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ABSTRACT 
 

The purpose of this study is to understand the Booth’s Multiplier algorithm for a 32-bit 

input and compare its performance with an Array Multiplier algorithm for a 32-bit input. 

The analysis involves implementing the developed VHDL design on an FPGA to 

understand and compare the performance of these multiplier algorithms. Efficient 

algorithms for signal processing are critical to very large-scale future applications such as 

video processing and four-dimensional medical imaging. Similarly, efficient algorithms 

are important for embedded and power-limited applications since, by reducing the 

number of computations, power consumption can be reduced considerably. 

A brief review of the multiplication process, implementation, and various multiplier 

algorithms have been included in this document to discuss and ease the understanding 

and objective of this study. Altera Prime Lite Quartus II version 18.1 was used for 

simulation of the models. DE10 Standard FPGA development board by Terasic 

Technologies was used for the hardware implementation of these VHDL models. 

After comparing the implementations of both 32-bit Array and Booth multiplier on a 

Cyclone V FPGA, a conclusion was made that the Booth multiplier has 56 Logic 

Elements versus 1,719 Logic Elements. Both the multipliers have shown comparable 

calculation performances. 
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CHAPTER 1 
INTRODUCTION 

1.1 Organization 

This thesis is organized into 5 chapters. This chapter discusses the motivation and 

purpose of this thesis. Chapter 2 provides background information on binary multipliers 

and their applications and discusses recent significant research in this field. Chapter 3 

discusses the methods of analysis used during this thesis. Chapter 4 discusses the 

simulation results obtained from the Altera Quartus II software version 18.1. Chapter 5 

concludes the analysis from implementing the subject multiplier algorithms on a DE10 

Standard FPGA hardware. 

1.2 Motivation 

Efficient algorithms for signal processing are critical to very large-scale future 

applications such as video processing and four-dimensional medical imaging. Similarly, 

efficient algorithms are important for embedded and power-limited applications since, by 

reducing the number of computations, power consumption can be reduced considerably. 

Multiplication is a crucial operation in several Digital Signal Processing (DSP) 

applications involving convolution, Fast Fourier Transform (FFT) and in the Arithmetic 

and Logic Unit (ALU) of microprocessors. Several Very Large-Scale Integration (VLSI) 

design criteria such as the area, power dissipation, speed and cost are dependent on the 

performance of the multipliers that execute the multiplication operation. Understanding 

the performance aspects of various multipliers would ultimately help in designing 

efficient algorithms that execute these multiplication operations. 
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1.3 Purpose and Objective 

The purpose of this thesis is to understand and study the Radix-2 Booth’s Multiplier 

algorithm for a 32-bit input and compare its performance with that of an Array Multiplier 

algorithm for a 32-bit input. The study involves implementing the developed VHDL 

design on a DE10 Standard FPGA to understand and compare the performance of these 

multiplier algorithms. Altera Prime Lite Quartus II version 18.1 is chosen for simulation 

of the models. DE10 Standard FPGA development board by Terasic Technologies will be 

used for the hardware implementation of these VHDL models.  

End of Chapter 1 
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CHAPTER 2 
LITERATURE REVIEW 

2.1 Background 

The traditional method of multiplication regardless of the number system involves 

calculating partial products, shifting them to the left and then adding them together. The 

primary difficulty with this process is to determine the partial products, as that involves 

multiplying a long number (multiplicand) by one digit (of the multiplier) at a time. This 

impacts the speed of execution and thereby the overall performance of the system/block. 

     12125 
x   13134 
------------- 
        48500 // this is 12125 x 4  
      36375 // this is 12125 x 3, shifted 1 position to left 
    12125 // this is 12125 x 1, shifted 2 positions to left 
  36375 // this is 12125 x 3, shifted 3 positions to left 
12125  // this is 12125 x 1, shifted 4 positions to left 
--------------- 
159249750 // this is the result of 12125 x 13134 operation upon addition of all 

partial products. 

It is to be noted that computing the partial products could also involve the addition of the 

carry when applicable, to the next partial product in the process of multiplication. The 

standard decimal system multiplication process applies to binary system as well, although 

it is simpler than the decimal system as there is no table of basic multiplications to 

remember. 

   1110       // this is 14 in the binary system 
x 1011       // this is 11 in the binary system 

---------------- 
    1110      // this is 1110 x 1 
  1110        // this is 1110 x 1, shifted 1 position to the left 
0000          // this is 1110 x 0, shifted 2 positions to the left 

+ 1110             // this is 1110 x 1, shifted 3 positions to the left 
----------------- 
  010011010         // this is 154 in binary system 
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Other difficulties with the traditional multiplication style are that it handles sign of the 

number with a separate rule. While digital processing units include the sign of the input 

numbers within the number itself using the 2’s complement technique. This complicates 

the process and often requires adjustments to the processor to accept and handle such 

inputs. 

2.2 Multipliers 

A binary multiplier is an electronic circuit built using binary adders. The multiplication 

operation is executed using a sequence of shifting, accumulating and adding the partial 

products as explained in section 2.1.  

For an n-bit multiplier and m-bit multiplicand, the resultant product is n + m bits. The 

generation of n partial products requires n*m two input AND gates. The product is a 

result of n+m bits. May require at least n adders.  

 
Figure 1. Two n-bit Multiplier 

Below is the formal algorithm of a parallel multiplier. 

1.   Initialize C = 0, M = 0, A = multiplicand, B = multiplier, Count = n. 

2.   At each step, examine M0. 

      If M0 = 1, then add A and B to put the sum in M and set the carry bit C. 

