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The purpose of this thesis ls to formulate a 

matrix-type solution to determine the critical buckling 

loa.ds of continuous columns and simple, planar, orthogonal, 

portal frames. Both the stiffness method and flexbllity 

method are utilized and the efficiency of each is inves

tigated. 

A variety of boundary conditions are employed 

including simple supports, fixed supports, and partially 

restr~1ned supports. 

rhe modal vect0r•.3 v deformation associatea. with 

eaoh c,t'.1 ti cal buckl i ng loB.d. lre deterFJ1ned. These modal 

vectors are combined into a general modal matrix for which 

the orthogonPlity cond ition- are fo~nulated, 

The dynamic stability approach to the problem 

1s derived for the purpose of future consideration. 
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CHAPTER I 

INTRODUCTION 

The elastic stability problem of continuous columns 

and simple, planar, orthogonal, portal frames have been inves

tigated in recent year using many different methods. 

(J) 
Timoshenko determined the cr1tical buckling loads 

of continuous structural systems for various support condi

tions using classical scalar methods. 

Galamboi
1

) determined the critical buckling loads 

of continuous portal frames with simple supports and fixed 

supports by the slope-deflection method. 

(2) . 
Gregory determined the critical buckling loads of 

continuous structural systems utilizing the matrix stiffness 

method for the special oases of simple supports and fixed 

support so 

The purpose of this thesis is to determine the cri

tical buckling loads of continuous columns and simple, planar, 

orthogonal, portal frames by both the matrix stiffness method 

and the matrix flexibility method. In addition, the modal 

matrix is determined for each method and the resulting ortho

gonality conditions are considered. Partially restrained 

supports are included, which mathematically are easily converted 

to either a fixed support or a simple support. 



1.1 Derivation of Basic Fle~ib111ty and Stiffness Matrices 

The basic differential equation of a column sub

jected to both bending stress and axial compressive force P 
(J) 

is given by Timoshenko as 

2 

= 0 (1) 

where E, I, and Pare assumed constant. 

The above equation is based upon the following 

five assumptions1 

1. The undeformed member is initially straight. 

2. The column is made of perfectly elastic 

material. 

3. The slope of the deformed member is very 

small compared to unity. 

4. The axial loads are applied along the 

centroidal axis of the column. 

5. The effect of shear stress is neglected, 

p 2 
Defining Er .= k, the general solution of equa-

tion (1) is given as 

y(x) = Acoskx + B sinkx + Cx + D, (2) 

where the constants A, B, C, and Dare determined directly 

from the boundary conditions of the column. 
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The sign convention used throughout this work is that given 
(3) 

by Timoshenko and is illustrated in Fig. I 

0 ~- ------------------- ( X) 

( y) 

Fig. I Sign Convention for the Colurnn Including Sidesway 

The column must satisfy the following six boundary 

conditions: 

~ to> = + f:::. A ,, 

~ ( l} = + l::::i.s 

ll 

EI~ ( O} = - M All 

' ( 3) 
II 

El~ ( l) - -MBA 

I • -6 \,l (O} - +0 /\B = eAs + -c , and 

I 

=-(8 * - -6) ~ ( L ) = -a,,. =~-elA *, BA ""C" 

where l::::i. - 6 -13 6A • 
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The constants A, B, C and D of equation (2) . determined by 

using the first boundary conditions, given in equation (J), 

become 

A = 

B = 

C = 

D = 

fuJ 

EI 

M~ 1 MAti cos kL , 
k'EI sin kL - k~EI sin kL 

6. + 1 ( MA& MBA) , and 
L L k1EI - k1EI 

6.A - MA& 
k1 EI 

Combining equations (2) and (4) together with 

the last two boundary conditions given in equation {J), 

it follows that, 

• 
0u = MAB ( 1 1 \ M &A ( 1 1 \ 

k EI kL - tan kLJ + k El \sin kL - kL) 

and 

• 0oA = MA11 ( 1 1~ Mu ( 1 1 ) 
KE! .sinkL - kL) + k EI \kL - tan kL . 

