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Abstract

Correlated Sample Synopsis (or CS2) has been proven to be a valuable option

concerning centralized databases but has yet to be tested on big data. With the

overall accumulation of data growing at an alarming rate, scalable query estimation

and approximate query processing are becoming necessary for large databases.

Query estimations based on the Simple Random Sample Without Replacement (or

SRSWOR) return results with extremely high relative errors for join queries.

Existing methods, such as Join Synopses, only work well with foreign key joins, and

the sample size can grow dramatically as the dataset gets larger. This research aims

to provide that CS2 can speed up search query length results, give precise join query

estimations, and minimize storage costs when presented with big data. In addition,

this research extends the correlated sampling techniques and estimation methods of

CS2 to the big data environment with no index present. Extensive experiments with

large TPC-H datasets in Apache Hive show that CS2 produces fast and accurate

query estimations on big data.
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1 Introduction

1.1 Motivation and Overview

Data is everywhere. We produce 2.5 quintillion bytes (2.5 billion Gigabytes) of data

each day. Ninety percent of the data created in the world has been created in the past

two years [3]. To put that into perspective, IBM created the IBM Model 350 Disk

File in 1956. It was the size of a compact-size car, and had a storage capacity of five

megabytes. If one were to place these machines side by side, based off the amount

of data we use in one day, they would circle the earth nine thousand one hundred

and ninety times. With the sizes of company databases reaching terabytes and even

petabytes, and at the speed of which this data is being accumulated, the need for

query optimization has never been so high.

Query optimization [4] is the process of using statistics about the database,

as well as assumptions about the attribute values, to acquire the best execution

plans for queries. Some databases are large, and data streams in so fast that queries

can take minutes, hours, even days to process. CS2 (Correlated Sample Synopsis)

[2] is a statistical summary for a database, and through unique methods, aims to

provide a fast and precise result size estimation for queries with joins and arbitrary

selections. The aim of this thesis is to provide background information on Big Data,

CS2, SRSWOR (Simple Random Sample Without Replacement), Apache Hadoop

and Apache Hive, and Join Synopsis, as well as taking the methods of CS2 and apply
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them to big data sets and presenting the findings.

1.2 Organization

The thesis is organized as follows. Starting with Section 2.1, Section 2 explains back-

ground information on Big Data, discussing the origins, as well as the Three V’s and

additional V’s. In Section 2.2 Map-Reduce, HDFS, YARN, and Hadoop Common

modules of Apache Hadoop and Hive are introduced. Section 2.3 covers the structure

and use of a Join Graph of a Database. Section 2.4 deals with SRSWOR (Simple

Random Sample Without Replacement), and the problems that occur when attempt-

ing to use SRSWOR individually on relations. Join Synopses methods are explained

in Section 2.5, with its certain complications due to its foundation being discussed.

Section 3 briefs about CS2, with the construction of CS2 being explained in Section

3.1 and the type of join queries it uses in Section 3.2. In Section 4 the experiments

and results are introduced. The setup is presented (hardware and software) in Sec-

tion 4.1. The step-by-step process of creating the datasets, as well as preparation of

the datasets for experimentation is discussed in Section 4.2. Section 4.3 holds the

results from the experiments and explains the differences experienced from using two

datasets. Additionally all code used in experimentation is located in Appendix A and

Appendix B. Section 5 concludes the thesis and discusses future works.
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2 Background

2.1 Big Data

Big Data may just be one of the most misunderstood terms in the technology field.

It is miscommonly referred to as a large volume of data. While not entirely incorrect,

there is much more to Big Data then just size. In the following sections, the origins

of big data, as well as what defines data as “Big data”, will be discussed.

2.1.1 Brief History of Big Data

The term “Big Data” was first coined in 1998 by John Mashey of Silicon Graphics,

Inc., although this is debated [5]. Others had written about big data before this date,

but Mr.Mashey was the first that used the term in the context of computing. Even

though the term Big Data was created in the 90’s it was not until the early 2000’s

that it took the form of what is is considered today. In February 2001, Doug Laney

created the three V’s of Big Data, which are Volume, Variety, and Velocity. [6]

2.1.2 The Three V’s

The first V, Volume, is what most people think of when they discuss big data. Some

may ask, what size is considered “Big Data”? There is no automatic answer to this

question, as the size of the storage of data changes over time. In the 90’s and 2000’s
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big data would have been considered gigabytes, where as today big data could be

considered terabytes, or even petabytes. And sometime in the future terabytes and

petabytes most likely will not be considered big data, as exabytes and zettabytes will

take their place. [7]

Variety, the second V, involves types of data. Not all data is created equal.

