AN EYE TRACKING STUDY ASSESSING CODE READABILITY

by

Nishitha Yedla

Submitted in Partial Fulfilment of the Requirements
for the Degree of

Master of Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

May, 2017

Nishitha Yedla

I hereby release this thesis to the public. I understand that this thesis will be made

available from the OhioLINK ETD Centre and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this

thesis as needed for scholarly research.

Signature:

Approvals:

Nishitha Yedla, Student Date
Bonita Sharif, Thesis Advisor Date
Alina Lazar, Committee Member Date
Feng Yu, Committee Member Date
Dr. Salvatore A. Sanders, Associate Dean of Graduate Studies Date

Abstract
Software developers spend considerable time on a wide variety of tasks such as fixing
bugs and implementing new features. All these tasks require reading and understanding
code. One of the key ideas for improving maintenance processes is that code should be
highly readable so that it is easy to understand. The hypothesis behind this is that the
degree of understandability of the source code has a crucial impact on cost and effort. To
test this theory, we conducted an eye tracking study to determine how two types of code
readability rules affect performance. We focused specifically on two coding practices:
minimize-nesting rule and avoid do/while loops. We also gave participants two ranking
tasks, one for each rule. The results show a higher accuracy in solving tasks in the
minimize-nesting rule programs and avoid do/while rule programs but only for the
correct methods that followed the rule. No significant difference is found in the amount
of time spent to analyze the methods that followed the minimize-nesting rule and avoid
do/while rule. For minimize-nesting rule, we found significant difference in ease of
readability and level of confidence when the method followed the rule. For minimize
nesting rule, the visual effort was less to analyze conditional statements and the overall
method when the method followed the rule. The ranking for readability was higher for
methods that followed the rule. In the method comparison task, the visual effort (in terms
of fixations and their durations) was less to analyze the conditional statements of the
methods that followed the avoid do/while rule. The results of this study can be used by

developers and practitioners to create coding style guides based on these rules.

il

Acknowledgements

Firstly, I would like to express my true thankfulness to my advisor, Dr. Bonita
Sharif. T feel very honoured to work with her whose motivation, understanding, and
patience helped me to complete my research. I appreciate her vast knowledge and skills
in many areas and her assistance in writing my thesis report. I could not have imagined
having a better advisor and mentor for my Masters. I will forever be thankful.

I would like to thank Dr. Aponte and his student Sergio Luis Lubo Argumedo
from National University of Colombia who worked with us on a similar online study.
Further, I would like to thank the esteemed members of my committee, Dr. Alina Lazar
and Dr. Feng Yu for the assistance they provided in this research project.

A special thanks to my family for all the motivation, support given by them and
the reason being for my graduate career. I would also thank the Department of Computer

Science and the STEM College for the financial assistance during my graduate studies.

v

TABLE OF CONTENTS

LIST OF FIGURESuuouiiiiiiiiiininintinicisenisissssssisssssississssssssssssssssssssssssssssees VIII
LIST OF TABLES ...ccuuiiiiniiininiinisisississississsssssssssssssessisssssesssssssssssssssssssssssssssssses XI
CHAPTER 1 INTRODUCTION....cuiiiiinrinsensnnsanssessessessessessessessassasssssssssesssssssessassass 1
1.1 IMOEIVALIONeiiiiiiieiee ettt 2
1.2 CONtIIDULIONS. ..ottt 3
1.3 Research QUESTIONSeiecuiiieiiiecciee et et 3
L4 OrANIZAION......eeiiieiieeiieeiie ettt ettt et et e et e seteebeesaeeesbeessaeenseesnseenseesaseenseas 4
CHAPTER 2 BACKGROUND AND RELATED WORK..........iirineiincirenrecnnes 6
2.1 Code Readability StUAIes.......cccueeeiiiiieiiieiieee et 6
2.2 Eye Tracking OVEIVIEWccceevuieiieniieeiieniieeteeniee et esieeeereesieeeaeeseesnreesee e 12
2.2.1 Eye-tracking Studies in Software Engineering.........c..cccccoeveveiveniiineencnnne 12
2.2.2 Program Comprehensionc..ccceeiereerierienienieeieneeieeetesieete et sieeeesieens 15
2.2.3 DEDUZZING....eiiiiiiiiiieiieeiteeet sttt ettt e 19

23 Eye tracking Studies in other domains............cccccovveveriiniininiienicneeceeeeee, 20
CHAPTER 3 THE EYE TRACKING STUDY ...civeevuecsensecsanssensaessssssesssessacssasans 28
3.1 EXperiment DeSI@N........coouiiiiiiiiieiieeieee e 28
3.2 HYPONESES ...t 30
33 PartiCIPANTS........eeieiieiieee et 32
B4 TASKS ettt et ettt e 34

3.5 DAt COLIECTION .o eeeeeaaeen 37

3.6 Eye-Tracking APParatusccccceerieeiiienieeiiienie et sie ettt 38
3.7 Conducting the STUAY......ccoueiiiiiiiiiii e 38
CHAPTER 4 RESULTS AND ANALYSES ...cconinvniinrnnrensecsanssessanssssssssssessasssessns 41
4.1 ALCCUTACY ettt ettt ettt e ettt e st e e st e e ab e e eabeeeabeesntteesnneeesabeeenns 41
1.1 RUIE Lt 41
4120 RUIE 2.ttt 43
4.2 TAIMIC cneiteeeeee ettt ettt sb et ettt eaeen 44
421 RUIE Lot 44
4.2.2 RUIE 2.ttt 46
4.3 VISUAL EFFOIt ..ot 47
4.3.1 Creating Areas Of INTETeST.........cccuieriiiriiiiieiie e 47
4.3.2 FiXation COUNES ...c.ueeiuiiiiiiiiieeiie ettt ettt ettt ettt et esateenee e 48
4.3.3 FiXation DUIationscccceoueeiiiiiiieiieeie et 55
4.4 Ease of readability........cccoeiiiiiiiiiiii e 62
AA4.1 RUIC Lottt ettt neenaen 63
A4.2 RUIC 2 ..ottt ettt et neennens 63
4.5 Level of confidence..........c.ooiuiiiiiiiiiiee e 64
451 RULE Lottt 64
452 RULE 2.t 65
4.6 Method COmMPATISON......iiuiiriiiiiriiiiieiceit ettt ettt 66
4.6.1 RUIC L .ottt ettt ne e 66

4.6.2 RUIE 2. e 70

4.7 Post Questionnaire REeSUILSccviiiiiiiiiiiiiicciec e 73
4.8 Observations and DISCUSSIONcevueeieruierierierieieeieeieenieeie ettt eae e 74
4.9 Threats t0 VAlIILY ...c..ooouieriiiiieiieeiieie ettt e 76
CHAPTER 5 CONCLUSIONS AND FUTURE WORK.....cccccevrurrursuesansansasssessens 78
APPENDIX Study Material..........cccuieiiieiiiiiieiieeieeeee ettt en 80
AL L. StUAY INSIUCTIONS ...ovviiiiieiiieeiie ettt ettt ettt et e st eebeesateesbeesnaeeseesneeens 80
A2, Pre-QUESTIONNAITE.ccuvieeeiieeeiieeeiieeeeiteeeetteeeteeeeteeeeteeeeaseeesaseeeesseeesaeeesneeeaseeenes 81
A.3. Tasks and ComPreRenSIONcc.eeeuieiiiiiiiieiiieie et 83
A4, POSt QUESHIONNAITEevvieivieeiiieeciiee et e eeieeeeteeeeteeeebeeeeareeeetseeeeaseeesseeesseeeaneeas 116
RETETEICES ...ttt ettt 118

vii

LIST OF FIGURES

Figure 1. Proficiency in English and Knowledge in Java.........c.ccocoeviniiniiniiincnnennn. 32
Figure 2. Mother Tongue DisStribution............cccevierieiieriiniieienienieceseeeee e 33
Figure 3. Number of years actively programming in Java and other languages............... 33
Figure 4. Accuracy based on logical correctness for Rule 1 (minimize-nesting)............. 42
Figure 5. Accuracy based on certain input for Rule 1 (minimize-nesting)...................... 42
Figure 6. Accuracy based on logical correctness for Rule 2 (avoid do/while)................. 43
Figure 7. Accuracy based on certain input for Rule 2 (avoid do/while).........c.ccccceevuenen. 44
Figure 8. Time taken to analyze Rule 1 (minimize-nesting) problems..............cccccvenenn. 45
Figure 9. Time taken to analyze Rule 2 (avoid do/while) problems...........cccccocvevveeennnene 46
Figure 10. Areas of INterest...............cooiiiiiiiiiiiiiitce e 47
Figure 11, Gaze PLOt......ooieiiiieiieee et et 48
Figure 12. Overall fixation count for Rule 1 (minimize-nesting)........c..cccceevververeenuennnene 50

Figure 13. Fixation count for problem statements for Rule 1 (minimize-nesting).... 51

Figure 14. Fixation count for conditional statements for Rule 1 (minimize-nesting) 52
Figure 15. Overall fixation count for Rule 2 (avoid do/while)..........cccceviiiiiniininnnn, 53
Figure 16. Fixation count for Rule 2 (avoid do/while) problem statement 54
Figure 17. Fixation count for Rule 2 (avoid do/while) conditional statements 55
Figure 18. Overall fixation duration for Rule 1 (minimize-nesting)ccccceeveveevuennnene 57

Figure 19. Fixation duration for Rule 1 (minimize-nesting) problem statement...... 58

Figure 20. Fixation duration for Rule 1 (minimize-nesting) conditional statements........ 59

viii

Figure 21. Overall fixation duration for Rule 2 (avoid do/while)...........ccceeviiriinninnnnn. 60

Figure 22. Fixation duration for Rule 2 (avoid do/while) problem statement.................. 61
Figure 23. Fixation duration for Rule 2 (avoid do/while) conditional statements............ 62
Figure 24. Ease of readability for Rule 1 (minimize-nesting rule)cccevevvervenennnene 63
Figure 25. Ease of readability for Rule 2 (avoid do/while)ccceeviiviiniiiiniiniiiinns 64
Figure 26. Level of confidence for Rule 1 (minimize-nesting)ccoeeveevveenveenieennnnnn. 65
Figure 27. Level of confidence for Rule 2 (avoid do/while)cccoeevriiiiiiniiiinnn. 66
Figure 28. Readability ranking for Rule 1 (minimize-nesting)...........ccoceeveevuerveneenuennnens 67

Figure 29. Overall Fixation Count for the two methods in Rule 1 (minimize-nesting)
COMPATISON TASK ...ttt ettt et e te e e eneeas 67
Figure 30. Overall fixation duration for the two methods in Rule 1 (minimize-nesting)
COMPATISON TASK ...ttt ettt ettt et e ae s e enaeeneees 68
Figure 31. Conditional statements fixation count for the two methods in Rule 1
(minimize-nesting) comparisSon task..........ccceeeerirriiriininiinieeee e 69
Figure 32. Conditional statements fixation duration for the two methods in Rule 1
(minimize-nesting) comparisSOn task..........ccceveerieriiriininiceeiee e 69
Figure 33. Readability ranking for Rule 2 (avoid do/while).........ccccccevviininiiniininncnnns 70
Figure 34. Overall fixation count for the two methods in Rule 2 (avoid do/while)
COMPATTISON TASK L...eiiiiiiiiiiicei e 71
Figure 35. Overall fixation duration for the two methods in Rule 2 (avoid do/while)

COMPATTISON TASK L...eiiiiiiiiiiti e 71

iX

Figure 36. Conditional statements fixation count in Rule 2 (avoid do/while) comparison

Figure 37. Conditional statements fixation duration in Rule 2 (avoid do/while)

COMPATISON TASK ...ttt ettt et et e e e enaeeneeas 73
Figure 38. Importance of minimize-nesting rulecccevievierieniinienienieieceeseeieene 73
Figure 39. Importance of avoid do/while 100p 1ulecooeviiiiiniiiiniiiiicceee 74

LIST OF TABLES

Table 1. EXPEriment OVETVIEWcccuiieiieiiieeiieniieeieeiee et eiteeeteeseeseteeseesnneeseesnaeeseennns 29
Table 2. Treatment combination used in the study for each problem..............cccccuvenneenne. 30

Table 3. Possible trials used in the study. The columns in grey indicate comparison tasks

for ranking tWo COAE SNIPPELSeevuvieiieriiieiieeiie ettt ettt 35
Table 4. Overview of problem statements used in R1 (Minimize-nesting rule)............... 36
Table 5. Overview of problem statements used in R2 (Avoid do/while rule).................. 37
Table 6. HypotheSes TeSULLScccuiiiiiiiiiiieeii e 76

xi

CHAPTER 1

INTRODUCTION

Program reading is an important programmer activity, as code that is readable is often
considered more maintainable. Readability is a key factor in overall software quality as it
is related to maintenance (Buse and Weimer 2010). Maintenance of existing software
consumes 70% of the total software lifecycle. Programmers take a lot of time in
maintaining the software than writing code from scratch. Maintenance of software
involves tasks such as modifying the code or adding new features to the code written by
someone else. Source code can be considered readable to the programmer who has
written it, but it might not be understood easily by others. The original author of the
program is usually unavailable, and the programmer who maintains the existing software
has no other choice than to read and understand the code he is required to fix (Deimel
1985).

In general, reading plays a crucial role in tasks such as debugging, analysis,
maintenance, comprehension, and most importantly learning. Though modern IDEs come
with lot of features to help developers read the code more comfortably and quickly,
readability depends largely on how the programmer writes the source code. Many
textbooks have described programming practices to write a readable code to help
developers in writing a code that is more readable and easily understandable by others. In
this project, we conducted an empirical study using eye tracking equipment to understand

how two programming practices impact developers on efficiency, visual effort, time, ease

1

of readability, level of confidence and accuracy in understanding the code.

1.1 Motivation

Developers are likely to introduce new bugs while trying to fix the old ones or while
adding new features to the existing software if the code is difficult to read. This makes it
difficult for developers to understand the flow and side effects of the code. Several
studies have shown that software maintenance consumes a large percentage of the overall
lifecycle costs. The changing software often demands a lot of time and effort. Therefore,
researchers have created several theories, techniques, practices, and tools with the aim of
improving the wide variety of maintenance tasks.

A list of parameters have been investigated to predict the readability of a program
into the following categories: Reader characteristics, intrinsic factors, representational
factors, typographic factors, and environmental factors (Lionel and J.Fernando 1990).
One of the key ideas for improving maintenance processes is that code should be highly
readable so that it is easily understood. The hypothesis behind this is that the degree of
understandability of source code has a crucial impact on the cost and effort required for
evolving a software system. In this study, we mainly focused on two programming
practices aiming at making the control flow in the source code easy to read. Hence, we
are doing this research to provide empirical evidence of the impact of good programming
practices so that it helps the programmers to design better coding style guides based on

the results provided from this study.

1.2 Contributions

The main contribution of this thesis is an empirical study that assesses how good
programming practices impacts developers in readability of source code. Data collection
was done using an eye tracker. Subjects were students at Youngstown State University.
The goal of this thesis is to develop better teaching strategies that helps the programmers
to create coding style guides so that they can write code that is more readable. However,
to do this, we first need to conduct several studies to determine individual behavior by
using an eye tracker to determine if any differences exist before we can generalize this
process. The contributions are listed as follows:
e First eye-tracking study analyzing code readability rules.
e Two code readability rules were tested: minimize-nesting and avoid do/while loops
e The effect of correctness of the code in combination with the two rules was tested.
e A qualitative ranking was obtained for two code readability rules with respect to two

programs.

1.3 Research Questions
The research questions we seek to answer are given below.

Research Question 1 based on the minimize-nesting rule

RQ1a: Does the minimize-nesting rule reduce the time a developer spends to understand
source code?
RQ1b: Does the minimize-nesting rule increase the accuracy of a developer in

understanding source code?

RQ1c: Does the minimize-nesting rule increase the level of confidence a developer has
after reading source code?

RQ1d: Does the minimize-nesting rule improve the ease of readability a developer faces
when reading source code?

RQ1le: Does the minimize-nesting rule reduce the visual effort of a developer when

reading source code?

Research Question 2 based on the avoid do/while rule

RQ2a: Does the avoid do/while rule reduce the time a developer spends to understand
source code?

RQ2b: Does the avoid do/while rule increase the accuracy of a developer in
understanding source code?

RQ2c: Does the avoid do/while rule increase the /evel of confidence a developer has after
reading source code?

RQ2d: Does the avoid do/while rule improve the ease of readability a developer faces
when reading source code?

RQ2e: Does the avoid do/while rule reduce the visual effort of a developer does when

reading source code?

