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ABSTRACT

DEFLECTION CURVES of an ELASTIC STRIP

under TENSION and FRICTION FORCES

Francis R. Krygowski
Master of Science in Mechanical Engineering

Youngstown State University, 1972

The purpose of this thesis is to develop the deflection
curves resulting when a succession of forces and moments
are applied to a semi-infinite beam which is under tension,
and where displacement is resisted by distributed friction
loads.

The problem applies to the study of web guidance,
which is concerned with accurately passing long strips over
a series of rollers. The area studied in this thesis can
be interpreted as the region of contact between the strip
and a roller,

The exact, general solution to the problem consists
of an infinite number of waves, but a closed form solution
is impossible., A method is described for calculatiné a
solution accurate to any given number of waves.

This method is demonstrated, the two wave and one
wave approximations being developed as examples.

A Fortran program is provided, which uses thevohe'
wave approximation to generate deflection curves in tabular
form, This program may be incorporated as a subroutine into

,", &-“V‘jx ‘K
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a larger program to provide a precise computer simulation of

an entire rolling strip system.
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CHAPTER I

INTRODUCTION

The problem treated in this thesis is as follows:
given a semi-infinite elastic beam (or strip) placed in
contact with a friction surface, and held in constant
longitudinal tension, If the end of the strip is subjected
to lateral forces and moments, what deflections will result?

This problem arose from a detailed theoretical study
of web guidance problems. Web guidance is concerned with
systems wherein long strips of elastic material must be
passed over many rollers. The metal strip industry is typical,
where an essentially continuous web of metal must be uncoiled,
passed through a roller system, perhaps through slitting
and finishing processes, and recoiled once again,

In such processes, the lateral position of the web
is often critical, If all rollers were perfectly aligned,
and the strip material were perfectly uniform in cross
section and perfectly straight, lateral position would never
vary, as the strip would roll exactly straight ahead. But
generally, this ideal case is not achieved, and imper-
fections cause lateral motions in the system.

The basic mechanism of lateral motion can be described
as follows: consider a straight web running onto a roll

which is aligned perpendicular to the web, as shown in



figure 1A. As long as the approach angle remains at 90°,

the web will keep the same position relative to the roll,

bf\J A 9 t

Fig. 1.--Rolls with approaching strips

However, if the web has an approach angle other than
90° , as shown in figure 1B, each succeeding point will contact
the roll further to one side, and the web will be seen to
displace laterally relarive to the roll, it's lateral
velocity varying with the web speed and the approach angle.
For this reason, the angle the strip makes relative to the
roll is of great interest.

The physical situation treated in this thesis, then,
is a minute but critical component of a roll-strip system,
the portion shaded in figure 2., At any instant a force or
moment applied to the edge of the contact area by the
free span of entering strip, results in a lateral sliding
of a certain portion of the contact area, and thus, non-
perpendicularity between roll and strip. This thesis will
relate the deflections and resulting angles to the forces
and moments presént.

In constructing the problem, it was assumed that
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Fig.2.--Roll and strip, showing area of interest

there is a constant normal force between roll and strip,
within the area of contact. Also, in keeping with the
constant normal force, friction is assumed to have constant
magnitude., The direction of the friction load is such that
it always opposes displacement, |

It is intuitively obvious that the greater the applied
force, the longer the displaced portion of the strip will
be, (This displaced portion is hereafter referred to as the
"affected length",) Clearly, it must be assumed that the
affected length is small enough to be contained on the roll,
For simplicity, the strip treated in the problem is considered
semi-infinite,

The physical basis for the problem has now been

thoroughly defined., It may be seen that it has aspects of




two classical problems: the tie rod with side loading,
and the beam on an elastic foundation which are treated
in many strength of materials texts, notably Timoshenko, |

Timoshenko's beams on elastic foundations are anal-
agous in that a distributive load is present which opposes
deflections, However, Timoshenko's problem is such that
loads are proportional to deflection, while in this problem,
distributive friction loads have a constant value, that of
thé friction force present between the roller and the strip.
Only the sign of this load changes, depending on the direction
of displacement, (An elementary statical analysis will show
that the value of this friction load, k, can be related
to roll system'parameters by the equation, k = Tu/r).

It will be seen that, as with the beam on an elastic
foundation, the solution to this problem takes the form of
an infinite series of diminishing waves.

Standard beam theory assumptions prevail in this
work, They are as follows:

The strip is assumed initially straight and uniform,
Although webs are often cambered or curved, the radius of
curvature is generally very large, and our affected lengths
will be seen to be very small, Thus, this imposes no serious

limitation.

13, Timoshenko, Strength of Materials, Vol., II (Third
edition; Princeton, N.J., D. VanNostrand Co,.,, 1956),
pp. 1-5, )_'.1_)4.6.




’ Also, loads must be applied slowly enough that
inertia effects are negligible.
Other assumptions include:

1. Deflections are small,

2. The web is homogenous and uniform and the material
obeys Hooke's law,

3. Plane sections perpendicular to the longitudinal
axis remain plane after bending.

L. There must be no buckling or wrinkling of the web.

5. Shear deflections are negligible,

It is necessary to establish sign conventions for the
problem, These are given in figure 3., and require no

comment,

Thus, the problem is thoroughly defined, and the

method of the general solution may be established.

