

Analysis of Booth’s Multiplier Algorithm vs Array Multiplier Algorithm and their

FPGA Implementation

by

Anantha Gunturu

Submitted in partial fulfillment of the requirements for the Degree of

Master of Science

in the

Electrical Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

December 2019

Analysis of Booth’s Multiplier Algorithm vs Array Multiplier Algorithm and their
FPGA Implementation

Anantha Gunturu

I hereby release this thesis to the public. I understand that this thesis will be made

available from the OhioLINK ETD Center and the Maag Library Circulation Desk for

public access. I also authorize the University or other individuals to make copies of this

thesis as needed for scholarly research.

Signature:

 Anantha Gunturu, Student Date

Approvals:

 Frank X Li, Thesis Advisor Date

 Edward Burden, Committee Member Date

 Eric MacDonald, Committee Member Date

 Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

iii

ABSTRACT

The purpose of this study is to understand the Booth’s Multiplier algorithm for a 32-bit

input and compare its performance with an Array Multiplier algorithm for a 32-bit input.

The analysis involves implementing the developed VHDL design on an FPGA to

understand and compare the performance of these multiplier algorithms. Efficient

algorithms for signal processing are critical to very large-scale future applications such as

video processing and four-dimensional medical imaging. Similarly, efficient algorithms

are important for embedded and power-limited applications since, by reducing the

number of computations, power consumption can be reduced considerably.

A brief review of the multiplication process, implementation, and various multiplier

algorithms have been included in this document to discuss and ease the understanding

and objective of this study. Altera Prime Lite Quartus II version 18.1 was used for

simulation of the models. DE10 Standard FPGA development board by Terasic

Technologies was used for the hardware implementation of these VHDL models.

After comparing the implementations of both 32-bit Array and Booth multiplier on a

Cyclone V FPGA, a conclusion was made that the Booth multiplier has 56 Logic

Elements versus 1,719 Logic Elements. Both the multipliers have shown comparable

calculation performances.

iv

ACKNOWLEDGMENT

I would like to express my sincere gratitude and thanks to my advisor, Dr. Frank Li, for

his consideration, support and guidance throughout this thesis without which this study

would not have been possible. I thank Dr. Eric MacDonald and Professor Edward Burden

for participating in this thesis committee and providing their valuable feedback. I thank

the rest of the faculty of the Electrical and Computer Engineering department for their

teachings and support as I pursued this milestone in my career. I would also like to thank

my friends and family for their love, support, and confidence in me.

v

TABLE OF CONTENTS

Abstract ………………………………………………………………………………..….………. iii

Acknowledgment……………………………………………………………………..…………….iv

Table of Contents …………………………………………………………………...…………….. v

List of Figures………………..…………………………………………………...………………..vi

List of Tables…………………………………………………………………...…………………..vi

Chapter 1: INTRODUCTION ……………………………………………………….………..….1

1.1 Organization ……………………………………………………….………………….1
1.2 Motivation …………………………………………………………….………………1
1.3 Purpose and Objective ………………………………………………………….…….2

Chapter 2: LITERATURE REVIEW…………………………………………..………….…..….3

2.1 Background …………………………………………..……………………………….3
2.2 Multipliers…………………………………………..……………………...………….4
2.3 Multiplier Algorithms………………………………………..……..…………...…….6
2.3.1 Sequential ……………………………………..…………………………….…...….6
2.3.2 Combinational …………………………………………..…………………..…...….6
2.3.3 Array Multiplier……………………………………..………….……………..…….6
2.3.4 Booth’s Multiplier Algorithm ……….…………..………….…………………...….8
2.3.5 Significant Improvements …………………………………………………….…...10

Chapter 3: DESIGN AND SIMULATION……………………………………..…………...… 12

3.1 Booth’s Multiplier Design and Simulation …………..……………………….……. 12
3.2 Array Multiplier Design and Simulation ……………..……………………….…… 14

Chapter 4: DESIGN AND IMPLEMENTATION …………………………..……….….…… 18

4.1 About DE10 Standard FPGA ……………………………………………………… 18
4.2 FPGA Design Flow ………………………………………………………………... 20
4.3 Booth’s Multiplier Design and Implementation …………………………………… 20
4.3.a. Implementation ….………………………………………………………………. 20
4.3.b. Binary to BCD conversion ………………………………..……………………... 22
4.3.c Hexadecimal to 7 Segment Display …………………………………………...…. 23
4.4 Array Multiplier Design and Implementation ……………………………………… 26
4.4.a Implementation …………………………………………………………………... 26
4.4.b Binary to BCD conversion ……………………………………………………….. 27
4.4.c Hexadecimal to 7 Segment Display …………………………………………...…. 28

Chapter 5: CONCLUSION ………………………..…………………………..………………. 31

BIBLIOGRAPHY …………………………………………………………………………..…… 34

vi

LIST OF FIGURES

Figure 1. Two n-bit Multiplier…………………………………………………………… 4
Figure 2. 2x2 bit Multiplier Implementation…………………………………………….. 5
Figure 3. 4x4 Array Multiplier Methodology………………………………….………… 7
Figure 4. 4x4 Array Multiplier Implementation……………………………………...….. 7
Figure 5. Radix-2 Booth’s Algorithm Flowchart……………………………………….... 8
Figure 6. Radix-2 Booth’s Algorithm Architecture ……………………………………... 9
Figure 7. Radix-2 Booth’s Multiplier ModelSim Simulation…………………………... 13
Figure 8. Array Multiplier Modelsim simulation for unsigned inputs …………………. 16
Figure 9. Array Multiplier Modelsim simulation for unsigned inputs – no adder delay.. 17
Figure 10. Array Multiplier Modelsim simulation for signed inputs …………..…...….. 17
Figure 11. Chip Planner of DE10 Standard …………………...…….…………………. 18
Figure 12. Terasic DE10 Standard FPGA Board …………………………………….… 19
Figure 13. FPGA Design Flow ………………………………………………………… 19
Figure 14. Booth’s Multiplier Pin Assignment ………………………………………… 24
Figure 15. Quartus II Programmer interface for Booth’s Multiplier …………………... 24
Figure 16. Booth’s Multiplier Algorithm Hardware Implementation …………………. 25
Figure 17. Booth’s Multiplier Pin Assignment ………………………………………… 29
Figure 18. Quartus II Programmer interface for Array Multiplier ………………….….. 30
Figure 19. Array Multiplier Algorithm Hardware Implementation ……………………. 30
Figure 20. Resource Usage Summary – Booth’s vs Array Multiplier Algorithm ..……. 32
Figure 21. Chip Planner - Array Multiplier Algorithm ………………………………… 32
Figure 22. RTL View – Booth’s Multiplier Implementation ………….……………….. 33
Figure 23. RTL View – Array Multiplier Algorithm ………….……………………….. 33