1.4 Organization
This thesis is organized as follows. The next chapter gives a brief introduction to
eye tracking and related work. Chapter 3 presents the details of the experimental design

and process used for the study. Chapter 4 discusses observations and results. Chapter 5

4

concludes the thesis and presents future work. Parts of this thesis will be published in

peer-reviewed conferences and journals.

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter first presents an overview of empirical studies in program readability
in various tasks and settings. Next, the chapter presents related work in eye tracking and its

use in the software engineering domain.

2.1 Code Readability Studies
A simple readability measure for software, Software Readability Ease Score (SRES) is
proposed and applied to object-oriented textbook examples based on the idea of Flesch.
The Flesch Reading Score (FRES) is a readability measure of natural language (Dubay
2004; Rudolph 1948). The FRES is computed using average sentence length (ASL-
words/sentences) and average word length (AWL-syllables/words) on a scale 0...100.
Texts with FRES < 30 are considered very difficult and FRES > 90 are considered very
easy.

FRES =206.835 -1.015ASL -84.6AWL
In a similar way, SRES is calculated by interpreting the lexemes (identifiers, keywords
and symbols) of a programming language as ASL and AWL as average number of words
per statement or block (delimited by curly brackets and semicolons) (Abbas 2009).

SRES = ASL - 0.1AWL

Buse and Weimer (Buse and Weimer 2010) proposed a readability measure based on 25
code features like number and length of identifiers, counts of various syntactical elements

and structures, line length, and indentation which are judged by human annotators for

small code snippets extracted from production code. Maintainability Index (MI) is a
measure used for the measurement of maintainability of software systems. The quality of
object-oriented software is characterized by using simple composite measures like
Number of Java statements (NOS) and Cyclomatic Complexity (CC). Halstead’s effort
calculated the effort required to construct a program based on number of operands and
operators. SRES was compared with the readability measures including B&W (Buse &
Weimer-measure), NOS (Number of Java statements), MI (Maintainability Index), CC
(Cyclomatic Complexity), E (Halstead’s Effort) and found to be a useful tool for helping
educators in the selection and development of suitable programs.

Several software quality metrics have been proposed and are validated empirically
proving that readability is one of the important factors affecting maintainability. A study
was conducted to analyse the scan patterns of eye movements for subjects of two
experience level, when they view a short complex algorithm written in Pascal and
(Crosby and Stelovsky 1990). The experiment was conducted with 19 volunteers which
include 10 subjects with low-experience, eight graduate students with high-experience
and one PhD faculty member. The binary search algorithm written in Pascal code was
used in the study. The results show that experience influences the viewing strategies of
subjects with respect to reading time and spend more time focusing on meaningful areas.
With increase in experience, subjects learn to discover and focus on the key areas of
information.

A book by Boswell and Foucher was written in 2011 with a key idea to make

programs highly readable and easily understood (Boswell and Foucher 2011). Many

example programs from different languages including C++, Python, JavaScript, and Java
are illustrated and analysed to show what made the code bad in terms of readability.
Several principles and techniques like surface-level improvements (naming, commenting,
and aesthetics), simplifying loops and logic, reorganizing the code were discussed based
on a fundamental theorem of readability-code. It would be easy to read a code if it has
conditions, loops, or any other control flow statements. These jumps and branches makes
the code confusing quickly. Some key points that helps the learners to avoid reread the
code were presented in this book.

When a do/while loop is used, a block of code may or may not be executed based
on the condition underneath it. One reads the code from top to bottom, which makes the
programmers ending up twice in reading the code in case of do/while loops. When while
loops are used, the reader knows the condition for all the iterations inside the block which
makes while loops easier to read. A reader requires more concentration to understand
deeply nested code, since at each level of nesting an extra condition needs to be pushed
onto to the reader’s mind. Linear code is better choice to avoid deep nesting. These
different aspects help the programmers to write easy code. These two programming
practices are mainly focused in this study.

Learning object-oriented programming depends on the individual experience,
interest and cognitive capabilities. A study was conducted focusing mainly in
determining the quality of example programs taken from different Java textbooks to help
students in learning object-oriented programming (Abbas 2009). A set of quality

attributes were proposed in this study to distinguish between good and bad examples.

Different readability metrics were calculated and were compared. It was observed that
comments in a program have a fair impact on readability and quality. The results show
that SRES scores differently on a set of example programs evaluated and it can also add
some weights based on comments, beacons, coding standards, indentation, and other
readability factors as SRES does not consider comments, white-spaces, and indentation
style at present.

Examples play an important role in teaching and learning programming. A novice
programmer can learn from good examples and will be able to know the desirable
properties on their own from the programs. A study was conducted in which the
experienced educators evaluated the quality of object-oriented example programs for
novices taken from popular Java textbooks (Borstler, Nordstrém, and Paterson 2011).
The examples are categorized as First User Defined Class, Multiple User Defined Class,
and Control Structures. These examples were rated on a 7-point Likert-type scale based
on 10 quality factors, which are classified into three categories: technical, object-oriented,
and didactic qualities. Results show that the example quality was not as good as one
might expect from common textbooks. Educators should be careful when taking
examples directly from the textbooks.

Human cognition is reflected in the text of computer programs. A study was
conducted to explore different ways in which programmers select and use names in code
(Liblit, Begel, and Sweetser 2006). Morphological and Metaphorical regularities,
grammatical sensibility in name use, containers (objects) and paths (pointers), and

overloading phenomena are mainly focused. Lexical and morphological conventions

convey basic. The results show that programmers leverage fundamental aspects of
cognition and natural language comprehension to make code easier to read and
understand.

A study has been conducted to assess the impact of 25 proposed readability features
on overall code readability in positive or negative way (Tashtoush, Zeinab, and Yatim
2013). It was observed that meaningful names, comments, and consistency has high
positive impacting improving readability. Whereas, recursive functions, nested loops and
arithmetic formulas were found to be a negative impact on the general readability
attribute. Others, such as, short scopes, identifier name length, identifier frequency,
inheritance, overriding, if-else statement, switch statement, loops (for, while, do-while),
and array were found to have no major effect on readability.

A recent study presented a new code readability testing technique to determine
whether the technique increases programmers’ ability in writing readable code (Sedano
2016). Twenty-one programmers followed code readability testing in four sessions,
where the experienced programmers were instructed to read code samples and think out
loud expressing the reader’s thought in understanding the code. The results indicated that
most of the programmers could write readable code from unreadable code after the four
sessions. The study identified several fixes to unreadable code which includes
improvements to variable names, improvements to method names, the creation of new
methods to reduce code duplication, simplifying if conditions and structures, and

simplifying loop conditions.

10

Refactoring, which means to improve the program’s structure without changing its
behavior makes a program more readable. A study was conducted to refactor 2823 lines
of C# code across 111 source files of an educational video game (Dibble II and Gestwicki
2014). The Refactoring in this study is divided into two phases: First, a popular add-on
for Microsoft Visual studio developed by JetBrains (ReSharper) was used to determine
the effect of refactoring and the second phase of refactoring consisted of six-week
manual inspection of 111 source files. Resharper identifies the issues in the code and
applies automated refactorings on each file as recommended. The refactored code is
found to be more readable and understandable. Unity3D’s built in profiler was used to
measure the performance of the system before and after refactoring. It was observed that
the performance of the system after refactoring the code has increased. A reduction of
5.46% was observed in the total lines of code. ReSharper identified 970 potential issues
within the code which was decreased to 53 by the end of the refactoring process. Though
ReSharper could find possible ways to reduce nesting, it was not able to offer any
suggestions on how to improve the structure of the method, which was focused in phase
two. Identifying and fixing these kinds of problems was entirely done by manual
operation.

A study was conducted using an eye tracker to investigate the influence of syntax
highlighting on reading source code snippets (Beelders and du Plessis 2016). Participants
are given code snipper of either black-and-white or using standard syntax highlighting. It
was observed that participant’s behavior did not differ and thus there is no effect on the

reading behavior.

11

2.2 Eye Tracking Overview

An eye tracker helps to detect where one is looking on the screen or their
movement of eye relative to the head. Eye tracker equipment captures various types of
eye movements. When a person looks at a scene, read, or search for an object the eye
movements made by them are called Saccades. The eye remains still between the eye
movements during fixation for about 200-300 Ms. Saccades and fixation are the two
common types of eye movements (Busjahn et al. 2015). Only a blur would be perceived
during a saccade, because the eyes would be moving so fast across the stable visual
stimulus and hence no new information can be obtained. Eye tracking is a source of
valuable information, which cannot be obtained by other methods. For example, a
programming educator will ask students to report answers after debugging or tracing a
program. The outcome after the specific task has ended will be recorded neglecting the
information that help understand how and why a student chose an answer (Busjahn et al.
2014). We will now discuss about the studies done in some fields starting with software

engineering and program comprehension.

2.2.1 Eye-tracking Studies in Software Engineering

The modern information system is formed by software systems, and many of those
things are most complex things ever created. Software engineering concerns the
development of new, or modification of existing, technologies (which includes process
models, methods, techniques, tools or languages) to support SE activities. The SE

research studies also includes the evaluation of the effect of using such technology in

12

complex interaction of individuals, teams, projects and organizations, and various types
of task and software system. Let us now discuss some studies related to this research.

A study was conducted using Tobii eye tracker to obtain an understanding of how
human subjects use different UML class diagrams in performing their tasks (Sharif and
Maletic 2010b). The eye tracker captured activities which includes fixation, saccades,
audio, and video. Questions related to the basics of UML class diagram and other related
to software design were presented to the participants. They observed that experts
analyzed from the centre of the diagram to the edges whereas novices focused from top-
to-bottom and left to right.

A workshop has been conducted bringing together educators as well as
practitioners to analyze how eye tracking data benefits programming education (Busjahn
et al. 2014). Recording sessions were conducted with natural language texts and
comprehension questions related to the text so that the subjects would be familiarized
with the instruments and tasks. The recording was done with an SMI REDm 120 Hz eye
tracker using the OGAMA tracking software. The professional software developers were
asked to analyze a Java code and answer few questions related to that method. Subject 1
was told to expect an answer about the return value of the program and subject 2 was told
to expect answer for a multiple-choice question about the algorithm in the code. The
analysis showed that subject 1, whose gaze was considered erratic, answered correctly
whereas, subject 2 whose gaze seemed to be more methodical, chose the wrong answer to
a multiple-choice question about the code. It is unlikely that the difference in the

accuracy of their answers are directly related to the difference in their gaze patterns as

13

both the subjects are expert programmers. These eye gaze patterns help the programmers
to identify differences in the strategies adopted with various levels of expertise, domain
knowledge, and skills. A novice can track themselves and build self-awareness while
solving a task using an eye tracker and understand how he was thinking by where he was
looking. These eye gaze data can be used to explore expert’s strategies and develop
teaching materials. This study shows that experts can read the same code using different
strategies and the one that is offered to the learners should be used from the consistent
ways used by many expert programmers. Individual students can also adapt a strategy
that fits well with their own level of approach.

A study was conducted to investigate the benefit of iTrace on large software
systems (Sharif, Shaffer, et al. 2015). The design of iTrace is flexible to record eye
movements on software articrafts which includes Java code, text/html/xml documents,
diagrams, and IDE user interface elements. The study was conducted with 22 software
developers using an Eclipse plugin. The study was compared with mylyn interaction
history data, which were gathered simultaneously and the results showed that iTrace
captures more contextual data on source code elements from different aspects of
developer’s activity compared to interaction data.

A systematic literature review (SLR) evaluated the current state of eye-trackers in
software engineering to provide evidence on the uses and contribution of eye-trackers in
software engineering (Sharafi, Soh, and Guéhéneuc 2015). To analyze the articles that
have been published using eye trackers in software engineering research from 1990 to

2014, an automated search was performed using Engineering Village instead of

14

performing manual search. Engineering visualization is an information discovery
platform that is connected to several trusted engineering literature databases. Out of 649
publications found, 35 relevant papers were identified to the uses of eye-tracking in
software engineering. The results of eye-tracking studies determine how participants
perform different software engineering tasks and how they use different models along
with the source code to understand software systems. The eye-tracking studies were
analyzed using different categories which includes model comprehension, debugging,
code comprehension, collaborative interactions, and traceability. Recommendations were
also suggested for new researchers and who wanted to perform an eye-tracking study in
software engineering community.

Behavior of the developers’ while performing a realistic change task was
investigated in a study using both eye tracking and interaction data (Sharif, Kevic, et al.
2015). The study was conducted with 22 developers, were the developers were asked to
work in three change tasks of JabRef open source system. The analysis show that the
gaze data collected by the eye tracker contains more data than the interaction data. The
behavior of the developers indicates that very few lines of code are observed by
developers when working on a realistic change task. Developers chase variables flows
within the methods, rarely follow call graph links and mostly only switch to the elements

close to the method within in the class when it comes to switches within methods.

2.2.2 Program Comprehension
A study was conducted using an eye tracker to investigate if developers read error

messages within the Eclipse IDE (Barik et al. 2017). Developers often get compile time
15

error messages through a variety of textual and visual mechanisms in integrated
development environments. Errors are represented as textual and visual mechanisms,
such as popups and wavy red underlines. To understand how developers’ use error
messages, an eye tracking study was conducted with 56 participants. The participants
were asked to resolve problematic, common defects in Java code within in the Eclipse
development environment and provide a reasonable solution for the defect.

A Gaze Point GP3 eye tracking instrument was used in this study with GP3
software and drivers installed on the computer to collect both the screen recording of the
desktop environment and to synchronize the time of recordings with the eye tracking
instrument. If all the unit tests in the Apache Common Collections library are passed after
the compile errors are removed, then the solution was considered correct. A comparison
was made between source code reading, error messages, and prior work on silent reading.
The results showed that developers were reading the error messages and the difficulty of
reading these messages was comparable to the difficulty of reading source code. The
fixations indicated that developers spend a considerable amount of time on error message
area of interest, even though most tasks had a single error message.

Inspired by the linearity that people exhibit while reading natural language text, a
recent study designed local and global gaze-based measures to characterize linearity in
reading source code (Busjahn et al. 2015). A source code is executable and requires a
specific approach to read, unlike natural language text. Eye movements of novices and
experts were compared in this study by instructing the participants to read and

comprehend short snippets of natural language text and Java programs. The study was

16

conducted with 14 novices who attended a Java beginner’s course at the university and
the study with the expert participants was conducted at their office location. Each module
given to the novice participant consisted of three programs ranging from few lines of Java
code to an entire screen full of text. Experts were given six programs in total, of which
two were the same one given to the novices in the study. The SMI RED-m remote eye
tracker set to sample at 120 Hz was used in the study and all the eye tracking data was
recorded using the open-source tool Ogama (OpenGaze-AndMouseAnalyser). After
reading each program the participants were asked to write a summary of the code, write
the value of a variable after program execution, or answer a multiple-choice question
about the algorithmic idea. The results show that novices read the source code less
linearly than natural language text. Experts read code less linearly than novices, which
indicates that non-linear reading skills increase with expertise.

The effect of programming language on student in comprehending source code
was assessed in a study, where C++ and python languages are compared in two
categories: overview and finding bug in a task (Turner et al. 2014). The study was
conducted with thirty-eight students, were the participants were instructed to read a
complete task from C++ or python language and answer questions related to the program.
The eye gazes of the participants were tracked while the participants assess the source
code. The results showed no statistical difference between C++ and Python code with
respect to accuracy and time, however significant difference was reported on the rate at

which students look at buggy lines of code.

17

A study was conducted to investigate the impact of gender on subjects’ visual
effort, time and accuracy to recall Camel Case and Underscore identifiers in
understanding the code and thus, ultimately, on program comprehension (Sharafi et al.
2012). Female subjects seem to spend more time to figure out wrong answers by
carefully looking at all options whereas, male subjects seem to quickly set their minds on
some answers. Though female subjects spent more effort to analyze wrong answers, they
had a higher percentage of correct answers when compared to male subjects. Several
software quality metrics have been proposed and are validated empirically proving that
readability is one of the important factors affecting maintainability.

Understanding a program plays an important role for the learners. A study has
been conducted using eye-tracker which shows how the identifier style in a program
impacts the code reading and comprehension (Sharif and Maletic 2010a). As the
identifiers represent major part of the program text, they play a key role in program
understanding. Camel-case and underscore are the two main identifier styles focused in
this study. A variety of data collection methods are used which includes online
questionnaires, verbal, and eye-tracking methods focusing on low-level readability issues
and mainly on semantic implications of identifier style. The results from these studies
indicate that camel-case is the best choice specially for beginning programmers.

