

i

An 8 bit Serial Communication module Chip Design Using Synopsys tools and ASIC
Design Flow Methodology

by

Anvesh Munugala

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Electrical Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

May, 2018

ii

An 8 bit Serial Communication module Chip Design Using Synopsys tools and ASIC
Design Flow Methodology

Anvesh Munugala

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk for
public access. I also authorize the University or other individuals to make copies of this
thesis as needed for scholarly research.

Signature:

 Anvesh Munugala, Student Date

Approvals:

 Dr. Frank X. Li, Thesis Advisor Date

 Dr. Eric W. MacDonald, Thesis Co-Advisor Date

 Dr. Jalal Jalali, Committee Member Date

 Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

iii

ACKNOWLEDGMENTS

 I would like to express my gratitude to my thesis supervisor Dr. Frank X. Li and

Dr. Eric W. MacDonald for providing exceptional support in every possible way to

successfully complete my thesis. I thank Dr. Jalal Jalali for giving me an opportunity to

work for Department of Electrical Engineering as Graduate Research Assistant. I express

my heartfelt thanks to Ronald Valenzuela for supporting me and for providing the

reference documents in implementing the ASIC methodology. I am grateful to University

of Utah for providing me access to the standard cell libraries and technology files. I

would like to thank MOSIS for fabricating the design as part of the educational run since

I worked as teaching assistant for ASIC design course. I am blessed to have my parents

and my elder brother without their support, this achievement would have never been

possible. I thank them for being with me during all times and for helping me out to

pursue my master’s degree.

iv

ABSTRACT

 The aim of this project is to design a small FPGA chip with 0.5 µ methodology.

The standard cell-based ASIC implementation of 8-bit serial communication module

using the Synopsys EAD tools is presented. The design was also fabricated by MOSIS.

By using Synopsys Design Compiler, IC compiler and Custom Compiler flow, simulation

results are presented with the verification of logical and physical design features such as

area, timing, any hold violations, Design Rule Check (DRC). This design methodology

describes the RTL to GDS implementation of 8-bit serial communication module using

Synopsys tools. The proposed design has 10 Input and Output ports, 54 registers. The

design has passed all the Timing checks, Functional verification, Metal density

requirements, Physical design verification and Layout vs Schematic. The baud rate

generator which mimics a clock signal is supplied to the receiver module. The desired

baud rate can be chosen from the baud rate generator. The serial communication protocol

can be used for reading a sensor’s bit stream data.

v

Table of Contents

ACKNOWLEDGMENTS .. III

ABSTRACT ... IV

LIST OF FIGURES ...VII

CHAPTER 1: INTRODUCTION ...1

1.1 Different types of ASICs: ...1

1.1.1 Standard Cell ASIC design: ...1

1.1.2 Full Custom ASIC design: ...2

1.1.3 Gate Array ASIC design: ...3

1.1.4 Field Programmable Gate Arrays: ...3

1.2 Electronic Design Automation (EDA): ...4

CHAPTER 2: LITERATURE REVIEW ..5

2.1 Background: ..5

2.2 Serial Data Communication: ...5

2.3 Traditional designs: ...7

2.4 Scope of the proposed design: ..7

2.5 Applications of the UART module: ..7

CHAPTER 3: HDL DESIGN ..9

3.1 Specification and HDL coding: ..9

3.2 Understanding HDL design flow for FPGAs: ..10

3.3 Logic design: ...12

3.3.1 Transmitter module: ...14

3.3.2 Receiver module: ...18

3.3.3 Baud generator: ..20

vi

CHAPTER 4: HDL SIMULATION RESULTS DISCUSSION21

4.1 HDL Synthesis: ...21

4.2 HDL Synthesis report: ..21

4.3 Transmitter module simulation: ..23

4.4 Receiver module simulation: ..25

4.5 Baud generator simulation: ...26

4.6 Serial communication module simulation: ...27

CHAPTER 5: ASIC IMPLEMENTATION ...28

5.1 Technology and Library files: ...28

5.2 ASIC design flow ..29

5.3 Synthesis using Synopsys Design Compiler tool: ..32

5.4 ASIC implementation using Synopsys IC Compiler tool: ..34

5.5 DRC and metal density check of the design: ..43

CHAPTER 6: CONCLUSION AND FUTURE STUDIES ...48

6.1 Conclusion: ...48

6.2 Verification: ..48

6.3 Future work: ..48

REFERENCES ...49

APPENDIX ...51

vii

LIST OF FIGURES

Figure 1 Standard cell (Inverter) ... 2

Figure 2 Serial data communication ... 6

Figure 3 Application of serial communication module .. 8

Figure 4 HDL design flow .. 10

Figure 5 FPGA synthesis design flow .. 12

Figure 6 Serial communication module RTL view... 13

Figure 7 Transmitter state machine... 16

Figure 8 Transmitter module top view .. 17

Figure 9 Transmitter module RTL view ... 17

Figure 10 Receiver State Machine .. 18

Figure 11 Receiver RTL view .. 19

Figure 12 Baud generator RTL view .. 20

Figure 13 Load the input data ... 23

Figure 14 Transmit data .. 24

Figure 15 Receiver waiting for transmitter ... 25

Figure 16 Receiver output data ... 26

Figure 17 Baud generator simulation .. 26

Figure 18 Serial communication module simulation .. 27

Figure 19 MOSIS fabricated chip ... 28

Figure 20 ASIC design flow ... 31

Figure 21 Area report .. 32

Figure 22 Timing report .. 33

Figure 23 Netlist file ... 34

Figure 24 Floorplan... 35

Figure 25 Pad fill .. 35

viii

Figure 26 Placement of cells ... 36

Figure 27 Clock-tree insertion .. 37

Figure 28 Timing after clock insertion ... 37

Figure 29 Skew report ... 38

Figure 30 After Placement and clock insertion... 38

Figure 31 Routing ... 39

Figure 32 Cell view ... 40

Figure 33 QOR report ... 40

Figure 34 Timing after routing ... 41

Figure 35 Metal Fill .. 42

Figure 36 Layout Vs Schematic .. 43

Figure 37 Chip after layout finish ... 43

Figure 38 Empty space between layers ... 44

Figure 39 After adding Poly ... 44

Figure 40 Metal3 drawing ... 45

Figure 41 DRC setup .. 46

Figure 42 DRC report ... 46

Figure 43 Metal density check .. 47

LIST OF TABLES

Table 1 HDL Synthesis Report ... 22

1

CHAPTER 1: INTRODUCTION

 Integrated circuit (IC) design is a combination of numerous electronic devices on

a die, made normally from silicon wafer. The electronic circuits are built in many stacks

of layers such as polysilicon, aluminum and silicon dioxide predominately. The

fabricated IC’s cannot be reprogrammed again to change its application type, this type of

IC development is called Application Specific Integrated Circuit (ASIC). The work

associated toward ASIC design began in the early 80s. Chip design has seen tremendous

advancement in recent decades. ASIC is specific to an application and widely used in

space, military, and many commercial industries.

