500,000 performance-based bonus was granted in November 2015. Additional performance-based awards of \$6.89 million in July 2016 and \$3.15 million in October 2016 will fund demolition activities through mid-2019 (Mahoning Land Bank, 2017).

Nutrients and Soil Properties

There are fourteen elements which are considered to be essential for plant growth that are obtained primarily from the soil. There are additional elements which are also considered essential (carbon, hydrogen, and oxygen) but are obtained through atmospheric interactions and several other elements (cobalt, selenium, silicon, sodium and vanadium) which are considered beneficial but not essential. Essential elements are needed by the plant to complete its normal life cycle and without the elements, the plant would be adversely effected. The essential elements are more commonly known as nutrients and are divided into two groups, macro and micro nutrients based on the amount plants require.

Elements that make up the macro nutrients are nitrogen, phosphorous, potassium, calcium, magnesium and sulfur. Micro nutrients are boron, chlorine, copper, iron, manganese, molybdenum, nickel and zinc (Barker et al. 2007). Optimal yields can only be produced when all these nutrients are in proper supply. According to the Law of Minimum, if one or more nutrients are lacking in the soil, crop yields will be reduced, even though an adequate amount of other elements are available (Barker et al. 2007).

The macronutrients are further broken down into two additional categories, primary and secondary. The "N, P, K" ratio seen on fertilizer bags are three of the six macro nutrients and commonly referred to as the primary nutrients. They are essential for plant growth and play many key roles throughout the plants growth and development. Nitrogen is required to form amino acids and thus proteins and carbohydrates, needed for cell division to occur, and plays an essential role in photosynthesis (Graham et al. 2006).

The amount of nitrogen in a soil can be measured in several ways. Nitrogen testing can be conducted to determine the total amount, which is less common. Testing can be conducted for mineralized nitrogen, which is the plant available forms, which is more common. The two main inorganic forms that plants can uptake most readily are ammonium (NH_4^+) and nitrate (NO_3^-) and are analyzed to determine if nitrogen should be added to the soil. Typical concentrations of nitrate and ammonium considered to be sufficient for the majority of crops are 25-30 mg/kg and 2-10 mg/kg respectively. Nitrate can be further divided into low, moderate, high and excessive. For most crop requirements nitrate would be low at < 10 mg/kg, moderate 10-20 mg/kg and high 20-30 mg/kg and excessive > 30 mg/kg (Marx et al. 1999).

Phosphorous is involved in photosynthesis, respiration, energy storage, cell division and growth. Phosphorous also encourages early root formation, helps develop the fruit and reproductive bodies of plants including seed formation and encourages the growth and resiliency of the plant. Potassium is necessary for metabolizing carbohydrates and starches, increases the rate of photosynthesis and plays a key role in plant water-use efficiency. Additionally it is involved with controlling reaction rates, synthesizing proteins and aids the plant by improving resiliency to diseases and cold (Sanchez 2006).

Like nitrogen, levels of phosphorous and potassium are also very commonly tested for as they are required in large quantities relative to other nutrients and can often be deficient in soils and need to be monitored. These nutrients can become limiting when available levels get too low and can result in crop stress and lead to lower yields. Nutrient ranges for phosphorous, potassium, magnesium and calcium are listed in Table 1

below. The table shows the very low and low ranges of each nutrient where deficient levels could reduce relative yields. On the other end of the spectrum when concentrations get above optimum in the very high range, nutrient toxicity can occur which can also negatively impact crops and result in reduced relative yields (Heckman et al, 2000).

Soil Test Category Phosphorus (P) Potassium (K) Magnesium (Mg) Calcium (Ca)¹ Mehlich-3 Soil Test Value (lbs/acre)2,3 Mehlich-3 0-40 0-45 Below Optimum (very low) 0–24 0-615 Below Optimum (low) 25-45 41-81 46-83 616-1007 Below Optimum (medium) 46-71 82-145 84-143 1008-1400 Optimum (high) 72-137 146-277 144-295 1401-1790 Above Optimum (very high) 138 +278 +296+ 1791 +

Table 1 Ranges for Macronutrients extracted using Mehlich III (Heckman et al, 2000).

In addition to defining ranges for the primary macronutrients as well as secondary and micronutrients soil properties; pH, organic matter and texture, mainly can alter nutrient availability and plant growth and must be considered (Brady and Weil 2002). Soil pH is very important to nutrient availability and greatly controls which ones will be accessible to plants and in what quantity. Changes in pH can greatly alter nutrient availability and dictate what the plant will able to uptake (Figure 1).

The pH of soils can vary significantly and several things should be taken into consideration. From a larger scale perspective consideration towards geographical and industrial derived influences should be given. Two of the major influences specific to geographical location are climate and the parent material's chemical makeup and can affect the pH over spatial ranges. If there are industrial influences either past or present where wet and or dry deposition is a factor, soil pH can be altered, typically creating more acidic soil conditions.

Natural factors, on large or small scales can affect soil pH and are the combined effects of soil-forming factors; parent material, time, slope or topography, climate, and organisms, which results in a soil with specific mineral content and soil texture. The pH of newly formed soils is highly influenced by the minerals in the parent material of the soil (USDA 2004). In northeast Ohio (Region 6) the typical soil is the Mahoning-Rittman-Canfield-Chili, and tends to have slightly acidic to neutral soils with pH ranging between 6.2 –7.0. This pH range is suitable for plant growth since the majority of crops grow optimally in a pH range of 6.2–7.3 (Figure 1). If the balance of pH becomes too acidic, below 6.0; the plants suffer from macro nutrient deficiencies. On the other end of the scale when soil becomes too alkaline, above 7.5 (USDA 2012); several of the micro nutrients are locked in organic forms making them unavailable to plants (Brady and Weil 2002).

Figure 1 Effect of pH on Nutrient availability in soil (Heartland Outdoors 2015).

Just as soil pH can greatly influence crops access to nutrients the amount of organic matter present in soil can influence nutrient cycling between soil and plants via its contribution in cation-exchange capacity (CEC). Soil organic matter is a mixture of all compounds of the soil which contain carbon. Organic matter is an intricate and diverse mixture of substances; that includes fresh residues, living organisms, decomposing organic compounds and stable organic compounds (humus) (USDA 2001). Organic matter is a dynamic variable in soil and a major influence on many chemical, physical and biological properties (Brady and Weil 2002). Organic matter is constantly changing and degrading into finer organic fractions as it decomposes. The fraction of organic matter in non-cultivated soil typically ranges between 3-10% of the total dry weight.

The amount of organic matter can affect many other properties of the soil.

Organic matter is most influential in CEC, water holding capacities as soil stabilization due to its aggregate properties. Organic matter can acts as a water buffering media by increasing water retention and infiltration rates. The structure and aggregation of the organic matter can increase atmospheric diffusion into the soil. Organic matter can alter the CEC and or the rate of adsorption and deactivation of agricultural chemicals especially when a greater portion of the organic matter is humus.

Soils with higher levels of organic matter tend to have higher nutrient content, typically in non-mineralized forms. Although a large portion of these compounds are not in forms readily available to the plants they can act as a nutrient storage pool that plants can utilize. Depending on various soil parameters these nutrient storages will be slowly transformed to mineralized forms and become readily available to plants over a longer period of time. Organic matter also influence soil color. With increased levels of organic matter the soil typically has darker shades of brown or black. The color of soil can affect soil temperature; darker soils will have higher temperatures which can be beneficial to the organisms and hasten processes including chemical reactions, water uptake and biological growth and decay (Schnitzer 1982).

Soil texture is the ratio of different sizes of inorganic particles in the soil. The size, distribution and relative abundance of individual soil particles determines the texture and physical composition of the soil. The three particles that soil consists of are sand, silt and clay. Sand consists of the largest particles that range from <2000 to 50 μ m, while clays are the smallest particles consisting of any particle <2 μ m and silts fall between

these two sizes and have a range of <50 to $>2 \ \mu m$. Soils with a larger proportion of sands than silts and clays will have a higher rate of water/air infiltration.

Soils with higher fractions of smaller silt and clay particles will have lower permeability and porosity than a soil with higher clay and silt (Gee and Bauder 1986). Soils with high percentages of sand have low water-holding capacities, good aeration, high drainage rates, and lower levels of organic matter as compared to soils with high amounts of clay and have high water holding capacities, poor aeration, slow drainage rates and medium to high organic matter content.

The soil texture is based upon this composition of particles separated into these size categories. The role that soil particle composition of the soil plays on CEC is significant. Soils with higher levels of clay particles will have a greater efficacy for CEC as clay particles have larger surface areas and are negatively charged particles which cations can attach themselves too. Since many cation compounds are in mineralized forms soils with higher CECs can provide a nutrient pool for plants to pull from (Olorunfemi et al. 2016).

Soil amendments have been shown to improve soil physical and chemical parameters. Composted sewage sludge (SSC) was used to amend soil to increased moisture and infiltration values of the soil. The SSC was applied at rate of 0 to 45% by volume. The plant species *Myrthus* and *Rhamnus* had improved growth at 15, 30 and 45% with the optimal growth being seen at 30%. The hedge species *Phillyrea* showed 30 and 45% application rates yielded the best results. (Delucia et al. 2013).

Another study over a two year period showed that application of large quantities of compost produced from urban waste can improve soil properties and increase crop

yields. The site location used had previously been a residential lot and the use of heavy machinery during demolition and grading had a negative impact on the soil quality to do compaction (Beniston et al. 2014). The addition of compost showed improved bulk density an increase in C, P, K, Ca, Mg and S over the control and most importantly a significant in all three crops grown; tomato, swiss chard and sweet potato crops.

Plant growth promoting bacteria have been effectively used to increase yields of cotton crops. Several plant symbiotic bacteria; *P. denitrificans PsD6*, *B. amyloliquifaciens BcA27*, *M. phlei MbP18*, *A. globiformis ArG1* and *A simplex* significantly increased the shoot cotton crop biomass by 13 – 38% over the control at the 0.05 significance level (Egamberdiyeva et al. 2003). Many strains of *Bacillus* are categorized as P-solubilizing due to their ability to alter organic forms of phosphorous into mineralized molecules increasing available P for plant uptake. Inoculation of two strains, *Bacillus M-13* and *RC01* increased phosphorous availability by 16.9% and 8% for barley seed crop compared to the control (Canbolat et al. 2005). *Bacillus RC01*, *RC02*, *RC03* and *M-13* all increased NO₃ and total mineral N of the soil significantly over the control. Total barley dry weight increased with all bacterial inoculations but no strain increased the total dry weight at a significant level over the control.

Arbuscular mycorrhizal fungus (AMF) have shown to be beneficial to their plant cohosts through several mechanisms. They can enhance nutrient obtainability and increase uptake, function as biological protectants against pathogens, alleviate soil stresses and produce more favorable and sustainable conditions for plants (Siddiqui et al. 2008).

Inoculation with AMF species in a three year field study demonstrated positive responses in several types of horticultural plants; melon, green pepper and eggplant and mycotrophic leguminous field crops, horsebean, chickpea and soybean by improving plant health or crop yields compared to non-inoculated group (Ortas 2011). The inoculated plants generally demonstrated increases in P and Zn uptake but no correlation between uptake in these nutrients and an increase in yields. Additionally AMF inoculation coupled with other biofertilizers rather than a standalone management system has demonstrated better results.

Microbial Soil-Plant Environment

The microbial soil community that inhabits soils is vastly extensive and diverse. These microbial communities are influenced by many factors including temporally, spatially and climate driven influences. The soil specific physical, chemical and biological properties will further determine establishment of microbial communities. The predominant microbes found in soils are heterotrophic making their survival dependent on the energy sources available in the soil. The amount and type of inorganic and organic, both dead and living forms of energy sources greatly influences which microbes will flourish and sustain. The main categories which soil microbes reside under are bacteria, fungi, actinomycetes, nematodes and protozoan. (Manoharachary and Mukerji 2006).

The roles of these various organisms can be saprophytic and varying degrees of symbiotic ranging from parasitic to mutualistic. Microbial distribution is wildly heterogeneous and vary greatly in a few inches of space especially between the rhizosphere and non-rhizosphere constraints (Manoharachary and Mukerji 2006). The

soil microbiology affect the soil-plant environment around the plant roots or rhizosphere. The microorganisms can make nutrients more available by decomposing organic matter or fixing nitrogen to a form plants can utilize. There are a wide variety or microorganisms that can improve soil nutrient availability, the AMF and bacteria associated with the rhizosphere have shown beneficial effects on species of Fabaceae, Poaceae, and Cruciferae.

The most well know role of arbuscular mycorrhizae fungi plays is expanding plant root access beyond the plants typical rhizosphere by creating a more extensive network for the plant to access nutrients. AMF and rhizobacteria can also stimulate the growth of plants by mobilizing nutrients that would otherwise be locked up in forms inaccessible to plants and through production of phytoeffective metabolites. The phytoeffective metabolites aid in protecting plants from pathogens, decomposing toxic substances and increasing the stress tolerance, and by forming stabile soil structures (Hoflich et al. 1994).

The microbial community around and in the plant rooting systems is influenced by the exudates, lysates and mucilages from the roots in conjunction with other soil and conditional qualities (Hoflich et al. 1994). The exudates, lysates and mucilages are also dependent upon plant species. The available organic compounds found in the soil will also act as a determining factor and alter the heterotrophy of rhizosphere organisms.

These factors however and their influence on crops and the ability to control the wild microbial population living in the soil can, for the most part, is an unattainable goal, because the soil contains a plethora of microorganisms. Some of the microorganisms are deleterious in nature interact in a parasitic symbiotic manner, while others can effectively

function as plant growth-promoting organisms. All rhizosphere organisms use the plant roots and the associated organic deposits as a source of energy for their own growth and development. The rhizosphere microorganism community is for the most part in a state of balance. However during the early stage of root development it is possible to influence this balance, by selective inoculation to encourage the growth and development of plant growth promoting or beneficial microorganisms in the rhizosphere (Hoflich et al. 1994).

Inoculation of seedlings prior to planting and in the early stages of root development with desired strains of AMF and rhizobacteria could provide significantly better growth of beneficial symbiotic microbes. The effectiveness of these beneficial microorganisms can be based upon their metabolic features and the effectiveness they ultimately have on plant growth. Some of the major criteria which these microbes must address is 1) The ability to mobilize nutrients such as various phosphates and their ability to fix atmospheric nitrogen. 2) The ability to stimulate nutrient uptake to the plant 3) Offer some protection against soil-borne plant pathogens and keep deleterious bacteria restrained (Hoflich et al. 1994).

Compost Amendments

If the cost of fertilizer continues to rise with the continued adverse environmental impacts from excessive fertilizer addition, other forms of more sustainable amendments are needed for the urban farmer. Amendments such as compost, provide a variety of benefits including the enhancement, formation and functioning of AMF. Compost consist of organic residue most commonly from plant waste, leaves, grass clipping or similar material.

The residue is 'composted' through a process of piling and allowing the residue to heat throughout the breakdown process as microbial populations increase. The feedstock. pH, percent moisture and aeration of the pile should be monitored to maintain an efficient process. The most prevailing challenge when using organic amendments is ensuring they provide a reliable and predictable supply of nutrients (Quailty and Cattle 2011, Rose et al. 2014).

Unlike inorganic nutrients, where a precise amount can be applied to soil and a relatively accurate plant response predicted, organic amendments tend to be less predictable because of the nutrient release rate varies. This is due to the extra chemical step of converting organic nutrients to mineralized nutrients before they can be taken up by plants (Jackson et al. 2008, Paul 2006). The role that arbuscular mycorrhizae play in nutrient availability and the effects that compost applications could have upon the arbuscular mycorrhizae community have many dynamics to be evaluated. The availability of nitrogen, carbon and phosphorus may influence the type of interaction the AMF will have with the plants (Kapoor and Mukerji et al. 2005). The relationship could prove just as significant as the mineralization of nutrients from organic compost. This could provide additional flexibility for use of organic fertilizers by altering or promoting the mycorrhizae community with inoculation or other means to increase the nutrient mineralization and thus plant uptake.

Hyphosphere (root free with hyphae)

The benefits of using compost as a fertilizer and soil conditioner to improve physical, chemical and biological soil properties has been well documented over many decades. Adding compost to soil can physically improve it by altering the texture. The

compost can enhance the physical structure of soil. In fine-textured soils, the addition of compost will reduce bulk density, produce a more workable soil structure and improve porosity. The improved porosity will increase its gas and water permeability which reduces erosion. Compost when used in sufficient quantities has an immediate as well as a long-term positive impact on soil structure. Compost typically consists of larger aggregates and resists compaction in fine textured soils. In coarse-textured (sandy) soils water holding capacity improves along with soil aggregation (USCC Fact Sheet, 2008).

The addition of compost can also be beneficial to plants by introducing nutrients to the soil which is a chemical benefit. One of the chemical parameters which the compost can alter is the pH of the soil. Compost will effectively incorporate macro and micro nutrients into the soil often times in organic non mineral forms. The organic nutrient compounds are beneficial to plant nutrition over longer periods of time then nonorganic forms are. The nutrients will be released to plants much slower and last for longer durations without the need of additional fertilizer input.

In addition compost can improve the cation exchange capacity (CEC). Since compost tends to be high in organic matter content which is composed of both positively charged and negatively charged compounds it tends to increase the CEC of soil. (Rhoades 1982). A simplified explanation of CEC is how many negatively charged sites are available for positively charged ions or cations to bind to. This is important since several of the macro and micro nutrients required for plant growth and health are available to plants in their mineral ionic form as cations. Three very important nutrients available as cations are potassium, calcium and magnesium. The greater amount of adsorption sites found in the soil allows for greater nutrient retention ability.

In terms of biological benefits compost can increase soil biota and biological diversity and activity which has the ability to positively promote plant health. The major constituents of soil microorganisms include bacteria, protozoa, actinomycetes, and fungi. These microorganisms tend to proliferate when a higher content of organic matter is present, which compost is rich in. These microorganisms play a very important role in the cyclic process of organic matter decomposition through their energy obtaining life processes which transform organic compounds into mineral plant available nutrients. Certain microbes can encourage root activity in several ways. In particular the microbes may create areas throughout the non-homogenous soil of plant available nutrient rich pockets that will lead to root probing and ultimately expansion.

Certain microbes can also form synergistic or mutualistic symbiotic relationships with the plant roots. A prime example of this are the multiple types of mycorrhizae fungi which grow intracellularly with the plant root as arbuscular mycorrhizal fungi, or extracellularly as in ectomycorrhizal fungi. The expansion of the mycorrhizal mycelium and hyphae increases the plant roots network and nutrient availability.

Sufficient levels of organic matter encourages the growth of earthworms, which can increase water infiltration and soil aeration through tunneling. An increase in organic matter can encourage the growth of other microoganisms also that will suppress incidence of plant disease on many plant species. Research has shown that when the population of certain microorganisms increase they have the ability to suppress specific plant diseases such as pythium and fusarium as well as deleterious organisms like nematodes. Efforts to optimize the composting process in an attempt to increase the population of these beneficial microbes are being conducted (USCC Fact Sheet, 2008).

Biosolids effects on soil physical and chemical properties

One amendment which has been used for many decades to condition soil and replenish nutrients are class A biosolids. Class A biosolids is a designated term for heated and dewatered sewage sludge from waste water treatment plants that meets U.S. EPA guidelines for land application with no restrictions (US EPA, 2016). Because of this desigantion class A biosolids can be used legally as fertilizer on farms, gardens, sold to residents as compost or fertilizer. Class A biosolids have shown to have positive effects on both the physical and chemical effects when used as a soil amendment.

Biosolids tend to increase water infiltration rates and decrease bulk density. The studies reviewed showed a positive effect on certain plants when biosolids were used as a soil amendment. Peppers and tomatoes showed an increase in biomass but spinach, lettuce and radishes showed a decrease in biomass. Another concern with using biosolids as a soil amendment is that there is the potential for heavy metals and salt accumulation in certain plant species.

A two year study was conducted at three separate urban garden locations in Tacoma, Washington to study the effects of biosolid product applications on select parameters of the soil. Each of the three sites had six subplots a piece to test the effectiveness of two different types of biosolid products. Each biosolid product was used at a rate of 200 Mg ha⁻¹ dry weight per year. For each biosolid product two subplots received 200 Mg ha⁻¹ dry weight the first year and one of those two subplots received an additional 200 Mg ha⁻¹ dry weight the second year (McIvor et al. 2012).

Biosolids have been used for many years as a twofold approach to dispose of waste in a more environmentally friendly manner and utilize a nutrient rich amendment to increase crop yields. With this approach however, concerns over metal and nutrient accumulation in plants have persisted. Not only could this be a concern for human health via the ingestion of these crops leading to unsafe levels of heavy metals being introduced to humans via ingestion. Using biosolids as an amendment could lead to lower crop yields and additional plant stress through excessive metal and nutrient availability and uptake. Biosolids were added at the rate of 0, 4.6 and 9.2 t ac⁻¹, on a dry weight basis (Maruthi Sridhar et al. 2014). Five types of plants (pepper, tomato, collard, lettuce, and radish plants) were utilized to assess the differences in varying plant species.

It was found that Na levels in all five plant types increased in the plant roots with increased doses of biosolids. Radish, collard and pepper plants grown in the 9.2 t ac⁻¹ biosolid group showed the most significant increase in Na root uptake out of the five types of plants. Shoot uptake displayed significant differences for N, Mn, and Na in all five plant species with increased biosolid application rate. Plant biomass showed significant increase for the pepper plants in the 4.6 and 9.2 t ac⁻¹ groups and tomato plants in the 9.2 t ac⁻¹ group. Radish growth showed significant decrease in both the 4.6 and 9.2 t ac⁻¹ groups.

Hypothesis

A low cost amendment and or microbial treatment could improve soil conditions in the Oakhill location to increase crop health and yield.

Additionally it is hypothesized that using and amendment in combination with a microbial treatment will produce better yields than just adding an amendment alone. The

microbial treatment can act in a beneficial symbiotic manner with the host plant and provide additional nutrients which the amendment as a stand-alone treatment could not.

Objectives

To assess if the amendments and or microbial treatments can improve soil quality and increase available nutrients to improve crop yields the following objectives will be analyzed.

- Conduct a preliminary site assessment to determine if there are any areas of concern with possible contamination, determine where the best location at the site to establish the garden.
- Analyze the soil at the site for its properties and undertake amendment and or microbial treatment combinations to improve yields of common garden crops of three varieties: leaf (lettuce), root (radish), and fruit (tomato).
- 3. Measure the physical, chemical and biological soil quality parameters along with the crop yields and nutrient content in the crops after harvest.
- 4. Statistically draw conclusions from the findings to determine which amendment and or treatment combinations would best improve the site's soil quality and increase crop yields.

Chapter 3 Materials and Methods

3.1 Site and Soil Description

The site under investigation is located on the west side of Youngstown in the Oakhill district, on a lot at the corner of Plum and High streets. Youngstown, located

within Mahoning County, has a Region 6 soil classification (USDA, 2004), and as such the soil at the field site falls within this agricultural soil classification, despite decades of residential disturbance. Some of the characteristics of this soil is a low clay content and low amounts of organic matter in the top ten inches of soil. Glacial deposits in this region can range from

Figure 3 Location Selection 2 for the Community Garden

Figure 2 Location Selection 1 for the Community Garden

coarse to finer textured soils. The coarser textured soils are mostly located in the southern portion of the region. Areas with fine texture soil are easy to till due to the low clay content found in this region (USDA, 2004).

Soil was collected from the Oakhill location using simple criteria which would be used by the community in the event of establishing a community garden. The simple criteria used were; a minimum buffer zone of fifteen feet was established between High Street to the north and Plum Street to the west. The site was visually surveyed and optimal subplots was selected based on a few considerations. Tree cover, root interference, and gradient were considered in selections of site location for an urban garden. These criteria were considered and the subplot was selected to eliminate influences which could affect crop growth.

Based on the criteria, two separate subplots were selected and are shown in Figures 2 and 3. These subplots had minimum tree interference, both in shade and root interference and were flat. The only area that had a slight slope was close to the sidewalk by High Street. All soil collection was done from the two areas selected. A measuring tape was used to establish the northwest and northeast corners of the subplots. The corners were marked and the pacing method was used to collect soil from the designated areas. A spade shovel was used to collect soil to a depth of twenty centimeters.

To obtain enough soil to conduct the study soil samples were collected on several different occasions. The total amount of soil collected was > 150 kg of dried soil. Due to the amount of soil needed for the study and the size of the collection area; it was determined that a grid collection system was not necessary and an accurate representative sample was obtained. A half inch field sieve was used during collection to remove rocks

and debris (glass, plastic, etc..) from the samples collected. To obtain a homogeneous mixture the soil collections were combined and thoroughly mixed in a large plastic bin after being dried at 105° C for 48 hours and sieved using a 2 mm sieve.

3.2 Soil Amendment/Microbial Treatment Description

Amendment/Microbial Treatment	Soil to Amendment Ratio
None	-
Compost	25% by volume
Biosolids	2.5% by Dry Weight
AMF	Per Instructions
AMF/Bacteria Mix	Per Instructions
Compost + AME	25% (Compost) by volume and
	(AMF) Per Instructions
Biosolids + AME	2.5% (biosolids) by Dry Weight and
	(AMF) Per Instructions
Compost +	25% (Compost) by volume and
AMF/Bacteria Mix	(AMF/Bacteria) Per Instructions
Biosolids +	2.5% (biosolids) by Dry Weight and
AMF/Bacteria Mix	(AMF/Bacteria) Per Instructions

Table 2 Descriptions of amendments and microbial treatments used in soil.

The *Mycorrhizal Fungus and Rhizobacteria* was purchased from MycoGrowTM and came in a soluble, 1 oz. packet. The packet contained six species of *Glomus* AMF which are viewed as ecologically important symbiotic plant endomycorrhizal fungi and the largest known genus of AMF (Schwarzott et al. 2012). The other endomycorrhizal fungi in the microbial treatment are of the species *Gigaspora* and *Paraglomus* which is a separate phylotype of AMF. These species are obligate symbionts with plants since they grow structures in the roots of the plants and extend the hyphae out of the root and into the soil (Torrecillas et al. 2012).

Some of the ectomycorrhizal fungi included in the microbial treatment were two species of *Laccaria* have been shown to increase phosphate uptake in plants (Desai et al. 2013). *Laccaria bicolor* showed an increase in phosphorous uptake in *Populus tremuloides* when lower concentrations of phosphorous were available. Other ectomycorrhizal fungi included in the mix, *Rhizopogon sp.*, have been studied as symbionts which can reduce stress from high salinity and metal concentrations (Ducic et al. 2008); while others have been shown to play a role in disease control *Trichoderma sp.* (Howell 2003).

Beneficial bacteria species included in the mix were of the one *Azotobacter*, six *Bacillus*, two *Paenibacillus and* two *Pseudomonas species*; along with the specially formulated amendments kelp, humic acid and vitamins to encourage proliferation of the microbial organisms. The MycoGrow[™] Micronized Endo/Ecto Seed Mix--1 oz contained four Endomycorrhizal fungus from the *Glomus genera* and ectomycorrhizal fungi from the *Rhizopogon, Pisolithus,* and *Scleroderma species*.

3.3 Plant Growth and Harvesting Description

All seeds used were germinated prior to sowing them into soil. The seeds were placed between two pieces of paper towel moistened with deionized water and set on trays. A piece of plastic wrap was placed over the trays to prevent moisture loss. The trays were then placed in a growth chamber for four days at 21.5°C. The germinated seeds with the largest or most numerous roots were selected for sowing and sown according to the instructions on the packages.

All plant types were planted on the same day; October, 5th, 2015. To start potted plants, 150 mL of water was added to each soil filled pot during seed planting. Roughly half of the 150 mL was initially added to the soil without any seeds to moisten the soil. After the seeds were planted at proper depth; a quarter inch for the lettuce and tomato crops and a half inch for radish they were covered by soil, the other half of the water was added.

For the plants grown with the fungus microbial treatment the instructions were followed for adding the spores during planting. Germinated seeds were placed in the soil at the proper depth and The MycoGrow[™] Micronized Endo/Ecto Seed Mix powder was added with a small spatula to the roots of the germinated seeds then covered with dirt. The plants for the Bacteria Mix treatment were watered with the solution during planting and then three additional times. The Bacteria Mix solution was made up per instructions on the packet.

Since the crops were planted during late fall they were grown for a three month period in the Ward Beecher to ensure all treatments would have enough biomass for nutrient analysis of both the shoot and root mass. The crops were going to be grown for a two month period originally but certain treatments did not look as though they would have enough dry biomass to test per the selected procedure. A reduction in sunlight intensity and hours coupled with cooler temperatures seemed to effect the growth rate of the crops. Tomato plants were harvested on January 1st 2016 lettuce on January 7th 2016 and radishes on January 12th 2016.

Plants were removed from their pots and soil was gently broken from the root mass. The plants were then sectioned into root and shoot sections and thoroughly rinsed

with water to remove ensnared soil particles. Roots from tomato and lettuce plants were rinsed in a fine mesh sieve so root matter would not be lost in the process. This process was repeated several times until the roots looked clean of soil particles. After rinsing of the plant sections they were patted dry with paper towels and weighed. Plants were dried in an oven at 105°C for 24-48 hours until all moisture was removed from the plant tissue.

