
Automatic Network Traffic Anomaly Detection and Analysis using Supervised
Machine Learning Techniques

by

Astha Syal

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master

of

Computing and Information Systems

Program

YOUNGSTOWN STATE UNIVERSITY

December, 2019

Automatic Network Traffic Anomaly Detection and Analysis using Supervised
Machine Learning Techniques

Astha Syal

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library Circulation Desk
for public access. I also authorize the University or other individuals to make copies
of this thesis as needed for scholarly research.

Signature:

Astha Syal, Student Date

Approvals:

Alina Lazar, Thesis Advisor Date

Dr. Coskun Bayrak, Committee Member Date

Dr. Feng Yu, Committee Member Date

Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

ABSTRACT

Today, internet has become an important tool for the entire public. It is the source of

information, education, entertainment, and convenience. To maintain the efficiency

and performance of the large computer networks supporting the internet, it is impor-

tant to monitor and analyze the overall network traffic. During evening hours, when

most people access internet at the same time for social media browsing, accessing

their data or watching Netflix, with the increase in utilization, the network traffic can

become congested and therefore the speed decreases. This research aims to identify

network variables that cause these disturbances, thus impacting the overall speed of

the network and leading it to a state of "congestive collapse". Machine learning mod-

els can be built using data passively collected in the network’s logs and can be used

in real-time to predict the traffic in the next time frame so network administrators

could tune the network variables that are causing these disturbances. The models

proposed here are able to quickly detect large intervals of low performing network

transfers, which requires attention from network engineers.

iii

Acknowledgements

I would like to express my gratitude to my advisor, Dr. Alina Lazar. Under her

guidance and support I was able to successfully perform and complete my thesis.

Working with her, I have received exposure beyond the textbooks and have experi-

enced an immense amount of growth in my learning.

I would like to thank my committee members Dr. Coskun Bayrak and Dr. Feng Yu

for giving their time and attention in assessing the research work.

I want to thank Alex Sim and John Wu from the Scientific Data Management Re-

search Group at Lawrence Berkeley National Laboratory and Jinoh Kim from the

Department of Computer Science and Information Systems at Texas A&M University-

Commerce for providing the datasets and guidance for this project.

A special thanks to my parents, family and friends for immense support and guidance

throughout my program. I would also thank the Department of Computer Science and

Information Systems and the College of Graduate Studies for the financial assistance

during my graduate studies.

iv

Table of Contents

List of Figures 1

List of Tables 2

1 Introduction 3

2 Related Work 8

3 Methods 14

3.1 LightGBM . 15

3.2 XGBoost . 15

3.3 Linear SVM . 16

3.4 Random Forest . 17

3.5 Feature Importance - SHAP . 17

3.6 Dimensionality Reduction . 18

3.7 Performance Evaluation . 20

4 Datasets 21

5 Experiments and Results 25

5.1 Classification Evaluation . 25

5.2 Feature Selection and Evaluation . 30

6 Conclusion 34

7 References 36

v

8 Appendix 40

vi

List of Figures

1 Proposed machine learning guided methodology for identifying and

categorizing low performing network flows. 14

2 UMAP 2-dimensional visual representation of the network traffic flows

collected from node 5 and colored based on their throughput values.

Red means low, blue means normal and green means high. (a) individ-

ual flows (b) majority labels assigned based on one hour time intervals. 19

3 Average throughput for node 7, 5min time windows. The red line is

throughput threshold. Recall is 90% 28

4 Average throughput for node 2, 5min time windows. The red line is

throughput threshold. Recall is 90% 29

5 Average throughput for node 5, 30min time windows. The red line is

throughput threshold. Recall is 11% 30

6 Average throughput for node 3, 30min time windows. The red line is

throughput threshold. Recall is 90% 32

7 Average throughput node 2, 1H time windows. The red line is through-

put threshold. Recall is 81% . 32

8 Feature selection using SHAP for Node 7 32

1

List of Tables

1 Datasets Statisctics . 21

2 Summary Statistics (Node 1 - Node 4) 24

3 Summary Statistics (Node 5 - Node 8) 24

4 Average evaluation of Node 1 through Node 8 for all classification meth-

ods . 25

5 Classification Evaluation: Light GBM 27

6 Cross Validation Evaluation: Light GBM 31

7 Classification Evaluation Comparison for Node 7 33

8 Classification Evaluation: Linear SVM 40

9 Classification Evaluation: Random Forest 41

10 Classification Evaluation : XGboost 42

11 Cross Validation Evaluation: Linear SVM 43

12 Cross Validation Evaluation: Random Forest 43

13 Cross Validation Evaluation: XGBoost 44

2

1 Introduction

Network engineers have to spend significant amount of time and effort in order

to optimize and tune the computer networks performance as a result of the increase of

computer networks in size and complexity. Therefore, network traffic monitoring and

analysis have become very important and are in general used to explain the current

state of the network and to identify the most important variables. Even though net-

work engineers have developed certain methodologies and tools for traffic monitoring

and problem detection, to diagnose the network performance data collection is the

first step.

For high performance scientific applications that generate lots of data, high

network transfers are a requirement for moving the data from one site to another. Sci-

ence DMZ includes several dedicated data transfer nodes and data movement tools.

Large scientific facilities use science DMZ to achieve high performance. Healthy op-

erations within the diverse and complex varieties of computer networks can be main-

tained using network traffic analysis [17]. To predict future network traffic volume

and unexpected events in real-time, online traffic monitoring information which is

collected overtime can be used.

For successful scientific experiments and computations that require large com-

plex data files to be transferred across long distances, reliable file transfers are essen-

tial. Protocols such as TCP and UDP are used by network to support file transfers.

Degradation of network performance under packet losses and duplication can ad-

versely impact scientific applications. Therefore, to find and repair network problems

that cause such degradation, network statistics are being monitored by scientists and

engineers.

3

Application of machine learning techniques and models have been observed

in traffic classification and prediction, intrusion detection, network adaptation and

configuration extrapolation. These methods, when used with data from passive net-

work measurements, are useful to explain the status of network traffic and identify

bottlenecks. However, analyzing the network traffic data using machine learning and

statistical methods [5, 25] is challenging for several reasons.

The automatically collected network data is usually high volume of high di-

mensional heavy stream data. Problems need to be identified in real-time so that it

can provide alerts in case of unexpected events.

Another important challenge is that there are very few labeled datasets to

build and evaluate supervised machine learning methods [1]. For network data, even

though it is relatively easy to collect, there is no automatic way to label it based on the

problem which needs to be solved. In order to construct the high quality ground truth

datasets manually, especially in the case of analyzing real network traffic traces, the

process comes with its own constraints such as time consumption, domain knowledge

and privacy issues.

Machine learning models have high generalization characteristics, therefore,

the models built on existing datasets are expected to be adaptive to the high-variance

future network traffic values. Since the nature of network system is quite dynamic,

it becomes unacceptable to have a model that could retrain for every time interval

manifesting significant network changes.

Well-performing machine learning models are usually built on an assumption

that the training data follows the same distribution as the target distribution. In

the dynamically changing network environment, this assumption is not always true

4

or practical. In a previous study Winstein and Balakrishnan [26] showed that the

machine learning models built using training data collected from a specific network

environment can, to some degree, perform well in other network environments. The

methods and results presented in this thesis provide a first step towards identifying

important features to detect any network problems.