An experiment was conducted to discover if there is any development in the way
programmers visually attend the representations provided by a program visualization
tool: Jeliot 3 during program comprehension using a remote eye-tracker (Bednarik and

Tukiainen 2006). The execution of Java programs is automatically visualized by Jeliot 3,

18

using an object-oriented approach. Participants were instructed to comprehend the Java
program and use Jeliot as they found it necessary. Some of the experienced programmers
did not use the tool but instead studied the code only. Ratio of fixation counts, attention
switching, and fixation durations between the main representations of a program were
analyzed. Experienced programmers exhibited different behavior, they spent more time
focusing on visualization than on the code. The results indicate that eye-movement based
analysis can contribute to our understanding of cognitive process involved in program

comprehension, debugging, and visualization.

2.2.3 Debugging

A study was conducted to show whether method name is likely to be meaningful
and appropriate to the implementation of the method (Hest and Ostvold 2009). A natural
language processing technique called part-of-speech tagging is performed on the method
names which decomposes the name into individual fragments to identify their
grammatical structure. On the other hand, signature and Java bytecode of the method
implementation are analysed, deriving a semantic profile for each implementation. Name-
specific implementation rules are used to identify naming bugs and suggest a replacement
phrase to use for the method. The results from applying the extracted implementation
rules on the corpus are presented in this study. These rules can also be applied to any Java
application or a library.

Software developers need to coordinate various information sources to perform
maintenance tasks effectively. The role of visual attention in the coordination of

representations during maintenance tasks was presented in a study using eye-tracking to

19

capture the visual attention strategies during debugging (Bednarik 2012). Two distinct
experience level programmers were instructed to debug a program with the help of
multiple representations. The time spent at looking each representation, the frequency of
switching attention between visual representations and the type of switch were
investigated during consecutive phases of debugging. The results determined that
repetitive patterns in visual strategies were associated with less expertise. Both the code
and graphical representations were used by the novice developers while switching
between them. Experienced developers spent more effort integrating the available

information and systematically related the code to the output.

2.3 Eye tracking Studies in other domains

Eye trackers have also been used in other disciplines such as physics. This section
briefly reports on some representative studies in other domains. A study has been
conducted as a part of physics education research to deal with the difference between
novices and expert in physics problem solving (Rosengrant 2010). Problem solving is not
always finding a numerical answer, whereas it also includes qualitative solutions. In this
study the problem-solving gap is mainly focused to see how both the groups understand
and comprehend the new material and solve problems. The scan paths of the subjects are
monitored while solving problems, instead of simply relying on verbal responses and
written work from experts and novices. This study is focused on one type of problem
solving scenario i.e., solving problems with electrical circuits to find a quantitative
solution. Eleven subjects participated in the case study of which nine subjects were

considered novices. Each subject is given a series of questions based on the circuits and

20

each of them received four subjects one at a time. The circuits were given in a Microsoft
paint document, so that they can write their work next to the circuit since the monitor was
a graphics display monitor. Calculator is also provided to subjects on the computer screen
to assist them with any quantitative analysis if needed. The questions given to the
subjects required auditory responses and numeric responses. Each subject wore a head
mounted eye-tracker while answering the questions. The eye tracker used is an applied
science laboratories model 6000 mobile control unit with scene camera. In addition to the
camera from the eye-tracker a video camera is also used to record the entire interview.

Experts evaluate their work while solving problems whereas, novices do not. Both
the experts and the novices looked back at the circuit to double check the value of the
resistors in their mathematical formulas. However, the novices only focused on their
mathematical work until they arrived at the solution by looking back and forth in their
work, but not to the circuit. On the other hand, the experts gazed back and forth between
the circuit, their work and circuits they may have redrawn to help them solve the
problem. Another difference between experts and novices is how they initially looked at
the circuit.

The subjects analyzed the circuit by simply going from one resistor to other
resistor by following the shortest path between the resistors which was common among
both the experts and the novices. Another interesting information among both experts and
novices is that they would group resistors together when they first analyzed the circuit

either in series or parallel. This method of gaze scribing provides a unique opportunity to

21

analyze problem solving behaviors. Using the scan path algorithm path difference
between subjects who answer physics problems correctly and incorrectly is investigated.

A scan path analysis is performed using an algorithm called ScanMatch, which is
used to compare DNA sequence. ScanMatch takes a saccade sequence and records this
information to create a sequence of letters which represents the location, duration, and
order of the fixations. The letter sequence of two sets of eye movements are then
compared to each other to calculate a similarity score. A similar score representing two
sets of eye movements are compared in this study (Madsen et al. 2012). The average
ScanMatch scores are produced by comparing the correct solvers to one another (C-C
comparison), the incorrect solvers to one another (I-I comparison), and the correct solvers
to the incorrect solvers (C-I comparison). There were 24 participants, with two different
levels of experience in physics out of which 10 participants were PhD students and 13
participants were introductory psychology students.

Although PhD students were expected to answer correctly when compared with
the psychology students, this may not always be the same as a wide distribution of
expertise among introductory physics students and physics graduate students was seen
(Mason and Singh 2011). The study consisted of ten multiple-choice conceptual physics
problems covering various topics in introductory physics. The participants’ eye
movements were recorded and each participant was asked to provide a verbal
retrospective report for which they were shown replay of their eye movements to explain
their thought processes. This method has been found to provide more depth of

explanation than a retrospective report. Differences in reading the problem statement and

22

answer choices may have overcome small changes in diagram viewing, resulting in no
difference in the ScanMatch scores of the C-C and I-I comparisons compared to C-I
comparisons. The results of this study suggest that wrong answers have roots in incorrect
ways student think about how the world works, not a how a problem diagram looks.
These findings implicate the educational interventions aimed at helping novices learn to
answer such conceptual questions correctly.

The distribution of expertise among introductory physics students was assessed by
asking the students to categorize the mechanics problems based on the similarity of
solution (Mason and Singh 2011). The categorization of physics graduate students and
faculty members was compared to evaluate the effect of problem context on students. A
large overlap was observed between the categorizations. The results showed that it is not
appropriate to classify all graduate physics students as experts and all introductory
physics students as novices.

The use of eye tracking in gaming changes the experience of players with or
without the use of manual input devices and are widely used to assist people with
decreased limb mobility by preventing manual operation of computers (Isokoski et al.
2009). An eye-mouse mode of operation is offered by most eye trackers. The mouse
cursor will be placed at the point where a player is looking by using the tracker software
commands. The mouse button press is also sent to the operating system whenever the
player’s gaze remains within a small area for specific amount of time by most of the eye
trackers. These mouse emulation techniques are generally sufficient to play some games.

An additional software is also used outside both the eye tracker and the game itself. The

23

source code of the game can also be modified to allow eye control if it is available. This
method is applied very rarely since most of the commercial games source code is not
available and this method has more labor intensive than the previous ones. Building a
new game from the scratch also allows the game design to maximize the potential of eye
tracker input. This method is most labor intensive method and differs from other game
genres and can be achieved only by creating new games (Isokoski et al. 2009). When a
person is using eye tracker for the first time, the experience may feel as if things happen
merely by thinking about them and tends to evoke positive reaction. Using the gaze
attention of the player’s, the behavior of the players can be estimated. Distinct gaze
patterns of players with varying skill and gender results in new considerations for future
game design.

An eye tracking study was conducted to supplement usability tests in both
commercial and academic practice (Ehmke and Wilson 2007). An empirical study was
conducted to find a range of possible correlations between usability problems and eye-
tracking patterns. The users were asked to test two websites to extract the usability
problems from the data and correlate with eye-tracking patterns. Usability companies are
offering many eye-tracking services like website evaluation reports with session images
and heat maps (Ehmke and Wilson 2007). Two different websites were used in this study
with one specific task each. These website-task combinations included different kinds of
interactions like scanning text, reading, text input, usage of navigation elements, scanning
of pictures, searching etc. A wide range of usability problems were expected from these

tasks. The study was performed using a Tobii X50 eye-tracker which is a free standing,

24

non-invasive device. The eye tracker return the tracking status every 20ms. Verbal
protocols and observational data of the participants was collected to identify usability
problems. Two distinct approaches were used for correlating with eye-tracking patterns:
page problem, where the usability problem and the eye-tracking pattern are connected to
the same element on a page and site problem, where the usability problem and the eye-
tracking pattern are connected to the same element that is present on different pages of
the site. With the help of eye tracking patterns the user behaviour was explored to
specific usability problems. A series of different metrics were observed from the
sequences of eye-tracking patterns which includes high number of fixations across the
page and navigation, followed by fixations on one element. (Ehmke and Wilson 2007).

An eye tracking study was conducted investigating the use of eye movements in
evaluating the usability of World Wide Web-Page designs (Cowen, Ball, and Delin
2002). The performance measure of four different websites was compared based on
different eye movement metrics. Participants were asked to complete two tasks on each
of the four website homepages to find information about either using a mobile phone
abroad or buy a new mobile phone handset. Total Fixation Duration, Number of
Fixations, Average Fixation Duration, and Fixation Spatial Density were used in
analysing the data. The time-based eye-tracking metrics which are Total Fixation
Duration and Average Fixation Duration showed the same significant difference as
shown in the performance measures (Cowen, Ball, and Delin 2002).

A study was conducted to support synchronous collaboration in remote settings

with a shared workspace and reduce the effort required to communicate about specific

25

locations in code. Two programmers can work together on a single project using pair
programming. With the use of novel gaze visualization, remote pair programmers can
identify where their partner is looking currently in the cod. The color of the code changes
when they are looking at the same thing (D’Angelo and Begel 2017). Software
developers from technology company were asked to participate in this survey. Each of
the two participants had their own display, mouse, keyboard and an attached remote eye
tracker. Tobii TX300, Tobii EyeX was used at monitor 1 and monitor 2 respectively. A
visual studio 2015 extension was created which helps to share the screen and support
gaze visualization. Two code editor windows displayed the project code in the extension
whose text and user interface are accessible to one another.

Participants were asked to work in two refactoring tasks to clean up the C# code
for a game like Flappy Bird. The participants were asked to fill out a 13-question Likert
scale questionnaire about their feelings in performing the task. Whenever a participant
made a reference or verbally acknowledged a reference, the type was recorded, the time
was logged, and it was given a description. The total amount of time spent looking at
same thing was calculated for each pair of participants, which was divided by the total
time spent on each task. The programmers were faster and more successful at
communicating using implicit, deictic references (such as this, that) as the programmers
were looking at the same thing at the same time with the help of visualization. The design
served as a helpful aid for coordinating remote work and could easily be integrated into

many other forms of collaborative document editing.

26

A computational cognitive modelling of the perceptual, strategic, and oculomotor
processes that people use in a search task was presented in a study (Halverson and
Hornof 2007). Visual search is an important part of human-computer interaction. A
minimal visual search model was proposed that helps in predicting and understanding
user behavior in HCI. The research proposed three characteristics of a minimal model of
visual search: eye movements tend to go to nearby objects, fixated objects are not always
identified, and eye movements start after the fixated objects are identified. It was
proposed that any applied model of visual search should include at least these three
characteristics. The cognitive models used in this study were built using the EPIC
(Executive Process-Interactive Control) which captures human perceptual, cognitive, and
motor processing constraints in a computational framework. A variety of eye movement
data observed in the visual search behavior were explained when compared to the
previous models of the same task without using eye movement data.

The next chapter will cover the details of the eye tracking study.

27

CHAPTER 3

The Eye Tracking Study

This chapter presents the details of the empirical study conducted as part of this
thesis. It gives details on the experiment design, hypotheses, participants, data collection,

tasks, and how the study was instrumented.

3.1 Experiment Design

To understand the impact of good programming practices on software developers,
we decided to conduct this experiment on two code readability rules taken from (Boswell
and Foucher 2011). We focused on the programming practices aimed at making the
control flow in the source code easy to read and the avoidance of the do/while loop.
Specifically, we considered two coding practices that we present as rules:

) R1. Minimize-nesting rule

° R2. Avoid do/while loop rule

An overview of the experiment is given in Table 1. The experiment seeks to
analyze methods with these two coding rules for the purpose of evaluating their impact
on the readability of the source code. The participants are instructed to read and
understand the code snippet shown to them and answer few questions related to the code
snippet that will give a measure of their actual level of understanding. They were also
asked to answer their level of difficulty and confidence level in their own degree of

understanding the code snippets.

28

Table 1. Experiment overview

Goal Impact of two programming practices on developers
Independent variables Correctness, readability
Dependent variables Time, confidence level, Level of understanding

Since we are going to manipulate two Boolean variables (correctness, readability), our
study will have four treatments namely, T1, T2, T3, and T4. The table below summarizes
the correctness and readability values of the four treatments designed for testing one
readability rule. Correctness refers to whether a Java method satisfies the problem
specification (Boolean variable) and readability refers to whether a Java method follows
the readability rule (Boolean variable). We have designed 4 problem statements for each
rule and each problem will have 4 different solutions (All solutions are expressed as Java
methods). Thus, the jth solution (or version) for the Pk problem is denoted as PxVj, where
k € 1...4, and j € 1...4. With respect to the factors, such solutions or versions will have
the following characteristics:
e PyViis a correct solution to the Pk problem that follows the readability rule we
are interested in.
e PyV; is another correct solution to the Pk problem that does not follow the
readability rule.
e PyV;is an incorrect solution to the problem Px that follows the readability rule.
e PyV4is an incorrect solution to the problem Px that does not follow the readability

rule.

29

Table 2. Treatment combination used in the study for each problem

Treatment Combination

Readability

Follows the rule

Does not follow the rule

correct

T
This is a correct solution
to a problem that follows

T2
This is a correct solution to a
problem that does not follow

the readability rule (The | the readability rule (The
version1 method) version2 method)

T3 T4
This is a buggy solution to | This is a buggy solution to a
a problem that follows the | problem that does not follow
readability rule (The | the readability rule (The
version3 method) version4 method)

Correctness

incorrect

Therefore, we used 16 methods to test one single readability rule. The methods do not
call any other methods, or use objects of other classes. Thus, the participants do not
require to study additional code to understand the method or scroll down as the method
fits on a single screen. To avoid carryover effect, each participant is given four methods
in a randomly selected order, and each one of such solutions corresponds to a different

problem.

3.2 Hypotheses

Based on the research questions presented above four detailed null hypotheses
based on each of the dependent variables are given below.

Hlo: There is no difference in the fime a developer spends in understanding the
source code with or without the minimize-nesting rule.

H2o: There is no difference in accuracy a developer obtains after understanding

the source code with or without the minimize-nesting rule.

30

H3o: There is no difference in the level of confidence a developer has after reading
the source code with or without the minimize-nesting rule.

H4o: There is no difference in the ease of readability a developer faces when
reading source code with or without the minimize-nesting rule.

H50: There is no difference in the visual effort a developer faces when reading
source code with or without the minimize-nesting rule.

Hé6o: There is no difference in the fime a developer spends in understanding the
source code with or without the avoid do/while rule.

H70: There is no difference in accuracy when a developer obtains after
understanding the source code with or without the avoid do/while rule.

HS8o: There is no difference in the level of confidence a developer reach after
reading the source code with or without the avoid do/while rule.

H90: There is no difference in the ease of readability a developer face when
reading source code with or without avoid the do/while rule.

H10o: There is no difference in the visual effort a developer does when reading
source code with or without avoid the do/while rule.

Alternative Hypothesis: Our alternative hypothesis is that the source code that

follows the mentioned rules is more readable, that is, the readers may require less time to
understand it, their level of understanding is higher, their confidence level in their own

level of understanding is higher, and the visual effort required is lower.

31

3.3 Participants

We recruited graduate and undergraduate students from three classes at YSU. The
first class was principles of programming language; the second class was the server-side
class on web development and the third class was software engineering. There were 29
students from three of these classes, out of which 20 were graduate students and 9 were
undergraduate students. All the methods are created using Java programming language
and we asked our participants to self-assess their programming skills in the pre-
questionnaire. We asked our participants to self-assess their skills in the pre-

questionnaire. Figure 1 shows demographics of participants.

19

2 -

GOOD POOR SATISFACTORY VERY GOOD

m English Proficiency Knowledge in Java

Figure 1. Proficiency in English and Knowledge in Java

We can see that most of the participants have very good proficiency in English.
Nineteen participants have satisfactory skill whereas, a very few have poor skill in Java

language. Figure 2 shows the mother tongue of the participants.

32

= Total

ENGLISH HINDI NEPALI TELUGU

Figure 2. Mother Tongue Distribution

Figure 3 shows the number of years’ participants have been working in any programming
language and specifically in Java. Most of the participants have been actively
programming between 1 and 3 years and only one participant have been programming
from more than 5 years. Two of the participants are currently working as a developer in

software companies.

