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ABSTRACT 

DEFLECTION CURVES of an ELASTIC STRIP 

under TENSION and FRICTION FORCES 

Francis R. Krygowski 

Master of Science in Mechanical Engineering 

Youngstown State University, 1972 

The purpose of this thesis is to develop the deflection 

curves resulting when a succession of forces and moments 

are applied to a semi-infinite beam which is under tension, 

and where displacement is resisted by distributed friction 

loads. 

The problem applies to the study of web guidance, 

which is concerned with accurately passing long strips over 

a series of rollers. The area studied in this thesis can 

be interpreted as the region of contact between the strip 

and a roller. 

The exact, general solution to the problem consists 

of an infinite number of waves, but a closed form solution 

is impossible. A method is described for calculating a 

solution accurate to any given number of waves. 

This method is demonstrated, the two wave and one 

wave approximations being developed as examples. 

A Fortran program is provided, which uses the one 

wave approximation to generate deflection curves in tabular 

form. This program may be incorporated as a subroutine into 

284319 
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a larger program to provide a precise computer simulation of 

an entire rolling strip system. 
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CMPIBRI 

INTRODUCTION 

The problem treated in this thesis is as follows: 

given a semi-infinite elastic beam (or strip) placed in 

contact with a friction surface, and held in constant 

longitudinal tension. If the end of the strip is subjected 

to lateral forces and moments, what deflections will result? 

This problem arose from a detailed theoretical study 

of web guidance problems. Web guidance is concerned with 

systems wherein long strips of elastic material must be 

passed over many rollers. The metal strip industry is typical, 

where an essentially continuous web of metal m~st be uncoiled, 

passed through a roller system, perhaps through slitting 

and finishing processes, and recoiled once again. 

In such processes, the lateral position of the web 

is often critical. If all rollers were perfectly aligned, 

and the strip material were perfectly uniform in cross 

section and perfectly straight, lateral position would never 

vary, as the strip would roll exactly straight ahead. But 

generally, this ideal case is not achieved, and imper­

fections cause lateral motions in the system. 

The basic mechanism of lateral motion can be described 

as follows: consider a straight web running onto a roll 

which is aligned perpendicular to the web, as shown in 



figure 1A. As long as the approach angle remains at 90°, 

the web will keep the same position relative to the roll. 

·t 

t 

t 

A B 

Fig. 1.--Rolls with approaching strips 
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However, if the web has an approach angle other than 

90•, as shown in figure 1B, each succeeding point will contact 

the roll further to one side, and the web will be seen to 

displace laterally relarive to the roll, it's lateral 

velocity varying with the web speed and the approach angle. 

For this reason, the angle the strip makes relative to the 

roll is of great interest. 

The physical situation treated in this thesis, then, 

is a minute but critical component of a roll-strip system, 

the portion shaded in figure 2. At any instant a force or 

moment applied to the edge of the contact area by the 

free span of entering strip, results in a lateral sliding 

of a certain portion of the contact area, and thus, non­

perpendicularity between roll and strip. This thesis will 

relate the deflections and resulting angles to the forces 

and moments present. 

In constructing the problem, it was assumed that 



---

Fig.2.--Roll and strip, showing area of interest 

there is a constant normal force between roll and strip, 

within the area of contact. Also, in keeping with the 

constant normal force, friction is assumed to have constant 

magnitude. The direction of the friction load is such that 

it always opposes displacement. 

3 

It is intuitively obvious that the greater the applied 

force, the longer the displaced portion of the strip will 

be. (This displaced portion is hereafter referred to as the 

"affected length".) Clearly, it must be assumed that the 

affected length is small enough to be contained on the roll. 

For simplicity, the strip treated in the problem is considered 

semi-infinite. 

The physical basis for the problem has now been 

thoroughly defined. It may be seen that it has aspects of 



two classical problems: the tie rod with side loading, 

and the beam on a.ri elastic foundation which are treated 

in many strength of materials texts, notably Timoshenko. 1 

4 

Timoshenko 1 s beams on elastic foundations are anal­

agous in that a distributive load is present which opposes 

deflections. However, Timoshenko 1 s problem is such that 

loads are proportional to deflection, while in this problem, 

distributive friction loads have a constant value, that of 
\ 

the friction force present between the roller and the strip. 

Only the sign of this load changes, depending on the direction 

of displacement. (An elementary statical analysis will show 

that the value of this friction load, k, can be related 

to roll system parameters by the equation, k = T?/r). 

It will be seen that, as with tne beam on an elastic 

foundation, the so·lution to this problem takes the form of 

an infinite series of diminishing waves. 

Standard beam theory assumptions prevail in this 

work. They are as follows: 

The strip is assumed initially straight and uniform. 

Although webs are often cambered or curved, the radius of 

curvature is generally very large, and our affected lengths 

will be seen to be very small. Thus, this imposes no serious 

limitation. 

1s. Timoshenko, Strength of Materials, Vol. II (Third 
edition; Princeton, N.Jo, D. VanNostrand Co., 1956), 
pp. 1-5, 41-46. 



Also, loads must be applied slowly enough that 

inertia effects are negligible. 

Other assumptions include: 

1. Deflections are small. 

2. The web is homogenous and uniform and the material 
obeys Hooke's law. 

3. Plane sections perpendicular to the longitudinal 
axis remain plane after bending. 

4. There must be no buckling or wrinkling of the web. 

5. Shear deflections are negligible. 

It is necessary to establish sign conventions for the 

problem. These are given in figure 3., and require no 

comment. 

Thus, the problem is thoroughly defined, and the 

method of the general solution may be established. 

+y 

f de.fleeted web 

+F 

+X 

· Fig.J.--Sign Conven tions 
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CHAPTER II 

METHOD FOR GENERAL SOLUTION 

The exact solution to this problem will be shown to 

consist of a configuration of diminishing waves, as illustrated 

in figure 4. This can be demonstrated by examining the 

forces and moments present at x 1 = L1 (which is the end of the 

first wave). 

If the solution consisted of only one wave., followed 

by a straight strip., at the end of that wave there could be 

no residual forces or moments, since the presence of a moment 

implies a radius of curvature. Thus., summing vertical 

forces at this position shows 

F = kL 

or 

L = F/k 

where k is the magnitude of the resisting friction force. 