3.   Right shift the register pair (B, M), with C -->Mn-1 and M0 --> Bn-1. 

4.   Decrement the count.  If count = 0, stop.  If not, go to step 2. 
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With the understanding we gained from the details of the multiplication process, let’s 

now try to design a 2-bit multiplier. A multiplier with inputs as 2-bits long result in a 4-

bit long product. Below are the circuit and truth table representation of a 2x2 bit 

multiplier. 

 
Figure 2. 2x2 bit Multiplier Implementation 

A1 A0 B1 B0 A0B0 A0B1 A1B0 HA1 
Carry 

(A0B1 + 
A1B0) 

A1B1 S3 
(HA1 Carry 

+ A1B1) 

S2 S1 S0 

0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 1 0 0 0 0 0 0 0 1 
0 1 1 0 0 1 0 0 0 0 0 1 0 
0 1 1 1 1 1 0 0 0 0 0 1 1 
1 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 0 1 0 0 0 0 1 0 
1 0 1 0 0 0 0 0 1 0 1 0 0 
1 0 1 1 0 0 1 0 1 0 1 1 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 
1 1 0 1 1 0 1 0 0 0 0 1 1 
1 1 1 0 0 1 0 0 1 0 1 1 0 
1 1 1 1 1 1 1 1 1 1 0 0 1 

Table 1. 2x2 bit Multiplier Truth Table 
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2.3 Multiplier Algorithms 

This section introduces some of the multiplier algorithms popularly used in various signal 

and image processing applications. 

2.3.1 Sequential Multiplier 

This multiplier employs a sequential circuit using a single n-bit adder to compute the 

product of two binary numbers, X and Y of n-bit and m-bit length respectively. This 

sequential circuit processes the partial products one at a time and repeats the process m 

times. In each step few partial products will be generated, then added to an accumulated 

partial sum and the resulting partial sum will be shifted to align the accumulated sum 

with a partial product of next steps. Therefore, each step of a sequential multiplication 

consists of three operations, i.e. generating partial products, adding the generated partial 

products to the accumulated partial sum and shifting the partial sum. 

2.3.2 Combinational Multiplier 

These are used to perform multiplication of two unsigned or signed binary numbers. 

Given two n-bit inputs X and Y, it is possible to express the 2n-bit product in terms of a 

combinational function P = X.Y. Such multipliers use the technique of partial product 

accumulation. Each bit of the multiplier is multiplied against the multiplicand, the 

product is associated according to the position of the bit within the multiplier, and the 

resulting products are then added to form the result. If the multiplier bit is a 1, the product 

is a shifted copy of the multiplicand; if the multiplier bit is a 0, the partial product is 0.  

2.3.3 Array Multiplier 

This algorithm is very similar to the traditional multiplication process based on the add-

and-shift technique followed in any number system. It employs an array of full adders 

and half adders for the computation of the product. The process involves multiplying bit 

by bit of the multiplier with the entire multiplicand input. Such individual multiplications 

result in multiple partial products obtained by sequential shifting and eventually adding 
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all the partial products to obtain the result of the multiplication. Refer to section 2.1 for 

an illustration. 

The below figure shows the multiplication process through the generation of the partial 

products and their sum that becomes the result of the multiplication.  The example 

considered below is a 4x4 input that results in an 8-bit product. p0 to p7 indicates the 

product as a result of the sum of appropriate partial products represented as anbn where 

n=0 to 7. 

 
Figure 3. 4x4 Array Multiplier Methodology 

The below figure shows the implementation of the above discussed 4x4 array multiplier 

using a combination of half adders and full adders. These adders execute the sum of 

partial products to form the result of the multiplication. 

 
Figure 4. 4x4 Array Multiplier Implementation  
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2.3.4 Booth’s Multiplier Algorithm 

This algorithm is a very powerful and efficient algorithm to compute the multiplication of 

two signed binary numbers in two's complement notation. This algorithm examines 

adjacent pairs of bits in the 'N'-bit multiplier Q, in signed two's complement 

representation, including an implicit bit below the least significant bit, N−1 = 0. Where 

these two bits are equal, the product accumulator P is left unchanged. With i=0 to N-1, 

where Qi = 0 and Qi−1 = 1, the multiplicand times 2i is added to P; and where Qi = 1 and 

Qi−1 = 0, the multiplicand times 2i is subtracted from P. The final value of P is the signed 

product. The order of the steps is not determined in this case. Typically, it proceeds from 

LSB to MSB, starting at i = 0; the multiplication by 2i is then typically replaced by 

incremental shifting of the P accumulator to the right between steps; low bits can be 

shifted out, and subsequent additions and subtractions can then be done just on the 

highest N bits of P. Below is a flowchart representation of this algorithm. 

 
Figure 5. Radix-2 Booth’s Algorithm Flowchart 
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The below figure shows the architecture of Radix-2 Booth’s Algorithm implementation. 

 
Figure 6. Booth’s Algorithm Architecture 

Let us understand the working of Booth’s algorithm using an example. Consider that the 

multiplicand A= -7 and multiplier Q = +3. The working of this algorithm can be 

represented in the form of a tracing table showing the status at each phase of 

computation. In the current case, input A is a negative number and requires its 2’s 

complement equivalent for further computation. 