For convenience the following definitions are introduced, 

2u = kL 

)'/(u) = J, (2~ - ta~ 2u) 

and ¢ (u) = 2 (s1! 2u - _J_) 
u 2u • 

It follows that equations ( 5) arid (6) reduce 

to the scalar form 

A 

(4) 

(6) 

(7) 
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(8) 
• 

and e&/1 = 

Arranging equations ( 8) into matrix form yields 

" ~(u) L e,., 1f.1u) L M~,. 
TE! oEI 

= (9) 

• ¢(u) L t( u) .b. 0611 MaA 
b EI J EI 

'l'he square matrix on the right hand side of equa

tion (9) is the flexibility matrix for a single member. 

Equation (9) is rewritten in the following symbolic matrix 

form 

= (10) 
-1 

Prern.ultiplying equation (10) by [Fm] , it follows that 

= (11) 

The matrix is defined as the stiffness matrix for 

a single member. 

Noting equations (9) and (11), one obtains 

-1 2'£1.i:I jEI 

[K~] [Fm] 
O L aL 

- = ( 12) 
-~ EI 2tEI 

U L OL 
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where a = 4_1!4Jl 0 
6 

Equation (11) 1s rewritten in component matrix form as 

-~EI -M,..t 2yjEI e,., 
OL aL 

= (13) 

Ma,.. ~EI 2r-z • 0u -a L 

The stiffness and flexibility matrices are reduced to the 

special case of a beam with zero axial load by noting the 

conditions that 

Lim. y;(u} 
2u -0 

Lim. ¢, (u) 
2u -o 

= 

= 

1 and 

1 

The resulting stiffness and flexibility matrices become 

_IL L 

[f=:b] 
JEI 6EI 

= 

L ____k_ 
6EI JEI 

4EI _2EI 

[ KmbJ 
L L 

and = 

EI 4EI • -2L T 

(14) 



7 

1.2 General Stiffness and Flexibility Matrices for the System 

In the case of continuous structural system, the 

stiffness matrix for each member will be 

. Combining the stiffness matrices for 

the entire system, it follows that 

= 

0 0 0 

0 

0 

0 

where [Ks ] 1 s a (2n x 2n) banded diagonal matrix with n 
equal to the number of meMbers in the system. 

If follows from equation (11) that 

{ m,} = 

where { m,} and ( e', ) a re of size (2n X 1) • 

(15) 

(16) 

Similarly, the flexibility matrix for continuous 

structural systems is 

·· GLtOWN 
LIBRARY 

313566 



0 0 0 

with equation (10) yielding 

= 

·• 

0 

0 

0 

8 

(17) 

(18) 

After applying the boundary conditions for moments 

and rotations at the ends of each member, and combining the 

resulting equations. The form of the stiffness 

reduces to [KsJ , and [C] reduces to the I s 

Then from equations (16) and (18), one obtains 

[ K sr] { 0~rl 

[F.r] {m,~ 

and 

matrix [Ks] 
fonn [Fsr] • 

(19) 

For non-trivial solutions of { e:,) and (m,,) , the 

determinant of [ Ksr] and. [ fs"r J must be zero. The deter

minant yields transcendental equations, the roots of which 

produce the critical buckling loads for the system. 'rhe buckled 
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mode shapes ( i.e. the relative end rotations) and the ratio 

of bending moments at the ends of members are found for each 

critical buckling load utilizing equation (19). 

1.J Modal Vector and Orthogonality Conditions 

The modal vectors of deformation associated with 

each critical buckling load are formulated. These modal 

vectors are combined into a general modal matrix for which 

the orthogonality conditions are determined. 

The scalar components of the modal vectors for the stiffness 

method are the ratio of end rotations, while the components 

of the modal vectors for the flexibility method are the ratio 

of end moments of the members. 

Defining the modal matrix associated with the ratios 

of joint rotations as [uk] , and the modal matrix associated 

w1 th the ratios of joint moments as [Ur} , one defines 

the following orthogonali t y conditions1 

[ ukf [Ksr] [ Uk 1 

[ Ur f [ Fs r] [Ur] 

= 

= 

, and 

(20) 

where [K:t] and [Fs:J are symmetric matrices with com

ponents which define the '!. ndiv1dual transcendental functions 
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that yield the critical buckling loads when equated to zero, 

If the determinant of either the stiffness or 

flexibility matrix is determined as a product of a set of 

functions in the form 

or 

det [ Ksr] 

det [Fsr J = 

it follows that, the matrices 

a diagonal form given as 

[ K:~] = [/\kt] = 

or [Fs;] = [ /\ft] = 

Equation (20) transforms the 

Dl,(u) 