Even though a good performance can be achieved using state of the art ma-

chine learning algorithms when trained on networking data, the accountability and

interpretability properties of these models make its implementation quite challenging

as most of the resulting models are still black boxes, not humanly readable or easily

interpretable. As a result, expert network engineers fail to understand the behavior of

the model and so are not able to integrate their knowledge in real systems to provide

new ways for network adaptation and configuration extrapolation.

Network engineers examine the average network throughout in a certain time

window to monitor the performance of the network. Many high throughput trans-

fers signify that the network is running without problems, while a set of stable low

throughput transfers is usually a sign of network congestion known as "congestive

collapse". Network congestion occurs when a network link is transferring more data

packets than it can handle and as a result the network as a whole exhibits reduced

quality of service. This network state is usually due to interference among the server’s

shared physical resources involved in these transfers, such as network links, disk stor-

age systems, and CPUs. Typical effects include packet loss, duplication, and re-

transmission. A typical consequence of congestion is imminent decrease in network

throughput. The identifying factors [18] that contribute to the decrease of network

throughput are very important in determining resource allocations to use in schedul-

5

ing requests.

The goal of this thesis is to demonstrate that the states of congestive collapse

can be identified by using supervised machine learning techniques to passive mea-

surements of network flow datasets. Labels can be assigned based on the average

throughput to categorize network traffic flows grouped by time intervals which can

help with the analysis of large network datasets. After initial binary labeling of these

flows to a small predefined number of clusters, a classification model of the traffic

can be generated using the features of each time window. New incoming flows can

then be classified on the fly and assigned to one of the two classes (low versus high

throughput time window)

Specific contributions to the thesis are as follows:

· Label the time intervals as ’slow’ or ’normal’ by using statistical analysis methods

to extract throughput threshold values.

· Provide a 2-dimensional representation of the datasets to understand the structure

of the data using unsupervised dimensional reduction and visualization methods

based on UMAP.

· Classification experiments performed on real network data collected from eight

DTNs using Tstat.

· Checking the results of this supervised learning approach, especially the precision

and recall values, using throughput plots for evaluation and comparison.

· Using feature extraction to rank the most important features contributing towards

the results. Also, doing a comparative study of the classification results of those

features to the results containing all the features.

6

This thesis is organized as follows. Section 2 compares our approach with previous

work, while section 3 is an overview of the proposed methodology and describes

its main steps. Section 4 provides an overview of the datasets, while sections 5

thoroughly discusses the experiments performed on eight large real traffic datasets.

Finally, section 6 draws conclusions and presents future developments for this work.

7

2 Related Work

Network telemetry consists of a set of measurements describing the current

state of network. Since the state of network keeps changing, it becomes challeng-

ing to build a real time and fine-grained network telemetry system. The traditional

bottom-up approach that the operators use to extract useful information from the

network is described by Yu [27]. This study talks about the drawbacks of the current

approach. The main drawbacks is the lack of integrated data to provide network-wide

view since the operators have too much of information to process. In addition the

network monitoring tools are only able to capture aggregated or sampled information.

The paper proposes top-down approach using declarative measurement abstractions

in which the operators can specify the measurement queries in a declarative way, inde-

pendent of the underlying measurement system. It also introduces a run-time system

that translates high-level queries to low-level configurations, dynamically allocates

resources to queries and manages hosts and routing changes.

One important task of traffic application classification is to identify the ap-

plications and protocols associated with the traffic flow [4] since it identifies the

malicious or inappropriate application in a network which needs to be handled. The

paper presents a methodology to classify unknown application traffic which has not

yet been thoroughly researched on. The model identifies unknown applications, with-

out restrictions on traffic type, by analyzing the incoming data which likely doesn’t

belong to the model. It utilizes K-nearest neighbor machine learning approaches to

the application data which requires an initial set of explicitly labelled data and uses

Kolmogorov-Smirnov statistic as the distance function. The model has achieved an

overall accuracy of 92.67% with 91.98% on known traffic and 92.81% on unknown

8

traffic.

DTNs at a scientific computing facility were statistically analyzed before by

Liu et. al [17]. It contained TCP logs collected by Tstat [20] together with other

logs . Transfers performed during the year 2017 were examined at three different

levels: individual file transfers, user transfer requests and TCP flows. They identified

the areas that needed improvements in transfer performance and resource utilization

along with some insights on transfer, file and flow characteristics using these logs.

Therefore, the study shows that we can obtain some useful insights by combining

analysis of logs from different layers of the data movement stack. Also, some of the

findings on flow, file and transfer characteristics are applicable to other large facilities.

There is still no good way for the network engineers to immediately differenti-

ate between normal and anomalous network transfers as network data at the flow level

collected with Tstat is unlabeled. Using perfSONAR, Rao et al. [23] collected net-

work data in a controlled environment which was used to detect and identify network

transfer anomalies such as packet loss, duplication, and retransmission sequencing

that affect file transfer performance especially related to congestion. In order to high-

light abnormal behavior and determine important features, an approach that used

the combination of dimensionality reduction and statistical analysis was used. Sim-

ple experiments were performed using unsupervised feature extraction to show that

to extract certain characteristics from known network transfer datasets, the proposed

method is proven to efficient. The real network data extracted from Tstat logs was

used for these experiments and specific file details such as file size, workflow stage

and link details were ignored so that the core network properties can be extracted

as general normal features. The patterns extracted using dimensionality reduction

9

based on Principle Component Analysis (PCA) and clustering can help build feature

filters to select data for any future machine learning methods. This method can be

utilized by researchers and network engineers to build relationships among sensitive

parameters such as congestion and availability with transfer file type. The end goal

was to study the impact of packet loss and congestion on end-to-end performance

Another solution to this problem was proposed by Rezaei [24]. Provided

enough amount of data for bandwidth and duration tasks, traffic class prediction

tasks can be trained with only a small number of samples which would eliminate the

need of large amount of labelled data. The model uses three time-series features:

packet length, inter-arrival time and direction of the first k-packets for 1-Dimensional

Convolutional neural network (CNN). Through experiments with two public datasets:

QUIC and ISCX, the paper illustrates that the multi-task learning approach outper-

forms both single and transfer learning approaches.

Another approach by Dao [8] only looks at the throughput characteristic of

the network transfers, instead of analyzing Tstat features. This approach employs

a change point detection method first divides the network flows into time windows

based on their time stamp and then applies a non-parametric model for each window

which describes the congestion. Network transfers that take significantly longer than

typical expected time were appointed as ”slow” or ”abnormal transfers”. When many

”slow” network transfers occur in the same time window, it is worthwhile to alert

the network engineers and prompt them to investigate the abnormal behavior of the

system.

Kim [13, 15, 12, 14] proposed another unsupervised approach, based on clus-

tering which aims to keep track of the network state based on the aggregation of

10

multidimensional variables. The state of the network with regard to the monitored

variables was represented by the clustered result which can also be compared with the

observed patterns from previous time windows that enables intuitive analysis. The

type of data being analyzed to construct clustered patterns affects the definition of

the network state. The proposed method was proven through two popular use cases,

one that estimated the traffic breakdown and the other that identified the anomalous

states. The applicability of their method was shown by applying it to Tstat data

collected from ESnet.

TCP anomalies such as packet loss contributing to the changes in the net-

work throughout have already been studied before [18]. Therefore, correctly identify

all these the anomalies is very essential. Previous research [14, 3] have shown sta-

tistical correlation between multiple variables collected in the Tstat logs and the

network traffic throughput. Recently, to predict network traffic volume from some

flow statistics, such as flow counts per time interval, Hidden Markov Model and Re-

current Neural Networks have been proposed [7] . To compute network throughput

is assumed to more challenging than computing these flow statistics.