However., summing moments at the same position gives 
i 

M•FL 1 -Te -U,= 0 
2 

L = 
I 

or 
F:tJFi•2kM-2kTe 

k 
Thus., both conditions are satisfied only if the term 

(F2 + 2kM - 2kTe) is zero. In general, this is not true, and 

the residual shear and moment at x 1 = L
1

, result in deflections 

in the ·second wave. A similar analysis at the end of the 



second wave shows a similar imbalance, indicating a third 

wave present, and so on, ad infinitum. 

It is, however, possible to achieve an approximate 

solution by imposing boundary conditions of zero slope and 

moment after a sufficient number of waves. The general 

equations for such a solution will be developed here. 

i 2 3 

Fig.4.--Coordinate and length conventions 
for successive waves 

h 

284319 

7 



.. 

2.1 Equations for the First Wave 

Considering forces and moments on the first wave in 

figure 4 yields the differential equation 

" k ,. ( ) EI y, :: M ~ F xi - ;, - T e -y 

defining c = T/EI gives 

-Y1 - Cy ... M - Te + F x - L x 2 

El EI I 2 El I 

(2) 

whose complementary solution is 

y, (c) : CI sinh Jc. X, + C~ cosh rc x, 

and whose particular solution takes the form 

where a,b, and dare unknown constants. 

Inserting the particular solution into equation (2) 

and equating like coefficients yields the expressions for 

a., b, and d. 

The total solution for y is then the sum of the 

complementary and particular solutions, or, 

Ty
1 

= C, T sinh Jc x, + C 2 T cosh .Jc x, + 

.k x1 
- F x - M + .k + Te 2 I I C 

(3) 

The two constants of integration must be found using 

boundary conditions. 

8 

Choosing the boundary conditions at x,= O, y, = e and at x 1 = L,, 

y, = 0 determines that 

and 
Tc . ~ ..;-- [(~ -M~(cosh..rcl -1)-kL,

1 

+ FL -Te1 
1 S1nh ./c L, c. ') 1 2 1 ~ 



Thus, the equation valid for the first wave is 

(4) 

The equation describing the first wave is unique, 

because of the unique boundary condition y, =eat x 1 = O, 

but it is possible to develop a general deflection equation 

which is valid at all succeeding waves, as follows. 

9 
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2.2 Equations for a General Wave 

By summing moments about some point (xn,Yn) in the n th 

wave, it can be said that for that wave, 
11-1 

EI y/ ~ F (x I\ + _Lli) + M - T ( e - y n) 
I: 1 

\,¥.(-1f k Lm) ( L2 + X" + ~~. ) + (-,)'' ~,.
1 

(5) 
Some clarification is no doubt necessary. The first 

three terms are obviously the moments due to the force, 

moment, and tension applied. 

The last two terms are the moments due to the dis­

tributive friction loads. The last term accounts for the 

friction on the nth wave, while the preceeding term is the 

sum of the friction effects in all previous waves. The 

subscript m refers to the particular wave whose friction 

effect is being accounted for. The term ( (-1)m ~ L""' ) is 

the total force due to friction in the mth wave, while the term 
i,,-1 

( ~ ... + X1-, + ll i ) is the moment arm through which this force 
i, m+1 

acts. 

In this equation, and those following the convention is 

held that backwards summation limits go to zero (for example, 
2 

TI-., ""0 ). 
n•3 

Following the procedure used for the first wave, the 

complementary and particular solutions are determined, giving 

the following equation, which is valid for any wave except 

the first. 
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T C T _ k (-1Y,x,.2 

Ty .... = c,(n) Sihh.Jc.xl'\ + 2(1-1) CoshR.Xn 2 

- F Xn + xi\ Th-if +I k Lm) +Te - M - ~ (-if' 
,_.•I 

-TI L. + TI_c-if''k LM) (\· + ;~/) <6 ) 
m·q rti:1 

As before, there are two constants of integration. 

The first boundary condition, y" = 0 at x"= O, gives us (z(n) 

and the equations 

Ty. C C, (•) T Sihh .Jc x, + [ M-Te + kt•)\ ~l- + ~-fkL.)('z JTI· 
(cosh [c, Xn) - k (-t)(.,1. - F Xn - xi\ ~c-,t k LI>\) +Te 

"'"' I\-, 
~ M - ~ (-,f' - R- 1tk Lh, )(\~ + _fLi) 

1:lt\ ♦ I 

T yh' = C l(n) T Jc. cosh Jc xh 

(7) 

+ Jf. sinh .rc: x, [ M-Te • ~- +~L. + ~-,r kl.,)(\· :tJ 
- k (-if xh - F - Re-,)"' k L..,) 

It\., (8) 
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The constant C,(n) is still undetermined. The boundary 

condition to be used is the matching of slopes between waves. 
I I 

That is, y"' at x"= 0 must equal Y11-, at Xn-, = L.,., 

Unfortunately, the determination of C, for the nth 

wave necessitates lmowing the deflection equation for the 

preceeding wave. Hence, C, (n-,) must be lmown. Similarly that 
"' 

constant can I t be determined before calculatingC, ... I}, and so on, 

back to the first wave. 

The ability to write one general deflection equation, 

valid for all waves, has thus been lost. Still, the pro­

cedure for determining the deflection curve of any given 

wave should he clear. The equation for the first curve has 

been determined. Using this equation, and equating slopes at 

the junction of waves 1 and 2, the unknown constant for wave 

2 can be found. (The deflection curve for wave 2 being given 

by the general fornrula, equation (7)). Once the second wave 

has been determined, the same procedure can be used to find 

the third, then fourth, and so on, to a sufficiently accurate 

approximate solution. 0 

It will be noted that the general equation for wave 

n contains two other unknown quantities, ~amely e, the 

deflection at the end of the strip, and the quantities L,, L2, 

Lh-i, which are the lengths of the successive waves. 

Thus, once the equations for y, , Yz , . . . y.,. have 

been produced, n more equations will be needed to determine 

the n-1 lengths and the end deflection. 
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With the exception of the first wave, the fact that 

deflection at the end of a wave is zero has not been intro­

duced. This can now be done, by inserting Yz_= 0 at x 2 = L2 , 

and so on, to Yn = 0 at x,., = Ln into the n th equation. It 

will be seen· that this procedure yields n-1 of the necessary 

n equations. However, another unknown has been introduced, 

which is the previously unmentioned Ln term, the length of 

the last wave. Thus, two more equations are necessary. 

These two equations can be found by considering 

conditions at the end of the last wave. The assumption that 

the solution consists of n waves implies the strip is a 

straight line beyond the n th wave. Thus, it is desirable to 

impose conditions of zero slope and zero moment at xn= Ln• 

The first of these conditions is given in general 

terms by 

n •I 

o~rcc,(h) coshrctl-\ +Jc r;inhJc,LI\ [M-Te +ktit + IfL,., 
M•q 

with the (, (n) term still present. 