O<'.'.,(u) 

0 

0 

/3, ( u) 

0 

() 

matrices 

p 1 ( u ) • • • • • ,Pm ( u ) I 

and [ 1 '] reduce to rsr 

0 . . 0 

CX,l(U) • . 0 

0 • . oln( U) 

0 . • 0 

ft_/u) • . 0 

• 

0 • . flm( u) 

[.K sr] and [Fs~] 
into a diagonal matrices which are produced in canonical 

function form as illustrated in equation (21) • 

If the determinant of either [ Ksr] or [ Fsr] 

( 21) 

cannot be reduced to the product of functions as given above, 



the matrices [K:r] and[ Fs:]will not be 

equation (21). However, the matrices 

diagonal as shown in 

11 

when evaluated at the individual values of critical buckling, 

transform to diagonal matrices. 

For convenience, the diagonal matrix [/\cJ is defined, 

where contains the critical buckling loads defined by equa

ti.ons ( 21) and takes the form 

0 0 

= 
0 p 

'lcr 
0 

(22) 

0 0 p 
J er 

The values of j _ 1, 2, ......• n, appear in order 

of increasing magnitude. 
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CHAPTER II 

SOLUTIONS OF CONTINUOUS COLUMN PROBLEM 

2.1 Simply-Supported Four-Span Column 

Consider the column ABCDE subjected to the axial 

compressive loads P at both ends as shown 1n Fig. 2 below. 

A B C D E 

p --.z i:: X: 1t £L~ p 

L- L, -~-- L2 __ .J___ L3 _j ___ L4 _J 
Fig. 2 Simply-Supported Four-Span Column 

The eight boundary conditions are 

MAe = 0 , 

MeA = l-1&c. = Me , 

Mee = Meo = l'lc , 

MDC = MoE = Mo , 
(23) 

flho = 0 , 

e8A = - 80c = 80 • 

0cB = -0co = 8c , and 

0oc = -0oe. :i;:: ep . 
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2.1A Stiffness Method 

The stiffness mat1x for the system is constructed 

as follows 

= 

2VIEI, ~EI, 
a~ a;t:; 

-P,fil.1 ~EI, 
o.,L 1 a., L, 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 0 0 0 0 0A8 

0 0 0 0 0 0 

~I,. -,i4! 2 0 
°'2 L 2 Qi.Li 2. 

0 0 0 

-.!B_EI2 i'k°EI2 0 
a2L2 a2 L2 

0 0 0 

0 O 2~El9 -JP,EI8 0 
G.a La °'s L3 

0 

0 0 -~El3 ~1/{EI8 0 
0.3La G.3La 

0 

0 0 0 0 i~1.-j,_g.,, 
~ L4 o.4 L4 

0 0 0 O · -J:.EI4 ~14 0io 
a.,L4 a.4 L4 

Applying the boundary conditions given above, one obtains 

the reduced form of equation (24) as 

-
0 -~I Y,;_1 0 0 0 8 

G.,L, 

0 0 0 

0 = 0 0 ~~E!t+~Y{EI3 t~r& 
fi2L2 a~a ~a 

0 0 0 iY'si,.t;-ilt~ ... . tll. 
~L~ ~L4 0:4 L4 

0 0 0 0 11tEI4 
v.,L+ 

(24) 

(25) 



The determinant of the reduced stiffness matrix yields 

( ,,, I:1+)'{ 1,)(2'\lf lJ!il2 l:s + 3 I, I,)] . = . 0 
1"4 1.3 ra L"' o~ a; L2 t 3 zr, t , 1:., 

For the special case where L,= L2 = L3 = L4 = L 

and I,= I 2 = I 3 = I 4 = I, equation (26) becomes 

sxl(¥ f[-¼' f ;1f ¢-f!c¥}~ +¢~+] = 0 

14 

(26) 

(27) 

Noting equation (27), the following fi"' trarni·eendental equa-

tions hold,: 

I 2V2lf-¢ "If 2fl.1f+1 = · ' 0 (28) 2lf+ "<j," = ::II' = = zr-1> . 