MORE THA 5 YEARS

1

BETWEEN 3 AND 5 YEARS 8 ‘ ‘
BETWEEN 1 AND 3 YEARS _ 14
m Programming in Java Programming in any language

Figure 3. Number of years actively programming in Java and other languages

3.4 Tasks

We designed four methods for both the rules of the study with four different
solutions for each method. The experiment is divided into two parts: Part A is a method
analysis task which includes four problems from Rule 1 and four problems from Rule 2,
Part B is a method comparison task which includes two versions we designed for problem
Px. Assuming that, there will be 24 subjects (denoted by Sbj) and all subjects will be
exposed to all treatments, each participant will be given the four solutions in a randomly
selected order, and each one of such solutions will correspond to a different problem.

Table 3 shows all the possible trials used in the study. The grey shaded areas
correspond to part B of the experiment. Note that PkV] for R1 is different from PkVj for
R2. Subject 1 analyze solution V1 for problem P1, the solution V2 for problem P2, the
solution V3 for problem P3, and solution V4 for problem P4 with a similar arrangement

of tasks for another readability rule as shown below.

34

Table 3. Possible trials used in the study. The columns in grey indicate comparison
tasks for ranking

two code snippets

P2v2

P3V3

P4V4

P1V1

P1Vv2

P1V3

P2v4

P3V1

P4Vv2

P1V1

P1Vv2

P2v2

P3v4

P4V3

P2V1

P2v2

P1V3

P2v4

P3v2

P4V1

P2V1

P2Vv2

P2V3

P3Vv2

P4V4

P3V1

P3Vv2

P1Vv4

P2V1

P3v2

P4V3

P3V1

P3Vv2

P2V3

P3v4

P4v2

P4V1

P4Vv2

P1Vv4

P2V1

P3V3

P4Vv2

P4VA1

P4Vv2

P2Vv4

P3v2

P4V3

P1V1

P1Vv2

P1V3

P2v4

P3V1

P4v2

P1V1

P1V2

P2Vv4

P3V3

P4Vv2

P2V1

P2V2

P1V3

P2v4

P3V2

P4Vv1

P2V1

P2V2

P2V1

P3V3

P4Vv4

P3V1

P3V2

P1Vv4

P2Vv1

P3V2

P4V3

P3V1

P3V2

P2V1

P3v4

P4V3

P4V

P4V2

P1v4

P2Vv1

P3V3

P4Vv2

P4Vv1

P4V2

P2V3

P3V1

P4Vv4

P1V1

P1V2

P1V3

P2V1

P3V2

P4v4

P1V1

P1V2

P2V3

P3v4

P4V1

P2V1

P2V2

P1V3

P2V1

P3Vv4

P4Vv2

P2V1

P2V2

P2Vv4

P3V1

P4V3

P3V1

P3V2

P1V3

P2v2

P3V1

P4v4

P3V1

P3V2

P2v4

P3V3

P4V1

P4Vv1

P4V2

P1V3

P2v2

P3v4

P4V1

P4V1

P4V2

P2V1

P3Vv2

P4Vv4

P1V1

P1V2

P1v2

P2V3

P3V1

P4V4

P1V1

P1V2

P2V1

P3v4

P4v2

P2V1

P2v2

P1Vv2

P2V3

P3Vv4

P4VvA1

P2v1

P2Vv2

P2Vv2

P3V1

P4v4

P3V1

P3v2

P1Vv2

P2v4

P3V1

P4V3

P3V1

P3Vv2

P2Vv2

P3v4

P4V1

P4Vv1

P4v2

P1Vv2

P2v4

P3V3

P4VvA1

P4Vv1

P4Vv2

P2Vv4

P3V1

P4Vv2

P1V1

P1V2

P1V1

P2v4

P3V2

P4V3

P1V1

P1V2

P2Vv4

P3Vv2

P4V1

P2V1

P2V2

P1V1

P2v4

P3V3

P4Vv2

P2V1

P2V2

P2V1

P3Vv2

P4V3

P3V1

P3V2

P1Vv2

P2Vv1

P3V3

P4v4

P3V1

P3V2

P2V1

P3V3

P4Vv2

P4V1

P4V2

P1Vv2

P2V1

P3Vv4

P4V3

P4V1

P4Vv2

P2v2

P3V1

P4V3

P1V1

P1V2

P1V1

P2v2

P3V3

P4v4

P1V1

P1V2

P2v2

P3V3

P4V1

P2V1

P2V2

P1V1

P2v2

P3Vv4

P4V3

P2V1

P2V2

P2V3

P3V1

P4v2

P3V1

P3V2

P1V1

P2V3

P3v2

P4V4

P3V1

P3V2

SloyZm P1V4

P2V3

P3Vv2

P4V1

P4Vv1

P4V2

P1V1

P2V3

P3v4

P4Vv2

P4V1

P4V2

35

For Rule 1, the Java methods involved are FindTheBiggest, FindGrade,

BodyMassIndex, and CountPosNumbers. For Rule 2, the methods involved are

WholsTheAuthor, ChangePassword, SumPositiveNum, and CountLetter. The problem

statements for R1 and R2 rules are shown in Table 4 and Table 5 respectively. The

complete set of study questions including all background questions and post

questionnaires can be found in the Appendix.

Table 4. Overview of problem statements used in R1 (Minimize-nesting rule)

Problem

Problem statement

1

Finding the largest of three numbers. Given three integer numbers, the method
must return the greatest.

Determining the grade using the marks obtained. The given mark is an integer
between 0 and 100. The method must return a letter. Letter A if mark = 90; B if
mark € [80; 90); C if mark € [70; 80); D if mark € [60; 70); and F if mark < 60.

Determining the Body Mass Index Category. The method receives the body mass
index (bmi), and must return the category in which the index is located. The
category is” very severely underweight” if bmi < 15;” severely underweight” if bmi
in [15; 16);” underweight” if bmi € [16; 18:5);” healthy weight” if bmi € [18:5; 25);”
overweight” if bmi = 25.

Counting the positive numbers. Given three integers, the method must count how
many of them are positive numbers.

36

Table 5. Overview of problem statements used in R2 (Avoid do/while rule)

Problem Problem statement

1 Prompting the user to answer a multiple-choice question. The method must
show the question, get the user response, and end when the user chooses the
correct answer or when she decides not to try more (typing ‘q’ or ‘e’).

2 Let's assume that we want to force a user to change her password. The user
must give a new password that has 4 different characters. Besides, the given
password must be different to the old one. The method receives the old
password as a parameter and asks the user to give the new one.

3 Summing the positive numbers in an array. The method receives an integer
array as a parameter and must return the sum of the positive numbers in the
array.

4 Counting the occurrences of a character. This method receives a string and a

character as parameters. It must count and return the number of occurrences of
the character in the string.

3.5 Data collection

The participants were asked to answer questions related to the method after
analyzing each task through an online questionnaire. In the method analysis task, the
participants were instructed to read the problem statement, analyze one of the four
solution methods proposed for a problem, rate the readability of the method, answer a
multiple-choice comprehension question, rate the level of confidence about their own
level of comprehension, and answer about the correctness of the method. On the other
hand, in the method comparison task the participants were instructed to read the problem

statement, and rank the order of readability of the methods from best to worst. There was

37

no time constraint in reading the method. Each question was timed and the subjects’ eyes
were tracked using eye tracker. We used Tobii Studio to collect data for this study.

In addition to the online questionnaires, we collected eye tracking data and
audio/video recordings of subjects at Youngstown State University because we have
access to an eye tracker at this location. We obtained IRB approval (153-2017) and

training before we began this study.

3.6 Eye-Tracking Apparatus

The Tobii X60 eye tracker was used in this study in the Software Engineering and
Empirical Studies Lab at the Computer Science Department at YSU. This eye tracker
generates 60 samples of eye data per second and the user does not require to wear any
head gear. Tobii X60 is a 60Hz video-based binocular remote eye tracker, whose average
accuracy is 0.5 degrees which averages to about 15 pixels. A dual monitor extended
desktop setting was used in the study. The monitor used was a 24 inch screen with a
resolution set at 1920*1080. The first monitor was used by the experimenter to setup and
initiate the study. The eye gaze data and audio/video recordings of the entire study are
recorded by the eye tracker on the second monitor. The eye gaze data includes
timestamps, gaze positions, fixations count, fixation duration, pupil size, and validity

codes.

3.7 Conducting the Study
The test was conducted in the Software Engineering Research and Empirical

Studies Lab (SERESL). The participants are provided with the consent forms as well as

38

an instruction sheet. Once they read the instructions, they will decide whether to
participate in the study or not. They can withdraw themselves if they have any concerns.
The participants were then asked to fill out the pre-questionnaire that include their
background details, programming experience, knowledge of Java, and the reading skills
in English. The test can be attempted by one student at a time as the lab can have one
student in at a time. Before starting the study, calibrations will be done to make sure that
the subjects eyes are in sync with the eye tracker.

The participants are asked to maintain a position in the chair during the study so
that we do not lose the tracking of their eyes. Subjects will see a red circle with a black
dot in the middle on the screen when the calibration is started. Once we get good
calibration results, researcher can start the session. A good calibration appears with the
green vector in the circle and not too far away from the circle. If the researcher does not
find a good calibration, the re-calibration must be done. Subjects are encouraged to ask
questions, so that they understand the instructions. Correct answers of the test are not
given to the subjects.

The researcher is always present with the subject during the study to make sure
that the eyes are always tracked which is determined by the track status in the Tobii
studio keeping it on the left screen. The subjects are encouraged to think out loud while
reading the methods and look at the screen all the time except when they need to type an
answer keeping the head movement limited. The subjects can see the code snippet with

no time limit and click the LEFT mouse button to move to the next screen. We do not

39

pause or end the session once the recording starts, unless they want to withdraw

themselves due to emergency and start a new session if they wish to continue.

40

CHAPTER 4

Results and Analyses

This chapter presents the results from our controlled experiment. We discarded data from
two problems analyzed by two participants since they clicked the left button of mouse too
soon and were not able to analyze that method. We have removed participants’ data from
the avoid do/while loop rule where we noticed that the session was not recorded properly.

Since each participant is given a different version of the method, we used the
Mann-Whitney test (o = 0.05) for all our dependent variables to find the significant

differences between the methods that follow the rule and ones that do not follow the rule.

4.1 Accuracy

This section presents the results of the participants based on accuracy. The
participants were asked to expect whether the Java method satisfies the problem
specification and expect the answer for a multiple-choice question: if the method worked
properly based on certain input. For example, the method that finds the count of positive
numbers is presented with the following question: The method does not work properly

when the input numbers are 1, 0, and 2.

4.1.1 Rulel

With respect to accuracy in rule 1, when the participants are asked to answer
whether the Java method satisfies the problem specification, Mann—Whitney test showed
that there was no significant difference for accuracy (p=0.385). Figure 4 shows the

accuracy based on logical correctness of all participants grouped by problems.

41

V4 (BUGGY SOLUTION-DOES NOT
FOLLOW RULE)

V2 (CORRECT SOLUTION-DOES NOT
FOLLOW RULE) £ -

V3 (BUGGY SOLUTION-FOLLOWS RULE) 20
V1 (CORRECT SOLUTION-FOLLOWS RULE) 23 s
N
Yes mNo

Figure 4. Accuracy based on logical correctness for Rule 1 (minimize-nesting)

When the participants were asked to answer if the method worked properly based
on certain input, we did not find any significant difference (p=0.376) when the method
followed the minimize-nesting rule. However, the participants answered more accurately
when the method is correct and followed the minimize nesting rule. Figure 5 shows the

accuracy based on certain input of all participants grouped by problems.

V4 (BUGGY SOLUTION-DOES NOT 9 T .)
FOLLOW RULE)

V2 (CORRECT SOLUTION-DOES NOT

(s
FOLLOW RULE) -

V3 (BUGGY SOLUTION-FOLLOWS RULE) 6

V1 (CORRECT SOLUTION-FOLLOWS ‘ ll ‘ ’ |
i]

Correct = Incorrect

Figure 5. Accuracy based on certain input for Rule 1 (minimize-nesting)

42

4.1.2 Rule2

In terms of accuracy with respect to logical correctness of the method, the Mann-
Whitney test showed no significant difference (p=0.683) between the methods that
follow the rule and the one that does not follow the rule. We found that participants tend
to answer more accurately when the method is correct and follows avoid do/while loop
rule. Figure 6 shows the accuracy based on logical correctness grouped by all the

methods and respective participants from avoid do/while rule.

Vq{BUGiYO?_?SL\:J::{%TgOES NOT 18 10
o rorow e 0 e

V3 (BUGGY S(?{LUU;I)ON—FOLLOWS 5 m
V1 (CORRECT SF(?JILJE'I;ION—FOLLOWS : : 24 : : %ﬁ

Yes = No

Figure 6. Accuracy based on logical correctness for Rule 2 (avoid do/while)

We did not find difference in accuracy based on certain input (p=0.975) when the
method followed avoid do/while loop rule. However, the participants answered more
accurately when the method is correct and follows avoid do/while rule. Figure 7 shows
the accuracy based on certain input grouped by all the methods and respective

participants from avoid do/while rule.

43

V4 (BUGGY SOLUTION-DOES NOT 5 —
FOLLOW RULE)

V2 (CORRECT SOLUTION-DOES NOT

v 1n T

12
|

V1 (CORRECT SOLUTION-FOLLOWS
RULE)

V3 (BUGGY SOLUTION-FOLLOWS v ST
RULE) | | |
I

Correct m Incorrect

Figure 7. Accuracy based on certain input for Rule 2 (avoid do/while)

This shows that for both the readability rules, accuracy was higher for the correct

methods that followed the rule.

4.2 Time
The time taken to analyse a method by the participants is presented in this section.

The timestamp of all the participants is recorded using Tobii Studio.

4.2.1 Rulel

With respect to the time taken to analyse the method, we did not find any
significant difference (p=0.127) when the methods followed the rule. Figure 8 shows the
time taken by all the participants to analyze problems from rule 1 grouped by all methods
followed by the box plots for the methods that follows the rule and does not follows the

rule.

44

Time in Seconds

V4 (BUGGY SOLUTION-DOES NOT FOLLOW
RULE)

V2 (CORRECT SOLUTION-DOES NOT FOLLOW
RULE)

|

V3 (BUGGY SOLUTION-FOLLOW RULE) _

V1 (CORRECT SOLUTION-FOLLOWS RULE)

Fuln - Flusnils ks 1 Do anl LAbomam iuin

e _ 1.8

R FA

L ur

B TE
5 " E 1]
E C

[ERE o = -

— + |
) - ' - |
. B
b)

Figure 8. Time taken to analyze Rule 1 (minimize-nesting) problems

45

4.2.2 Rule2

For the avoid do/while loop rule we did not find significant difference when the
methods followed the rule (p=0.479). Since the participant felt that some of the methods
in avoid do/while loop rule are difficult, we think that the participants took more time to
analyze them. Figure 9 shows the time taken by all the participants to analyze problems
from rule 2 grouped by all methods followed by the box plots for the methods that follow

the rule and the one that does not follow the rule.
Time in Seconds

V4 (BUGGY SOLUTION-DOES NOT —
FOLLOW RULE)

V2 (CORRECT SOLUTION-DOES NOT
FOLLOW RULE)

V3 (BUGGY SOLUTION-FOLLOWS RULE) _ ‘

V1(CORRECT SOLUTION-FOLLOWS RULE)

a)
Mubk: 2 - Pulicas e Rute 2 - Coes nakfzlowe rule
ELd Cohl
L
]
(=]
£ -
L o T
- 3
r H
= L E i
+ r1 - +
L4
r el

Figure 9. Time taken to analyze Rule 2 (avoid do/while) problems
46

4.3 Visual Effort
The data from Tobii studio is exported to calculate the visual effort of the
participants taken to analyze the methods. The visual effort of the participant is known by

calculating fixation count and fixation duration of each participant.

4.3.1 Creating Areas of Interest

Before we calculate fixation count and fixation duration, we need to create area of
interest on every method used in the study. The Figure 10 shows the AOIs for find the
biggest number method used in the study. The AOIs comprise of each line of source
code. The number of AOIs are equivalent to the number of lines in the method. We do

not count any eye gazes that fall outside these lines on blank space.

CHELE g f1-P1V1-L 4 HmTwWe ;

R1-P1V1-L10

Figure 10. Areas of Interest
The Figure 11 shows the gaze plot of one participants. The gaze plot visualization

represents the sequence and position of the fixations on the method where the participant

47

has seen. Each circle indicates a fixation that the participant has made. The size of the dot
indicates the fixation duration and the number in the dots represent the order of the

fixations.