Next, summing moments about the end of the last wave 

gives: 
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or 

Te = (10) 

Which yields an expression for the unknown end deflection, e. 

Methods have now been demonstrated for finding the 

necessary number of equations, making it possible to solve 

for all unknowns, and thus produce the deflection equation 

of any wave desired. Note that equations (9) and (10) are 

approximations. They are strictly true only for n =co, 

but can be considered accurate if n is sufficiently large. 
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2.3 Summary of the General Method 

Summarizing the solution to the problem, the following 

equations have been found: the general equation for the 

curve of wave n, containing the unknown e, and the unknowns 

1 1 , 1 2 , 1 3 , ••• , 1"..t.1. That is, n unknowns in all. 

There are the equations resulting from specifying 

y = 0 at x = 1 in each wave but the first. There are n-1 

of these equations, but the last introduces another unknown, 

1ti• Thus, two unknowns remain, e and 1". 
There is the approximate equation specifying zero 

moment, which yields an expression fore. 

There is equation (9), specifying zero slope, which 

makes it possible to remove the last of the unknowns. 

This procedure is illustrated in the next chapter. 
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CHAPTER III 

TWO WAVE AND ONE WAVE SOLUTIONS 

As an example, the procedure will be demonstrated for 

a case where two waves are considered sufficiently accurate.~~ 

i.e., after the second wave the strip is straight. 

From equation (4), the first wave equations are 

(11) 

and for the second wave, from equations (7) and (8) with n = 2, 

k k L 
1 

Fx +kl x -M -- -FL+-· +Te 
l. I 2. C. l 2 (12) 

-k)(2. - F +kl, 
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It is now possible to determine the constant c, for the 

second wave by equating y 1' at x 2 = 0 to y/ at x 1 = 1 1 • 

Thus, combining equations (11) and (13) gives 

C,T,. ~7;~~t,[(~-M)(coshJtL,-t)-k;11..+FL 1 -Tejt(M-~) SihhJcl 1 

Using this expression for the constant in the equations for 

the second wave yields 

+ coshJcx1.[ M~ ~""FL, -'\L_,i -Te] -~ ... 1. - Fxl 

+ kL
1

x1. -M - ~ -FL, + k
2
L,

1 

+ Te 

Turning to the moment criterion, equation (10), to 

find an expression fore, and setting n = 2 yields 

Substituting into (4) and (14) produces 

T - S'i h h Jc x, fi( k ) ( h L ) - k - FL - k L: 
y I ~ ~i ~ h IK.. LI IJ C - M cos Jc I C l 2 

(14) 

+ ( M - ~ ) co Sh Jc X 
1 

+ ~ + k_;1 
t - F x, - k} .1' (15) 

kl t . _ ... 
2 

Ty,= s,.~1<•, t,0:~:~:[(~-M)(coshJ<L,)-~ -FL,-~'.+ kl,L1.] 

: + (M - ~) }i h h Jc_ L .J 
• cosh Jc.X1 h-FL,- k~~, kl,L,] - k:: + (kl, - F) x, 

- k + FL ''" "k L l.. k L L 
C. l. ½ - I 2. 
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The unknown lengths L I and L, must now be found. 

This is done by making use of the boundary conditions y
4

= 0 

and y./ = 0 at the end of the last wave. 

Using the first boundary condition yields the equation 

0 : Sinh 1c L, [ :~:~: U(~- M )(co,h .rc L,n -~l, -\L,\ k L, L,l 

+ (M-'{) Si~~ Jc. L1.j 

+ cos~ J"c. L 2. l ~ -F L1. - k}: + k L, Li. J -~ Q 6) 

Using they~= 0 boundary condition yields 

0 • Jc eosk Jc L, ~ ~:::~, ~i-M)(co,k,,L.n -FL, -k,t-'. • k L.L,] 

+ ( M - ~) ri\-1 ~ Jc L 2. ] 

+ Je Si nh Jc L, i ~ -FL, - ~~\ k L, L,} -k L, • k L, - F 

There are now two equations for the two unknowns, 

1 1 and Li• Unfortunately, although it is theoretically 

possible to solve these equations, it is very difficult in 

practice. A closed form solution is in fact impossible, and 

the author has found that even a computer solution for a 

given physical case can involve a great degree of difficulty. 

For solutions accurate to three waves or greater, the dif­

ficulty increases enormously. 

For this reason, the bulk of the work on this problem 

consisted of the development and use of a one wave approxima­

tion to the problem. The development of a one wave model 

follows. 
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With this model, it is assumed that one wave is 

sufficient to predict the response of the system. As before, 

moments are assumed to balance at the end of the first wave, 

and the slope of the curve is assumed zero there. 

The development of the equation for the first wave 

is identical, and equation (4) remains valid. It is 

The moment equation, equation (10), for n = 1, becomes 

which, when combined with equation (4), gives 

Ty,= s,i;:: ! ~. [(~ -M) cosh Jcl, -~}+ (t1-~) u,shu, • ~ + F(L,-x,) ~JHL,'-x.') 

(17) 

It will be noted that the only quantity yet to be 

determined is L 1 • This is found by making use of the imposed 

boundary condition, that y, I is at x,= L, • zero 

Applying this condition to equation ( 17) gives 

which can be simplified to 

(l 8) 
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which is the implicit equation for Lt in terms of system para­

meters. 

Again, even for the simple one wave approximation, 

it is impossible to find a closed form algebraic expression 

for the affected length, , L. However, it is not difficult 

to program the computer to find roots to the above equation 

to fit any given physical case. This has been done, and the 

program, along with sample results, will be presented. 



21 

CHAPTER IV 

COMPUTER SOLUTION TO THE PROBLEM -----'-'- -~-- - --

One of the more interesting aspects of this problem 

is that the shape assumed by the deflected strip at any time 

depends not only on the forces acting on the strip at that 

time, but on those that have gone before. That is, the shape 

is also affected by the strip's history. 

To illustrate, if an initially straight strip is 

deflected with a force of 100 pounds, the deflected shape 

will be somewhat as shown in figure 5, if a one wave ap­

proximation is used. 

y 

.,.__ 
T 

X 

Fig.5.--Deflection Due to 100 lb. Force 

If the 100 pound force is then removed, and replaced 

with a 50 pound force in the opposite direction, the result 

would be as shown in figure 6. 
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y 

so* 
T ~ x=L100 

X 

Fig.6.--Strip Deflected by 100 lb., then -50 lb. Forces 

Note that a certain portion of the length affected 

by the original force is undisturbed by the second force. 