1.1 Different types of ASICs:

i. Standard Cell ASIC design.

ii. Full custom ASIC design.

iii. Gate Array ASIC design.

1.1.1 Standard Cell ASIC design:

 In Standard Cell based ASIC design, it uses pre-designed logic cells like

Inverters, OR gates, AND gates, multiplexers, NOR gates, NAND gates and flip-flops. In

this method of design, the placement and routing is done by the Synopsys IC Compiler

tool. The Standard Cell based ASIC design saves time and effort, reduces risk, therefore

cost effective. It also allows optimizing the speed and area of each standard cell. This

project primarily focuses on standard cell-based ASIC design methodology. The standard

cell-based design

2

Figure 1 Standard cell (Inverter)

1.1.2 Full Custom ASIC design:

 A full custom ASIC design is based on a particular application right from the

beginning. It is because of their pre-specified design and functionality, the manufacturing

is done with all pre-defined photolithographic layers. The full custom ASIC is basically

designed as a single and specific product for any particular application. For instance,

while designing a Microprocessor, full custom IC design can be adapted. Usually the

design and manufacturing of full custom IC design is expensive. This process normally

takes 8 weeks of time.

3

1.1.3 Gate Array ASIC design:

 In Gate Array ASIC design, ICs are partially fabricated with rows of resistors and

transistors but are not connected to each other. The connection pathways in the IC are

done by adhering the top metal layers. These gate arrays are built using “basic cells”,

where each cell from the array has a standard sized die that contains few transistors and

resistors. Reduced time and low cost is the main advantage of Gate Array ASIC design

compared to standard cell and full custom designs.

Gate Arrays are classified into three types: Structured Gate Arrays, Channeless

Gate Arrays and Channeled Gate Arrays. Channeless Gate Array has no predefined space

between the rows of cells. In Channeled Gate Array, the available space for interconnect

between the rows of cells are fixed in terms of height. Structured Gate Array has

combination of both the features of standard cell and gate array ASICs.

1.1.4 Field Programmable Gate Arrays:

Field programmed gate arrays are very reliable and cost effective option for ASIC

design. The fabless job and re-programmability of the design is what makes it as best

option. The FPGA configuration is generally specified using a HDL (Hardware

Descriptive Language) usually in Verilog or VHDL language. These devices contain an

array of programmable logic blocks that help building the logic blocks. The FPGA device

used for verifying the design functionality is Xilinx Spartan 6 FPGA.

4

1.2 Electronic Design Automation (EDA):

 EDA has been playing major role in growth and success of the semiconductor

industry. Design challenges have increased for every new process generation. The

growing need and demand in today’s market has brought aggressive challenges and

constraints like time and cost of production. All of these challenges cannot be met by just

following the custom design methodology which requires a lot of resources and time

consumption. Instead of relying on custom design methodology, an automated RTL to

GDS design flow can be adopted which ensures that the design meets the time to market.

 Synopsys and Cadence are the two major available vendors in the market who

develop EDA tools. In this project, I made use of Synopsys University program

(Synopsys educational package) to setup the ASIC design methodology.

 MOSIS (Metal Oxide Semiconductor Implementation Service) provides chip

design tools and related services that enable universities, government agencies, research

institutes and businesses to prototype chips efficiently and cost-effectively. The MOSIS

Instructional program gives free fabrication of integrated circuits designed by

undergraduate students from an accredited university and the MOSIS run happens every

year in the months of April, August and December.

5

CHAPTER 2: LITERATURE REVIEW

2.1 Background:

The initial ASICs made use of gate array technology. The initial successful

commercial application was the gate array based design. Customization of these ICs

occurred by changing the metal interconnect mask. Gate arrays had complex designs that

included some thousand gates. The later version of ICs became more generalized with

different base dies customized by using both polysilicon layers and metal.

The ASIC industry has traditionally been driven by the design flow which has a

strict partition between the physical design and the logical design. (Static timing analysis

is shown since it has largely displaced simulation-based timing verification). The fabless

design is responsible for the Hardware Descriptive Language (HDL) design and

synthesis, passing a netlist to the foundry for physical design. The success of this

approach was based on the predictability of timing after placement and routing, that is

interconnect loading has relatively low effect on the timing.

2.2 Serial Data Communication:

 Serial data communication is a process of sending data one bit at a time through a

communication channel or data bus between any two digital devices. Serial

communication is generally used for computer networks, control system and to read any

sensor’s data. Serial communication module mainly contains transmitter, receiver and

baud rate generator. This type of communication does not require any system clock for

https://en.wikipedia.org/wiki/Gate_array
https://en.wikipedia.org/wiki/Die_(integrated_circuit)

6

transmitting the data bits. Baud Rate generator produces the clock for transmission of

data bits. The standard baud rates are 300, 600, 1200, 2400, 4800, 9600, 19200, 38400,

57600, 115200 data bits per second. Desired baud rate can be achieved by using a clock

division factor from the system clock. The speed of communication is directly

proportional to the baud rate. Higher the baud rate, faster the speed of communication

whereas the division factor is inversely proportional to the baud rate.

Figure 2 Serial data communication

 Data frame contains 8-bit data, 1 start bit and 1 stop bit. The early serial

communication module was not dependent on speed and distance of transmission. As the

growing needs of today’s life, speed and error free communication is very much

necessary. Since the technology has changed dramatically and wireless communication

has paved the path for faster transmission and yet reliable, serial data communication

cannot meet the present trend. So to meet the present market, a simplest, reliable and

compact design can satisfy the cost of production.

7

2.3 Traditional designs:

 The serial communication modules usually had 8 input ports to transmit a single

byte and 8 output ports to receive. The past designs did not have any state machine

controllers that send the 8-bit data accurately. This has led to huge communication errors.

In the current trend, the dependency on reliability and area is an important factor.

Therefore, a faster communication and yet simple and reliable designs is in need today.

2.4 Scope of the proposed design:

The 0.5 µ standard cell technology is used for implementing the ASIC design.