A= (-7)10 = (1001)2 while (-A)= (0111)2 
 

n Accumulator, 
P 

Multiplier, Q 
q4q3q2q1 

q0 Action 

4 0000 0011 0 Initialization, Value of q1q0=10, P=P-A 
 0111 0011 0 Arithmetic shift right PQq0 

3 0011 1001 1 Value of q1q0=11, Arithmetic shift right 
PQq0 

2 0001 1100 1 Value of q1q0=01, P=P+A 
 1010 1100 1 Arithmetic shift right PQq0 

1 1101 0110 0 Value of q1q0=00, Arithmetic shift right 
PQq0 

0 1110 1011 0 Value of n-1=0, process complete. Result in 
the PQ 

Table 2. Radix-2 Booth’s Algorithm Grouping Table 

At the stage when n-1=0, the result in the PQ = 11101011. Note that this is a negative 

number and requires its 2’s complement equivalent for the resulting product in base-10. 

Booth’s algorithm preserves the sign of the result. With the signed bit as 1 in the value of 

PQ, the result shall be represented with a negative notation. 2’s complement of PQ = 

(00010101)2 = (-21)10 
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2.3.5 Significant Improvements  

a. Booth’s Multiplication Algorithm 

There have been significant improvements to the Booth’s Multiplication algorithm such 

that the number of bits grouped would increase thereby reducing the number of 

computation stages. These strategies have proven to greatly improve the performance of 

the multipliers and eventually improve the efficiency of signal processing applications. 

Table 3 lists the bit grouping and the corresponding operation in Radix-4, Radix-8, and 

Radix-16 type Booth’s Multiplication algorithm. A similar strategy has also been 

followed in developing Radix-32, Radix-128, Radix-256 and even radix-4096 type 

multipliers whose further research and implementation have been proposed for optimal 

application design.  

b. Array Multiplier 

Although the Array Multipliers are not the top preference for signal processing 

applications, there have been ongoing research and proposals to improve the efficiency of 

these multipliers. Use of compressors has been proposed to greatly reduce the number of 

half and full adders and there by reducing the power consumption. 4:2 compressors are 

now considered basic components in the design of parallel multipliers. It is called 

compressor, since it compresses four partial products into two. Study on making the 

Array Multipliers be applicable for signed inputs is also under proposal.   
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Radix 4 Radix 8 Radix 16 
Code Operation Code Operation Code Operation 
000 0 0000 0 00000 0 
001 1 * Multiplicand 0001 1 * Multiplicand 00001 1 * Multiplicand 
010 1 * Multiplicand 0010 1 * Multiplicand 00010 1 * Multiplicand 
011 2 * Multiplicand 0011 2 * Multiplicand 00011 2 * Multiplicand 
100 -2 * Multiplicand 0100 2 * Multiplicand 00100 2 * Multiplicand 
101 -1 * Multiplicand 0101 3 * Multiplicand 00101 3 * Multiplicand 
110 -1 * Multiplicand 0110 3 * Multiplicand 00110 3 * Multiplicand 
111 0 0111 4 * Multiplicand 00111 4 * Multiplicand 

  1000 -4 * Multiplicand 01000 4 * Multiplicand 
  1001 -3 * Multiplicand 01001 5 * Multiplicand 
  1010 -3 * Multiplicand 01010 5 * Multiplicand 
  1011 -2 * Multiplicand 01011 6 * Multiplicand 
  1100 -2 * Multiplicand 01100 6 * Multiplicand 
  1101 -1 * Multiplicand 1101 7 * Multiplicand 
  1110 -1 * Multiplicand 01110 7 * Multiplicand 
  1111 0 01111 8 * Multiplicand 
    10000 -8 * Multiplicand 
    10001 -7 * Multiplicand 
    10010 -7 * Multiplicand 
    10011 -6 * Multiplicand 
    10100 -6 * Multiplicand 
    10101 -5 * Multiplicand 
    10110 -5 * Multiplicand 
    10111 -4 * Multiplicand 
    11000 -4 * Multiplicand 
    11001 -3 * Multiplicand 
    11010 -3 * Multiplicand 
    11011 -2 * Multiplicand 
    11100 -2 * Multiplicand 
    11101 -1 * Multiplicand 
    11110 -1 * Multiplicand 
    11111 0 

Table 3. Bit Grouping in Radix 4, 8 and 16 Type Booth’s Multiplication Algorithm 

End of Chapter 2 
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CHAPTER 3 
DESIGN AND SIMULATION 

This report emphasizes studying the Radix-2 Booth’s Multiplier and its comparison with 

the Array Multiplier. As a part of this study, VHDL models have been built to simulate 

and analyze the performance of these multipliers. Altera Prime Lite Quartus II version 

18.1 was used for simulations.  

3.1 Booth’s Multiplier Design and Simulation 

Following is the VHDL design for Radix-2 Booth’s Multiplier.  

library IEEE; 
USE IEEE.std_logic_1164.ALL; 
use IEEE.std_logic_unsigned.all; 
 
entity Boothsmult is 
  port ( clk, st: in std_logic; 
       Mplier, Mcand : in std_logic_vector (31 downto 0); 
       Done : out std_logic; 
       Product : out std_logic_vector (62 downto 0)      ); 
end BoothsMult; 
 
Architecture BoothsMult_arch of Boothsmult is 
 
  signal state : integer range 0 to 2; 
  signal Counter: integer range 0 to 31; 
  signal ACC, RegB, Addout, Addout_Co: std_logic_vector (32 downto 0) := 
"000000000000000000000000000000000"; 
  signal RegC, Compout : std_logic_vector (31 downto 0) := 
"00000000000000000000000000000000"; 
  signal Co : std_logic := '0'; 
  alias B0: std_logic is RegB(0); 
  alias B1: std_logic is RegB(1); 
   
begin 
  Product <= Acc(30 downto 0) & RegB (32 downto 1); 
  Co <= B1 and not B0;   -- B1B0 = 10, add 2's complement of Compouot to ACC 
  Compout <= not RegC when Co = '1' else RegC; 
  --  std_logic_vector'(0 => Co)   is 00000000Co 
  Addout <= Acc + (Compout(31) & Compout) + std_logic_vector'(0 => Co); 
  