GazeFlot

Media: R1-F2V4 png

Time: 00:00:00.000 - 00:01:10.234
Participant filker: All Participants

Mumber of participants included: 173 (33%)

ftﬂ_g‘n//’ /

==Y ‘.‘. a0y
d

@2 @YD’
% @%e®

—=

=14~ |'finch =iint marks) |
[

: PL"""\ g e > 80)
- BN D aB M

e ..’

rC

Figure 11. Gaze plot

4.3.2 Fixation Counts

The fixation count denotes the number of fixations spent in total within the AOI for
each method. For example, if a method has 10 lines, we would total the fixation counts
for each of those 10 lines. This resulting number would give us the fixation count for that

method. In this study, we focused on calculating the fixation count of overall method,
48

problem statement and the conditional statements used in the method. For example, in the

find the biggest number we considered the “if -else” statements of the method.

4.3.2.1 Rulel

We observed significant difference in fixation count for the correct solution that
followed minimize-nesting rule (p=0.007). This shows that people looked the method
less number of times when the method was correct and it followed the rule. Figure 12
shows the fixation counts of all the participants grouped by all methods followed by box

plots for the methods that follow the rule and the one that does not follow the rule.

49

iE-

vl

)

"ae by Soamd Siemod

TE-

P4
P3
P2
P1

Rule 1

273 559 - 242 52
268 246 497 400
211 418 ‘140 464
266 313 : “-*_
Seconds

V1 (CORRECT SOLUTION - FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS RULE)
® V2 (CORRECT SOLUTION - DOES NOT FOLLOW RULE])
= VA (RUGGY SOILUTION - DOFS NOT FOIHOW RUIF)

a)

Tula 1 - Fulkvea un Rule1s Corsnooioloras rul

THEIET aE-Liacnl

L

b)

Figure 12. Overall fixation count for Rule 1 (minimize-nesting)

We did not find significant difference in fixation count of problem statement that
followed minimize-nesting rule (p=0.534). However, for problem 1 and problem 2, we
observed that the fixation count was high for the problem statement when the method
followed the rule. This shows that the participants looked the problem statement less

number of times when the method followed minimize-nesting rule.

50

RULE 1

P4 549 29 13671
P3 604 1077 2 764

P2 448 85 603 559

p1 | 107 166 Maman s | | | | ‘
|
V1 (CORRECT SOLUTION - FOLLOWS RULE)
V3 (BUGGY SOLUTION - FOLLOWS RULE)
V2 (CORRECT SOLUTION - DOES NOT FOLLOWS RULE)
& V4 (BUGGY SOLUTION - DOES NOT FOLLOWS RULE)

a)

Rule 1« Rilawsrilz Rube 1o Does ranfolows rule

I SCUE -F'CEZ W
-
Pullm
¥ A

(N 1]
]
+

Figure 13. Fixation count for problem Et)atements for Rule 1 (minimize-nesting)
For conditional statements, we found significant difference in fixation count when
the method followed the rule (p=0.003). This means that the participants looked at the
conditional lines more number of times when the method did not follow the rule. Figure
14 shows the fixation count of conditional statements of all the participants grouped by
all methods followed by box plots for the methods that follow the rule and the one that

does not follow the rule.

51

RULE 1

P4 | 254 | 192 ST T
P3 | 200 251 (162394
P2 |134 135 358 Rz

P1 363 2?1 nl_l—

V1 (CORRECT SOLUTION - FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS RULE)
® V2 (CORRECT SOLUTION - DOES NCT FOLLOW RULE)
= V4 (BUGGY SOLUTION - DOES NOT FOLLOW RULE)

a)

HLUET - RITAR LI Ful= 1 - Corsnos kalonsnie

x
s
"

L

§
§

]
]

El

I INET LI L3711 1 o mEsrine

LI TEATEN BN AT U T TR AT L

=

b)

Figure 14. Fixation count for conditional statements for Rule 1 (minimize-nesting)

4.3.2.2 Rule 2

For the avoid do/while rule, we did not find significant difference in fixation

count when the method followed the rule (p=0.317). Figure 15 shows the fixation counts

52

of all the participants grouped by all methods followed by box plots for the methods that

follow the rule and the one that does not follow the rule.

Rule 2

P4 2077 1043 1112 1243
P3 03 1899 [NI231WEIIFIN
P2 |'1106 9083 IEEESTHIIN BT

|
P1 2765 | |3328 I“*?il“

V1 (CORRECT SOLUTION - FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS RULE |
® V2 (CORRECT SOLUTION - DOES NOT FOLLOW RULE)
= V4 (BUGGY SOLUTION - DOES NOT FOLLOW RULE)

a)
Fale - Mol bamu ks Snule 2 - Canemnne ol o ke
1= o
- "=
-
T F
III 5‘..
§ e §
t £
FEEE = =
- =
1 ‘ 1= -
2 L4
b)

Figure 15. Overall fixation count for Rule 2 (avoid do/while)

We did not find significant difference in fixation count for the problem statement

(p=0.401). Figure 16 shows the fixation counts of problem statements of all the

53

participants grouped by all methods followed by box plots for the methods that follow the

rule and the one that does not follow the rule.

Rule 2

P4 140 85 - [; -

P3 |40 132 EREETEN

P2 91 (25 N) S -) S—) S— . —)

p1 224 169 [g 5 ’ ‘

Seconds
V1 (CORRECT SOLUTION - FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS RULE)
= V2 (CORRECT SOLUTION - DOES NOT FOLLOW RULE)
= V4 (BUGGY SOLUTION - DOES NOT FOLLOW RULE)

a)

Rulr i -Folkeaes niz Aule 1 - Coes narlalowe rule

4

“Ad

5

= -

E

¥

&

R inAE -FIETHN

RILEREIRATRE B L LR

b)

Figure 16. Fixation count for Rule 2 (avoid do/while) problem statement

We did not find a significant difference in fixation count when the method

followed the avoid do/while loop rule (p=0.675). However for problem 2 and problem 3,

54

the fixation count was less for the method that followed the rule which means that

participants spent less time to analyze these conditional statements.

Rule 2

P4 27 26 [EIBSIES28=a
P3 21 25 T T —
P2 23 20 7 g G

P1 67 69 EEFnE
Seconds
V1 (CORRECT SOLUTION - FOLLOWS RULE)
V3 (BUGGY SOLUTION - FOLLOWS RULE)
¥ V2 (CORRECT SOLUTION - DOES NOT FOLLOW RULE)
w VA4 (BUGGY SOLUTION - DOES NOT FOLLOW RULE)

a)
Rule? - Falivae rule Auled - Coeeg maefalowe rule
Lhl v
=u nH
k H
E =
B =
[LY -
E -
: z=
] E
¥ ‘e
. .
. =
: i Y
; H -
o L.l
|] 8
b)

Figure 17. Fixation count for Rule 2 (avoid do/while) conditional statements

4.3.3 Fixation Durations
The fixation duration denotes the duration of all the fixations within the AOIs for
each method. For example, if a method has 10 lines, we would total the fixation durations

55

for all the fixation counts for each of those 10 lines. This resulting number would give us
the fixation duration for that method. In this study, we considered to calculate the fixation
count of overall method, the problem statement and the conditional statements used in the
method. For example, in the “who is the author” method we considered the “do/while”

statements of the method.

4.3.3.1 Rulel

We observed that the fixation duration significantly less for the methods that
followed minimize-nesting rule when compared to the methods that does not follow the
rule (»p=0.005). This shows that the participants took less time to analyze the method that
followed the rule. Figure 18 shows the fixation duration of all the participants grouped by

all methods.

56

Rule 1

V4 (BUGGY SOLUTION - DOES NOT
NOT FOLLOWS RULE]
V2 (CORRECT SOLUTION - DOES NOT
FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS
RULE)

V1 (CORRECT SOULTION - FOLLOWS
RULE)

Seconds

a)

Eule 1 - Ml ke (ule Rued - Cosenotiolost rils

T
=

=

k

133" LIRIER 0}

b)

Figure 18. Overall fixation duration for Rule 1 (minimize-nesting)

We did not find significant difference in fixation duration of problem statement
for the method that followed minimize-nesting rule (p=0.363). However for problem 1
and problem 2, we observed that the fixation duration was less for the problem statement
when the method followed the rule. This means that participants took less time to analyze

these problem statements when the method followed the rule.

57

RULE 1

P4 150 70 3518
P3 161 329 i LB S B C E T

V1 (CORRECT SOLUTION - FOLLOWS RULE]

V3 (BUGGY SOLUTION - FOLLOWS RULE)
= V2 (CORRECT SOLUTION - DOES NOT FOLLOWS RULE)
= V4 (BUGGY SOLUTION - DOES NOT FOLLOWS RULE)

P2 1oslssT

P1 |49 39768 300 "
| |

Seconds

a)

Rulm 1 - Falinwer s Rk - Does nanfedlos e

TEIK~ SLAEN 3] -FROHHT
P Bl juj =Frsklim

b)
Figure 19. Fixation duration for Rule 1 (minimize-nesting) problem statement

We found significant difference when the method followed the minimize-nesting
rule (p=0.001). This means that the participants took less time to analyze the conditional
statements when the method followed the minimize-nesting rule. Figure 20 shows the
fixation duration of all the participants grouped by all the methods followed by the box

plots of the method that follow rule and the one that does not follow rule.

58

Rule 1
P4 |73 577196 10!

P3 |48 59 47/ 101"
P2 259 agl [ss§ [|75 |

| | |
P1 | 100 71 F#

Seconds

V1 (CORRECT SOLUTION - FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS RULE)
® V2 (CORRECT SOLUTION - DOES NOT FOLLOW RULE)
= V4 (BUGGY SOLUTION - DOES NOT FOLLOW RULE)

a)

Rulm 1 - Fallinarr e Fubz 1 - Docs tol Fol b nub:

a
E

SF IOl TITHHTETE
A M
1
B =

ALILE
]

]
1
Ploiw s Gomaddbw asf ool b als o vm n
[

EN X L.TKT

kB
"]

B

|

Figure 20. Fixation duration for Rule 1 (minimize-nesting) conditional statements

.\.
-

b)

4.3.3.2 Rule2

We did not find significant difference in fixation duration when the method
followed avoid do/while rule (p=0.249). However, we observed that the fixation duration
was less for correct solutions that followed avoid do/while loop rule when compared to

the correct method that did not follow the rule. Figure 21 shows the fixation duration of

59

all the participants grouped by all methods followed by the box plots of the method that

follow the rule and the one that does not follow the rule.

P4

P3

P2

P1

FFdaE s Doglen &)

Rule 2

490 310 305 317

Seconds
V1 (CORRECT SOLUTION - FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS RULE)
¥ V2 (CORRECT SOLUTION - DOES NOT FOLLOW RULE)
u V4 (BUGGY SOLUTION - DOES NOT FOLLOW RULE)

a)

Role - Frllbas nis Sule 2 - Coreno'ollows rale

=

L -
- -

MislkEn Jursdn a)-Crarl

-

’TI

b)

Figure 21. Overall fixation duration for Rule 2 (avoid do/while)

We did not find significant difference in fixation duration for the problem

statement (p=0.267). However, we found that the fixation duration was less for the

correct solution of problem 2 and problem 3 when the method follow avoid do/while rule

which means that the participants took less time to to analyse these problem statements.

60

Rule 2

P4 140 85 |7EEN ITEEN
P3 |40 132 [[[y - A

| I | | I
P1 224 169 s sa

P2 91 61 [y N | ‘
| | ‘

Seconds
V1 (CORRECT SOLUTION - FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS RULE)
= V2 (CORRECT SOLUTION - DOES NOT FOLLOW RULE)
= V4 (BUGGY SOLUTION - DOES NOT FOLLOW RULE)

a)

Bl ? - Puliraziudd Rufe 2 « Coes rarfalows rule

+

& <

-

£l

rernon Aarrpa= i), -FcoEm
Poalmn T, o V51

-

b)

Figure 22. Fixation duration for Rule 2 (avoid do/while) problem statement

We did not find significant difference in fixation duration for the conditional
statements (p=0.457). However, the fixation duration was less for problem 3 and problem
2 when method followed the avoid do/while loop rule. This means that participants spent
less time to analyze these conditional statements when the method followed avoid

do/while rule.

61

P4 27 26 [EISEEEEPAEEN

P3 21 25 EEEEEEEEIIES

P2 23 20 HEEERE e s

Pl 67 69 [b B

Seconds
V1 (CORRECT SOLUTION - FOLLOWS RULE)

V3 (BUGGY SOLUTION - FOLLOWS RULE)
® V2 {CORRECT SOLUTION - DOES NOT FOLLOW RULE)
® V4 (BUGGY SOLUTION - DOES NOT FOLLOW RULE)

a)
Fuk] - Pulivraa 1de Rk 2 - (Doe nanfelloas e
1 - n
+

EH- * i
EI! E.n.-
o :
i
k =
G v
E ..
5 + £
ko= L
E i
- - e

' ’ 1

Figure 23. Fixation duration for Rule 2 (avoid do/while) conditional statements

4.4 Ease of readability
After analyzing each method, the participants were asked to answer their ease of

readability about the method. The results of the participants are presented in this section.

62

4.4.1 Rulel

In terms of ease of readability for a method, we found a significant difference
wthen the method followed minimize-nesting rule (p=0.002). The participants only felt
that the method is very difficult to read and difficult to read when the minimize-nesting
rule is not followed by the method. Most of the participants felt that the methods are easy
to read and very easy to read when the minimize-nesting rule is applied. Figure 24 shows

the ease of readability of each method grouped by respective participants.

Gef L lnlbeepel fniirade
RS DAHALL P R I TRV RAAT ELS5UE 1 .
FAFATORAL ¥ L]] FA5 ¥ WAL " b " R E—— —]
LAULTAR S - T
L1 FILLT TFLRL it | NIFTT TTO ATAR

YR RITH TTIRFER NI NI TR AR | | |

1"ET Eimenl saumod ol owe bule
Pk i aim alea Bl
aF T ol bk Des el ks keal

178l Kiepadd Gdier-lkees bl
Fru o Sodorkow =oll e 1T i
B ITLT Frmne d Adrm o= e § oo, Pk

B L 1T e L el R RS w1747 Py Schd bk -Sian nel odbrn i
Lals M IndesCalenurs CaumTes™umbers
W1 EC LAY KL B 1 T R WL LSy RO Al 3 *
FANC IO BTN (O i R 1T KN R L] L
LW s v —— KM | es—
LR R RRHE B H

NITKUCTORBD m
IR L LA T Rl WO INHHAL UL

147 pouta il Sl L} Pale)
L AT TC TR TR T T T | : s by 4

GLCED TR DR BRI JETS 1475 B bl Tl Sk
BOTAT vl whde e e mol] eBe Fn] = VAT Roerre o Loburon- Lo modl odbnea Bl
LILEER TRTT R FER RN | P T | W1V gy Sl D med Telloran 1l

Figure 24. Ease of readability for Rule 1 (minimize-nesting rule)

4.4.2 Rule2

In terms of ease of readability when avoid do/while rule is used, we did not find

significant difference (p=0.431). However, for the method count letter, participants felt

63

difficult to read when the method did not follow avoid do/while loop rule and easy to

read when the method followed the rule respectively. Figure 25 shows the ease of

readability of each method grouped by respective participants.

&1 IPLF2h Tonilind s

I hanpePaeswnnl

1

Whuls LBeiudlnr
M FRSY H2EEAD (Sl
TR T ETAD |
Kl “ a [— P —]
NETNIET TOERan =] B
LT SLTIFINTTO RN | | |

1 Tédpana] bdwoan Il Fuk,
FTE Ay Halslan bdone ke
w1 Td? Winrad teblee ol nd Crlran Bo k]

ol Ted Reggpyialalea <lawand L idre ldd)

TYEATONTY e
L R ITE & a
wEpmeEI s | | | |

(REE R BRI L LT

I annl blddinr Dolhesa sk
FriTays Sdrn BRli-ac Rk
8 PTG ol Balmin Do el Moo Fa]

B FAE Eys b e creer eedee ek

Sum PasteheeNums Coun Leiter
NTEY FAST TOFn 3 mgm SEATEASS ILAHEEL: Lo
TAST G A ok 1 e eessla—" (LG TR]] KT i 1 i L |
MOMTES. |1 e M HER 4 - I G
FITHL TTORFN [DIFTWOULT I3 RCArD T ——
FRTTTE ATTORA | | W L LU s | [| [

PR Wddona o Dl iras Thda wLn R | kel b
L7 Popesal 1ilts -T2 heeweile| WS ik gm skl Dol da

u PP F e saierie - Casa mie Tl sacu ik L] adu b Loz oul b s b

mFT Fagey &l riea Do i=d es Filz| m PR Ty Sl Teesre™ R ke Fa i

Figure 25. Ease of readability for Rule 2 (avoid do/while)

4.5 Level of confidence
The participants were asked to rate their level of confidence after reading the

source code. The results of the participants are presented in this section.