3.4 Particle Size Analysis

The soil texture was assessed by utilizing the hydrometer method which determines the fractions of sands (< 2000-50 μ m), silts (< 50-2 μ m), and clays (< 2 μ m) based upon sedimentation rates. The soil was prepared for the particle-size analysis by drying the soil at 105° C for at least 24 hours to remove residual moisture and then sieved using two millimeter sieve (Soiltest, Inc ASTM E-11). After the initial soil preparation the particle-size analysis method was conducted using 40 grams of soil in duplicate. Prior to conducting the hydrometer measurements soil was pretreatment with hydrogen peroxide to remove organic material as outline in the method (Gee and Bauder 1986). Organic matter can act as a flocculating agent in soils causing particles to form conglomerates which will not disassociate without an oxidizing agent. Without removing organic matter from the soil settling rates of the particles can be altered, producing erroneous results. The oxidizing agent selected for removal of organic matter was hydrogen peroxide (H₂O₂) (Gee and Bauder 1986). The samples had 25 mL of deionized water to them and a stirring rod was used to mix the soil and water together; aliquots of 5 mL of H₂O₂ were added and stirred.

The samples were put in the oven and heated at 105° C until the reactions ceased. This process was repeated until upon addition of the H₂O₂ reactions had completely

ceased. The soils were then dried completely in the oven at 105° C, removed and allowed to cool. After organic matter removal, the soil was soaked approximately seventeen hours in 100 mL sodium hexametaphosphate (NaHMP) dispersion solvent and 250 mL of deionized water. This solution has soluble phosphates which prevent flocculation of soil particles from occurring and keep particles in a suspended state (Gee and Bauder 1986).

The mixtures were transferred to a blender and mixed on high for five minutes then transferred to 1000 mL graduated cylinders. The blender was thoroughly rinsed with DI so all the contents were transferred into the graduated cylinder and the volume were brought to volume with DI water. The graduated cylinder was covered using parafilm to create a water tight seal and inverted for one minute to mix the contents (Gee and Bauder 1986). The cylinder was placed on the table and a hydrometer (Fisher ASTM 152H) was gently inserted and allowed to stabilize. Hydrometer readings were taken at 30 seconds, one minute and three minutes along with temperature readings (Woodco M 2157 thermometer).

After the first three readings were taken, the hydrometer was removed and parafilm was used to seal the graduated cylinder. The inversion process was repeated and readings were taken after 30 seconds, one, three, ten, thirty, sixty, 90, 120 and 1440 minutes. The hydrometer was removed and rinsed with DI water in between all of the readings accept for the thirty second and one minute reading. The temperature was also taken right before each reading and rinsed in between. The hydrometer readings along with temperature data was used to determine the soils texture.

The hydrometer readings were input into a Hydrometer Particle Size Calculator developed by Stillwater, OK Soil Survey Office. The program determines the soil texture
in correlation with the United States Department of Agriculture (USDA) Natural Resources Conservation Service Texture Triangle (USDA, 1998). The Hydrometer Particle Size Calculator classifies soil type based upon settling times of the individual particles and viscosity of the suspension; the resulting percentages of sand, silt and clay are output in an Excel file and represented on the USDA, Texture Triangle.

3.5 pH and Conductivity Analysis

The role soil pH plays in plant nutrition is crucial and if the pH is too acidic or basic nutrients will become unavailable to the plants. The pH of the soils used in this study were measured using a pH/temperature combination probe (Accumet probe and Oakton meter). A standard method utilizing a 1:1 ratio of soil weight to deionized water volume (10 g soil:10 mL DI water) was used (G. Thomas 1996). The mixture was stirred for two minutes using a glass stir rod. Immediately after stirring the pH/temperature probe was lowered into the solution and a reading was taken once the probe stabilized.

The soil conductivity was measured using a ratio 1:3.5 and 1:3 soil weight to deionized water. Soil samples were weighed to as near as 10 grams as possible into beakers and the deionized water was added using a pipette. A glass stir rod was used to stir the samples for 10 minutes; after stirring the samples, a 10 minute resting period for sedimentation to occur was allotted. A conductivity probe (Hach Session 5) was lowered into the supernatant and a conductivity reading was recorded after stabilization.

3.6 Organic Matter Analysis

A direct estimation of organic matter was conducted on the soils using the Losson-ignition method (Nelson and Sommers 1996). This method was chosen because it can provide a quantitative estimate of the organic matter content. This method has some limitations when administered to soil with high clay content and low organic matter, although the soils used in this study did not fit this criteria. Organic matter heated at high temperatures will oxidize, resulting in the loss of the compounds via the ignition process transforming them into volatile organic compounds (VOCs) (Nelson *et al.* 1982). The analysis of the sample weights before and after can be used in Equation 1 to determine the amount of organic matter present.

$$LOI, \% = \frac{Weight_{105} - Weight_{400}}{Weight_{105}} x \ 100$$
 Eq. 1

Various temperatures and ignition times have been studied to quantitatively determine the percentage of organic matter in soils. At high temperatures (> 750° C) carbonates can decompose and dehydroxylation of phyllosilicates can occur (Nelson et al. 1982). The various studies found that ignition of soils between temperatures of 400° C – 450° C will result in the total removal of organic matter and minimal dehydroxylation of clay minerals. Therefor the method heats the sample at 400° C for eight to sixteen hours (Ben-Dor & Banin, 1989). A U.S.A. Standard Testing Sieve ASTM E11 Specification 300 µm sieve was used to process the soil and obtain the < 0.4 mm particle size required by the method.

To remove residual moisture from the porcelain crucibles were heated at 400°C for 2 hours and then cooled in a desiccator. Crucibles were weighed after cooling and 3.00 grams of sample were weighed into crucibles (Fisher Scientific accuSeries analytical balance). Samples were heated at 400°C for 16 hours in Thermolyne series 1400 muffle furnaces. Samples were removed from the furnace and cooled in a desiccator; a final

weight was taken after the samples and crucibles reached room temperature and organic matter percentage was determined using Equation 1.

3.7 Total Metal Analysis for Soil

Total metals and nutrients in soil were tested for using the US EPA method 3051. This method utilizes nitric acid (HNO₃) for a total digestion of soil samples. Samples were weighed out to as near to 0.500 grams as possible and transferred into polyvinyl microwave digestion tubes using a 1:1 nitric acid to deionized water mixture to ensure total transfer of the sample. Using a pipette, 10 mL of HNO₃ was added to each polyvinyl tube containing a sample. In addition, spiked samples were analyzed using the same method for quality control purposes. The tubes were loaded into the microwave digester (CEM Mars 6 One Touch), and the preprogrammed EPA 3051_30 method run. The soil digest were analyzed using an Inductively Coupled Plasma - Atomic Emissions Spectroscopy (ICP-AES, Thermo Scientific iCAP 6000 series).

3.8 Plant Available (Mehlich III) Analysis for Soil

Plant available nutrient concentrations is soils were determined using the Mehlich III extraction. Mehlich III is a mixture of ammonium nitrate, ammonium fluoride ethylenediaminetetraacetic acid, acetic acid and 1M nitric acid (Amacher 1996). A ratio of 1:10, soil to Mehlich III was used for all samples and shaken by hand for 10 minutes and then filtered through Whatman no. 40 filter paper. The filtrate was collected in 20 mL tubes and analyzed on ICP-AES (Thermo Scientific iCAP 6000 series) for metals and nutrients.

3.9 Total Nitrogen Analysis

Soil samples for the nine soil/amendment and or microbial treatment combinations were sent to Penn State's Agricultural Analytical Services Laboratory for analysis of total nitrogen. An analysis was conducted by the laboratory for total nitrogen using the combustion method also known as the Dumas method.

3.10 Inorganic Nitrogen Analysis

Nitrate & Nitrite

Nitrate and nitrite levels in soils were analyzed by extracting them using a dilute KCl solution. A 0.01 M solution of KCl was used to extract exchangeable nitrate (NO_3^{-}) and nitrite (NO_2^{-}) (Mulvaney, 1996). Samples were weighed into screw cap bottles and 0.01 M KCl was added at a ratio of 10 mL of extraction solution for every 1 gram of soil. The samples and extraction were shaken for an hour with a Burrell Wrist Action Model 75 shaker. After agitation the samples were filtered through Whatman no. 42 filter paper and the filtrate was collected for analysis via liquid ion chromatography system (Thermo Dionex ICS-1100 in conjunction with Chromeleon 7 software).

Ammonium

Exchangeable ammonium (NH_4^+) was extracted from the soils using a 2 M KCl extracting solution and the filtrate was analyzed via the colorimetry method (Mulvaney, 1996). Samples (4.0 grams) were weighed and mixed with 4 mL of extracting solution. The samples were agitated using a wrist action shaker for 1 hour. Samples were filtered through Whatman no. 42 filter paper and the filtrate was collected for analysis. Known standards of 0, 2, 4, 6, 10, and 20 µg of NH_4^+ -N were made in accordance with the

method to establish the calibration curve. Color was developed using sodium salicylatesodium nitroprusside, buffered hypochlorite and ethylenediaminetetraacetic acid reagents (Mulvaney, 1996). Absorbance readings were taken at 667 nm using a Thermo Scientific Genesys 10S Vis Spectrophotometer.

3.11 Plant Tissue Analysis

Plant tissue was digested using a wet digestion technique that utilized HNO₃ and 30% H₂O₂. Samples were weighed out to 0.500 grams in digestion tubes and mixed with 5 mL of HNO₃. A reflux cover was put over the samples as they soaked in the HNO₃ overnight. The samples were heated to 120° C for an hour in a block digestion unit. The samples were removed and allowed to cool and 8 mL of H₂O₂ was added to destroy organic matter (Jones & Case, 1990). Additional HNO₃ was added to samples to keep them from drying completely and the digestion process was repeated; additional H₂O₂ was added between 1 hour digestion periods and digestion was carried out until the solutions were clear. The samples were then dried at 80°C without the reflux covers until almost complete dryness. Samples were analyzed with the Thermo Scientific iCAP 6000 series ICP-AES.

3.12 Soil Microbe Analysis

Microbial plating for all soil, amendment and or biological treatment combinations was conducted. This was done to determine if any combination increased the microbial population in the soil. The plating's were conducted using Tryptic Soy agar (TSA) and Sabouraud Dextrose agar (SDA) plates. TSA is a common media used

for general bacterial growth and SDA is a common media used for fungal growth. Quantitative analyze for both bacteria and fungus was based on percent plate coverage. Preliminary plating's we conducted to determine an appropriate dilution ratio of soil to deionized water. After establishing a suitable ratio for enumeration of bacterial and fungal growths, microbial plating was conducted. It was determined that a ratio of 1:100,000 would be appropriate for enumeration purposes. Soil samples were weighed into screw cap containers and sterilized deionized water was added at a ratio of 1:100 soil to DI water was added.

The samples were shaken on a Burrell Wrist Action Model 75 shaker for 30 minutes. Through serial dilutions the final ratio of 1:100,000 was achieved. In duplicate 100 μ L of final dilution aliquots were plated on TSA and SDA media and plate spreaders were used to evenly distribute the samples. TSA plates were incubated in a Thermo incubator at 35°C for three days and SDA plates were incubated at 25°C for five days which are common temperature and time periods used for the respective microbial growths. Enumeration of colony forming units (CFUs) and percent plate coverage was conducted for all media plates.

3.13 Statistical Analysis

Several statistical analysis of data were conducted to draw conclusions from the data obtained from the various soil and plant tissues tests. The main focus will be to analyze data aimed at determining what accounts for differences if any exist in the dry biomass of plant sections. To determine if correlations exist between the various soil parameters and nutrient concentrations in plant tissue and biomass exist Pearson Correlations will be conducted. Significant correlations at the 0.05 and 0.01 levels will

be marked and discussed. Further from the correlations found Backwards stepwise regressions will be conducted and analyzed to determine what factors had the most significant impact on each of the plant section's biomass.

To determine how the different amendment and microbial treatments effected plant growth (biomass), available and total soil nutrient concentrations and nutrient uptake in plants ANOVA was used to compare treatments. For each type of plant, ANOVAs were conducted by placing the amendment and or treatment (Group) in as the Factor variable and then the continuous data (Biomass, Mehlich III, Soil Totals and Plant Tissue Totals) in the as the dependent variables. A Homogeneity of Variance test was conducted with the ANOVA test to determine which Post Hoc test to run.

Chapter 4 Results and Discussions

The soil amendment and/or microbial treatments were analyzed for the following parameters: pH, organic matter, electrical conductivity, microbial quantities, and nutrients including, total and plant available. The plants were analyzed for biomass and total nutrients. Statistically significant relationships between soil characteristics and plant growth were determined using Pearson correlations, backwards stepwise regressions, and ANOVA. IBM SPSS (PASW Statistics 18) was used to conduct the statistical analysis of these parameters.

4.1 Particle Size Analysis Results

The initial soil from the Oakhill site was analyzed for particle size analysis after mixing to establish the type of soil present at the site. The soil was determined to be a sandy loam. The texture profile was found to be composed of 58-59% Sand, 29% Silt, and 12-13% Clay. For the Hydrometer Particle Size Calculator from Soil Survey Office Stillwater, OK, the following data was required by the program; hydrometer readings and temperature readings at 0.5,1, 5, 10, 30, 60, 90, 120, 480 and 1440 minutes, the dry weight for the samples, blank readings, and HMP solution concentration (Soil Survey Office, NSSC et al. 1998). The program provided several outputs for the determined particle size distribution and texture of the soil.

A table of the results was provided and gave the percentages of the sand, silt and clay along with the classification of the soil (Table 3). In addition a USDA soil texture triangle display was provided (Figure 4) and a summation curve (Appendix).

Table 3 Output from the Hydrometer Particle Size Calculator with % sand, silt and clay for the Oakhill soil.

User Pedon I	D ==>								
Sample Num	ber =>								
Soil Name ==	Soil Name ==>				С	lay	S	ilt	
		Hydrometer:	% Sand	58%	% Clay	13%	% Silt	29%	
	% Sand	58%	% Clay	13%	% Silt	29%			
User Pedon ID ==>40				USDA Texture					
User Pedon I	D ==>4)			USDA	Fexture			
User Pedon I Sample Num	D ==>4 ber =>)				Cexture			
User Pedon I Sample Num Soil Name ==	D ==>4(ber => :>	D	Sa	and	USDA SANDY CI	Гехture <mark>′ LOAM</mark> ау	s	ilt	
User Pedon I Sample Num Soil Name ==	D ==>40 ber => :>) Hydrometer:	Sand	and 59%	USDA SANDY Clay	Fexture CLOAM ay 12%	s % Silt	ilt 29%	

Figure 4 Soil texture triangle with soil texture identified for the Oakhill soil.

4.2 pH and Electrical Conductivity

The pH between the amendment/treatment combinations ranged from 6.06 -7.36. The pH for all samples was determined using a 1:1 ratio of soil to deionized water.

Table	Table 4 Oakhill soil treatment and corresponding average pH and electrical conductivity.											

	Control	Bacteria Mix	Fungus	Biosolid	Biosolid +Bacteria Mix	Biosolid+ Fungus	Compost	Compost + Bacteria Mix	Compost + Fungus
pН	6.06	7.28	7.35	7.36	7.11	7.08	6.92	6.25	6.33
EC (µs/cm)	545	667	578	1158	1056	1437	999	943	1087

The data (Table 4) indicates that the control had the lowest soil pH and electrical conductivity out of all the treatments. The soil with biosolid addition had the highest pH and the Biosolid + Fungus treatment had the highest electrical conductivity. All treatments were in the pH range of 6.0 - 7.5 which is an acceptable range for most crops. The Control soil was close to the low end of the range at 6.06 while the Biosolid and Fungus treatments were towards the higher end of the range at 7.36 and 7.35 respectively. The pH range of 6.2 - 7.3 as shown in Figure 1, is not a required standard range but provides a visual to show how different nutrient's availability is impacted as the pH changes. Most vegetable crops grow best at a pH between 5.5-6.5 with beets and cabbage having a preference between 5.5-7.5 (Nathan and Stecker 1999). None of the pH readings went beyond the suitable range and therefore would not be considered a problem for nutrient acquisition and plant growth.

The electrical conductivity (EC) ranged from non-saline (< 1000 μ S/cm) to slightly elevated saline (\geq 1000 μ S/cm) for the varying treatments. Biosolid and Compost amendments raised the soil EC above the Control. The addition of microbial treatments had a varying effects on the Control and amendments. The fungus treatment raised the EC in all three instances while the microbial treatment with bacteria lowered the EC on two occasions but when added to the control soil alone raised the EC. All EC amendments and/ or treatments were higher than the Control.

4.3 Organic Matter Results

TT 11 7 A	•		· · · ·	1 1	· 1/	
I able 5 A	verage organic	matter nercen	tages for eg	ach amendmen	it and /or	r treatment
	volage of game	matter percen	lages for co		α and 0	licatificiti

	Control	Bacteria Mix	Fungus	Biosolid	Bisolid+ Bacteria Mix	Biosolid +Fungus	Compost	Compost+ Bacteria Mix	Compost+ Fungus
%OM	7.36	7.39	7.26	8.11	7.31	7.9	8.14	7.7	7.94

The organic matter (OM) content for the various treatments showed no statistical difference among any of the amendment or biological treatments. The ranges between all treatments was from 7.26 – 8.14% OM. The Biosolid and Compost amendments increased the organic matter percent of the Oakhill soil from 7.36 to 8.11 and 8.14 respectively. The microbial treatments had no impacts on organic matter percentages. Both treatments reduced the OM in the Biosolid and Compost amendments as compared to the biosolids or compost alone. The Bacteria Mix treatment had a greater effect of reducing OM% compared to the Fungus treatment. Fungus reduced the OM in both Biosolid and Compost amendments by about 0.2%, whereas the bacteria reduced the OM in Biosolids by 0.8% and 0.4% in the compost. All amendments and treatments had less than a 1% change to OM compared to the Control.

Most agricultural soil contain 3-6% organic matter therefore, the organic matter content was determined to be well suited for plant growth especially with the soil texture of sandy loam with a relatively low clay content of 12-13% and a silt content of 29%.

The small solid particulates (clay and silt) would serve well for the purposes of cation exchange (nutrient adsorption) and provide readily available nutrients for plant uptake.

4.4 Soil Nitrogen Compounds Analysis Results

Table 6 Total nitrogen, ammonium (NH₄), nitrate (NO₃) for each amendment and/or treatment

	Control	Bacteria Mix	Fungus	Biosolid	Biosolid+ Bacteria Mix	Biosolid+ Fungus	Compost	Compost + Bacteria Mix	Compost + Fungus
Total N									
mg/kg	2000	2100	2000	2200	2100	2400	2300	2400	2300
NH₄ ⁺ mg/kg	15.2	12.9	16.5	11.5	23.6	27.8	12.9	21.3	21.9
NO ₃ ⁻									
mg/kg	28.7	54.2	110.6	649.8	743.9	1504.7	66	211.7	65.1

The total nitrogen was between 2000 - 2400 mg/kg for all treatments. The Control and Fungus treatment had the lowest concentration of total nitrogen out of all the combinations with a concentration of 2000 mg/kg. The Biosolid+Fungus and the Compost+Bacteria Mix were found to have the highest levels of total nitrogen at 2400 mg/kg. The ammonium levels and nitrate levels however varied greatly amongst treatments. The ammonium levels found ranged from 12.9 mg/kg to 27.8 mg/kg. The ammonium levels were all higher than the 2 – 10 mg/kg range that is typically found to be sufficient for plant growth.

The testing for ammonium was conducted after harvest. Ammonium and nitrate levels can fluctuate greatly and depend on parameters such as temperature and moisture level. Since nitrogen testing was conducted after harvest this data can be used to compare the levels found between the amendment and or microbial treatments at that point. Concentrations of the various forms of nitrogen may have fluctuated during the duration of the study. However, all levels were found to be above the typical range. The Biosolid amended soil was found to have the lowest level of ammonium with 11.5 mg/kg while the Biosolid+Fungus combination had the highest level at 27.8 mg/kg.

The levels of nitrate ranged from 28.7 to 1504.7 mg/kg. This form of inorganic nitrogen had the largest range of the forms tested. The Control soil in this group was found to have the lowest concentration with 28.7 mg/kg and the Biosolid+Fungus was found to have the highest concentration of nitrate as well with a concentration of 1504.7 mg/kg.

4.5 Soil Melich III (Plant Available) Analysis Results

The plant available levels found in the soils which the tomato plants were grown in are listed in Table 5.5 below. The calcium and phosphorous levels for all of the amendment and or treatment combinations including the Control soil were in the very high range. The available potassium levels ranged from low to high between the various combinations while the magnesium levels ranged from high to very high. As specified in Table 7 Mehlich III concentrations for calcium are considered to be very high at levels above 1,790 lbs/acre or 895 mg/kg. Calcium concentrations in the Control, Bacteria Mix and Fungus treatments all had calcium levels in the 1300 mg/kg and the addition of the microbial treatments alone did not affect the available concentration much.

The addition of compost and biosolid increased the average calcium concentrations over the Control level by 700 to 800 mg/kg. Also both microbial treatments slightly increased the available Ca concentrations when used in combination with compost and biosolids. The potassium levels were the lowest in the Control soil compared to other amendment and treatments. The addition of the microbial treatments

alone raised the mg/kg by 11-16 mg/kg when added to the Control soil. Both the biosolid and compost additions raised the available K. The microbial treatments both showed large increases when used in combination with biosolids and slight increases when used with compost.

The available Mg levels showed slight increases with the addition of Biosolid + a microbial treatment but showed substantial increases in the Compost and Compost + microbial treatments. The levels of available phosphorous tended to decrease from the Control concentrations with the addition of amendments and microbial treatments with the exception of the Bacteria Mix treatment which showed a slight increase of 17 mg/kg.

Mehlich III Concentrations in mg/kg (Tomato Soil)											
Nutrient Ca Cu Fe K Mg Mn Ni P S Zn											
Control	1331	9.8	192	32	139	91	0.54	299	54	40	
Bacteria Mix	1353	8.9	179	48	138	86	0.53	316	60	44	
Fungus	1359	8.5	179	43	138	105	0.55	298	72	39	
Biosolid	2143	8.6	123	55	141	58	0.46	284	60	32	
Biosolid+Bacteria Mix	2326	8.1	114	104	158	59	0.46	268	91	32	
Biosolid+Fungus	2400	8.2	119	114	165	55	0.45	278	74	33	
Compost	2086	7.4	142	86	244	92	0.50	273	101	38	
Compost+Bacteria Mix	2310	7.1	133	99	277	94	0.53	255	96	39	
Compost+Fungus	2294	7.9	143	95	278	96	0.50	274	87	40	

Table 7 Mehlich III nutrient concentrations in tomato soils

The plant available levels found in the soils which the radish crop were grown in are listed in Table 8 below. Like the tomato results Ca and P concentrations were all in the very high range, K concentrations however ranged from medium to very high between combinations while Mg available concentrations were very high. Calcium concentrations in the Control, Bacteria Mix and Fungus treatments all had calcium levels in the 1600 mg/kgs with no real difference with the addition of microbial treatments. The addition of compost and biosolid increased the average calcium

concentrations over the Control level by ~ 400 to 1200 mg/kg. Microbial treatments in combination with Compost increased the available Ca concentrations by about 300 mg/kg. The treatments used in combination with the Biosolids amendment showed a slight decrease (Bacteria Mix – 142 mg/kg) and a slight increase (Fungus + 307 mg/kg). The potassium levels were the lowest in the Control soil compared to other amendment and treatments. The addition of the microbial treatments overall had no effect while the additions of Biosolid and Compost increased the available concentrations with the Compost having the greatest effect.

The available Mg levels showed slight increases with all Biosolid combinations and a greater increase with the Compost combinations. The levels of available P concentrations were all found to be very similar.

Mehlich III Concentrations in mg/kg (Radish Soil)											
Nutrient	Ca	Cu	Fe	Κ	Mg	Mn	Ni	Р	S	Zn	
Control	1599	9.6	172	50	160	64	0.51	286	51	46	
Bacteria Mix	1673	11.2	179	52	166	63	0.56	289	55	51	
Fungus	1628	8.7	184	50	168	76	0.55	272	65	45	
Biosolid	2859	9.3	152	88	189	60	0.49	278	75	39	
Biosolid+Bacteria											
Mix	2717	8.8	146	68	192	53	0.49	250	64	38	
Biosolid+Fungus	3166	10.5	136	84	197	54	0.49	268	84	47	
Compost	2074	7.3	144	126	255	81	0.40	258	92	39	
Compost+Bacteria											
Mix	2364	6.9	145	146	309	101	0.43	232	100	43	
Compost+Fungus	2395	77	156	136	289	101	0 46	252	83	43	

Table 8 Mehlich III nutrient concentrations in radish soils

The plant available levels found in the soils which the lettuce crop were grown had similar results to the tomato and radish crops and are displayed in Table 9. The Ca and P concentrations were all in the very high range, K concentrations were found to be medium to and Mg were all very high. The one noticeable difference was that the Ca concentrations which were much higher in all the Biosolid combinations in comparison to the tomato and radish soils. The Biosolid amendment had an available concentration of 4418 mg/kg compared to 2143 and 2859 in the tomato and radish Biosolid amendments respectively. Both microbial treatments used in combination with the Biosolid amendment showed a reduction in levels of ~ 800-900 mg/kg decrease with the Biosolid+Bacteria Mix showing a greater decrease to the Biosolid level.

Mehlich III Concentrations in mg/kg (Lettuce Soil)											
Nutrient	Ca	Cu	Fe	Κ	Mg	Mn	Ni	Р	S	Zn	
Control	1722	9.9	164	37	151	52	0.55	232	65	47	
Bacteria Mix	1708	9.3	159	42	149	59	0.55	225	75	46	
Fungus	1738	9.0	166	44	152	59	0.54	234	63	46	
Biosolid	4418	9.1	138	86	233	52	0.55	238	122	41	
Biosolid+Bacteria											
Mix	3508	9.5	156	113	205	54	0.54	241	89	43	
Biosolid+Fungus	3610	8.8	143	144	210	50	0.53	231	85	41	
Compost	2616	7.9	170	146	310	73	0.47	226	94	50	
Compost+Bacteria											
Mix	2960	7.8	147	186	344	72	0.54	210	100	53	
Compost+Fungus	2805	8.0	139	182	328	74	0.52	209	97	51	

Table 9 Mehlich III nutrient concentrations in lettuce soils

4.6 Soil Microbial Analysis

The microbial plating to determine relative quantity of bacteria and fungus present in the different treatments showed increases under several of the different amendment and or treatments over the control. This is not a definitive measure of microbial quantity in the amendment and or treatments as only microbes which will grow on these media at these temperatures (Sutton 2011). This was done to see if certain treatments possibly increased microbial populations in the soil. For the microbial plating utilizing Tryptic Soy Agar (TSA) the Biosolid amendment had the highest percentage of plate coverage for all three plants. The Biosolid+Bacteria Mix and Biosolid+Fungus also had a higher percentage of coverage over other treatments including the Control. The Fungus treatment had the lowest plate coverage for all three plants.

The microbial plating conducted using Sabouraud Dextrose Agar (SDA) showed that the Compost amended soil had the highest percentage of plate coverage for all three type of plants. There was variation in treatments among the different types of plants showing there may be a relationship there where plant excrete different types of root exudates which can dictate or influence the microbial community populations in quantity and or it diversity to a significant degree.

	Control	Bacteria Mix	Fungus	Biosolid	Biosolid + Bacteria Mix	Biosolid + Fungus	Compost	Compost + Bacteria Mix	Compost + Fungus
Lettuce (TSA)	50	57.5	50	87.5	82.5	72.5	62.5	80	65
Radish (TSA)	42.5	47.5	20	92.5	82.5	82.5	47.5	55	62.5
Tomato (TSA)	30	65	22.5	97.5	87.5	85	55	62.5	65
Lettuce (SDA)	67.5	65	42.5	55	70	42.5	100	52.5	67.5
Radish (SDA)	60	25	70	35	75	87.5	100	97.5	92.5
Tomato (SDA)	25	35	80	47.5	82.5	92.5	97.5	92.5	60

Table 10 Average Percentage of Plate Coverage from Microbial Platings

4.7 Soil Total Nutrient Analysis Results

Total nutrients found in the soil amendment and or microbial treatments are listed

in Tables 10-12 below and are included for reference purposes to show how

concentrations differed among treatments.