Process(clk) 
    begin 
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      if clk'event and clk = '1' then 
        case state is 
          when 0 => if St = '1' then state <= 1;  -- load operation 
       Done <= '0'; 
            ACC <= (others => '0'); 
            RegB <= Mplier & '0'; 
            RegC <= Mcand; 
            else state <= 0 ;  
            end if; 
          when 1 => if (B1 xor B0) = '1' then -- shift operation 
                        ACC <= Addout; state <=2; 
                    else 
                        ACC <= ACC(32) & ACC(32 downto 1); 
                        RegB <= Acc(0) & RegB(32 downto 1); 
                        if Counter /= 31 then 
                          Counter <= Counter +1; state <= 1; 
                        else 
                          Counter <= 0; state <= 0;Done <= '1'; 
                        end if; 
                      end if; 
          when 2 =>   if Counter /= 31 then 
                          Counter <= Counter +1; state <= 1; 
                       else 
                       Counter <= 0; state <= 0; Done <= '1'; 
                       end if; 
                      ACC <= ACC(32) & ACC(32 downto 1); 
                      RegB <= ACC(0) & RegB(32 downto 1); 
                    end case; 
                  end if; 
                end process; 

end BoothsMult_arch;  

Below is the Altera ModelSim simulation result.  

 
Figure 7. Radix-2 Booth’s Multiplier ModelSim Simulation  
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3.2 Array Multiplier Design and Simulation 

Following is the VHDL design for the Array Multiplier. 

--  This is a 32-bit array multiplier for unsigned binary numbers 
--Library Declaration 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity ArrayMult32 is 
  port(X, Y: in std_logic_vector(31 downto 0);  --32-bit inputs 
       P: out std_logic_vector(63 downto 0));  --64-bit output 
end ArrayMult32; 
 
architecture Behavioral of ArrayMult32 is 
  type Matrix32 is array (0 to 31, 0 to 31) of std_logic; 
  type Matrix32natural is array (1 to 32, 1 to 32) of std_logic; 
  signal XY:  Matrix32; --define XY as 32x32 matrix 
  signal C, S : Matrix32natural; -- define C,S as 32x32 matrix with indexes 1 to 32 
 
--Full Adder Component Declaration 
component FullAdder10ns 
  port(X, Y, Cin: in std_logic; 
       Cout, Sum: out std_logic); 
end component; 
 
--Half Adder Component Declaration 
component HalfAdder10ns 
  port(X, Y: in std_logic; 
       Cout, Sum: out std_logic); 
end component; 
 
begin 
  --Generate AND gates and signals 
  ANDgen1:  for j in 0 to 31 generate  --For X input 
    ANDgen2:  for k in 0 to 31 generate  --For Y input 
      XY(j,k) <= X(j) and Y(k);           --And each X and Y input bit, store in XY matrix 
    End generate; 
  End generate; 
 
P(0) <= XY(0,0); --- first bit of product 
 
----Row 1 special case, 30 full adders with half adder on each end 
  FA_loopR1 :   for  col in 2 to 31 generate  --Instantiates 30 copies of Full Adder for 
Row 1 
      FA_R1_col : FullAdder10ns port map (XY(0,col), XY(1,col - 1), C(1,col), 
C(1,col+1), S(2,col-1)); 
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  End generate; 
 
  HA_R1_C32: HalfAdder10ns port map (XY(1,31), C(1,32), S(2,32), S(2,31));  --Half 
Adder at Row 1, Column 32 
  HA_R1C1: HalfAdder10ns port map (XY(0,1), XY(1,0), C(1,2), P(1));  --Half Adder at 
Row 1, Column 1 
---- End Row 1 
 
-----Rows 2 to 30  
  FA_loopR2_30 : for row in 2 to 30 generate  --Instantiate Rows 2 thru 30 
    FA_loopR2 :   for  col in 2 to 31 generate  --Instantiates 30 copies of Full Adder each 
      FA_row_col : FullAdder10ns port map (S(row,col), XY(row,col-1), C(row,col), 
C(row,col+1), S(row+1,col-1)); 
    End generate; 
  End generate; 
   
  FA_loopC32 : for  row in 2 to 30 generate  --Instantiates 29 copies of Full Adder for 
Column 32 
      FA_row_C32 : FullAdder10ns port map (S(row,32), XY(row,31), C(row,32), 
S(row+1,32), S(row+1,31)); 
  End generate; 
 ----end full adders 2 to 30 
  
  --Half Adders (n half adders, 32 total)30 generated here, 2 added in row 1 elsewhere 
  HA_loopC1 : for  row in 2 to 31 generate  --Instantiates 30 copies of Half Adder for 
Column 1 
      HA_row_C1 : HalfAdder10ns port map (S(row,1), XY(row,0), C(row,2), P(row)); 
  End generate; 
  --end half adders column 1 
 
---row 31 product outputs 
  FA_loopR31: for col in 2 to 31 generate 
 FA_31_col : FullAdder10ns port map(S(31,col),XY(31,col-
1),C(31,col),C(31,col+1),P(col+30)); 
  end generate; 
  FA_R31_C32 : Fulladder10ns port map (S(31,32),XY(31,31),C(31,32),P(63),P(62));---
last full adder generates two product outputs 
----end row 31 
 
end Behavioral; 