This technology implementation can be used for space applications, Analog to Digital

converter, and Mixed signal applications. The proposed design has improvements in

reduction of Input and output ports with much simpler design that uses 54

registers/Flipflops. The total cell area is 148176 sq µ and the clock arrival time had slack

of 3.91 ns before the required data time. In this proposed thesis, the main system clock is

12MHZ and the time to transfer each bit is 6.64 us.

2.5 Applications of the UART module:

The serial communication protocol has many applications which is mainly used

for receiving the bit stream from the sensor and send it to the processor at a desired baud

rate frequency. The baud rate can be selected from the list of available frequencies

depending on the system main clock.

8

Some applications of the serial communication module are listed below:

a) Reading the digital bit stream from Analog to Digital converter and storing the

measured values.

b) Serves as a serial communication buffer between master (microcontroller) and

slave (sensor) devices.

c) Bluetooth modules and wireless communication devices

d) GPS navigation systems

e) Computer bus lines

Figure 3 Application of serial communication module

9

CHAPTER 3: HDL DESIGN

 The first goal of ASIC development is to come up with the following

specifications for any particular design.

• Functionality

• Logic Design (HDL Coding)

• Performance analysis

• Physical Design

• Fabrication technology and design techniques

After we have the above specifications for a particular application, next step is to follow a

design methodology in implementing the design for tape-out.

3.1 Specification and HDL coding:

 The architecture specifications of the design are about the partitioning and

functionality of the IC into distinct blocks. The electrical specifications describe the

relation between the parts of design in terms of timing information. The next step

involves the implementation of these pre-defined specifications. To overcome this

problem and for an efficient outcome, HDL (hardware description languages) were

developed. The functionality of the design is done using the HDL code. Verilog/VHDL

are the two HDLs which are in use today. The both programming languages perform the

similar function but vary in syntax, each have their own disadvantages and advantages.

10

Figure 4 HDL design flow

The design can be divided into three levels: Behavioral, Register Transfer Level

(RTL) and Structural. Synthesizing a design is a must and it starts with define the timing

constraints for each block of the design.

3.2 Understanding HDL design flow for FPGAs:

 ASIC designs are first implemented on FPGAs using HDL programming

language. However, the synthesis flow for FPGA is little different from the ASIC design

flow which has area, timing and power analysis. FPGA implementation and ASIC

implementation is similar whereas in FPGA implementation, all the process is fabless and

reprogrammable which best suits for optimization of the design.

11

The design flow includes these following steps:

a) Create a HDL file either in Verilog/VHDL

b) Create a new FPGA project and add your HDL file

c) View Register Transfer Level (RTL) schematic

d) Synthesize the design

e) Perform the functional simulation of the design

f) Create a Floorplan for the design, which is optional

g) Place and route of the design

h) Perform timing simulation of the design

The design flow for FPGA implementation is illustrated in Figure 5. FPGA

implementation is the most reliable and fabless process to verify the functionality of our

design. A successful implementation of functioning design is a good sign of progress and

to verify the design functionality.

12

Figure 5 FPGA synthesis design flow

3.3 Logic design:

 The design of serial communication or Universal Asynchronous Receiver

Transmitter (UART) module was done in Verilog code. The proposed design has 10

Input and Output ports, 54 registers and flip-flops. The design contains transmitter,

receiver and baud rate generator. Figure 6 shows the RTL (Register Transistor Level)

view of serial communication module.

13

Figure 6 Serial communication module RTL view

As shown in figure 6, the serial communication module consists of following inputs and

output ports:

Inputs:

a. clk (system clock)

b. reset

c. TX_input (1 bit)

d. RX_data (1 bit)

e. TX_ready (1 bit)

Outputs:

f. TX_data (1 bit)

g. TX_done

14

h. RX_output (1 bit)

i. RX_ready (1 bit)

j. uart_clk (baud generator output)

The RX_output, RX_ready, uart_clk wire connects with the input and output

ports. The transmission rate is lowered from the 12 MHZ system clock speed to baud rate

speed which is 9600 bits per second. The reset port of the uart module will clear all the

input and output values on every negative edge of reset signal. The uart_clk port will give

the output from the baud generator which will be used for transmission and reception of

data.

3.3.1 Transmitter module:

The inputs of the transmitter are TX_input, clk (baud clock), reset and the outputs

of the transmitter are TX_data and TX_done. The registers of the transmitter module are

as follows: Load_SR, TX_ready, TX_done, Delay_High, Input_data (8 bit),

DelayEnable, ShiftEnable, TX_DS (data select), TX_data, nextstate, state, count,

rst_count, enable_count, TX_shiftReg [7:0].

The transmitter of uart module is responsible for sending the 8 data bits one at a

time. The Input_data [7:0] which is an 8 bit register, loads the data bits one bit per clock

cycle through TX_input port. This Input_data [7:0] register holds the first 8 bits which

needs to be transmitted.

15

The initial change in transition of reset signal sets the value in all registers to zero.

The reset clears the previous values in all the registers from the next edge of reset signal.

As the TX_ready goes high, the transmission begins.

The proposed transmitter module consists of a state machine, a counter and a shift

register. There are 4 states in this state modal.

 At beginning of the state machine, all the register values are set to zero. The first

state, tx_state0 is idle state that waits for the TX_ready. After the TX_ready is active,

state changes to tx_state1.

Tx_state1 sends a start bit and sets Load_SR to 1. The tx_state1 is put on hold for

8 clock pulses to load the input data bit by bit. At the end of 8 clock pulses, state changes

to tx_state2.

Tx_state2 is to load the shift register with 8 bit input data. As the shiftEnable is

pulled high, Input_data [0:7] value is assigned to TX_shiftReg [7:0]. Now, till the count

is equal to 8 bit data length, the counter keeps incrementing for every clock pulse. After

the count is equal to 8-bit data length, the state is changed to Tx_state3. In Tx_state2, as

the TX_DS is set to tx_shiftRegbit, TX_shiftReg[0] value is sent out to the receiver

through TX_data one bit at a time.

16

Figure 7 Transmitter state machine

Tx_state3 is the final state in the state machine. In tx_state3, a stop bit is sent to

the receiver indicating that the transmission of the 8 bit data is done.

TX_done changes to high indicating that the next 8 bit data can be sent. Now the

next state is tx_state0.

17

Figure 8 Transmitter module top view

Figure 9 Transmitter module RTL view

18

3.3.2 Receiver module:

The inputs of the receiver are RX_data, clk(sensor clock), reset and the outputs of

the receiver are RX_output and RX_ready. The registers of the receiver module are as

follows: RX_ready, Delay_High, parse_data (8 bit), Delay_reset, ShiftEnable, RX_data,

ack, nextstate, state, rxd_Cntr, rst_count, enable_count.