Obviously, if the 50 pound downward force were ap­

plied to a straight strip, all deflection would be negative. 

Thus, the history of the strip profoundly affects the final 

shape. The program developed to generate deflection curves 

incorporates this phenomenon. 

It will be remembered that the equations developed 

for the one wave approximation are based on zero boundary 

conditions. That is at x = L
100

in figure 5, y, y' and y" 

are all assumed zero. However, other boundary conditions 

may be encountered. For example, the one wave equations 

describing the portion of the curve deflected by the 50 

pound force in figure 6 must take their boundary conditions 

from the values of the first curve at x = L 50 (since at 

this length and beyond, values of the first curve are un­

changed). 

For this reason, equations (17) and (18) were modified 

for use by the computer, to include non-zero boundary 



conditions. The development is trivial and will not be 

presented here. 
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Also, as an aid to generalization of results, the 

equations were non-dimensionalized according to the following 

identities: 

N
3 
~ F/EIA':: F /T 

whel"e A = JC = )T /EI 

3 
N~ ~ k/E IA 

Making use of these definitions, and the boundary conditions, 

B = y(L) 

D = y' (L) 

G = y~' ( L) 

Equations (17) and (18), modified for computer use, are: 

AY =( SINH(AX)/SINH(AL) )-il-(N4-(N2+N4)-:l-COSH(AL )+G/ A) 

+(N2+N4 )-il-COSH (AX )-(N4/2 )-il-( (AX)~--il-2-(AL )-l!-~-2) 

-N)-:l-(AX-AL )-N4 +A-il-B-G/ A) 

y' = (COSH(AX)/SINH(AL) )-~·(N4-(N2+N4)-:l-COSH(AL)+G/A) 

+(N2+N4 )-:l-SINH (AX )-N4-il-AX-N3 

II 
Y /A=( SINH(AX)/SINH(AL) )-il-(N4-(N2+N4)-il-COSH(AL )+G/ A 

+ (N2+N4 )-il-COSH (AX )-N4 

( 19) 

FCN = COSH(AX)-l}(N4 +G/ A )-SINH(AX)-ll-(N4-ll-AX+N3+D )-N2-N4 (20) 
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In the program, when FCN equals zero, Ax equals AL. 

A flowchart of the one wave program, with explanatory notes, 

will follow. But first an explanation of some of the logic 

of the program may prove helpful. 

First, it should be noted that the values of N2 and 

NJ read into the program are the net values acting on the 

strip, not the change in the value. For example, if data 

is entered with N2 equal to .3, then equal to -.05, the second 

curve calculated is for N2 = -.05, not N2 = +.25. 

When checking values of the implicit equation, FCN, 

for the affected length, roots are located by noting changes 

in sign of the function between successive values of x. 

Each time a sign change is noted, the increment between 

successive x values is altered to determine the root more 

precisely. AL values used for computation are accurate to 

six decimal places. 

It is conceivable that smaller and smaller alternating 

forces, for one example, may divide the strip into numerous 

regions, as shown in figure 7 (with friction loads indicated). 

y 

P3 P2 Pl X 

Fig.7.--Regions of an Alternating Curve 
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When the length associated with the current force Fis being 

searched for, the boundary conditions must be taken from the 

proper region. The x values separating the various regions 

are remembered, and stored as the P values shown. 

Once the proper value for affected length is determined, 

it is stored as a P value separating the newest region from 

the others. If there had been other P values smaller than 

the new one, they must be removed. 

The general flowchart is given below. 

Dimension, Real, Initialize 

Initialize storage locations for 
boundary conditions and for 
history of strip 

Read physical parameters 

Read moment, force 

Decide sign on friction 
for the new region 



I 

Find latest afrected -
length -

' 

Utilizing the AL value, 
generate and store 
y values for the new­
est region 

' 
Bring values of P 

26 

--~Generate trial length 
· value, XCH 

From subroutine, determine 
boundary conditions (B, D, G) 
associated with XCH 

Using these boundary conditions 
and the trial x, find the 
value of the implicit equation 
for affected length, FCN 

/
Check if FCN has changed 
sign from previous value \ 
If it has, increment XCH 
downwards, looking for another 
decimal place accuracy 

\
If not, increment XCH upwards / 
and try again 

~~r---~When sufficiently accurate, 
~ Let AL = XCH 

(which separate regions) 
up to date 
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• 
Store curve generating 
c9nstants (boundary 
conditions, etc ••• ) 
for newest region 

✓ 

• 
Store latest .values 
for strip history 

1rite strip history/ 
and curves 

Given below is the list of cards comprising the 

program, and a sample output sheet. Note that, for ease of 

understanding, the card list is subdivided in accordance 

with the flowchart. 



_ _f'--..D..U1E~S .lC1 ;:.t ..1. _REA L, I N_I.._ T._,._,I A=L ......... I Z_,E......._. -------------------------- -
0 Ii US IC N AX(200) , Y(200),YPR(200),YDPR(200) 
Ul ~ENSION OEN4(1 0 ),DAL(10),DB(l0),DO(l0),0G(l0),DN2(10),DN3(10) 

___ _ _ DU ' Et' :; l Ol:L.JJUil.5 )_1_CN3( 15), MI { 15) 1 CAL ( 15) 
REI L NZ 1N3,N4,N2S,N3S 

1 11 fJ 2 5= 0 . 
--- - ~ Li S 2=J) ,,__ __________________________________ _ 

p 1-=: 0 . 
P2= 0. 

___ _ _ P3_? Q. _ __________________________________ _ _ 

P4= 0. 
P 5= 0. 

-- - ~P6=il, _ __________________________________ _ 
f-'7=0. 
P8= 0 • 

_______ e_9=._o . _ _ ___ _ _ __________________________ _ 

C 
C 

C 

N 
co 



0 .... .. .... 
11 r , G ,, , 

:a II! ,... • t1 • 0 0 Li.J-, 0 0 d W 
_..; 11 0 C> ,::, " "' :::- ,, I' 0 !' I :::, 

0 ::'c.1 - II II 1, •-• -, Z r<"\ -.. .,.. II "'"' Z: 
0 ..... ~ -- -I - :-::: ::::1 .... l.'"I -:I -, - -,j -
-.t ~_·1 _. :-::: :c.:i ~ - ,._, ;- '1" - -- -, -, ;-

71 ...I - .....! ._.. !'\I l""'l 2 C-. ( ~ ._. ...JI Z 
o ~- c~ ,._,._ - ~~:~ :~ c; :.._ z ~ < 8 
o · a ::l c

1

. a o ,- · u a 1 u :::: u 
o I ~ 
0 ' I,(\ 
-.t -j' 

I 
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. .. 
:.. 