Following is the declaration of a Half Adder included as a code block in the Array 
Multiplier Quartus II project. 

library IEEE; 
use IEEE.std_logic_1164.all; 
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--Half Adder Entity Description 
entity HalfAdder10ns is 
  port(X, Y: in std_logic; 
       Cout, Sum: out std_logic); 
end HalfAdder10ns; 
 
architecture eq2 of HalfAdder10ns is 
begin 
Cout <= X and Y after 10 ns; 
Sum <= X xor Y after 10 ns; 
end eq2; 
 
Following is the declaration of a Full Adder included as a code block in the Array 
Multiplier Quartus II project. 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
  
entity FullAdder10ns is 
 Port (X, Y, Cin: in std_logic; 
       Cout, Sum: out std_logic); 
end FullAdder10ns; 
  
architecture gate_level of FullAdder10ns is 
  
begin 
  
 Sum <= X XOR Y XOR Cin after 10 ns; 
 Cout <= (X AND Y) OR (Cin AND X) OR (Cin AND Y) after 10 ns; 
  
end gate_level; 

Following are the results from the behavioral simulation of the above VHDL design and 
respective test bench; 

 
Figure 8. Array Multiplier Modelsim simulation for unsigned inputs 
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It was also observed that when the delay in the adders has been omitted, the array 

multiplier results were computed with an insignificant delay. 

 
Figure 9. Array Multiplier Modelsim simulation for unsigned inputs – no adder delay 

The original Array Multiplier is intended for unsigned inputs only. When a signed input 

is involved, it is observed that the algorithm still considers it as an unsigned input 

(usually a large decimal) and results in a product accordingly. 

 
Figure 10. Array Multiplier Modelsim simulation for signed inputs 

  

End of Chapter 3 
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CHAPTER 4 
DESIGN AND IMPLEMENTATION 

This report emphasizes on studying the performance of Radix-2 Booth’s Multiplier and 

its comparison with the Array Multiplier. As a part of this study, the VHDL models of 

these multipliers were implemented on the FPGA hardware. Altera Prime Lite Quartus II 

version 18.1 was used for simulation and implementation of the models. DE10 Standard 

FPGA development board by Terasic Technologies was used for the hardware 

implementation of these VHDL models. The FPGA has been configured with these 

design modules using the Joint Test Action Group (JTAG) mode. JTAG is an industry-

standard method for testing the hardware implementation of integrated designs and the 

interconnects on printed circuit boards (PCBs) that are implemented at the integrated 

circuit (IC). 

4.1 About DE10 Standard FPGA 

The DE10-Standard Development board includes the Intel Cyclone® V System-on-Chip 

(SoC) FPGA and an ARM Cortex 9 based Hard Processor Systems (HPS, processor built 

into the silicon as opposed to a "Soft" CPU (like NIOS) where the FPGA is configured to 

implement a CPU). This FPGA is recommended for exploring image processing on 

FPGAs by providing power for engineering development and prototyping. It is well 

suited for researchers looking for a low cost, entry level platform without compromising 

on resources available for the design and configuration. 

 
Figure 11. Chip Planner of DE10 Standard 
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Figure 12. Terasic DE10 Standard FPGA Board 

Resources Characteristics 
Logic Elements 110k 

ALM 41910 
Register 166036 

Memory (Kb) M10K 5570 
Memory (Kb) MLAB 621 

Variable Precision DSP block 112 
18x18 multiplier 224 

FPGA PLL 6 
HPS PLL 3 

3 Gbps Transceiver 9 
FPGA GPIO 288 

HPS I/O 181 
LVDS Transmitter 72 

LVDS Receiver 72 
PCIe Hard IP Block 2 

FPGA Hard Memory Controller 1 
HPS Hard Memory Controller 1 

ARM Cortex-9 MPCore Processor Dual-Core 
Table 4. Intel Cyclone V SE 5CSXFC6D6F31C6N Specifications 

  



 

20 
 

4.2. FPGA Design Flow 

The standard FPGA design flow begins with the creation of the digital circuit design 

using schematics or a hardware description language (HDL) such as Verilog or VHDL. 

This digital circuit design flow then proceeds through compilation, simulation, 

programming and implementation on the FPGA hardware. 

 
Figure 13. FPGA Design Flow 

4.3 Booth’s Multiplier Design and Implementation 

Additional code blocks to enable the implementation of Radix-2 Booth’s Multiplier 

algorithm are added to the initial design. These blocks include a top-level implementation 

code, a binary to BCD conversion code and a BCD to Hexadecimal 7 segment display 

code. Below are the VHDL codes for these blocks. 