+y A

Fig.3.--5ign Conventions



CHAPTER II

METHOD FOR GENERAL SOLUTION

The exact solution to this problem will be shown to
consist of a configuration of diminishing waves, as illustrated
in figure i, This can be demonstrated by examining the
forces and moments present at x,= L, (which is the end of the
first wave).

If the solution consisted of only one wave, followed
by a straight strip, at the end of that wave there could be
no residual forces or moments, since the presence of a moment
implies a radius of curvature, Thus, summing vertical
forces at this position shows

F = kL
or
L = F/k
where k is the magnitude of the resisting friction force.
However, summing moments at the same position gives

2
M‘FL, -Te -’-(—l:‘: O

2
or

 FtJF*+2k M-2kTe
L,“ k

Thus, both conditions are satisfied only if the term
(F*+ 2kM - 2kTe) is zero. In general, this is not true, and
the residual shear and moment at x,= L,, result in deflections

in the second wave., A similar analysis at the end of the



second wave shows a similar imbalance, indicating a third
wave present, and so on, ad infinitum,

It is, however, possible to achieve an approximate
solution by imposing boundary conditions of zero slope and
moment after a sufficient number of waves., The general

equations for such a solution will be developed here.

Fig.L.--Coordinate and length conventions
for successive waves

ey
1‘"\\\!'\\ T -‘C \“\“\J‘-
YOUNGS 284349
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2.1 Equations for the First Wave

Considering forces and moments on the first wave in
figure I yields the differential equation

ELy, = M+Fx, K& - T (e-y) (1)
defining ¢ = T/EI gives

i e Ll 1 F -_\S_ 2 2
s A A LT 261 © @)

whose complementary solution is

¥ i ».C, sinh e x, + C, cosh g x,
and whose particular solution takes the form

Yo = oxt +bx, +d

where a,b, and d are unknown constants.,

Inserting the particular solution into equation (2)
and equating like coefficients yields the expressions for
a, b, and d.

The total solution for y is then the sum of the

complementary and particular soluﬁfons, or,
Ty. = C, T sinh vex, +C2T cosh X, *
—‘;-X.I-Fx.'M*% «Te ®3)

The two constants of integration must be found using
boundary conditions.
Choosing the boundary conditions at x,= 0, y,= e and at x,= L,

¥, = 0 determines that

Tl %

and. TC, - ;i_';WEL. [(% -M)(coshJEL. “) -‘%f +FL, —Te]



Thus, the equation valid for the first wave is
= sinh O X, K n L?-
VST kb, [(rm)(cosm.-l) RESEL, - T e]

+ (M'-‘z-)(cosk.ltx. -|) + .lizﬁ'l - Fx, +Te (4)

The equation describing the first wave is unique,
because of the unique boundary condition y, = e at x,= 0,
but it is possible to develop a general deflection equation

which is valid at all succeeding waves, as follows.,
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2.2 Equations for a General Wave

By summing moments about some point (x,,y.) in the nth

wave, it can be said that for that wave,
Ely. = Fl*2L) +M-T(e -v.)
+M¥(-I)MkLm) (‘l?'f‘ s X, * ZL; ) . (_l)'\ lsé)ﬁ,} (5)

Some clarification isi;;"doubt necessary., The first
three terms are obviously the moments due to the force,
moment, and tension applied.

The last two terms are the moments due to the dis-
tributive friction loads. The last term accounts for the
friction on the nth wave, while the preceeding term is the
sum of the friction effects in all previous waves. The
subscript m refers to the particular wave whose friction
effect is being accounted for., The term ((df“k bigarsde A9
the total force due to friction in the mth wave, whileAthe term

n=\

( %?*-Xh\+ ZLa ) is the moment arm through which this force
iz may
acts,
In this equation, and those following the convention is

held that backwards summation limits go to zero (for example,

SL. = 0 ).

n=3
Following the procedure used for the first wave, the

complementary and particular solutions are determined, giving
the following equation, which is valid for any wave except

the first.




1M

2

k (“)h xh

TYn = C'(h)T Sinh VT AP Cz(.\)T cosh & X ~ 2
il o o s e

Sen - Sern) (- 3L 6)

As before, there are two constants of integration,
The first boundary condition, y,.= 0 at x,= 0, gives us Cz(,‘)

and the equations

n-y

TYr\ : Cl(..) } Sinh JC%, 4 [M-Te b ‘%'—')N* Z:Lm *X"')"“N-s *;Ll)]*

Mz,

(Coshﬁxn) 3 k’(:—"2)“%‘1 . XNZ(-OM k L"’\) t te
e - nZ((")MkL'«)(% +\;L) )

Tyn' 2 C,w T & cosh&x,

n-\

T A 8 [M -Te + k_‘(_:_‘}“ ,th +MZ§..)” kl_,,\) (':é'z 421-.‘)]

k(% -F - Zw'“k L) 8)
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The constant Cumis still undetermined., The boundary
condition to be used is the matching of slopes between waves,
That is, x( at x,= 0 must equal %J AN T S

Unfortunately, the determination of C, for the nth
wave necessitates knowing the deflection equation for the
preceeding wave, Hence,C.@@ must be known. Similarly that
constant can't be determined before calculatingcwﬂb and so on,
back to the first wave.

The ability to write one general cdeflection equation,
valid for all waves, has thus been lost., Still, the pro-
cedure for determining the deflection curve of any given
wave should be clear, The equation for the first curve has
been determined. Using thislequation, and equating slopes at
the junction of waves 1 and 2, the unknown constant for wave
2 can be found. (The deflection curve for wave 2 being given
by the genefal formula, equation (7)). Once the second wave
has been determined, the same procedure can be used to find
the third, then fourth, and so on, to a sufficiently accurate
approximate solution, .