Data can be considered structured, such as data in a relational database. In this case

the information is highly organized, in which it is easy to find and analyze the data.

Some examples of unstructured data would be audio/video files, word documents, and

emails. This type of data is hard to organize, and while some forms of unstructured

data may have a an internal architecture to them, being able to correlate with other

data may prove to be difficult.

The third V, Velocity, handles not only the speed in which data accumulates,

but the speed in which it would take to analyze the data. Figure 1 shows transactions

per year for two major retail chains, Home Depot and Lowe’s. Lowe’s in 2017 had

953 million transactions during the year, or an average of 1813 transactions a minute.

Home Depot did even more business with 1.579 billion transactions a year, averaging

out at 3004 transactions a minute. These are enormous amounts of data streaming

into the system at one time. Attempting to analyze this amount data to research

customer trends, as well as other business analytics, would take large processing

power.
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Figure 1: Transactions Per Year [1]

2.1.3 Additional V’s

In the past five to ten years, two additional V’s have supplemented the original three

V’s. The creator and exact creation date is not known. Some establishments recognize

just the three, while others four, and even others all five V’s.

The fourth V, Veracity, deals with the accuracy and certainty of your data.

According to IBM [8], one in three business leaders do not trust the data given when

using to make a decision. With poor data quality costing companies worldwide over

3.1 trillion dollars a year, one could understand why. When dealing with big data,

accuracy of data becomes instrumental.

Value, the fifth V, considers the usefulness of the data. Is the return on
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data worth the cost of storing? Storing pentabytes of data, when nothing is usable

for extraction, is not cost efficient for a business. [9]

2.2 Apache Hadoop and Hive

Created in 2005 by Doug Cutting and Mike Cafarella, Apache Hadoop is an open

source distributed processing framework that manages data processing as well as

provides storage for big data applications running in clustered systems.

Apache Hive is an open source tool built by developers at Facebook in 2007.

Hive, running on the Apache Hadoop framework, allows developers to use HQL (Hive

Query Language) on Hadoop’s HDFS and Map-Reduce [10].

2.2.1 Hadoop

The Hadoop framework [11] consists of multiple modules, each having its own dis-

tinctive responsibilities.

Hadoop Common is the storehouse for other Hadoop Modules. It holds all

of the files in which the other Hadoop Modules need to run properly.

Hadoop Distributed File System, or HDFS for short,[12] deals with the

storage of data of an Hadoop Cluster. A major issue with storing streaming, large

sets of data, is hardware failure. HDFS is built to combat this, by using a process

called replication. HDFS consists of a name node, which stores all meta data of all
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Figure 2: An Example of Map-Reduce

files stored. It also has data nodes as well, which hold all of the actual data. Each

data node consists of a multitude of blocks, with each block of data being stored into

3 different data node locations in the cluster. If at any time there is a node that

fails, or a machine in the cluster fails, another block copy is made on another node

or machine [10].

Hadoop YARN (Yet Another Resource Negotiator) [13], manages resources

of other Hadoop Modules, as well as schedules tasks and sets nodes for other Hadoop

Modules to execute on [14].

There are two tasks/functions for Hadoop Map-Reduce. The Map function

takes input data and creates key/value pairs from it. It then shuffles and sorts the
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data. The Reduce Function then takes the key/value pairs from all of the mappers

and combines them before reducing the key/value pairs [15].

Figure 2 shows an example of the Map-Reduce process. A user has a large

file, consisting of two columns. The first column holds a sports team city (key), and

the second column holds how many hits that team hit on a certain day(value). The

user would like to know what is the most hits in a day for each sports team. They

assign a mapper task in which four mappers then create key/value pairs out of the file.

Each mapper then sorts its key/value pairs and sends it to the reducer. The reducer

then combines them and reduces the key/value pairs and sends it to the output [15].