C REA O PHY SICAL PAR AM ETER S. 
C 

- ---~'F AUJ 5 , l UAi_l:-l4~- -----------------------------­
l l fO R1lAl 12F20.6) 

J =l 

C 
c nus IS THE START OF THE MAIN LOOP ••••••••••••••••••••••••••••••••••••••••••• 

' , . _ l:._____: ___ _______________________________ _ _ _ 

C 
C 

C 
C READ MfH \f NT AMO FORCE. 
C 

___ ___,___ ,. f'._A[U ,, 1 I 2..J f'Ll1=...1J)_QJ1.l--'-'NU.2._..,.....,N....,3c__ _________________________ _ 
12 l t lR ;1/\f( .?. f20.6) 

~rn I r E I 3 ., 2 4 l N 2 , N 3 
__ _ 2._4_SOJi!l.J\U.! 1',' HERE ARE N2 AND N3 ',2F20.8) 

C 
C 

C 

"-> 
0 



C 
_ _ c__o_EC_l_D L SJ GtL illl_ER.lCT.JJ)_i-l LOAD FOR THE _ _,_N_,_,,,E,_,_W,.__,__,R=E_.,,._G__,,_I O=N'---'-"-. _____________ _ 

C 
I F tN2. EQ. N2S) GO TO 505 

____ __._ fLe .. .L. r::.D ... NJ.S.L_G-0..___,_T0,..____=5 ..... 0=5 __________________________ _ 
I f (((1'J Z-·1 2SH, (N3- N3S)).LT.0.) GO 1'0 776 
GO TO 505 

___ 77r.LJ.-1P LT f::_( 3.., 7ll.~-- -------------------------------
77 7 F C'U''i.H {' SIMULTA NEO US, OPPOSING N2,N3 . KILL THE RUN.') 

GO TO 100 0 
___ ____!:._O 5-C r" lI u1• If __________________________________ _ 

C If TH f NEW f ORCE OR MOMENT IS A REDUCTION, THE FRICTION LOAD IS POSITIVE 
It CN2.LT .N2S )GO TO 500 

____ __.fl~ 3_. LJ ., J:il.S.l.G_O~_I~□~~S~--------------------------­
S ~1 -- - L. 
GO Tu 501 

--~"i() tl _Sfl :_l ~-----------------------------------
50 l El'i 't :::: SN :0 N4 

N2S =N2 
______ ~ ~ 5.::fD ___ ___ ______________________ ~---------

C 
C 

-- - C 

WR IT E ( 1,77) EN4, A 
77 FCi.{ MATU,• EN4 IS ',Fl2.8,' AND A 1S',Fl2.8,//) 

. -,-

I..>) 



C 
C THI S STAR TS A SEARCH FOR THE AFFECTED LENGTH. 

C 
C 

C 
C GENER ATE TRIAL X VALUE, XCH. 

XCH=O. 
fRA C={ -.U 

___s. _ _!itfJl_ftUU0 \(;Y_L OO~P _ ________________________________ _ 
·eo 9 8 lf\ C·=l,5 
fRt, C=( - . ll *F RAC 

C *** :' EL 3...C 'Lt . ...,.O,,_,,O"-'-P _ _________________________________ _ 

C 
C 

9 00 9 9 l=- 1, 150 
XCH= XCIH-F R AC 

1....0 
f\.) 



- --- -----------------------
c 
C OET f RrIN E PROPER BOUNDARY CONDITIONS ASSOCIATED WITH XCH. 
C { ~,;r ,.,.UST F IRST DET ERMINE WHICH REGION _ OF TH{: CURVE WE ARE IN.'------')'------

C TH I S STI\ RT S THE REGION FINDER •• • • • • • • • • 
lF(X CH. GT.P9)N=9 

___ IE { X CI I * G f ___. P 8 l N:=:_B -------------------------------
1 F ( X C Ii. (; T • P 7 ) N= 7 
IF(XCII. GT.Po)N-=6 

_____ J EJ ~ C 11. GLE2-lu...::.=~-----------------------------­
I F ( X CH. GT. P 4 ) N=4 
[F(XCH.GT.P3)N=3 
1 f_( XC H .GL.__P 2J__u__;::=:__c;,,.__ _____________________________ _ 
IF ( X CH.GT • Pl ) N= l 
lEN4 =Db J1d N ) 

--- - ~ -~l::..P~L [__,_.__. _________________________________ _ 
t: B= OiH N) 
ED==DD(N) 

______ EG~QG tN ) _________________________________ _ 
[N2=DN2(N ) 
LN3=G:DlN ) 

__ C_ -11:IJ S __ .EN US THE REG I ON F I ND ER • • • "--------------------------------­
CALL EQS (XCH 1 EAL,EN2,EN3,EEN4,A,EB,ED,EG,B,D,G) 

C 

C 
VJ 
V.J 



C 

C FINO THE VAL UE OF FCN. 
C • •• ••••• HERE IS THE I MP LICIT EQUATION FOR THE AFFECTED LENGTH ••• 

____ _._=_e_~__cD SI-H-.XC__fil_tl_Ef.J4+G/A >-SI NH f XCH) * ( EN4*XCH+N 3+0 >-N2-EN4 
C 
C 
C 
C 
C 

_ C___ Cl:i EC K_LE FC ~LJjA 5-.Q:!f, "JG E O S I GN S lli_C_L_ T HE"----'L.,..,_A-'-"S~T,___,V'--'-A~L~U,..,,E,_,,.'---------------
C Ci!ANGE XC H APPROPRIATELY. 
C 

___ ___l [ J_J IO I D ~ E..Q_._Q..L.lli!U If: __,_( 3-=i..., .,_7..,_9.,_) =XC"'"'H'--'-L--'F'-""-'N.?... _____________________ _ 
79 Fl1Rt1Af ( 1 HULO IS ZERO. XCH IS',Fl2.o,• AND FCN IS',Fl2.6,• ••••• •) 

ff ( ( 11\C. EQ . 1 • AND. t. EQ. l) .OR. HOLD.EQ.O. )HOLD=FCN 
---~ 1,5 __ J Lit Cr :'~ I t (ll.DJ__9__I..___.2j1 _.__9-"-·5=-------------------------------