LIST OF TABLES

Table 1. 2x2 bit Multiplier Truth Table………………………..…………………..……. 5
Table 2. Radix-2 Booth’s Algorithm Grouping Table……………………..……………. 9
Table 3. Bit Grouping in Radix 4, 8 and 16 Type Booth’s Multiplication Algorithm 11
Table 4. Intel Cyclone V SE 5CSXFC6D6F31C6N Specifications …………………… 19

1

CHAPTER 1
INTRODUCTION

1.1 Organization

This thesis is organized into 5 chapters. This chapter discusses the motivation and

purpose of this thesis. Chapter 2 provides background information on binary multipliers

and their applications and discusses recent significant research in this field. Chapter 3

discusses the methods of analysis used during this thesis. Chapter 4 discusses the

simulation results obtained from the Altera Quartus II software version 18.1. Chapter 5

concludes the analysis from implementing the subject multiplier algorithms on a DE10

Standard FPGA hardware.

1.2 Motivation

Efficient algorithms for signal processing are critical to very large-scale future

applications such as video processing and four-dimensional medical imaging. Similarly,

efficient algorithms are important for embedded and power-limited applications since, by

reducing the number of computations, power consumption can be reduced considerably.

Multiplication is a crucial operation in several Digital Signal Processing (DSP)

applications involving convolution, Fast Fourier Transform (FFT) and in the Arithmetic

and Logic Unit (ALU) of microprocessors. Several Very Large-Scale Integration (VLSI)

design criteria such as the area, power dissipation, speed and cost are dependent on the

performance of the multipliers that execute the multiplication operation. Understanding

the performance aspects of various multipliers would ultimately help in designing

efficient algorithms that execute these multiplication operations.

2

1.3 Purpose and Objective

The purpose of this thesis is to understand and study the Radix-2 Booth’s Multiplier

algorithm for a 32-bit input and compare its performance with that of an Array Multiplier

algorithm for a 32-bit input. The study involves implementing the developed VHDL

design on a DE10 Standard FPGA to understand and compare the performance of these

multiplier algorithms. Altera Prime Lite Quartus II version 18.1 is chosen for simulation

of the models. DE10 Standard FPGA development board by Terasic Technologies will be

used for the hardware implementation of these VHDL models.

End of Chapter 1

3

CHAPTER 2
LITERATURE REVIEW

2.1 Background

The traditional method of multiplication regardless of the number system involves

calculating partial products, shifting them to the left and then adding them together. The

primary difficulty with this process is to determine the partial products, as that involves

multiplying a long number (multiplicand) by one digit (of the multiplier) at a time. This

impacts the speed of execution and thereby the overall performance of the system/block.

 12125
x 13134

 48500 // this is 12125 x 4
 36375 // this is 12125 x 3, shifted 1 position to left
 12125 // this is 12125 x 1, shifted 2 positions to left
 36375 // this is 12125 x 3, shifted 3 positions to left
12125 // this is 12125 x 1, shifted 4 positions to left

159249750 // this is the result of 12125 x 13134 operation upon addition of all

partial products.

It is to be noted that computing the partial products could also involve the addition of the

carry when applicable, to the next partial product in the process of multiplication. The

standard decimal system multiplication process applies to binary system as well, although

it is simpler than the decimal system as there is no table of basic multiplications to

remember.

 1110 // this is 14 in the binary system
x 1011 // this is 11 in the binary system

 1110 // this is 1110 x 1
 1110 // this is 1110 x 1, shifted 1 position to the left
0000 // this is 1110 x 0, shifted 2 positions to the left

+ 1110 // this is 1110 x 1, shifted 3 positions to the left

 010011010 // this is 154 in binary system

4

Other difficulties with the traditional multiplication style are that it handles sign of the

number with a separate rule. While digital processing units include the sign of the input

numbers within the number itself using the 2’s complement technique. This complicates

the process and often requires adjustments to the processor to accept and handle such

inputs.

2.2 Multipliers

A binary multiplier is an electronic circuit built using binary adders. The multiplication

operation is executed using a sequence of shifting, accumulating and adding the partial

products as explained in section 2.1.

For an n-bit multiplier and m-bit multiplicand, the resultant product is n + m bits. The

generation of n partial products requires n*m two input AND gates. The product is a

result of n+m bits. May require at least n adders.

Figure 1. Two n-bit Multiplier

Below is the formal algorithm of a parallel multiplier.

1. Initialize C = 0, M = 0, A = multiplicand, B = multiplier, Count = n.

2. At each step, examine M0.

 If M0 = 1, then add A and B to put the sum in M and set the carry bit C.

3. Right shift the register pair (B, M), with C -->Mn-1 and M0 --> Bn-1.

4. Decrement the count. If count = 0, stop. If not, go to step 2.

5

With the understanding we gained from the details of the multiplication process, let’s

now try to design a 2-bit multiplier. A multiplier with inputs as 2-bits long result in a 4-

bit long product. Below are the circuit and truth table representation of a 2x2 bit

multiplier.

Figure 2. 2x2 bit Multiplier Implementation

A1 A0 B1 B0 A0B0 A0B1 A1B0 HA1
Carry

(A0B1 +
A1B0)

A1B1 S3
(HA1 Carry

+ A1B1)

S2 S1 S0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 1
0 1 1 0 0 1 0 0 0 0 0 1 0
0 1 1 1 1 1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0 1 0 1 0 0
1 0 1 1 0 0 1 0 1 0 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 0 0 0 1 1
1 1 1 0 0 1 0 0 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 0 0 1

Table 1. 2x2 bit Multiplier Truth Table

6

2.3 Multiplier Algorithms

This section introduces some of the multiplier algorithms popularly used in various signal

and image processing applications.