In regard to accurately identifying TCP anomalies occurring during file trans-

fers based on passive measurements of TCP traffic collected using Tstat, another

unsupervised/supervised technique have been proposed in [16]. Real large datasets

collected from several DTNs were used to validate this method. Through the pre-

liminary results, the correlation between the percentage of TCP anomalies and the

average throughput in any given time window can be identified.

To extract information from raw network flows data and to meet current net-

work data analysis requirements including scalability, auto configuration capability,

11

human readability of results, as well as evaluation of the model quality over time,

the big data framework SeLINA, proposed by Apiletti et al. [3] was designed. At

first the data was clustered using an automated tuning algorithm based on DBSCAN.

Then, the clustering labels were used as input to rank the features using a decision

tree algorithm .

For the quality measurement and analysis of the degree of change that takes

place in the network for continued evaluation and comparison, SeLINA uses the av-

erage Silhouette index. When a drastic change is observed in this index, the main

DBSCAN clustering model is automatically rebuild to incorporate the new incom-

ing traffic data. The system’s ability to identify over-time changes in the network

is highlighted by the experiments conducted. The self-tuning property for the main

algorithms, a step that normally requires sophisticated, expert level fine-tuning has

been one the major contributions of this paper.

Flowzilla [11] is a methodology designed to detect data transfer anomalies over

the network in order to prevent network congestion and overutilization of network

devices. The training data from Tstat, which is adaptive to the changing network

load, is used to build the Model. The Feature Extraction Filter, which uses Random

Forest Regression (RFR) to extract a subset of features from Tstat database generates

the training data. Adaptive Threshold Mechanism is then utilized to detect the

anomalies. It includes a threshold calculator which is designed to detect the threshold

values based on previous data and the Detector, that calculates the anomalous flows

based on difference in model’s predicted flow size and threshold value. This framework

has achieved an overall accuracy of 92.5% .

We have built our model based on the Flowzilla approach [11] but with some

12

added differences and improvisations. The approach we followed classified the network

transfers based on their throughput rather than their size. Instead of performing

classification on the individual transfers, we did it on time intervals. Finally, most

significant, our approach utilized Tstat instead of the limited set of features used by

Flowzilla.

13

3 Methods

Traffic flows collected in the Tstat logs have no feature or variable to designate

them as anomalies. However, for this paper we consider labeling the network transfers

using the average throughput per time window and an adaptive threshold set as the

first quartile of the dataset. Then, supervised machine learning algorithms are used

to predict which flows are slow and which are normal. Specifically, a supervised

approach based on the gradient boosting approach-LightGBM was found suitable

to build models that automatically classifies the traffic flow time windows into two

separate groups with similar characteristics in terms of their throughput. All the

steps of this approach are highlighted in Fig. 1.

Figure 1: Proposed machine learning guided methodology for identifying and catego-
rizing low performing network flows.

14

3.1 LightGBM

Gradient Tree Boosting is a technique which has been proven to give state-

of-the-art results on many stantard classification benchmarks. The proposed method

employs LightGBM algorithm to identify time intervals with low averages of the

throughput values over the entire dataset. LightGBM (Light Gradient Boosting Ma-

chine) model uses a histogram based learning algorithms[22]. On supplying the train-

ing dataset to the model, it uses Gradient-based One Side Sampling which performs

random sampling on instance with small gradients and keeps all the instances with

large gradients, focusing mainly on under-trained instances without causing much

impact on data distribution. In order to reduce the number of features, it uses Ex-

clusive Feature Bundling (EFB) which sorts the features in descending order based

on their degrees in the graph constructed with weighted edges. Each feature in the

ordered lists are then checked and assigned to an existing bundle or a new bundle is

created. This algorithm can avoid unnecessary computation of zero feature values.

This approach provides higher efficiency, has faster training speed, uses less memory

and provides better accuracy as compared to other classification models. We also

compared the results of this model to other models such as Linear SVM, Random

Forest and XGBoost.

3.2 XGBoost

Another Gradient Boosting Algorithm is XGBoost which uses parallel tree

boosting. It introduces weighted quantile sketch for tree learning and sparsity-aware

algorithm for sparse data[6]. Since network data is quite sparse and unpredictable

in nature, this algorithm has proven to be quite efficient with the network datasets.

15

It enables parallel and distributed computing which has resulted in faster learning

process. XGBoost uses a new regularization technique to overcome the limitations of

overfitting which makes it faster and more robust during model tuning and differen-

tiates it from other gradient boosting.

The main difference between XGBoost and LightGBM can be illustrated through

the way their decision trees are formed. XGBoost uses Level-wise tree growth which

checks all the previous leaves for each new leaf[2] while LightGBM uses Leaf-wise

tree growth, mentioned in above section as histogram implementation, which offers

several advantages over XGBoost in terms of accuracy, training speed and large scale

data handling. This difference could also be reflected through the Table 4 in our

Experiments and Results section.

3.3 Linear SVM

SVMs are supervised learning models that usually provide high performance

for classification and regression analysis. Given a set of training examples, each

marked as belonging to one or the other of two classes, an SVM training algorithm

builds a linear hyperplane with the specific property of having the largest margin.

In other words, the individual data points are mapped so that the points of the

two categories are divided by the optimal hyperplane that has the largest gap. The

optimization step of linear SVMs can be solved efficiently using the coordinate descent

algorithm, thereby reducing the convergence iteration to linear time, making this

algorithm run very fast compared to other classification methods.

16

3.4 Random Forest

Random Forest is the most flexible and easy to use classification algorithm.

On providing a training data to the model, it randomly selects the subset for it and

creates a set of decision trees for them. Each tree predicts the class prediction and

the class with maximum votes becomes the predicted class. It handles missing values

and doesn’t suffer overfitting, which makes the model robust and accurate.

3.5 Feature Importance - SHAP

Most of the machine learning models we use today are black boxes, therefore,

interpreting the model output holds great importance in evaluating the performance

of the model. Shap (SHapely additive exPlanations) values are capable of explaining

the output of any machine learning models using a high speed algorithm especially

design for tree ensemble methods. The model supports implementations for XGBoost,

LightGBM, CatBoost, and scikit-learn tree models making it a good fit for our ex-

periments. We supplied the training sets through SHAP which assigns each feature

an importance value for the prediction. Through this, we identify top ten features

which creates most impact on the output of our model. We then run the same set of

experiments for these selected features and compare the results with the classification

evaluation results containing all the features. This helps us to identify which features

are involved towards predicting a specific class outcome and how much impact they

have on the results.

17

3.6 Dimensionality Reduction

Uniform Manifold Approximation and Projection (UMAP) [19] is a new di-

mension reduction technique that can be used for visualizations similar to other man-

ifold data embedding techniques, and also for general non-linear dimension reduction.

It is based on manifold theory and fuzzy topological data analysis. The algorithm

builds a weighted k-neighbor graph to efficiently approximate the k-nearest-neighbor

computation and calculates spectral embeddings that are later optimized using the

stochastic gradient descent algorithm. The algorithm is founded on assumptions that

the data is uniformly distributed on a Riemannian manifold, an assumption that does

not always hold for real data.