95 ClJ NT Ir UC 
flll l D=I CtJ 

---'~_ci ;tLTJf i l)f" __________________________________ _ 

C IF IT Cl li·H : S OUT THE BOTTOM WE GOT NO ROOT LESS THAN 150. 
1-rn I T [ t 3 , 7 5 ) 

___ 75_fl)J1t11iT I///,' SEARCH ROUTINE FOUND NO ROOT. KILL_ THE RUN. ') 
Gu ro Hioo 

q 7 HCl LD =F CN 
----'-9_,.8_,,,C, (!NllJLU"-':,,_ _________________________________ _ 

C 
C 

C 
vJ 
~ 



C 
_c _ __ .rttiE.N....--5JJ.EE.LCJ ENTL Y ACCURATE, LET AL=XCH 
. C 

96 CONTINUE 
AL=XCH - -~ - -- ---- - -----

____ _._ ,•. U.U3,? 2 l AL ,FCN 
22 FORMAT( ' HERE IS AN AL VALUE, ',F20.8,' ANO ITS FCN VALUE,•~ 

9F20 . 8, / //) 
__ c_J.J-! _l__s_J LIB LE.till OF I H ~~S~E=A=R=C~H~F~□~R~A=L=•---------------------­

C 
C 

C 
C 

_C ___ i:i~Nffll\I_L,'\ ND__s__roRE Y VALUES FOR THE NEWESLEEGtON. 
C 

L=AL*l00.+2. 
__ .LE.AGJ:.LL __l__S__CU~ E _ __lfJil..l:LQF'---'A~U"--'-N~l,___,T.....,L....,E...,.S'---"S'---=L--=E.,__,_N=G...,_T_'---'-H-L-_________________ _ 

C 
on 900 K=- 1,L 

- - ----~i<=_K-::_l -
EX== . Ol '· XK 

C EX IS ACTUA LLY THE DI MEN SIONLESS LENGTH A*X• 
FINE 

----~-- l • _L__f· 1 l S ! EX , AL , N 2 , N 3, EN 4, A, 8, 0, G, YY'--'''--Y'-'Y'---'-P_,_R..:..,,_Y=--Y=---=O:c..:P_;_R..:...),___ _____________ _ 
AX(K ) =f: X 
Y( K) =YY*A 

----~YP~l !U =~'l~P~R ________________________________ _ 

C 
C 

YIJ,)R {I( )=YYDPR/A 
900 c urH INUE 

w 
\JI 



C 
C BRI NG P VALUES UP TO DATE. 

C I F AL.LT. P9 THERE'S TOO MANY REGIONS FOR FURTHER WORK. 
I F (AL.LT.P9,WRITE(3,7l) 

___ 7Lf0 B. t1 AJ l/ /.L.!_,._._._._LGO T TOO MANY REGIONS. WR I TE, THEN ST OP ••••• 1 > 
I r 1AL.LT.P9)GO TO 199 

C 
__ ___.,_2 D.b_J f .11· L .... GJ; • P 8 > GO TO 2 o 7 

P9 =/,L 
M== 10 

___ C!l_JQ 1 88 ________________________________ ____, 
207 l f (AL.GE.P7)GO TO 208 

P<J =O. 
____ _._ [l =-1\ __________________________________ _ 

n "" 9 
G(l TO 188 

___ 2 08_ 1 r lAL .. GE .__e__o_~t ....._GO....__T.._,0....___,2.._0,,,_9.L-_________________________ _ 
P 1i= O. 
P L=O. 
J!T::_1'.._ _________________________________ ____, 
M= 8 
GO 1 0 l Otl 

__ ____.._2 0 .2.___I f _l/. L .. GE .._£__5__._) ....._GO!,£._J.._,0..,_2........cl O.,___ _________________________ _ 
p () : 0. 
P fl =O. 

___ _ _._7 =()_...__ _ ________________________________ _ 

P6=AL 
M= 7 

_GO TO 188 w 

°' 



__ _..2 ..... 1 CLI.£1.AL...G..E • P 4 > GO TO 211 
P9= 0. 
P8=0. 

----~7.=JJ~----------------------------------
P6=0. 
P ~= Al 

----~~~1= ..__ __________________________________ _ 

GO TO 188 • 
211 I F [~L.GE.P3)GO TO 212 

____ _£ 9:::__Q ..____ _________________________________ _ 

P/3= 0. 
P 7-= 0. 

____ ___e_r'=-.0__._ _________________________________ _ 

P 5= 0. 
Pl1=A L 

----~~: 5. 
GG TO 188 

212 IF(AL.GE.P2)GO TO 213 
____ ......._.,.'J·~Q ..__ _________________________________ _ 

PU= O. 
P7 -= 0. 

_______ _e6 ·~ o • ___________________________________ _ 
P S= O. 
p,, = 0. 

____ ..._J :-_/!..__ _________________________________ _ 

M:: 4 
Gli TLJ 188 

__ _._2_...J 3- J f ll\ L. GE ._tll---"'G.__._OL..-i.T_...0.____..2,_.__. __________________________ _ 
p ;:: Q • • 
P G= O. 

----~P~7==--0 ..__ __________________________________ _ 

P6= 0. 
P 5= 0. 

___ __p t,.:_Q ---- ---------------------------------
P3=0. 
PZ= AL \A) 

~ 



'1 ·;: _______ _, --------------------------------------------------------------------
GO TO 18 8 

21 4 CONTINUE 
___ _,, ,: ~o~------- - - - - ----------- -----------------

Pd=o . 
P 7 -=0 . 

____ _ _;___JJ ', .=_Q __.__ _____________________________________ _ 

P ';= O. 
f) l;: Q• 

----~ ·-3 -=- 0 ------ - ---------------- --- - - - - - --------------' 
P2--= 0. 
P 1-= AL 

- --- --'--M=---- - - ---------------------------------- ---
GO TO 18B 

C 
__ c__ 

C 
C 

\jJ 

co 



r 

C 5 TO RE NE\: ES T CURVE- GENE RATING CONSTANTS. 
C 

__ __._8_8 __ C 0 ~ tJ 1 1UE___:_ _______________________ --,----,----------,-----
____ __,,, f.:.N!t.J, •. J .:.~ .......... ......_ __________________________________ _ 

t) I\L{M)=,'\ L 
OiJ(f\) :: B 

_____ QiU JU :::.,.,__ __________________________________ _ 
UG( M) o::: G 
0i J2 (M l = fl 2 

----~D.' D _U!. t = 

C 
C 

C 

1g9 CONTI NUE 
LM AX=t Pl*lOO.)+l. 