The proposed receiver module consists of a state machine, two counters and a

shift register. There are 4 states in this state modal.

Figure 10 Receiver State Machine

19

 Rx_state0 is idle state and waits for a start bit. After the start bit received is

assigned to ack register. At this point RX_ready is high indicating the transmitter to send

the bytes. After the start bit is acknowledged by the receiver, state changes to rx_state1.

The rx_state1 waits for 8 clock pulses to allow the transmitter to load the input

data bit by bit. After the 8 clock pulses, RX_ready is dropped low indicating the

transmitter to stop loading the input data. The state changes to rx_state2.

The rx_state2 stays in the same state till the count value is equal to the data length

(8). After the count value is equal to the data length, state changes to rx_state3.

While the counter is incrementing, ‘shiftEnable’ is high. This enables the parse_data[7:0]

register to load the received byte, one bit at a time. Parse_data [7:0] stores the received

byte. The received byte is sent out through RX_output, one bit at a time.

 Rx_state3 pulls the RX_ready to high, indicating the transmitter to send the next

byte and state changes to rx_state0.

Figure 11 Receiver RTL view

20

3.3.3 Baud generator:

 The baud generator module is responsible to generate a pulse wave at desired

baud rate. This module consists of system clock, reset as inputs, baud_clk as output,

cycles [8:0] and baud_clk as the registers. The value of cycles is

(system_clock)/(baudrate*16*2). The desired baud rate can be chosen depending on the

receiver or transmitter device clock speed. If the transmitted data is at 9600 baud rate, the

receiver must also receive at 9600 baud rate to avoid communication errors.

The system_clock depends on the clock oscillator that we use and 9600 is the

baud rate. Considering the system_clock is 12 MHZ, for every 39 cycles the pulsed wave

is generated. So for every 78 cycles that is 6.64 us, a single clock pulse which has ‘1’ and

‘0’ states is generated out of this baud generator through baud_clk. This baud clock is

given as clock input to the TX and RX module.

Figure 12 Baud generator RTL view

21

CHAPTER 4: HDL SIMULATION RESULTS DISCUSSION

This chapter discusses about the HDL simulation results and gives the Xilinx ISE

synthesis report of the schematic.

4.1 HDL Synthesis:

The main job of synthesizer is to convert HDL program into a gate-level netlist such as

AND, OR, Inverter, MUX. By default, Xilinx ISE uses XST (Xilinx Synthesis

Technology) synthesizer. There are other synthesizers like Quartus, Vivado that can be

used for respective FPGA vendor boards.

4.2 HDL Synthesis report:

TX Summary:

3 Adder/ Subtractors, 57 D-type flip-flops, 1 Latch, 3 Comparators,

14 Multiplexers,1 Finite State Machine.

RX Summary:

2 Adder/Subtractors, 18 D-type flip-flops, 1 Latch, 10 Multiplexers, 1 Finite State

Machine.

Baud Summary:

1 Adder/Subtractor,10 D-type flip-flops, 1 Multiplexer.

22

Table 1 HDL Synthesis Report

Macro Statistics No.

Adders/Subtractors 6

 32-bit adder 1

 4-bit adder 3

 4-bit adder 1

 9-bit adder 1

Registers 12

 1-bit register 3

 32-bit register 1

 4-bit register 3

 5-bit register 1

 8-bit register 3

 9-bit register 1

Latches 2

 1-bit latch 2

Comparators 3

 32-bit comparator greater 1

 32-bit comparator less/equal 2

Multiplexers 25

 1-bit 2-to-1 multiplexer 18

 32-bit 2-to-1 multiplexer 1

 4-bit 2-to-1 multiplexer 3

 5-bit 2-to-1 multiplexer 1

 8-bit 2-to-1 multiplexer 1

 9-bit 2-to-1 multiplexer 1

FSMs 2

 Flip-Flops 54

23

4.3 Transmitter module simulation:

 The transmitter is responsible to send 8 data bits, one bit at a time. The proposed

design has only one input port (TX_input) to send the transmit data. Input data is a

register which loads the data, bit by bit. As shown in figure 13, the input data register

loads the 8 data bits and stops to load after the first byte is ready. TX_shiftReg is a shift

register that stores the byte to transmit at later point. TX_DS is a data select line which

has start bit ‘00’ loaded initially. At this point, state is tx_state1.

Figure 13 Load the input data

 After the first byte is ready, TX_shiftReg sends the data out, one bit at a time

through TX_data output port. During this process, the shift register is active and TX_DS

changes to tx_ShiftRegbit ‘10’. As shown in figure 14, the TX_data sends the first byte

of input data for every clock pulse. TX_shiftReg register is loaded with ‘0’ at the MSB to

clear the data after it transmits the input data.

24

Figure 14 Transmit data

After the first byte is sent to the receiver through TX_data, the TX_done bit

changes to high indicating that transmission is done. As shown in figure 14, the

TX_ready is pulled high to load the next byte of input data to be sent out.

25

4.4 Receiver module simulation:

 The receiver is responsible to receive 8 data bits, one bit at a time. The proposed

design has only one output port (RX_output) to send out the received data. Parse data is a

register which stores the data, bit by bit. The receiver waits till 8 clock pulses after

receiving a start bit, since the transmitter prepares to send the first byte of information.

At this point, the RX_ready is high.

Figure 15 Receiver waiting for transmitter

After the 8 clock pulses, the receiver gets the transmitted byte one bit at a time

through RX_data. This data is stored in parse_data register and the MSB (parse_data[7])

bit is sent out through the RX_output port as shown in figure 16. At this point RX_ready

is low indicating transmitter to stop loading the input data.

26

Figure 16 Receiver output data

 After the receiver has sent the received byte, RX_ready goes high indicating the

transmitter to send the next byte of the data.

4.5 Baud generator simulation:

 The baud generator is an asynchronous clock for the UART module. This

particular module generates the clock pulses at 9600 baud rate. As shown in figure 17,

the baud generator generates a pulsed wave at every 39 cycles since the system clock is

12MHZ.

Figure 17 Baud generator simulation

27

4.6 Serial communication module simulation:

 As shown in figure 18, the clk is the system clock and uart_clk is the clock output

from the baud generator module. TX_data is an output port that sends the TX_input data.

RX_data receives the transmitted data from TX_data and sends the received byte one bit

at a time through RX_output which is an output port.