4.5.1 Rulel
In terms of level of confidence the participants reach after analyzing the method,
we found a significant difference (p=0.002) when the method followed minimize-nesting

rule. Though few participants felt neutral and somewhat confident about the method,

64

most of the participants felt very confident when the minimize-nesting rule is used.

Figure 26 shows the level of confidence of each method grouped by respective

participants.
Nl e fleers
VRFYCOLTINGMT s Hmgm
AR T W i i N A

FHIIFA

ROTVEFF CORTIDENT
R AT AL IR H

FTEXEN DU RS R
PN 0O A TIT A - T YA T
BFTES P AREE D IS DIE B HE AL R

IR T ERRA AR T 6 R S B T T T

Ll Vs Ilecl alemrg

R LA 4 ER N
LS LG B R KT HER | b T B
MLTRA | e

AU s A LAl [
HOTATA TOAELT AT |

[FL RN ST ER | e B TR T TR |

1P PAEY S UL ISR EIN]
B FRRE BONRRRST T LTOM - B0 HOTEN | AR Ty
B TR [AEALE SOLU R AR LT P

WERTIETNENT (|
LTLE PR DT B | 4 L] iy ESfE Ua)
SRl i 7 I
AU SO ILUHD L
HOTAT AN COESRTET
FANS iy WL LU CH LR AL UL FALE)
Find IR |l R 1l A A e

mFiEd AL R EH SR]
LR O R R IR o T

ConiFes™vanliers

VEANLLH ILER] 4 L5
SLTM LT P HFITELT o . I
H L 1 ———
Filsdlri DR

HOT ATA OCHIIDERT

PAALALEEL | IR | LA ALED
FRAVEIEESSY ST IR F2I O BLIT]

= P ORCCT FOUIMOH D028 MOT MOLL Ve S A LD
w P dBARTS LA R LD PO T ULLARAE FLLL

Figure 26. Level of confidence for Rule 1 (minimize-nesting)

4.5.2 Rule?2

In terms of level of confidence the participants reach after analyzing the method,
we did not find significant difference when the method follows avoid do/while loop rule
(p=0.284). However, for the method who is the author, the participants felt very
confident and somewhat confident when the method follows avoid do/while loop rule and
not very confident when the method did not follow the rule. Figure 27 shows the level of

confidence of each method grouped by respective participants.

65

4.6

solutions of the method that follows the rule in part B of the experiment. Results of

WhulsThe uttar
WTOTEINTHT o s e
SN QY TH 1 a [|k}l ()
LTI 4 T g

LHTRTEPIRTLTT b] 7 gm
WIS N FEIET [y e |

PIN) asresl adat o= il bdeh
PR i s Srm b s B
m [F LT W sy S - et vt Tl v Baded

e s wlnleo Pieiad hlliee Kide]

HuniFreiles cNunes

SEECMAVINEET | 5 I
SO RTR I ek 1 E I i e
WA j—
|

KU AT LU
BT ATSL MYRNH

I &1 oo el wrkes - d kesm s
PRALE g S i o b e Bula]
= PWT Ko Solrder - Fowr red Td wom Pl wi

BFRLf m bl M md Dl ik b

Chapeelesenurd

LT WS 7 - g
SO DRIV bl El T
RIHTER, 3 —"—————

EHIWIRSSS YL

Eybans Pham mt Fidb e B o

BIRL 0 NI 0 CONHIE

PR o] adales il s bl
PR s Sl b Db Bl S
& POIT Framy s
1 PR jhywSiona e sk kol B

Coumleller

SEECMAVINEET | 5 I
SO RTR I ek 1 E I i e
WA j—
|

KU AT LU
BT ATSL MYRNH

I &1 oo el wrkes - d kesm s
PRALE g S i o b e Bula]
= PWT Ko Solrder - Fowr red Td wom Pl wi

BFRLf m bl M md Dl ik b

Figure 27. Level of confidence for Rule 2 (avoid do/while)

Method Comparison

The participants were asked to rank the order of readability for two correct

participants are presented in this section.

4.6.1 Rulel

Most of the participants answered that method which follows minimize-nesting rule is

We observed a large variation when the method followed minimize-nesting rule.

more readable.

66

Rule 1 - Readability

M &

FOLLOWS RULE DOES NOT FOLLOWS RULE

Figure 28. Readability ranking for Rule 1 (minimize-nesting)

We did not find significant difference in overall fixation count (p=0.323). Figure
29 shows the fixation count of the methods that follow minimize-nesting rule and the one

that does not follow minimize-nesting rule.

Fulm 1 - Falinamr bs Fika 1 Bl Pnllcawe e

ARIIF LILIM - &dral

Figure 29. Overall Fixation Count for the two methods in Rule 1 (minimize-nesting)
comparison task

67

We did not find significant difference in overall fixation duration (p=0.291).
Figure 30 shows the fixation duration of the methods that follow minimize-nesting rule

and the one that does not follow minimize-nesting rule.

Auis 1- Falanerule LK 7 - MO PGS e

Femten Jarm o g- 2rardd

Figure 30. Overall fixation duration for the two methods in Rule 1 (minimize-
nesting) comparison task

We did not find significant difference in fixation count of the conditional
statements (p=0.125). Figure 31 shows the conditional statements fixation count of the
methods that follow minimize-nesting rule and the one that does not follow minimize-

nesting rule.

68

Rule1 - Falowerule ALk - Pt foloawe mule

a]
-

*<LIMCEONE TRHIHTE
[
]

IemEn Jm=
H

-+

Fludhm =

Figure 31. Conditional statements fixation count for the two methods in Rule 1
(minimize-nesting) comparison task
We did not find significant difference in conditional statements fixation duration
(»p=0.457). Figure 32 shows conditional statements fixation duration of the methods that
follow minimize-nesting rule and the one that does not follow minimize-nesting rule.

Ruled Rilowerils Ak 1 Mol folowe mule

el digmmn poas

ATICH LA -0 (Sril M EHT I
-

=gl Ol meaeSanml o
-

Figure 32. Conditional statements fixation duration for the two methods in Rule 1
(minimize-nesting) comparison task

69

4.6.2 Rule?2
The readability was slightly higher for the method that followed the avoid
do/while loop rule. This shows that the participants found the method more readable

when the method followed readability rules.

Rule 2 - Readability

FOLLOWS RULE DOESNOT FOLLOW RULE

Figure 33. Readability ranking for Rule 2 (avoid do/while)

We did not find any significant difference in overall fixation count (p=0.145)
when the avoid do/while loop was used. Figure 34 shows the fixation count of the
methods that follow avoid do/while rule and the one that does not follow avoid do/while

rule.

70

Mz ¥ - Fullire Mui: Rule 2 Hod Falliws nule

=

[]

k
'
raud

Fbm er Ok -0l
£
Fhaba Svad - 3

&
+

3
i [

Figure 34. Overall fixation count for the two methods in Rule 2 (avoid do/while)
comparison task

We did not find any significant difference in overall fixation duration (p=0.080)
when the avoid do/while rule was used. Figure 35 shows the fixation duration of the
methods that follow avoid do/while rule and the one that does not follow avoid do/while

rule.

Ruk: 2 Hodbollmne naic Rl Folioes Ak

El

4 L]
i i
al
-

L]

Pl o Coy- s mi - Draarall
=
Flralbs s Bu osllan s - S
- < -

L]
=
.

o
i
-

Figure 35. Overall fixation duration for the two methods in Rule 2 (avoid do/while)
comparison task

71

We observed a significant difference in conditional statements fixation count (p=0.036)
when the avoid do/while loop was used. This shows that the participants looked the
conditional statements less number of times when the methods followed avoid do/while
rule. Figure 36 shows the fixation count of the methods that follow avoid do/while rule

and the one that does not follow avoid do/while rule.

Reb2 - Falki sE Ul Fake I - Kok fpdiormg rulm

a =

- I. & -
H

.- i
Fa P
B 7
; Pe
2 ;
L] fw +

H

Fem:z-
u

=7

Figure 36. Conditional statements fixation count in Rule 2 (avoid do/while)
comparison task
We observed a significant difference in conditional statements fixation duration
(»=0.026) when the avoid do/while loop was used. This shows that the participants took
less time to analyze the methods that followed avoid do/while rule. Figure 37 shows the
fixation duration of the methods that follow avoid do/while rule and the one that does not

follow avoid do/while rule.

72

Rk Foloms e Rule 2 - Hoo Palioes pule

-

=

v
Fuslon Cow (Do) == lka d slaanals
. - - H

Fba: < Sarwbkc-la-drb-p e THREE

3=

[= r

Figure 37. Conditional statements fixation duration in Rule 2 (avoid do/while)
comparison task

4.7 Post Questionnaire Results

The participants were asked to rank the importance of minimize-nesting rule and
avoid do/while loop rule used in the study in the post questionnaire form. Most of the
participants thought that minimize-nesting rule is very important and somewhat
important. None of the participants thought that minimize-nesting rule is not at all

important.

W Total

Neutral Somewhat important Very important

Figure 38. Importance of minimize-nesting rule

73

Most of the participants thought that avoiding do/while loop rule is somewhat important
and very important. Some of the participants also thought that avoiding do/while loop
rule is not important and somewhat not important. Figure 39 shows the graph that the

participants ranked in post questionnaire.

m Total

Neutral Not important ~ Somewhat Somewhat not Very important
imporatant important

Figure 39. Importance of avoid do/while loop rule

4.8 Observations and Discussion

Based on the analysis presented, we find that developers tend to read the source
code accurately when the two coding practices were used and the methods are correct.
We did not observe much progress in accuracy for the incorrect methods that followed
the rules. Since the participants did not know that the method may contain bugs, it is
possible that there is no significant difference in accuracy for buggy solutions. However,
there was a tendency to understand the source code better when the methods are correct

and follow the rule. There is no significant difference in visual effort for the buggy

74

solution that does not follow the rule. Once the participants click the left mouse button,
they cannot see the method while answering the questions. We think that the results may
differ for the buggy solutions if the participants were informed about the errors in the
method before they analyzed and allowed them to look back at the method whenever
required.

Most of the participants analyzed the methods from minimize-nesting rule very
quickly when compared to avoid do/while loop rule. While analyzing the last methods in
the study, some of the participants showed lack of interest. When the participants were
asked to answer if the method is logically correct or not, few participants gave the reason
about why the method is logically incorrect based on their analysis. Participants took
more time to answer about the correctness of the method based on certain input, as one
cannot look at the code while answering the questions. Two of the participants took more
than an hour to complete the study. Table 6 shows whether the hypotheses are accepted
or rejected based on the results. As shown below, we do find a significant difference in
the level of confidence and ease of readability rankings from participants. We also found
significant differences on conditional statements when the minimize-nesting rule was
followed. However, we did not get any significant difference in any of the other
hypotheses. One reason for this could be due to the low sample size in our studies. We
plan to perform this study with more participants in order to increase our confidence in

the results and improve our external validity threat.

75

Table 6. Hypotheses results

Hypothesis R1 R2
Minimize-Nesting Rule Avoid do/while Rule

H1o: R1-Time Rejected -

H20: R1-Accuracy Rejected -

H3o: R1-Level of confidence Accepted -

H40: R1-Ease of readability Accepted -

H50: R1-Visual Effort Accepted for overall method -
and conditional statements

H60: R2-Time - Rejected

H70: R2-Accuracy - Rejected

H80: R2-Level of confidence - Rejected

H90: R2-Ease of readability - Rejected

H100: R2-Visual Effort - Rejected

4.9 Threats to Validity

To overcome the influence of human factors we collected demographic data to make sure
that the participants had a proficient java programming level, acceptable English reading
skills, and no reading disorder. The participants were also asked (i) not to assume the
survey as an assessment of their programming skills, (i) complete the survey in a single
session without any pause or interruption, (iii) not to use other tools to answer the
respective questions, (iv) not to worry about the time to analyze the method, and (v) to be
focused on understanding each method, since the participant cannot go back to the
method once the set of questions appear on the screen.

To avoid any poorly designed artifacts, we conducted a pilot study with two
graduate students before we started the actual experiment. This helped us to detect
unclear problem descriptions, deficiencies in the questionnaires used in the study, and too
complex code snippets or questions. We also monitored the overall feasibility and the

time required to complete each task of the study.

76

To avoid any carryover effects, we organized the trials in such a way that each
participant analyzed four different problems for a readability rule and each of the four
solutions proposed for these problems is a different treatment. These solutions were again
presented to each participant in a random order. External validity threats reduce the
degree of generalization of our results. Firstly, these results could be valid for languages
with similar loop and conditional constructs since we restricted the scope of the
experiment to test the impact of rules related to simplifying loops and logic. However, if
the code snippets used are more complex and have dependencies on other methods, the
results may be somewhat different. Secondly, the subjects were mostly graduate and
undergraduate students, so that it is plausible that our conclusions cannot be fully applied
to the population of professional developers. Therefore, replications involving industrial

subjects or other types of source code samples are highly desirable.

77

CHAPTER 5

Conclusions and Future Work

Program reading is an important skill and should be explicitly taught when
learning how to program. Reading code is important because it is the first thing
developers do to maintain a software system. Developers spend lot of time maintaining
code, even more than writing the code from scratch. They need to read and understand
the code before fixing bugs and implementing new features to existing code. We
conducted an empirical study to see how two coding practices impact the degree of
understandability of source code on effort.

For both the readability rules, we hypothesize that developers will be more
accurate to analyze the correct methods following the rule. We find this to be true,
however, our developers were not accurate analyzing the incorrect methods that followed
the rule. The level of confidence and ease of readability of the programmers to analyze
the methods increased using minimize-nesting rule. The visual effort of developers
(determined through eye fixation counts and durations) was less to analyze the overall
method and the conditional statements when the method followed the minimize-nesting
rule. From the method comparison tasks, we observed that developers felt the methods
are more readable when the rules are applied. In the method comparison task, when the
avoid do/while rule is used, there was a significant difference in the visual effort to
analyze conditional statements when the method followed the rule.

Future work includes collecting more data to minimize our external validity threat

even further. We plan on running this study with industry professionals to determine if

78

we find any differences in the results we got with students used in this study. In addition,
the visual effort of students/practitioners based on keywords used in the methods that can
be used to provide valuable feedback to developers on task difficulty or determine when
they are fatigued and need to take a break.

Researchers and practitioners can use this information to create coding style
guides based on these rules. We can provide evidence to teach programming to students

using specific rules that have been shown to be more effective.

79

APPENDIX Study Material
You will find all the tasks here including the pre-questionnaire, post-

questionnaire, tasks used in the study and the questions related to the tasks.

A.1. Study Instructions
This study is concerned with software readability. Software readability is a
property that influences how easily a given piece of code can be read and understood.

¢ Your task is to carefully read some code snippets and then you will be asked to
answer questions about them.

e We will record the time you need to read the code snippets and answer the
questions.

¢ Your answers and timing will only be used to study the readability of code and
not to assess your performance.

e Please note that you cannot go back to a question that you have already finished
answering.

e In total, you will see eight java methods in two parts. The whole exercise will take
about 20 minutes. In the first part, you will be asked to read eight Java methods
after which you will be asked very specific questions about it. You will not be
able to see the source code while you are answering the question. So please take
your time to understand the methods before you move on to answer the questions.
When you are done with the reading the code on the screen, click the LEFT

mouse button only once to advance to the next screen.

80

In the second part, you will be shown two different ways in which a method is
written to accomplish the same task. You will need to choose which one is more
readable in your opinion and state why.

Please do not guess the answers.

You will fill in your answers in a web form that will pop up automatically.

For each question, you will be asked to rate the difficulty level you faced and your
confidence in the answer you provided. Use the mouse to select the options. 7
Please try to maintain your position in the chair while you do the study so that we
do not lose the tracking of your eyes. Moving the chair back or moving yourself
back in the chair will cause the eye tracker to stop tracking. Small head
movements such as looking at the keyboard to type should be fine.

Find a comfortable position so we can begin. We will first begin with calibrating
your eyes. Look at the black dot in the centre of the red circle and follow it around

on the screen.