It will be noted that the general equation for wave
n contains two other unknown quantities, mamely e, the
deflection at the end of the strip, and the quantities T

. th, which are the lengths of the successive waves,

Thus, once the equations for Yy, , Yz 4 ... Yn have

been produced, n more equations will be needed to determine

the n-1 lengths and the end deflection.
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With the exception of the first wave, the fact that
deflection at the end of a wave is zero has not been intro-
duced. This can now be done, by inserting y,= 0 at x,= L,,
and so on, to y,= 0 at x,= L, into the nth equation, It
will be seen that this procedure yields n-1 of the necessary
n equations, However, another unknown has been introduced,
which is the previously unmentioned L, term, the length of
the last wave, Thus, two more equations are necessary.

These two equations can be found by considering
conditions at the end of the last wave. The assumption that
the solution consists of n waves implies the strip is a
straight line beyond the n®h yave, Thus, it is desirable to
impose conditions of zero slope and zero moment at x,= L,.

The first of these conditions is given in general
terms by

O:=v (4 coshvel, *ye sinhl, [M-Te +k_€-“’ +Z-'Lm

M=)

oL -50)] ke,

1= me

-F - :Z__(:(-o“kl.m) (9)

with the C.@)term still present,
Next, summing moments about the end of the last wave

gives:

FSL. M - Te *ul(t+3L)() - O

S
may mz| i s



g

or

Te = M 1 SL 60k (3] (10)

me| L)

Which yields an expression for the unknown end deflection, e.

Methods have now been demonstrated for finding the
necessary number of equations, making it possible to solve
for all unknowns, and thus produce the deflection equation
of any wave desired. Note that equations (9) and (10) are
approximations, They are strictly true only for n =09,

but can be considered accurate if n is sufficiently large.
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2.3 Summary of the General Method

Summarizing the solution to the problem, the following
equations have been found: the general equation for the
curve of wave n, containing the unknown e, and the unknowns
L,,'Lz, Lyy eee 5 L,y .That is, n unknowns in all,

There are the equations resulting from specifying
y =0 at x = L in each wave but the first. There are n-1
of these equations, but the last introduces another unknown,
Ly« Thus, two unknowns remain, e and L.

There is the approximate equation specifying zero
moment, which yields an expression for e.

There is equation (9), specifying zero slope, which
makes it possible to remove the last of the unknowns.

This procedure is illustrated in the next chapter.
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CHAPTER III

TWO WAVE AND ONE WAVE SOLUTIONS

As an example, the procedure will be demonstrated for
a case where two waves are considered sufficiently accurate...
i.e., after the second wave the strip is straight.

From equation (L), the first wave equations are
. S\hl\ JE x k $ k ) ]
Tyl : S”‘k 5 L : [ )(COSL\ Jc L‘ l) __i_l & F-L Te

+(M ’%)(CoskJEX. -I).* ‘-‘%‘1 =R

Ty - ZSREX (kM) (coh e, 1) "KL 4 FL, -Te]

+(M-1‘C—)(J'c sinh )+ kx, -F (H)

and for the second wave, from equations (7) and (8) with n = 2,

Ty,

C, @) T _sink R cosh JT K, (M L<_ 5 My Te)

e Feekbaal tE -FL, ¢ kbow Te (12)

/ . i
Tyt .G, ot bl s L, 2" -Te]

oy - & ‘ (3)
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It is now possible to determine the constant C, for the
second wave by equating y; at x,= 0 to y, at x,= L,.

Thus, combining equations (11) and (13) gives

C.T St [(s-m)(comal ) "ob o FL T (1-8) swhel,

Using this expression for the constant in the equations for

the second wave yields

1
Ty, = sinh & X, [ (o) oL, ) FL-Te) (1) sioh L
" 3 2
4 coshJ‘cxl[M“—‘c— bdiha _EIL'. 'Te] 515‘ - Fxy

2

kL, =M -5 -FL o+ kLT L T (14)

Turning to the moment criterion, equation (10), to

find an expression for e, and setting n = 2 yields

SeL v FL, + kL
Te:=M+FL - -kLL, + FL, * T2

A

Substituting into (4) and (14) produces

2
Ty B8 4 senet) % -1, 5 kL]
2 2
e (M-%) cosh e x, *Ec"&zi‘ - Fx, —EZ-L' 15)
L

L5 3 RELE 3 B -kL L, *%
AU osh e L, o,
Ty = s {202 o)k ct) & -1, K+ ]

+(M'%) Sinh JZL‘}
* cosh & x, g—-FL -kly kLL} -k_;,_l + (kL,‘F)Xl

-l .
T 'FLz c"\kL‘/l "kL,L,_
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The unknown lengths L, and L, must now be found.
This is done by making use of the boundary conditions y,= 0
and y,' = 0 at the end of the last wave,

Using the first boundary condition yields the equation
Bt cosh & 2
O » shei, (SRl [ )t -FL A kL]
+ (H-l%) sinh T Ll}
+ cosh e L, g%-FLL'E%:+kLJw} -% Q6)

Using the y, = O boundary condition yields

O: & cosh L, §°°"“ < M) (sohicL) s -FL, " kL]

Sinh J¢ L
+ (M- sinh e ng

+ & sinh el g— -, “_g_::ka.LL} kLt kL, -F

There are now two equations for the two unknowns,
L, and L,. Unfortunately, although it is theoretically
possible to solve these equations, it is very difficult in
practice. A closed form solution is in fact impossible, and
the author has found that even a computer solution for a
given physical case can involve a great degree of difficulty.
For solutions accurate to three waves or greater, the dif-
ficulty increases enormously.