Figure 18 Serial communication module simulation

28

CHAPTER 5: ASIC IMPLEMENTATION

5.1 Technology and Library files:

The ASIC design methodology that is adapted for building 0.5 µ ASIC

technology is described in this chapter. I have used the UTAH standard cell library

provided by University of UTAH. The dc_shell (Synopsys Design Compiler) and

icc_shell (Synopsys IC Compiler) script files that were utilized to perform the ASIC

implementation in this chapter are provided as a reference by the University of Utah.

Figure 19 MOSIS fabricated chip

To assess the impact of layout related issues on power and clock features, we

need to understand the different design steps that shape the layout and optimize its

performance. Design planning was not necessary in earlier generations of process

technologies due to two reasons: (1) the size of the design in terms of the number of gates

29

was reasonable, and (2) the performance targets were modest. In current and future

process technologies, two forces made design planning a necessity: the exponential

growth of the number of transistors that can be packed on a die, and the aggressive and

tight design constraints and market forces.

5.2 ASIC design flow

The ASIC design flow involves in the following steps:

1) Functional specification of the design

2) HDL coding in VHDL/Verilog

3) RTL/behavioral or functional simulation of the HDL using Modelsim

4) FPGA synthesis using Xilinx ISE

5) Check synthesis reports

6) FPGA implementation

7) Synthesis using Synopsys Design Compiler (dc_shell)

8) Check Timing report

9) Check Area report

10) Check power report

11) Check netlist file

12) ASIC implementation using Synopsys IC compiler (icc_shell)

13) Floorplan

14) Power and I/O fill

15) Placement of cells

16) Clock tree insertion

17) Perform timing analysis

30

18) Routing of cells

19) Perform timing analysis

20) Check for any hold violations in quality of results (qor) report

21) Dummy metal filling (Poly, Metal 1, 2 and 3) to fill the empty spaces

22) Formal verification (Layout VS Schematic)

23) Error browser for any short errors

24) Perform Design Rule Check (DRC) using Synopsys custom compiler

25) Fix any DRC errors within the (260, 260, 1240, 1240) bounding area

26) Export the GDS file

27) Check to see if metal densities are met with the minimum requirements

28) If any metal density is not met, add metal manually

29) Submit the design to MOSIS for fabrication

31

Figure 20 ASIC design flow

HDL coding

Functional
simulation

FPGA Synthesis

FPGA
implementation

Synthesis using
Design Compiler

Area requirements
met?

Timing
met?

Floorplan and
Placement of cells

Yes

Clock tree insertion

Timing analysis

Timing met?

Timing
met?

Write out GDS file

Metal filling

MOSIS Tape out

Yes

DRC
clean?

Yes

No

No

No

Routing

No

Yes

No

Yes

Verify netlist with
I/Os

32

5.3 Synthesis using Synopsys Design Compiler tool:

 This section shows the synthesis reports obtained from the Design Compiler tool.

After running the dc_shell with the serial communication design, the following reports

can be generated.

Figure 21 Area report

Figure 21 shows the area report of the serial communication module. As shown in figure,

the total cell area is 148176 square µ.

33

Figure 22 shows the timing report of the serial communication module. As shown in the

figure, the clock timing is verified against the timing constraints. The start point is

main_clock and the end point is uart_clk. There should be (MET) beside the slack in

order to say that the timing is met.

Figure 22 Timing report

34

Figure 23 Netlist file

5.4 ASIC implementation using Synopsys IC Compiler tool:

 IC compiler tool also called icc_shell is responsible for floorplan, placement of

cells, clock insertion, routing, cell filling, metal fill, writing out GDS file.

Figure 24 shows the floorplan. Floorplan is a process to choose different layers on

the die. Some of the layers are contact, via, glass, metal 1, metal 2, metal 3, poly, active.

Length of the die used is 1500 µm. The horizontal lines in figure 23 are the different

layers. Figure 25 shows the I/O pads. I/O pads are the square blocks on the four sides of

the layout. The vertical straight lines are VDD and GND.

35

Figure 24 Floorplan

Figure 25 Pad fill

36

The placement of the cells is shown in figure 26. The IC compiler is responsible for the

placement of cells. The cells are placed in the center part of the die inside the bounding

box (260, 260, 1240, 1240).

Figure 26 Placement of cells

 After placement of cells, a clock tree must be inserted to supply the clock signal

to all the modules. Clock tree is responsible to supply the clock to all the modules. Clock

tree is shown in figure 27. After the clock tree insertion, the timing check is performed to

make sure the timing is met. The clock tree report is shown in figure 28. There should be

MET beside the slack to say that the timing is met.

37

Figure 27 Clock-tree insertion

Figure 28 Timing after clock insertion

38

The clock tree summary report is shown in figure 29. The skew should be less

than 0.2 ns. The report shows that skew obtained is 0.0071ns.

Figure 29 Skew report

 After the placement and clock tree insertion, the layout now has clock connected

to all the cells.

Figure 30 After Placement and clock insertion

39

 The cells should be routed (connected). Routing is a process to connect the cells

based on the logic design. Figure 31 shows the routing of cells (lines seen in between the

cells). The routing and placement of cells are both inter linked to each other. The cells are

placed near to the respective I/O ports to improve the timing of the whole circuitry.

Figure 31 Routing

 The cell view of the Input_data register is shown in figure 32. The small square

blocks seen are the contacts. These cells are connected through nets.

40

Figure 32 Cell view

 The QOR (Quality of Results) report is shown in figure 33. This report is

responsible to identify any hold violations. A hold violation is caused when the input

signal is changing very frequently after the positive edge of clock signal.

Figure 33 QOR report

41

Figure 34 Timing after routing

After the routing of cells, metal filling is required to fill the empty spaces with dummy

metal. Metal layers are classified into metal 1, metal 2 and metal 3.

42

Figure 35 Metal Fill

 After the metal fill, the layout vs schematic check is performed. This verification

identifies any short nets, open nets and floating nets. The floating ports are fine because

the inputs and outputs are not connected. As shown in figure 36, the LVS report says no

short nets.

43

Figure 36 Layout Vs Schematic

5.5 DRC and metal density check of the design:

Figure 37 Chip after layout finish

44

 Figure 38 shows the poly layer. The empty spaces should generally be filled with

poly by the IC Compiler. These empty spaces should be filled with poly layer. This can

be done by using rectangular tool to draw rectangular blocks in the empty spaces.

Figure 39 shows the die after adding the poly manually.