2.3.1 Sequential Multiplier

This multiplier employs a sequential circuit using a single n-bit adder to compute the

product of two binary numbers, X and Y of n-bit and m-bit length respectively. This

sequential circuit processes the partial products one at a time and repeats the process m

times. In each step few partial products will be generated, then added to an accumulated

partial sum and the resulting partial sum will be shifted to align the accumulated sum

with a partial product of next steps. Therefore, each step of a sequential multiplication

consists of three operations, i.e. generating partial products, adding the generated partial

products to the accumulated partial sum and shifting the partial sum.

2.3.2 Combinational Multiplier

These are used to perform multiplication of two unsigned or signed binary numbers.

Given two n-bit inputs X and Y, it is possible to express the 2n-bit product in terms of a

combinational function P = X.Y. Such multipliers use the technique of partial product

accumulation. Each bit of the multiplier is multiplied against the multiplicand, the

product is associated according to the position of the bit within the multiplier, and the

resulting products are then added to form the result. If the multiplier bit is a 1, the product

is a shifted copy of the multiplicand; if the multiplier bit is a 0, the partial product is 0.

2.3.3 Array Multiplier

This algorithm is very similar to the traditional multiplication process based on the add-

and-shift technique followed in any number system. It employs an array of full adders

and half adders for the computation of the product. The process involves multiplying bit

by bit of the multiplier with the entire multiplicand input. Such individual multiplications

result in multiple partial products obtained by sequential shifting and eventually adding

7

all the partial products to obtain the result of the multiplication. Refer to section 2.1 for

an illustration.

The below figure shows the multiplication process through the generation of the partial

products and their sum that becomes the result of the multiplication. The example

considered below is a 4x4 input that results in an 8-bit product. p0 to p7 indicates the

product as a result of the sum of appropriate partial products represented as anbn where

n=0 to 7.

Figure 3. 4x4 Array Multiplier Methodology

The below figure shows the implementation of the above discussed 4x4 array multiplier

using a combination of half adders and full adders. These adders execute the sum of

partial products to form the result of the multiplication.

Figure 4. 4x4 Array Multiplier Implementation

8

2.3.4 Booth’s Multiplier Algorithm

This algorithm is a very powerful and efficient algorithm to compute the multiplication of

two signed binary numbers in two's complement notation. This algorithm examines

adjacent pairs of bits in the 'N'-bit multiplier Q, in signed two's complement

representation, including an implicit bit below the least significant bit, N−1 = 0. Where

these two bits are equal, the product accumulator P is left unchanged. With i=0 to N-1,

where Qi = 0 and Qi−1 = 1, the multiplicand times 2i is added to P; and where Qi = 1 and

Qi−1 = 0, the multiplicand times 2i is subtracted from P. The final value of P is the signed

product. The order of the steps is not determined in this case. Typically, it proceeds from

LSB to MSB, starting at i = 0; the multiplication by 2i is then typically replaced by

incremental shifting of the P accumulator to the right between steps; low bits can be

shifted out, and subsequent additions and subtractions can then be done just on the

highest N bits of P. Below is a flowchart representation of this algorithm.

Figure 5. Radix-2 Booth’s Algorithm Flowchart

9

The below figure shows the architecture of Radix-2 Booth’s Algorithm implementation.

Figure 6. Booth’s Algorithm Architecture

Let us understand the working of Booth’s algorithm using an example. Consider that the

multiplicand A= -7 and multiplier Q = +3. The working of this algorithm can be

represented in the form of a tracing table showing the status at each phase of

computation. In the current case, input A is a negative number and requires its 2’s

complement equivalent for further computation.

A= (-7)10 = (1001)2 while (-A)= (0111)2

n Accumulator,
P

Multiplier, Q
q4q3q2q1

q0 Action

4 0000 0011 0 Initialization, Value of q1q0=10, P=P-A
 0111 0011 0 Arithmetic shift right PQq0

3 0011 1001 1 Value of q1q0=11, Arithmetic shift right
PQq0

2 0001 1100 1 Value of q1q0=01, P=P+A
 1010 1100 1 Arithmetic shift right PQq0

1 1101 0110 0 Value of q1q0=00, Arithmetic shift right
PQq0

0 1110 1011 0 Value of n-1=0, process complete. Result in
the PQ

Table 2. Radix-2 Booth’s Algorithm Grouping Table

At the stage when n-1=0, the result in the PQ = 11101011. Note that this is a negative

number and requires its 2’s complement equivalent for the resulting product in base-10.

Booth’s algorithm preserves the sign of the result. With the signed bit as 1 in the value of

PQ, the result shall be represented with a negative notation. 2’s complement of PQ =

(00010101)2 = (-21)10

10

2.3.5 Significant Improvements

a. Booth’s Multiplication Algorithm

There have been significant improvements to the Booth’s Multiplication algorithm such

that the number of bits grouped would increase thereby reducing the number of

computation stages. These strategies have proven to greatly improve the performance of

the multipliers and eventually improve the efficiency of signal processing applications.

Table 3 lists the bit grouping and the corresponding operation in Radix-4, Radix-8, and

Radix-16 type Booth’s Multiplication algorithm. A similar strategy has also been

followed in developing Radix-32, Radix-128, Radix-256 and even radix-4096 type

multipliers whose further research and implementation have been proposed for optimal

application design.

b. Array Multiplier

Although the Array Multipliers are not the top preference for signal processing

applications, there have been ongoing research and proposals to improve the efficiency of

these multipliers. Use of compressors has been proposed to greatly reduce the number of

half and full adders and there by reducing the power consumption. 4:2 compressors are

now considered basic components in the design of parallel multipliers. It is called

compressor, since it compresses four partial products into two. Study on making the

Array Multipliers be applicable for signed inputs is also under proposal.