Applying each function of equation (28) to equation (25), 

the following modal matrix [UR] is obtained a 

1 1 1 1 1 

1 
1 0 1 -1 --./2 ./2 

[u~] = -1 0 1 0 -1 (29) 

1 1 0 1 -1 -- -./2 12 

-1 1 -1 1 -1 

Applying each function of equation (28) to equation (24), 

and noting the associated equation (29), the following modal 

• 



---

matrix is obtained1 

0 0 0 0 0 

0 1 1 1 0 

[Ur] = 0 -12 0 v2 0 

0 1 -1 1 0 

0 0 0 0 0 

The ratio of bending moments of the first and the last 

transcendental functions are zero. 

The orthogonality conditions of the mode shapes defined 

for the stiffness method become 

4a(2lf'~ cpJ 0 0 0 0 

0 '¥f (2.v2 v,,- <p) 0 0 0 

EI 0 0 ~tr 0 0 = T 

0 0 0 ?#(2.filf+<f>) 0 

0 0 0 0 4~ y~ 1>) 

15 

(30) 

(31) 

'rhe diagonal terms of the [ J\kt] matrix define the 1nd1 vi dual 

transcendental functions which yield the following critical 



buckling loads 

1 

(nf)EI,n=1,J,5.. 0 
r: 

0 0 0 

o 12.816EI 0 0 0 
I; 

0 0 20.187EI 
r: 

0 0 

0 0 0 29.70JEI 0 
tJ 

16 

0 0 
l 

0 0 (nW)EI,n=2,4,6 •• 
r: 

The associated mode shapes are shown in Fig. (3) 

( 32) 
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2,1B Flexibility Method 

Equation (18) t a kes the form 

e~a 21/(; L, </?_ L, 
1
6EI1 

1

6EI, 
0 0 0 0 0 0 MAB 

e&A 1..:k 2}'(kr 0 0 0 0 0 0 Ma,. 
6EI, EI1 

eBC 0 0 2~~ 
bEI2 "12 0 0 0 0 Mac 

eC.B 0 0 i~ 2}{~ 0 0 0 0 Mee 

- Eia EI2 (JJ) 

8co 0 0 0 0 2 ¼';L, ".b 0 0 Meo 
6EI3 oEI3 

eDC 0 0 0 0 ~ 21/(~ . 0 . o Moc 
EI!! EL, 

8oE 0 0 0 0 0 0 2 Y{L. lit Moa 
•blf:r,. 

eEO 0 0 0 0 0 0 ~ 2tL• MEO 

EJ:.i_ 6EI. 

Apply1rtg the conditions of equation (2J), one obtains 

0 2lf.; L, ,_, 1!.i L2 
16EI, +L 16ITT.a 

'f>. Lz 
2 6EI2 0 Me 

¢,, L2 L2 L3 ~ La 
(J4) 0 = 26EI2 2¼'6Eit2"3@3 3ffi3 Mc 

0 0 
~ L,, 
36El, 

L" L,4. 
21/{ ffit 2lf.'6 EI Mr, 



The determinant of the matrix [ fsr] yields 

= 0 

For the special case where L,= L2= L3: L4: L 

and I1 = I2= 13= I,= I , equation (35) reduces to the form 

= 0 • 

Noting equation (36), the following three transcendental 

equations holda 

The modal matrix [ Uf] for flexibility becomes 

1 

= 

1 

1 

0 

-1 

1 

v2 

1 

18 

( J.5) 

( J6) 

(38) 



The modal matrix [uk] 1s exactly equal to that given 

by equation (JO), except the first and the fifth columns 

cannot be obtained. 

The orthogonality conditions become 

= 

0 0 

0 0 

The associated matrix [/\ft] containing the critical 

buckling loads takes the form 

12•816EI 
0 0 L2 

19 

(J9) 

[ Acr] · 0 
20.187EI 

0 {40) = r; 

0 0 
29.70JEI 

r; • 

It 1s·· seen that one does not obtain the minimum value of 
2 

Pcr = (n 'ff)EI, n -= 1, J, 5 ••• and the maximum value of 
!I Pcr = {nff)EI, n = 2, 4, 6 ••• as obtained using the stiff-r; 

ness method, since the components of the reduced moment 

vectors { msr} are zero ( see equation J4) and as a result 

• 



equation (.35) is not valid. The resulting mode shapes are 

shown in Fig. (J). 