Figure 38 Empty space between layers

Figure 39 After adding Poly

45

Figure 40 Metal3 drawing

 Figure 40 shows the metal 3 drawing, the rectangular blocks (yellow) on the 4

sides of the die is metal3 layer.

Figure 41 shows the DRC (Design Rule Check) setup, the DRC check was

performed only within the (260, 260, 1240, 1240) bounding box. Figure 42 shows the

DRC report which has returned 0 errors.

46

Figure 41 DRC setup

Figure 42 DRC report

47

Figure 43 Metal density check

As shown in figure 43, the metal density check results obtained are poly: 14%,

metal1: 41%, metal2: 40%, metal3: 40%. The minimum metal density requirements

(poly: 12%, metal1, metal2 and metal3: 30-80%) are met.

48

CHAPTER 6: CONCLUSION AND FUTURE STUDIES

6.1 Conclusion:

The functionality of 8-bit serial data communication module is successfully

simulated and verified on Spartan6 FPGA. The ASIC implementation of an 8-bit serial

communication module was completed, and the design was successfully submitted to the

MOSIS for fabrication on 1st April 2018. The expected delivery of the fabricated chip is

in the month of June.

6.2 Verification:

The timing report, area report, short ports, netlist data, Layout vs schematic,

design rule check (DRC), any hold violations, any functionality errors, metal density

check are performed and documented in the ASIC implementation chapter.

6.3 Future work:

 The further studies can be performed on testing the fabricated ASIC for laboratory

results. The future work may be focused on implementation of 16-bit synchronous serial

communication module with two-way communication and possibly that can handle

multiple slaves at same time such as an I2C framework.

49

REFERENCES

[1] ASIC Implementation of Universal Asynchronous Receiver and Transmitter using

45nm Technology B.Venkataramana1 , P. Srikanth Reddy2 , P. Kishore Kumar3 , K

Sivasankaran

[2] He Chun-zhi, Xia Yin-shui and Wang Lum-yao, "A Universal Asynchronous

Receiver Transmitter Design," Natural Science Foundation of china(No.61041001)2011,

pp.691-694

[3] Y. Fang Yi-yuan and Chen Xue-jun, "Design and Simulation of UART Serial

Communication Module Based on VHDL," International Workshop on Intel Sys and

App.(ISA 2011),May2011

[4] Garima Bandhawarkar and Iti Agarwal and Shweta Gaba, "Synthesis and

Implementation of UART using VHDL codes, " IEEE International Symposium on

Computer, Consumer and Control,2012, pp.1-3

[5] Asynchronous Interface, Implementation of Complete ASIC Design Flow by

Raviteja Podila, CALIFORNIA STATE UNIVERSITY NORTHRIDGE

[6] Himanshu Bhatnagar, “Advanced ASIC chip Synthesis Using Synopsys Design

Compiler, Physical Compiler and Primetime” 2004

[7] VLSI Circuit Design Methodology Demystified: A Conceptual Taxonomy,

Liming Xiu

[8] ASIC Design and Implementation of UART with DFT logic for Built-in Self-test

using Verilog HDL Author: Kistipati Karthik Reddy ; Jeeru Dinesh Reddy

[9] Synopsys Design Compiler user guide version N-2017.09

50

[10] Synopsys IC Compiler user guide version L-2016.03-SP2

[11] Digital VLSI chip design with cadence and Synopsys CAD tools

{http://www.cs.utah.edu/~elb/cadbook/}

51

APPENDIX

Serial communication module:

//Serial communication module

`include "parameters.v"

module serial_comm (clk,reset,uart_clk,TX_data,TX_ready,

 TX_input,TX_done,RX_data,RX_output,RX_ready);

input clk; input reset;

output uart_clk;

//Receiver

input RX_data;

output RX_output;

output RX_ready;

//Transmitter

output TX_data;

input TX_input;

input TX_ready;

output TX_done;

// Instantiation of the TX, RX and baud modules

TX s_TX_1

(.clk(uart_clk),.reset(reset),.TX_data(TX_data),.TX_ready(TX_ready),.TX_input(TX_inp

ut),.TX_done(TX_done));

RX s_RX_1

(.clk(uart_clk),.reset(reset),.RX_data(RX_data),.RX_output(RX_output),.RX_ready(RX_

ready));

baud BAUD_RATE_1(.clk(clk),.reset(reset),.BAUD_clk(uart_clk));

52

endmodule

Transmitter module:

//Transmitter module

`include "parameters.v"

module TX(clk,reset,TX_ready, TX_data,TX_input,TX_done);

input clk; input reset; input TX_ready;

output TX_data; input TX_input;

output TX_done; integer i;

reg TX_data;

reg TX_done;

reg [7:0] Input_data;

reg [2:0] next_state, state;

reg Load_SR;

reg [3:0] count;

reg rst_count;

reg enable_count;

reg [1:0] TX_DS;

reg shiftEnable;

reg [4:0] Delay_High;

reg DelayEnable;

reg [7:0] Tx_ShiftReg;

//Loading of input data into an 8 bit register

always @(posedge clk or posedge reset)

53

if(reset) begin Input_data = 8'b0;

i=0; end

else begin

if(TX_ready)begin

if(i < 8) begin

 Input_data[i] = TX_input;

 i = i+1;

 end

 else i=0;

end

end

//Shift register

always @(posedge clk or posedge reset)

 if (reset) Tx_ShiftReg <= 0;

 else if (Load_SR) Tx_ShiftReg <= Input_data;

 else if (shiftEnable) begin Tx_ShiftReg[6:0] <= Tx_ShiftReg[7:1];

 Tx_ShiftReg[7] <= 1'b0;

 end

 else Tx_ShiftReg <= Tx_ShiftReg;

//Counter for data length

always @(posedge clk or posedge reset)

 if (reset) count <= 0;

 else if (rst_count) count <= 0;

 else if (enable_count) count <= count + 1;

54

//Data select bit generator

always @(Tx_ShiftReg or TX_DS)

 case (TX_DS)

 `tx_strtbit: TX_data = 1'b0;

 `tx_stpbit: TX_data = 1'b1;

 `tx_ShiftRegbit: TX_data = Tx_ShiftReg[0];

 endcase

//Delay counter

always @(posedge clk or posedge reset)

 if (reset) Delay_High <= 0;

 else if (DelayEnable) Delay_High <= Delay_High + 1;

 else Delay_High <= 0;

always @(posedge clk or posedge reset)

 if (reset) state <= `tx_state0;

 else state <= next_state;

//State machine

always @(state or Delay_High or count or TX_ready)

begin

 rst_count = 1'b0;

 enable_count = 1'b0;