4.3.a Implementation: 

library IEEE; 
USE IEEE.std_logic_1164.ALL; 
use IEEE.std_logic_unsigned.all; 
 
entity implementation is 
  port ( Clock_50 : in std_logic; 
   key : in std_logic; -- to enable st signal 
   SliderSwitch : in std_logic_vector (7 downto 0); -- to input the 
multiplicand and the multiplier. assignment from sw[0] to sw[7]. 
   seg71, seg72, seg73: out  STD_LOGIC_VECTOR (6 downto 0); 
   LEDR: out  STD_LOGIC );  -- to indicate done signal 
end implementation; 
 
Architecture implement_arch of implementation is 
 
-- signals for the booth's multiplier 
signal Mplier_32 : std_logic_vector (31 downto 0); 
signal Mcand_32 : std_logic_vector (31 downto 0); 
signal product : std_logic_vector (62 downto 0); 
signal Done : std_logic; 
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-- signals for the 7 segment display 
signal prod: std_logic_vector (7 downto 0):= "00000000"; 
signal bcd_1, bcd_2, bcd_3 : std_logic_vector (3 downto 0); 
 
component Boothsmult is 
  port ( clk, st: in std_logic; 
       Mplier, Mcand : in std_logic_vector (31 downto 0); 
       Done : out std_logic; 
       Product : out std_logic_vector (62 downto 0)   ); 
end component; 
 
component hex_seg7 is 
    Port (product : in  STD_LOGIC_VECTOR (3 downto 0); 
          seg7 : out  STD_LOGIC_VECTOR (0 to 6)      ); 
end component; 
 
component binary_bcd is 
   Port ( binary   : in  std_logic_vector (7 downto 0); 
      hundreds : out std_logic_vector (3 downto 0); 
      tenths     : out std_logic_vector (3 downto 0); 
      unit     : out std_logic_vector (3 downto 0)   ); 
end component ; 
 
begin 
 
Mplier_32 <= "1111111111111111111111111111" & SliderSwitch(3 downto 0); 
Mcand_32 <= "1111111111111111111111111111" & SliderSwitch(7 downto 4); -- for 
demonstrating implementation of a negative mcand combination 
--Mcand_32 <= "0000000000000000000000000000" & SliderSwitch(7 downto 4); -- for 
demonstrating implementation of a positive mcand combination 
 
-- booth's multiplier implementation 
Booth_mult: Boothsmult port map(Clock_50, key, Mplier_32, Mcand_32, Done, 
product); 
 
-- conversion of binary product to bcd for 7 segment display 
prod <= product(7 downto 0); 
binary_bcd1: binary_bcd port map(prod,bcd_1, bcd_2, bcd_3); 
 
-- hex to 7 segment display 
hex_seg71 : hex_seg7 port map (bcd_3, seg71); 
hex_seg72 : hex_seg7 port map (bcd_2, seg72); 
hex_seg73 : hex_seg7 port map (bcd_1, seg73); 
 
end implement_arch;  
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4.3.b Binary to BCD conversion 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.NUMERIC_STD.ALL; 
  
entity binary_bcd is 
   Port ( binary   : in  std_logic_vector (7 downto 0); 
      hundreds : out std_logic_vector (3 downto 0); 
      tenths     : out std_logic_vector (3 downto 0); 
      unit     : out std_logic_vector (3 downto 0)   ); 
end binary_bcd; 
  
architecture Behavioral of binary_bcd is 
begin 
bin_bcd : process (binary) 
variable shift : unsigned(19 downto 0) := "00000000000000000000"; -- variable register 
for storing bits 
  -- Alias for parts of variable shift register 
      alias num is shift(7 downto 0); 
      alias unity is shift(11 downto 8); 
      alias tenth is shift(15 downto 12); 
      alias hundred is shift(19 downto 16); 
    
begin 
      num := unsigned(binary); 
      unity := X"0"; 
      tenth := X"0"; 
      hundred := X"0"; 
       
-- Loop eight times. if the numerical value of the alias is greater than 5, then per shift and 
add algorithm, alias is incremented by 3  
-- and then the contents of the shift register are shifted to the left by 1 place. 
       
for i in 1 to num'Length loop  
         
if unity >= 5 then 
unity := unity + 3; 
end if; 
          
if tenth >= 5 then 
tenth := tenth + 3; 
end if; 
          
if hundred >= 5 then 
hundred := hundred + 3; 
end if; 
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-- contents of the shift register are shifted to the left by 1 place 
         shift := shift_left(shift, 1); 
      end loop;       
 -- load contents of alias to the output registers 
      hundreds <= std_logic_vector(hundred); 
      tenths     <= std_logic_vector(tenth); 
      unit     <= std_logic_vector(unity); 
   end process;  
end Behavioral; 

4.3.c Hexadecimal to 7 Segment Display 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
 
entity hex_seg7 is 
    Port (product : in  STD_LOGIC_VECTOR (3 downto 0); 
          seg7 : out  STD_LOGIC_VECTOR (0 to 6)  ); 
end hex_seg7; 
 
architecture Behavioral of hex_seg7 is 
begin 
process (product) 
BEGIN 
    case product is 
        when "0000"=> seg7 <="1000000";  -- '0' 
        when "0001"=> seg7 <="1111001";  -- '1' 
        when "0010"=> seg7 <="0100100";  -- '2' 
        when "0011"=> seg7 <="0110000";  -- '3' 
        when "0100"=> seg7 <="0011001";  -- '4'  
        when "0101"=> seg7 <="0010010";  -- '5' 
        when "0110"=> seg7 <="0000010";  -- '6' 
        when "0111"=> seg7 <="1111000";  -- '7' 
        when "1000"=> seg7 <="0000000";  -- '8' 
        when "1001"=> seg7 <="0011000";  -- '9' 
        when "1010"=> seg7 <="0001000";  -- 'A' 
        when "1011"=> seg7 <="0000011";  -- 'b' 
        when "1100"=> seg7 <="1000110";  -- 'C' 
        when "1101"=> seg7 <="0100001";  -- 'd' 
        when "1110"=> seg7 <="0000110";  -- 'E' 
        when "1111"=> seg7 <="0001110";  -- 'F' 
    when others =>  NULL; 
end case; 
end process; 
end Behavioral;   
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Upon initial compiling of the top-level module and the code blocks, the pin assignment is 

completed per the specifications listed in the DE10 Standard User Manual version March 

20, 2018. 