Total Concentrations in mg/kg (Tomato Soil)											
Nutrient	Ca	Cu	Fe	K	Mg	Mn	Ni	Р	S	Zn	
Control	3776	41.2	21881	850	1795	534	14.2	1014	484	225	
Bacteria Mix	3868	37.4	16953	689	1725	536	11.8	1149	473	210	
Fungus	3514	37.5	16717	687	1555	548	12.2	1240	485	222	
Biosolid	4820	40.5	16836	720	1471	512	11.4	1120	492	204	
Biosolid+Bacteria Mix	7256	40.5	18198	910	1707	544	11.8	1129	607	198	
Biosolid+Fungus	5807	39.7	17839	856	1602	512	11.6	1175	540	200	
Compost	9454	31.6	18170	802	2239	841	10.8	1094	661	205	
Compost+Bacteria Mix	7271	36.0	20736	929	2149	608	12.6	1181	612	215	
Compost+Fungus	6395	35.8	18727	901	2082	564	12.2	1103	610	217	

Table 11 Total nutrient concentrations in tomato soils

Table 12 Total nutrient concentrations in radish soils

Total Concentrations in mg/kg (Radish Soil)											
Nutrient	Ca	Cu	Fe	Κ	Mg	Mn	Ni	Р	S	Zn	
Control	3410	62.5	18615	748	1672	526	11.9	1018	434	236	
Bacteria Mix	5091	41.2	22645	772	1907	660	13.4	1150	520	282	
Fungus	6350	42.3	18300	832	2117	555	13.0	1182	490	289	
Biosolid	7188	44.7	20127	804	1694	524	13.1	1067	485	231	
Biosolid+Bacteria											
Mix	5609	41.8	19959	797	1679	577	12.6	1151	574	252	
Biosolid+Fungus	6727	44.8	20171	878	1797	581	13.1	1130	542	263	
Compost	6469	34.6	31730	1222	2405	617	15.6	1043	541	259	
Compost+Bacteria											
Mix	7777	35.5	26021	1061	2454	611	13.9	1050	671	254	
Compost+Fungus	8983	33.0	24910	1138	2779	668	13.7	1038	665	260	

Total Concentrations in mg/kg (Lettuce Soil)										
Nutrient	Ca	Cu	Fe	K	Mg	Mn	Ni	Р	S	Zn
Control	4962	44.2	24546	878	1964	666	14.5	1139	675	243
Bacteria Mix	4205	41.1	21004	804	1912	627	13.9	1077	620	225
Fungus	3967	42.0	25519	825	1676	643	13.9	1161	722	240
Biosolid	7045	81.9	20229	897	1716	565	13.9	1104	727	273
Biosolid+Bacteria Mix	7318	41.8	22037	964	2063	548	13.8	1063	671	259
Biosolid+Fungus	6457	44.2	22208	1071	1841	625	14.4	1117	584	265
Compost	7885	37.7	19454	953	2165	658	12.1	1052	612	264
Compost+Bacteria Mix	13613	34.9	18183	1023	3069	747	11.5	1085	879	238
Compost+Fungus	12641	36.1	19374	1031	2998	823	11.6	1030	832	229

Table 13 Total nutrient concentrations in lettuce soils

4.8 Plant Biomass Results

The comparison of the amendment and microbial treatment combinations for Tomato Shoots biomass can be seen in Figure 5.8. The figure shows that all treatments with the exception of Biosolid and Compost had lower average biomass weights than the Control soil. The Biosolid+Fungus treatment had the lowest average biomass weight of all treatments, followed by Fungus then Biosolid+Bacteria Mix. The Bacteria Mix, Compost+Bacteria Mix and Compost+Fungus also had lower average biomass weights then the Control did.

Figure 5 Box Plot of Tomato Shoot Biomass by Treatment showing Average, Upper and Lower Quartiles and Whiskers

Figure 6 Radish R1 and R2 grown in the Control Soil showing Root Rot.

The radish root biomass represented in Figure 7 shows that the Biosolid+Bacteria Mix amendment/treatment had the highest average weight out of all treatments but a large lower whisker extending ~ .3 grams below the lower quartile. The Control showed the second highest mean average followed Compost and Biosolid+Fungus. The radishes grown in soil with the Fungus microbial treatment had the lowest mean average of all

treatments. Figure 6 is provided because two of the four radishes grown in the Control soil displayed rotting of the radish R1 and R2. This did not seem to effect the weight of R1, the radish seemed normal until it was cut open. The weight of R2 could have been effected as the outside had a shriveled look and grew irregularly.

Figure 7 Box Plot of Radish Root Biomass by Treatment showing Average, Upper and Lower Quartiles and Whiskers

Analysis of the lettuce shoot biomasses from the box plot shows that lettuce grown in the Control soil had the highest mean average followed by lettuce grown in soil with the Bacteria Mix microbial treatment added followed by the Fungus treatment. The Biosolid+Fungus treatment had the lowest average shoot weight of all the treatments.

Figure 8 Box Plot of Lettuce Shoot Biomass by Treatment showing Average, Upper and Lower Quartiles and Whiskers

4.9 Plant Tissue Analysis

The analysis of the nutrient concentrations in plant tissues showed that the different amendments and microbial treatments had an effect on nutrient uptake and incorporation in plants. Also different crop types; root, leaf and fruit responded different to nutrient loading into plant tissue and had varying results and trends specific to crop type.

For tomato stems the microbial treatments demonstrated an effect of increasing certain nutrient concentrations in tomato stem tissue for several of the elements when added to the Control soil. Calcium, iron, potassium and sulfur showed increased levels with the addition of both the Bacteria Mix and Fungus treatments. All treatments with biosolid resulted in a mean increase in Ca, K concentrations but a decrease in Mg, Mn, P and Zn compared to the Control. Treatments involving Compost increased K in stem tissue and decreased Cu, Mg, Mn, P, S and Zn from levels compared to the Control.

The Bacteria Mix treatment resulted in the highest mean concentrations of Cu, Mg, P, S and Zn in stem tissue. Calcium and Fe concentrations were highest in the stem tissue of Biosolid+Fungus and Mn concentration was highest in stem tissues grown in Control soil.

				(
	Ca	Cu	Fe	K	Mg	Mn	Р	S	Zn
Control	13712	9.9	75	27134	5136	120	4365	2839	254
Bacteria Mix	20465	12.4	109	34327	5751	83	6238	5042	364
Fungus	19247	10.0	124	40028	2680	74	2813	4199	223
Biosolid	22761	11.1	94	40101	4409	55	2608	4166	116
Biosolid+Bacteria Mix	24752	10.2	72	51413	3177	46	2128	3927	125
Biosolid+Fungus	30953	7.7	177	51364	3930	48	1372	1700	181
Compost	12874	5.2	61	38489	1995	39	3047	1913	128
Compost+Bacteria Mix	13766	5.5	78	40360	1799	38	3017	1990	129
Compost+Fungus	13618	5.1	59	42653	1872	29	3171	2069	135

Table 14 Nutrient Concentrations found in Tomato Stems

Tomato Stem Nutrient Values (mg/kg)

Nutrient uptake into radish root tissue showed some trends among the amendment and microbial treatment combinations. The radishes grown in the Control soil had the highest average concentration for potassium, magnesium, manganese, phosphorous, sulfur and zinc. Radishes grown in the Biosolid amendment had the highest levels of calcium, copper and iron.

	Ca	Cu	Fe	K	Mg	Mn	Р	S	Zn
Control	10672	8.7	209	46510	4726	37.8	13707	16460	173
Bacteria Mix	4988	4.9	109	32062	1378	16.2	3890	4123	102
Fungus	4600	9.8	425	41013	2024	40.1	6943	6468	140
Biosolid	12714	12.4	714	45248	2030	34.1	3207	6028	50
Biosolid+Bacteria Mix	8157	6.0	280	37960	2944	18.4	8536	7253	69
Biosolid+Fungus	8718	5.1	139	41166	1632	17.1	2887	4078	60
Compost	7272	4.9	78	46621	2158	15.8	6722	6046	46
Compost+Bacteria Mix	8268	2.5	105	45972	1879	14.1	2313	2372	60
Compost+Fungus	9556	4.0	138	43832	4030	12.9	8164	7632	74

Table 15 Nutrient Concentrations found in Radish Roots

Radish Root Nutrient Values (mg/kg)

Compared to the Control certain amendments/microbial treatments showed a tendency to increase or decrease certain nutrients into the lettuce shoot tissue. When the Bacteria Mix and Fungus treatments were added as stand-alone they decreased the concentration of all nutrients in the lettuce shoot tissue. However when the microbial treatments were added in combination with the Compost or Biosolid amendments they did not have the same effect. The Biosolid+Bacteria Mix and Biosolid+Fungus increased the Ca, K and S concentrations compared to both the Control and Biosolid treatments. Additionally the Biosolid+Fungus increased Fe and Mg over the Control and Biosolid.

The three treatments involving Compost showed a decrease in nutrient uptake of Ca, K, Mg, Mn, P, S and Zn compared to the concentrations in the Control lettuce. The Biosolid+Fungus treatment had the highest level of Ca, K, Mg and S of all the treatments and also had the lowest average biomass of all the groups.

	Ca	Cu	Fe	K	Mg	Mn	Ni	Р	S	Zn
Control	11540	12.18	256	44848	6386	401	0.52	8505	2737	258
Bacteria Mix	8798	6.85	148	34307	2277	225	0.41	4900	1878	233
Fungus	11040	8.31	277	36740	2994	310	0.38	3677	1682	283
Biosolid	14268	11.74	171	62246	3335	77	0.37	4585	2505	64
Biosolid+Bacteria Mix	18432	11.23	298	58516	5926	130	0.48	7652	3537	164
Biosolid+Fungus	25273	10.96	521	63716	19784	157	0.89	8201	4041	198
Compost	9504	4.96	103	40777	2138	89	0.18	4474	1324	70
Compost+Bacteria Mix	10649	5.46	121	42916	2443	99	0.33	3926	1172	50
Compost+Fungus	7459	3.65	67	33700	1550	51	0.15	3603	916	38

Table 16 Nutrient Concentrations found in Lettuce Shoots Lettuce Shoot Nutrient Values

4.10 Pearson Correlation

Pearson Correlations were conducted to try and find significant correlations between the biomass of plant sections and soil characteristics (pH, OM, Available and Total Nutrients) and nutrient concentrations in the plant tissues. The correlations found were also used to establish applicable criteria for conducting backwards stepwise regression for determination of the most likely parameter which effected the biomass of specific plant sections.

Lettuce

Out of the three plants; lettuce was found to have the most correlations between biomass of plant sections (root and shoot) and soil data and nutrient levels in plant tissue. In Table 18 significant correlations at the (0.05)* and (0.01)** levels between lettuce root biomass and soil properties are displayed. Significant correlations between Nitrate and available Zn showed significant correlations at the 0.01 level and available Ca and total Zn showed correlations at the 0.05 significance level. The nitrate, available Ca and total Zn showed a negative correlation to lettuce root biomass while available Zn showed a positive correlation.

Table 17 Pearsons Correlations between Lettuce Root Biomass and Soil Properties

		N03	(M3) Ca Avg	(M3) Zn Avg	(T) Zn Avg
(LR) Biomass Avg	Pearson Correlation	-0.846**	-0.685*	.819**	726*
	Sig. (2-tailed)	0.004	0.042	0.007	0.027
	N	9	9	9	9

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

There were five significant correlations found between nutrient concentrations in lettuce root tissue and lettuce root biomass. Calcium and nickel concentrations in the lettuce root tissue were found to be statistically significant at 0.01 and copper, iron and magnesium concentrations were significant at the 0.05 level. All five of the correlations between nutrient concentrations in the root tissue and biomass were negative.

Table 18 Pearsons Correlations	between Lettuce	Root Biomass	and Nutrient
Concentration in Lettuce Root 7	Гissue		

		(LR) Ca Avg	(LR) Cu Avg	(LR) Fe Avg	(LR) Mg Avg	(LR) Ni Avg
(LR) Biomass Avg	Pearson Correlation	914**	763*	674*	-0.696*	845**
	Sig. (2-tailed)	0.001	0.017	0.047	0.037	0.004
	Ν	9	9	9	9	9

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Only one common correlation was found in both lettuce root and lettuce shoot biomass and that was the concentration of nitrate in the soil. The plant tissue correlation analyses showed nitrate levels having a significant negative correlation with both lettuce root and shoot biomass. In addition to nitrate four other soil properties showed correlations with shoot biomass; EC, ammonium levels, available iron and total potassium. Nitrate and EC each showed to have a significant correlation at 0.01 and ammonium, available iron and total potassium were significant at 0.05. All correlations were negative with EC showing the strongest correlation, followed by nitrate, total iron, available potassium and lastly ammonium.

Table 19 Pearsons Correlations between Lettuce Shoot Biomass and Soil Properties EC

NH₄	N02
11114	1103

(M3) Fe

(T) K Avg

					Avg	
(LS) Biomass Avg	Pearson	945**	672*	-0.865**	-0.789*	-0.745*
	Correlation					
	Sig. (2-tailed)	0.000	0.047	0.003	0.012	0.021
	N	9	9	9	9	9

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

The results for nutrient levels in lettuce shoot tissue and biomass were two correlations. Calcium and potassium both had negative correlations with shoot biomass at the 0.05 level; calcium with a 0.758 and potassium with a 0.687 Pearson correlation.

Table 20 Pearsons Correlations between Lettuce Shoot Biomass and Nutrient Concentration in Lettuce Shoot Tissue

		(LS) Ca Avg	(LS) K Avg
(LS) Biomass Avg	Pearson Correlation	-0.758*	-0.687*
	Sig. (2-tailed)	0.018	0.041
	Ν	9	9

*. Correlation is significant at the 0.05 level (2-tailed).

Radish

Soil properties and radish shoot biomass had four correlations between them, three at the 0.05 level and one at the 0.01 level. Total magnesium and radish shoot biomass held a significant correlation at the 0.01 level and total potassium, iron and available manganese were significant at 0.05. All four of the correlations were negative; total magnesium and shoot biomass had the strongest correlation (0.819) followed by available manganese 0.787, total potassium 0.718 and total iron 0.697.

Table 21 Pearsons Correlations between Radish Shoot Biomass and Soil Properties

		(M3) Mn Avg	(T) Fe Avg	(T) K Avg	(T) Mg Avg
(RS) Biomass Avg	Pearson Correlation	-0.787*	697*	718*	-0.819**
	Sig. (2-tailed)	0.012	0.037	0.029	0.007
	Ν	9	9	9	9

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Only one correlation between shoot biomass and nutrient concentration in the tissue was found. Sulfur concentration in the tissue had a -0.713 correlation with shoot biomass at the 0.05 level.

Table 22 Pearsons Correlations between Radish Shoot Biomass and Nutrient Concentration in Radish Shoot Tissue

		(RS) S Avg
(RS) Biomass Avg	Pearson	-0.713*
	Correlation	
	Sig. (2-tailed)	0.031
	N	9

*. Correlation is significant at the 0.05 level (2-tailed).

No statistically significant correlations between radish root biomass and soil

properties or nutrient concentrations in root tissue were found.

Tomato

For tomato root biomass a negative correlation with total phosphorous in the soil at the 0.05 level was found with a correlation value of 0.683. Ammonium in the soil was not significant at the 0.05 level since the p-value was 0.05 but it is worth noting since it fell right on the cut off limit.

Table 23 Pearsons Correlations between Tomato Root Biomass and Soil Properties (T) P Avg NH₄

(TR) Biomass Avg	Pearson Correlation	683*	666
	Sig. (2-tailed)	0.043	0.05
	Ν	9	9

*. Correlation is significant at the 0.05 level (2-tailed).

Between concentrations in tomato root tissue and root biomass four significant correlations were found. Copper, iron, manganese and nickel concentrations in the root tissue all had negative correlations with tomato root biomass. Iron and nickel were significant at the 0.01 level and copper and manganese were found to be significant at the 0.05 level. Iron had the strongest correlation value of 0.838 followed by nickel 0.826, copper 0.733 and manganese 0.725.

Table 24 Pearsons Correlations between Tomato Root Biomass and Nutrient Concentration in Tomato Root Tissue

		(TR) Cu Avg	(TR) Fe Avg	(TR) Mn Avg	(TR) Ni Avg
(TR) Biomass Avg	Pearson	733*	838**	725*	826**
	Correlation				
	Sig. (2-tailed)	0.025	0.005	0.027	0.006
	N	9	9	9	9

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

There were two significant correlations found between tomato stem biomass. The first correlation found was between the ammonium levels in the soil and the second was with the iron concentration in the tomato leaves. Ammonium levels in the soil had a - 0.718 correlation with tomato shoot biomass at a 0.05 level of significance. Iron concentrations in leaf tissue showed a weaker correlation of -0.673 with tomato shoot biomass at a 0.05 significance level.

Table 25 Pearsons Correlations between Tomato Shoot Biomass and Soil Properties

		NH4
(TS) Biomass	Pearson	718*
Avg	Correlation	
	Sig. (2-tailed)	0.029
	N	9

*. Correlation is significant at the 0.05 level (2-tailed).

Table 26 Pearsons Correlations between Tomato Shoot Biomass and Nutrient Concentration in Tomato Leaf Tissue

		(TL) Fe Avg
(TL) Biomass	Pearson	673*
Avg	Correlation	
	Sig. (2-tailed)	0.047
	Ν	9

*. Correlation is significant at the 0.05 level (2-tailed).

4.11 Backwards Stepwise Regression

Lettuce

Backwards Stepwise Regression determined that calcium concentrations in lettuce roots had the largest correlation out of all the variables that Pearson Correlation modeling found to be significant. The R squared correlation between Lettuce Root biomass and Ca concentrations in the root tissue was 0.836 and significant at the 0.01 level with a p-value of < 0.000. The soil properties that showed a correlation with lettuce root biomass were total zinc, plant available zinc and calcium and nitrate concentrations. The regression found the nitrate levels to have the strongest correlation with lettuce root biomass with an R squared of 0.716 and to be significant at the 0.01 level with a p-value of 0.002.

Table 27 Backward Stepwise Regression of Significant Nutrient Concentrations in Soil and Lettuce Root Biomass

Model					Change Statistics		
	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1
1	.913 ^a	.834	.669	1.0738739214	.834	5.040	4
2	.911 ^b	.830	.727	.9742331824	005	.115	1
3	.895 ^c	.801	.735	.9611404145	029	.840	1
4	.846 ^d	.716	.675	1.0631248694	085	2.564	1

Model Summary^e

a. Predictors: (Constant), (T) Zn Avg, (M3) Zn Avg, (M3) Ca Avg, N03

b. Predictors: (Constant), (T) Zn Avg, (M3) Zn Avg, N03

c. Predictors: (Constant), (M3) Zn Avg, N03

d. Predictors: (Constant), N03

e. Dependent Variable: (LR) Biomass Avg

The soil properties which showed to have a correlation with the Lettuce Shoot biomass were input into the Backwards stepwise regression function. The remaining variable in Model 5 was electrical conductivity (EC) which had an R squared value of 0.893. This makes sense since all the significant variables were cations or minerals which tend to be available to plants in the form of cation molecules. Furthermore the first variable excluded from the model was nitrate which in an anion molecule. Between the two significant factors found to negatively impact lettuce shoot biomass it was determined through Backwards Regression that calcium concentrations in the lettuce

shoots had a stronger correlation with reducing lettuce shoot biomass.

Table 29 Backward Stepwise Regression of Significant Nutrient Concentration in Lettuce Root Tissue and Lettuce Root Biomass

Model					Change Statistics		
	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1
1	.958	.918	.782	.8720832711	.918	6.727	5
2	.955 ^b	.913	.825	.7803807630	006	.203	1
3	.955 ^c	.911	.858	.7035518559	001	.064	1
4	.923 ^d	.852	.803	.8278425796	059	3.307	1
5	.914 ^e	.836	.813	.8077310792	016	.664	1

Model Summary

a. Predictors: (Constant), (LR) Ni Avg, (LR)Fe Avg, (LR) Ca Avg, (LR)Cu Avg, (LR) Mg Avg

b. Predictors: (Constant), (LR) Ni Avg, (LR) Ca Avg, (LR)Cu Avg, (LR) Mg Avg

c. Predictors: (Constant), (LR) Ni Avg, (LR) Ca Avg, (LR) Mg Avg

d. Predictors: (Constant), (LR) Ca Avg, (LR) Mg Avg

e. Predictors: (Constant), (LR) Ca Avg

f. Dependent Variable: (LR) Biomass Avg

Table 28 Backward Stepwise Regression of Significant Nutrient Concentrations in Soil and Lettuce Shoot Biomass

Model					Change Statistics			
	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	
1	.981 ^a	.963	.901	.218372793	.963	15.587	5	
2	.981 ^b	.963	.925	.189628806	.000	.016	1	
3	.976 [°]	.953	.925	.190751099	010	1.059	1	
4	.961 ^d	.924	.898	.221465754	029	3.088	1	
5	.945 ^e	.893	.878	.242800533	031	2.414	1	

Model Summary

a. Predictors: (Constant), (T) K Avg, NO3, (M3) Fe Avg, NH4, EC

b. Predictors: (Constant), (T) K Avg, (M3) Fe Avg, NH4, EC

c. Predictors: (Constant), (T) K Avg, NH4, EC

d. Predictors: (Constant), NH4, EC

e. Predictors: (Constant), EC

f. Dependent Variable: (LS) Biomass Avg

Table 30 Backward Stepwise Regression of Significant Nutrient Concentrations in Lettuce Shoot Tissue and Lettuce Shoot Biomass

Model					Change Statistics			
	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	
1	.760 ^a	.578	.438	.520909863	.578	4.112	2	
2	.758 ^b	.575	.514	.484079073	0 03	.045	1	

Model Summary^c

a. Predictors: (Constant), (LS) K Avg, (LS) Ca Avg

b. Predictors: (Constant), (LS) Ca Avg

c. Dependent Variable: (LS) Biomass Avg

Radish

The Ca concentration as the lone variable had an R squared value of 0.575 and significant at the 0.01 level with a p-value of 0.009. The significant factors found through Pearsons Correlation were input into a Backwards Regression to determine which variable had the most significant impact on Radish Shoot Biomass. The remaining variable in Model 4 was the magnesium concentration in Radish Shoots. The R squared between Mg concentrations and Radish Shoot weight was 0.671 and was determined to be significant at the 0.01 level with a p-value of 0.003.

Table 31 Backward Stepwise Regression of Significant Nutrient Concentrations in Soil Tissue and Radish Shoot Biomass

······,												
Model					Change Statistics							
	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1					
1	.873	.763	.526	.214612444	.763	3.215	4					
2	.869 ^b	.755	.608	.195126327	008	.133	1					
3	.837 ^c	.700	.600	.197050929	055	1.119	1					
4	.819 ^d	.671	.624	.191074026	029	.582	1					

Model Summary^e

a. Predictors: (Constant), (T) Mg Avg, (T) Fe Avg, (M3) Mn, (T) K Avg

b. Predictors: (Constant), (T) Mg Avg, (T) Fe Avg, (T) K Avg

c. Predictors: (Constant), (T) Mg Avg, (T) Fe Avg

d. Predictors: (Constant), (T) Mg Avg

e. Dependent Variable: (RS) Biomass Avg

Tomato

The Backwards Regression run for Tomato Root biomass with root tissue concentrations was able to determine the total iron concentration was the variable which had the most significant negative impact on Tomato Root biomass with and R square of 0.701 and was statistically significant at the 0.01 level with a p-value of 0.002.

The Backwards Stepwise Regression for the two variables which showed significant negative correlations with Tomato Root biomass was unable to eliminate either from the model and determine which variable had a greater impact on Tomato Root Biomass. The R squared value of the model with both variables in it was 0.711. Ammonium initially had a correlation of -0.666 and a p-value of .025 while total P had a correlation of -0.683 and a p-value of .021.

Table 32 Backward Stepwise Regression of Significant Nutrient Concentrations in Tomato Root Tissue and Tomato Root Biomass

Model					Change Statistics			
	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	
1	.908ª	.824	.649	.10060385052	.824	4.693	4	
2	.897 ^b	.804	.686	.09508412742	020	.466	1	
3	.867 ^c	.752	.669	.09761322481	052	1.323	1	
4	.838 ^d	.701	.659	.09914977879	051	1.222	1	

Model Summary^e

a. Predictors: (Constant), (TR) Ni Avg, (TR) Cu Avg, (TR) Fe Avg, (TR) Mn Avg

b. Predictors: (Constant), (TR) Ni Avg, (TR) Cu Avg, (TR) Fe Avg

c. Predictors: (Constant), (TR) Cu Avg, (TR) Fe Avg

d. Predictors: (Constant), (TR) Fe Avg

e. Dependent Variable: (TR) Biomass Avg

Table 33 Backward Stepwise Regression of Significant Nutrient Concentrations in Soil and Tomato Root Biomass

Model Summary^b

Model					Change Statistics		
	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1
1	.843 ^a	.711	.615	.10533181201	.711	7.387	2

a. Predictors: (Constant), (T) P Avg, NH4

b. Dependent Variable: (TR) Biomass Avg
4.12 ANOVA

Analysis of Variance (ANOVA) was conducted for the plants to determine if there was any significant differences between the amendment/treatment combinations and the control. This was done by comparing dry biomass of the plants with the nominal group or treatment variable. A homogeneity of variance (HoV) test was conducted with the initial ANOVA analysis so an appropriate Post HOC test could be selected based on whether or not the HoV assumption was violated. If the assumption was not violated (the reported value was ≥ 0.05) then the Tukey Post Hoc test was used but if the assumption was violated (< 0.05) then the Games-Howell test was used.

The Analysis of Variance (ANOVA) for the average Biomass of lettuce shoots between treatments showed a statistically significant difference between four of the amendment/biological treatments and the control. All treatments had a lower mean biomass than the lettuce grown in the control soil. The control had an average dry biomass of 2.559 grams per plant. The Biosolid+Fungus treatment had the greatest mean biomass difference from the control and an average of 0.226 g/plant a mean difference of 2.333 g less per plant on average and was statistically significant at a 0.01 level with a pvalue of 0.001.

The Biosolid+Bacteria Mix and Biosolid treatments also showed a statistical significance difference at the 0.01 level with p-values of 0.002 and 0.004 respectively. The Biosolid+Bacteria Mix treatment had a mean biomass weight of 1.140 g/plant a mean difference of - 1.419 g compared to the control and the Biosolid amendment had an average biomass weight of 1.240 g/plant a mean difference of 1.320 g less than the

66

control. At the 0.05 level the Compost+Fungus treatment showed a significant decrease

in the biomass with a p-value of 0.027 and a mean biomass of 1.358 g/plant a decrease of

1.202 g/plant in comparison to the control.

Lettuce

Table 34 Post Hoc Test for ANOVA of Lettuce Shoot Biomass between Control and Treatments.

Multiple Comparisons				
	(LS) Biomass G	ames-Howe	11	
(I) Group	(J) Group	Mean Differen ce (I- J)	Std. Error	Sig.
	Bacteria Mix	0.2103	0.15	0.845
	Fungus	0.6484	0.17	0.093
	Biosolid	1.3195*	0.18	0.004
Control	Biosolid+Bacteria Mix	1.4191*	0.15	0.002
Control	Biosolid+Fungus	2.3336*	0.13	0.001
	Compost	0.9879	0.40	0.432
	Compost+Bacteria Mix	0.8756	0.36	0.449
	Compost+Fungus	1.2015*	0.22	0.027

Figure 9 Mean Lettuce Shoot Biomass per Treatment

The ANOVA analysis of the plant available nutrients (Mehlich III) in the soil found several significant results for five nutrients. There was statistically significant differences found in the levels of calcium, potassium, magnesium, phosphorous, and sulfur for certain treatments in comparison with the control. A significant difference at the 0.01 level was found between the Control soil and the Biosolid+Bacteria Mix amendment with a p-value of 0.005. The available calcium level was found to have a mean difference of 1786.25 mg/kg greater than the Control soil.

Several treatments were found to have significantly higher potassium levels above the available levels in the Control. Biosolid and Biosolid+Bacteria Mix had more available potassium at a 0.05 level as they had p-values of 0.016 and 0.018 respectively. Biosolid had a mean difference of 48.49 mg/kg greater and Biosolid+Bacteria Mix had 75.55 mg/kg greater than the Control. At a significance level of 0.01 the Compost+Bacteria Mix (p-value 0.001) was found to have a concentration of 148.38 mg/kg greater than the Control.

(M3) Ca Games-Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.
	Bacteria Mix	14.338	29.1	0.999
	Fungus	-16.007	59.6	1.000
	Biosolid	-2.70E+03	163.3	0.094
	Biosolid+Bacteria Mix	-1786.254*	25.8	0.005
Control	Biosolid+Fungus	-1.89E+03	345.3	0.295
	Compost	-893.918	86.6	0.130
	Compost+Bacteria Mix	-1.24E+03	98.8	0.110
	Compost+Fungus	-1.08E+03	126.4	0.177

Table 35 Post Hoc Test for ANOVA of Mehlich III, Ca (Top) K (Bottom) between Control and Treatments

(M3) K Games_Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.
	Bacteria Mix	-4.846	0.83	0.278
	Fungus	-6.631	0.91	0.151
	Biosolid	-48.489*	0.87	0.016
	Biosolid+Bacteria Mix	-75.548*	0.83	0.018
Control	Biosolid+Fungus	-106.278	4.00	0.051
	Compost	-108.852	6.36	0.091
	Compost+Bacteria Mix	-148.383*	1.45	0.001
	Compost+Fungus	-144.132*	4.84	0.048

For magnesium the Biosolid+Bacteria Mix amendment was found to have a greater available concentration of 54.11 mg/kg than the Control at the 0.01 significance level with a p-value of 0.004. The Biosolid (p-value 0.017) and Compost+Bacteria Mix (p-value 0.044) treatments also had greater levels of magnesium available with mean

differences of 81.91 and 192.69 mg/kg over the Control level. The concentration of available phosphorous in the Compost+Bacteria Mix amendment was decreased from the Control by a mean difference of 21.29 mg/kg less at a significance level of 0.01 with a p-value of 0.000.

	(M3) Mg Games-Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.	
	Bacteria Mix	1.628	2.64	0.992	
	Fungus	-0.588	3.94	1.000	
	Biosolid	-81.912*	1.54	0.017	
Control	Biosolid+Bacteria Mix	-54.115*	0.89	0.004	
Control	Biosolid+Fungus	-59.058	7.81	0.216	
	Compost	-158.754	14.88	0.155	
	Compost+Bacteria Mix	-192.692*	5.26	0.044	
	Compost+Fungus	-176.955	12.46	0.117	

Table 36 Post Hoc Test for ANOVA of Mehlich III, Mg (Top) P (Bottom) between Control and Treatments

(M3) P Games-Howell					
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.	
	Bacteria Mix	6.683	5.29	0.872	
	Fungus	-2.038	9.23	1.000	
	Biosolid	-6.710	4.20	0.785	
	Biosolid+Bacteria Mix	-9.788	1.78	0.296	
Control	Biosolid+Fungus	0.587	9.69	1.000	
	Compost	5.506	0.63	0.185	
	Compost+Bacteria Mix	21.293*	0.10	0.000	
	Compost+Fungus	22.159	3.63	0.268	

Available sulfur levels had two amendment/treatment combinations differ significantly from the Control which had a mean concentration of 64.6 mg/kg. Biosolid+Bacteria Mix (88.95 mg/kg) and, Compost+Bacteria Mix (99.86) differed significantly at the 0.05 level. Total calcium concentration in the Control that lettuce was grown in had a mean of 4,962 mg/kg. The Compost+Fungus had a mean concentration of 12,641 mg/kg and was significantly different at the 0.05 level.