A.2. Pre-Questionnaire

1.ID: *

2. What is your mother tongue (native language)? *

3. In what country do you live? *

4. Do you have some form of reading disorder, such as dyslexia? *
a. Yes
b. No

5. Are you currently working as a developer in a software company? *
a. Yes
b. No

81

6. Are you currently an undergraduate student? *
a. Yes
b. No

7. Are you currently a graduate student? *
a. Yes
b. No

8. Please rate your English proficiency (in reading) *
a. Very Poor
b. Poor
c. Satisfactory
d. Good
e. Very Good
9. Please rate your knowledge of the Java programming language *
a. Very Poor
b. Poor
c. Satisfactory
d. Good
e. Very Good

10. Please indicate the number of years you have been actively programming (in any
language) *
a. Less than 1 year
b. Between 1 and 3 years
c. Between 3 and 5 years
d. More than 5 years
11. Please indicate the number of years you have been actively programming in Java *
a. Less than 1 year
b. Between 1 and 3 years
c. Between 3 and 5 years
d. More than 5 years

12. How many years have you been working as a professional programmer? *
a. Less than 1 year
b. Between 1 and 3 years
c. Between 3 and 5 years
d. More than 5 years
e. I have not worked as a professional programmer

82

A.3. Tasks and Comprehension

The tasks used in the study and the questions given for each of the tasks are
presented in this section. Note that the version numbers indicate the type of solution
presented in the study. For instance, Version one indicates that the method follows the
readability rule and is the correct solution for the problem specification, whereas version
two indicates that the method does not follow the readability rule and is the correct
solution for the problem specification.
Rule 1 - Problem 1

Version One

public int findTheBiggest (int numOne, int numTwo, int numThres)
int thelargest = 0;
1f (numTwo < numThrees) |
thelargest = numThree;
1oelse
if (numTweo > numOns) |

thelargest = numTwo:

1
if { {inumCne > numTwo) && (numOne > numThree)) |

thelargest = numOne;

H

return thelargest;

83

{

Version Two

public int findTheBiggest (int nuwudne,

int thelargest = 0;

int numTwo,

if [(numSne > numTwo) && (numOne > numThrees)) |
thelargest = numOne;

1

if {(numTwo > numOne) && (numTweo > numThrees)l) |
thelargest = numTwo;

}

if ({numThree > numTwo)] && (mumThree > numOne))
thelargest = numThree;

b

return thelargest;

'

Version Three

public int findTheBiggest (int numOne,

int thelargest;

int

if (numCne < numTwo) |

if (numTweo <
thelargest
Voelse
thelLargsest
}
}oel=se
1f (numfne <
thelargest

1 oelse |

thelargest

}

numThreea) |

= numThres;

numT wo ;

numThres=) |

= numThrees;

= numone;

return thelLargest:;

84

numT o,

int numThree)

{

int numThree)

{

{

Version 4

public int findTheBiggest (int numOne, int numTwo, int numThree)
int thelargest = numOne;
if (numTwo > thelLargest) |
thelargest = numTwo;
}
if (nmumThree > thelargest) |

thelargest = numThree;

i

return thelargest;

Questions

Based on your programming experience, how would you rate the readability of the
previous piece of code? *
1. Very difficult to read

2. Difficult to read
3. Neutral

4. Easy to read

5. Very easy to read

Which of the following statements is true about the code you just read? *
1. The method does not work properly when the input numbers are 1, 1, and 2
2. The method does not work properly when the input numbers are 2, 2, and 2
3. The method does not work properly when the input numbers are 1, 2, and 3
4. The method works properly when the input numbers are all zero.

How confident are you in your own level of comprehension of the previous method?
*

1. Very confident
2. Somewhat confident
3. Neutral
4. Not very confident
5. Not at all confident
Is the method you just saw logically correct? *
I. Yes
2. No

85

{

If you selected No above, please explain why the method is not logically correct

Rule 1 - Problem 2

Version One

public static char findGrade (int marks) |
if (marks >= 9200 |
return TAT;

h
if (marks < 90 && mark=s > 80) {

return BT ;

h
1f (marks < 80 && marks > 700 {

return TCT ;

h
1f (marks < 70 && marks >= @01 |

return DT ;
h

return "FT;

86

Version Two
public static char findGrade (int marks)

char grade:;
if (marks =>= 90 |
grade = TAT;
1 else |
it (marks >=>= 801 {
grade = TBT;
1 el=se |
if (marks >= 707 {
grade = TC7;
Voelse

if (marks >= s0) |

grade = TD7;
Voaelse |
grade = TFT;

}

return grade;

87

{

Version Three

Version Four

if (marks >=>= 90

return TAT;
h
if

(marks >= 80)

return BT ;
'

if (marks >= 70)
return TCT;

i

if (marks >= &)

return DT ;
}

return TFT;

public static char

char grade;

if (marks >= 90)
grade = TAT;

1 elze 1f (marks
grade = TBT;

1 elze 1f (marks
grade = TCT;

1 elze 1f (marks
grade = TDT;

boelse
grade = TET;

}

return grade;

{

{

{

{

public static char findGrade (int marks)

findGrade (int marks)

o
Il

o
Il

o
Il

88

89 && marks > 80)

79 && marks > T0)

69 && marks > 60)

{

Questions

Based on your programming experience, how would you rate the readability of the
previous piece of code? *
1. Very difficult to read

2. Difficult to read
3. Neutral

4. Easy to read

5. Very easy to read

Which of the following statements is true about the code you just read? *
1. The method does not work properly when the input mark is 80
2. The method works properly when the input mark is 70
3. The method does not work properly when the input mark is 50
4. The method does not work properly when the input mark is 0

How confident are you in your own level of comprehension of the previous method?
*

Very confident

Somewhat confident

Neutral

Not very confident

Not at all confident

M

Is the method you just saw logically correct? *
I. Yes
2. No

If you selected No above, please explain why the method is not logically correct

&9

Rule 1 - Problem 3

Version One

public static String bodyMassIndexCategory (double bmi) |

if (bmi < 15.00) |
return "Very severely underwsight”;

'

if (bmi »= 15.00 && bmi < 16.00) {
return "Severely underwsight”;

'

if (bwmi »= 16.00 && bmi < 18.5) |
return "Underweight”;

'

if (bmi > 18.50 && bmi < 25.00) |
return "Normal (healthy weight)™;

1

return "Overweight"”;

90

Version Two

public static String bodyMassIndexCategory (double bmi)

String result;

if (bmi < 15.00) /¢

result = "Very severely underwsight™;
}oelse |
if (bmi < 16.00) /¢
result = "Severely underweight™;
Foelse |

if (bmi < 18.5) [

result = "Underweight”:
Foaelse |
if (bmi < 25.00)
result = "Normal (healthy weight) ™;
}oelse |
result = "Overwseight™;

}

return result;

91

{

Version Three

public static String bodyMassIndexCategoryidouble bmi) |

if (bmi < 15.00%

return "Very severely underweight”;
1
if (bmi < 16.00) ¢

return "Sewverely underweight™;
'
if (kmi < 18.5) ¢
return "Underweight™;
'
if (kmi < 25.00)
return "Normal thealthy weight)™;
'

return "Overwslght”;

92

Version Four

public static String bodyMassIndexCategory (double bmi) |
String result;
if (bmi < 15.00) ¢
result = "Very severely underweight™;
}oelse
if {(bmi »= 15.00 && bmi < 16&.000 §
rezult = "Severely underweight”;
1 aelse |
if (bmi »>= 15.00 && kbmi < 18.5) [
rezult = "Underweight"”;
1 else |

if (bmi > 18.50 && bmi < 25.00) ¢

result = "Normal (healthy weight)";
I oaelze
result = "Overwsight™;

H

return result;

Questions

Based on your programming experience, how would you rate the readability of the
previous piece of code? *
1. Very difficult to read

2. Difficult to read
3. Neutral

4. Easy to read

5. Very easy to read

Which of the following statements is true about the code you just read? *
1. The method does not work properly when the bmi is 18.5
2. The method does not work properly when the bmi is 10

93

3. The method does not work properly when the bmi is 40
4. None of the previous statements is true

How confident are you in your own level of comprehension of the previous method?
*

1. Very confident
2. Somewhat confident
3. Neutral
4. Not very confident
5. Not at all confident
Is the method you just saw logically correct? *
I. Yes
2. No

If you selected No above, please explain why the method is not logically correct

94

Rule 1 - Problem 4

Version One

public int countPosHumbers (int numOne, int numTwo, int numThrees) |
if (numOne > 01
if (numTweo > 03
1f (numThree > 0) |
return 3;
oelse
return Z;
'
1 else 1if (numThre= > 01 {
return Z;
Voelse |
return 1;
}
1 elzse 1if (numTwe > 0)
if (numThrees > 01 {
return 1;
1 else |
return =;
}
} else if (numThres > 0)
return 1;
Voelge

return 0;

95

Version Two

public int countPosNumbers (int numOne, int numTwo, int numThree) |

int count = 0O;

if (numOne >= 0) |
count++;

}

if (numTweoe >= 01 |
count++;

}

if (numThree >= 0) |
count++;

}

return count;

96

Version Three

pubklic int countPosMumber (int numOne, int

1if (numCme > 0) {
if (numTwe > 0)
1f (numThree > 01 {
return 3;
boelse |
return =;

'
1 else if (numThree > 01 |
return z;
}oelsse |
return 1;
}
1 else 1f

if

(numTweo > 01
(humThres > 0)
return z;
Voaelse |
return 1;

}

! elze 1if (numThres > 0) {
return 1;
1 else |

return 0;

97

numTwo ,

int numThrees)

{

Version Four

public int countPosNumbers (int numone, int nuwuTwoe, int numThree) |

int count = 0;

if (numOne > 0) |
count++;

}

1t (numTwe > 07
count++;

}

if (numThree > 0} |
count++;

}

return count;

Questions

Based on your programming experience, how would you rate the readability of the
previous piece of code? *
1. Very difficult to read

2. Difficult to read
3. Neutral

4. Easy to read

5. Very easy to read

Which of the following statements is true about the code you just read? *
1. The method does not work properly when the input numbers are 1, 1, and 1
2. The method does not work properly when the input numbers are 1, 0, and 2
3. The method does not work properly when the input numbers are 0, 2, and 3
4. None of the previous statements is true

How confident are you in your own level of comprehension of the previous method?
*

Very confident

Somewhat confident

Neutral

Not very confident

Not at all confident

M

98

Is the method you just saw logically correct? *
I. Yes
2. No

If you selected No above, please explain why the method is not logically correct

99

Rule 2 - Problem 1

Version One

public static wvoid whoIsTheduthor ()
Scanner o = new Scanner (System.in) ;
System.out.println{"Whe is the author of the book "David Copperfieldr?");
System.out.println{"a. Lewis Carrcll™);
System. out.println("k. Mark Twain");
System.out.println{"c. Charles Dickens");
Sygtem. out.println("d. Oscar Wilde"):
String cheoice;
String tryAgain = "y":
while (tryAgain.compareTo ("y") == 03 {
gystem.out.print ("Enter your choice:™);
choice = sc.nextlLine () ;
if (choice.compareTo (") == 07 |
System.cut.println ("Congratulation! ™) ;
t else if (choice.compareTo ("g™) == 0 || choice.compareTo ("e™) == 0) {
System.out.println ("Exiting...1");
break:
1oelse |
System.out.println ("Incorrect! ™) ;
}
gystem.out.print ("Again? press 'y' to continue: ") ;
tryAgain = sc.nextLine () :
}

sc.close ()

100

Version Two

public static wold whoIsThelAuthor () |

Scanner =c = new Scanner (System.in) ;

System. out. println{"Whe iz the author of the kook '"David Copperfieldt2™);

System.out. println{”a. Lewls Carroll”);

System.out. println{”b. Mark Twain");
Syvstem. out.println("c. Charles Dickans");
System.out. printlni{”d. O=zcar Wilds"};
gtring choice;

String tryAgain;
do |

Sysztem. out. print ("Enter your choice:™);

cholce = gc.nextline) ;

if (choice.compareTo ("c™) == 0} {

gystem. out. println("Congratulaticon=sl"™) ;

break;

t else if (choice.compareTo ("q") == 0 || choice.compareTo ("e™ == 0) |
System. out.println ("Exiting...!");
break;

boelse |

gystem. out.println ("Incorrect! ™) ;
t
gyztem. out.print ("Again? press 'y' to continue: ") ;
tryAgain = =c.nextlLine () ;
}
while (tryAgain.compareTo ("y") == 0);

ac.olose ()

101

Version Three

public static woid whoIsTheAuthor () |
Scanner =C = new Scanner (System. in);
System.out.println("Whe iz the author of the book "David Copperfield'?");
System.out.println("a. Lewis Carrcll™);
Sysztem.out.println("b. Mark Twain");
Sysztem.out.println("c. Charles Dickens");
System.out.println("d. Oscar Wilde") ;
String choice;
String tryhAgain = "y";
while (tryhAgain.compareTo("y") == 0) |
System.out.print ("Enter your choice:");
choice = =c.nextLine () ;
if (choice.comparsTo ("c") == 0) {
System.out.println ("Congratulationsl");
break;
} else 1f (choice.compareTo ("g") == || cholce.compareTo ("e™) == 0) {
System.out.println ("Exiting...1");
break:
Voelze |

gystem.out.println ("Incorrect! ") ;

System.out.print ("Again? press 'y' to continue: ") ;
tryAgain = sc.nextLine () ;
H

zc.cloze ()

102

Version Four

public static woid whoIsTheAuthor () |

Scanner sSC = new Scanner(System.in);

System. out. println("Who iz the author of the book '"David Copperfield'?");:

System.out.println("a. Lewis Carroll");

System. out. println("c. Charles Dickens");

{
{
System. out. println("k, Mark Twain");
{
System. out. println("d. Oscar Wilde");
String choice;
String tryAgain;
do |
System.out.print ("Enter your choice:");
choice = sc.nextLine {);
if (choice.compareTo ("c") == 0) |

System. out.println ("Congratulation! ") ;

System. out.println ("Exiting...L1");
break;
Voelze |
System. out.println ("Incorrect!™);
1
Syztem. out.print ("Again? press Ty' to continue:™);
tryAgain = sc.nextLine () ;
1
while (tryhAgain.compareTo("y") == 0);

ac.close ()

Questions

else if (choice.compareTo ("g") == || cholce.compareTo ("e™) ==

Based on your programming experience, how would you rate the readability of the

previous piece of code? *
1. Very difficult to read

2. Difficult to read
3. Neutral

4. Easy to read

5. Very easy to read

Which of the following statements is true about the code you just read? *

(Y4 [IPA]

1. The method does not end when the user types “q” or “e

2. The method does not end when the user chooses the correct answer to the

question

103

3. The method ends when the user chooses an incorrect answer to the question
4. The method ends when the user chooses the option ¢

How confident are you in your own level of comprehension of the previous method?
*

1. Very confident
2. Somewhat confident
3. Neutral
4. Not very confident
5. Not at all confident
Is the method you just saw logically correct? *
I. Yes
2. No

If you selected No above, please explain why the method is not logically correct

104

Rule 2 - Problem 2

Version One

pukblic Ztring changePassword (String oldPass) |
Scanner = = new Scanner (System. in);
String newPaszs = oldPass;
boolean valid = false;
while (newPass.equals {ocldPass) || lvalid) |
Svetem. out.println{"Pleaze, write a hnew password™);

newbass = sc.nextline();

valid = true;

if (newPass.length() 1= 4) {
valid = false;
Voelse

for (int 1 = 0; i <« newPass.lengthi); i++) |
for (int 7 = 1 + 1; J < newPass.length(); J++) |
if (newPaszs.chardt () == newPass.charAt (1)) |

valid = falszse;

!
sc.close () ;

return newFass;:

105

Version Two

public 2tring changePassword (String oldPass) |
Scanner =c = new Scanner (System.in) ;
String newPass;
boolean wvalid;
do
Syvstem. out.println("Please, write a new password™) ;
newPass = =sc.nextline () ;

valid = trus;

if (newPass.lengthi) 1= 43 {
valid = false;
}oelse |

for {int i = 0; i < newPass.lengthi); 1++) |
for {(int 7 = 1 + 1;] < newPass.length(); Jj++) |
if (newPass.charhAt (j) == newPass.charaAt (1)) |

valid = false;

}

while (newPassz.equals (cldPass) || lvalid):;
sc.close () ;

return newPass;

106

Version Three

public S8tring changePassword (String oldPass) |

Scanner sc = new Scanner (System.in);

String newPasz = oldPass;

boolean wvalid = false;

while (newPass.equals (oldPass) || lvalid) |

gyztem. out.println{"Please, write a new password™);
newPass = =c.nextline () ;

valid = true;

if (newPass.length() < 47 {

valid = false;

'
for {int 1 = 0; 1 < newPass.length{); 14++) |

for (int 7 =1 + 1; J < newPass.length(); J++1 |
if (newPass.charat (]) == newPass.charAt{i)) |

valid = false;

1
sc.closa ()

return newPass;

107

Version Four

puklic String changePassword (String oldPass) |
Scanner =c = new Scanner (System.in);
String newPass;

boolean wvalid;

do |
Svstem. out.println{"Please, write a new password") ;
newPass = sco.nextlinei);
valid = true;

it (newPass.lengthi) < 41
valid = fal=e;