For this reason, the bulk of the work on this problem
consisted of the development and use of a one wave approxima-
tion to the problem, The development of a one wave model

follows.,
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- With this model, it is assumed that one wave is
sufficient to predict the response of the system. As before,
moments are assumed to balance at the end of the first wave,
and the slope of the curve is assumed zero there.,

The development of the equation for the first wave
is identical, and equation () remains valid. It is
Ty, “_"l‘ﬂ: [(%-M)(mst\&L,) ¥, 1 b ‘i_lLul « FL, -Te]

Sinh ve L

(4)

1
by o P ls G VREE L B o g

The moment equation, equation (10), for n = 1, becomes

Te = M*"’L.‘.‘SZ—L'I

which, when combined with equation (l ), gives

Ty, = %‘;%:—LC\-—J;):_" [(% -M) cosh Je L, ’%} + (H-‘%) wshax, + & +FL-x) '—'5— (Lf-xf)
(7)

Ty s EEEEE T M) comel, -] +(1-5)sinhx) -F * kx,

Sinh o L

It will be noted that the only quantity yet to be
determined is L,., This is found by making use of the imposed
boundary condition, that yf is zero at x,= L, .,

Applying this condition to equation (17) gives

% coshge L 1
O Cs‘i0;&¢ [(E'M)cosh&,l_, %]4-0\1“%)& Sih\ﬂJEL, “«F i k\.'

which can be simplified to

O: (kL,~F) sinh e L, & coshe L, + & (% -M) (18)
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which is the implicit equation for L, in terms of system para-
meters,

Again, even for the simple one wave approximation,
it is impossible to find a closed form algebraic expression
for the affected length, L., However, it is not difficult
to program the computer to find roots to the above equation
to fit any given physical case., This has been done, and the

program, along with sample results, will be presented.
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CHAPTER 1V

COMPUTER SOLUTION TO THE PROBLEM

One of the more interesting aspects of this problem
is that the shape assumed by the deflected strip at any time
depends not only on the forces acting on the strip at that
time, but on those that have gone before, That is, the shape
is also affected by the strip's history.

To illustrate, if an initially straight strip is
deflected with a force of 100 pounds, the deflected shape
will be somewhat as shown in figure 5, if a one wave ap-

proximation is used.,

100
X =L

xW

Fig.5.--Deflection Due to 100 1b, Force

If the 100 pound force is then removed, and replaced
with a 50 pound force in the opposite direction, the result

would be as shown in figure 6,
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xY

Fig.6.--Strip Deflected by 100 1b,, then -50 1lb, Forces

Note that a certain portion of the length affected
by the original force is undisturbed by the second force.

Obviously, if the 50 pound downward force were ap-
plied to a straight strip, all deflection would be negative.
Thus, the history of the strip profoundly affects the final
shape. The program developed to generate deflection curves
incorporates this phenomenon,

It will be remembered that the equations developed
for the one wave approximation are based on zero boundary
conditions, That is at x = L in figure 5, y, y' and y”
are all assumed zero, However, other boundary conditions
may be encountered., For example, the one wave equations
describing the portion of the curve deflected by the 50
pound force in figure 6 must take their boundary conditions
from the values of the first curve at x = Lg (since at
this length and beyond, values of the first curve are un-
changed).

For this reason, equatiéns (17) and (18) were modified

for use by the computer, to include non-zero boundary
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conditions., The development is trivial and will not be
presented here,

Also, as an aid to generalization of results, the
equations were non-dimensionalized according to the following

identities:

3
N, = M/EIA N, = F/ELA* = F/T N, K/EIA

wheve A EJC. 3 JT/EL

Making use of these definitions, and the boundary conditions,

B = y(L)
D =y (L)
G = y'(L)

Equations (17) and (18), modified for computer use, are:
AY =(SINH(AX)/SINH(AL) )% (N4=-(N2+NL )#COSH(AL)+G/A) y
+(N2+Nl )#COSH(AX) - (N4 /2)%( (AX)#%2-(AL)=:2)

-N3#(AX-AL) =N} +A%B-G/A)

Y'= (COSH(AX)/SINH(AL))s(NL-(N2+Nl )#COSH(AL)+G/A) (19)
+(N2+Nl. ) #SINH(AX ) -N4#AX-N3

Y' /A=(SINH(AX)/SINH(AL) )% (Nl-(N2+Nl )#COSH(AL)+G/A
+(N2+Nl )#COSH(AX ) -N4

FCN = COSH(AX)#(N4+G/A)-SINH(AX)#(NL#AX+N3+D)=-N2-Nl (20)
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In the program, when FCN equals zero, AX equals AL,
A flowchart of the one wave program, with explanatory notes,
will follow. But first an explanation of some of the logic

of the program may prove helpful.