(M3) S Games-Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.
	Bacteria Mix	-10.056	2.11	0.299
	Fungus	1.596	3.96	0.999
	Biosolid	-57.840	3.94	0.105
	Biosolid+Bacteria Mix	-24.332*	0.63	0.024
Control	Biosolid+Fungus	-20.086	5.70	0.439
	Compost	-29.551	6.83	0.366
	Compost+Bacteria Mix	-35.240*	0.60	0.027
	Compost+Fungus	-32.791	3.44	0.160

Table 37 Post Hoc Test for ANOVA of Mehlich III S (Top) and Total Ca (Bottom) between Control and Treatments

(T) Ca Games-Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.
	Bacteria Mix	757	534	0.831
	Fungus	995	642	0.791
	Biosolid	-2084	981	0.618
Ocartacl	Biosolid+Bacteria Mix	-2356	1329	0.728
Control	Biosolid+Fungus	-1495	1786	0.968
	Compost	-2923	936	0.395
	Compost+Bacteria Mix	-8652	5163	0.764
	Compost+Fungus	-7679*	726	0.042

Radish

The ANOVA analysis of the radish root biomass showed only one statistically significant difference between the control and all other treatments. The radish roots grown in the control soil had an average dry biomass of 0.937 g/plant. The

Biosolid+Bacteria Mix was found to show significant difference from the Control at the 0.01 level with a p-value of 0.000 and had an average dry biomass of 1.729 g/plant a positive mean difference of .793 g/plant.

	(RR) Biomass Tukey HSD				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.	
	Bacteria Mix	0.126	0.15	0.995	
	Fungus	0.501	0.15	0.054	
	Biosolid	0.332	0.15	0.432	
Control	Biosolid+Bacteria Mix	-0.793*	0.15	0.000	
Control	Biosolid+Fungus	0.045	0.15	1.000	
	Compost	0.045	0.15	1.000	
	Compost+Bacteria Mix	0.252	0.15	0.755	
	Compost+Fungus	0.174	0.15	0.960	

Table 38 Post Hoc Test for ANOVA of Radish Root Biomass between Control and Treatments.

Figure 10 Mean Radish Root Biomass per Treatment

The statistically significant results found by the ANOVA test for plant available nutrients in the soil are displayed below. Statistically significant differences between the Control and amendment and or treatment combinations were found for four nutrients; calcium, potassium, magnesium and sulfur. For Ca the Biosolid, Biosolid+Fungus, Compost and Compost+Fungus had significantly different plant available concentration levels at the significance level of 0.05. The average concentration of Ca found in the Control was 1599 mg/kg. The concentrations for the amendment/treatments listed in the order above was 2859, 3166, 2074, and 2395 mg/kg.

Potassium concentrations differed from the Control (50.3) at statistically significant levels in Biosolid (87.9), Biosolid+Fungus (83.6), Compost (146), Compost+Bacteria Mix (135.5) and Compost+Fungus (88.7). Biosolid and Compost+Bacteria Mix were significant at the 0.01 level and all others were at the 0.05 level.

(M3) Ca Games-Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.
	Bacteria Mix	-73.9	49.2	0.808
	Fungus	-28.7	35.8	0.974
	Biosolid	-1259.9*	32.4	0.021
	Biosolid+Bacteria Mix	-1118.2	82.9	0.116
Control	Biosolid+Fungus	-1566.6*	28.4	0.010
	Compost	-474.7*	27.4	0.046
	Compost+Bacteria Mix	-765.0	174.3	0.363
	Compost+Fungus	-795.9*	23.9	0.013

Table 39 Hoc Test for ANOVA of Mehlich III, Ca (Top) K (Bottom) between Control and Treatments

(M3) K Games-Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.
	Bacteria Mix	-1.26	2.21	0.995
	Fungus	0.44	1.05	0.999
	Biosolid	-37.59*	0.73	0.002
	Biosolid+Bacteria Mix	-17.51	2.36	0.199
Control	Biosolid+Fungus	-33.30*	0.51	0.025
	Compost	-75.39*	1.41	0.013
	Compost+Bacteria Mix	-95.64*	0.78	0.000
	Compost+Fungus	-85.16*	1.64	0.017

Plant available soil concentrations for magnesium were significantly higher in the Biosolid+Fungus and Compost+Fungus combinations than they were in the Control. The Control had a mean concentration of 160.2 mg/kg while Biosolid+Fungus had a mean concentration of 196.9 and significant at 0.05; Compost+Fungus, a 288.7 mean concentration was significant at 0.01.

Sulfur concentrations for Biosolid 74.8, Biosolid+Fungus 84, Compost 92.3 and Compost+Fungus 83.2 were determined to be significantly lower than the mean Control concentration of 50.7 mg/kg. Compost and Compost+Fungus were significantly different at the 0.01 level while Biosolid and Biosolid+Fungus at the 0.05 level.

(M3) Mg Games-Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.
	Bacteria Mix	-5.69	6.58	0.961
	Fungus	-7.86	1.81	0.287
	Biosolid	-28.44	10.15	0.535
Control	Biosolid+Bacteria Mix	-31.95	3.22	0.141
Control	Biosolid+Fungus	-36.42*	1.36	0.01
	Compost	-95.08	3.80	0.055
	Compost+Bacteria Mix	-148.66	6.44	0.068
	Compost+Fungus	-128.57*	1.66	0.004

Table 40 Post Hoc Test for ANOVA of Mehlich III, Mg (Top) S (Bottom) between Control and Treatments

(M3) S Games-Howell				
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.
	Bacteria Mix	-4.69	1.75	0.502
	Fungus	-14.83	2.10	0.173
	Biosolid	-24.16*	0.84	0.020
	Biosolid+Bacteria Mix	-13.42	3.28	0.365
Control	Biosolid+Fungus	-33.31*	1.88	0.047
	Compost	-41.61*	0.89	0.005
	Compost+Bacteria Mix	-49.30	2.60	0.061
	Compost+Fungus	-32.52*	0.90	0.007

Tomato

ANOVA analysis amendment/treatment compared with tomato shoot biomasses showed six significant correlations between the Control and different amendment and or microbial treatments groups. Three treatments, Fungus, Biosolid+Bacteria Mix and Biosolid+Fungus showed statistically significant differences at a level of 0.01. The Bacteria Mix, Compost+Bacteria Mix and Compost+Fungus were significantly different at a level of 0.05 significance. The Control tomato plants had a mean weight of 2.867 grams/plant. Fungus, Biosolid+Bacteria Mix and Biosolid+Fungus had mean weights of 1.076, 1.143 and 0.590 grams/plant respectively. The only amendment, Biosolid that had a higher mean average biomass than the Control was not statistically different.

(TS) Biomass Games-Howell												
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.								
	Bacteria Mix	1.310*	0.15	0.015								
	Fungus	1.790*	0.22	0.003								
	Biosolid	-0.585	0.22	0.307								
Control	Biosolid+Bacteria Mix	1.724*	0.22	0.003								
Control	Biosolid+Fungus	2.277*	0.17	0.001								
	Compost	0.4297	0.52	0.987								
	Compost+Bacteria Mix	0.921*	0.16	0.033								
	Compost+Fungus	0.845*	0.18	0.048								

Table 41 Post Hoc Test for ANOVA of Tomato Shoot Biomass between Control and Treatments.

Figure 11 Mean Tomato Shoot Biomass per Treatment

For plant available calcium the Control had a mean concentration of 1333 mg/kg. Three amendment and microbial treatment combinations had higher available levels than the Control at a statistically significant level. Biosolid+Bacteria Mix had a mean calcium concentration of 2299 mg/kg and Compost+Fungus a mean of 2272 mg/kg; both were significant at 0.05. Biosolid+Fungus had a mean concentration of 2407 mg/kg and was significantly different from the Control at the 0.01 level.

Available iron showed the Control as having a mean concentration of 189.4 mg/kg. There were six amendment and treatments combinations that were statistically different at the 0.05 significance level. All significant amendment and or treatment combinations had lower concentrations than the Control. The combinations with mean concentrations were; Biosolid 120.7, Biosolid+Bacteria Mix 116.9, Biosolid+Fungus 116.4, Compost 139.4, Compost+Bacteria Mix 132 an d Compost+Fungus 140.5 mg/kg.

(M3) Ca Games-Howell												
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.								
	Bacteria Mix	13.9	33.58	0.999								
	Fungus	-31.2	6.40	0.252								
	Biosolid	-840.3	31.09	0.060								
Control	Biosolid+Bacteria Mix	-966.0*	26.54	0.044								
Control	Biosolid+Fungus	-1074.0*	7.81	0.004								
	Compost	-804.5	52.15	0.107								
	Compost+Bacteria Mix	-1016.7	40.02	0.065								
	Compost+Fungus	-939.8*	21.51	0.035								

Table 42 Post Hoc Test for ANOVA of Mehlich III, Ca (Top) Fe (Bottom) between Control and Treatments

(M3) Fe Games-Howell											
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.							
	Bacteria Mix	11.97	2.93	0.328							
	Fungus	14.93	5.08	0.427							
	Biosolid	68.69*	3.59	0.014							
Control	Biosolid+Bacteria Mix	72.52*	3.92	0.014							
Control	Biosolid+Fungus	73.05*	3.51	0.013							
	Compost	49.48*	3.64	0.026							
	Compost+Bacteria Mix	57.44*	2.94	0.045							
	Compost+Fungus	48.93*	3.96	0.031							

Amendment and or treatment combinations for available K that were significantly different than the Control which had a concentration of 30.88 mg/kg were Bacteria Mix 47.18 mg/kg, Biosolid 54.36 mg/kg, Biosolid+Bacteria Mix 102.27 mg/kg, Biosolid+Fungus 111.73 mg/kg, Compost+Bacteria Mix 101.13 mg/kg and Compost+Fungus 92.75 mg/kg. All had significantly higher concentrations than the

Control at the 0.05 level. Biosolid+Fungus had the highest concentration and a mean difference of 80.85 mg/kg greater than the Control concnetration.

Available Mg showed only two amendment and treatment combinations which were statistically significant at 0.05 compared to the Control. These were Biosolid+Bacteria Mix which had a mean concentration of 157.6 mg/kg and Biosolid+Fungus, mean concentration 163.1 mg/kg. The Controls mean concentration was 138.16 mg/kg.

(M3) K Games-Howell												
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.								
	Bacteria Mix	-16.31*	1.07	0.021								
	Fungus	-12.38	0.74	0.074								
	Biosolid	-23.49*	1.28	0.022								
Control	Biosolid+Bacteria Mix	-71.39*	1.59	0.010								
Control	Biosolid+Fungus	-80.85*	2.09	0.022								
	Compost	-60.19	4.87	0.126								
	Compost+Bacteria Mix	-70.25*	2.29	0.032								
	Compost+Fungus	-61.88*	2.43	0.043								

Table 43 Post Hoc Test for ANOVA of Mehlich III, Mg (Top) K (Bottom) between Control and Treatments

(M3) Mg Games-Howell												
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.								
	Bacteria Mix	1.691	1.65	0.937								
	Fungus	-1.814	1.67	0.923								
	Biosolid	-3.967	1.09	0.300								
Control	Biosolid+Bacteria Mix	-19.46*	0.98	0.012								
Control	Biosolid+Fungus	-24.96*	1.58	0.049								
	Compost	-115.115	9.15	0.130								
	Compost+Bacteria Mix	-145.317	6.30	0.069								
	Compost+Fungus	-133.836	5.80	0.068								

Available Mn had only one amendment, Biosolid with a concentration of 58.4 mg/kg that had a significant statistical difference at the 0.05 level from the Control concentration of 90.7 mg/kg. Phosphorous concentration only had one significant difference at 0.05 from the Control concentration mean of 299.18 mg/kg which was Biosolid+Fungus with a mean of 278.4 mg/kg.

(M3) Mn Games-Howell												
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.								
	Bacteria Mix	4.55	2.63	0.737								
	Fungus	-14.61	1.51	0.056								
	Biosolid	32.30*	2.30	0.040								
Control	Biosolid+Bacteria Mix	31.58	1.21	0.055								
Control	Biosolid+Fungus	35.52	1.21	0.051								
	Compost	-1.22	2.49	0.999								
	Compost+Bacteria Mix	-3.01	4.92	0.992								
	Compost+Fungus	-5.65	3.93	0.826								

Table 44 Post Hoc Test for ANOVA of Mehlich III, Mn (Top) P (Bottom) between Control and Treatments

(M3) P Games-Howell												
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.								
	Bacteria Mix	-2.52	14.21	1.00								
	Fungus	1.55	0.54	0.454								
	Biosolid	16.52	1.40	0.126								
Control	Biosolid+Bacteria Mix	23.30	8.17	0.529								
Control	Biosolid+Fungus	20.74*	0.56	0.011								
	Compost	18.61	7.22	0.573								
	Compost+Bacteria Mix	40.30	4.39	0.179								
	Compost+Fungus	25.83*	0.76	0.025								

Available S in the Compost which had a concentration of 102.37 mg/kg was significant higher than the Control concentration of 56.92 mg/kg at the significance level of 0.05.

(M3) S Games-Howell												
(I) Group	(J) Group	Mean Difference (I- J)	Std. Error	Sig.								
	Bacteria Mix	-0.76	3.66	1.000								
	Fungus	-14.71	2.74	0.301								
	Biosolid	-4.60	3.29	0.839								
Control	Biosolid+Bacteria Mix	-27.22	7.61	0.384								
Control	Biosolid+Fungus	-22.04	5.61	0.305								
	Compost	-45.46*	3.11	0.045								
	Compost+Bacteria Mix	-45.53	6.91	0.177								
	Compost+Fungus	-29.52	2.74	0.151								

Table 45 Post Hoc Test for ANOVA of Mehlich III S between Control and Treatments

4.13 General Discussion

The data showed all but one Pearson correlation between plant biomass and nutrient concentrations in soil and plant tissue were negative; this was the prevailing trend found in the study. The single positive correlation was between lettuce root biomass and plant available zinc in soil. The prevailing trend found in all crop types between increasing nutrient concentrations and reduction in plant biomass indicates stress to plants and possibly toxicity due to nutrient overabundance. This also indicates a sufficient level of nutrients were available to the crops in the Control soil. In general, as nutrient levels increased in the soil and accumulated in the plant tissues, a reduction in plant biomass was observed for all three types of crop.

Furthermore, the small number of correlations found relative to the number of variables tested was not expected. One factor that could have led to a reduction in the number of significant correlations observed was variability in nutrient concentrations in

plant tissue and soils (Mehlich III). The variability in concentration of nutrients for plants and soils is provided in Appendix A.

Instead of testing soil available nutrients in duplicate, triplicate testing may have been able to establish more trends, resulting in more statistically significant findings and a larger number of correlations. Since soils tend to be heterogenous and significant variations can occur in small quantities, resulting in larger standard deviations and standard errors which can affect the means of soil parameters. The same can be said for the variation seen in crops. Typically the Control tended to have the smallest correlation of variation (CV) for Mehlich III and plant tissue nutrients while the amendments with and without microbial treatments tended to have higher CVs. ANOVA statistical analysis could be conducted on CV to further investigate variability in treatments.

The microbial plating results showed Biosolid to have the greatest percentage of plate coverage for bacterial growth on TSA media followed by the Biosolid+Bacteria Mix and Biosolid+Fungus for all three crops. Biosolid being a remnant of fecal material has the capacity to introduce a source of bacteria and an increase in not unexpected. The Fungus treatment had the lowest percentage of plate coverage using TSA followed by the Conrol for all three crops. An introduction of symbiotic fungus to the rhizospere can increase the abundance of AMF growth and in turn reduce the bacteria community through competition.

The microbial plating for fungal observation on SDA resulted in the Compost yielding the highest percentage of plate coverage for all three crops. An increase in organic material for instance can promote fungal growth as fungus can enhance the

84

decomposition rate of organic material (Leigh et al. 2011). The Compost amendment had one of highest percentages of OM which could have led to the propagation of fungus.

The Control for the tomato crop, Bacteria Mix for the radish and Biosoild+Bacteria Mix for the lettuce had the lowest percentage of plate coverage on SDA. Microbial analysis for fungus using SDA showed greater variation in percentage of plate coverage between crop species than the bacteria analysis did between crops using the TSA.

The results can be used to compare treatments against each other but not as a quantitative analysis of soil microbial community populations. The results do however demonstrate both amendment and or microbial additions as well as crop type influenced the microbial soil community diversity.

Competition and fluctuation regularly takes place in the microbial soil community. Communities of fungi and bacteria can affect one another as soil conditions change. Bacterial proliferation on the other hand can suppress fungal growth in instances when conditions are more favorable or root exudates dictate a shift in the microbial community towards bacterial growth promotion (Wardle 2006).

The influence of the above ground conditions has a large impact on the soil microbial community as well. Soils in which host monocultures of plants, support very different soil organism diversity as the plants or crops impose their influential contribution to the soil microbial make-up (Wardle 2006). This is in part due to how plants cycle organic matter of different qualities back to the soil influencing the trophic levels in the soil and restricting the food web.

85

Based on mean average biomass of all three crops grown in the Control soil the soil quality appears well suited for crop growth. Overall soil health was found to be very good for crop success as none of the plants grew poorly in the Control soil and some of the highest overall crop biomass. Another area which could have led to some of the amendments and or microbial treatments doing poorly was the growth containers size and lack of drainage. Since excess nutrient concentrations couldn't leach from the rhizospere, conducting similar tests with larger containers or a drainage system which collects any water loss could help alleviate the excess nutrient loads to the plants while still collecting excess water for analysis.

4.14 Future Research

This study serves as a basis for future research in several ways. Depending upon the area of focus, conducting a similar experiment at a different location could produce different results as the Oak Hill soil is well suited for plant growth. Urban locations with lower amounts of organic matter or diminished nutrient pools could benefit from the amendment and or treatments utilized in this study and increase yields.

Since the crops were grown in containers without drainage for testing purposes, limitations could have occurred. Since there wasn't drainage from the containers excess nutrient accumulation in the rhizosphere that would have been reduced in a field experiment could have reduced plant growth. Also this study used biomass as a determining factor for measuring success of the crops which can be but is not always a measure of yield, especially with fruit bearing crops like tomatoes. Tomatoes were not produced in this study and shoot biomass can not be used to directly measure yield from tomato crops. The microbial aspect could be studied more in depth to try to establish the influence that microbial abundance and makeup play regarding nutrient uptake and plant growth. Testing for quantity and population diversity in the soil could be conducted throughout the growing season to try and establish roles and influences of the microbial community. This could help determine if shifts in the microbial community take place during the growth phases of the plants.

Another direction future studies could build from this one is how amendments and treatments influence the crops nutritional content. If you have certain combinations which show statistically similar success in crop yields, but significant differences of nutritional concentrations in the edible portions of crops; amendment and treatment options could be selected with an aim towards increasing vitamins and minerals like potassium, magnesium or zinc concentrations.

Chapter 5 Conclusion

This study found the following correlations. Calcium concentrations in lettuce roots and shoots were determined to have the strongest correlation on reducing root development. Available nitrogen forms, nitrate for roots and ammonium concentrations for shoots showed to have the strongest correlations with reducing shoot biomass. Lettuce performed best in the Control, Bacteria Mix, Fungus, Compost, Compost+Bacteria Mix and worse in Biosolid, Biosolid+Bacteria Mix, Biosolid+Fungus and Compost+Fungus. Total magnesium concentrations in radish amendment and or microbial treatment were found to have the largest effect on reducing shoot biomass. Sulfur concentrations in the radish shoots was the only correlation found in plant tissue.

87

No correlations between root biomass and soil properties or tissue concentrations were found.

Radish plants grew best in the Biosolid+Bacteria Mix and worse in all other combinations. No other amendment and or microbial treatment displayed significantly worse results. Iron concentrations in tomato roots and ammonium concentrations in soils showed the strongest negative correlations with root and shoot growth. Tomato plants grew the best in Biosolid, Compost and Control amendments and worse in the Bacteria Mix, Fungus, Biosolid+Bacteria Mix, Biosolid+Fungus, Compost+Bacteria Mix and Compost+Fungus amendments and microbial treatments.

Other factors that could impact plant growth that couldn't be analyzed statistically were competition from microbial populations added through the compost and biosolids and could have been factors that influenced plant growth. The hypotheses stating that improving soil conditions with amendments, microbial treatments, or microbial treatments in combination with amendments, was rejected. Although there was evidence supporting that the amendments and microbial treatments did increase certain nutrient availability and uptake in plant tissue, this did not result in an increase in plant growth in all plant species.

The results from this study lead to the recommendation that the Oak Hill field site soil does not need additional soil amendment or treatment as the soil is sufficient for crop growth. If the Oak Hill community wishes to establish an urban garden at the site it can be accomplished successfully in this current state.

88

Acknowledgements

I would like to thank; Dr. Felicia Armstrong for her guidance and help throughout the study and time spent training me on methods and equipment. Dr. Colleen McLean for her time spent training me on the Ion Chromatography, and I would like to thank my entire thesis committee including Dr. Dawna Cerney and Dr. Richard Ciotola for their insight and comments that have greatly improved the quality of this thesis.

References

- Amacher, M. (1996). Nickel, Cadmium, and Lead. In Methods of Soil Analysis (Ed. J.M. Bigham), Part 3. Chemical Methods (739-768). Madison, WI. Soil Science Society of America.
- Ben-Dor, E., Banin, A. (1989) Determination of organic matter content in arid-zone soils using a simple "loss-on- ignition" method. Communications in Soil Science and Plant Analysis, 20, 1675-1696. doi:10.1080/00103628909368175
- Beniston JW, Lal R, Mercer KL. Assessing and Managing Soil Quality for Urban Agriculture in a Degraded Vacant Lot Soil. Land Degradation & Development. 2015;27(4):996–1006.
- Brady NC, Weil RR. The nature and properties of soils. Upper Saddle River, NJ: Pearson Prentice Hall; 2008.
- Canbolat MY, Bilen S, Çakmakçı R, Şahin F, Aydın A. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and Fertility of Soils. 2005 [accessed 2015 Oct 3];42(4):350–357.
- Courtney R, Mullen G. Soil quality and barley growth as influenced by the land application of two compost types. Bioresource Technology. 2008 [accessed 2015 Mar 16];99(8):2913–2918.
- Craul PJ. Urban soils: applications and practices. New York: Wiley; 1999.
- Cunningham, W., & Cunningham, M. A. (2010). Environmental Science a Global Concern. New York: McGraw-Hill.
- Desai S, Naik D, Cumming JR. The influence of phosphorus availability and Laccaria bicolor symbiosis on phosphate acquisition, antioxidant enzyme activity, and rhizospheric carbon flux in Populus tremuloides. Mycorrhiza. 2013;24(5):369–382.
- Dučić T, Parladé J, Polle A. The influence of the ectomycorrhizal fungus Rhizopogon subareolatus on growth and nutrient element localisation in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in response to manganese stress. Mycorrhiza. 2008;18(5):227–239.
- Egamberdiyeva D, Höflich G. Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. Journal of Arid Environments. 2004;56(2):293–301.

- Gee, G., & Bauder, J. (1986). Particle-size Analysis. Methods of Soil Analysis, Part I. Physical and Mineralogical Methods, 2, 383-408. Madison, WI. Soil Science Society of America.
- Giri B., Kapoor R., Mukerji K. G. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of *Acacia auriculiformis*. *Biol. Fertil. Soil.* 38 170–175. 10.1007/s00374-003-0636-z
- Giri B, Kapoor R, Mukerji K. Effect of the arbuscular mycorrhizae Glomus fasciculatum and G. macrocarpum on the growth and nutrient content of Cassia siamea in a semi-arid Indian wasteland soil. New Forests. 2005;29(1):63–73.
- Graham LE, Graham JM, Wilcox LW. Plant biology. Upper Saddle River, NJ: Pearson/Prentice Hall; 2006.
- Heckman J. Rutgers Cooperative Extension (2002). Fact Sheet: Soil Fertility Test Interpretation; Phosphorous, Potassium, Magnesium, and Calcium.

High, S. Deindustrializing Youngstown: Memories of Resistance and Loss following 'Black Monday', 1977–1997. History Workshop Journal. 2002: 54. 100-121.

- Höflich G, Wiehe W, Kühn G. Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia. 1994;50(10):897–905.
- Howell CR. Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts. Plant Disease. 2003;87(1):4–10.
- HUDUser.gov | HUD USER. HUDUser.gov | HUD USER. [accessed 2017 Mar 4]. https://www.huduser.gov/
- Jones B, Case V. (1990). Sampling, Handling and Analyzing Plant Tissue Samples. In Soil Testing and Plant Analysis (Ed. R.L. Westerman), Third Edition. (389-428). Madison, WI. Soil Science Society of America.
- Leigh J, Fitter AH, Hodge A. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. FEMS Microbiology Ecology. 2011;76(3):428–438.
- Lucia BD, Cristiano G, Vecchietti L, Bruno L. Effect of different rates of composted organic amendment on urban soil properties, growth and nutrient status of three Mediterranean native hedge species. Urban Forestry & Urban Greening. 2013;12(4):537–545.

- Marx E.S, Hart J, Steven R.G. Oregon State University Extension Service. (1999). Soil Test Interpretation Guide.
- Mcivor K, Cogger C, Brown S. Effects of Biosolids Based Soil Products on Soil Physical and Chemical Properties in Urban Gardens. Compost Science & Utilization. 2012 [accessed 2015 Aug 16];20(4):199–206.
- Mead MN. Urban Issues: The Sprawl of Food Deserts. Environmental Health Perspectives. 2008 [accessed 2017 Apr 24];116(8).
- Mukerji KG, Manoharachary C, Singh J. Microbial activity in the rhizosphere. Berlin: Springer; 2011.
- Mulvaney, R. (1996). Nitrogen-Inorganic Forms. In Methods of Soil Analysis (Ed. J.M. Bigham), Part 3. Chemical Methods (1123-1184). Madison, WI. Soil Science Society of America.
- MycoGrow[™] Soluble--1 oz Fungi.com. MycoGrow[™] Soluble--1 oz Fungi.com. [accessed 2015 Oct 11]. http://www.fungi.com/product-detail/product/mycogrowsoluble-1-oz.html#sthash.jj6rfR7h.dpuf.
- Nelson, D., and Sommers, L. (1996). Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis (Ed. J.M. Bigham), Part 3. Chemical Methods (961-1010). Madison, WI. Soil Science Society of America.
- New TR. Mycorrhizae: sustainable aagriculture and forestry. Dordrecht: Springer; 2008.
- Olorunfemi I, Fasinmirin J, Ojo A. Modeling cation exchange capacity and soil water holding capacity from basic soil properties. Eurasian Journal Of Soil Science (Ejss). 2016;5(4):266.
- Ortas I. The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crops Research. 2012 [accessed 2016 Sep 12];125:35–48.
- Outdoors H. The News Outside. Heartland Outdoors. [accessed 2016 Jan 22]. http://www.heartlandoutdoors.com/food_plotting/story/soil_test_results_are_back _now_what/
- Page AL, Klute A. Methods of soil analysis Part 2 Chemical and Microbiological Properties. 2nd ed. Madison, WI: American Society of Agronomy; 1982.
- Pilbeam DJ, Barker AV. Handbook of plant nutrition. Boca Raton, FL: CRC Press; 2007.

- Posey S. America's Fastest Shrinking City: The Story of Youngstown, Ohio. (2013, Jun 18) The Hampton Institute. Retrieved from: http://www.hamptoninstitution.org/youngstown.html#.WPz2kYWcEcA
- Rhoades, J. (1996) Salinity: Electrical Conductivity and Total Dissolved Solids. Methods of Soil Analysis, Part 3. Chemical Methods-SSSA, 2. 417-433. Madison, WI. Soil Science Society of America.
- Sanchez C. Phosphorous. In Handbook of plant nutrition (51-90). Boca Raton, FL: CRC Press; 2007.
- Schnitzer, M. (1982). Organic Matter Characterization, Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties (581-593). Madison, WI. Soil Science Society of America.
- Schwarzott D, Walker C, Schüßler A. Glomus, the Largest Genus of the Arbuscular Mycorrhizal Fungi (Glomales), Is Nonmonophyletic. Molecular Phylogenetics and Evolution. 2001;21(2):190–197.
- Siddiqui ZA, Pichtel J. MYCORRHIZAE: AN OVERVIEW. In: Mycorrhizae: sustainable aagriculture and forestry. Springer & Business Media B. V. ; 2008. p. 1– 35.
- Sridhar BBM, Witter JD, Wu C, Spongberg AL, Vincent RK. Effect of Biosolid Amendments on the Metal and Nutrient Uptake and Spectral Characteristics of Five Vegetable Plants. Water, Air, & Soil Pollution. 2014 [accessed 2016 Feb 16];225(9).
- Sutton, S. Accuracy of Plate Counts. In: Microbiological Topics. Journal of Validation Technology. Vol. 17 No. 3. 2011. P. 42-46.
- Thomas, G. (1996). Soil pH and Soil Acidity. In. Methods of Soil Analysis (Ed. J.M. Bigham), Part 3 Chemical Methods (475-490). Madison, WI: Soil Science Society of America.
- Torrecillas E, Alguacil MM, Roldan A. Host Preferences of Arbuscular Mycorrhizal Fungi Colonizing Annual Herbaceous Plant Species in Semiarid Mediterranean Prairies. Applied and Environmental Microbiology. 2012;78(17):6180–6186.
- United States Department of Agriculture. (2013, Dec 6). Web Soil Survey. Retrieved from http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
- United States Department of Agriculture . (2008, June). Soil Quality Indicators. Retrieved from http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053256.pdf.