11

Radix 4 Radix 8 Radix 16
Code Operation Code Operation Code Operation
000 0 0000 0 00000 0
001 1 * Multiplicand 0001 1 * Multiplicand 00001 1 * Multiplicand
010 1 * Multiplicand 0010 1 * Multiplicand 00010 1 * Multiplicand
011 2 * Multiplicand 0011 2 * Multiplicand 00011 2 * Multiplicand
100 -2 * Multiplicand 0100 2 * Multiplicand 00100 2 * Multiplicand
101 -1 * Multiplicand 0101 3 * Multiplicand 00101 3 * Multiplicand
110 -1 * Multiplicand 0110 3 * Multiplicand 00110 3 * Multiplicand
111 0 0111 4 * Multiplicand 00111 4 * Multiplicand

 1000 -4 * Multiplicand 01000 4 * Multiplicand
 1001 -3 * Multiplicand 01001 5 * Multiplicand
 1010 -3 * Multiplicand 01010 5 * Multiplicand
 1011 -2 * Multiplicand 01011 6 * Multiplicand
 1100 -2 * Multiplicand 01100 6 * Multiplicand
 1101 -1 * Multiplicand 1101 7 * Multiplicand
 1110 -1 * Multiplicand 01110 7 * Multiplicand
 1111 0 01111 8 * Multiplicand
 10000 -8 * Multiplicand
 10001 -7 * Multiplicand
 10010 -7 * Multiplicand
 10011 -6 * Multiplicand
 10100 -6 * Multiplicand
 10101 -5 * Multiplicand
 10110 -5 * Multiplicand
 10111 -4 * Multiplicand
 11000 -4 * Multiplicand
 11001 -3 * Multiplicand
 11010 -3 * Multiplicand
 11011 -2 * Multiplicand
 11100 -2 * Multiplicand
 11101 -1 * Multiplicand
 11110 -1 * Multiplicand
 11111 0

Table 3. Bit Grouping in Radix 4, 8 and 16 Type Booth’s Multiplication Algorithm

End of Chapter 2

12

CHAPTER 3
DESIGN AND SIMULATION

This report emphasizes studying the Radix-2 Booth’s Multiplier and its comparison with

the Array Multiplier. As a part of this study, VHDL models have been built to simulate

and analyze the performance of these multipliers. Altera Prime Lite Quartus II version

18.1 was used for simulations.

3.1 Booth’s Multiplier Design and Simulation

Following is the VHDL design for Radix-2 Booth’s Multiplier.

library IEEE;
USE IEEE.std_logic_1164.ALL;
use IEEE.std_logic_unsigned.all;

entity Boothsmult is
 port (clk, st: in std_logic;
 Mplier, Mcand : in std_logic_vector (31 downto 0);
 Done : out std_logic;
 Product : out std_logic_vector (62 downto 0));
end BoothsMult;

Architecture BoothsMult_arch of Boothsmult is

 signal state : integer range 0 to 2;
 signal Counter: integer range 0 to 31;
 signal ACC, RegB, Addout, Addout_Co: std_logic_vector (32 downto 0) :=
"000000000000000000000000000000000";
 signal RegC, Compout : std_logic_vector (31 downto 0) :=
"00000000000000000000000000000000";
 signal Co : std_logic := '0';
 alias B0: std_logic is RegB(0);
 alias B1: std_logic is RegB(1);

begin
 Product <= Acc(30 downto 0) & RegB (32 downto 1);
 Co <= B1 and not B0; -- B1B0 = 10, add 2's complement of Compouot to ACC
 Compout <= not RegC when Co = '1' else RegC;
 -- std_logic_vector'(0 => Co) is 00000000Co
 Addout <= Acc + (Compout(31) & Compout) + std_logic_vector'(0 => Co);

Process(clk)
 begin

13

 if clk'event and clk = '1' then
 case state is
 when 0 => if St = '1' then state <= 1; -- load operation
 Done <= '0';
 ACC <= (others => '0');
 RegB <= Mplier & '0';
 RegC <= Mcand;
 else state <= 0 ;
 end if;
 when 1 => if (B1 xor B0) = '1' then -- shift operation
 ACC <= Addout; state <=2;
 else
 ACC <= ACC(32) & ACC(32 downto 1);
 RegB <= Acc(0) & RegB(32 downto 1);
 if Counter /= 31 then
 Counter <= Counter +1; state <= 1;
 else
 Counter <= 0; state <= 0;Done <= '1';
 end if;
 end if;
 when 2 => if Counter /= 31 then
 Counter <= Counter +1; state <= 1;
 else
 Counter <= 0; state <= 0; Done <= '1';
 end if;
 ACC <= ACC(32) & ACC(32 downto 1);
 RegB <= ACC(0) & RegB(32 downto 1);
 end case;
 end if;
 end process;

end BoothsMult_arch;

Below is the Altera ModelSim simulation result.

Figure 7. Radix-2 Booth’s Multiplier ModelSim Simulation

14

3.2 Array Multiplier Design and Simulation

Following is the VHDL design for the Array Multiplier.

-- This is a 32-bit array multiplier for unsigned binary numbers
--Library Declaration
library IEEE;
use IEEE.std_logic_1164.all;

entity ArrayMult32 is
 port(X, Y: in std_logic_vector(31 downto 0); --32-bit inputs
 P: out std_logic_vector(63 downto 0)); --64-bit output
end ArrayMult32;

architecture Behavioral of ArrayMult32 is
 type Matrix32 is array (0 to 31, 0 to 31) of std_logic;
 type Matrix32natural is array (1 to 32, 1 to 32) of std_logic;
 signal XY: Matrix32; --define XY as 32x32 matrix
 signal C, S : Matrix32natural; -- define C,S as 32x32 matrix with indexes 1 to 32

--Full Adder Component Declaration
component FullAdder10ns
 port(X, Y, Cin: in std_logic;
 Cout, Sum: out std_logic);
end component;

--Half Adder Component Declaration
component HalfAdder10ns
 port(X, Y: in std_logic;
 Cout, Sum: out std_logic);
end component;

begin
 --Generate AND gates and signals
 ANDgen1: for j in 0 to 31 generate --For X input
 ANDgen2: for k in 0 to 31 generate --For Y input
 XY(j,k) <= X(j) and Y(k); --And each X and Y input bit, store in XY matrix
 End generate;
 End generate;

P(0) <= XY(0,0); --- first bit of product

----Row 1 special case, 30 full adders with half adder on each end
 FA_loopR1 : for col in 2 to 31 generate --Instantiates 30 copies of Full Adder for
Row 1
 FA_R1_col : FullAdder10ns port map (XY(0,col), XY(1,col - 1), C(1,col),
C(1,col+1), S(2,col-1));