First, it should be noted that the values of N2 and
N3 read into the program are the net values acting on the
strip, not the change in the value. For example, if data
is entered with N2 equal to .3, then equal to -.05, the second

curve calculated is for N2 = -,05, not N2 = +,25,

When checking values of the implicit equation, FCN,
for the affected length, roots are located by noting changes
in sign of the function between successive values of x,

Eéch time a sign change is noted, the increment between
successive x values is altered to determine the root more
precisely. AL values used for computation are accurate to

six decimal places.

It is conceivable that smaller and smaller alternating
forces, for one example, may divide the strip into numerous

regions, as shown in figure 7 (with friction loads indicated).

reg. 3 reg. 2 reg.l

Fig.7.--Regions of an Alternating Curve
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When the length associated with the current force F is being

searched for, the boundary conditions must be taken from the
.proper region. The x values separating the various regions
are remembered, and stored as the P values shown.

Once the proper value for affected length is determined,
it is stored as a P value separating the newest region from
the others. If there had been other P values smaller than
the new one, they must be removed.

The general flowchart is given below,

Dimension, Real, Initialize

l

Initialize storage locations for
boundary conditions and for
history of strip

\

(Read physical parameters

(ﬁead moment, force

Y

Decide sign on friction load
for the new region




26

Generate trial length
value, XCH

From subroutine, determine
boundary conditions (B, D, G)
associated with XCH

Using these boundary conditions
and the trial x, find the
;i value of the implicit equation
for affected length, FCN

Y
Find latest affected
length
Pl Check if FCN has changed
sign from previous value
T If it has, increment XCH
downwards, looking for another

decimal place accuracy

If not, increment XCH upwards
and try again

k When sufficiently accurate,
Let AL = XCH

!

Utilizing the AL value,
generate and store

y values for the new-
est region

Bring values of P
(which separate regions)
up to date
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|

Store curve generating
constants (boundar
conditions, etc...¥
for newest region

]

Store latest values
for strip history

]

Write strip history
d curves

Given below is the 1list of cards comprising the

program, and a sample output sheet, Note that, for ease of
understanding, the card list is subdivided in accordance

with the flowchart,



— C DOIMENSION. RFEAL, INITIALIZE,

DIVENSION AX{200)y Y(200),YPR{200),YDPR{200)
DIMENSION DEN4(10)4DAL(10),DB(10),DD(10)+DG(10),DN2{10),DN3(10)
DIMENSTON CN2(15),CN3(15),MI(15),CAL(15)

FREAL N2sN3sN4yN25,N3S
111 N25=0,

T NAS= 0%

Pl':Oo
P2=0,
ARl £ __P3=0.

"4:00
P5=0.
P&=Q.,

P7=00
P8=0.
ot R e T A

OO O

8¢
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&

C READ PHYSICAL PARAMETERS.

-«

e s SREADES g T LN s NG
11 FORMAT(2F20.6)
J=1

e

¥

C THIS IS 'HE START OF THE MAI'N' LOOP.....IO.....!.O....O.,..Q...Q.............O
AR, L "y ¥ ! ; " W iasint ¢ %" : "

G

C

C

G

C READ MOMENT AMD FORCE.

G

—_ 1 FEAD(53125END=100Q)N2+N3

12 FUORNATIZ2F20.6)
WRITEI3,24)N2,N3

24 FORNAT('1%s* HERE ARE N2 AND N3 *,2F20.8)

OpPpoOooO

o€



C

- C_ DECIDE SIGN ON FRICTION

C

LOAD FOR THE NEW REGION.

IFIN2.EQ.N2S) GO TO 505
IF{N3.FQ.N3S) GO YO 505

IF(LIN2-11285)%{N3-N3S)).LT.0.) GO TO 776

GO YO 505

v I {1 & WAt I T T )
777 FORMAT (' SIMULTANEGOUS, OPPOSING N2yN3. KILL THE RUN.')

— 505 CONTINVE

c

e B00 SN=L L

MRS SR . I ¢

GO TO 1000

IF THE NEW FORCE OR MOMENT IS A REDUCTION, THE FRICTION LOAD IS POSITIVE

IFIN2.LT.N2S)GO TO 500
. IFIN3.LT.N35)GO TO 500

SN==1.
6O TO 501

501 EN4=SN*N4
NZ25=N2

WRITE( 3, 7T)EN4 A
77 FORMATY(/,% EN4 IS *yF12.8,°

AND A IS',F12.8,/7/)

DOan



THIS STARTS A SEARCH FOR

THE AFFECTED LENGTH.

OO DO

XCHe

GENERATE TRIAL X VALUE,
XCH=0.
FRAC={-.11}

— C ### ACCURACY _LOQOP

‘D0 98 1AC=1,5
FRAC=({-,1)%FRAC
e L ARt SEARTH SUO0R

9 DO 99 [=1,150
XCH=XCH+FRAC

DOoOD

4



C
C DETERMINE PRGPER BOUNDARY CONDITIONS ASSOCIATED WITH XCH.

E ( Wr MUST FIRST DETERMINE WHICH REGION OF THE CURVE WE ARE IN. ) S
=

THIS STARTS THE REGION FINDERe ¢ o ¢ o o o o o o

IFIXCHsGTeP9)IN=9

ettt TEIXCHu Gl PBIN=8
IFIXCHGT «PTIN=T
IFIXCHeGT o« PO IN=6
JEAXCH.GTPSIN=5
IFIXCHaGT o P4 )N=4
IFIXCHeGT«P3)N=3

e se e TEAXCHeGT o P2 IN=2
IFIXCH.GT «P1IN=1
EEN4=DENGIN)

2 EM =0 ENS
EB=DBIN)
ED=DDIN)

e e o ARSI RN
ENZ2=DN2(N)
EN3=0DN3IN)

e - THIS ENDS JTHE REGION FINDER o o 55 o o

CALL EQS(XCH,EAL jEN24yEN3,EEN4yAyEB+EDEGyByD,G)

C
[
C

€€



FIND THE VALUE OF FCN.