To understand the underlying structure of this particular dataset, a two-

dimensional representation in an embedding space for the node 5 dataset is pre-

sented in Figure 2. Similar to principal component analysis (PCA) representations,

the values of the x-axis and y-axis of the UMAP scatterplot are nothing more than

a representation in the embedding two-dimensional space. Part (a) of this figure

shows all the individual flow with their calculated throughput. Red represents flows

with low throughput (throughput lower than the first quartile), blue means normal

(throughput between the first quartile and the third quartile), while green shows the

high performing flows (throughput larger than the third quartile). Figure 2 (b) shows

the same network transfers, colored using the same encoding; however this time the

flows are assigned with the majority class of the one-hour time windows in which they

belong.

Given the time series property of the network transfers datasets, it does not

make sense to split them randomly into training and testing or perform standard cross-

18

validation shuffling, but instead a ”time series cross-validator” is more appropriate.

The procedure used to split time series is described next. One moment in time can

to be chosen as the delimiter between the training and testing sets. Also, to perform

cross-validation at each split, test indices must be higher than the indices used for

testing before, and the entire training set needs to have timestamps from before

the test set. Unlike standard cross-validation methods, successive training sets are

supersets of those that come before them, but they can also be limited to a certain

size. Cross-validation is the preferred validation method for larger datasets because

it better estimates the generalization ability of the model, which is very important

for the problem we are trying to solve.

Figure 2: UMAP 2-dimensional visual representation of the network traffic flows
collected from node 5 and colored based on their throughput values. Red means low,
blue means normal and green means high. (a) individual flows (b) majority labels
assigned based on one hour time intervals.

19

3.7 Performance Evaluation

Quantitative classification evaluation, which evaluates the goodness of classifi-

cation results, can be done using the traditional measures such as accuracy, precision,

recall, and F1 score. Precision is the ratio between the correctly classified positive

instance and number of all positive instances. It gives an idea of the amount of ele-

ments from the positive class that were misclassified. Recall is the ratio between the

correctly classified positive instance and the number of all instances classified as pos-

itive. The F1 score is an average between precision and recall. Precision, recall, and

the F1 score are very important, especially when the training and/or testing datasets

are highly imbalanced.

By showing the correctly classified time intervals versus the incorrectly classi-

fied on the time series average throughput plots, a qualitative classification evaluation

is possible.

20

4 Datasets

Today, network traffic statistics at the flow level can be collected using pas-

sive monitoring tools such as Tstat [10]. A passive probe located on the access link

that connects each Data Transfer Node (DTN) located at the National Energy Re-

search Scientific Computing Center (NERSC) to the ESnet (Department of Energy’s

dedicated science network) inspects all packets flowing on the link and extracts the

information to be summarized. The Tstat software rebuilds each TCP and UDP

network flow by matching incoming and outgoing segments.

Table 1: Datasets Statisctics

Node # of Flows 60min 30min 5min
1 2,447,602 4,232 8,450 47,310
2 1,119,470 2,639 4,372 13,618
3 5,131,592 4,029 7,845 36,089
4 455,244 3,286 5,716 21,006
5 135,531 421 659 2,140
6 166,116 598 1,060 4,359
7 157,247 412 659 2,439
8 169,233 626 1,096 4,539

Tstat offers output statistics at packet and flow level. The flow-level analysis

provides a summary of the connection properties that is logged [21] for further analy-

sis. It can be used to collect many different statistics for TCP, UDP, and RTP/RTCP

traffic. For TCP connections, congestion window size, out-of-sequence segments, du-

plicated segments, number of bytes and segments retransmitted, and RTT are some

of the statistics that it collects. Tstat distinguishes between completed and not com-

pleted flows, and between clients (hosts that actively open a connection) and servers

(hosts that passively listen for connection requests). Tstat also records UDP mes-

21

sages. However, since UDP communication contributes a very low percent of the

total bytes moved from/to the major computer center, we did not included UDP

communications in this study.

Among the measurements collected by Tstat, some of the metrics are believed

to be correlated to both system configuration and possible performance issues. For

example, the measure of Round Trip Time (RTT) is usually related to both the

distance from the server, but also possible to reveal congestion on the path. Similarly,

both reordering and duplicate probabilities increase during periods of congestion. The

duration and amount of carried data are used to compute the actual throughput and

could also distinguish between the type of service the flow carries, e.g., short-lived

signaling flows carrying little data rather than long lived data flows carrying a large

amount of data. We included all these Tstat measurements in our experiments.

At the large scientific facility 90K of TCP flows are collected per node daily

and an approximate total of 10GB of compressed data logs are collected yearly on

ten DTNs. The Tstat data used for this study was collected and provided by the

NERSC computing facility at LBNL. The Tstat data contains source and destination

IP addresses, and so is not publicly available for privacy reasons. To simplify our

analysis, for this study we eliminated all flows that carry less than 10MB of data

both ways. Table 1 shows the number of network transfer in each dataset and also

the number of time intervals. The datasets for nodes 1 to 4 contain six months worth

of transfers collected between 01/01/2017 - 06/28/2017, while the datasets for nodes

5 to 8 are smaller and have approximately one month worth of data collected between

06/01/2017 - 06/28/2017.

For each dataset all the features with constant values are eliminated. We also

22

eliminate features involved in the calculation of the throughput because it is used

to assign the output labels. Table 2 shows the summary statistics for the calculated

throughput for first four nodes and 3 shows the summary statistics for the last four

nodes which are the smaller nodes. The first quartile values in this table are used

as threshold values for our experiments. Network transfers that take place closer in

time are highly correlated compared with transfers that are far apart. To account

for this important characteristic of the datasets we add two additional features which

where assigned based on the previous and two time intervals preceding the current

time window.

All the features are then normalized using the MinMax Scaling procedure. The

datasets are divided into time intervals based on three time frequencies: 5, 30 and 60

minutes. Averages for all the features including throughput are calculated and saved

for further input into the classification algorithm.

23

Table 2: Summary Statistics (Node 1 - Node 4)

node1 node2 node3 node4
count 2,447,602 1,119,470 5,131,592 455,244
mean 129.46 98.836 881.61 174.46
std 317.78 115.29 978.5 375.75
min 0.00003 0.00009 0.00005 0.00007
5% 13.941 20.175 43.448 7.66
25% 31.636 56.643 174.85 42.672
50% 57.901 82.353 377.81 87.981
75% 111.15 103.64 1521.1 162.7
max 9853.994 9883.041 9889.773 9725.279

Table 3: Summary Statistics (Node 5 - Node 8)

node5 node6 node7 node8
count 135,531 166,116 157,247 169,233
mean 105.23 262.35 91.439 268.05
std 69.401 335.53 81.206 631.1
min 0.0008 0.0007 0.005779 0.008
5% 22.825 22.329 21.242 26.714
25% 57.376 64.642 47.877 60.551
50% 92.339 107.12 77.219 93.842
75% 135.83 198.24 117.02 149.5
max 3003.8 5920 3048 3271.2

24

5 Experiments and Results

We ran a set of experiments for Node 1 through Node 8 using the follow-

ing classification methods: Linear SVM, Random Forest, XGBoost and LightGBM.

Through the average results in Table 4, we can observe that accuracy is higher than

85% for all the methods and recall does not fall below 63% in any of the result cases.

The complete evaluation results for all nodes can be observed in Table 5, Table 8, Ta-

ble 9 and Table 10. Since we observed the best results from LightGBM for our model,

we ran all our experiments using LightGBM methodology. However, LightGBM is

one of the slowest methods.