- United States Department of Agriculture. (1998). Hydrometer Particle Size Calculator. Retrieved from http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/research/guide/
- United States Department of Agriculture. (1993). Soil Survey Manual. Retrieved from http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2 05425
- United States Department of Agriculture. (2001). Soil Planning Guide. Retrieved from https://nrcspad.sc.egov.usda.gov/distributionCenter/product.aspx?ProductID=1320
- United States Composting Council Factsheet: Compost and Its Benefits. (2001). Retrieved from compostingcouncil.org/.../uploads/2010/09/Compost-and-Its-Benefits.pdf
- USDA. USDA ERS Go to the Atlas. USDA ERS Go to the Atlas. [accessed 2017 January 15]. http://www.ers.usda.gov/data-products/food-access-researchatlas/go-to-the-atlas.aspx#.UUDMojfNkS8
- USDA Defines Food Deserts. American Nutrition Association. [accessed 2015 Jul 18]. http://americannutritionassociation.org/newsletter/usda-defines-food-deserts
- Vitiello D, Wolf-Powers L. Growing food to grow cities? The potential of agriculture foreconomic and community development in the urban United States. Community Development Journal. 2014;49(4):508–523
- Wardle DA. The influence of biotic interactions on soil biodiversity. Ecology Letters. 2006;9(7):870–886.
- Youngstown Neighborhood Development Corporation. YNDC Strategic Plan Update 2014 [Internet]. Youngstown (OH). [cited 2016 Mar 29]. Available from. http://www.yndc.org/sites/default/files/Strategic%20Plan%20for%20Web_0.pdf

Appendix A: Soil Mehlich III and Plant Tissue Analyses

Table 46 Nutrient Concentrations in Tomato Roots

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(TR) Biomass	(TR) Ca	(TR) Ca Avg	(TR) Ca Stdv	(TR) Ca CV	(TR) Cu	(TR) Cu Avg	(TR) Cu Stdv	(TR) Cu CV	(TR) Fe	(TR) Fe Avg	(TR) Fe Stdv	(TR) Fe CV
Tomato	Root	Control	1	24.8	0.447	5443				37.7				2826			
Tomato	Root	Control	2	20.0	0.5866	5485				27.7				2641	1		
Tomato	Root	Control	3	19.9	0.5885	5554				32.7				1540			
Tomato	Root	Control	4	19.9	0.5535	4903	5346	299	0.06	23.3	30.38	6.23	0.20	1821	2207	623	0.28
Tomato	Root	Bacteria	1	31.3	0.368	2608				14.4				2446			
Tomato	Root	Bacteria	2	40.0	0.291	3359				18.1				2020	1		
Tomato	Root	Bacteria	3	34.0	0.3472	2795				18.8				3558			
Tomato	Root	Bacteria	4	35.6	0.3292	2630	2848	351	0.12	18.8	17.55	2.11	0.12	3044	2767	674	0.24
Tomato	Root	Fungus	1	50.8	0.2385	6265				39.8				4848			
Tomato	Root	Fungus	2	98.2	0.1145	7867				40.2				5973			
Tomato	Root	Fungus	3	42.2	0.284	7554				45.5				4880			
Tomato	Root	Fungus	4	96.8	0.1292	7037	7181	700	0.10	40.7	41.54	2.64	0.06	4991	5173	537	0.10
Tomato	Root	Biosolid	1	26.6	0.3895	14207				37.1				2984			
Tomato	Root	Biosolid	2	23.6	0.4472	12770				24.3				3482			
Tomato	Root	Biosolid	3	19.9	0.5353	12630				25.8				4199			
Tomato	Root	Biosolid	4	20.2	0.5666	10196	12451	1664	0.13	24.5	27.92	6.13	0.22	4610	3819	726	0.19
Tomato	Root	Biosolid+Bacteria	1	48.3	0.264	13300				30.8				4266			
Tomato	Root	Biosolid+Bacteria	2	43.4	0.2698	14538				40.6				5397			
Tomato	Root	Biosolid+Bacteria	3	70.4	0.154	23585				42.4				5742			
Tomato	Root	Biosolid+Bacteria	4	114.2	0.0891	23402	18706	5551	0.30	70.5	46.05	17.07	0.37	5118	5130	630	0.12
Tomato	Root	Biosolid+Fungus	1&2 Cp	108.9	0.1	28780				55.2				4100			
Tomato	Root	Biosolid+Fungus	3	74.7	0.1592	26883				72.8				13946			
Tomato	Root	Biosolid+Fungus	4	103.4	0.1037	21396	25686	3835	0.15	85.8	71.23	15.36	0.22	7598	8548	4991	0.58
Tomato	Root	Compost	1	20.0	0.5944	7603				22.0				858			
Tomato	Root	Compost	2	208.3	0.0542	10808				8.9				1235			
Tomato	Root	Compost	3	19.9	0.5836	6393				19.9				1985			
Tomato	Root	Compost	4	20.0	0.6509	6221	7756	2126	0.27	18.7	17.40	5.82	0.33	1584	1415	482	0.34
Tomato	Root	Compost+Bacteria	1	24.0	0.4445	8266				36.4				2886	ſ		
Tomato	Root	Compost+Bacteria	2		0.4907												
Tomato	Root	Compost+Bacteria	3	38.8	0.3196	10388				31.4				6118			
Tomato	Root	Compost+Bacteria	4	26.0	0.442	10690	9781	1321	0.14	50.6	39.47	9.97	0.25	3184	4063	1786	0.44
Tomato	Root	Compost+Fungus	1	24.3	0.4794	4308				19.2				2077	r <u> </u>		
Tomato	Root	Compost+Fungus	2	29.4	0.3708	3685]			16.5				1819]		
Tomato	Root	Compost+Fungus	3	32.7	0.3577	4114				17.6				1616]		1
Tomato	Root	Compost+Fungus	4	29.3	0.3833	3831	3984	280	0.07	14.3	16.89	2.07	0.12	2423	1984	348	0.18

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(TR) Biomass	(TR) K	(TR) K Avg	(TR) K Stdv	(TR) K CV	(TR) Mg	(TR) Mg Avg	(TR) Mg Stdv	(TR) Mg CV	(TR) Mn	(TR) Mn Avg	(TR) Mn Stdv	(TR) Mn CV
Tomato	Root	Control	1	24.8	0.447	7673				3141				188			
Tomato	Root	Control	2	20.0	0.5866	5840				2893				185			
Tomato	Root	Control	3	19.9	0.5885	7680				3634				197			
Tomato	Root	Control	4	19.9	0.5535	6387	6895	930	0.13	3072	3185	317	0.10	147	179	21.94	0.12
Tomato	Root	Bacteria	1	31.3	0.368	7979				1952	ľ			88		ľ –	
Tomato	Root	Bacteria	2	40.0	0.291	12466				2363	<u> </u>			85			
Tomato	Root	Bacteria	3	34.0	0.3472	7874				2090				110			
Tomato	Root	Bacteria	4	35.6	0.3292	8161	9120	2234	0.24	1963	2092	191	0.09	101	96	11.69	0.12
Tomato	Root	Fungus	1	50.8	0.2385	14299				4335				259		ſ	
Tomato	Root	Fungus	2	98.2	0.1145	20481				6321				249			
Tomato	Root	Fungus	3	42.2	0.284	12636				5082				313			
Tomato	Root	Fungus	4	96.8	0.1292	19187	16651	3775	0.23	5889	5407	880	0.16	239	265	33.09	0.12
Tomato	Root	Biosolid	1	26.6	0.3895	9672				4452				175		ľ	
Tomato	Root	Biosolid	2	23.6	0.4472	8211				3873				122			
Tomato	Root	Biosolid	3	19.9	0.5353	5825				3270				153			
Tomato	Root	Biosolid	4	20.2	0.5666	5643	7338	1947	0.27	3339	3734	550	0.15	134	146	23.13	0.16
Tomato	Root	Biosolid+Bacteria	1	48.3	0.264	9652				4894				142		ſ	
Tomato	Root	Biosolid+Bacteria	2	43.4	0.2698	12473				6087				175			
Tomato	Root	Biosolid+Bacteria	3	70.4	0.154	16366				8690				199			
Tomato	Root	Biosolid+Bacteria	4	114.2	0.0891	22979	15368	5773	0.38	8526	7049	1866	0.26	251	192	46.06	0.24
Tomato	Root	Biosolid+Fungus	1&2 Cp	108.9	0.1	26808	[18257	ľ.			212	[ſ	
Tomato	Root	Biosolid+Fungus	3	74.7	0.1592	15202				17145	<u> </u>			504			
Tomato	Root	Biosolid+Fungus	4	103.4	0.1037	18108	20039	6040	0.30	16525	17309	877	0.05	314	343	148.23	0.43
Tomato	Root	Compost	1	20.0	0.5944	22848	ſ			3180				71		ſ	
Tomato	Root	Compost	2	208.3	0.0542	32500				3863				75			
Tomato	Root	Compost	3	19.9	0.5836	21363				2904				93			
Tomato	Root	Compost	4	20.0	0.6509	17296	23502	6441	0.27	2769	3179	487	0.15	87	82	10.48	0.13
Tomato	Root	Compost+Bacteria	1	24.0	0.4445	24287		·		4879				149		ſ	
Tomato	Root	Compost+Bacteria	2		0.4907												
Tomato	Root	Compost+Bacteria	3	38.8	0.3196	31627				9891				68			
Tomato	Root	Compost+Bacteria	4	26.0	0.442	32778	29564	4606	0.16	10789	8520	3185	0.37	254	157	93.10	0.59
Tomato	Root	Compost+Fungus	1	24.3	0.4794	15244				2602				85			
Tomato	Root	Compost+Fungus	2	29.4	0.3708	16098				2489				68			
Tomato	Root	Compost+Fungus	3	32.7	0.3577	16856]			2872]			73			
Tomato	Root	Compost+Fungus	4	29.3	0.3833	13764	15490	1326	0.09	2634	2649	161	0.06	82	77	8.30	0.11

Table 47 Nutrient Concentrations in Tomato Roots Continued 1

Treatment	Rep.	Dilution Factor	(TR) Biomass	(TR) Ca	(TR) P	(TR) P Avg	(TR) P Stdv	(TR) P CV	(TR) S	(TR) S Avg	(TR) S Stdv	(TR) S CV	(TR) Zn	(TR) Zn Avg	(TR) Zn Stdv	(TR) Zn CV
Control	1	24.8	0.447	5443	1342.19				2739				233			
Control	2	20.0	0.5866	5485	1242.36				2889				170]		
Control	3	19.9	0.5885	5554	1435				3365				252			
Control	4	19.9	0.5535	4903	1148	1292	124	0.10	2623	2904	326	0.11	191	212	38	0.18
Bacteria	1	31.3	0.368	2608	1797				1504				143			
Bacteria	2	40.0	0.291	3359	2620				1984				158			
Bacteria	3	34.0	0.3472	2795	2207				1574				168			
Bacteria	4	35.6	0.3292	2630	2042	2166	346	0.16	1554	1654	222	0.13	154	156	11	0.07
Fungus	1	50.8	0.2385	6265	3294				3672				228			
Fungus	2	98.2	0.1145	7867	3504				4152				277			
Fungus	3	42.2	0.284	7554	3272				4415				244]		
Fungus	4	96.8	0.1292	7037	4287	3589	476	0.13	4622	4215	410	0.10	253	251	20	0.08
Biosolid	1	26.6	0.3895	14207	1617				4290				205			
Biosolid	2	23.6	0.4472	12770	1245				3347				146			
Biosolid	3	19.9	0.5353	12630	1052				2696				137			
Biosolid	4	20.2	0.5666	10196	1069	1246	263	0.21	2662	3249	762	0.23	138	157	33	0.21
Biosolid+Bacteria	1	48.3	0.264	13300	1272				2554				157			
Biosolid+Bacteria	2	43.4	0.2698	14538	1710				3577				218			
Biosolid+Bacteria	3	70.4	0.154	23585	1932				4522				207			
Biosolid+Bacteria	4	114.2	0.0891	23402	2365	1820	455	0.25	4143	3699	856	0.23	225	202	31	0.15
Biosolid+Fungus	1&2 Cp	108.9	0.1	28780	6187				10600				334			
Biosolid+Fungus	3	74.7	0.1592	26883	6552				12489				544			
Biosolid+Fungus	4	103.4	0.1037	21396	6431	6390	186	0.03	11107	11399	978	0.09	504	461	112	0.24
Compost	1	20.0	0.5944	7603	3217				2994				108			
Compost	2	208.3	0.0542	10808	1643				1008				253]		
Compost	3	19.9	0.5836	6393	3346				2278				106			
Compost	4	20.0	0.6509	6221	2875	2770	777	0.28	2424	2176	838	0.39	86	138	77	0.55
Compost+Bacteria	1	24.0	0.4445	8266	2860				3095				106			
Compost+Bacteria	2		0.4907													
Compost+Bacteria	3	38.8	0.3196	10388	3542				4709				149	1		
Compost+Bacteria	4	26.0	0.442	10690	3835	3412	500	0.15	5165	4323	1088	0.25	121	125	21	0.17
Compost+Fungus	1	24.3	0.4794	4308	2218				1540				95			
Compost+Fungus	2	29.4	0.3708	3685	2221				1394				86]		
Compost+Fungus	3	32.7	0.3577	4114	2333				1820				98	1		
Compost+Fungus	4	29.3	0.3833	3831	2057	2207	113	0.05	1520	1569	180	0.11	80	90	9	0.10

Table 48 Nutrient Concentrations in Tomato Roots Continued 2

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(TS) Biomass	(TS) Ca	(TS) Ca Avg	(TS) Ca Stdv	(TS) Ca CV	(TS) Cu	(TS) Cu Avg	(TS) Cu Stdv	(TS) Cu CV	(TS) Fe	(TS) Fe Avg	(TS) Fe Stdv	(TS) Fe CV
Tomato	Stem	Control	1	20.0	2.6171	15183				8.45				42.0			
Tomato	Stem	Control	2	19.9	2.6197	10620	13712	2105	0.15	11.10	99	13	0.13	69.2	74.6	11.6	0.60
Tomato	Stem	Control	3	19.9	3.1394	14171	15/12	2105	0.10	9.35).)	1.5	0.15	139.2	/4.0	-+.0	0.00
Tomato	Stem	Control	4	19.9	3.092	14877				10.85				47.9			
Tomato	Stem	Bacteria	1	20.0	1.6553	17485				24.73				76.2			
Tomato	Stem	Bacteria	2	19.9	1.4834	24612	20465	3123	0.15	8.04	12.4	82	0.67	128.1	109.0	29.1	0.27
Tomato	Stem	Bacteria	3	20.0	1.5646	21000	20100	5125	0.12	8.87	12.1	0.2	0.07	93.4	107.0	27.1	0.27
Tomato	Stem	Bacteria	4	19.9	1.5249	18765				7.90				138.4		-	
Tomato	Stem	Fungus	1	30.7	1.0491	20504				6.84				145.5			
Tomato	Stem	Fungus	2	48.9	0.7111	19481	19247	2236	0.12	3.84	10.0	5.6	0.56	183.4	124.0	51.3	0.41
Tomato	Stem	Fungus	3	19.9	1.5365	16025				15.35				65.8			
Tomato	Stem	Fungus	4	24.9	1.0134	20976				14.09				101.5		-	
Tomato	Stem	Biosolid	1	19.9	3.1091	20722				11.36				165.7			
Tomato	Stem	Biosolid	2	20.0	3.2484	25685	22761	2230	0.10	10.34	11.1	0.7	0.06	55.9	94.3	48.8	0.52
Tomato	Stem	Biosolid	3	19.9	3.6717	21366	22701	2250	0.10	11.91		0.7	0.00	74.2	24.5	-10.0	0.52
Tomato	Stem	Biosolid	4	19.9	3.7789	23273				10.74				81.2			
Tomato	Stem	Biosolid+Bacteria	1	19.9	1.4156	23295				9.09				62.4			
Tomato	Stem	Biosolid+Bacteria	2	20.0	1.4364	24781	24752	1028	0.04	8.17	10.2	4.4	0.44	55.0	71.0	16.4	0.23
Tomato	Stem	Biosolid+Bacteria	3	27.2	0.9149	25581	24732	1028	0.04	6.71	10.2	4.4	0.44	78.3	/1.9	10.4	0.23
Tomato	Stem	Biosolid+Bacteria	4	35.6	0.8058	25350				16.65				91.7			
Tomato	Stem	Biosolid+Fungus	1	81.6	0.3808	34212				8.62				353.1			
Tomato	Stem	Biosolid+Fungus	2	70.0	0.5428	29461	20052	2028	0.13	6.07	77	1.2	0.16	147.1	177.3	110.0	0.67
Tomato	Stem	Biosolid+Fungus	3	38.0	0.7173	34076	50955	3938	0.15	7.43	1.1	1.2	0.10	109.8	177.5	119.0	0.07
Tomato	Stem	Biosolid+Fungus	4	41.7	0.7209	26062				8.54				99.4			
Tomato	Stem	Compost	1	19.9	3.0636	8854				4.20				34.9			
Tomato	Stem	Compost	2	25.0	0.9465	23491	12874	7100	0.55	9.51	5.2	2.0	0.55	138.6	60.0	51.8	0.85
Tomato	Stem	Compost	3	20.0	3.0351	10126	120/4	/100	0.55	3.76	5.2	2.9	0.55	36.8	00.9	51.6	0.85
Tomato	Stem	Compost	4	19.9	2.7042	9026				3.47				33.2			
Tomato	Stem	Compost+Bacteria	1	20.0	1.9559	15433				5.86				75.2			
Tomato	Stem	Compost+Bacteria	2	19.9	1.8734	13763	12766	1207	0.00	5.39		0.2	0.05	56.0	77.0	25.0	0.22
Tomato	Stem	Compost+Bacteria	3	20.0	1.8198	12621	13/00	1206	0.09	5.35	5.5	0.5	0.05	114.9	//.9	25.8	0.55
Tomato	Stem	Compost+Bacteria	4	19.9	2.1364	13246				5.26				65.7			
Tomato	Stem	Compost+Fungus	1	20.0	2.2802	12028				4.89				42.2			
Tomato	Stem	Compost+Fungus	2	20.0	1.8096	13352	12(10	1222	0.10	4.94	E 1	0.7	0.14	56.8	59.0	12.5	0.21
Tomato	Stem	Compost+Fungus	3	19.9	2.1381	15225	13018	1322	0.10	6.14	3.1	0.7	0.14	66.7	38.9	12.5	0.21
Tomato	Stem	Compost+Fungus	4	20.0	1.9009	13866				4.51				69.9			

Table 49 Nutrient Concentrations in Tomato Stems

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(TS) Biomass	(TS) K	(TS) K Avg	(TS) K Stdv	(TS) K CV	(TS) Mg	(TS) Mg Avg	(TS) Mg Stdv	(TS) Mg CV	(TS) Mn	(TS) Mn Avg	(TS) Mn Stdev	(TS) Mn CV
Tomato	Stem	Control	1	20.0	2.6171	37178				5163				141.5			
Tomato	Stem	Control	2	19.9	2.6197	21906	27134	6889	0.25	4800	5120	242	0.05	104.6	120.1	16.3	0.14
Tomato	Stem	Control	3	19.9	3.1394	23588				5207	5130	245		123.5			
Tomato	Stem	Control	4	19.9	3.092	25866				5376	1			110.7	1		
Tomato	Stem	Bacteria	1	20.0	1.6553	32501				5258				73.5			
Tomato	Stem	Bacteria	2	19.9	1.4834	34162	34327	5439	0.16	5939	5751	445	0.08	99.5	83.0	12.5	0.15
Tomato	Stem	Bacteria	3	20.0	1.5646	41780			0.10	6270	5/51	445		86.0			0.15
Tomato	Stem	Bacteria	4	19.9	1.5249	28864				5538				72.9	1		
Tomato	Stem	Fungus	1	30.7	1.0491	37623				2482				79.6			
Tomato	Stem	Fungus	2	48.9	0.7111	41546	40028	4226	0.11	2752	2680	204	0.08	58.5	74.0	10.2	0.14
Tomato	Stem	Fungus	3	19.9	1.5365	35723				2553				79.4		10.3	
Tomato	Stem	Fungus	4	24.9	1.0134	45219				2933				78.5			
Tomato	Stem	Biosolid	1	19.9	3.1091	41344				4366				54.2			
Tomato	Stem	Biosolid	2	20.0	3.2484	45033	40101	4456	0.11	4659	4400	186	0.04	61.3	55.3	5.5	0.10
Tomato	Stem	Biosolid	3	19.9	3.6717	34309			0.11	4211	4409	180		48.4		5.5	
Tomato	Stem	Biosolid	4	19.9	3.7789	39717				4400				57.2			
Tomato	Stem	Biosolid+Bacteria	1	19.9	1.4156	49900		3668	0.07	2978			0.07	38.2			
Tomato	Stem	Biosolid+Bacteria	2	20.0	1.4364	47606	51413			3011	2177	214		47.2	15.6	6.2	0.14
Tomato	Stem	Biosolid+Bacteria	3	27.2	0.9149	51901			0.07	3400	51//	214		53.1	43.0	0.2	0.14
Tomato	Stem	Biosolid+Bacteria	4	35.6	0.8058	56243				3319				43.9			
Tomato	Stem	Biosolid+Fungus	1	81.6	0.3808	66629				4919				53.0			
Tomato	Stem	Biosolid+Fungus	2	70.0	0.5428	39195	51364	11485	0.22	3650	2020	662	0.17	38.0	47.0	10.2	0.22
Tomato	Stem	Biosolid+Fungus	3	38.0	0.7173	52030			0.22	3631	3930			59.9	47.9	10.5	
Tomato	Stem	Biosolid+Fungus	4	41.7	0.7209	47601				3519				40.7			
Tomato	Stem	Compost	1	19.9	3.0636	29545				1691	ľ l			52.9			
Tomato	Stem	Compost	2	25.0	0.9465	71735	38/80	22220	0.58	2996	1005	668	0.22	40.2	39.2	11.3	0.29
Tomato	Stem	Compost	3	20.0	3.0351	25350	50409	22250	0.56	1655	1995		0.55	38.5			
Tomato	Stem	Compost	4	19.9	2.7042	27325				1637				25.3			
Tomato	Stem	Compost+Bacteria	1	20.0	1.9559	42469	ſ	ľ.		1943	ľ –			40.7			
Tomato	Stem	Compost+Bacteria	2	19.9	1.8734	39098	40360	1464	0.04	1756	1700	06	0.05	29.1	38.1	6.4	0.17
Tomato	Stem	Compost+Bacteria	3	20.0	1.8198	40048	40500	1404	0.04	1756	1/39	90	0.05	38.7	56.1	0.4	
Tomato	Stem	Compost+Bacteria	4	19.9	2.1364	39825				1741				43.8			
Tomato	Stem	Compost+Fungus	1	20.0	2.2802	42706	[5200		1865		53	0.03	28.9			0.13
Tomato	Stem	Compost+Fungus	2	20.0	1.8096	42260	42653		0.12	1832	1872			27.6	29.3	3.0	
Tomato	Stem	Compost+Fungus	3	19.9	2.1381	49183	42033	5200	0.12	1948	10/2		0.05	34.8	29.5	5.9	0.15
Tomato	Stem	Compost+Fungus	4	20.0	1.9009	36464				1841				26.0			

Table 50 Nutrient Concentrations in Tomato Stems Continued 1

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(TS) Biomass	(TS) P	(TS) P Avg	(TS) P Stdv	(TS) P CV	(TS) S	(TS) S Avg	(TS) S Stdv	(TS) S CV	(TS) Zn	(TS) Zn Avg	(TS) Zn Stdv	(TS) Zn CV
Tomato	Stem	Control	1	20.0	2.6171	4555		962		2764		690	0.24	234		32	0.12
Tomato	Stem	Control	2	19.9	2.6197	5617	1265		0.22	3795	2820			233	254		
Tomato	Stem	Control	3	19.9	3.1394	3387	4303		0.22	2152	2039			300	234		
Tomato	Stem	Control	4	19.9	3.092	3899				2646				249			
Tomato	Stem	Bacteria	1	20.0	1.6553	7936		1253		6069			0.20	355			
Tomato	Stem	Bacteria	2	19.9	1.4834	5553	6720		0.20	4606	5042	1475		408	264	20	0.11
Tomato	Stem	Bacteria	3	20.0	1.5646	6380	0238		0.20	6346	5042	1475	0.29	315	504	39	0.11
Tomato	Stem	Bacteria	4	19.9	1.5249	5081				3149		_		378			
Tomato	Stem	Fungus	1	30.7	1.0491	1921		1446	0.51	2488				308			0.29
Tomato	Stem	Fungus	2	48.9	0.7111	1248	2812			1842	4100	2472	0.59	154	222	64	
Tomato	Stem	Fungus	3	19.9	1.5365	3977	2015			5342	4199	2475		226	223		
Tomato	Stem	Fungus	4	24.9	1.0134	4106				7124				203			
Tomato	Stem	Biosolid	1	19.9	3.1091	2836		179	0.07	3656				121	116		0.12
Tomato	Stem	Biosolid	2	20.0	3.2484	2401	2608			5501	4166	1102	0.26	104		14	
Tomato	Stem	Biosolid	3	19.9	3.6717	2581				2959	4100	1102	0.20	134		14	
Tomato	Stem	Biosolid	4	19.9	3.7789	2614				4547		-		105			
Tomato	Stem	Biosolid+Bacteria	1	19.9	1.4156	2320	ľ	451		3173			0.35	139			0.16
Tomato	Stem	Biosolid+Bacteria	2	20.0	1.4364	1820	2120		0.21	3007	2027	1277		135	125	21	
Tomato	Stem	Biosolid+Bacteria	3	27.2	0.9149	1701	2126		0.21	3566	5927	1577		95		21	
Tomato	Stem	Biosolid+Bacteria	4	35.6	0.8058	2673				5962				133			
Tomato	Stem	Biosolid+Fungus	1	81.6	0.3808	1329	r r			1981		797	0.17	168			0.10
Tomato	Stem	Biosolid+Fungus	2	70.0	0.5428	1324	1272	57	0.04	1317	1700			185	181	19	
Tomato	Stem	Biosolid+Fungus	3	38.0	0.7173	1443	1372		0.04	1839	1700	207		205		18	
Tomato	Stem	Biosolid+Fungus	4	41.7	0.7209	1395				1662				166			
Tomato	Stem	Compost	1	19.9	3.0636	2380	r i			1227				119			0.34
Tomato	Stem	Compost	2	25.0	0.9465	4417	2047	041	0.21	3758	1012	1225	0.65	192	128	44	
Tomato	Stem	Compost	3	20.0	3.0351	2487	5047	741	0.51	1461	1715	1255	0.05	108	120	44	
Tomato	Stem	Compost	4	19.9	2.7042	2902				1206				93			
Tomato	Stem	Compost+Bacteria	1	20.0	1.9559	3366	r r			2467	ſ			131			
Tomato	Stem	Compost+Bacteria	2	19.9	1.8734	3013	3017	274	0.00	1736	1990	350	0.18	141	120	10	0.08
Tomato	Stem	Compost+Bacteria	3	20.0	1.8198	2697	5017	2/4	0.07	1720	1770	550	0.18	124	129	10	
Tomato	Stem	Compost+Bacteria	4	19.9	2.1364	2993				2039				119			
Tomato	Stem	Compost+Fungus	1	20.0	2.2802	3351	[]			2002				130			0.07
Tomato	Stem	Compost+Fungus	2	20.0	1.8096	3286	3171	406	0.13	2102	2060	370	0.18	124	135	10	
Tomato	Stem	Compost+Fungus	3	19.9	2.1381	3475	51/1	406	0.15	2535	2009	570	0.10	142	155	10	0.07
Tomato	Stem	Compost+Fungus	4	20.0	1.9009	2573				1636				145			