OO0O0O

 FCN=COSHIXCH)*(EN4+G/A)=SINH{XCH) & (EN4*XCH+N3+D)—N2~-EN&

essesseeHERE IS THE IMPLICIT EQUATION FOR THE AFFECTED LENGTH...

OOPpPOO

. C CHECK IF FCN HAS CHANGED SIGN SINCE THE LAST VALUE.
C CHANGE XCH APPROPRIATELY.
C

—_ TP LHOtD.EQ.0, JWRITE(3,79) XCH,FCN

79 FURMAT(' HOLD IS ZERDe XCH IS'yF12.64' AND FCN IS*3F12¢63'ccces’)

ITI{TAC.EQeleANDT+4EQel)eORsHOLD«EQsOs JHOLD=FCN
— 445 TFLAFCN*HOLD) 97296295

95 CUONTINUE
HULD=FCN
IBSIRININEETN " o ¥ 41, £ 1y 1812

C IF IT COMES OUT THE BOTTOM WE GOT NO ROOT LESS THAN 150.
- WRITE(3,75)

15 FORNAT(//Zs* _SEARCH ROUTINE FOUND NO ROOT. KILL THE RUN. ')

GO TO 1000
- 97 HOLD=FCN
— 98 CONTINUE
C
C
S A
C

43



C
_C_ WHEN SUFFICIENTLY ACCURATE, LEY AL=XCHv

C
96 CONTINUE
AL=XC . i : Ll T, LT e e Al e ST
_ VRITE(3,22)AL,FCN i
22 FORMAT ' HERE IS AN AL VALUE, '",F20.8,' AND ITS FCN VALUE,',

9F20e84/777)
__C THIS IS THE END OF THE SEARCH FOR AlL.

GENERATE_AND_STORE_Y VALUES FOR THE NEWEST REGION.

€
C
C
C
£

O S
C

L=AL*100.+2.

—C EACH L IS5 ONE_TENTH OF A UNITLESS LENGTH.
C

DO 900 K=1,L
e NS

EX=e01%XK
C EX IS ACTUALLY THE DIMENSIONLESS LENGTH A*X.
CAll ENS(EXsALgN2,N3,EN4yA9BsDyGyYY,YYPR,YYDPR)

FINE

AXIK)I=EX
YIK)=YV%A
__YPRIK)=YYPR

YUPRIK)I=YYDPR/A
900 COUNTINUE

C
C
C

St




BRING P VALUES UP TO DATE.

OO OP

IF AL.LT.FP9 THERE'S TOO MANY REGIONS FOR FURTHER WORK.
IFIAL.LTLPIIWRITE(3,71)

71 FORMAT(///% ee0sesCGOT TOO MANY REGIONSe. WRITE, THEN STOPeceoo')
IFIAL.LT.P9)GO TO 199 :
c
— 206 1F(AL.GE.PB8)GO TO 207

Po=AL
M=10
____GO_10 188

207 T+{AL.GE.PT)GO TO 208
PG=0.
PE=AL

M=9
GO TO 188
— 208 I (AL.GE.P6)GO TO 209

P9=0.
Pti=0e
PT=AL

M=8
GO T0 188
— 209 IF{AL.GE.P5)1GO TO 210

PI=0.
PB=0,
Pi=0a4

H=AL
M=7
Erabein GO TO 188

9€



—t10 IF{AL.GE.P&IGD TO 211

P"3-=0.
P8=0.
P7=0a

P6=0e.
PS5=AL
M=6

GO TO 188
211 IFIAL.GE.P3)GO TO 212
P9=0a

P'c-/'=00
PT=0a4

P5=0,
P4=AL
M=5

GO TO 188
212 IF(AL.GE.P2)GO TO 213
PI=0

P8=0s
. P'IZO.
A S (- ¢

PS:OO
P4&=0,
P3=AL

M=4
GO TO 188
_ 213 IFIAL.GE.P1)G0 T0O 214

P3=0,
PE=0.
PT=0a..

P(.':o.
P5=0.
et Pl

P3=0.
p2=AL

LE



M=3

GO T0

188

214 CONTINUE
PR CUOR SO, . - I i

P8=0e
P7=0,
R }"EQ Y

P5=0,
P4=0,
Pi=0a

2=0.
Pl=AL
M=2

GO TO

188

OO O

8¢



C STORE NEWEST CURVE-GENERATING CONSTANTS.
G
oo 188 CONFIRUE
—_ DENS{MI=EN4
DALIMI=AL
DB{M)=8B
T R PURKME=D
DGIM)=6
DN2IMI=N2
Ly e e DNSTHMI=ND
199 CONTINUE
LMAX={P1%100.)+1.

o
e
C
[
L
C STORE NEWEST STRIP HISTORY VALUES.
PN L Tt
CN2(J)=N2S
CN3(J)=N3S
MILJ)=M
: CAL{J)=AL
&
L
C
c
o IGREHOY

6€



C WRITE HISTORY AND CURVES.
C
___WRITE{(3,30)