Table 4: Average evaluation of Node 1 through Node 8 for all classification methods

Method Runtime(secs) Accuracy Precision Recall F1-Score %CI
Linear SVM 0.197 0.9024 0.8522 0.7097 0.7690 29.05
Random Forest 0.260 0.8577 0.8899 0.6395 0.7113 28.60
XGBoost 0.831 0.8692 0.8799 0.6768 0.7389 28.18
LightGBM 2.902 0.8962 0.8998 0.7497 0.7999 29.00

5.1 Classification Evaluation

To detect time intervals of slow network transfer we adopt a supervised clas-

sification method based on LightGBM. Let X = {(x1, y1), ...(xN , yN)} be the labeled

anomaly detection dataset with N total instances, where xi represents the input fea-

ture vector that can be defined in a d dimensional space as xi = {x1
i , x

2
i , ...x

d
i }. This

set of feature values (client/server IP Address, client/server protocol, RTT values,

maximum segment size) is extracted from the raw Tstat data. The corresponding

binary class label yi ∈ {y1, y2, ...yN} for each input vector xi represent normal speed

25

time intervals of abnormally slow intervals. This class label is assigned based on the

adaptive threshold defined using the first quartile of the average throughput of the

training dataset. Therefore, the training dataset will always contain 25% of slow

time intervals transfers. In the end, the classification models are designed to pre-

dict whether the average throughput for the network transfers flows in a given time

window that is below the throughput threshold for that node.

In the detection or testing phase, based on a classifier trained with set X,

every instance in a test set is assigned to the class of either normal or slow type of

transfer. It is important to note that because of the dynamic nature of the network,

the network traffic data would change with time; thus, the adaptive threshold needs

to be periodically updated and the classification model for anomaly detection must

be learned with new training data, for the purpose of keeping high accuracy for online

detection.

We build several models, a different one for each combination of node dataset

and time window. The experiments are done for 5, 30 and 60 minutes time intervals.

For the first set of experiments, we used the entire datasets for all the eight nodes and

divided each of them based on the time stamp in training and testing sets. The last

week is used for testing and the rest to build the model. Results of these experiments

are presented in Table 5 in terms of accuracy, precision, recall and F1 score and

percent of time windows under the threshold.

26

Table 5: Classification Evaluation: Light GBM

min Runtime Acc. Prec. Recall F1 %CI

node1
5Min 23.000s 0.9567 0.9407 0.8981 0.9189 27.34
30Min 8.700s 0.9144 0.8423 0.7276 0.7808 20.94
1H 6.600s 0.8979 0.8247 0.6107 0.7018 19.66

node2
5Min 8.100s 0.9638 0.9526 0.9059 0.9286 25.97
30Min 5.400s 0.9376 0.9198 0.8427 0.8796 27.03
1H 5.100s 0.9174 0.8803 0.8013 0.8389 26.85

node3
5Min 20.000s 0.8954 0.7560 0.9018 0.8225 26.86
30Min 7.700s 0.9389 0.8248 0.8794 0.8512 19.87
1H 6.600s 0.9354 0.8516 0.8684 0.8599 22.82

node4
5Min 9.300s 0.9699 0.9333 0.8512 0.8804 14.37
30Min 5.900s 0.9544 0.9618 0.7550 0.8459 16.58
1H 4.600s 0.9564 0.9359 0.7604 0.8391 14.95

node5
5Min 2.400s 0.9062 0.9825 0.8528 0.9130 57.77
30Min 1.100s 0.4857 0.7000 0.1111 0.1918 57.79
1H 0.510s 0.6911 0.8537 0.6481 0.6139 54.47

node6
5Min 4.000s 0.9349 0.9524 0.6557 0.7767 17.26
30Min 1.700s 0.9115 0.8776 0.6719 0.7611 20.98
1H 0.930s 0.9588 0.9118 0.8857 0.8986 20.58

node7
5Min 3.300s 0.9587 0.9967 0.9061 0.9492 42.63
30Min 1.000s 0.8824 0.9740 0.7732 0.8621 47.54
1H 1.200s 0.8211 1.0000 0.6207 0.7660 47.15

node8
5Min 4.400s 0.9524 0.9567 0.7921 0.8625 18.86
30Min 2.200s 0.9197 0.8750 0.7000 0.7778 20.06
1H 1.000s 0.9277 0.8750 0.7000 0.7778 18.07

27

The results presented in Table 5 shows overall accuracy and precision more

than 82% for all the nodes except for Node 5, 30mins time window, which also shows

a lower recall, less than 60% as compared to the recall for all other nodes. We also

observe best results for Node 7 and Node 2 as represented in 8 and Figure 4. On

observing the results from these two figures, it clearly states that our model correctly

identifies contiguous intervals of low network performance. The higher number of

false positives as reflected by the recall rate is especially during times when time

intervals with high throughput alternate with time intervals of low throughput.

Figure 3: Average throughput for node 7, 5min time windows. The red line is through-
put threshold. Recall is 90%

We also take a look at the results for Node 5 (Figure 5) which has the low-

est accuracy and recall. We also observe that Node 5 carries least number of total

transfers among all nodes which makes it harder to classify and has a very high ratio

of transfers with high throughput. Also, there are six false negatives, all of them are

very close to the average throughput threshold.

For datasets containing larger number of flows, flows collected over a period

28

Figure 4: Average throughput for node 2, 5min time windows. The red line is through-
put threshold. Recall is 90%

of 6 months, we ran the second set of experiments for Node 1 through Node 4. For

these datasets we run cross validation using a Time Series Split with k=6 sets. The

results are presented in Table 6. We obtain an overall accuracy greater than 84%,

the lowest precision is recorded at 79% and the recall does not fall below 81%. We

also observe that the best results are obtained for Node 3 at the time interval of 30

minutes (Figure 6), and the worst results are obtained for Node 2 at 1 hour time

interval (Figure 7). Even in case of lowest recall, we can observe that we can still

identify the network state with continuous low throughput values, indicating that the

model is able to identify the state of low throughput very accurately.

As shown in Table 4 the number of time intervals in our experiments vary from

412 to 47,310. It is well known [9] that LightGBM is capable of training datasets with

over 500,000 instances in seconds. It takes less than 23 seconds to train the dataset

for node 1 with 5 minutes time intervals which is the largest dataset used in our

experiments. Data preprocessing and training can be done offline and so it doesn’t

29

Figure 5: Average throughput for node 5, 30min time windows. The red line is
throughput threshold. Recall is 11%

slow down the detection. Testing works fast, making this method suitable for quick

detection.

For cross-validation using a Time Series Split with K = 6 sets in Table 11,

Table 12 and Table 13, we observe accuracy greater than 85% and the recall doesn’t

fall below 75%. The results from all our classification evaluation models doesn’t hold

much variations in the output. Therefore, we can conclude that our model works very

efficiently in classifying the low throughput network transfers in a given time window.

5.2 Feature Selection and Evaluation

On obtaining overall best results from Node 7, we ran SHAP over the Node

7 flows (Figure 8) to analyse which features contributes towards the prediction of a

particular class. We only looked over the top ten features holding most impact over

the prediction.