2 

= (n 17')
2
EI, 

L 

P2cr ;;; 12 1 81pEI 
L 

n = 1,J,5 •• p--- --

Fig • .3 The Five Possible Mode Shapes of 

Simply-Supported Four-Span Column. 

20 



2.2 Fixed-Supported Four-Span Column 

Consider the column ABCDE subjected to the 

axial compressive loads Pat both ends (see Fig. 4). 

Fig. 4 Fixed-Supported Four-Span Column 

The eight boundary conditions are 

MBA = Mee = Me ' 
Mee = Meo = Mc , 

Moc = Moe = Mo , 

0Ae = 0 ' 
0eA = -8ec = ea 

' 
8cs = -0co = ec ' 
0oc = -8oE = 0o ' and 

eED = 0 0 

21 

(41) 

• 
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2.2A Stiffness Method 

The stiffness matrix for the system is constructed 

in the same form as equation (24). 

Applying the boundary conditions given above, one obtains 

the reduced form of equation (24) as 

0 2~EL+2Yi~I, 
a, L, aaL2 

<;(EL 
a,.T.. 0 98 

0 = 
¢, EI2 

2tEI~2YfEis tEill 9c (42) ai L2 a,.L2 a.,L3 03L3 

0 0 tEI., 2~EI+2~~ 9o 
oal'.73 sL:, ~L+ 

The determinant of the reduced stiffness matrix yields . 

= o • ( 4J} 

For the special case where L1= L2= L,1= L4: L 

and I1 = I2.: I.,= I+= I , equation (4J) becomes 

= 0 • 

Noting equation (44), the following five transcendental 

equations holda 

= = = = 1 
21(-'i = o. 

(44) 

( 45) 
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Applying each function of equation (45) to equation (42), 

and the following modal matrix [ Uk] is obtained, 

1 1 1 

[Uk] = -./2 0 {46) 

1 -1 1 • 

It should be noted that the functions 2;+~ = ~ = 0 

yield the condition {esr} = 0, hence the special case 

of equation (43) does not hold. As a result the stiffness 

modal matrix reduces to a ()x J) matrix. 

Noting equations (24) and (46), the modal matrix [Ur] for 

flexibility becomes 

1 1 1 

0 .1.. 1 
./2 

[ur] = -1 0 1 (47) 

0 
1 

-f2 1 

1 -1 1 

The orthogonality conditions of the mode shapes defined 



for the stiffness method become 

= 

EI 
= 4,12-

La 
0 

0 

24 

12r 0 (48) 

0 

1 
where a :f: 0 for the conditions 2/2.lf-q> =~'r=2l2\f"+cf> = o. 

The d1~,gon•1·· terms of the matrix [ f\kt] define the indivi

dual transcendental functions which yield the following 

critical buckling loads: 

12.816EI 
0 0 

L 

[/\tr] = 0 20.18fEI 
L 0 (49) 

0 0 22.zo~EI 
L • 

The associated mode shapes are shown in Fig. (5). 

A 
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Applying each function of equation (52) to equation (50), 

the following modal matrix [Ur] is obta1ned1 

1 1 1 1 1 

1 
0 .l. 1 . J2 JZ -1 

[ uf] = 0 -1 0 1 1 (53) 

.l 
0 ..1. 1 -1 fi T2 

-1 1 -1 1 1 • 

Noting equations (JJ) and (5J), the following modal matrix 

[ Uk J for stiffness becomes 

0 0 0 0 0 

1 1 1 0 0 

= 0 0 0 · (54) 

1 -1 1 0 0 

0 0 0 0 0 

• 
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The orthogonality conditions become 

,. 