Table 51 Nutrient Concentrations in Tomato Stems Continued 2

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(TL) Biomass	(TL) Ca	(TL) Ca Avg	(TL) Ca Stdv	(TL) Ca CV	(TL) Cu	(TL) Cu Avg	(TL) Cu Stdv	(TL) Cu CV	(TL) Fe	(TL) Fe Avg	(TL) Fe Stdv	(TL) Fe CV
Tomato	Leaves	Control	1	20.0	2.6171	31610	34049	1840		13.6	13.7	2.0		140			0.52
Tomato	Leaves	Control	2	20.0	2.6197	36017			0.05	9.9			0.21	183	215	112	
Tomato	Leaves	Control	3	19.9	3.1394	34618			0.05	16.8		2.9	0.21	382	215	115	
Tomato	Leaves	Control	4	19.9	3.092	33950				14.6				156			
Tomato	Leaves	Bacteria	1	19.9	1.6553	28090				14.0				232			
Tomato	Leaves	Bacteria	2	20.0	1.4834	25205	24774	2478	0.10	14.6	14.0	1.1	0.08	206	236	83	0.25
Tomato	Leaves	Bacteria	3	19.9	1.5646	23244				15.0		1.1	0.00	154	250	05	0.55
Tomato	Leaves	Bacteria	4	20.0	1.5249	22559				12.5				351			
Tomato	Leaves	Fungus	1	20.0	1.0491	31234	31298	1596	0.05	23.3				478			
Tomato	Leaves	Fungus	2	21.7	0.7111	29111				12.6	18.1	4.6	0.25	422	327	144	0.44
Tomato	Leaves	Fungus	3	19.9	1.5365	32028				19.7	18.1	4.0	0.23	198	521	144	
Tomato	Leaves	Fungus	4	20.0	1.0134	32821				16.8				210			
Tomato	Leaves	Biosolid	1	19.9	3.1091	19089	24425	3880	0.16	13.8	15.8	1.5	0.09	391			0.55
Tomato	Leaves	Biosolid	2	19.9	3.2484	28194				17.3				151	215	119	
Tomato	Leaves	Biosolid	3	20.0	3.6717	25998				16.1				182	210	117	
Tomato	Leaves	Biosolid	4	20.0	3.7789	24421				16.2				135			
Tomato	Leaves	Biosolid+Bacteria	1	20.0	1.4156	35016		9388	0.25	22.3	16.9	9.1	0.54	215			0.27
Tomato	Leaves	Biosolid+Bacteria	2	20.0	1.4364	31484	37219			19.0				123	197	53	
Tomato	Leaves	Biosolid+Bacteria	3	20.7	0.9149	51066				22.8				250	177	55	
Tomato	Leaves	Biosolid+Bacteria	4	21.4	0.8058	31310				3.5				199	┢────		
Tomato	Leaves	Biosolid+Fungus	1	46.8	0.3808	58661		2218	0.04	25.6	27.2	4.8		857	4		0.71
Tomato	Leaves	Biosolid+Fungus	2	26.6	0.5428	53486	55878			34.0			0.18	350	418	298	
Tomato	Leaves	Biosolid+Fungus	3	22.5	0.7173	54903				22.8				224		270	
Tomato	Leaves	Biosolid+Fungus	4	22.3	0.7209	56463				26.5				240	\downarrow		
Tomato	Leaves	Compost	1	19.9	3.0636	34129				7.2	[4.7		129	1		0.14
Tomato	Leaves	Compost	2	20.0	0.9465	44158	37597	4489	0.12	18.2	11.4		0.42	155	144	20	
Tomato	Leaves	Compost	3	20.0	3.0351	35503			0.12	10.0			0.12	166		20	
Tomato	Leaves	Compost	4	19.9	2.7042	36596				10.2				124			
Tomato	Leaves	Compost+Bacteria	1	20.0	1.9559	36464				18.3	[271			
Tomato	Leaves	Compost+Bacteria	2	19.9	1.8734	40873	34393	5254	0.15	21.5	18.2	24	0.13	381	313	97	0.31
Tomato	Leaves	Compost+Bacteria	3	20.0	1.8198	30138	54595	5251	0.15	15.9	10.2	2.4	0.15	403	515	,,	0.31
Tomato	Leaves	Compost+Bacteria	4	19.9	2.1364	30099				17.0				197			
Tomato	Leaves	Compost+Fungus	1	20.0	2.2802	35415				17.5		4.8	0.22	269			
Tomato	Leaves	Compost+Fungus	2	20.0	1.8096	36839	36709	1158	0.03	18.7	21.5			270	292	26	0.09
Tomato	Leaves	Compost+Fungus	3	19.9	2.1381	38200	50709	1150	0.05	21.5	21.3		0.22	322	292	20	
Tomato	Leaves	Compost+Fungus	4	19.9	1.9009	36382				28.2				305			

Table 52 Nutrient Concentrations in Tomato Leaves
Plant	Plant Part	Treatment	Rep.	Dilution Factor	(TL) Biomass	(TL) K	(TL) K Avg	(TL) K Stdv	(TL) K CV	(TL) Mg	(TL) Mg Avg	(TL) Mg Stdv	(TL) Mg CV	(TL) Mn	(TL) Mn Avg	(TL) Mn Stdv	(TL) Mn CV
Tomato	Leaves	Control	1	20.0	2.6171	36240.27				3818				379			
Tomato	Leaves	Control	2	20.0	2.6197	35876.95	20060	1720	0.12	3805	2010	10	0.01	424	275	42	0.11
Tomato	Leaves	Control	3	19.9	3.1394	45627.98	39909	4/38	0.12	3806	3619	19	0.01	375	575	42	0.11
Tomato	Leaves	Control	4	19.9	3.092	42129.35				3847				322			
Tomato	Leaves	Bacteria	1	19.9	1.6553	41586.92				2801				172			
Tomato	Leaves	Bacteria	2	20.0	1.4834	39564.61	27080	2221	0.08	2706	2658	117	0.04	152	1/12	24	0.17
Tomato	Leaves	Bacteria	3	19.9	1.5646	34328.36	5/989	3221	0.08	2563	2038	11/	0.04	118	145	24	0.17
Tomato	Leaves	Bacteria	4	20.0	1.5249	36474.35				2561				131			
Tomato	Leaves	Fungus	1	20.0	1.0491	47790.44				6483				221			
Tomato	Leaves	Fungus	2	21.7	0.7111	53899.63	46270	6170	0.14	6987	6770	200	0.05	152	200	47	0.22
Tomato	Leaves	Fungus	3	19.9	1.5365	38409.54	40270	0428	0.14	6439	0728	508	0.05	265	209	47	0.25
Tomato	Leaves	Fungus	4	20.0	1.0134	44979.04				7001				198			
Tomato	Leaves	Biosolid	1	19.9	3.1091	23290.13				2317				60			
Tomato	Leaves	Biosolid	2	19.9	3.2484	27975.36	20005	5676	0.10	2887	2707	262	0.10	72	70	o	0.11
Tomato	Leaves	Biosolid	3	20.0	3.6717	36821.09	29095	5050	0.19	2825	2707	203	0.10	78	70	0	0.11
Tomato	Leaves	Biosolid	4	20.0	3.7789	28294.73				2800				69			
Tomato	Leaves	Biosolid+Bacteria	1	20.0	1.4156	40881.88				2851				85			
Tomato	Leaves	Biosolid+Bacteria	2	20.0	1.4364	37470.07	42502	5590	0.12	2809	2206	750	0.24	85	00	20	0.20
Tomato	Leaves	Biosolid+Bacteria	3	20.7	0.9149	50196.65	43393	5580	0.15	4343	5200	/38	0.24	143	99	50	0.50
Tomato	Leaves	Biosolid+Bacteria	4	21.4	0.8058	45821.76				2821				83			
Tomato	Leaves	Biosolid+Fungus	1	46.8	0.3808	53277.15				9045				179			
Tomato	Leaves	Biosolid+Fungus	2	26.6	0.5428	56333.16	51011	1110	0.00	8324	7802	1211	0.15	141	150	10	0.11
Tomato	Leaves	Biosolid+Fungus	3	22.5	0.7173	45748.99	51811	4440	0.09	6197	/ 692	1211	0.15	167	138	10	0.11
Tomato	Leaves	Biosolid+Fungus	4	22.3	0.7209	51886.58				8004				146			
Tomato	Leaves	Compost	1	19.9	3.0636	52218.91				6669				267			
Tomato	Leaves	Compost	2	20.0	0.9465	68504.09	50075	12080	0.26	6014	6250	202	0.05	209	202	52	0.26
Tomato	Leaves	Compost	3	20.0	3.0351	45347.44	50975	13080	0.20	6224	0230	292	0.05	194	202	52	0.20
Tomato	Leaves	Compost	4	19.9	2.7042	37831.37				6095				140			
Tomato	Leaves	Compost+Bacteria	1	20.0	1.9559	62257.74				6470				172			
Tomato	Leaves	Compost+Bacteria	2	19.9	1.8734	68652.85	60752	6205	0.10	6961	6168	677	0.11	159	150	11	0.07
Tomato	Leaves	Compost+Bacteria	3	20.0	1.8198	58318.35	00732	0305	0.10	5790	0108	0//	0.11	144	139	11	0.07
Tomato	Leaves	Compost+Bacteria	4	19.9	2.1364	53777.34				5453				160			
Tomato	Leaves	Compost+Fungus	1	20.0	2.2802	57142.86				5956				139			
Tomato	Leaves	Compost+Fungus	2	20.0	1.8096	59289.56	61202	2008	0.07	6254	6242	208	0.02	137	120	0	0.06
Tomato	Leaves	Compost+Fungus	3	19.9	2.1381	61958.68	01203	3770	0.07	6313	0243	200	0.05	150	137	7	0.00
Tomato	Leaves	Compost+Fungus	4	19.9	1.9009	66421.47				6447				129			

Table 53 Nutrient Concentrations in Tomato Leaves Continued 1

D1 (T ()	р	Dilution	(TL)		(TL) P	(TL) P				(TL) S				(TL) Zn	
Plant	Plant Part	Treatment	кер.	Factor	Biomass	(1L) P	Avg	Stdv	(IL) P CV	(1L) S	(IL) S AVg	Stdv	(IL) S C V	(IL)Zn	(IL) Zn Avg	Stdv	(1L) Zn CV
Tomato	Leaves	Control	1	20.0	2.6171	4985				11912				91.2			
Tomato	Leaves	Control	2	20.0	2.6197	3438	4490	725	0.16	8827	11570	1002	0.16	105.9	00.4	12.2	0.14
Tomato	Leaves	Control	3	19.9	3.1394	4960	4480	125	0.16	13170	11572	1902	0.16	79.0	89.4	12.2	0.14
Tomato	Leaves	Control	4	19.9	3.092	4535				12380				81.5			
Tomato	Leaves	Bacteria	1	19.9	1.6553	3816				9882				126.3			
Tomato	Leaves	Bacteria	2	20.0	1.4834	3579	25(1	107	0.00	8924	2022	700	0.00	141.6	107.0	10.2	0.09
Tomato	Leaves	Bacteria	3	19.9	1.5646	3508	3301	197	0.06	8993	8932	/98	0.09	125.3	127.0	10.2	0.08
Tomato	Leaves	Bacteria	4	20.0	1.5249	3342				7930				117.1			
Tomato	Leaves	Fungus	1	20.0	1.0491	10912				28914				222.4			
Tomato	Leaves	Fungus	2	21.7	0.7111	8573	10125	1000	0.12	22789	277()	2600	0.12	127.0	165.0	10.0	0.24
Tomato	Leaves	Fungus	3	19.9	1.5365	11312	10135	1236	0.12	31630	27766	3698	0.13	163.3	165.9	40.6	0.24
Tomato	Leaves	Fungus	4	20.0	1.0134	9742				27730				150.9			
Tomato	Leaves	Biosolid	1	19.9	3.1091	2674				6903				52.4	1		
Tomato	Leaves	Biosolid	2	19.9	3.2484	2929	2010	242	0.00	8176	0001	771	0.10	70.6	(0.2	0.4	0.16
Tomato	Leaves	Biosolid	3	20.0	3.6717	3239	2910	242	0.08	8710	8001	//1	0.10	52.4	60.3	9.4	0.16
Tomato	Leaves	Biosolid	4	20.0	3.7789	2800				8215				66.0			
Tomato	Leaves	Biosolid+Bacteria	1	20.0	1.4156	3901				10361				105.6			
Tomato	Leaves	Biosolid+Bacteria	2	20.0	1.4364	3342	2564	1202	0.54	9240	7056	100.1	0.51	93.9	0.2.0	0.1	0.10
Tomato	Leaves	Biosolid+Bacteria	3	20.7	0.9149	2281	2564	1393	0.54	10358	/956	4094	0.51	92.4	93.9	9.1	0.10
Tomato	Leaves	Biosolid+Bacteria	4	21.4	0.8058	733				1866				83.5			
Tomato	Leaves	Biosolid+Fungus	1	46.8	0.3808	7472				35613				89.9			
Tomato	Leaves	Biosolid+Fungus	2	26.6	0.5428	7584	7710	160	0.07	27089	202(2	2014	0.12	130.5	100.5	21.5	0.10
Tomato	Leaves	Biosolid+Fungus	3	22.5	0.7173	7418	//19	460	0.06	28070	30362	3814	0.13	122.5	120.5	21.5	0.18
Tomato	Leaves	Biosolid+Fungus	4	22.3	0.7209	8401				30676				139.2			
Tomato	Leaves	Compost	1	19.9	3.0636	6846				16302				133.6			
Tomato	Leaves	Compost	2	20.0	0.9465	6826	7570	000	0.12	19459	17406	1004	0.11	138.7	114.0	27.2	0.24
Tomato	Leaves	Compost	3	20.0	3.0351	7955	/5/9	909	0.12	15485	1/480	1894	0.11	107.8	114.8	27.3	0.24
Tomato	Leaves	Compost	4	19.9	2.7042	8688				18696				79.3			
Tomato	Leaves	Compost+Bacteria	1	20.0	1.9559	9267				20679				163.6			
Tomato	Leaves	Compost+Bacteria	2	19.9	1.8734	9239	8200	000	0.12	24073	20008	2079	0.15	176.2	150.0	10.2	0.12
Tomato	Leaves	Compost+Bacteria	3	20.0	1.8198	7448	8390	998	0.12	17619	20098	2918	0.15	132.8	130.9	18.5	0.12
Tomato	Leaves	Compost+Bacteria	4	19.9	2.1364	7608				18020				154.8			
Tomato	Leaves	Compost+Fungus	1	20.0	2.2802	9308				20072				164.3			
Tomato	Leaves	Compost+Fungus	2	20.0	1.8096	10914	0560	1117	0.12	21493	22027	2500	0.16	121.2	142.2	26.0	0.26
Tomato	Leaves	Compost+Fungus	3	19.9	2.1381	9827	9309	111/	0.12	21971	22921	3388	0.10	183.6	145.5	30.9	0.20
Tomato	Leaves	Compost+Fungus	4	19.9	1.9009	8227				28171				104.1	1		

Table 54 Nutrient Concentrations in Tomato Leaves Continued 2

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(RR) Biomass	(RR) Ca	(RR) Ca Avg	(RR) Ca Stdv	(RR) Ca CV	(RR) Cu	(RR) Cu Avg	(RR) Cu Stdv	(RR) Cu CV	(RR) Fe	(RR) Fe Avg	(RR) Fe Stdv	(RR) Fe CV
Radish	Root	Control	1	19.94	0.6505	13710				10.96				213			
Radish	Root	Control	2	19.90	0.8749	10105	10672	2554	0.24	8.31	8 66	2.02	0.22	320	200	91	0.20
Radish	Root	Control	3	19.92	1.2016	7570	10072	2554	0.24	6.12	8.00	2.02	0.23	172	209	01	0.39
Radish	Root	Control	4	19.94	1.0188	11304				9.27				132			
Radish	Root	Bacteria	1	19.98	0.6882	5133			1 1	0.25	ſ			88	1		
Radish	Root	Bacteria	2	19.93	0.8413	6182	1088	021	0.18	4.44	186	2.49	0.51	128	108.6	16.5	0.15
Radish	Root	Bacteria	3	19.94	0.8967	4636	4700	921	0.10	6.18	4.00	2.4)	0.51	111	100.0	10.5	0.15
Radish	Root	Bacteria	4	19.92	0.8167	4001				3.95				106			
Radish	Root	Fungus	1	27.25	0.3890	3995				15.01	ſ			537			
Radish	Root	Fungus	2	19.89	0.5579	3782	4600	827	0.18	10.30	0.84	4.05	0.41	230	425.0	142.7	0.24
Radish	Root	Fungus	3	37.11	0.2961	5321	4000	827	0.18	5.26	9.04	4.05	0.41	403	423.0	145.7	0.54
Radish	Root	Fungus	4	21.21	0.4987	5304				8.77				530			
Radish	Root	Biosolid	1	19.94	0.8668	10287				9.47	ſ			213			
Radish	Root	Biosolid	2	19.93	0.6902	13685	12714	1650	0.12	8.73	12.40	1.58	0.37	471	712 7	455.2	0.64
Radish	Root	Biosolid	3	20.35	0.5129	13067	12/14	1050	0.15	12.59	12.40	4.58	0.57	953	/15./	433.2	0.04
Radish	Root	Biosolid	4	30.35	0.3495	13815				18.80				1219			
Radish	Root	Biosolid+Bacteria	1	19.95	1.7968	8657				5.63				119			
Radish	Root	Biosolid+Bacteria	2	19.90	1.9157	8338	8157	1/133	0.18	5.63	6.03	0.93	0.15	83	280.1	285.6	1.02
Radish	Root	Biosolid+Bacteria	3	19.92	1.2033	9496	0157	1455	0.18	7.42	0.05	0.93	0.15	700	280.1	285.0	1.02
Radish	Root	Biosolid+Bacteria	4	19.96	2.0001	6136				5.43				219			
Radish	Root	Biosolid+Fungus	1	19.94	1.1582	6013				5.36				223			
Radish	Root	Biosolid+Fungus	2	19.86	0.8006	12906	0710	2422	0.20	5.40	5.07	1.10	0.24	174	129.6	72.1	0.52
Radish	Root	Biosolid+Fungus	3	19.91	0.7429	5808	0/10	3433	0.39	3.37	3.07	1.19	0.24	68	138.0	/2.1	0.32
Radish	Root	Biosolid+Fungus	4	19.92	0.8654	10145				6.16				90			
Radish	Root	Compost	1	19.90	0.7466	6342				5.92				89			
Radish	Root	Compost	2	19.89	0.9356	8528	7272	1610	0.22	4.89	1.96	0.77	0.16	94	79.1	10.1	0.24
Radish	Root	Compost	3	19.90	0.7731	5483	1212	1010	0.22	4.13	4.80	0.77	0.10	52	/6.1	19.1	0.24
Radish	Root	Compost	4	19.94	1.1096	8734				4.52				77			
Radish	Root	Compost+Bacteria	1	19.98	0.9880	4778				0.89				44			
Radish	Root	Compost+Bacteria	2	19.92	0.6294	11054	0760	2005	0.25	1.28	2.52	2.51	0.00	63	105.4	79.6	0.75
Radish	Root	Compost+Bacteria	3	19.94	0.6148	7074	8208	2003	0.55	1.70	2.35	2.51	0.99	95	105.4	/8.0	0.75
Radish	Root	Compost+Bacteria	4	19.97	0.5038	10166				6.26				219			
Radish	Root	Compost+Fungus	1	19.98	0.9815	8615				3.53				149			
Radish	Root	Compost+Fungus	2	19.95	0.9112	6710	0556	2255	0.25	1.55	2.08	2.02	0.51	59	127.0	79.6	0.57
Radish	Root	Compost+Fungus	3	19.90	0.5429	10955	9550	2000	0.25	4.39	3.98	2.05	0.51	102	157.9	/ 0.0	0.57
Radish	Root	Compost+Fungus	4	19.91	0.6151	11943				6.45				242			

Table 55 Nutrient Concentrations in Radish Roots

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(RR) Biomass	(RR) K	(RR) K Avg	(RR) K Stdv	(RR) K CV	(RR) Mg	(RR) Mg Avg	(RR) Mg Stdv	(RR) Mg CV	(RR) Mn	(RR) Mn Avg	(RR) Mn Stdv	(RR) Mn CV
Radish	Root	Control	1	19.94	0.6505	45612				5425				44.5			
Radish	Root	Control	2	19.90	0.8749	37067	46510	7110	0.15	3311	4726	1100	0.25	46.3	27.70	0.01	0.24
Radish	Root	Control	3	19.92	1.2016	49612	40310	/110	0.15	4222	4/20	1100	0.23	27.9	57.79	9.01	0.24
Radish	Root	Control	4	19.94	1.0188	53750				5947				32.4			
Radish	Root	Bacteria	1	19.98	0.6882	36124				1436				14.4			
Radish	Root	Bacteria	2	19.93	0.8413	30490	32062	1959	0.15	1275	1278	127	0.09	18.5	16.10	2.06	0.13
Radish	Root	Bacteria	3	19.94	0.8967	35753	32002	4030	0.15	1530	1378	127	0.09	17.4	10.19	2.00	0.15
Radish	Root	Bacteria	4	19.92	0.8167	25882				1272				14.5			
Radish	Root	Fungus	1	27.25	0.3890	32452				2393				34.4			
Radish	Root	Fungus	2	19.89	0.5579	36204	41012	7070	0.10	1769	2024	264	0.12	32.1	40.10	10.74	0.27
Radish	Root	Fungus	3	37.11	0.2961	48163	41015	/8/8	0.19	1939	2024	204	0.13	55.6	40.10	10.04	0.27
Radish	Root	Fungus	4	21.21	0.4987	47232				1997				38.4			
Radish	Root	Biosolid	1	19.94	0.8668	54975				2243				19.0			
Radish	Root	Biosolid	2	19.93	0.6902	52551	45049	12702	0.29	2304	2020	202	0.10	30.1	24.14	12.01	0.25
Radish	Root	Biosolid	3	20.35	0.5129	46509	45248	12/03	0.28	2121	2030	393	0.19	45.4	54.14	12.01	0.35
Radish	Root	Biosolid	4	30.35	0.3495	26956				1451				42.0			
Radish	Root	Biosolid+Bacteria	1	19.95	1.7968	39118				3034				13.8			
Radish	Root	Biosolid+Bacteria	2	19.90	1.9157	39463	27060	1704	0.05	2820	2044	200	0.07	18.9	10.27	6.01	0.27
Radish	Root	Biosolid+Bacteria	3	19.92	1.2033	37749	37900	1/94	0.05	3191	2944	208	0.07	27.8	18.37	0.81	0.37
Radish	Root	Biosolid+Bacteria	4	19.96	2.0001	35509				2733				13.0	1		
Radish	Root	Biosolid+Fungus	1	19.94	1.1582	37036				1226				19.0			
Radish	Root	Biosolid+Fungus	2	19.86	0.8006	42781	41166	4005	0.12	2195	1622	457	0.28	25.3	17.09	6.51	0.28
Radish	Root	Biosolid+Fungus	3	19.91	0.7429	37455	41100	4903	0.12	1296	1052	437	0.28	10.5	17.08	0.51	0.38
Radish	Root	Biosolid+Fungus	4	19.92	0.8654	47390				1811				13.5			
Radish	Root	Compost	1	19.90	0.7466	51075				2402				17.5			
Radish	Root	Compost	2	19.89	0.9356	53352	46601	7082	0.17	2506	2159	270	0.19	23.1	15.90	5 75	0.26
Radish	Root	Compost	3	19.90	0.7731	35396	40021	1982	0.17	1670	2138	5/9	0.18	10.4	15.80	5.75	0.50
Radish	Root	Compost	4	19.94	1.1096	46660				2052				12.1			
Radish	Root	Compost+Bacteria	1	19.98	0.9880	37770				1535				7.7			
Radish	Root	Compost+Bacteria	2	19.92	0.6294	53118	45070	7102	0.16	2098	1970	200	0.15	14.3	14.12	1 (1	0.22
Radish	Root	Compost+Bacteria	3	19.94	0.6148	50758	45972	/192	0.16	1768	1879	280	0.15	15.9	14.15	4.04	0.35
Radish	Root	Compost+Bacteria	4	19.97	0.5038	42241				2117				18.7			
Radish	Root	Compost+Fungus	1	19.98	0.9815	39908				3843				13.1			
Radish	Root	Compost+Fungus	2	19.95	0.9112	42538	42022	2270	0.07	3400	4020	500	0.12	11.2	12.97	1.44	0.11
Radish	Root	Compost+Fungus	3	19.90	0.5429	47323	43832	3219	0.07	4515	4030	509	0.15	12.4	12.8/	1.44	0.11
Radish	Root	Compost+Fungus	4	19.91	0.6151	45560				4361				14.7			

Table 56 Nutrient Concentrations in Radish Roots Continued 1

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(RR) Biomass	(RR) P	(RR) P Avg	(RR) P Stdv	(RR) P CV	(RR) S	(RR) S Avg	(RR) S Stdv	(RR) S CV	(RR) Zn	(RR) Zn Avg	(RR) Zn Stdv	(RR) Zn CV
Radish	Root	Control	1	19.94	0.6505	12956				14832				230			
Radish	Root	Control	2	19.90	0.8749	13162	12707	766	0.06	15430	16460	2400	0.15	99	172	58	0.22
Radish	Root	Control	3	19.92	1.2016	14190	13/07	/00	0.00	15535	10400	2409	0.15	156	1/5	30	0.55
Radish	Root	Control	4	19.94	1.0188	14521				20044				204			
Radish	Root	Bacteria	1	19.98	0.6882	271				330				88			
Radish	Root	Bacteria	2	19.93	0.8413	3543	2800	1026	0.47	3023	4122	2000	0.51	114	102	11	0.11
Radish	Root	Bacteria	3	19.94	0.8967	4299	3890	1850	0.47	4118	4125	2099	0.51	109	102	11	0.11
Radish	Root	Bacteria	4	19.92	0.8167	3827				5228				98			
Radish	Root	Fungus	1	27.25	0.3890	6079				9455				104			
Radish	Root	Fungus	2	19.89	0.5579	10209	6042	2105	0.22	9278	6160	2414	0.52	166	140	22	0.22
Radish	Root	Fungus	3	37.11	0.2961	5466	0945	2195	0.52	2748	0408	5414	0.55	170	140	55	0.25
Radish	Root	Fungus	4	21.21	0.4987	6019				4390				122			
Radish	Root	Biosolid	1	19.94	0.8668	2861				6945				45			
Radish	Root	Biosolid	2	19.93	0.6902	3151	2207	462	0.14	6794	(029	1012	0.17	45	50	(0.12
Radish	Root	Biosolid	3	20.35	0.5129	3875	3207	462	0.14	5526	0028	1012	0.17	57	50	0	0.12
Radish	Root	Biosolid	4	30.35	0.3495	2941				4847				53			
Radish	Root	Biosolid+Bacteria	1	19.95	1.7968	9029				7381				43			
Radish	Root	Biosolid+Bacteria	2	19.90	1.9157	8171	9526	402	0.05	7232	7252	105	0.01	72	(0)	20	0.40
Radish	Root	Biosolid+Bacteria	3	19.92	1.2033	8249	8530	402	0.05	7271	1255	105	0.01	106	69	28	0.40
Radish	Root	Biosolid+Bacteria	4	19.96	2.0001	8697				7128				56			
Radish	Root	Biosolid+Fungus	1	19.94	1.1582	3235				4196				55			
Radish	Root	Biosolid+Fungus	2	19.86	0.8006	2554	2007	222	0.11	4713	4070	710	0.17	74	(0)	0	0.15
Radish	Root	Biosolid+Fungus	3	19.91	0.7429	2682	2887	322	0.11	3065	4078	/10	0.17	58	60	9	0.15
Radish	Root	Biosolid+Fungus	4	19.92	0.8654	3078				4337				54			
Radish	Root	Compost	1	19.90	0.7466	6712				7536				57			
Radish	Root	Compost	2	19.89	0.9356	7126	6722	069	0.14	5433	6046	1252	0.21	50	16	0	0.20
Radish	Root	Compost	3	19.90	0.7731	5392	0722	908	0.14	4680	0040	1232	0.21	36	40	9	0.20
Radish	Root	Compost	4	19.94	1.1096	7659				6534				41			
Radish	Root	Compost+Bacteria	1	19.98	0.9880	1530				1837				33			
Radish	Root	Compost+Bacteria	2	19.92	0.6294	2212	2212	1097	0.47	2038	2272	000	0.42	61	(0)	22	0.29
Radish	Root	Compost+Bacteria	3	19.94	0.6148	1631	2313	1086	0.47	1754	2372	999	0.42	59	60	23	0.38
Radish	Root	Compost+Bacteria	4	19.97	0.5038	3879				3861				88			
Radish	Root	Compost+Fungus	1	19.98	0.9815	8169				6601				58			
Radish	Root	Compost+Fungus	2	19.95	0.9112	4910	0164	2245	0.20	3935	7(22	2075	0.20	69	74	17	0.22
Radish	Root	Compost+Fungus	3	19.90	0.5429	10352	8164	2545	0.29	9520	/032	2965	0.39	98	/4	1/	0.23
Radish	Root	Compost+Fungus	4	19.91	0.6151	9225				10474				72			