We then ran the LightGBM classification on these features in the training set

30

Table 6: Cross Validation Evaluation: Light GBM

Accuracy Precision Recall F1 Score

node1
5Min 0.9348 ±0.0124 0.9223 ±0.0101 0.8880 ±0.0300 0.9004 ±0.0222
30Min 0.9134 ±0.0127 0.8862 ±0.0231 0.8388 ±0.0429 0.8550 ±0.0375
1H 0.8954 ±0.0175 0.8594 ±0.0319 0.8162 ±0.0416 0.8316 ±0.0380

node2
5Min 0.9473 ±0.0082 0.9289 ±0.0128 0.8851 ±0.0214 0.9044 ±0.0169
30Min 0.8988 ±0.0260 0.8515 ±0.0332 0.8502 ±0.0268 0.8496 ±0.0302
1H 0.8462 ±0.0397 0.7967 ±0.0384 0.8148 ±0.0292 0.7957 ±0.0415

node3
5Min 0.9393 ±0.0101 0.9158 ±0.0203 0.8705 ±0.0485 0.8756 ±0.0364
30Min 0.9400 ±0.0104 0.9172 ±0.0106 0.9006 ±0.0240 0.9049 ±0.0137
1H 0.9212 ±0.0136 0.8939 ±0.0219 0.8556 ±0.0513 0.8595 ±0.0461

node4
5Min 0.9346 ±0.0163 0.9251 ±0.0135 0.8820 ±0.0245 0.8994 ±0.0204
30Min 0.9285 ±0.0077 0.9187 ±0.0130 0.8552 ±0.0301 0.8773 ±0.0243
1H 0.9240 ±0.0097 0.9002 ±0.0199 0.8405 ±0.0353 0.8614 ±0.0305

rather than using all the features. On looking at the results from Table 7, we can

observe that, even though we only ran the features holding most impact on the model

output, we do not see much difference in the resulting accuracy and precision values.

We can observe a significant change in recall values since the features contributing

towards the low throughput class have more impact now on the dataset. With the

results presented in the Table 7, we can conclude that the top features contributing

towards the predicted class have a dominant effect on overall results. Therefore, even

if we include all the features in the training data, the results are not much impacted.

This makes our model very accurate and consistent in classifying the low throughput

network transfers in a given time window.

31

Figure 6: Average throughput for node 3, 30min time windows. The red line is
throughput threshold. Recall is 90%

Figure 7: Average throughput node 2, 1H time windows. The red line is throughput
threshold. Recall is 81%

Figure 8: Feature selection using SHAP for Node 7

32

Table 7: Classification Evaluation Comparison for Node 7

min Runtime Acc. Prec. Recall F1 %CI

All Features
5Min 3.300s 0.9587 0.9967 0.9061 0.9492 42.63
30Min 1.000s 0.8824 0.9740 0.7732 0.8621 47.54
1H 1.200s 0.8211 1.0000 0.6207 0.7660 47.15

Selected Features
5Min 1.500s 0.9457 0.9932 0.8788 0.9325 42.63
30Min 0.570s 0.8529 0.9855 0.7010 0.8193 47.54
1H 0.330s 0.8455 0.9149 0.7414 0.8190 47.15

33

6 Conclusion

At large scientific facilities where petabytes are transferred daily, reliable net-

work transfers are needed for successful operations. LightGBM classification is pro-

posed to classify the traffic flows captured by Tstat so that the possible problems

such as low throughput can be identified. Our system splits the Tstat log streams

into chunks so as to make predictions in near real-time. The classification model

does not need to be rebuilt from ground up rather it only needs to be updated in

real-time. Our results show that this new method can be utilized to accurately detect

abnormally low throughput time intervals.

This thesis presents a supervised data analytics system that effectively mines

network traffic data. The proposed methodology is based on a two-phase approach

1) binary classification labels are assigned to the network transfers using adaptive

throughput threshold ; and 2) new data labels are predicted using the classification

model built in real-time to identify the network flows with low throughput.

LightGBM classification algorithm designed to handle large datasets is fea-

tured using this methodology. It can easily handle one year’s worth of network traffic

data. Network traffic data can be analyzed by exploiting the the features of this gen-

eral purpose approach under different network conditions. This approach has been

tested using datasets from eight out of ten data transfer nodes at the major computer

center.

Even though the proposed method has shown its ability to accurately identify

large windows of low throughput, certain problems have been detected in case of

isolated or alternating intervals. Therefore, to address this problem, the current

system can be extended to (i)include more time related features, (ii) evaluate the

34

pre-processing feature selection techniques that could eliminate the highly co-related

features, (iii) enhance the design and integrate different analysis techniques which

could be more appropriate for outlier detection

In future, we plan to find better ways to label the data or the ’slow’ time inter-

vals and also to investigate the generalization capabilities of the presented method;

larger datasets will be used for training and testing. The model highly relies on

selecting the right throughput threshold. In order to attain more efficient model

performance, a series of experiments could be conducted by selecting other ways of

computing adaptive throughput threshold and its impact over the model could be

evaluated.

35

7 References

[1] Sebastian Abt and Harald Baier. 2014. Are we missing labels? A study of

the availability of ground-truth in network security research. In 2014 Third In-

ternational Workshop on Building Analysis Datasets and Gathering Experience

Returns for Security (BADGERS). IEEE, 40–55.

[2] Essam Al Daoud. [n. d.]. Comparison between XGBoost, LightGBM and Cat-

Boost Using a Home Credit Dataset. pdfs.semanticscholar.org ([n. d.]).

[3] Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, Danilo Giordano,

Marco Mellia, and Luca Venturini. 2016. SeLINA: a self-learning insightful net-

work analyzer. IEEE Transactions on Network and Service Management 13, 3

(2016), 696–710.

[4] Ryan Baker, Ren Quinn, Jeff Phillips, and Jacobus Van der Merwe. 2018. Toward

Classifying Unknown Application Traffic. In DYnamic and Novel Advances in

Machine Learning and Intelligent Cyber Security (DYNAMICS) Workshop.

[5] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid

Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. 2018. A comprehensive

survey on machine learning for networking: evolution, applications and research

opportunities. Journal of Internet Services and Applications 9, 1 (June 2018),

16.

[6] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22Nd ACM SIGKDD International Conference on

36

Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,

785–794.

[7] Zhitang Chen, Jiayao Wen, and Yanhui Geng. 2016. Predicting future traffic

using hidden markov models. In 2016 IEEE 24th International Conference on

Network Protocols (ICNP). IEEE, 1–6.

[8] Cecilia Dao, Xinyu Liu, Alex Sim, Craig Tull, and Kesheng Wu. 2018. Mod-

eling data transfers: change point and anomaly detection. In 2018 IEEE 38th

International Conference on Distributed Computing Systems (ICDCS). IEEE,

1589–1594.

[9] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen

Lin. 2008. LIBLINEAR: A library for large linear classification. Journal of

machine learning research 9, Aug (2008), 1871–1874.

[10] Alessandro Finamore, Marco Mellia, Michela Meo, Maurizio M Munafo, Politec-

nico Di Torino, and Dario Rossi. 2011. Experiences of internet traffic monitoring

with tstat. IEEE Network 25, 3 (2011), 8–14.

[11] Anna Giannakou, Daniel Gunter, and Sean Peisert. 2018. Flowzilla: A Method-

ology for Detecting Data Transfer Anomalies in Research Networks. In 2018

IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS). IEEE,

1–9.

[12] Jinoh Kim and Alex Sim. 2017. A New Approach to Online, Multivariate Network

Traffic Analysis. In Computer Communication and Networks (ICCCN), 2017

26th International Conference on. IEEE, 1–6.

37

[13] Jinoh Kim, Alex Sim, Sang C Suh, and Ikkyun Kim. 2017. An approach to

online network monitoring using clustered patterns. In Computing, Networking

and Communications (ICNC), 2017 International Conference on. IEEE, 656–

661.