 
Figure 14. Booth’s Multiplier Pin Assignment 

The project is finally compiled to verify the pin assignment and then the FPGA hardware 

is configured in the JTAG mode using the Quartus II Programmer interface. 

 
Figure 15. Quartus II Programmer interface for Booth’s Multiplier 

We discussed earlier that Booth’s Multiplier is capable of processing unsigned as well as 

signed inputs. To demonstrate this characteristic, a negative multiplier and multiplicand 

combination has been input to the algorithm and the FPGA was configured accordingly.  
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In the first case, multiplier = (-13)10 = (11111111111111111111111111110011)2  
Multiplicand = (-9)10 = (11111111111111111111111111110111)2 
Result = (117)10  

In the second case, multiplier = (-13)10 = (11111111111111111111111111110011)2  
Multiplicand = (9)10 = (00000000000000000000000000001001)2 
Signed 2's complement Result = (-117)10  
Unsigned Result = (139)10 

 
Case 1 

 
Case 2 

Figure 16. Booth’s Multiplier Algorithm Hardware Implementation 
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4.4 Array Multiplier Design and Implementation 

Additional code blocks to enable implementation of the Array Multiplier algorithm are 

added to the initial design. These blocks include a top-level implementation code, a 

binary to BCD conversion code and a BCD to Hexadecimal 7 segment display code. 

Below are the VHDL codes for these blocks. 

4.4.a Implementation: 

library IEEE; 
USE IEEE.std_logic_1164.ALL; 
use IEEE.std_logic_unsigned.all; 
 
entity implementation is 
  port ( SliderSwitch : in std_logic_vector (7 downto 0); -- to input the multiplicand and 
the multiplier. assignment from sw[0] to sw[7]. 
   seg71, seg72, seg73: out  STD_LOGIC_VECTOR (6 downto 0)     
); 
end implementation; 
 
Architecture implement_arch of implementation is 
 
-- signals for the array multiplier 
signal Mplier_32 : std_logic_vector (31 downto 0); 
signal Mcand_32 : std_logic_vector (31 downto 0); 
signal product : std_logic_vector (63 downto 0); 
 
-- signals for the 7 segment display 
signal prod: std_logic_vector (7 downto 0):= "00000000"; 
signal bcd_1, bcd_2, bcd_3 : std_logic_vector (3 downto 0); 
 
component ArrayMult32 is 
  port(X, Y: in std_logic_vector(31 downto 0);  --32-bit inputs 
       P: out std_logic_vector(63 downto 0));  --64-bit output 
end component; 
 
component hex_7seg is 
    Port (product : in  STD_LOGIC_VECTOR (3 downto 0); 
          seg7 : out  STD_LOGIC_VECTOR (0 to 6)      ); 
end component; 
 
component binary_bcd is 
   Port ( binary   : in  std_logic_vector (7 downto 0); 
      hundreds : out std_logic_vector (3 downto 0); 
      tenths     : out std_logic_vector (3 downto 0); 
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      unit     : out std_logic_vector (3 downto 0)   ); 
end component ; 
 
begin 
Mplier_32 <= "0000000000000000000000000000" & SliderSwitch(3 downto 0); 
Mcand_32 <= "0000000000000000000000000000" & SliderSwitch(7 downto 4); 
 
-- Array Multiplier Implementation 
ArrayMult: ArrayMult32 port map (Mplier_32,Mcand_32,product); 
 
-- conversion of binary product to bcd for 7 segment display 
 
prod <= product(7 downto 0); 
binary_bcd1: binary_bcd port map(prod,bcd_1, bcd_2, bcd_3); 
 
-- hex to 7 segment display 
 
hex_seg71 : hex_7seg port map (bcd_3, seg71); 
hex_seg72 : hex_7seg port map (bcd_2, seg72); 
hex_seg73 : hex_7seg port map (bcd_1, seg73); 
 
end implement_arch; 

4.4.b Binary to BCD conversion 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.NUMERIC_STD.ALL; 
  
entity binary_bcd is 
   Port ( binary   : in  std_logic_vector (7 downto 0); 
      hundreds : out std_logic_vector (3 downto 0); 
      tenths     : out std_logic_vector (3 downto 0); 
      unit     : out std_logic_vector (3 downto 0)   ); 
end binary_bcd; 
  
architecture Behavioral of binary_bcd is 
 begin 
bin_bcd : process (binary) 
-- variable register for storing bits 
variable shiftreg : unsigned(19 downto 0) := "00000000000000000000";  
-- Alias for parts of variable shift register 
      alias num is shiftreg (7 downto 0); 
      alias unity is shiftreg (11 downto 8); 
      alias tenth is shiftreg (15 downto 12); 
      alias hundred is shiftreg (19 downto 16); 
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begin 
      num := unsigned(binary); 
      unity := X"0"; 
      tenth := X"0"; 
      hundred := X"0"; 
       
-- Loop eight times. if the numerical value of the alias is greater than 5, then per shift and 
add algorithm, alias is incremented by 3  
-- and then the contents of the shift register are shifted to the left by 1 place. 
       
for i in 1 to num'Length loop  
if unity >= 5 then 
    unity := unity + 3; 
end if; 
if tenth >= 5 then 
    tenth := tenth + 3; 
end if; 
if hundred >= 5 then 
   hundred := hundred + 3; 
end if; 
-- contents of the shift register are shifted to the left by 1 place 
      shiftreg := shift_left(shiftreg, 1); 
      end loop; 
-- load contents of alias to the output registers 
      hundreds <= std_logic_vector(hundred); 
      tenths     <= std_logic_vector(tenth); 
      unit     <= std_logic_vector(unity); 
end process; 
end Behavioral;  