 TX_DS = `tx_stpbit;

 TX_done = 1'b0;

 next_state = state;

55

 Load_SR = 1'b0;

 DelayEnable = 1'b0;

 shiftEnable = 1'b0;

case (state)

 `tx_state0: begin

 if (TX_ready)begin

 next_state = `tx_state1;

 end

 else next_state = `tx_state0;

 end

 `tx_state1: begin

 TX_DS = `tx_strtbit;

 Load_SR = 1'b1;

 if (Delay_High == 4'h7)

 next_state = `tx_state2;

 else begin

 next_state = `tx_state1;

 DelayEnable = 1'b1;

 end

 end

 `tx_state2: begin

 TX_DS = `tx_ShiftRegbit;

 if (count > `data_length) begin next_state = `tx_state3;

 TX_DS = `tx_stpbit; end

 else begin

 TX_DS = `tx_ShiftRegbit;

56

 next_state = `tx_state2;

 shiftEnable = 1'b1;

 enable_count = 1'b1;

 end

 end

 `tx_state3: begin

 next_state = `tx_state0;

 rst_count = 1'b1;

 TX_done = 1'b1;

 end

 endcase

end

endmodule

Receiver module:

//Receiver module

`include "parameters.v"

module RX(clk,reset,RX_data,RX_output,RX_ready);

input clk; input reset;

input RX_data;

output RX_output;

output RX_ready;

reg rst_count;

reg RX_ready;

57

reg [2:0] next_state, state;

reg ack;

reg [3:0] Delay_High;

reg Delay_reset;

reg [7:0] parse_data;

reg shiftEnable;

reg [3:0] rxd_Cntr;

reg enable_count;

reg RX_output;

//sending the received bit

always @(posedge clk or posedge reset)

 RX_output = parse_data[7];

//acknowledge transmitter data

always @(posedge clk or posedge reset)

 if (reset)

 ack <= 1;

 else

 ack <= RX_data;

//Delay counter

always @(posedge clk or posedge reset)

 if (reset) Delay_High <= 0;

 else if (Delay_reset) Delay_High <= 0;

58

 else Delay_High <= Delay_High + 1;

//Shift register

always @(posedge clk or posedge reset)

 if (reset) parse_data <= 0;

 else if(shiftEnable) begin

 parse_data[6:0] <= parse_data[7:1];

 parse_data[7] <= ack;

 end

//Counter for data length

always @(posedge clk or posedge reset)

 if (reset) rxd_Cntr <= 0;

 else if (enable_count) rxd_Cntr <= rxd_Cntr + 1;

 else if (rst_count) rxd_Cntr <= 0;

always @(posedge clk or posedge reset)

 if (reset) state <= `rx_state0;

 else state <= next_state;

//state machine

always @(state or ack or Delay_High or rxd_Cntr)

begin

 next_state = state;

 Delay_reset = 1'b1;

 shiftEnable = 1'b0;

59

 enable_count = 1'b0;

 rst_count = 1'b0;

 case (state)

 `rx_state0: begin

 if (!ack) begin

 next_state = `rx_state1;

 end

 else begin

 next_state = `rx_state0;

 rst_count = 1'b1;

 RX_ready = 1'b1;

 end

 end

 `rx_state1: begin

 if (Delay_High == 4'h6) begin

 RX_ready = 1'b0;

 next_state = `rx_state2;

 end

 else begin

 next_state = `rx_state1;

 Delay_reset = 1'b0;

 end

 end

 `rx_state2: begin

 if (rxd_Cntr > `data_length) begin

60

 next_state = `rx_state3;

 rst_count = 1'b1; end

 else begin

 shiftEnable = 1'b1;

 enable_count = 1'b1;

 next_state = `rx_state2; end

 end

 `rx_state3: begin

 next_state = `rx_state0;

 RX_ready = 1'b1; end

 endcase

end

endmodule

Baud generator:

//Baud generator

`include "parameters.v"

module baud(clk,reset,BAUD_clk);

input clk;

input reset;

output BAUD_clk;

reg [8:0] cycles;

reg BAUD_clk;

//Counter

always @(posedge clk or posedge reset)

 if (reset) begin cycles <= 0; BAUD_clk <= 0; end

61

else if (`cycles == cycles) begin cycles <= 0;

 BAUD_clk <= ~BAUD_clk;

 end

else begin

 cycles <= cycles + 1;

 BAUD_clk <= BAUD_clk; end

endmodule

Design Compiler script:

set design_name "serial_comm"
set lib_path "~/ON.PDK/samples/logic/"
set syn_path "/usr/synopsys/Synopsys_tools/Design_Compiler/syn/M-2016.12-SP5-
3/libraries/syn"
set search_path [list ./ "$lib_path"
"/home/amunugala@ysu.local/UofU_SYNS_v1_2/UTFSM_libraries/MW_UTAH"
"$syn_path" ../rtl]

set target_library [list c5n_utah_std_v5_t27.db]
set synthetic_library [list dw_foundation.sldb standard.sldb]
set link_library [concat $target_library $synthetic_library io.db]

These cells have two outputs which causes a DRC error in ICC
INVX1 input cap shoulde be around 14fF
set_attribute [get_lib_pins */TIEHI/Y] max_capacitance 0.2
set_attribute [get_lib_pins */TIELO/Y] max_capacitance 0.2

set_dont_use c5n_utah_std_v5_t27/DCBX1
set_dont_use c5n_utah_std_v5_t27/DCBNX1

if {[shell_is_in_topographical_mode]} {
 source scripts/topo.tcl
}

Work library
define_design_lib WORK -path ./SYN/WORK

set_app_var hdlin_enable_upf_compatible_naming true
Add design file list here

62

read_sverilog {${design_name}.v }
current_design ${design_name}

Create a die scope with IOs
source scripts/add_pads.tcl
create_iowrap "${design_name}_with_io" ${design_name}

#Load Timing Constraints
source input/cons.tcl

set_operating_condition typical

if {[shell_is_in_topographical_mode]} {
 #Load Floorplan
 extract_physical_constraints input/fp.def
}

Power Vectors
read_saif -input ../rtl/cordic.saif -instance ${design_name} /dut

Design checks
check_design > reports/check_design.rpt
Run Synthesis
#compile_ultra -no_autoungroup
compile_ultra
sizeof_collection [get_cells * -hier -filter ref_name=~TIE*]
optimize_netlist -area

report_timing > reports/${design_name}.timing.rpt
report_power > reports/${design_name}.power.rpt
report_qor > reports/${design_name}.qor.rpt
report_area > reports/${design_name}.area.rpt