[14] Jinoh Kim, Alex Sim, Brian Tierney, Sang Suh, and Ikkyun Kim. 2018. Mul-

tivariate network traffic analysis using clustered patterns. Computing (2018),

1–23.

[15] Jinoh Kim, Wucherl Yoo, Alex Sim, Sang C Suh, and Ikkyun Kim. 2017. A

lightweight network anomaly detection technique. In Computing, Networking and

Communications (ICNC), 2017 International Conference on. IEEE, 896–900.

[16] Alina Lazar, Kesheng Wu, and Alex Sim. 2018. Predicting Network Traffic

Using TCP Anomalies. In 2018 IEEE International Conference on Big Data

(Big Data). IEEE, 5369–5371.

[17] Zhengchun Liu, Rajkumar Kettimuthu, Ian Foster, and Yuanlai Liu. 2018. A

comprehensive study of wide area data movement at a scientific computing fa-

cility. In 2018 IEEE 38th International Conference on Distributed Computing

Systems (ICDCS). IEEE, 1604–1611.

[18] Zhengyang Liu, Malathi Veeraraghavan, Jianhui Zhou, Jason Hick, and Yee-Ting

Li. 2013. On causes of GridFTP transfer throughput variance. In Proceedings of

the Third International Workshop on Network-Aware Data Management. ACM,

5.

[19] Leland McInnes and John Healy. 2018. Umap: Uniform manifold approxima-

38

tion and projection for dimension reduction. arXiv preprint arXiv:1802.03426

(2018).

[20] Marco Mellia, Michela Meo, Luca Muscariello, and Dario Rossi. 2008. Passive

analysis of TCP anomalies. Computer Networks 52, 14 (2008), 2663–2676.

[21] Marco Mellia, Michela Meo, Luca Muscariello, and Dario Rossi. 2008. Passive

analysis of TCP anomalies. Computer Networks 52, 14 (2008), 2663–2676.

[22] E AMinastireanu and GMesnita. 2019. Light GBMMachine Learning Algorithm

to Online Click Fraud Detection. J. Inform. Assur. Cybersecur (2019).

[23] Nageswara S Rao, Mariam Kiran, Cong Wang, and Anirban Mandal. 2018. De-

tecting Outliers in Network Transfers with Feature Extraction. Technical Report.

Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States).

[24] Shahbaz Rezaei and Xin Liu. 2019. Multitask Learning for Network Traffic

Classification. (June 2019). arXiv:cs.LG/1906.05248

[25] M Wang, Y Cui, X Wang, S Xiao, and J Jiang. 2018. Machine Learning for

Networking: Workflow, Advances and Opportunities. IEEE Netw. 32, 2 (March

2018), 92–99.

[26] Keith Winstein and Hari Balakrishnan. 2013. TCP Ex Machina: Computer-

generated Congestion Control. In Proceedings of the ACM SIGCOMM 2013 Con-

ference on SIGCOMM (SIGCOMM ’13). ACM, New York, NY, USA, 123–134.

[27] Minlan Yu. 2019. Network Telemetry: Towards a Top-down Approach. SIG-

COMM Comput. Commun. Rev. 49, 1 (Feb. 2019), 11–17.

39

8 Appendix

Table 8: Classification Evaluation: Linear SVM

min Runtime Acc. Prec. Recall F1 %CI

node1
5Min 2.500s 0.9013 0.8632 0.7597 0.8081 27.34
30Min 0.240s 0.8574 0.6878 0.5842 0.6318 20.94
1H 0.130s 0.8664 0.6875 0.5878 0.6337 19.66

node2
5Min 0.360s 0.9312 0.9401 0.7853 0.8558 25.97
30Min 0.100s 0.9055 0.9189 0.7133 0.8031 27.03
1H 0.071s 0.8985 0.9008 0.6987 0.7870 26.85

node3
5Min 1.400s 0.9181 0.8765 0.8090 0.8414 26.86
30Min 0.180s 0.9288 0.8261 0.8132 0.8196 19.87
1H 0.110s 0.9024 0.8480 0.6974 0.7653 22.82

node4
5Min 1.400s 0.9396 0.9058 0.6468 0.7547 14.37
30Min 0.160s 0.9121 0.8917 0.5350 0.6687 16.58
1H 0.081s 0.9221 0.9107 0.5312 0.6711 14.95

node5
5Min 0.022s 0.9413 0.9758 0.9213 0.9478 57.77
30Min 0.015s 0.8349 0.9891 0.7222 0.8349 57.79
1H 0.008s 0.8862 0.8732 0.9254 0.8986 54.47

node6
5Min 0.063s 0.9311 0.8274 0.7596 0.7920 17.26
30Min 0.017s 0.9279 0.8281 0.8281 0.8281 20.98
1H 0.012s 0.9176 0.8621 0.7143 0.7813 20.58

node7
5Min 0.037s 0.9703 0.9782 0.9515 0.9647 42.63
30Min 0.014s 0.9167 0.9545 0.8660 0.9081 47.54
1H 0.008s 0.8780 0.9216 0.8103 0.8624 47.15

node8
5Min 0.100s 0.8824 0.8878 0.4307 0.5800 18.86
30Min 0.020s 0.8562 0.7742 0.4000 0.5275 20.06
1H 0.014s 0.8916 0.8000 0.5333 0.6400 18.07

40

Table 9: Classification Evaluation: Random Forest

min Runtime Acc. Prec. Recall F1 %CI

node1
5Min 8.600s 0.9507 0.9538 0.8616 0.9054 27.34
30Min 1.500s 0.8941 0.8317 0.6201 0.7105 20.94
1H 0.130s 0.8829 0.7978 0.5420 0.6455 19.66

node2
5Min 1.400s 0.9394 0.9536 0.8095 0.8735 25.97
30Min 0.430s 0.8658 0.8789 0.5839 0.7017 27.03
1H 0.280s 0.8830 0.8793 0.6538 0.7500 26.85

node3
5Min 4.600s 0.8811 0.7191 0.9145 0.8051 26.86
30Min 0.910s 0.9149 0.7426 0.8755 0.8036 19.87
1H 0.490s 0.9399 0.8684 0.8684 0.8684 22.82

node4
5Min 1.800s 0.9500 0.9737 0.6701 0.7939 14.37
30Min 0.540s 0.9196 0.9187 0.5650 0.6997 16.58
1H 0.330s 0.9361 0.9661 0.5938 0.7355 14.95

node5
5Min 0.120s 0.4370 0.7500 0.0381 0.0725 57.77
30Min 0.072s 0.4495 0.7500 0.0714 0.1304 57.79
1H 0.065s 0.5610 1.000 0.1940 0.3250 54.47

node6
5Min 0.200s 0.9538 0.9241 0.7978 0.8563 17.26
30Min 0.082s 0.9541 0.9310 0.8438 0.8852 20.98
1H 0.068s 0.9294 0.8710 0.7714 0.8182 20.58

node7
5Min 0.130s 0.9457 1.000 0.8727 0.9320 42.63
30Min 0.070s 0.8137 1.000 0.6082 0.7564 47.54
1H 0.065s 0.8211 1.000 0.6207 0.7660 47.15

node8
5Min 0.210s 0.9729 0.9482 0.9059 0.9266 18.86
30Min 0.086s 0.9097 0.9231 0.6000 0.7273 20.06
1H 0.075s 0.8795 0.7778 0.4667 0.5833 18.07