30 FORMAT{' HERE IS THE STRIP HISTORY.e.A LIST OF PAST N2 AND N3 VALUE
9S. THE LAST VALUES ARE CURRENT. ')
MRITE(3,3]1)

31 FORMAT(/ o' N2=MOMENT N3=FORCE M AL VALUE?')
--DO 460 K=1l,J '
. WRITE?3,33)CN2(K),CN3{K),MI(K),CAL(K)

33 FURMAT(2Fl0e5416+F14.8)
460 CONTINUE
—C QUTPUT UP TO_WHERE [TS ZERO,

WRITE(3,23)
23 FORMATU(//4" HERE COME THE VALUES OF X,Y,Y-PRIME, AND Y-DOUBLE-PRI

e . M N Y
WRITE(3,34)
34 FURMATIL 12X9%eeAXeo? 314X 9 e eAYe o' 914Xy e aYPRao 911Xy " cYDPR/AL" 4/
91 e
DD 600 K=1,LMAX

WRITEI3,211AXIK) ,YIK) 9 YPRIK) , YDPRIK)
2] FURINATIF20.2+3F20,8)

600 CONTINUE
IF(M.LQe10) WRITE(3,71)
[F(AL.LT.P9)GI TN _1000

IF{M.LQ.10) GO TO 1000

c
# e
C
c
Yool eN RS 2 .
! € REPEAT WITH NEXT FORCE AND MOMENT.
‘ C
OB e L L |
GO_10 1
1000 SioP
END

ot



—C__THIS IS THE SUBRQUTINE CONTAINING THE BASIC EQUATIONS FOR THE CURVES.
SUBROUTINE EQSUEXy ALy N2 ¢N34EN4GyAsBsDsGyYY,YYPR,YYDPR)

REAL N2.N3
C e
C
YY={(SINHIEX)/SINH{AL) ) *(EN4—~(N2+EN4)*COSH{AL) +G/A)
—_— O (N2+ENG ) «COSHIEX)—-(ENG/2) *( (EX) **2-(AL ) *%2)
9-N3* (EX—AL)—EN4+A*B-G/A)/A
C
— YYPR=LCOSHLEX)/SINHIALY ) *[EN4—(N2+EN4)*COSHIAL) *G/A)
9+{12+ENL)I*SINHIEX)-ENG*EX-N3
C

YYUPP=A¥{ (STNH{EX)/STNHIAL)) *(EN4—(N2+EN4) *COSH{AL)+G/A)

9+ 1 2+EN4)*COSHIEX)-EN&)
RETURN
__END

it



HERE ARE N2 AND N3 ¢ 0.0 0.0

EN4 IS 0.44278300 AND A IS 0.11313695

HERE 15 AN AL VALUE, 023475194 _AND ITS FCN VALUE, 0.0

HERE IS THE STRIP HISTORY..A LIST OF PAST N2 AND N3 VALUES. THE LAST VALUES ARE CURRER{..

-N2=MOMENT N3=FQORCE

M Al VALUE
De0 002000 2 0.09026307
002000 0.02000 2 034426683
0.0 0.0 3 0.23475194

HERE CUME THE VALUES OF X,Y,Y-PRIME, AND Y-DOUBLE—-PRIME,

eeA¥so eoAYes eeYPR.o « YDPR/A.
0.0 0.00035220 -0.00161320 0.0
0.01 0.00033581 -0.00161321 0.00000578
Q.02 0.00031954 -0.00161293 R.0000055%8 - = s
0.03 0.00030375 -0.00161193 0.00015080
0.04 0.00028765 -0.00160977 0.00028968
0.05 0.00027156 -0.00160599 0.00047284
0.06 0.00025552 -0.00160016 0.00070035
0.07 0.00023955 -0.00159184 0.00097215
Loy 0.08 0.00022399 =-0.00158057 0,00128871 S
0.09 0.00020772 -0.00156592 0.00164878
0.10 0.00019228 -0.00154745 0.00205404
O0.11 0.00017726 -0,00152468 0.00250393
0.12 0.00016195 -0.00149722 0.00299782
0.13 0.00014716 -0.00146459 0.0G3536406

ek



CHAPTER V
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The asbove progrem is extremely versatile, and allows
easy access to deflection curves for any sequence of con-
figurations of forces and moments, Some sampie curves have
been plotted below,

The values of N4 and A used in these results are
teken from a hypothetical roll-strip system, consisiting of
an aluminum strip six inches wide and 1/16 inch thick, a
roll radius of 2 feet, a roll-to-strip friction coefficient
of .1, and tension of 1000 pounds. These parameters
yield a friction load value of k = 50 1lb,/ft.

The computer variables associated with these dimensions

are
K= 3131 3/1%,
Ny = 412783
N3 = F/1000 1bs,
N2 = M/8838.8 ft. 1bs,

The curves follow,
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The solution to the problem treated in this thesis
consists of an infinite number of diminishing waves. It
has been shown that a separate differential equation is
necessary for each of the waves, The solution has been
generalized as much as possible, and a method for finding
an approximate solution consisting of n waves has been
developed. The method has been demonstfated for n = 2 and
n =1, with the one wave approximation being programmed.

Again, with .this program, curiosity regarding
deflections due to any given load situation is easily satis-
fied, and in general, the curves speak for themselves,
However, a few comménts may be appropriate.