2.2.2 Hive

Apache Hive [16] was created to make it easier for users to be able to use Hadoop’s

Map-Reduce and HDFS without an advanced knowledge of Java.

As mentioned earlier, Hive uses a similar language to SQL, called HQL or

Hive Query Language. With the use of this language users are able to perform data

queries, as well as summarize and analyze data. Users can use traditional command

line to work in Hive, or us HWI (Hive Web Interface). HWI is a graphical user

interface, or GUI, that simplifies the use of hive.
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Figure 3: A Basic Join Graph

2.3 Join Graph of a Database

Definition 1. (Join Graph) A join graph [17] is a visual representation of a database

in which the flow of joins is explained. It can be created to take into consideration the

relational type of joins,(many-to-many, many-to-one, one-to-one), and also if there

are multiple attributes that can be used within the join. It is a general representation

in which the join relations of a database are mapped out [2].

Definition 2. (Joinable Relations) Two relations considered joinable, Ri and Rk,

i � k, when there is a path ≥ 1 between the relations Ri and Rk [2].

Definition 3. (Joinable Tuples) Under the assumption that Ri and Rk is a joinable

relation, a tuple in Ri,denoted by ti, and a tuple in Rk, denoted tk, is considered

joinable if ti can find a match ti+1 in Ri+1, ti+1 can find a match ti+2 in Ri+2, and

tk−1 can find a match tk in Rk [2].

Figure 3 is a basic join graph of a database. It shows that Relation 1 denoted
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as R1, has joinable attributes with Relation 2, as well as Relation 3, denoted with

R2 and R3 respectively. R2 has joinable attributes with Relation 4, denoted with R4,

but does not have any joinable attributes with R3 or Relation 5, denoted with R5.

R3 has joinable attributes with R5, but no joinable attributes with R2 or R4.

2.4 Simple Random Sample Without Replacement

Simple Random Sample Without Replacement, or SRSWOR, [18, 19] has previously

been tested as a sample synopsis. A SRSWOR of each relation is taken separately, and

then the resulting independent samples are joined. Unfortunately, the final results

end in massive errors of the join size estimation [20]. SRSWOR is beneficial if one is

only seeking to get a size estimation on an individual relation.

An example of independent SRSWOR on two separate joinable relations

is shown in Figure 4. This example consists of a Customer Table and Orders table.

Creating a SRSWOR at twenty percent the size of the relations results in two random

tuples from each table. A join based off the foreign key CustID on the original

relations would result in ten tuples. Joining the samples based on the same constraints

would result in one tuple. To get the join size estimation one needs to take the number

of tuples in the sample and divide this number by the percent of the SRSWOR, which

in this case would be twenty percent. The resulting estimation would be five, which

is far off from the actual ten in the original relations. Relative error, which is used

as a measure of precision, is the ratio of the absolute error of a measurement, to the
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Figure 4: SRSWOR of Two Relations

measurement being taken. In the case of this example the relative error resulted with

an abysmal 50. In an attempt to put this into perspective, shown in future results of

the thesis experiments, the average relative error was .635.

2.5 Join Synopses

While Join Synopses [21] use SRSWOR in its mechanics, the process does adds a

join correlation between individual relations, causing a much better relative error.

Join Synopses uses foreign key joins and computes samples of a small set of joins,
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Figure 5: Join Synopses Process

procuring samples of all possible joins in a schema. These samples are then stored,

and joined with individual SRSWOR relations to form a unbiased finalized set of

correlated random tuples that can be used for query estimation.

Figure 5 shows an example of the Join Synopses process and how prepara-

tions for a join estimation is made. For any of the three relations, exactly the same

as SRSWOR, a individual relation can be estimated by using just a SRSWOR. These

are denoted in the figure as S∗
1 , S∗

2 , and S∗
3 . The relations needed to calculate a join

query size estimation of R1 and R2, would be a correlated sample of R1 and R2,

denoted S1
2 , and S∗

1 . To get the join query size estimation of a join between R2 and

R3, a correlated sample of R2 and R3, denoted as S2
3 , and S∗

2 is needed. Finally, the

relations needed to estimate a join query size estimation for R1, R2, and R3, would

include S∗
1 , S1

2 , and a sample of a correlated join between R1 and R3, denoted S1
3 .