15

 End generate;

 HA_R1_C32: HalfAdder10ns port map (XY(1,31), C(1,32), S(2,32), S(2,31)); --Half
Adder at Row 1, Column 32
 HA_R1C1: HalfAdder10ns port map (XY(0,1), XY(1,0), C(1,2), P(1)); --Half Adder at
Row 1, Column 1
---- End Row 1

-----Rows 2 to 30
 FA_loopR2_30 : for row in 2 to 30 generate --Instantiate Rows 2 thru 30
 FA_loopR2 : for col in 2 to 31 generate --Instantiates 30 copies of Full Adder each
 FA_row_col : FullAdder10ns port map (S(row,col), XY(row,col-1), C(row,col),
C(row,col+1), S(row+1,col-1));
 End generate;
 End generate;

 FA_loopC32 : for row in 2 to 30 generate --Instantiates 29 copies of Full Adder for
Column 32
 FA_row_C32 : FullAdder10ns port map (S(row,32), XY(row,31), C(row,32),
S(row+1,32), S(row+1,31));
 End generate;
 ----end full adders 2 to 30

 --Half Adders (n half adders, 32 total)30 generated here, 2 added in row 1 elsewhere
 HA_loopC1 : for row in 2 to 31 generate --Instantiates 30 copies of Half Adder for
Column 1
 HA_row_C1 : HalfAdder10ns port map (S(row,1), XY(row,0), C(row,2), P(row));
 End generate;
 --end half adders column 1

---row 31 product outputs
 FA_loopR31: for col in 2 to 31 generate
 FA_31_col : FullAdder10ns port map(S(31,col),XY(31,col-
1),C(31,col),C(31,col+1),P(col+30));
 end generate;
 FA_R31_C32 : Fulladder10ns port map (S(31,32),XY(31,31),C(31,32),P(63),P(62));---
last full adder generates two product outputs
----end row 31

end Behavioral;

Following is the declaration of a Half Adder included as a code block in the Array
Multiplier Quartus II project.

library IEEE;
use IEEE.std_logic_1164.all;

16

--Half Adder Entity Description
entity HalfAdder10ns is
 port(X, Y: in std_logic;
 Cout, Sum: out std_logic);
end HalfAdder10ns;

architecture eq2 of HalfAdder10ns is
begin
Cout <= X and Y after 10 ns;
Sum <= X xor Y after 10 ns;
end eq2;

Following is the declaration of a Full Adder included as a code block in the Array
Multiplier Quartus II project.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity FullAdder10ns is
 Port (X, Y, Cin: in std_logic;
 Cout, Sum: out std_logic);
end FullAdder10ns;

architecture gate_level of FullAdder10ns is

begin

 Sum <= X XOR Y XOR Cin after 10 ns;
 Cout <= (X AND Y) OR (Cin AND X) OR (Cin AND Y) after 10 ns;

end gate_level;

Following are the results from the behavioral simulation of the above VHDL design and
respective test bench;

Figure 8. Array Multiplier Modelsim simulation for unsigned inputs

17

It was also observed that when the delay in the adders has been omitted, the array

multiplier results were computed with an insignificant delay.

Figure 9. Array Multiplier Modelsim simulation for unsigned inputs – no adder delay

The original Array Multiplier is intended for unsigned inputs only. When a signed input

is involved, it is observed that the algorithm still considers it as an unsigned input

(usually a large decimal) and results in a product accordingly.

Figure 10. Array Multiplier Modelsim simulation for signed inputs

End of Chapter 3

18

CHAPTER 4
DESIGN AND IMPLEMENTATION

This report emphasizes on studying the performance of Radix-2 Booth’s Multiplier and

its comparison with the Array Multiplier. As a part of this study, the VHDL models of

these multipliers were implemented on the FPGA hardware. Altera Prime Lite Quartus II

version 18.1 was used for simulation and implementation of the models. DE10 Standard

FPGA development board by Terasic Technologies was used for the hardware

implementation of these VHDL models. The FPGA has been configured with these

design modules using the Joint Test Action Group (JTAG) mode. JTAG is an industry-

standard method for testing the hardware implementation of integrated designs and the

interconnects on printed circuit boards (PCBs) that are implemented at the integrated

circuit (IC).

4.1 About DE10 Standard FPGA

The DE10-Standard Development board includes the Intel Cyclone® V System-on-Chip

(SoC) FPGA and an ARM Cortex 9 based Hard Processor Systems (HPS, processor built

into the silicon as opposed to a "Soft" CPU (like NIOS) where the FPGA is configured to

implement a CPU). This FPGA is recommended for exploring image processing on

FPGAs by providing power for engineering development and prototyping. It is well

suited for researchers looking for a low cost, entry level platform without compromising

on resources available for the design and configuration.

Figure 11. Chip Planner of DE10 Standard

19

Figure 12. Terasic DE10 Standard FPGA Board

Resources Characteristics
Logic Elements 110k

ALM 41910
Register 166036

Memory (Kb) M10K 5570
Memory (Kb) MLAB 621

Variable Precision DSP block 112
18x18 multiplier 224

FPGA PLL 6
HPS PLL 3

3 Gbps Transceiver 9
FPGA GPIO 288

HPS I/O 181
LVDS Transmitter 72

LVDS Receiver 72
PCIe Hard IP Block 2

FPGA Hard Memory Controller 1
HPS Hard Memory Controller 1

ARM Cortex-9 MPCore Processor Dual-Core
Table 4. Intel Cyclone V SE 5CSXFC6D6F31C6N Specifications

20

4.2. FPGA Design Flow

The standard FPGA design flow begins with the creation of the digital circuit design

using schematics or a hardware description language (HDL) such as Verilog or VHDL.

This digital circuit design flow then proceeds through compilation, simulation,

programming and implementation on the FPGA hardware.

Figure 13. FPGA Design Flow

4.3 Booth’s Multiplier Design and Implementation

Additional code blocks to enable the implementation of Radix-2 Booth’s Multiplier

algorithm are added to the initial design. These blocks include a top-level implementation

code, a binary to BCD conversion code and a BCD to Hexadecimal 7 segment display

code. Below are the VHDL codes for these blocks.