4.4.c Hexadecimal to 7 Segment Display 

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
 
entity hex_7seg is 
    Port (product : in  STD_LOGIC_VECTOR (3 downto 0); 
          seg7 : out  STD_LOGIC_VECTOR (0 to 6)         ); 
end hex_7seg; 
 
architecture Behavioral of hex_7seg is 
begin 
 
--'a' corresponds to MSB of seg7 and 'g' corresponds to LSB of seg7. 
process (product) 
BEGIN 
    case product is 
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        when "0000"=> seg7 <="1000000";  -- '0' 
        when "0001"=> seg7 <="1111001";  -- '1' 
        when "0010"=> seg7 <="0100100";  -- '2' 
        when "0011"=> seg7 <="0110000";  -- '3' 
        when "0100"=> seg7 <="0011001";  -- '4'  
        when "0101"=> seg7 <="0010010";  -- '5' 
        when "0110"=> seg7 <="0000010";  -- '6' 
        when "0111"=> seg7 <="1111000";  -- '7' 
        when "1000"=> seg7 <="0000000";  -- '8' 
        when "1001"=> seg7 <="0011000";  -- '9' 
        when "1010"=> seg7 <="0001000";  -- 'A' 
        when "1011"=> seg7 <="0000011";  -- 'b' 
        when "1100"=> seg7 <="1000110";  -- 'C' 
        when "1101"=> seg7 <="0100001";  -- 'd' 
        when "1110"=> seg7 <="0000110";  -- 'E' 
        when "1111"=> seg7 <="0001110";  -- 'F' 
    when others =>  NULL; 
    end case; 
end process; 
end Behavioral; 

Upon initial compiling of the top-level module and the code blocks, the pin assignment is 

completed with reference to the DE10 Standard User Manual version March20, 2018. 

 
Figure 17. Booth’s Multiplier Pin Assignment 

The project is then final compiled for the pin assignment and then the FPGA hardware is 

configured in the JTAG mode using the Quartus II Programmer interface. 
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Figure 18. Quartus II Programmer interface for Array Multiplier 

We discussed earlier that the Array Multiplier algorithm is capable of processing only 

unsigned inputs and reviewed the simulation results when a signed as well as an unsigned 

input combination is used in the algorithm. The below case shows the implementation of 

two positive inputs. 

Multiplier = (+13)10 = (00000000000000000000000000001101)2  
Multiplicand = (+5)10 = (00000000000000000000000000000101)2 
Result = (65)10  

 
Figure 19. Array Multiplier Algorithm Hardware Implementation 

  

End of Chapter 4 
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CHAPTER 5 
CONCLUSION 

The primary objective of this thesis has been to understand the functioning of binary 

multipliers and design their VHDL models to analyze and compare the performance of 

individual multipliers. The role of these multipliers has been realized to be crucial when 

considering the grand scheme of their application. Several digital signal processing 

applications are based on the multiplication process. Hence the efficiency of these signal 

processing applications greatly relies on the performance of these multiplication 

algorithms. The goal in designing such critical blocks will be to ensure their minimal 

ultimate space utilization on the FPGA. 

The subject multipliers of this report were the Booth’s Multiplication Algorithm and the 

Array Multiplication Algorithm. The VHDL models were built considering a 32x32 bit 

input to these multipliers. Altera Prime Lite Quartus II version 18.1 was used for 

simulation and implementation of the models. DE10 Standard FPGA development board 

by Terasic Technologies was used for the hardware implementation of these VHDL 

models.  

Logic utilization is calculated by estimating how many half-ALMs are needed to fit a 

design and is a good representation of how full a device is. The logic utilization for the 

Booth’s Multiplication algorithm has been realized to be 3% of the total logic utilization 

of the Array Multiplication algorithm. Combinational ALUT usage is the actual number 

of completely or partially used half-ALMs in the design after logic analysis and 

synthesis. The Booth’s Multiplier needed only 2% of the total ALUTs needed for an 

Array Multiplier. It was also observed that as the range of the inputs increases, the 

complexity of implementing an Array multiplier increases as a result of an increase in the 

number of levels of adders needed to accomplish the product result. See Figure 22 and 23 

for a representation on the implementation and design space required by Booth’s and 

Array multipliers respectively that was realized during this study. Therefore, the radix-2 

type Booth’s Multiplication algorithm considered for this study proved to be more 

efficient than the Array multiplier.   
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Figure 20. Resource Usage Summary – Booth’s vs Array Multiplier Algorithm 

 
Figure 21. Chip Planner - Array Multiplier Algorithm 

ArrayMult BoothsMult 
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Figure 22. RTL View – Booth’s Multiplier Implementation 

 
Figure 23. RTL View – Array Multiplier Implementation 

Based on the understanding on the performance of Radix-4, Radix-8 and Radix-16 type 

Booth’s Multipliers, it can be assumed that the efficiency of signal processing 

applications would be greatly improved as a result of lesser logic utilization. It is 

proposed that further study and implementation of higher radix order Booth’s multipliers 

would benefit the efficiency of their applications.  

Considering the outcome of this study and the assumptions made with the understanding 

from this study, it can be noted that the modified Booth’s Algorithm holds the future of 

designing the signal processing applications with a promise of increased efficiency, lesser 

power consumption and lesser space utilization.     

End of Chapter 5 
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