The issue with Join synopses, which is not present in CS2, is storage expansion. The
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accumulation of samples grow exponentially as the database grows. Join Synopsis

also cannot do many-to-many relations due to its foreign-key structure.

3 CS2 on Big Data

3.1 Construction of CS2

CS2 (or Correlated Sample Synopses) [2] is a statistical summary for a database,

which can be used for both query estimation and approximate query processing. The

purpose of CS2 is to create a unbiased, fast, and precise estimation for queries with

all types of joins and selections. Preserving join relationships between tuples and

their relations is the key to CS2.

Figure 6: Correlated Sampling Algorithm [2]
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3.1.1 Join Graph Path Creation and Source Relation Selection

Correlated Sampling begins with the creation of a join graph of the database, as well

as the determined size preferred for the sample relations. A source relation selection

must then be made.

It is important to note, CS2 does work with any join relationship (one-to-

many, many-to-one, many-to-many). However, when selecting your sampling path

and source relation it is suggested to use and follow a many-to-one relationship, as

using a one-to-many or many-to-many relationship can cause the synopsis to grow

considerably, subtracting from the overall number of sample tuples that can be taken

from the source relation. For a complicated join graph, multiple source relations are

allowed to follow many-to-one-relationships.

3.1.2 Correlated Sample Synopsis

Figure 7 shows a sample example of the process that transpires once the source rela-

tion and path selection are decided on. A simple random sample without replacement

is performed on the source relation denoted as R1, with results of this SRSWOR be-

ing placed in a sample relation, denoted as S∗
1 with a star to signify it is a SRSWOR

of R1. The next relation, denoted R2 is now ready to be moved to. To create the

correlation between relations and preserve the join relationships, S∗
1 is joined with

R2, with the results being placed into a second sample relation, denoted as S2. In

this example, the source relation only consists of one edge to another relation. In the

14



Figure 7: The Process of Creating Correlated Samples Using CS2

case that there are multiple edges to multiple relations, one would exhaust all possi-

bilities by creating sample relations for each relation until all edges are accounted for.

Relation three, denoted as R3, is then joined with S2 with the results being placed

in the third sample relation, denoted as S3. The combination of all of the sample

relations is considered the Correlated Sample Synopsis, or CS2.

3.2 Query Estimation

The process of query estimation is taking the results from a sample query, and using

said results to estimate query result sizes.

15



3.2.1 Source Query Estimation

Source Query Estimation, is the process of estimating query results using sample

queries that includes the source relation. Referring back to Figure 7, a source query

would be considered a join of relations S∗
1 and S2, or a join between relations S∗

1 and

S3. The results of these joins could then be used to estimate the join query size of

joins between R1, and R2, as well as R1 and R3.

Note that the queries used in experiment research used CS2 Source Query

Estimation. The use of CS2 for experiment purposes was for query estimation. No-

Source Query Estimation is beyond the scope of this thesis. But, it is important to

know that CS2 can use No-Source Query (discussed in next section) to not only get

query size estimation, but also approximate query processing. AQP includes more

aggregate queries such as SUM and AVG.

3.2.2 No-Source Query Estimation

No-Source Query Estimation, is the process of estimating query results using sample

queries that do not include the source relation. Again, referring back to Figure

7, a join of S2 and S3 would be considered a No-Source Query. In this situation,

the relation with the least index, based on the sampling order, would be considered

the highest relation. Due to the conditions of a No-Source query not containing a

SRSWOR based off the source relation, additional steps must be taken for accurate

estimation. Joinable Tuple Sampled Ratio, or JR, is a procedure of backtracking to

16



the source relation in a no-source query (reverse sampling), and supplying it with the

ability to estimate the join query size.

4 Experiment

4.1 Setup

For this experiment, a cluster of five nodes on a remote server were created in the

Sarah Cloud created by YSU Data Lab1. This cluster consists of two nodes being

masters and three nodes taking the responsibilities of workers. Master Node One has

four Intel Xeon CPU’s (E5-2630 v4 @ 2.20 GHz) and 16GB of RAM. Master Node

Two has two Intel Xeon CPU’s (E5-2630 v4 @ 2.20 GHz) and 10GB of RAM. All

worker nodes consist of the same setup, a Intel Xeon CPU (E5-2630 v4 @ 2.20 GHz)

processor and 8GB of RAM.