'
for (int 1 = 0; 1 < newPass.length{); i++4) |

for {(int 7 = i + 1;] < newPass.length(); J++) |

if (newPass.charat (]) == newPass.charAt (111
valid = false;
'
h
'
'
while (newPass.equals (cldPass) || lwalid):

sc.close ()

return newPas=s;:

Questions

Based on your programming experience, how would you rate the readability of the
previous piece of code? *
1. Very difficult to read

2. Difficult to read
3. Neutral

4. Easy to read

5. Very easy to read

Which of the following statements is true about the code you just read? (Assuming
that the user gives new passwords that are different from the old one) *
108

1. The method accepts new passwords with exactly 4 characters and no duplicate
characters

2. The method accepts new passwords with exactly 4 characters with or without
duplicate characters

3. The method accepts new passwords with at least 4 characters and no duplicate
characters

4. The method accepts new passwords with at least 4 characters with or without
duplicate characters

How confident are you in your own level of comprehension of the previous method?
*

1. Very confident
2. Somewhat confident
3. Neutral
4. Not very confident
5. Not at all confident
Is the method you just saw logically correct? *
I. Yes
2. No

If you selected No above, please explain why the method is not logically correct

109

Rule 2 - Problem 3
Version One

public int sumPositiveNums (int[] nums) |

int limit = nums.length;
int =um = 0;
int counter = 0;

while (counter < limit) |
if (nums[counter] > 0) |
sum += nums[counter] ;

h

counter+t+ ;

H

return sum;

Version Two

public int sumPositiveNums (int[] nums)

int limit = nums.length;
int =zum = 0;

int counter = 0;

if (limit == 0} {

return 0;
'
do
if (nums[counter] > 0) |
sum += nums[counter] ;
1
countert+;
'
while (counter < limit):

return =sum;

110

Version Three

public int sumPositiveNums (int[] nums)

int limit = nums=.length;
int =um = 0;
int counter = 0;

while (counter < limit) |
if (nums[counter] > 01 |
sum += nums[counter]

countert++;

}

return sum:;

Version Four

public int sumPositiveNums (int[] nums)
int limit = nums.length;
int zum = 0;
int counter = 0;
do |
if (nums[counter] > 01
gum += nums[counter] ;

counter++;
!

while (counter < limit);

return sum;

111

Questions

Based on your programming experience, how would you rate the readability of the
previous piece of code? *

1.

i

Very difficult to read
Difficult to read
Neutral

Easy to read

Very easy to read

Which of the following statements is true about the code you just read? *

1

2.
3.
4.

The method throws an exception when the array is empty

The method never ends when the array has one or more positive numbers
The method never ends when the array has one or more zeros

None of the previous statements is true

How confident are you in your own level of comprehension of the previous method?

*

M

Very confident
Somewhat confident
Neutral

Not very confident
Not at all confident

Is the method you just saw logically correct? *

I.
2.

Yes
No

If you selected No above, please explain why the method is not logically correct

112

Rule 2 - Problem 4
Version One

public int countletteri(String phrase, char letter) |
int max = phrase.lengthi):;
int counter = 0;
int index = 0;
while {(index < max) |
if (phrasze.charat (index) != letter) |
indext4+;
continue
H
indext+d;
countertdt;
}

return counter;

113

Version Two

public int countlLetter(String phrase, char letter) /|

int max = phrase.length():
if (max == 0) {
return 0;

h

int counter = 0;
int index = 0;
Ao o
if i(phrazse.charAt (index) = letter) /|
index+4+;

continue ;

1
index++;
countert+;

'

while (index < max);

return counter;

'
Version Three

public int countletter (String phrase, char letter) |

int max = phrase.length():;
int counter = 0;
int index = 0;
while (index < max) |
if (phraze.charat (index) != letter) /|
continue;
1
index++;
countert+;
'
return counter;

114

Version Four

public int countLetter (String phrase,
int max = phrase.length();
if (max == 0)
return 0;

H

char letter)

int counter = 0;
int index = 0O;
do
if {phrase.charat (index) != letter) |

continue ;
i
indext+t;
countert+;
1
while (index < max) ;

return counter;

Questions

Based on your programming experience, how would you rate the readability of the

previous piece of code? *

1.

ol

Very difficult to read
Difficult to read
Neutral

Easy to read

Very easy to read

{

Which of the following statements is true about the code you just read? *
1. The method never reviews the last character of the phrase
2. The method does not work properly when the phrase is empty

3. The method works properly when the letter is "x" and the phrase is "awerx"
4. The method works properly only when all the characters of the phrase are equals

to the letter

115

How confident are you in your own level of comprehension of the previous method?
*

1. Very confident
2. Somewhat confident
3. Neutral
4. Not very confident
5. Not at all confident
Is the method you just saw logically correct? *
I. Yes
2. No

If you selected No above, please explain why the method is not logically correct

A.4. Post Questionnaire

1.1D: *

2. Rank the importance of minimizing nesting in source code. *
a. Very important
b. Somewhat important
c. Neutral
d. Somewhat not important
e. Not important

3. Rank the importance of avoiding do-while statements in source code. *
a. Very important
b. Somewhat important
c. Neutral
d. Somewhat not important
e. Not important

4. Please explain any difficulties you encountered during the study.

116

5. What do you consider to be the most important aspects for the readability and
comprehensibility of code?

6. What is your personal favourite technique, tool, or approach to help you read and
comprehend code?

7. Please feel free to leave comments about the code and questions included in this study

117

References

Abbas, Nadeem. 2009. “Properties of ‘Good’ Java Examples.” Sweden: Ume’a
University.

Barik, Titus, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. 2017. “Do Developers Read Compiler Error
Messages?” Accessed April 14.
https://people.engr.ncsu.edu/ermurph3/papers/icsel 7.pdf.

Bednarik, Roman. 2012. “Expertise-Dependent Visual Attention Strategies Develop over
Time During Debugging with Multiple Code Representations.” International
Journal of Human-Computer Studies 70 (2): 143-155.
doi:10.1016/j.ijhcs.2011.09.003.

Bednarik, Roman, and Markku Tukiainen. 2006. “An Eye-Tracking Methodology for
Characterizing Program Comprehension Processes.” In Proc. of the Symposium
on Eye Tracking Research & Applications, 125-132. ACM.

Beelders, Tanya, and Jean-Pierre du Plessis. 2016. “The Influence of Syntax Highlighting
on Scanning and Reading Behaviour for Source Code.” In Proceedings of the
Annual Conference of the South African Institute of Computer Scientists and
Information Technologists, 5:1-5:10. SAICSIT ’16. New York, NY, USA: ACM.

doi:10.1145/2987491.2987536.

118

Borstler, Jergen, Caspersen Michael, and Nordstrom Marie. 2016. “Beauty and the Beast”
24 (2): 231-46. doi:10.1007/s11219-015-9267-5.

Borstler, Jurgen, Marie Nordstrom, and James H. Paterson. 2011. “On the Quality of
Examples in Introductory Java Textbooks.” Trans. Comput. Educ. 11 (1): 3:1-
3:21. do0i:10.1145/1921607.1921610.

Boswell, Dustin, and Trever Foucher. 2011. The Art of Readable Code. First. O’Reilly
Media.

Buse, Raymond P. L., and Westley R. Weimer. 2010. “Learning a Metric for Code
Readability.” [EEE Trans. Softw. Eng. 36 (4): 546-558.
doi:10.1109/TSE.2009.70.

Busjahn, Teresa, Roman Bednarik, Andrew Begel, Martha Crosby, James Paterson,
Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. “Eye Movements in
Code Reading: Relaxing the Linear Order.” In [International Conference on
Program Comprehension, 255-65. IEEE.
http://dl.acm.org/citation.cfm?1d=2820320.

Busjahn, Teresa, Carsten Schulte, Bonita Sharif, Simon, Andrew Begel, Michael Hansen,
Roman Bednarik, et al. 2014. “Eye Tracking in Computing Education.” In
Proceedings of the Tenth Annual Conference on International Computing
Education Research, 3-10. New York, NY, USA: ACM.
doi:10.1145/2632320.2632344.

Cowen, Laura, Linden J.s Ball, and Judy Delin. 2002. “An Eye Movement Analysis of

Web Page Usability.” In People and Computers XVI - Memorable Yet Invisible:

119

Proceedings of HCI 2002, edited by Xristine Faulkner, Janet Finlay, and
Frangoise Détienne, 317-335. London: Springer London.
http://dx.doi.org/10.1007/978-1-4471-0105-5_19.

Cristino, Filipe, Sebastiaan Mathot, Jan Theeuwes, and Iain D. Gilchrist. 2010.
“ScanMatch: A Novel Method for Comparing Fixation Sequences.” Behavior
Research Methods 42 (3): 692—700. doi:10.3758/BRM.42.3.692.

Crosby, Martha E., and Jan Stelovsky. 1990. “How Do We Read Algorithms? A Case
Study.” Computer 23 (1): 24-35.

D’Angelo, Sarah, and Andrew Begel. 2017. “Improving Communication Between Pair
Programmers Using Shared Gaze Awareness.” In Proceedings of CHI. ACM.
https://www.microsoft.com/en-us/research/publication/improving-
communication-pair-programmers-using-shared-gaze-awareness/.

Deimel, Lionel E., Jr. 1985. “The Uses of Program Reading.” SIGCSE Bull. 17 (2): 5-14.
doi:10.1145/382204.382524.

Dibble II, Christopher, and Paul Gestwicki. 2014. “Refactoring Code to Increase
Readability and Maintainability: A Case Study.” Journal of Computing Sciences
in Colleges 30 (1): 41-51.

Dubay, William H. 2004. “The Principles of Readability.” Costa Mesa, CA: Impact
Information.

Duchowski, Andrew T., Eric Medlin, Anand Gramopadhye, Brian Melloy, and Santosh
Nair. 2001. “Binocular Eye Tracking in VR for Visual Inspection Training.” In ,

1-8. VRST ’01. New York, NY, USA: ACM. doi:10.1145/505008.505010.

120

Ehmke, Claudia, and Stephanie Wilson. 2007. “Identifying Web Usability Problems from
Eye-Tracking Data.” In Proceedings of the 21st British HCI Group Annual
Conference on People and Computers: HCI...But Not As We Know It - Volume 1,
119-128. BCS-HCI ’07. Swinton, UK, UK: British Computer Society.
http://dl.acm.org/citation.cfm?id=1531294.1531311.

Faro, A., D. Giordano, C. Spampinato, D. De Tommaso, and S. Ullo. 2010. “An
Interactive Interface for Remote Administration of Clinical Tests Based on Eye
Tracking.” In , 69-72. ETRA °’10. New York, NY, USA: ACM.
doi:10.1145/1743666.1743683.

Halverson, Tim, and Anthony J. Hornof. 2007. “A Minimal Model for Predicting Visual
Search in Human-Computer Interaction.” In , 431-434. CHI ’07. New York, NY,
USA: ACM. doi:10.1145/1240624.1240693.

Host, Einar W., and Bjarte M. Ostvold. 2009. “Debugging Method Names.” In
Proceedings of the 23rd European Conference on ECOOP 2009 — Object-
Oriented Programming, 294-317. Genoa. Berlin, Heidelberg: Springer-Verlag.
doi:10.1007/978-3-642-03013-0 14.

Imants, Puck, and Tjerk de Greef. 2014. “Eye Metrics for Task-Dependent Automation.”
In , 23:1-23:4. ECCE ’14. New York, NY, USA: ACM.
doi:10.1145/2637248.2637274.

Isokoski, Poika, Markus Joos, Oleg Spakov, and Benoit Martin. 2009. “Gaze Controlled
Games.” Univers. Access Inf. Soc. 8 (4): 323-337. doi:10.1007/s10209-009-0146-

3.

121

Jacob, Robert J. K., and Keith S. Karn. 2003. “Eye Tracking in Human-Computer
Interaction and Usability Research: Ready to Deliver the Promises.” Mind 2 (3):
4.

Kasarskis, Peter, Jennifer Stehwien, Joey Hickox, Anthony Aretz, United States, Air
Force Academy, and Chris Wickens. 2001. “Comparison of Expert and Novice
Scan Behaviors during Vfr Flight.” In In Proceedings of the 11th International
Symposium on Aviation Psychology.

Liblit, Ben, Andrew Begel, and Eve Sweetser. 2006. “Cognitive Perspectives on the Role
of Naming in Computer Programs.” In Proceedings of the 18th Annual
Psychology of Programming Workshop. Brighton, England, United Kingdom.

Lionel, E.Deimel, and Naveda J.Fernando. 1990. “Reading Computer Programs:
Instructor’s Guide and Exercises.” CMU/SEI-90-EM-3.
http://www literateprogramming.com/em3.pdf.

Madsen, Adrian, Adam Larson, Lester Loschky, and N. Sanjay Rebello. 2012. “Using
ScanMatch Scores to Understand Differences in Eye Movements Between
Correct and Incorrect Solvers on Physics Problems.” In , 193—-196. ETRA ’12.
New York, NY, USA: ACM. doi:10.1145/2168556.2168591.

Mason, Andrew, and Chandralekha Singh. 2011. “Assessing Expertise in Introductory
Physics Using Categorization Task.” Physical Review Special Topics - Physics
Education Research 7 (2). doi:10.1103/PhysRevSTPER.7.020110.

Rosengrant, David. 2010. “Gaze Scribing in Physics Problem Solving.” In , 45-48.

ETRA ’10. New York, NY, USA: ACM. doi:10.1145/1743666.1743676.

122

Rudolph, Flesch. 1948. “A New Readability Yardstick.” Journal of Applied Psychology
32 (3): 221-33. doi:http://dx.doi.org/10.1037/h0057532.

Sedano, T. 2016. “Code Readability Testing, an Empirical Study.” In 2016 IEEE 29th
International Conference on Software Engineering Education and Training
(CSEET), 111-17. doi:10.1109/CSEET.2016.36.

Sharafi, Zohreh, Zéphyrin Soh, and Yann-Gaél Guéhéneuc. 2015. “A Systematic
Literature Review on the Usage of Eye-Tracking in Software Engineering.” Inf.
Sofiw. Technol. 67 (C): 79—107. doi:10.1016/j.infsof.2015.06.008.

Sharafi, Zohreh, Zéphyrin Soh, Yann-Gael Gueheneuc, and Giuliano Antoniol. 2012.
“Women and Men - Different but Equal: On the Impact of Identifier Style on
Source Code Reading.” Program Comprehension (ICPC), 2012 IEEE 20th
International Conference on, 27-36. doi:10.1109/ICPC.2012.6240505.

Sharif, Bonita, Katja Kevic, Braden M. Walters, Timothy R. Shaffer, David C. Shepherd,
and Thomas Fritz. 2015. “Tracing Software Developers’ Eyes and Interactions for
Change Tasks.” In Proceedings of the 2015 10th Joint Meeting on Foundations of
Sofiware Engineering, 202-213. ESEC/FSE 2015. New York, NY, USA: ACM.
doi:10.1145/2786805.2786864.

Sharif, Bonita, and Jonathan I. Maletic. 2010a. “An Eye Tracking Study on camelCase
and Under score Identifier Styles.” In /8th IEEE International Conference on
Program Comprehension (ICPC’10), 196-205. IEEE Computer Society.

doi:dx.doi.org/10.1109/ICPC.2010.41.

123

Sharif, Bonita, and Jonathan I Maletic. 2010b. “An Eye Tracking Study on the Effects of
Layout in Understanding the Role of Design Patterns.” Software Maintenance
(ICSM), 2010 IEEE International Conference on, 1-10.
doi:10.1109/ICSM.2010.5609582.

Sharif, Bonita, Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C.
Miiller, and Michael Falcone. 2015. “iTrace: Enabling Eye Tracking on Software
Artifacts Within the IDE to Support Software Engineering Tasks.” In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, 954—
957. ESEC/FSE 2015. New York, NY, USA: ACM.
doi:10.1145/2786805.2803188.

Tashtoush, Yahya, Odat Zeinab, and Maryan Yatim. 2013. “Impact of Programming
Features on Code Readability” 7 (6): 441-58.
doi:http://dx.doi.org/10.14257/ijseia.2013.7.6.38.

Turner, Rachel, Michael Falcone, Bonita Sharif, and Alina Lazar. 2014. “An Eye-
Tracking Study Assessing the Comprehension of C++ and Python Source Code.”
In Proc. of the Symposium on Eye Tracking Research & Applications, 231-234.

Safety Harbor, Florida: ACM.

124

		2017-05-16T09:52:36-0400
	Electronic Theses and Dissertations Program