Table 57 Nutrient Concentrations in Radish Roots Continued 2

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(RS) Biomass	(RS) Ca	(RS) Ca Avg	(RS) Ca Stdv	(RS) Ca CV	(RS) Cu	(RS) Cu Avg	(RS) Cu Stdv	(RS) Cu CV	(RS) Fe	(RS) Fe Avg	(RS) Fe Stdv	(RS) Fe CV
Radish	Shoot	Control	1	20.0	1.0405	39884				11.6				176			
Radish	Shoot	Control	2	19.9	1.1025	40521	202/0	12/15	0.02	8.4	。 。	2	0.20	132	1/17	20	0.14
Radish	Shoot	Control	3	19.9	0.9265	37620	33343	1245	0.03	3.9	0	5	0.39	141	147	20	0.14
Radish	Shoot	Control	4	19.9	1.1874	39371				8.5				138			
Radish	Shoot	Bacteria	1	19.9	0.6932	36398				8.9				329			
Radish	Shoot	Bacteria	2	20.0	1.0097	37612	26021	/1218	0.12	8.8	。 。	1	0.08	276	251	62	0.25
Radish	Shoot	Bacteria	3	19.9	1.0604	30115	50051	4210	0.12	8.1	0	1	0.08	203	251	05	0.25
Radish	Shoot	Bacteria	4	20.0	0.9852	40000				7.5				196			
Radish	Shoot	Fungus	1	19.9	1.0051	37827				9.3				900			
Radish	Shoot	Fungus	2	19.9	1.1958	33466	36308	19//	0.05	8.8	11	3	0.24	292	581	2/19	0.43
Radish	Shoot	Fungus	3	19.9	1.0067	36766	30300	1344	0.05	14.6		5	0.24	566	501	245	0.45
Radish	Shoot	Fungus	4	19.9	1.1057	37174				11.0				565			
Radish	Shoot	Biosolid	1	19.9	1.666	36908				7.6	ſ			140			
Radish	Shoot	Biosolid	2	19.9	1.3155	35506	21721	5286	0.17	10.3	<u>م</u>	1	0.12	238	19/	54	0.20
Radish	Shoot	Biosolid	3	19.9	1.3482	26150	51/21	5260	0.17	8.6	5	1	0.15	134	104	54	0.50
Radish	Shoot	Biosolid	4	19.9	1.3712	28321				9.7				222			
Radish	Shoot	Biosolid+Bacteria	1	20.0	1.561	42851				0.9	r			239			
Radish	Shoot	Biosolid+Bacteria	2	19.9	1.5061	46401	12125	2026	0.07	4.8	_	2	0.61	206	207	44	0.21
Radish	Shoot	Biosolid+Bacteria	3	20.0	1.7076	39280	42425	5020	0.07	7.9	5	5	0.01	238	207	44	0.21
Radish	Shoot	Biosolid+Bacteria	4	19.9	1.6876	41166				6.7				145			
Radish	Shoot	Biosolid+Fungus	1	19.9	1.4681	46008				8.9	r			205			
Radish	Shoot	Biosolid+Fungus	2	19.9	1.2297	39956	12200	2022	0.07	8.5		0	0.05	318	277	02	0.20
Radish	Shoot	Biosolid+Fungus	3	20.0	1.1227	41795	43209	2025	0.07	7.8	°	0	0.05	332	522	33	0.29
Radish	Shoot	Biosolid+Fungus	4	19.9	0.9917	45076				8.4				433			
Radish	Shoot	Compost	1	19.9	0.7248	42806				5.9				271			
Radish	Shoot	Compost	2	19.9	0.6952	47213	E0742	10001	0.21	5.2	6	0	0.07	236	240	22	0.12
Radish	Shoot	Compost	3	19.9	0.7974	46102	50745	10901	0.21	6.1	0	0	0.07	210	249	55	0.15
Radish	Shoot	Compost	4	19.9	0.6325	66852				5.9				281			
Radish	Shoot	Compost+Bacteria	1	20.0	0.8459	36213				4.9				328			
Radish	Shoot	Compost+Bacteria	2	19.9	0.8892	39697		2764	0.07	6.3		1	0.10	241	200	26	0.12
Radish	Shoot	Compost+Bacteria	3	19.9	0.7806	40486	3////	2761	0.07	8.0	6	1	0.19	290	289	30	0.12
Radish	Shoot	Compost+Bacteria	4	19.9	0.7576	34712				6.6	1			295			
Radish	Shoot	Compost+Fungus	1	19.9	0.7179	51343				6.0				335			
Radish	Shoot	Compost+Fungus	2	19.9	0.6589	43785	42570	0064	0.21	4.7	c l	1	0.12	248	207	46	0.15
Radish	Shoot	Compost+Fungus	3	19.9	0.6047	48377	43378	9004	0.21	6.4	0	T	0.12	338	297	40	0.15
Radish	Shoot	Compost+Fungus	4	20.0	0.8755	30808				5.6				269			

Table 58 Nutrient Concentrations in Radish Shoots

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(RS) Biomass	(RS) K	(RS) K Avg	(RS) K Stdv	(RS) K CV	(RS) Mg	(RS) Mg Avg	(RS) Mg Stdv	(RS) Mg CV	(RS) Mn	(RS) Mn Avg	(RS) Mn Stdv	(RS) Mn CV
Radish	Shoot	Control	1	20.0	1.0405	28332				3542				192			
Radish	Shoot	Control	2	19.9	1.1025	34394	27657	5684	0.21	3760	3396	360	0.11	112	163	36	0.22
Radish	Shoot	Control	3	19.9	0.9265	20514	27037	5004	0.21	2911	3330	500	0.11	164	105	50	0.22
Radish	Shoot	Control	4	19.9	1.1874	27389				3372				183			
Radish	Shoot	Bacteria	1	19.9	0.6932	28219				3918				172			
Radish	Shoot	Bacteria	2	20.0	1.0097	41865	37064	7527	0.20	4352	3990	481	0.12	186	165	38	0.23
Radish	Shoot	Bacteria	3	19.9	1.0604	44586	57004	1521	0.20	3336	3330	401	0.12	110	105	50	0.25
Radish	Shoot	Bacteria	4	20.0	0.9852	33586				4352				193			
Radish	Shoot	Fungus	1	19.9	1.0051	43390				33161				12407			
Radish	Shoot	Fungus	2	19.9	1.1958	52123	50967	6787	0.13	40722	30210	5195	0.13	8236	10/32	1783	0.17
Radish	Shoot	Fungus	3	19.9	1.0067	48755	50507	0/0/	0.15	37522	33213	5155	0.15	9916	10432	1705	0.17
Radish	Shoot	Fungus	4	19.9	1.1057	59602				45473				11170			
Radish	Shoot	Biosolid	1	19.9	1.666	30601				3349				83	ſ		
Radish	Shoot	Biosolid	2	19.9	1.3155	38208	33696	4415	0.13	3334	29/17	517	0.18	80	70	1/1	0.20
Radish	Shoot	Biosolid	3	19.9	1.3482	29277	33030	4415	0.15	2253	2547	517	0.10	65	70	14	0.20
Radish	Shoot	Biosolid	4	19.9	1.3712	36697				2854				53			
Radish	Shoot	Biosolid+Bacteria	1	20.0	1.561	48502				35603				9794	[
Radish	Shoot	Biosolid+Bacteria	2	19.9	1.5061	43410	47131	2588	0.05	31864	34786	2016	0.06	9376	9402	1017	0 11
Radish	Shoot	Biosolid+Bacteria	3	20.0	1.7076	49200	47151	2500	0.05	36460	54700	2010	0.00	8018	5462	1017	0.11
Radish	Shoot	Biosolid+Bacteria	4	19.9	1.6876	47413	_			35217	_			10418			
Radish	Shoot	Biosolid+Fungus	1	19.9	1.4681	46546				34402				9648	ſ		
Radish	Shoot	Biosolid+Fungus	2	19.9	1.2297	47541	50264	5152	0 10	35059	2727/	1221	0.11	6729	7209	1500	0.22
Radish	Shoot	Biosolid+Fungus	3	20.0	1.1227	57825	50204	5155	0.10	43574	57574	7221	0.11	6032	7500	1555	0.22
Radish	Shoot	Biosolid+Fungus	4	19.9	0.9917	49143				36463				6822			
Radish	Shoot	Compost	1	19.9	0.7248	42866				30667				9140	ſ		
Radish	Shoot	Compost	2	19.9	0.6952	49682	10605	10/61	0.26	35629	2009	7755	0.27	7679	9046	059	0.11
Radish	Shoot	Compost	3	19.9	0.7974	44332	40005	10401	0.20	31603	20500	1155	0.27	9497	5040	550	0.11
Radish	Shoot	Compost	4	19.9	0.6325	25541				17732				9867			
Radish	Shoot	Compost+Bacteria	1	20.0	0.8459	52474				40184				6937	ſ		
Radish	Shoot	Compost+Bacteria	2	19.9	0.8892	62118	56625	1206	0.08	47935	1/175	2456	0.08	7243	7266	1014	0.14
Radish	Shoot	Compost+Bacteria	3	19.9	0.7806	54055	30033	4300	0.08	42598	44175	3430	0.08	8811	7300	1014	0.14
Radish	Shoot	Compost+Bacteria	4	19.9	0.7576	57893				45984				6471			
Radish	Shoot	Compost+Fungus	1	19.9	0.7179	71036				53272				9083			
Radish	Shoot	Compost+Fungus	2	19.9	0.6589	57109	57912	0224	0.16	42315	12015	7129	0.17	8471	8254	972	0.11
Radish	Shoot	Compost+Fungus	3	19.9	0.6047	50687	37013	3224	0.10	37507	45015	/120	0.17	8439	0234	0/3	0.11
Radish	Shoot	Compost+Fungus	4	20.0	0.8755	52419				38964				7021			

Table 59 Nutrient Concentrations in Radish Shoots Continued 1

Diant	Diant Dant	Transforment	Dea	Dilution	(RS)	(DC) D	(DC) D Au			(DC) C	(DC) C Aug			(DC) 7-	(DC) 7- 4		(DC) 7- C)/
Plant	Plant Part	Treatment	кер.	Factor	Biomass	(RS) P	(RS) P AVg	(RS) P Stuv	(RS) P CV	(RS) S	(KS) S AVg	(RS) S Stav	(RS) S CV	(RS) ZN	(KS) Zh Avg	(RS) Zh Stav	(RS) Zh CV
Radish	Shoot	Control	1	20.0	1.0405	4783				14072				153			
Radish	Shoot	Control	2	19.9	1.1025	5142	1516	709	0.16	12355	14122	6694	0.47	81	110.69	20.05	0.29
Radish	Shoot	Control	3	19.9	0.9265	3519	4340	708	0.10	6992	14122	0084	0.47	98	110.08	50.55	0.28
Radish	Shoot	Control	4	19.9	1.1874	4739				23069				111			
Radish	Shoot	Bacteria	1	19.9	0.6932	4456				17900				116			
Radish	Shoot	Bacteria	2	20.0	1.0097	7722	5617	1520	0.27	15750	16050	2404	0.16	153	120.00	19.00	0.15
Radish	Shoot	Bacteria	3	19.9	1.0604	4486	3017	1330	0.27	12647	10035	2454	0.10	113	130.00	10.55	0.15
Radish	Shoot	Bacteria	4	20.0	0.9852	5802				17938				137			
Radish	Shoot	Fungus	1	19.9	1.0051	15458				24267				234			
Radish	Shoot	Fungus	2	19.9	1.1958	17795	16440	1000	0.10	19932	20270	2740	0.14	211	240.27	22.00	0.14
Radish	Shoot	Fungus	3	19.9	1.0067	14569	10440	1000	0.10	18391	20278	2749	0.14	291	240.27	55.00	0.14
Radish	Shoot	Fungus	4	19.9	1.1057	17938				18523				256			
Radish	Shoot	Biosolid	1	19.9	1.666	5267				12059				55			
Radish	Shoot	Biosolid	2	19.9	1.3155	5528	5050	510	0.10	14588	12005	2110	0.15	60	52.02	C 01	0.12
Radish	Shoot	Biosolid	3	19.9	1.3482	4326	5050	510	0.10	12531	13965	2118	0.15	43	52.92	0.81	0.13
Radish	Shoot	Biosolid	4	19.9	1.3712	5080	1			16681				54			
Radish	Shoot	Biosolid+Bacteria	1	20.0	1.561	1805	ſ			2704				87			
Radish	Shoot	Biosolid+Bacteria	2	19.9	1.5061	5470	7022	4205	0.61	9673	11040	6020	0.50	133	00.00	22.41	0.24
Radish	Shoot	Biosolid+Bacteria	3	20.0	1.7076	11608	7032	4305	0.61	17592	11648	6928	0.59	94	98.00	23.41	0.24
Radish	Shoot	Biosolid+Bacteria	4	19.9	1.6876	9246				16624				81			
Radish	Shoot	Biosolid+Fungus	1	19.9	1.4681	7912	ſ			20605				89			
Radish	Shoot	Biosolid+Fungus	2	19.9	1.2297	8280	0000	1020	0.12	12807	17014	25.01	0.21	84	74.00	10.57	0.10
Radish	Shoot	Biosolid+Fungus	3	20.0	1.1227	10274	8806	1038	0.12	16168	1/314	3501	0.21	62	74.86	13.57	0.18
Radish	Shoot	Biosolid+Fungus	4	19.9	0.9917	8760				19677				64			
Radish	Shoot	Compost	1	19.9	0.7248	9638	1			21274				88			
Radish	Shoot	Compost	2	19.9	0.6952	10882	0742	1000	0.22	17693	20004	21.45	0.10	84	77.00	12.07	0.10
Radish	Shoot	Compost	3	19.9	0.7974	7898	8742	1906	0.22	22812	20604	2145	0.10	82	77.98	13.97	0.18
Radish	Shoot	Compost	4	19.9	0.6325	6550				20636				57			
Radish	Shoot	Compost+Bacteria	1	20.0	0.8459	15644	1			30148				71			
Radish	Shoot	Compost+Bacteria	2	19.9	0.8892	17403	16704	2700	0.17	38620	21 410	5000	0.10	79	02.40	25.50	0.20
Radish	Shoot	Compost+Bacteria	3	19.9	0.7806	20343	10/94	2788	0.17	32337	51419	3008	0.18	129	92.48	25.59	0.28
Radish	Shoot	Compost+Bacteria	4	19.9	0.7576	13787				24573				91			
Radish	Shoot	Compost+Fungus	1	19.9	0.7179	7897				25502				80			
Radish	Shoot	Compost+Fungus	2	19.9	0.6589	7057	0000	2002	0.22	25695	22701	2424	0.15	79	80.26	2.45	0.02
Radish	Shoot	Compost+Fungus	3	19.9	0.6047	8849	0088	2002	0.23	18917	22701	3424	0.15	78	80.36	2.45	0.03
Radish	Shoot	Compost+Fungus	4	20.0	0.8755	11661]			20691.7233	I			84	I		

Table 60 Nutrient Concentrations in Radish Shoots Continued 2

Dlant	Diant Dart	Tractmont	Don	Dilution	(LR)	$(I P) C_{0}$	(LR) Ca	(LR) Ca	(LR) Ca	(\mathbf{I},\mathbf{P}) $(\mathbf{C}_{\mathbf{P}})$	(LR)Cu	(LR) Cu	(LR) Cu	$(\mathbf{I} \mathbf{P}) \mathbf{E}_{\mathbf{Q}}$	(LR)Fe	(LR) Fe	(LR) Fe
Flan	Fiant Fait	meannenn	кер.	Factor	Biomass	(LK) Ca	Avg	Stdv	CV	(LK) Cu	Avg	Stdv	CV	(LK) Fe	Avg	Stdv	CV
Lettuce	Root	Control	1	45.0	2.6686	8078				100.5				2956			
Lettuce	Root	Control	2	28.1	5.273	7546	6158	2201	0.37	39.66	40	36	0.74	1901	3225	1262	0.30
Lettuce	Root	Control	3	22.1	5.8495	6051	0156	2301	0.57	37.18	47	50	0.74	3105	3223	1202	0.39
Lettuce	Root	Control	4	19.8	7.0831	2956				17.33				4938			
Lettuce	Root	Bacteria	1	19.9	7.5406	4050				24.20				1991			
Lettuce	Root	Bacteria	2	22.6	5.4433	6200	5410	059	0.19	54.52	22	15	0.46	1690	2166	127	0.20
Lettuce	Root	Bacteria	3	24.4	5.8489	5939	5410	938	0.16	30.40	33	15	0.40	2294	2100	427	0.20
Lettuce	Root	Bacteria	4	23.1	4.7712	5454				21.79				2690			
Lettuce	Root	Fungus	1	36.8	3.7141	6604				35.62				2971			
Lettuce	Root	Fungus	2	60.8	1.857	7090	7051	429	0.06	75.33	55	20	0.36	2964	3526	968	0.27
Lettuce	Root	Fungus	3&4 Cp	59.8	3.0492	7460				54.15				4643			
Lettuce	Root	Biosolid	1&2 Cp	81.2	1.3440	10641	12750	2005	0.22	53.34	64	15	0.22	12833	12295	634	0.05
Lettuce	Root	Biosolid	3&4 Cp	61.3	2.0630	14877	12/39	2993	0.23	73.96	04	15	0.23	11936	12385	034	0.05
Lettuce	Root	osolid+Bacte	1&2 Cp	60.9	2.3403	11359				54.78				3463			
Lettuce	Root	osolid+Bacte	3	67.8	2.0807	11403	11171	364	0.03	70.10	62	8	0.12	4325	4814	1650	0.34
Lettuce	Root	osolid+Bacte	4	80.0	1.5814	10752				60.736				6652.8			
Lettuce	Root	osolid+Fung	1-4 Cp	126.9	0.9396	12830	12830			53.97	54			4584	4584		
Lettuce	Root	Compost	1	20.0	5.8543	7635				25.96				1320			
Lettuce	Root	Compost	2	19.9	7.2291	5939	7192	1612	0.22	23.77	21	11	0.25	2968	1620	201	0.54
Lettuce	Root	Compost	3	27.1	4.2357	9270	/182	1015	0.22	47.74	51	11	0.55	1190	1039	891	0.34
Lettuce	Root	Compost	4	29.2	2.4989	5882				28.06				1079			
Lettuce	Root	mpost+Bact	1	20.0	6.8839	3188				13.94				2546			
Lettuce	Root	mpost+Bact	2	19.9	4.7479	4131	2826	916	0.21	13.09	20	27	0.05	1404	1500	619	0.41
Lettuce	Root	mpost+Bact	3	27.0	4.2708	4857	3830	810	0.21	18.32	29	21	0.95	1265	1300	040	0.41
Lettuce	Root	mpost+Bact	4	19.9	5.5184	3167				69.24				1135			
Lettuce	Root	mpost+Fung	1	28.2	5.2588	4934				18.34				830			
Lettuce	Root	mpost+Fung	2	20.0	5.4811	4049	4204	207	0.10	7.856	12	4	0.26	900.4	806	202	0.25
Lettuce	Root	mpost+Fung	3	31.6	3.816	4935	4294	807	0.19	12.24	12	4	0.30	979	800	202	0.25
Lettuce	Root	mpost+Fung	4	21.1	4.7065	3259				10.56				516.6			

Table 61 Nutrient Concentrations in Lettuce Roots

Plant	Plant Part	Treatment	Rep.	Dilution	(LR) Diamaga	(LR) K	(LR) K	(LR) K	(LR) K	(LR) Mg	(LR) Mg	(LR) Mg	(LR) Mg	(LR) Mn	(LR) Mn	(LR) Mn	(LR) Mn
Lattuca	Poot	Control	1	15 0	26696	2077	Avg	Sluv	CV	2072	Avg	Sluv	CV	205	Avg	Sluv	CV
Lettuce	Poot	Control	2	43.0 28.1	2.0080	5722				2412				201			
Lettuce	Root	Control	2	20.1	5.275	9170	5613	1857	0.33	2964	2905	1041	0.36	201	207	66	0.32
Lettuce	Root	Control	3	10.9	7.0921	4572				2804				124			
Lettuce	Root	Paotoria	4	19.0	7.0651	5812				2220				124			
Lettuce	Root	Dacteria	2	19.9	5 4422	6507				2339				117			
Lettuce	Root	Dacteria	2	22.0	5.9490	5272	5317	1205	0.23	2757	2603	480	0.18	104	170	37	0.22
Lettuce	Root	Bacteria	3	24.4	1 7712	3676				2137				194			
Lettuce	Root	Function	1	36.8	3 71/12	8015				3117		-		273		-	
Lettuce	Root	Fungus	2	60.8	1 857	3415	5206	2463	0.47	3216	2955	370	0.13	210	247	27	0.11
Lettuce	Root	Fungus	3&4 Cn	59.8	3.0492	4188	5200	2105	0.17	2532	2700	570	0.15	219	217	27	0.11
Lettuce	Root	Biosolid	1&2 Cn	81.2	1 3440	3542				2332	-			154			
Lettuce	Root	Biosolid	3&4 Cn	61.3	2.0630	3561	3552	13	0.00	7010	4947	2918	0.59	262	208	77	0.37
Lettuce	Root	Biosolid+Bacteria	1&2 Cn	60.9	2 3403	2313				3284	-			150			
Lettuce	Root	Biosolid+Bacteria	3	67.8	2.0807	3001	2566	378	0.15	4104	3761	426	0.11	183	176	23	0.13
Lettuce	Root	Biosolid+Bacteria	4	80.0	1.5814	2384				3894.4				194		-	
Lettuce	Root	Biosolid+Fungus	1-4 Cp	126.9	0.9396	5532	5532			3048	3048			186	186		
Lettuce	Root	Compost	1	20.0	5.8543	14174				2680				119			
Lettuce	Root	Compost	2	19.9	7.2291	12643	18026	6726	0.26	2242	2201	244	0.14	123	02	22	0.24
Lettuce	Root	Compost	3	27.1	4.2357	21980	18930	0720	0.50	2642	2361	544	0.14	70	95	32	0.54
Lettuce	Root	Compost	4	29.2	2.4989	26947				1960				62			
Lettuce	Root	Compost+Bacteria	1	20.0	6.8839	10436				1441				151			
Lettuce	Root	Compost+Bacteria	2	19.9	4.7479	21531	21308	10260	0.48	1657	1507	201	0.18	59	75	51	0.68
Lettuce	Root	Compost+Bacteria	3	27.0	4.2708	35040	21508	10209	0.40	1977	1397	291	0.16	48	15	51	0.08
Lettuce	Root	Compost+Bacteria	4	19.9	5.5184	18226				1312				42			
Lettuce	Root	Compost+Fungus	1	28.2	5.2588	10556				1672				71			
Lettuce	Root	Compost+Fungus	2	20.0	5.4811	17259	15407	3381	0.22	1582	1476	258	0.17	48	54	15	0.27
Lettuce	Root	Compost+Fungus	3	31.6	3.816	15712	13407	5501	0.22	1554	14/0	230	0.17	61	54	15	0.27
Lettuce	Root	Compost+Fungus	4	21.1	4.7065	18099				1096.9				37			

Table 62 Nutrient Concentrations in Lettuce Roots Continued 1

Plant	Plant Part	Treatment	Rep.	Dilution	(LR)	(LR) P	(LR) P	(LR) P	(LR) P CV	(LR) S	(LR) S	(LR) S	(LR) S CV	(LR) Zn	(LR) Zn	(LR) Zn	(LR) Zn
			.1.	Factor	Biomass	()	Avg	Stdv	()	()-	Avg	Stdv	()	()	Avg	Stdv	CV
Lettuce	Root	Control	1	45.0	2.6686	2111				2505				255.3			
Lettuce	Root	Control	2	28.1	5.273	2198	1976	440	0.22	2685	2309	654	0.28	236.5	218	62	0.29
Lettuce	Root	Control	3	22.1	5.8495	2271	1770	110	0.22	2708	2507	001	0.20	253.6	210	02	0.27
Lettuce	Root	Control	4	19.8	7.0831	1323				1338				124.9	_	_	
Lettuce	Root	Bacteria	1	19.9	7.5406	1486				1502				191.5			
Lettuce	Root	Bacteria	2	22.6	5.4433	2106	1620	402	0.25	2874	1886	708	0.38	282.9	228	65	0.29
Lettuce	Root	Bacteria	3	24.4	5.8489	1734	1020	402	0.25	1899	1000	700	0.50	281.6	220	05	0.27
Lettuce	Root	Bacteria	4	23.1	4.7712	1153				1268				154.4			
Lettuce	Root	Fungus	1	36.8	3.7141	1867				1999				207.1			
Lettuce	Root	Fungus	2	60.8	1.857	1664	1842	166	0.09	1661	1820	170	0.09	222.2	249	60	0.24
Lettuce	Root	Fungus	3&4 Cp	59.8	3.0492	1994				1801				318.1			
Lettuce	Root	Biosolid	1&2 Cp	81.2	1.3440	2053	2011	1214	0.42	2895	2722	221	0.08	139.8	102	72	0.28
Lettuce	Root	Biosolid	3&4 Cp	61.3	2.0630	3769	2911	1214	0.42	2569.0	2732	231	0.08	243.3	192	73	0.38
Lettuce	Root	Biosolid+Bacteria	1&2 Cp	60.9	2.3403	1849				2208				129.8			
Lettuce	Root	Biosolid+Bacteria	3	67.8	2.0807	2177	1992	168	0.08	2388	2256	116	0.05	162.0	156	24	0.15
Lettuce	Root	Biosolid+Bacteria	4	80.0	1.5814	1949.6				2172				177.28			
Lettuce	Root	Biosolid+Fungus	1-4 Cp	126.9	0.9396	3093	3093			1868	1868			160.2	160		
Lettuce	Root	Compost	1	20.0	5.8543	2105				1524				79.97			
Lettuce	Root	Compost	2	19.9	7.2291	1872	20/1	1264	0.48	1462	1507	80	0.05	81.53	60	16	0.22
Lettuce	Root	Compost	3	27.1	4.2357	2544	2041	1304	0.46	1430	1307	80	0.05	66.34	09	10	0.25
Lettuce	Root	Compost	4	29.2	2.4989	4844				1612				46.92			
Lettuce	Root	Compost+Bacteria	1	20.0	6.8839	1474				1407				63.24			
Lettuce	Root	Compost+Bacteria	2	19.9	4.7479	2372	2472	012	0.22	1740	1640	246	0.15	52.76	50	5	0.09
Lettuce	Root	Compost+Bacteria	3	27.0	4.2708	3453	2472	815	0.55	1940	1640	246	0.15	61.73	39	3	0.08
Lettuce	Root	Compost+Bacteria	4	19.9	5.5184	2589				1473				56.73			
Lettuce	Root	Compost+Fungus	1	28.2	5.2588	2368				952.0				62.07			
Lettuce	Root	Compost+Fungus	2	20.0	5.4811	1771	2705	700	0.20	772.8	047	126	0.12	52.43	51	12	0.22
Lettuce	Root	Compost+Fungus	3	31.6	3.816	3093	2705	/99	0.50	995.0	947	120	0.15	64.03	34	12	0.25
Lettuce	Root	Compost+Fungus	4	21.1	4.7065	3588				1069				37.15			

Table 63 Nutrient Concentrations in Lettuce Roots Continued 2

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(LS) Biomass	(LS) Ca	(LS) Ca Avg	(LS) Ca Stdv	(LS) Ca CV	(LS) Cu	(LS) Cu Avg	(LS) Cu Stdv	(LS) Cu CV	(LS) Fe	(LS) Fe Avg	(LS) Fe Stdv	(LS) Fe CV
Lettuce	Shoot	Control	1	19.9	2.3519	14337				16.4				290			
Lettuce	Shoot	Control	2	19.8	2.3556	11607	11540	4403	0.38	9.1	12.18	3.81	0.31	202	256 50	68.14	0.27
Lettuce	Shoot	Control	3	19.9	2.6989	14916	11540	4405	0.56	8.8	12.10	5.81	0.51	198	250.50	00.14	0.27
Lettuce	Shoot	Control	4	19.9	2.83	5300				14.4				336			
Lettuce	Shoot	Bacteria	1	19.8	2.4533	8064				7.0				133			
Lettuce	Shoot	Bacteria	2	20.0	2.1091	9546	8708	618	0.07	6.7	6.85	0.36	0.05	134	148.07	22.43	0.15
Lettuce	Shoot	Bacteria	3	19.9	2.4112	8946	0790	010	0.07	6.5	0.85	0.50	0.05	145	140.07	22.45	0.15
Lettuce	Shoot	Bacteria	4	19.8	2.4215	8635				7.2				181			
Lettuce	Shoot	Fungus	1	19.9	1.8946	10788				7.8				213	·		
Lettuce	Shoot	Fungus	2	19.9	2.1708	10692	11040	120	0.04	7.7	8 31	0.70	0.08	234	276.67	65.84	0.24
Lettuce	Shoot	Fungus	3	20.0	1.97	11035	11040	429	0.04	8.6	0.31	0.70	0.08	303	2/0.07	05.84	0.24
Lettuce	Shoot	Fungus	4	19.8	1.6074	11647				9.1				357			
Lettuce	Shoot	Biosolid	1	20.0	0.8714	15678				14.5				207			
Lettuce	Shoot	Biosolid	2	19.9	1.3056	8749	14268	2729	0.26	6.8	11.74	2 4 2	0.20	95	171 27	72 58	0.42
Lettuce	Shoot	Biosolid	3	19.8	1.4437	16953	14200	5720	0.20	13.3	11.74	5.45	0.29	255	1/1.2/	12.38	0.42
Lettuce	Shoot	Biosolid	4	19.8	1.3377	15695				12.4				129			
Lettuce	Shoot	Biosolid+Bacteria	1	19.8	1.0627	20277				11.7				260			
Lettuce	Shoot	Biosolid+Bacteria	2	19.9	1.0199	20072	18/32	2222	0.12	10.1	11.23	0.75	0.07	305	207.67	25.16	0.08
Lettuce	Shoot	Biosolid+Bacteria	3	19.9	1.3904	15539	10452	2222	0.12	11.6	11.25	0.75	0.07	315	297.07	23.10	0.08
Lettuce	Shoot	Biosolid+Bacteria	4	19.9	1.0871	17839				11.5				310			
Lettuce	Shoot	Biosolid+Fungus	1	54.1	0.1958	22338				12.1				471			
Lettuce	Shoot	Biosolid+Fungus	2	55.1	0.186	30231	25272	4024	0.16	11.1	10.06	2.12	0.28	490	520.51	08.24	0.10
Lettuce	Shoot	Biosolid+Fungus	3	65.0	0.1745	26842	25215	4024	0.10	13.9	10.90	5.12	0.28	455	520.51	98.54	0.19
Lettuce	Shoot	Biosolid+Fungus	4	28.9	0.3458	21679				6.6				666			
Lettuce	Shoot	Compost	1	20.0	1.9303	9970				7.4				126		r i i	
Lettuce	Shoot	Compost	2	20.0	2.4631	9752	9504	153	0.05	5.0	4.96	1.78	0.36	129	103 36	20.82	0.29
Lettuce	Shoot	Compost	3	19.9	1.0483	9349	9504	455	0.05	4.0	4.90	1.70	0.50	93	105.50	29.82	0.29
Lettuce	Shoot	Compost	4	19.9	0.843	8945				3.4				66			
Lettuce	Shoot	Compost+Bacteria	1	19.9	2.5561	13422				6.8				157			
Lettuce	Shoot	Compost+Bacteria	2	20.0	1.7593	9309	10640	2054	0.10	4.8	5 16	0.02	0.17	87	120.70	20.00	0.25
Lettuce	Shoot	Compost+Bacteria	3	19.9	0.9074	8899	10049	2034	0.19	4.9	5.40	0.92	0.17	110	120.70	29.99	0.23
Lettuce	Shoot	Compost+Bacteria	4	20.0	1.5113	10965				5.4				130			
Lettuce	Shoot	Compost+Fungus	1	20.0	1.4792	6604				3.5				70			
Lettuce	Shoot	Compost+Fungus	2	19.9	1.7264	7614	7450	816	0.11	3.8	2.65	0.14	0.04	71	66 56	4.02	0.07
Lettuce	Shoot	Compost+Fungus	3	19.8	1.3672	7050	/439	040	0.11	3.5	5.05	0.14	0.04	60	00.30	4.92	0.07
Lettuce	Shoot	Compost+Fungus	4	19.8	0.8576	8566				3.8				65			