The cluster is running Apache Hadoop with Apache Hive command line

setup. The cluster is connected to remotely using Putty SSH, through Cisco Any-

Connect VPN Connector.

Two datasets are used, both datasets are generated using TPC-H benchmark[22].

The first dataset created has a total size of 1GB. The second dataset created has a

total size of 10GB. Each dataset holds eight relations. The relations are Lineitem,

Customer, Orders, Partsupp, Part, Supplier, Nation, and Region.

1http://datalab.ysu.edu
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4.2 Experiment Setup

The following steps are taken to prepare for experimentation on the big data.

Step 1. Using the source dataset, a source relation as well as a join graph

path must be decided on. Figure 8 shows the results of these decisions. Lineitem

holds the most many-to-one relationships, and is selected as the source relation. The

path that was chosen based on relationships was as follows:

• Lineitem -> Orders, Lineitem -> Partsupp, Orders -> Customer, Partsupp ->

Part, Partsupp -> Supplier, Customer -> Nation, Nation -> Region

Figure 8: A Join Graph of the TPC-H Dataset

Note that Figure 8 shows multiple paths to Nation. Supplier as well as Customer,

18



or even both, can be used as a join relation for Nation. For these experiments

Customer is chosen.

Step 2. A empty set must be created to store the samples of the source

dataset. The 1GB and 10GB datasets were denoted as tpch1g and tpch10g respec-

tively. The sample datasets were denoted as s_tpch1g and s_tpch10g respectively.

Step 3. Before creating the SRSWOR a sample dataset size must be selected.

The decision was made that the sample dataset size would be one percent of the source

dataset. The HQL to create the SRSWOR is as follows:

• create table s_tpch10g.lineitem as select * from tpch10g.lineitem

where rand () <= 0.01

Distribute by rand ()

Sort by rand ();

The HQL lines Distribute by rand (), and Sort by rand () were added to create a

higher rate of randomness. Distribute by rand () takes the entire set of tuples from

a table, and distributes them randomly to different reducers. Sort by rand () then

takes these sets of random tuples and sorts them randomly on each reducer.

Step 4. Using the created SRSWOR, and following the join graph path, the

rest of the sample relations are constructed. The HQL code that was used to create

the sample relations are located in Appendix A.
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4.3 Results

Overall, a total of 15 queries were tested five times each, over both the 1GB and 10GB

source dataset, as well as the 1GB and 10GB sample dataset. The exact queries used

in this process are located in Appendix B.

The original dataset, is denoted as the “source” on all graphs, and the

correlated sample dataset, is denoted as “sample”. Discussion about the results for

the 1GB dataset will be presented first, followed by the 10GB dataset results, and

finishing with discoveries made through the testing phase. The datasets were tested

on speed of queries, as well as accuracy of the results.

For accuracy tests, we compare the estimated query results by CS2 (Qestimated)

with the ground truth query results from the source database (Qground_truth) and cal-

culate the absolute relative error. The formula of the absolute relative error is given

by:

absolute relative error =
∣∣∣∣∣Qground truth − Qestimated

Qground truth

∣∣∣∣∣ × 100%
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Table 1: Average Times of 1GB Query Search Length (Seconds)

Type Average High Low
Source 16.26 23.24 11.57
Sample 5.33 7.81 3.71

Figure 9: 1GB Dataset Query Search Length Results (Seconds)

The 1GB dataset source dataset averaged a total query time of 16.26 sec-

onds, with a high average of 23.24 seconds in Query 11, and a low average of 11.57

seconds in Query 10. The 1GB sample dataset averaged 5.33 seconds, with a high

average of 7.81 on Query 12, and a low average of 3.71 on Query 14. The average

speed up from the sample, over the source would be a 205%. The largest speed up

was Query 14 at 321.71%, and the lowest speed up was Query 9 at 141.65%. The

results were impressive on the 1GB dataset with the sample dataset processing much

faster than the source.
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Figure 10: 1GB Dataset Relative Error Results (%)