C STORE NE WEST STRIP HISTORY VALUES. 
C 

CN2 ( J l =tl2 S 
CN3 (Jl-=N3 S 

- ---~~.LLl ,11.:-=_,_,·'--------------~--------------------
CAL l J )=A L 

C 
- ~ - -------------------------------------c 

C 
-- ~ v.) 

'-0 



C WRI TE HI S TOR Y AND CURVES. 
C 

-----~q_Jl.£ r 313 ~o~ >----------------------------------
3 0 FURl1A'f{ 1 HERE IS THE STRIP HISTORY •• A LIST OF PAST N2 AND N3 VALUE 

9 S. THE LA ST VALU ES ARE CURRENT. ') 
_ ___ _,.i · LU.£ {] _ _, 3 """~---------------------------------

31 . FO fU l AT (/ , ' N2=MOMENT N3=FORCE M AL VALUE') 
DO 460 K=l,J 

____ \ 'U T_E f 3 , 3_]J_C N 2 ( K >.,L.: C=N,_,._3=-'-'( K~> _,.__ '-'-M.,,__I _.,_( ,__,_K_,_) _._, =C=A.,,.L _ _._( .,_,K_,__) ___________________ _ 

33 r 0 RllA T ( 2 Fl0.5,I6, F l4.8) 
460 CONTP'. UE 

__ c_ouie_u Ll!E__J (i _ _Jfl➔ ERE l TS ZERO. 
vi U T E { 3 , 2 3 t 

23 FORi'.A T {I /,' HERE COME THE VALUES OF X,Y,Y-PRIME, AND Y-OOUBLE-PRI 
----~qJ'i:~ _•_,_/ l - - ---------------------------------

\' ! IT E (3, 34) 
V"t F. lR II Al ( 12x,• •• Ax •• • ,14X,• •• AY •• ',14X, 1 •• YPR •• •,11x,•.YDPR/A.' ,/ 

-9J 
()i) 60 J V=l,LMAX 
i-. 1l I ff: { 3, 2 1) i\ X { K) , Y ( K) , Y PR ( K) , YOPR ( K) 

___ ZJ_ h .JBil " r , r 2_0_. ?---L.3_E20 ._a_L__ ___________________________ _ 
600 CUNT I f IUE 

l f (M.LQ. 10) WR ITE(3,71) 
_ ___ _..UAL ;, tl .. L.e51JS1.d Tll,____,l'--"0'-"0'-"0'-----------------------------­

I F ( ~l . L:Q. l O) GO TU 1000 
C 

C 
C 

-------- -----------------------------------c REP E ;\ T ~Jl TH N EX T FOll CE AND MOMENT. 
C 

_____ J c::_J_-'!'--'-"--- --------------------------------
____ _,_.,, ')_y..o_ _ _._ _________________________________ _ 

1000 SI OP 
ENO ~ 

0 



__ c.__1_1u_.5_J .S_..IYE __ Sl1.fiPll.UliJ-lLCONTA I NI NG THE BASIC EQUAT I DNS FOR THE CURVES. 
SU l1 ROUTI NE EQS{EX,AL,N2,N3,EN4,A,B,D,G,YY,YYPR,YYDPR) 
RE•,l N2 , \ 3 

__ c __________________________________________ _ 
C 

YY= ( (S !'~H( EX) /S[NH(AL) l*( EN4-(N2+EN4)*C0SH(AU +G/A) 
____ 9 :t- ( ' 12..:_tr, ,,tl .:.CTl...SJiLEXL-::..LEN4 /2 > *< (EX>** 2- (AL> **2 J 

9-NJ*( EX-Al )-EN4+A *8-G/A)/A 
C 

_____ 'f Y f 8? 1 r OS H lf X lL£Ul H ( J\ LU .. ~_l.EN 4~-_,< ....... N~2"---'+_..E._._NL--'4'---")----'-*-3'C,..,,O,..,.S'-LH~l-'-'A,....L_._)--'-+_,,,G_.._/-=A__._) ___________ _ 

9 +(f l 2 -t EN 4) * S IN H l EX)- E N4* E X-N 3 
C 

____ _,__Yl 1e..D::_t1 H W.NJ::.lilX.l L.Sl.NH I AU)* ( E N4- ( N2+EN4) *CDSH { AU +G/A) 
9 +(12+EN4 )*COSH(EX)-EN4) 

RE TURN 
£1':l 

-l:: .... 



He°'RE ARE N2 AND N3 t/ o.o o.o 
__E_bl!t__j_;i Q.44218 3 00 AND A IS 0.11313695 

-1iERE..-1$._CiN Al VALUE, 0.23475194 AND ITS FCN VALUE, 1h_Q 

HE RE IS THE ST RIP HISTORY •• A LIST OF PAST N2 AND N3 VALUES. THE LAST VALUES ARE CUR RE~T. 

_N-2-:;110 KF....N.L~ :=_o P. _....C_.__F _ _ -'Mw...._ __ .,._A,'---~..........,'--------------------------
0 . 0 0.02 0 00 2 0.09026307 
0.02000 0. 02000 2 0.34426683 

__ o.o o.o 3 0.23475..l.~'-'-------------------------

-1iER.L£UME THr.: \U!l UES OF X,Y,Y-PRIME, AND Y_--D-□-U~B_L_E-~PB~~~~--------------

•• AX •• •• AY •• •• YPR •• . YOPR /A • 

o.o 0.00035220 -0.00161320 o.o 
0.01 0.00033581 -0.00161321 0.00000578 

_______ n .02 0.00031 954 -0.001 61293 _____ .00Q0559 l _ ___ _ 
0.03 0.00030375 -0.00161193 Q.00015080 
0 .0 4 0.00028765 -0.00160977 0.000 2896 8 

_______ __.,_ , 05 0.0.Q_Q2.ll.26- -0 .__QQJ_(,}0599 O-P00 1tl28~"..,_t ____ _ 
0.06 0.00025552 -0.001 60016 0 .00070035 
0.01 0.0002 39 55 -0.00159184 0.0009 7215 

---- ~---- 0 .. 08 o.QOQ2239.9__ -0 .,QQ 15B057 0 .Q012H87~1~----
0.09 0.00020112 -0.00156 592 0.001 6487 8 
0 . 10 0.00019228 -0.00154745 0 .00205404 

_______ __._. ___ _.J I O. O O O 17 72 6 - O. O Q l 52_~6 8 0~-2 .. 5_0 3..2_,.c___ ___ _ 
0.12 0.00016195 -0.00149722 o.ooz q97 sz 
0.13 0.00014716 -0.00146459 0.00353646 

~ 
N 
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CHAPTER V 

The above pro~ram is extreme ly· vArs&.tile, and allows 

easy access to deflection c~rves for any sequence of con-

' 
figurat ions of forces and monents . Some sample curves have 

been plotted below. 