[Ur] [Fsr][ut] 

= [/\ft] 
2f2y;-¢ 0 0 0 0 

0 2/2\f 0 0 0 

= 2426~! 0 0 2ny+f 0 0 (55) 

0 0 0 2[2(2 r + <P > 0 

0 0 0 0 2 ./2 < 2 r-1) 

The diagonal terms of the matrix [Ah] define the indi

vidual transcendental function's · which yield the ' following 

critical buckling loads: 

- [Ac~] 
12. 8 1 6EI 

0 0 0 0 1 
L 

0 20,182EI 0 0 0 L1 

= 0 0 22.?0JEI 0 0 (56) 
L' 

2 

0 0 0 
( ?nf) in , 

3 L ~ l'l= , .2.. . .. 0 

80 7 1 ·,·""t 
0 0 0 0 

,.i, - ,-J, ,::, .e, . 
Ll 
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The resulting mode shapes are shown in Fig. (5) 

It is seen that one does not obtain the i.st two 

critical buckling loads by using the stiffness method, since 

the components of the reduced rotation vectors { 9sr} are 

zero (see equation (42~, and as a result equation (43) does 

not hold. 

12,816EI 
Lt 

20.187EI 
Lt 

= 29.?0JEI 
L" 

eo.748EI 
L' F-

Fig. 5 The Five Possible Node Shapes of 

Fixed-Supported Four-Span Column 
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2.J Fixed, Simply-Support~d Four-Span Column 

Consider the column ABCDE subjected to the 

axial compressive loads Pat both ends with a simple support 

on the extreme left end and a fixed support on the right 

end (see Fig. 6). 

p 

Fig. 6 Fixed, Simply-Supported Four-Span Column. 

The eight boundary conditions are 

M~B = 0 ' 
MaA = M ec = Me ' 
Mu = Meo = Mc ' 
MDC = Mee = Mn ' 

- 8sc e& 
(57) 

es,,. = = t 

8ca = - 0co = 0c 

Goe = -0t>e = eD 
' and 

e~I) = () • 



JO 

2.JA Stiffness Method 

The stiffness matrix for the system is constructed 

in the same form as equation (24). 

For the special case where L,= L,= L
3
= L.= Land I 1 = 1

2
= 

I 3 = 1
4

= I, applying the boundary conditions given above, 

one obtains the reduced form of equation (24) as 

0 2lE£ -~EI 
0.L 

0 0 eA, 

0 -t1tr ir tEf 0 e, 
= 

0 0 ~EI 4'fF;_I ~EI 9c 
a. L UL UL 

0 0 0 Cf. FJI 41/!EI eb 
a. L UL 

The determinant of the reduced stiffness matrix yields 

(58) 

= o. (59) 

where ½ d,= 2(4+212) and 

N,oting equation (59) , the following six transcendental 

equations holds 

= = 



Applying each function of equation (60) to equation (58), 

the following modal matrix [ Uk] is obtained 1 

1 1 1 1 

z. £ 2 2 
d1 d, -c1 -a: 

1 I. 

31 

[ Uk] = (61) 

-k _l_ .1_ _l_ 
J2 ./2 -JI 

.2. _2 z 2 --d, di di d • 1 

1 = 1 = 0 
2f+cp 2y-ip 

yield the condition { e~) = O, hence equation (59) does 

It should be noted that the functions 

not hold. As a result the stiffness modal matrix reduces 

to a (4 x 4) matrix. 

Noting equations (24) and ( 61), the modal matrix [ U:] for 

flexibility becomes 

1 1 1 1 

-~ ~ 4 4 

[Ur] d~ -d, d, d~ ( 62) = 
,/2 + 1 -(12-1) -( /2 -1) /2 +1 

-(4t1Jd~ ( f221)d, -C4~)d, (E~l)d, 



J2 

The orthogonality conditions of the mode shapes defined 

for the stiffness method become 

[ u.]' [ K ., ] [ u] 

= [ j\kt] 

J.656 (d}(-<f) 0 0 0 

0 1. 5J2 (d,Y-~) 0 0 
= EI (63) 

Tii 
0 0 1 .532 (df+1) 0 

0 0 0 J.656(dtt-1) 

where ~ -;: O for the conditions d}f-¢ = d~-rp = d}f+~ = df+f = o. 