4.3.a Implementation:

library IEEE;
USE IEEE.std_logic_1164.ALL;
use IEEE.std_logic_unsigned.all;

entity implementation is
 port (Clock_50 : in std_logic;
 key : in std_logic; -- to enable st signal
 SliderSwitch : in std_logic_vector (7 downto 0); -- to input the
multiplicand and the multiplier. assignment from sw[0] to sw[7].
 seg71, seg72, seg73: out STD_LOGIC_VECTOR (6 downto 0);
 LEDR: out STD_LOGIC); -- to indicate done signal
end implementation;

Architecture implement_arch of implementation is

-- signals for the booth's multiplier
signal Mplier_32 : std_logic_vector (31 downto 0);
signal Mcand_32 : std_logic_vector (31 downto 0);
signal product : std_logic_vector (62 downto 0);
signal Done : std_logic;

21

-- signals for the 7 segment display
signal prod: std_logic_vector (7 downto 0):= "00000000";
signal bcd_1, bcd_2, bcd_3 : std_logic_vector (3 downto 0);

component Boothsmult is
 port (clk, st: in std_logic;
 Mplier, Mcand : in std_logic_vector (31 downto 0);
 Done : out std_logic;
 Product : out std_logic_vector (62 downto 0));
end component;

component hex_seg7 is
 Port (product : in STD_LOGIC_VECTOR (3 downto 0);
 seg7 : out STD_LOGIC_VECTOR (0 to 6));
end component;

component binary_bcd is
 Port (binary : in std_logic_vector (7 downto 0);
 hundreds : out std_logic_vector (3 downto 0);
 tenths : out std_logic_vector (3 downto 0);
 unit : out std_logic_vector (3 downto 0));
end component ;

begin

Mplier_32 <= "1111111111111111111111111111" & SliderSwitch(3 downto 0);
Mcand_32 <= "1111111111111111111111111111" & SliderSwitch(7 downto 4); -- for
demonstrating implementation of a negative mcand combination
--Mcand_32 <= "0000000000000000000000000000" & SliderSwitch(7 downto 4); -- for
demonstrating implementation of a positive mcand combination

-- booth's multiplier implementation
Booth_mult: Boothsmult port map(Clock_50, key, Mplier_32, Mcand_32, Done,
product);

-- conversion of binary product to bcd for 7 segment display
prod <= product(7 downto 0);
binary_bcd1: binary_bcd port map(prod,bcd_1, bcd_2, bcd_3);

-- hex to 7 segment display
hex_seg71 : hex_seg7 port map (bcd_3, seg71);
hex_seg72 : hex_seg7 port map (bcd_2, seg72);
hex_seg73 : hex_seg7 port map (bcd_1, seg73);

end implement_arch;

22

4.3.b Binary to BCD conversion

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity binary_bcd is
 Port (binary : in std_logic_vector (7 downto 0);
 hundreds : out std_logic_vector (3 downto 0);
 tenths : out std_logic_vector (3 downto 0);
 unit : out std_logic_vector (3 downto 0));
end binary_bcd;

architecture Behavioral of binary_bcd is
begin
bin_bcd : process (binary)
variable shift : unsigned(19 downto 0) := "00000000000000000000"; -- variable register
for storing bits
 -- Alias for parts of variable shift register
 alias num is shift(7 downto 0);
 alias unity is shift(11 downto 8);
 alias tenth is shift(15 downto 12);
 alias hundred is shift(19 downto 16);

begin
 num := unsigned(binary);
 unity := X"0";
 tenth := X"0";
 hundred := X"0";

-- Loop eight times. if the numerical value of the alias is greater than 5, then per shift and
add algorithm, alias is incremented by 3
-- and then the contents of the shift register are shifted to the left by 1 place.

for i in 1 to num'Length loop

if unity >= 5 then
unity := unity + 3;
end if;

if tenth >= 5 then
tenth := tenth + 3;
end if;

if hundred >= 5 then
hundred := hundred + 3;
end if;

23

-- contents of the shift register are shifted to the left by 1 place
 shift := shift_left(shift, 1);
 end loop;
 -- load contents of alias to the output registers
 hundreds <= std_logic_vector(hundred);
 tenths <= std_logic_vector(tenth);
 unit <= std_logic_vector(unity);
 end process;
end Behavioral;

4.3.c Hexadecimal to 7 Segment Display

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity hex_seg7 is
 Port (product : in STD_LOGIC_VECTOR (3 downto 0);
 seg7 : out STD_LOGIC_VECTOR (0 to 6));
end hex_seg7;

architecture Behavioral of hex_seg7 is
begin
process (product)
BEGIN
 case product is
 when "0000"=> seg7 <="1000000"; -- '0'
 when "0001"=> seg7 <="1111001"; -- '1'
 when "0010"=> seg7 <="0100100"; -- '2'
 when "0011"=> seg7 <="0110000"; -- '3'
 when "0100"=> seg7 <="0011001"; -- '4'
 when "0101"=> seg7 <="0010010"; -- '5'
 when "0110"=> seg7 <="0000010"; -- '6'
 when "0111"=> seg7 <="1111000"; -- '7'
 when "1000"=> seg7 <="0000000"; -- '8'
 when "1001"=> seg7 <="0011000"; -- '9'
 when "1010"=> seg7 <="0001000"; -- 'A'
 when "1011"=> seg7 <="0000011"; -- 'b'
 when "1100"=> seg7 <="1000110"; -- 'C'
 when "1101"=> seg7 <="0100001"; -- 'd'
 when "1110"=> seg7 <="0000110"; -- 'E'
 when "1111"=> seg7 <="0001110"; -- 'F'
 when others => NULL;
end case;
end process;
end Behavioral;

24

Upon initial compiling of the top-level module and the code blocks, the pin assignment is

completed per the specifications listed in the DE10 Standard User Manual version March

20, 2018.

Figure 14. Booth’s Multiplier Pin Assignment

The project is finally compiled to verify the pin assignment and then the FPGA hardware

is configured in the JTAG mode using the Quartus II Programmer interface.