41

Table 10: Classification Evaluation : XGboost

min Runtime Acc. Prec. Recall F1 %CI

node1
5Min 14.000s 0.9514 0.9400 0.8785 0.9082 27.3469
30Min 2.900s 0.9054 0.8312 0.6882 0.7529 20.94
1H 1.500s 0.8934 0.8571 0.5496 0.6698 19.66

node2
5Min 3.200s 0.9537 0.9594 0.8578 0.9058 25.97
30Min 1.200s 0.9367 0.9195 0.8392 0.8775 27.03
1H 0.740s 0.9174 0.9091 0.7692 0.8333 26.85

node3
5Min 10.000s 0.8925 0.7527 0.8933 0.8170 26.86
30Min 2.500s 0.9288 0.7895 0.8755 0.8303 19.87
1H 1.300s 0.9354 0.8759 0.8355 0.8552 22.82

node4
5Min 5.300s 0.9550 0.9275 0.7451 0.8264 14.37
30Min 1.600s 0.9461 0.9470 0.7150 0.8148 16.58
1H 1.000s 0.9533 0.9231 0.7500 0.8276 14.95

node5
5Min 0.450s 0.4370 0.9167 0.0279 0.0542 57.77
30Min 0.160s 0.4220 0.5000 0.0159 0.0308 57.79
1H 0.120s 0.6829 0.9118 0.4627 0.6139 54.47

node6
5Min 1.000s 0.9321 0.9512 0.6393 0.7647 17.26
30Min 0.270s 0.9180 0.8824 0.7031 0.7826 20.98
1H 0.170s 0.8824 0.77781 0.6000 0.6774 20.58

node7
5Min 0.550 0.9470 0.9966 0.8788 0.9340 42.63
30Min 0.180s 0.8676 1.0000 0.7216 0.8383 47.54
1H 0.110s 0.8374 1.0000 0.6552 0.7917 47.15

node8
5Min 1.100s 0.9599 0.9543 0.8267 0.8859 18.86
30Min 0.280s 0.9097 0.8367 0.6833 0.7523 20.06
1H 0.180s 0.8976 0.7600 0.6333 0.6909 18.07

42

Table 11: Cross Validation Evaluation: Linear SVM

Accuracy Precision Recall F1 Score

node1
5Min 0.8920 ±0.0076 0.8587 ±0.0109 0.8132 ±0.0373 0.8272 ±0.0301
30Min 0.8884 ±0.0127 0.8381 ±0.0339 0.7924 ±0.0519 0.8045 ±0.0501
1H 0.8753 ±0.0118 0.8181 ±0.0427 0.7638 ±0.0504 0.7794 ±0.0502

node2
5Min 0.9157 ±0.0105 0.8666 ±0.0346 0.8237 ±0.0363 0.8369 ±0.0332
30Min 0.8758 ±0.0195 0.8175 ±0.0359 0.8099 ±0.0270 0.8068 ±0.0327
1H 0.8643 ±0.0132 0.7972 ±0.0246 0.8052 ±0.0234 0.7987 ±0.0229

node3
5Min 0.9128 ±0.0144 0.8702 ±0.0260 0.8244 ±0.0413 0.8375 ±0.0324
30Min 0.9176 ±0.0150 0.8858 ±0.0146 0.8702 ±0.0225 0.8727 ±0.0148
1H 0.8980 ±0.0139 0.8638 ±0.0099 0.8349 ±0.0444 0.8341 ±0.0348

node4
5Min 0.8785 ±0.0259 0.8474 ±0.0270 0.7887 ±0.0206 0.8106 ±0.0216
30Min 0.8676 ±0.0245 0.8354 ±0.0235 0.7716 ±0.0244 0.7899 ±0.0231
1H 0.8614 ±0.0257 0.8221 ±0.0282 0.7586 ±0.0286 0.7719 ±0.0274

Table 12: Cross Validation Evaluation: Random Forest

Accuracy Precision Recall F1 Score

node1
5Min 0.9313 ±0.0122 0.9262 ±0.9262 0.8747 ±0.0305 0.8931 ±0.0231
30Min 0.9075 ±0.0124 0.8816 ±0.0229 0.8220 ±0.0441 0.8417 ±0.0385
1H 0.9062 ±0.0127 0.8811 ±0.0286 0.8162 ±0.0444 0.8378 ±0.0404

node2
5Min 0.9349 ±0.0108 0.9368 ±0.0078 0.8289 ±0.0413 0.8631 ±0.0322
30Min 0.8825 ±0.0234 0.8325 ±0.0328 0.8126 ±0.0288 0.8177 ±0.0296
1H 0.8519 ±0.0232 0.7975 ±0.0339 0.7849 ±0.0216 0.7849 ±0.0284

node3
5Min 0.9298 ±0.01244 0.9000 ±0.0196 0.8541 ±0.0456 0.8625 ±0.0344
30Min 0.9400 ±0.0103 0.9188 ±0.0089 0.8939 ±0.0265 0.9021 ±0.0165
1H 0.9136 ±0.0126 0.8870 ±0.0221 0.8316 ±0.0469 0.8455 ±0.0431

node4
5Min 0.9125 ±0.0187 0.9153 ±0.0199 0.8273 ±0.0247 0.8589 ±0.0227
30Min 0.9128 ±0.0056 0.9152 ±0.0048 0.8127 ±0.0256 0.8468 ±0.0193
1H 0.9090 ±0.0098 0.9147 ±0.0158 0.8047 ±0.0291 0.8356 ±0.0219

43

Table 13: Cross Validation Evaluation: XGBoost

Accuracy Precision Recall F1 Score

node1
5Min 0.9282 ±0.0144 0.9150 ±0.0120 0.8808 ±0.0288 0.8930 ±0.0212
30Min 0.9073 ±0.0159 0.8764 ±0.0239 0.8375 ±0.0434 0.8497 ±0.0379
1H 0.8954 ±0.0179 0.8621 ±0.0307 0.8160 ±0.0413 0.8319 ±0.0373

node2
5Min 0.9404 ±0.0103 0.9252 ±0.0133 0.8643 ±0.0272 0.8887 ±0.0201
30Min 0.9105 ±0.0166 0.8654 ±0.0229 0.8582 ±0.0213 0.8613 ±0.0218
1H 0.8833 ±0.0153 0.8276 ±0.0248 0.8314 ±0.0214 0.8275 ±0.0227

node3
5Min 0.9333 ±0.0119 0.8998 ±0.0174 0.8605 ±0.0463 0.8674 ±0.0353
30Min 0.9385 ±0.0101 0.9158 ±0.0111 0.8968 ±0.0276 0.9008 ±0.0159
1H 0.9159 ±0.0152 0.8791 ±0.0278 0.8453 ±0.0526 0.8491 ±0.0493

node4
5Min 0.9222 ±0.0168 0.9170 ±0.0124 0.8555 ±0.0250 0.8786 ±0.0202
30Min 0.9259 ±0.0073 0.9199 ±0.0135 0.8413 ±0.0333 0.8678 ±0.0285
1H 0.9158 ±0.0121 0.8889 ±0.0220 0.8270 ±0.0372 0.8482 ±0.0338

44

	List of Figures
	List of Tables
	Introduction
	Related Work
	Methods
	LightGBM
	XGBoost
	Linear SVM
	Random Forest
	Feature Importance - SHAP
	Dimensionality Reduction
	Performance Evaluation

	Datasets
	Experiments and Results
	Classification Evaluation
	Feature Selection and Evaluation

	Conclusion
	References
	Appendix

		2019-12-30T12:09:55-0500
	College of Graduate Studies