The average count of tuples for the source dataset was 2,520,952. The

average count of tuples for the sample dataset was 25,385. The average join estimation

results based off source join estimation was 2,538,533. The average Relative Error for

the 1GB dataset was .96%. The highest relative error was 2.50% on Query 3 with the

source dataset holding 592,794 tuples, the sample dataset holding 6,076 tuples and

source join estimation showing 607,600 tuples. The lowest relative error was .09%

on query 7, with the source dataset showing 24,877, the sample dataset showing 249,

and the source join estimation showing 24,900.
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Table 2: Average Times of 10GB Query Search Length (Seconds)

Type Average High Low
Source 437.49 1692.87 69.57
Sample 9.53 14.84 7.00

Figure 11: 10GB Dataset Query Search Length (Seconds)

The 10GB dataset source dataset averaged a total query time of 437.49

seconds, with a high average of 1,692.87 seconds in Query 11, and a low average of

69.57 seconds in Query 7. The 1GB sample dataset averaged 9.53 seconds, with a high

average of 14.84 on Query 11, and a low average of 7 on Query 3. The average speed

up from the sample, over the source would be a 4,489.44%. The largest speed up

was Query 11 at 16,071.90%, and the lowest speed up was Query 2 at 758.39%. This

shows that the larger the dataset, the better CS2 performs in speed. These results

also showed something that was unexpected and will be discussed under Figure 13,

Two-Relation Join Query Results.
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Figure 12: 10 GB Dataset Relative Error Results (%)

The average count of tuples for the source dataset was 25,208,072. The av-

erage count of tuples for the sample dataset was 251,168. The average join estimation

results based off source join estimation was 25,116,820. The average Relative Error

for the 10GB dataset was .34%. The highest relative error was .76% on Query 7 with

the source dataset holding 248,493 tuples, the sample dataset holding 2,466 tuples

and source join estimation showing 246,600 tuples. The lowest relative error was .01%

on query 15, with the source dataset showing 6,047,718, the sample dataset showing

60,474, and the source join estimation showing 6,047,400. The results show that not

only does CS2 speed up the larger the data gets, but its accuracy also improves.
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Figure 13: 10GB Dataset Two Relation Join Query Results (Seconds)

Figure 14: 10GB Dataset Three Relation Join Query Results (Seconds)

After finishing both the 1GB dataset as well as the 10GB database, some-

thing unique was recognized. Not only does CS2 speed up the join queries, but when

moving from a two relation join, to a three relation join, the time increase is very

minimal for CS2. In Figure 13, the two relation join query results, CS2 holds at

about a seven second average while the source averages around 180 seconds. When

the queries switched to a three relation join in Figure 14, the average for CS2 bumps

up to about 10 seconds, while the source relation explodes and averages about 1100

seconds per query.
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Figure 15: Sample Search Length 1GB vs 10GB Results (Seconds)

Figure 16: Source Search Length 1GB vs 10GB Results (Seconds)

Figure 15 and 16 show how CS2 maintains a fast query search length as the

dataset gets larger. Figure 15 shows the CS2 search length comparison between the

1GB and 10GB datasets. It maintains its form from the 1GB dataset to the 10GB

set, only slightly changing on Query 14. In comparison the source dataset search

length jumps all over the chart, and when it reaches the three relation join the query

length substantially increases.

26



5 Conclusion and Future Works

In this research, the use of CS2 on big data was introduced. It was discovered that

not only does CS2 maintain the accuracy of tuples from its samples in join query

estimation, but increases in precision as the dataset grows larger. CS2 also main-

tained a constant speed and did not increase much as the datasets expanded in size.

When the source relation query search length ballooned in size with the three relation

joins, CS2 continued do produce low search query lengths. Based off the results CS2

proved to be successful in query optimization and a more efficient alternative to other

optimizers such as Join Synopses, in regards to storage requirements.