Figure 15. Quartus II Programmer interface for Booth’s Multiplier

We discussed earlier that Booth’s Multiplier is capable of processing unsigned as well as

signed inputs. To demonstrate this characteristic, a negative multiplier and multiplicand

combination has been input to the algorithm and the FPGA was configured accordingly.

25

In the first case, multiplier = (-13)10 = (11111111111111111111111111110011)2
Multiplicand = (-9)10 = (11111111111111111111111111110111)2
Result = (117)10

In the second case, multiplier = (-13)10 = (11111111111111111111111111110011)2
Multiplicand = (9)10 = (00000000000000000000000000001001)2
Signed 2's complement Result = (-117)10
Unsigned Result = (139)10

Case 1

Case 2

Figure 16. Booth’s Multiplier Algorithm Hardware Implementation

26

4.4 Array Multiplier Design and Implementation

Additional code blocks to enable implementation of the Array Multiplier algorithm are

added to the initial design. These blocks include a top-level implementation code, a

binary to BCD conversion code and a BCD to Hexadecimal 7 segment display code.

Below are the VHDL codes for these blocks.

4.4.a Implementation:

library IEEE;
USE IEEE.std_logic_1164.ALL;
use IEEE.std_logic_unsigned.all;

entity implementation is
 port (SliderSwitch : in std_logic_vector (7 downto 0); -- to input the multiplicand and
the multiplier. assignment from sw[0] to sw[7].
 seg71, seg72, seg73: out STD_LOGIC_VECTOR (6 downto 0)
);
end implementation;

Architecture implement_arch of implementation is

-- signals for the array multiplier
signal Mplier_32 : std_logic_vector (31 downto 0);
signal Mcand_32 : std_logic_vector (31 downto 0);
signal product : std_logic_vector (63 downto 0);

-- signals for the 7 segment display
signal prod: std_logic_vector (7 downto 0):= "00000000";
signal bcd_1, bcd_2, bcd_3 : std_logic_vector (3 downto 0);

component ArrayMult32 is
 port(X, Y: in std_logic_vector(31 downto 0); --32-bit inputs
 P: out std_logic_vector(63 downto 0)); --64-bit output
end component;

component hex_7seg is
 Port (product : in STD_LOGIC_VECTOR (3 downto 0);
 seg7 : out STD_LOGIC_VECTOR (0 to 6));
end component;

component binary_bcd is
 Port (binary : in std_logic_vector (7 downto 0);
 hundreds : out std_logic_vector (3 downto 0);
 tenths : out std_logic_vector (3 downto 0);

27

 unit : out std_logic_vector (3 downto 0));
end component ;

begin
Mplier_32 <= "0000000000000000000000000000" & SliderSwitch(3 downto 0);
Mcand_32 <= "0000000000000000000000000000" & SliderSwitch(7 downto 4);

-- Array Multiplier Implementation
ArrayMult: ArrayMult32 port map (Mplier_32,Mcand_32,product);

-- conversion of binary product to bcd for 7 segment display

prod <= product(7 downto 0);
binary_bcd1: binary_bcd port map(prod,bcd_1, bcd_2, bcd_3);

-- hex to 7 segment display

hex_seg71 : hex_7seg port map (bcd_3, seg71);
hex_seg72 : hex_7seg port map (bcd_2, seg72);
hex_seg73 : hex_7seg port map (bcd_1, seg73);

end implement_arch;

4.4.b Binary to BCD conversion

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;

entity binary_bcd is
 Port (binary : in std_logic_vector (7 downto 0);
 hundreds : out std_logic_vector (3 downto 0);
 tenths : out std_logic_vector (3 downto 0);
 unit : out std_logic_vector (3 downto 0));
end binary_bcd;

architecture Behavioral of binary_bcd is
 begin
bin_bcd : process (binary)
-- variable register for storing bits
variable shiftreg : unsigned(19 downto 0) := "00000000000000000000";
-- Alias for parts of variable shift register
 alias num is shiftreg (7 downto 0);
 alias unity is shiftreg (11 downto 8);
 alias tenth is shiftreg (15 downto 12);
 alias hundred is shiftreg (19 downto 16);

28

begin
 num := unsigned(binary);
 unity := X"0";
 tenth := X"0";
 hundred := X"0";

-- Loop eight times. if the numerical value of the alias is greater than 5, then per shift and
add algorithm, alias is incremented by 3
-- and then the contents of the shift register are shifted to the left by 1 place.

for i in 1 to num'Length loop
if unity >= 5 then
 unity := unity + 3;
end if;
if tenth >= 5 then
 tenth := tenth + 3;
end if;
if hundred >= 5 then
 hundred := hundred + 3;
end if;
-- contents of the shift register are shifted to the left by 1 place
 shiftreg := shift_left(shiftreg, 1);
 end loop;
-- load contents of alias to the output registers
 hundreds <= std_logic_vector(hundred);
 tenths <= std_logic_vector(tenth);
 unit <= std_logic_vector(unity);
end process;
end Behavioral;

4.4.c Hexadecimal to 7 Segment Display

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity hex_7seg is
 Port (product : in STD_LOGIC_VECTOR (3 downto 0);
 seg7 : out STD_LOGIC_VECTOR (0 to 6));
end hex_7seg;

architecture Behavioral of hex_7seg is
begin

--'a' corresponds to MSB of seg7 and 'g' corresponds to LSB of seg7.
process (product)
BEGIN
 case product is

29

 when "0000"=> seg7 <="1000000"; -- '0'
 when "0001"=> seg7 <="1111001"; -- '1'
 when "0010"=> seg7 <="0100100"; -- '2'
 when "0011"=> seg7 <="0110000"; -- '3'
 when "0100"=> seg7 <="0011001"; -- '4'
 when "0101"=> seg7 <="0010010"; -- '5'
 when "0110"=> seg7 <="0000010"; -- '6'
 when "0111"=> seg7 <="1111000"; -- '7'
 when "1000"=> seg7 <="0000000"; -- '8'
 when "1001"=> seg7 <="0011000"; -- '9'
 when "1010"=> seg7 <="0001000"; -- 'A'
 when "1011"=> seg7 <="0000011"; -- 'b'
 when "1100"=> seg7 <="1000110"; -- 'C'
 when "1101"=> seg7 <="0100001"; -- 'd'
 when "1110"=> seg7 <="0000110"; -- 'E'
 when "1111"=> seg7 <="0001110"; -- 'F'
 when others => NULL;
 end case;
end process;
end Behavioral;

Upon initial compiling of the top-level module and the code blocks, the pin assignment is

completed with reference to the DE10 Standard User Manual version March20, 2018.