The values of N4 and A used in these results are 

taken fr om a hypothetical roll-strip system, consisiting of 

an aluminum strip six inches wide and 1/16 inch thick, a 

roll radius of 2 feet, a roll-to-strip friction coefficient 

of .1, and tension of 1000 pounds. These parameters 

yield a friction load value of k = 50 lb./ft. 

The computer variables associated with these dimensions 

are: 

A = .11313/ft. 

N4 = .442783 

NJ = F/1000 lbs. 

N2 = M/8838.8 ft. lbs. 

The curves follow. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The solution to the problem treated in this thesis 

consists of an infinite number of diminishing waves. It 

has been shovm that a separate differential equation is 

necessary for each of the waves. The solution has been 

generalized as much as possible, and a method for finding 

an approximate solution consisting of n waves has been 

developed. The method has been demonstrated for n = 2 and 

n = 1, with the one wave approximation being prog~ammed. 
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Again, with _this program, curiosity regarding 

deflections due to any given load situation is easily satis­

fied, and in general, the curves speaM for themselves. 

However, a few comments may be appropriate. 

It is apparent from chart 1 that the application 

of N2 (the non-dimensional moment) has a more pronounced 

effect on approach angle and on end deflection than does the 

application of NJ (the non-dimensional force). This can be 

considered fortunate, since there are indications that the 

one wave approximation is more accurate for a moment. 

(See appendix). 

The program does have limitations. First, it is not 

permissable to enter data such that force is reduced while 

moment is simultaneously increased, or vice versa. 
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The r eason for this re s triction is that for such a 

case , it is ccnceivable that the c~o wave solution would 

be As f .ic:;).re 16, the second wave 

of defle~ticr. can be very pror.ounced, giving a l arge slope 

unreasonable . 

YA 

Fig.16.--Simultaneous, opposed force and moment 

Thus, a one wave solution is inapplicable to this 

problem, and the one wave program model cannot be used to 

solve it. 

It should be remembered that all of this presupposes 

' a suitable definition of simultaneous, gradual application 

(since beam theory assumptions forbid sudden . application). 

Also, when utilizing the results of this program, 

it should be remembered tha t the assumption of a semi-infinite 

strip must be r econciled with the finite length of contact 

area available on a roll. Should the affected length 

exc eed the cont 2ct area , tte entire 3trip would displace 

along the roll, un t il reduced forces and moments reduced 
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ths affcc~6d le~g:n to suitaLle size. 

The only other difficulty with thP✓ progra.'!11 is a 

miner one. Shc',Jld the AL v3.lue of a purticular si tua ti c.:1 be 

less than .01 o~ Grea t e r t~cn 1.5, it will be necessary to 

alte r the search increment ca rd {"FRAC == -.1", the second 

c ard in tha scare~ routi.e ) to s~it . I t may also be desirable 

to correspondingly change the card "EX = .01 {}XK" in the loop 

which generates tables of y versus x. 

Further study on this problem should begin with the 

simultane ous application of opposing force and moment. 

However, the program is useful in its present state, and 

can be included in a larger program to predict the performance 

of a rolling strip system. It is expected that the action 

of the system will be divided into small ti..>ne increments 

during which conditions may be assumed constant. Forces and 

moment, would produce an approach angle, which would change 

the strip position, resulting in new r ·orces and moments. 

Observation of such a computer model, incorporating 

the program developed in this thesis, can be expected to 

simulate very accurately the performance of a rolling 

strip system. 
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H,~~;frt.ctKS on THE AC CURACY OF A mm WAVE AP PROXI HA'rI ON 

As ho.s beer,. :tnted, the exact solutior: to this prob lem 

takes t he form of an infinite number of waves , , but the 

approximate solution arrived at consists of only on e wave. 

tJ:'he r1·imary reason for this simplification is t he 

immense degree of difficulty involved in gaining any greater 

accuracy. Since there does exist a strong possibility 

that this computer program will become part of a larger 

program to predict performance of an entire rolling strip 

system, it was important to achieve a computer solution 

which would consistently give r esults, and if possible use 

a minimum of computer time. The program given here does 

achieve these ends . The question now to be examined is, to 

what degree of accuracy ? 

Ideally, the one wave model would be compared to the 

exact solution. This however, seems impossible. Consequent ­

ly it was decided to solve a two-wave approximation , and 

compare the results of the one wave and two wave . 

The two wave equations have been developed elsewhere 

in this thesis. It will be remembered that the main problem 

in ach ieving a two wave solution is the solution of two 
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Since a closed form solution is obviously impossible, 

it was decided to program the computer to check the accuracy 

of some typical cases. Using an iterative procedure 

(specifically, a Newton-Raphson approximation2) the roots to 

equations (16) were arrived at for 8 different force-moment 

situations, accurate to four decimal places. The following 

table lists the affected lengths found, along with those 

determined by the one wave approximation. 

For application to web guidance, perhaps the most 

important criterion is the slope at the end of the strip. This 

is also listed in the table. 

As can be seen, the angles compare very favorably, 

especially for application of moments (which cause a very 

small second wave). It is reasonable to assume, then, that 

the effects of the third wave and those beyond are in fact 

not important. 

It may be necessary to emphasize that there was a high 

degree of difficulty involved in obtaining the solutions 

given in the table. The Newton-Raphson technique involves 

guessing trial values of the roots to the equations, and 

iterating to precise roots. The difficulty arose from the 

fact that the equations being solved had many roots. Various 

solutions could be found, depending on the accuracy of the 

first trial values, and a certain amount of judgment was 

2naniel D. McCracken and William Dorn, Numerical 
Methods and Fortran Programming_ (New York, John Wiley and 
Sons, 19b4T pp.11+4:"145. 
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necessary to decide which pair of roots corresponded to the 

physical situation. Thus, adapting the technique to a 

completely general computer program could prove to be very 

difficult. 

Since the results obtained by a one wave approximation 

are certainly accurate enough to be useful, it seems that a 

one wave approximation is indeed the most reasonable approach. 
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