Write Outputs
write -hier -format ddc -output results/${design_name}.ddc
write -hier -format verilog -output results/${design_name}.v
write_sdc results/${design_name}.sdc
write_sdf results/${design_name}.sdf

ICC compiler script:

Add your design name here
set design_name "serial_comm"
set module_name "${design_name}_with_io"

63

source -echo scripts/setup.tcl

proc stage_report { stage_name folder } {
 redirect -file "${folder}/${stage_name}.report_qor.rpt" { report_qor }
 redirect -file "${folder}/${stage_name}.report_timing.rpt" { report_timing }
 redirect -file "${folder}/${stage_name}.report_power.rpt" { report_power }
}

set_attribute [get_lib_pins */TIEHI/Y] max_capacitance 0.2
set_attribute [get_lib_pins */TIELO/Y] max_capacitance 0.2

Verify librery consistency
set_check_library_options -logic_vs_phy
check_library

##
#######
Source Input Data Base
- Binary Flow (DDC)
##
########
Load Mapped Netlist
import_design ../syn/results/${design_name}.ddc -format ddc

Append IO Cells
Need to run this script twice
once with is_pad.tcl commented out.
second time with newly created file copied into is_pad.tcl from run directory
source scripts/create_pads.tcl
source is_pad.tcl

##
#######
Design Planning
Floorplan:
- When short on routing layers adjust row_core_ratio to provide space
between site rows.
##
########

create_floorplan \
 -control_type "width_and_height" \
 -core_height 900 \
 -core_width 900 \
 -row_core_ratio "0.8" \
 -no_double_back \

64

 -start_first_row \
 -left_io2core -30 \
 -right_io2core -30 \
 -bottom_io2core -30 \
 -top_io2core -30

insert_pad_filler -cell "pad_space43_2 "

Now we load the fp since is
{0.000 0.000} {1500.000 1497.000}
#read_def ../syn/input/fp.def

derive_pg_connection -power_net {vdd!} -ground_net {gnd!} -create_ports top

create_pad_rings -nets {vdd! gnd!}

Strap numbers is a trade off between congestion and IR Drop
create_power_straps \
 -direction vertical \
 -num_placement_strap 4 \
 -start_at 450 \
 -increment_x_or_y 200 \
 -nets {vdd! gnd!} \
 -width 2.700 \
 -layer metal3

write_def -rows_tracks_gcells -pins -macro -output ../syn/input/fp.def
get_attribute [get_die_area] bbox

Checkpoint 1 Floor Planning
#start_gui
return

##
#######

Placement
- Optimize for congestion
##
########
#place_opt -effort high -congestion
place_opt -effort high -area_recovery

stage_report place_opt reports
save_mw_cel -as ${design_name}_postPlaceOPT
Checkpoint 2 Placement

65

#start_gui
return

##
#######
Clock Tree Synthesis
##
########
clock_opt -no_clock_route -only_cts
report_clock_tree -summary

Enable hold fixing, since CTS is synthesized (attribute is stored in MW).
set_fix_hold [all_clocks]
extract_rc

clock_opt -no_clock_route -only_psyn \
 -area_recovery -power

route_zrt_group -all_clock_nets
report_clock_tree -summary

Post CTS Netlist optimization
stage_report clock_opt reports
save_mw_cel -as ${design_name}_postCTS

report_clock_tree
report_timing

Checkpoint 3 - Clock Tree
#start_gui
return

Route PG rails for std cells (CTS/PSYNOPT)
derive_pg_connection -power_net {vdd!} -ground_net {gnd!} -verbose
preroute_standard_cells -nets {vdd! gnd!} -connect horizontal
get_attribute [get_die_area] bbox

##
#######
Routing
- Optimize for congestion
##
########

66

route_opt -initial_route_only
report_qor

set_app_var routeopt_drc_over_timing true
route_opt -effort high -incremental -only_design_rule

Do we still see DRC?
focal_opt -drc_nets all
Account for new buffers inserted
derive_pg_connection -power_net {vdd!} -ground_net {gnd!} -verbose
preroute_standard_cells -nets {vdd! gnd!} -connect horizontal
route_zrt_detail -incremental true

Checkpoint 2 - Routed design
save_mw_cel -as ${design_name}_postRouteOpt
stage_report route_opt reports

Checkpoint 4 - Routing
#start_gui
return

##
#######
Chip Finish
- Insert filler cells (Provide NWELL & rail continuity)
- Fix Antenna violations gate driving nets (%RouteAre/%GateArea)
- Fill small gaps with NWELL
##
########
Std Cell Fillers
insert_stdcell_filler -cell_with_metal "FILL8 FILL4 FILL2 FILL" -connect_to_power
"vdd!" -connect_to_ground "gnd!"
derive_pg_connection -power_net {vdd!} -ground_net {gnd!} -verbose
preroute_standard_cells -nets {vdd! gnd!} -connect horizontal
Antenna Constraints
set_route_zrt_detail_options -default_gate_size 1.8 -default_port_external_gate_size 1.8
define_antenna_rule $mw_design_library -mode 1 -diode_mode 0 -metal_ratio 1000 -
cut_ratio 0
route_zrt_detail -incremental true
verify_zrt_route -antenna true

Checkpoint 5 - Fill
#start_gui
return

67

Fill to meet density rule
#insert_metal_filler -out self -fill_poly -timing_driven -to_metal 3
insert_metal_filler -fill_poly -bounding_box { { 260 260 } { 1240 1240 } } -out self -
timing_driven -to_metal 3
Requires ICV
report_metal_density

Checkpoint 6 - Density checks and fix
#start_gui
return

Layer fill
#insert_well_filler -layer NWELL -ignore_PRboundary
This one makes the well to align preventing DRC
set_parameter -name wellFillerAlignWithCell -value 1 -module apl
insert_well_filler -layer {NWELL} -ignore_PRboundary -higher_edge min -lower_edge
max

save_mw_cel -as ${design_name}_postChipFinish

Checkpoint 6 - Metal Density
#start_gui
return

##
#######
Signoff
- Run LVS Checks on routing layers (Fix LVS before proceeding to DRC check)
- Call Hercules for DRC:
- Checking routing layers only
- Exclude IO area (Use die dimension as reference)
##
########
verify_pg_nets
verify_lvs -max_error 2000 -check_open_locator -check_short_locator
verify_lvs
save_mw_cel -as ${design_name}_postLVS
#start_gui
return

		2018-05-21T09:43:27-0400
	College of Graduate Studies