Figure 17. Booth’s Multiplier Pin Assignment

The project is then final compiled for the pin assignment and then the FPGA hardware is

configured in the JTAG mode using the Quartus II Programmer interface.

30

Figure 18. Quartus II Programmer interface for Array Multiplier

We discussed earlier that the Array Multiplier algorithm is capable of processing only

unsigned inputs and reviewed the simulation results when a signed as well as an unsigned

input combination is used in the algorithm. The below case shows the implementation of

two positive inputs.

Multiplier = (+13)10 = (00000000000000000000000000001101)2
Multiplicand = (+5)10 = (00000000000000000000000000000101)2
Result = (65)10

Figure 19. Array Multiplier Algorithm Hardware Implementation

End of Chapter 4

31

CHAPTER 5
CONCLUSION

The primary objective of this thesis has been to understand the functioning of binary

multipliers and design their VHDL models to analyze and compare the performance of

individual multipliers. The role of these multipliers has been realized to be crucial when

considering the grand scheme of their application. Several digital signal processing

applications are based on the multiplication process. Hence the efficiency of these signal

processing applications greatly relies on the performance of these multiplication

algorithms. The goal in designing such critical blocks will be to ensure their minimal

ultimate space utilization on the FPGA.

The subject multipliers of this report were the Booth’s Multiplication Algorithm and the

Array Multiplication Algorithm. The VHDL models were built considering a 32x32 bit

input to these multipliers. Altera Prime Lite Quartus II version 18.1 was used for

simulation and implementation of the models. DE10 Standard FPGA development board

by Terasic Technologies was used for the hardware implementation of these VHDL

models.

Logic utilization is calculated by estimating how many half-ALMs are needed to fit a

design and is a good representation of how full a device is. The logic utilization for the

Booth’s Multiplication algorithm has been realized to be 3% of the total logic utilization

of the Array Multiplication algorithm. Combinational ALUT usage is the actual number

of completely or partially used half-ALMs in the design after logic analysis and

synthesis. The Booth’s Multiplier needed only 2% of the total ALUTs needed for an

Array Multiplier. It was also observed that as the range of the inputs increases, the

complexity of implementing an Array multiplier increases as a result of an increase in the

number of levels of adders needed to accomplish the product result. See Figure 22 and 23

for a representation on the implementation and design space required by Booth’s and

Array multipliers respectively that was realized during this study. Therefore, the radix-2

type Booth’s Multiplication algorithm considered for this study proved to be more

efficient than the Array multiplier.

32

Figure 20. Resource Usage Summary – Booth’s vs Array Multiplier Algorithm

Figure 21. Chip Planner - Array Multiplier Algorithm

ArrayMult BoothsMult

33

Figure 22. RTL View – Booth’s Multiplier Implementation

Figure 23. RTL View – Array Multiplier Implementation

Based on the understanding on the performance of Radix-4, Radix-8 and Radix-16 type

Booth’s Multipliers, it can be assumed that the efficiency of signal processing

applications would be greatly improved as a result of lesser logic utilization. It is

proposed that further study and implementation of higher radix order Booth’s multipliers

would benefit the efficiency of their applications.

Considering the outcome of this study and the assumptions made with the understanding

from this study, it can be noted that the modified Booth’s Algorithm holds the future of

designing the signal processing applications with a promise of increased efficiency, lesser

power consumption and lesser space utilization.

End of Chapter 5

34

BIBLIOGRAPHY

1. Quartus II Handbook, Edition 2014.12.15. Retrieved from:

https://courses.cs.washington.edu/courses/cse467/15wi/docs/Quartus_II_Handbook.p

df

2. DE10-Standard User Manual, by Terasic Technologies, Edition March 20, 2018.

Retrieved from: https://www.intel.com/content/dam/altera-

www/global/en_US/portal/dsn/42/doc-us-dsnbk-42-5505271707235-de10-standard-

user-manual-sm.pdf

3. DE10-Standard My First FPGA, by Terasic Technologies, Edition February 15, 2017.

Retrieved from:

https://rocketboards.org/foswiki/pub/Documentation/DE10Standard/DE10-

Standard_My_First_Fpga.pdf

4. DE10-Standad Getting Started Guide, Edition April 20, 2017. Retrieved from:

https://rocketboards.org/foswiki/pub/Documentation/DE10Standard/DE10-

Standard_Getting_Started_Guide.pdf

5. Intel® Quartus® Prime Pro Edition User Guide, UG-20140 | Edition 2019.09.30.

Retrieved from:

https://www.intel.com/content/www/us/en/programmable/documentation/spj1513986

956763.html

6. QUARTUS PRIME INTRODUCTION USING VHDL DESIGNS, Edition March

2018.

35

7. Bewick, Gary & Flynn, Michael. (1970). Fast Multiplication: Algorithms And

Implementation. Retrieved from:

https://www.researchgate.net/publication/2575879_Fast_Multiplication_Algorithms_

And_Implementation

8. Laxman S, Darshan Prabhu R, Mahesh S Shetty, Mrs. Manjula BM, Dr. Chirag

Sharma “FPGA Implementation of Different Multiplier Architectures” ISSN 2250-

2459, Volume 2, Issue 6, June 2012)

9. Arvind Chakrapani, S.ShanmugaPriya, P.Thenmozhi, R.Vishnu priya, N.Yashika

“Simulation Analysis of Binary Multipliers used in the MAC Unit of Digital Signal

Processors”, International Journal of Pure and Applied Mathematics, ISSN: 1311-

8080 (printed version); ISSN: 1314-3395 (on-line version)

10. Snehal R Deshmukh, Dinkar L Bhombe, “Performance Comparison of Different

Multipliers using Booth Algorithm”, International Journal of Engineering Research &

Technology(IJERT) Vol. 3 Issue 2, February – 2014

End of Document

		2020-01-06T10:33:15-0500
	Electronic Theses and Dissertations Program