It is apparent from chart 1 that the application
of N2 (the non-dimensional moment) has a more pronounced
effect on approach angle and on end deflection than does the
application of N3 (the non-dimensional force), This can be
considered fortunate, since there are indications that the
one wave approximation is more accurate for a moment.,

(See appendix),

The program does have limitations. First, it is not

permissable to enter data such that force is reduced while

moment is simultaneocusly increased, or vice versa,



U1
L 5% )

The reason for this restriction is that for such a

case, it is ccnceivable that the one wave solution would
be very insccurate, As shown in figure 16, the second wave

of deflection can be very pronounced, giving a large slope
Y - > =} 2

Fig.16.--Simultaneous, oppcsed force and moment

Thus, a one wave solution is inapplicable to this
problem, and the one wave program model cannot be used to
solve 1it,

It should be remembered that all of this presupposes
a suitable definition of simultaneous, gradual application
(since beam theory assumptions forbid sudden application),

Also, when utilizing the results of this program,
it should be remembered that the assumption of a semi-infinite
strip must be reconciled with the finite length of contact
area available on a roll, Should the affected length
exceed the contact area, the entire strip would displace

along the roll, until reduced forces and moments reduced




the affected length to suitable size.,

The only other difficulty with the program is a
mincr one, Should the AL value of a particular situation be
less than .01 or greater than 1.5, it will be necessary to
alter the search increment card ("FRAC = -,1", the second
card in the search routine) to suit. It may also be desirable
to correspondingly change the card "EX = ,01#XK" in the loop
which generates tables of y versus x,

Further study on this problem should begin with the
simultaneous application of opposing force and moment.
However, the program is uéeful in its present state, and
can be included in a larger program to predict the performance
of a rolling strip system., It is expected that the action

of the system will be divided into smsll time increments

during which conditions may be assumed constant, Forces and
moment, would produce an approach angle, which would change
the strip position, resulting in new forces and moments,
Observation of such a computer model, incorporating
the program developed in this thesis, can be expected to
simulete very accurately the performance of a rolling

strip system.,




APPENDIX

REMAKKS Ol THE ACCURACY OF A ONE WAVE APPROXIMATION

D

As has been stated, the exact solution to this problem

(0

takes the form of an infinite number of waves,-but the
approximate solution arrived at consists of only one wave,

The primary reason for this simplification is the
immense deéree of difficulty involved in gaining any greater
accuracy. Since there does exist a strong possibility
that this computer program will become part of a larger
program to predict performaﬁce of an entire rolling strip
system, it was important to achieve a computer solution
which would consistently give results, and if possible use
a minimum of ccmputer time. The program given here does
achieve these ends. The question now to be examined is, to
what degree of accuracy?

Ideally, the one wave model would be compared to the
exact solution. This however, seems impossible. Consequent-
ly it was decided to solve a two-wave approximation, and
compare the results of the one wave and two wave,

The two wave equations have been developed elsewhere
in this thesis, It will be remembered that the main problem
in achieving a two wave solution is the solution of two
nonlinear, implicit sirmltanecus equations (16) for the

aff
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Since a closed form solution is obviously impossible,
it was decided to program the computer to check the accuracy
of some typical cases, Using an iterative procedure
(specifically, a Newton-Raphson approximationz) the roots to
equations (16) were arrived at for 8 different force-moment
situations, accurate to four decimal places., The following
table lists the affected lengths found, along with those
determined by the one wave approximation,

For application to web guidance, perhaps the most
important criterion is the slope at the end of the strip. This
is also listed in the table,

As can be seen, the angles compare very favorably, |

especially for application of moments (which cause a very |

small second wave), It is reasonable to assume, then, that
the effects of the third wave and those beyond are in fact
not important.,

It may be necessary to emphasize that there was a high
degree of difficulty involved in obtaining the solutions
given in the table., The Newton-Raphson technique involves
guessing trial values of the roots to the equations, and
iterating to precise roots, The difficulty arose from the
fact that the equations being solved had many roots. Various
solutions could be found, depending on the accuracy of the

first trial values, and a certain amount of judgment was

: 2paniel D. McCracken and William Dorn, Numerical
Methods and Fortran Programming (New York, John Wiley and

Sons, 196L) pp.1L4l,145.
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necessary to decicde which pair of roots corresponded to the
physical situation, Thus, adapting the technique to a
completely general computer program could prove to be very
difficult.

Since the results obtained by a one wave approximation
are certainly accurate enough to be useful, it seems that a

one wave approximation is indeed the most reasonable approach.



N2 N3 ONE WAVE ; TWO WAVE { DIFFERENCE

iny
AL y' AL, AL, y' (per cent)

.05 0. L 62852 | -.014952|| L4623 .00053 -.014953 = zero

o1 8 639472 | -.040197|| 6392 .00031 -.0l40917 »

2 0. .868817 | -.104302|| .8686 .00025 -. 104304 "

3 0. 1.028695 | -.178325||1.0285 .00016 -.178327 .

0. .05 .224898 | -.,000419(| 194l | .10862 -.000y22 . 700

0. o1 L4506 | -.003180}| .3849 .21203 -.003196 500

0. o 854859 | -.021483}| .7448 .39053 -.02157L L22

0. 3 1.222561 | -.,058671]{1.0737 52739 -.058838 .28

Comparison of Lengths and Slopes
by One Wave and Two Wave Solutions

for N4=.442783

8s