The type of join estimator that was used for this research was the CS2 Source

Estimator. Future research will seek to use No-Source estimator with JR proving that

CS2 will also excel with AQP, ultimately providing the ability to accurately estimate

customer trends, among other business analytics, at a fraction of the query processing

time.
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Appendix A Correlated Sampling HQL Code

Creating Sample Partsupp Table

• create table s_tpch10g.partsupp as select distinct partsupp.ps_partkey,

partsupp.ps_suppkey, partsupp.ps_availqty, partsupp.ps_supplycost,

partsupp.ps_comment from tpch10g.partsupp join s_tpch10g.lineitem on

partsupp.ps_partkey = lineitem.l_partkey and partsupp.ps_suppkey =

lineitem.l_suppkey;

Creating Sample Orders Table

• create table s_tpch10g.orders as select distinct o_orderkey, o_custkey,

o_orderstatus,o_totalprice,o_orderdate,o_orderpriority, o_clerk,

o_shippriority,o_comment from tpch10g.orders join s_tpch10g.lineitem

on orders.o_orderkey = lineitem.l_orderkey;

Creating Sample Part Table

• create table s_tpch10g.part as select distinct p_partkey, p_name,

p_mfgr, p_brand, p_type, p_size, p_container, p_retailprice, p_comment

from tpch10g.part join s_tpch10g.partsupp on part.p_partkey

= partsupp.ps_partkey;
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Creating Sample Supplier Table

• create table s_tpch10g.supplier as select distinct s_suppkey, s_name,

s_address,s_nationkey,s_phone, s_acctbal,s_comment from tpch10g.supplier

join s_tpch10g.partsupp on supplier.s_suppkey = partsupp.ps_suppkey;

Creating Sample Customer Table

• create table s_tpch10g.customer as select distinct c_custkey,c_name

,c_address,c_nationkey,c_phone, c_acctbal,c_mktsegment,c_comment from

tpch10g.customer join s_tpch10g.orders on customer.c_custkey =

orders.o_custkey;

Creating Sample Nation Table

• create table s_tpch10g.nation as select distinct n_nationkey, n_name,

n_regionkey,n_comment from tpch10g.nation join s_tpch10g.customer on

nation.n_nationkey = customer.c_nationkey;

Creating Sample Region Table

• create table s_tpch10g.region as select distinct r_regionkey, r_name,

r_comment from tpch10g.region join s_tpch10g.nation on

region.r_regionkey = nation.n_regionkey;
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Appendix B Testing Queries HQL Code

Query 1

• select count (*) from lineitem,partsupp where l_partkey = ps_partkey

and l_suppkey = ps_suppkey;

Query 2

• select count (*) from lineitem,partsupp where l_partkey = ps_partkey

and l_suppkey = ps_suppkey and ps_availqty > 9000;

Query 3

• select count (*) from lineitem,partsupp where l_partkey = ps_partkey

and l_suppkey = ps_suppkey and ps_supplycost < 100;

Query 4

• select count (*) from lineitem,partsupp where l_partkey = ps_partkey

and l_suppkey = ps_suppkey and l_quantity >= 20;

Query 5

• select count (*) from lineitem,partsupp where l_partkey = ps_partkey

and l_suppkey = ps_suppkey and l_extendedprice >= 40000;
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Query 6

• select count (*) from lineitem,orders where l_orderkey = o_orderkey;

Query 7

• select count (*) from lineitem,orders where l_orderkey = o_orderkey

and o_totalprice >= 400000;

Query 8

• select count (*) from lineitem,orders where l_orderkey = o_orderkey

and l_quantity < 20;

Query 9

• select count (*) from lineitem,orders where l_orderkey = o_orderkey

and l_discount = .04;

Query 10

• select count (*) from lineitem,orders where l_orderkey = o_orderkey

and l_shipmode = ’AIR’;

Query 11
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• select count (*) from lineitem,orders,customer where l_orderkey

= o_orderkey and o_custkey = c_custkey;

Query 12

• select count (*) from lineitem,orders,customer where l_orderkey

= o_orderkey and o_custkey = c_custkey and c_acctbal > 500;

Query 13

• select count (*) from lineitem,orders,customer where l_orderkey

= o_orderkey and o_custkey = c_custkey and c_mktsegment

= ’AUTOMOBILE’;

Query 14

• select count (*) from lineitem,orders,customer where l_orderkey

= o_orderkey and o_custkey = c_custkey and l_returnflag = ’A’;

Query 15

• select count (*) from lineitem,orders,customer where l_orderkey

= o_orderkey and o_custkey = c_custkey and l_returnflag = ’N’

and c_mktsegment = "HOUSEHOLD";
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