Table 64 Nutrient Concentrations in Lettuce Shoots

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(LS) Biomass	(LS) K	(LS) K Avg	(LS) K Stdv	(LS) K CV	(LS) Mg	(LS) Mg Avg	(LS) Mg Stdv	(LS) Mg CV	(LS) Mn	(LS) Mn Avg	(LS) Mn Stdv	(LS) Mn CV
Lettuce	Shoot	Control	1	19.9	2.3519	41851				6429				445.8			
Lettuce	Shoot	Control	2	19.8	2.3556	39628	11010	0270	0.21	6186	6286	140	0.02	295.2	401.24	96.61	0.22
Lettuce	Shoot	Control	3	19.9	2.6989	39110	44040	9379	0.21	6384	0380	149	0.02	371.2	401.24	80.01	0.22
Lettuce	Shoot	Control	4	19.9	2.83	58804				6544				492.7			
Lettuce	Shoot	Bacteria	1	19.8	2.4533	34879				2378				196.7			
Lettuce	Shoot	Bacteria	2	20.0	2.1091	35192	34307	1510	0.04	2336	2277	141	0.06	193.4	224.92	47.26	0.21
Lettuce	Shoot	Bacteria	3	19.9	2.4112	32051	54507	1510	0.04	2069	2277	141	0.00	215.3	224.72	47.20	0.21
Lettuce	Shoot	Bacteria	4	19.8	2.4215	35105				2326				294.3			
Lettuce	Shoot	Fungus	1	19.9	1.8946	38799				2988				324.0			
Lettuce	Shoot	Fungus	2	19.9	2.1708	34904	36740	1720	0.05	3015	2994	36	0.01	301.5	309.65	25 70	0.08
Lettuce	Shoot	Fungus	3	20.0	1.97	37415	50740	1720	0.05	2946	2774	50	0.01	277.5	507.05	23.70	0.00
Lettuce	Shoot	Fungus	4	19.8	1.6074	35843				3028				335.6			
Lettuce	Shoot	Biosolid	1	20.0	0.8714	83317				3762				101.6			
Lettuce	Shoot	Biosolid	2	19.9	1.3056	33949	62246	21126	0.34	2100	3335	830	0.25	41.90	77.20	25.85	0.33
Lettuce	Shoot	Biosolid	3	19.8	1.4437	60024	022.0	21120	0.5 .	3611	5555	050	0.20	89.78	,,	20.00	0.55
Lettuce	Shoot	Biosolid	4	19.8	1.3377	71695				3867				75.49			
Lettuce	Shoot	Biosolid+Bacteria	1	19.8	1.0627	56733	[6246	ſ			117.6	[
Lettuce	Shoot	Biosolid+Bacteria	2	19.9	1.0199	56479	58516	2786	0.05	5382	5926	376	0.06	118.0	129.63	17.92	0.14
Lettuce	Shoot	Biosolid+Bacteria	3	19.9	1.3904	58347				6067				155.7			
Lettuce	Shoot	Biosolid+Bacteria	4	19.9	1.0871	62507				6008				127.3			
Lettuce	Shoot	Biosolid+Fungus	1	54.1	0.1958	65476	[6412	[118.7	[
Lettuce	Shoot	Biosolid+Fungus	2	55.1	0.186	52523	63716	11844	0.19	7835	19784	25372	1.28	177.0	156.57	27.23	0.17
Lettuce	Shoot	Biosolid+Fungus	3	65.0	0.1745	57297		-		7057				175.8			
Lettuce	Shoot	Biosolid+Fungus	4	28.9	0.3458	79566				57832				154.7			
Lettuce	Shoot	Compost	1	20.0	1.9303	50469				2548				142.9			
Lettuce	Shoot	Compost	2	20.0	2.4631	36908	40777	8165	0.20	1999	2138	303	0.14	132.5	89.50	55.85	0.62
Lettuce	Shoot	Compost	3	19.9	1.0483	43952				2163				42.68			
Lettuce	Shoot	Compost	4	19.9	0.843	31///				1842				39.88			
Lettuce	Shoot	Compost+Bacteria	1	19.9	2.5561	46096				2912	-			197.5			
Lettuce	Shoot	Compost+Bacteria	2	20.0	1./593	3/250	42916	4150	0.10	2142.3	2443	363	0.15	83.01	98.77	67.39	0.68
Lettuce	Snoot	Compost+Bacteria	3	19.9	0.9074	43944	1			21/1	4			4/./1			
Lettuce	Shoot	Compost+Bacteria	4	20.0	1.5113	42375		-		2546		-		66.86			
Lettuce	Shoot	Compost+Fungus	2	20.0	1.4/92	31422	1			143/	4			45.51			
Lettuce	Shoot	Compost+Fungus	2	19.9	1./204	28260	33700	4799	0.14	108/	1550	158	0.10	30.70	50.96	11.38	0.22
Leituce	Shoot	Compost+Fungus	3	19.8	1.36/2	26269	4			1390	4			38.03			
Lettuce	Shoot	Compost+Fungus	4	19.8	0.8576	36025				1684				65.54			

Table 65 Nutrient Concentrations in Lettuce Shoots Continued 1

Plant	Plant Part	Treatment	Rep.	Dilution Factor	(LS) Biomass	(LS) P	(LS) P Avg	(LS) P Stdv	(LS) P CV	(LS) S	(LS) S Avg	(LS) S Stdv	(LS) S CV	(LS) Zn	(LS) Zn Avg	(LS) Zn Stdv	(LS) Zn CV
Lettuce	Shoot	Control	1	19.9	2.3519	6732				2879				227			
Lettuce	Shoot	Control	2	19.8	2.3556	9546	9505	1460	0.17	2821	2727	122	0.05	248	259	25	0.10
Lettuce	Shoot	Control	3	19.9	2.6989	9866	8303	1409	0.17	2615	2/3/	155	0.05	281	238	23	0.10
Lettuce	Shoot	Control	4	19.9	2.83	7876	1			2634				276	1		
Lettuce	Shoot	Bacteria	1	19.8	2.4533	4734				1808				238			
Lettuce	Shoot	Bacteria	2	20.0	2.1091	5112	4000	246	0.05	1924	1070	80	0.05	260	222	21	0.00
Lettuce	Shoot	Bacteria	3	19.9	2.4112	4644	4900	246	0.05	1980	18/8	89	0.05	217	233	21	0.09
Lettuce	Shoot	Bacteria	4	19.8	2.4215	5109				1799				217	1		
Lettuce	Shoot	Fungus	1	19.9	1.8946	3415				1529	ſ			264	ſ		
Lettuce	Shoot	Fungus	2	19.9	2.1708	3562	2677	206	0.10	1595	1692	179	0.11	306	292	42	0.15
Lettuce	Shoot	Fungus	3	20.0	1.97	3482	30//	380	0.10	1671	1082	178	0.11	233	285	43	0.15
Lettuce	Shoot	Fungus	4	19.8	1.6074	4248				1934				330	1		
Lettuce	Shoot	Biosolid	1	20.0	0.8714	5448				2959	r –			81	ſ		
Lettuce	Shoot	Biosolid	2	19.9	1.3056	2735	1595	1260	0.29	1404	2505	740	0.20	36	64	10	0.20
Lettuce	Shoot	Biosolid	3	19.8	1.4437	4780	4385	1209	0.28	2743	2303	/40	0.30	71	04	19	0.30
Lettuce	Shoot	Biosolid	4	19.8	1.3377	5375				2914				67	1		
Lettuce	Shoot	Biosolid+Bacteria	1	19.8	1.0627	7816				3556	ſ			155	ſ		
Lettuce	Shoot	Biosolid+Bacteria	2	19.9	1.0199	7126	7652	251	0.05	3466	2527	70	0.02	156	164	14	0.00
Lettuce	Shoot	Biosolid+Bacteria	3	19.9	1.3904	7826	7032	331	0.05	3627	3337	70	0.02	185	104	14	0.09
Lettuce	Shoot	Biosolid+Bacteria	4	19.9	1.0871	7841				3500				158			
Lettuce	Shoot	Biosolid+Fungus	1	54.1	0.1958	7105				3710				165			
Lettuce	Shoot	Biosolid+Fungus	2	55.1	0.186	7967	8201	2040	0.49	3759	4041	2100	0.54	202	108	22	0.12
Lettuce	Shoot	Biosolid+Fungus	3	65.0	0.1745	13580	8201	3940	0.46	7005	4041	2199	0.34	204	190	23	0.12
Lettuce	Shoot	Biosolid+Fungus	4	28.9	0.3458	4153				1688				219			
Lettuce	Shoot	Compost	1	20.0	1.9303	5422				1377	ſ			100	ſ		
Lettuce	Shoot	Compost	2	20.0	2.4631	4308	4474	667	0.15	1066	1224	180	0.14	81	70	26	0.27
Lettuce	Shoot	Compost	3	19.9	1.0483	4312	44/4	007	0.15	1365	1324	180	0.14	54	/0	20	0.37
Lettuce	Shoot	Compost	4	19.9	0.843	3855				1486				44			
Lettuce	Shoot	Compost+Bacteria	1	19.9	2.5561	4291				1396	ſ			78	ſ		
Lettuce	Shoot	Compost+Bacteria	2	20.0	1.7593	3559	2026	204	0.08	1139	1172	165	0.14	40	50	10	0.20
Lettuce	Shoot	Compost+Bacteria	3	19.9	0.9074	3859	3920	304	0.08	999	11/2	165	0.14	38	30	19	0.38
Lettuce	Shoot	Compost+Bacteria	4	20.0	1.5113	3994				1154				45			
Lettuce	Shoot	Compost+Fungus	1	20.0	1.4792	3404				791				40			
Lettuce	Shoot	Compost+Fungus	2	19.9	1.7264	3902	2602	422	0.12	933	016	97	0.00	45	20	6	0.15
Lettuce	Shoot	Compost+Fungus	3	19.8	1.3672	3104	3003	423	0.12	990	910	87	0.09	31	38	0	0.15
Lettuce	Shoot	Compost+Fungus	4	19.8	0.8576	4001				950				38			

Table 66 Nutrient Concentrations in Lettuce Shoots Continued 2

Treatment	(M3) Ca	(M3) Ca Avg	(M3) Ca Stdv	(M3) Ca CV	(M3) Cu	(M3) Cu Avg	(M3) Cu Stdv	(M3) Cu CV	(M3) Fe	(M3) Fe Avg	(M3) Fe Stdv	(M3) Fe CV	(M3) K	(M3) K Avg	(M3) K Stdv	(M3) K CV
Control	1699	1722	33	0.02	9.8	9.9	0.08	0.01	166	164	1 74	0.01	36.6	37.4	1 17	0.03
Control	1745	1722	55	0.02	9.9).)	0.08	0.01	163	104	1.74	0.01	38.2	57.4	1.17	0.05
Bacteria	1690	1708	25	0.01	9.3	0.3	0.06	0.01	157	150	2.60	0.02	42.3	42.2	0.08	0.00
Dacteria	1725	1708	25	0.01	9.4	9.5	0.00	0.01	160	139	2.09	0.02	42.2	42.2	0.08	0.00
Fungus	1683	1738	78	0.04	8.6	9.0	0.58	0.06	158	166	11.43	0.07	43.7	44.0	0.53	0.01
	1793				9.4				174				44.4			
Biosolid	4256 4580	4418	229	0.05	8.8 9.5	9.1	0.46	0.05	141 135	138	4.24	0.03	86.2 85.6	85.9	0.38	0.00
	3497				9.4				163				112.9			
Biosolid+Bacteria	3520	3508	16	0.00	9.6	9.5	0.12	0.01	150	156	9.00	0.06	113.0	113.0	0.01	0.00
Diogolid+Europa	3265	2610	197	0.13	8.3	00	0.67	0.08	151	142	11 79	0.08	139.8	142.7	5 5 4	0.04
Biosoliu+Fuligus	3954	3010	407	0.15	9.3	0.0	0.07	0.08	135	145	11.70	0.08	147.6	145.7	5.54	0.04
Compost	2699	2616	118	0.05	8.1	79	0.22	0.03	183	170	18 20	0.11	152.6	146.3	8.97	0.06
Compose	2532	2010	110	0.05	7.7	1.9	0.22	0.05	157	170	10.20	0.11	139.9	140.5	0.72	0.00
Commont Dostaria	3056	2060	126	0.05	7.8	7.9	0.02	0.00	148	147	1.09	0.01	187.0	195.9	1.69	0.01
Composi+Baciena	2864	2960	130	0.03	7.8	/.8	0.02	0.00	146	147	1.08	0.01	184.6	165.8	1.08	0.01
Compost+Eurous	2929	2805	176	0.06	8.0	8.0	0.07	0.01	144	120	7.05	0.05	186.3	191.5	6 74	0.04
Compost+r ungus	2681	2803	170	0.00	7.9	8.0	0.07	0.01	134	139	7.05	0.05	176.8	101.3	0.74	0.04

Table 67 Mehlich III Concentrations in Lettuce Soils

Treatment	(M3) Mg	(M3) Mg Avg	(M3) Mg Stdv	(M3) Mg CV	(M3) Mn	(M3) Mn Avg	(M3) Mn Stdv	(M3) Mn CV	(M3) P	(M3) P Avg	(M3) P Stdv	(M3) P CV	(M3) S	(M3) S Avg	(M3) S Stdv	(M3) S CV	(M3) Zn	(M3) Zn Avg	(M3) Zn Stdv	(M3) Zn CV
Control	150.6	151.1	0.66	0.00	54.7	52.3	2 41	0.07	232	222	0.08	0.00	64	65	0.84	0.01	46	47	0.79	0.02
Condor	151.6	131.1	0.00	0.00	49.9	52.5	5.41	0.07	232	232	0.08	0.00	65	05	0.84	0.01	48	47	0.79	0.02
Pastaria	146.9	140.5	2.67	0.02	57.5	58.0	2.02	0.02	220	225	7 49	0.02	77	75	2.96	0.04	45	16	1.51	0.02
Bacteria	152.1	149.5	5.07	0.02	60.3	36.9	2.02	0.03	230	223	7.48	0.05	73	75	2.80	0.04	47	40	1.51	0.03
Fungus	147.8	151.7	5.54	0.04	60.0	58.8	1.68	0.03	224	234	13.05	0.06	59	63	5.54	0.09	45	46	1.66	0.04
	155.6				57.6				243				67				48			
Biosolid	231.5 234.5	233.0	2.07	0.01	50.6 54.0	52.3	2.41	0.05	234 243	238	5.94	0.02	119 126	122	5.51	0.04	41 40	41	0.21	0.01
	206.0				53.8				240				89				43			
Biosolid+Bacteria	204.4	205.2	1.08	0.01	55.0	54.4	0.91	0.02	243	241	2.52	0.01	89	89	0.28	0.00	44	43	0.59	0.01
Biosolid+Fungus	202.3 217.9	210.1	11.03	0.05	46.8 52.2	49.5	3.85	0.08	221 241	231	13.71	0.06	79 90	85	8.02	0.09	38 44	41	3.59	0.09
	324.7	200.0	21.04	0.07	75.5		2.07	0.05	227	226	0.00	0.00	101		0.02	0.10	52	50	2.11	0.05
Compost	295.0	309.8	21.04	0.07	70.0	72.7	3.87	0.05	225	226	0.88	0.00	87	94	9.63	0.10	49	50	2.41	0.05
Compost Pastaria	349.0	242.9	7.41	0.02	76.2	72.0	5.02	0.08	210	210	0.11	0.00	100	100	0.00	0.00	54	52	1.00	0.04
Compost+Bacteria	338.5	545.8	/.41	0.02	67.8	72.0	3.95	0.08	210	210	0.11	0.00	100	100	0.09	0.00	51		1.99	0.04
Compost+Fungus	340.5	328.0	17.61	0.05	77.4	74.3	1 24	0.06	213	209	5.14	0.02	101	07	4.80	0.05	53	51	2.02	0.04
	315.6	520.0	17.01	0.05	71.2	/4.5	4.54	0.00	206	209	5.14	0.02	94	21	4.00	0.05	50	51	2.02	0.04

Table 68 Mehlich III Concentrations in Lettuce Soils Continued

Treatment	(M3) Ca	(M3) Ca Avg	(M3) Ca Stdv	(M3) Ca CV	(M3) Cu	(M3) Cu Avg	(M3) Cu Stdv	(M3) Cu CV	(M3) Fe	(M3) Fe Avg	(M3) Fe Stdv	(M3) Fe CV	(M3) K	(M3) K Avg	(M3) K Stdv	(M3) K CV
Control	1588.02	1500	16	0.01	9.30922	0.(0.1	0.04	165	172	10	0.050	51	50	0.72	0.014
Control	1610.56	1599	10	0.01	9.84063745	9.0	0.4	0.04	179	172	10	0.059	50	50	0.72	0.014
D	1721.02	1 (72)		0.04	13.31468811			0.07	197	170	25		54		2.04	0.050
Bacteria	1625.29	16/3	68	0.04	9.128415164	11.2	3.0	0.26	161	1/9	25	0.141	49	52	3.04	0.059
	1662.01	1.00	10	0.02	8.99381114			0.05	163	104	20		51		1.00	0.027
Fungus	1594.06	1628	48	0.03	8.396969395	8.7	0.4	0.05	205	184	30	0.161	49	50	1.30	0.026
D ' 1'1	2889.54	2050	10	0.02	9.654793426			0.05	160	1.50		0.054	87		0.54	
Biosolid 28	2828.75	2859	43	0.02	9.031613644	9.3	0.4	0.05	144	152	11	0.074	88	88	0.74	0.008
Biosolid+Bacteria	2635.34	2717		0.04	8.924768808				160		20	0.100	70		2.26	0.040
Biosolid+Bacteria	2799.6	2717	116	0.04	8.728635682	8.8	0.1	0.02	132	146	20	0.138	66	68	3.26	0.048
D' I'LE	3139.81	21/6	27	0.01	11.9896435	10.5	2.1	0.10	134	126	2	0.022	84		0.04	0.000
Biosolia+Fungus	3191.97	3100	3/	0.01	9.090364154	10.5	2.1	0.19	139	136	3	0.023	84	84	0.04	0.000
G	2098.95	2074	25	0.02	7.305347326	7.2		0.01	146		2	0.012	127	126	1.05	0.015
Composi	2049.03	2074	33	0.02	7.25348245	7.5	0.0	0.01	143	144	2	0.012	124	126	1.85	0.015
Compost+Bacteria 21 25	2190.33	2264	246	0.10	6.761335326	()	0.2	0.02	143	145		0.010	145	146	0.84	0.000
	2538.19	2304	240	0.10	7.095356965	0.9	0.2	0.03	146	145	1	0.010	147	140	0.84	0.008
2	2374.05	2205	30	0.01	7.647940824	7.7	0.1	0.01	153	156	4	0.026	134	136	2 20	0.016
Compost Fungus	2416.28	2375	50	0.01	7.787663701	1.1	0.1	0.01	159	150	4	0.020	137	150	2.20	0.010

Table 69 Mehlich III Concentrations in Radish Soils

Treatment	(M3) Mg	(M3) Mg Avg	(M3) Mg Stdv	(M3) Mg CV	(M3) Mn	(M3) Mn Avg	(M3) Mn Stdv	(M3) Mn CV	(M3) P	(M3) P Avg	(M3) P Stdv	(M3) P CV	(M3) S	(M3) S Avg	(M3) S Stdv	(M3) S CV	(M3) Zn	(M3) Zn Avg	(M3) Zn Stdv	(M3) Zn CV
Cantal	159	160	1.10	0.007	57		9.07	0.141	274	286	17.21	0.061	50	£1	1.06	0.021	43.2	AC 4	4.60	0.000
Control	161	160	1.10	0.007	70	04	8.97	0.141	298	280	17.51	0.061	51	51	1.00	0.021	49.7	40.4	4.60	0.099
Destaria	172	100	0.24	0.056	60	0	2.46	0.055	292	280	5.21	0.018	57	55	2.24	0.040	52.8	50.7	2.06	0.058
Bacteria	159	166	9.24	0.056	65	63	3.40	0.055	285	289	5.21	0.018	54		2.24	0.040	48.6	50.7	2.96	0.058
Emme	166	169	2.21	0.014	71	76	8.20	0.100	278	272	9.71	0.022	64	65	2.79	0.042	45.9	44.7	1.64	0.027
rungus	170	108	2.51	0.014	82	/0	8.29	0.109	266	272	8.71	0.032	67	65	2.78	0.042	43.5	44.7	1.64	0.037
Discrift	199	190	14.21	0.076	68	(0)	11.17	0.196	272	279	7.26	0.027	74	75	0.51	0.007	40.1	20.4	0.01	0.022
Biosolid	178	189	14.51	0.076	52	- 60	11.17	0.180	283	2/8	/.30	0.027	75	/3	0.51	0.007	38.8	39.4	0.91	0.023
Discolid Destania	195	102	1.12	0.022	53		0.54	0.010	249	250	2.01	0.000	61		4.52	0.071	38.6	27.0	0.00	0.026
Biosolid+Bacteria	189	192	4.42	0.023	54	- 25	0.54	0.010	251	250	2.01	0.008	67	64	4.52	0.071	37.2	37.9	0.98	0.026
D' ThE	195	107	1.50	0.000	55		1.(0	0.020	263	2(0	7.02	0.026	82		2.44	0.020	54.7	NC 6	11.61	0.247
Biosolid+Fungus	198	197	1.58	0.008	53	54	1.60	0.029	273	268	7.03	0.026	86	84	2.44	0.029	38.4	46.6	11.51	0.247
Comment	259	255	5.26	0.021	81	01	0.20	0.004	257	259	0.53	0.002	92	02	0.67	0.007	40.1	20.2	1.22	0.021
Composi	252	255	3.20	0.021	81	81	0.30	0.004	258	238	0.55	0.002	93	92	0.07	0.007	38.4	39.2	1.22	0.031
Comment Destaria	302	200	0.04	0.020	94	101	0.10	0.001	224	222	10.94	0.047	97	100	2.51	0.025	41.6	42.6	1.42	0.022
Compost+Bacteria	315	309	9.04	0.029	107	101	9.19	0.091	240	232	10.84	0.047	102	100	3.51	0.035	43.6	42.0	1.42	0.033
Compost+Fungus —	287	280	2.07	0.007	98	101	4.62	0.046	250	252	2.00	0.012	84	97	0.60	0.008	43.3	42.8	0.60	0.014
	290	289	2.07	0.007	104	101	4.62	0.046	255	252	2.99	0.012	83	65	0.69	0.008	42.4	42.8	0.60	0.014

Table 70 Mehlich III Concentrations in Radish Soils Continued

Treatment	(M3) Ca	(M3) Ca Avg	(M3) Ca Stdv	(M3) Ca CV	(M3) Cu	(M3) Cu Avg	(M3) Cu Stdv	(M3) Cu CV	(M3) Fe	(M3) Fe Avg	(M3) Fe Stdv	(M3) Fe CV	(M3) K	(M3) K Avg	(M3) K Stdv	(M3) K CV
Control	1331	1221	2.76	0.002	9.83	0.82	0.600	0.061	192	102	2.95	0.020	32	22	1.01	0.022
Control	1336	1551	3.70	0.003	8.98	9.85	0.000	0.001	187	192	5.85	0.020	30	32	1.01	0.032
Paotoria	1353	1252	47.35	0.035	8.88	0 00	0.479	0.054	179	170	1.54	0.000	48	19	1.12	0.024
Bacteria	1286	1555	47.55	0.035	8.20	0.00	0.478	0.034	176	179	1.34	0.009	46	40	1.15	0.024
Europe	1359	1250	o 73	0.006	8.48	0 10	0.052	0.006	179	170	6.07	0.024	43	43	0.20	0.007
Fullgus	1370	1559	0.25	0.000	8.40	0.40	0.032	0.000	170	179	0.07	0.034	43	43	0.29	0.007
Pionolid	2143	2142	42.80	0.020	8.60	8.60	0.210	0.036	123	122	2 21	0.027	55	55	1.50	0.027
Biosolid	2205	2145	45.80	0.020	9.04	8.00	0.310	0.030	118	125	5.51	0.027	53	35	1.50	0.027
Diagolid Dogtoria	2326	2326	37 34	0.016	8.07	8.07	0.927	0.115	114	114	4.00	0.035	104	104	2.01	0.019
Biosolia Bacteria	2273	2320	57.54	0.010	9.38	8.07	0.927	0.115	120	114	4.00	0.055	101	104	2.01	0.019
Biosolid+Fungus	2400	2400	10.38	0.004	8.22	8.22	0.010	0.001	119	119	3.14	0.027	114	114	2.78	0.024
	2415				8.20				114				110			
Compost	2086	2086	73.66	0.035	7.37	7.37	0.443	0.060	142	142	3.42	0.024	86	86	6.82	0.079
	2190				7.99				138				96			
Compet+Bacteria	2310	2310	56.47	0.024	7.10	7.10	0.118	0.017	133	133	1.55	0.012	99	99	3.08	0.031
Compst+Bacteria	2390	2310	50.47	0.024	7.26	7.10	0.110	0.017	131	155	1.55	0.012	103		5.08	0.051
Compost+Fungus	2294	2204	30.18	0.013	7.94	7.94	0 195	0.025	143	143	4.07	0.028	95	05	3 20	0.035
	2252	2274	50.10	0.015	7.66	1.24	0.175	0.025	138	143	4.07	0.028	90	25	3.47	0.055

Table 71 Mehlich III Concentrations in Tomato Soils

Treatment	(M3) Mg	(M3) Mg Avg	(M3) Mg Stdv	(M3) Mg CV	(M3) Mn	(M3) Mn Avg	(M3) Mn Stdev	(M3) Mn Cv	(M3) P	(M3) P Avg	(M3) P Stdv	(M3) P CV	(M3) S	(M3) S Avg	(M3) S Stdv	(M3) S CV	(M3) Zn	(M3) Zn Avg	(M3) Zn Stdv	(M3) Zn CV
Control	139	120	0.96	0.01	92	01	1.69	0.02	299	200	0.4	0.001	54	54	2.86	0.07	40	40	0.65	0.016
Control	137	159	0.90	0.01	90	91	1.09	0.02	299	299	0.4	0.001	60	54	5.80	0.07	39	40	0.05	0.010
Paotoria	138	129	2.12	0.02	89	86	2 21	0.04	316	216	20.1	0.064	60	60	2.45	0.06	44	44	2.99	0.080
Bacteria	135	158	2.12	0.02	84	80	5.51	0.04	287	510	20.1	0.004	55	00	5.45	0.00	38		5.88	0.089
Fundus	138	138	2.16	0.02	106	105	1 30	0.01	298	208	0.7	0.002	72	72	0.21	0.00	39	30	0.17	0.004
T ungus	142	156	2.10	0.02	104	105	1.50	0.01	297	290	0.7	0.002	71	72	0.21	0.00	39	,	0.17	0.004
Biosolid	141	141	1.21	0.01	60	58	2 77	0.05	284	284	19	0.007	60	60	2.58	0.04	32	32	0.02	0.001
Biosolid	143	141	1.21	0.01	56	50	2.77	0.05	281	204	1.9	0.007	63	00	2.56	0.04	32	52	0.02	0.001
Diagolid Deatori-	158	158	1.00	0.01	59	59	0.57	0.01	268	268	11.5	0.043	91	01	10.04	0.11	32	37	1 10	0.037
Diosona - Daeteria	157	150	1.00	0.01	60		0.57	0.01	284	200	11.5	0.045	77	71	10.04	0.11	34	52	1.19	0.057
Biosolid+Fungus	165	165	2.02	0.01	55	55	0.26	0.00	278	278	0.7	0.003	74	74	6.93	0.09	33	33	0.19	0.006
	162		-		55				279				84				33			
Compost	244	244	12.90	0.05	90	92	3.08	0.03	273	273	10.2	0.037	101	101	2.10	0.02	38	38	1.74	0.046
	262				94	-			288	_,.			104				40			
Compst+Bacteria	277	277	8 85	0.03	89	94	6.75	0.07	255	255	62	0.024	96	96	8 98	0.09	39	39	1 43	0.036
Compst+Bacteria	290	211	0.05	0.05	99	74	0.75	0.07	263	200	0.2	0.024	109	70	0.70	0.07	41	,	1.45	0.050
Compost+Fungus 275	278	278	8 14	0.03	100	96	5 30	0.05	274	274	1.0	0.004	87	87	0.37	0.00	40	40	0.08	0.002
	266	278	0.14	0.05	93	70	5.50	0.05	273	2/4	1.0	0.004	86	07	0.57	0.00	40	0	0.08	0.002

Table 72 Mehlich III Concentrations in Tomato Soils Continued