The diagonal terms of the matrix [/\kJdeflne ~he individual 

transcendental functions which yield the following critical 

buckling loads: 

10 1 628EI 0 0 0 
Lir 

[ J\cr] 
0 16 1 080EI 0 0 

= L,. (64) 

0 0 24 1 200EI 0 
Li 

0 0 0 J4 1 8~EI • 
L 

The associat ed mode sh a pe :; are shown in Fig. 7 • 
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2.JB Flexibility Method 

The flexibility matrix for the system 1s g~ven by equa

tion (JJ). For the special case where L 1 = L
2
= _L

3
= L

4
= L 

and I,= I 1 = I~= Ii= I, applying the boundary conditions 

of equation (57), one obtains 

0 4r..L_ 
p6~I 

0 0 . M, 
6EI 

0 
~6~I 

4t-_L 
~6~I 

0 Mc 
6EI = 

0 0 ~tr 4'fJ... cp..L_ Mo 
6EI 6EI 

0 0 0 ¢-1L 2 'fl M,o 
6EI 6EI 

The determinant of the matrix [c ] Gr yields 

(6~1Hc~f l Cd!f-1' l c dr'f i <d/f'-f l] = 

• 

0 • 

Noting equation (66) , the following four transcendental 

equations holds 

(65) 

(66) 

d,Y-f = = o. (67) 

Applying each function of equation (67) to equation (65), 

the modal matrix [uf] for flexibility is obtained exactly 

the same as that given by equation (62). 



Noting equations (JJ) and (62), the modal matrix [u~]ror 

stiffness is exactly equal to that given by . equation (61). 

The orthogonality conditions become 

== [J\t] 
24. 99 ( d~-1) 0 0 0 

0 0 0 

34 

1. 786 ( df-<p) 
== L (68) ... 6EI 

0 0 1. 786 ( df+'P) 0 

0 0 0 24. 99 ( ar+c/>> 

The associated matrix [i\cr] containing the critical 

buckling loads is exactly the same as that given by 

equation (64). 

The resulting mode shapes are shown in Fig. 7 • 

It is seen that both the stiffness method and 

flexibility method obtain the same four critical buckling 

loads and associated mode shapes. 

three-span and two-span continuous columns 1 subjeot to 

similar boundary conditions as presented above) is summarized 
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1n APPENDIXA. All critical buckling loads, mode shapes, 

stiffness matrices, flexibility matrices, and orthogonality 

conditions are presented in a compact tabular form. 

Pier= 10,628EI 
Liz: 

16,080EI 
L'-

24.90EI 
L' 

34.81EI 
L" 

-P 

Fig 0 7 The Four Possible Mode Shapes of Pixed, 

Simply Supported Four-Span Column 



CHAPTER III 

SOLUTIONS OF THE ORTHOGONAL PORTAL FRAME PROBLEM 

J.1 General Stiffness Matrix Formulation 

Consider the orthogonal, portal frame ABCD, 

columns AB and CD are subjected to the axial compressive 

loads Pi and~ at the ends Band C, respectively, and 

a torsional spring kt. is located at the support A and 

a torsional spring kt2is located at D (see Fig. 8). 

L,EI 

L1, EI L., EI, 

Fig. 8 Orthogonal Portal Frame 

36 
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The seven boundary conditions are 

M ,.II = I< t,8,_ 8 = kt 1 (t +e:g) ' 
MBA = Ma, = Mt 

M C:B = - Mei, = Mc 

MDC. = kt~8oc = kt2 ~ + 8~ (69) 

MIA + MGI>- M~ Mi,i"( R+ P2) 6 = 0 ' 
-eiw: = e8A = (e:cf) and 

0ca = eel> = (e:"- ~ • 

The stiffness matrix for the system 1s constructed 

as follow, 

0 
= 

0 

0 

0 

0 

0 0 

0 0 

4EI _2EI 
L L 

0 _2EI 4EI 
L L 

0 0 0 

0 0 0 

0 0 

0 0 

0 0 
(70) 

0 0 

For simplicity and convenience the stiffness 

method 1s utilized to solve frame problems, since, in 

general, the vector { 0sr} i= 0 for the usual modal shapes 

defined at critical loading. 
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Applying the boundary conditions given above, one obtains 

the reduced form of equation (70) as 

0 

0 = 

0 

where 

= 

ku = 

ku. 

kn 

EI 
-2-

L 

(71) 

( 72) 

Eit , and 
Lt 
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For the special case where P, = P1 = P ,. kt1 = kt~= kt , 

L1= Land I 1 = I , the determinant of the reduced stiffness 

matrix yields 

where, 

D, = 

= 

<j/EI 
2'f. (aJt 

+ 2\j/EI 
a kt- 61: 

= 0 (7J) 

(74) 

+ 2 
• 

Noting equation (7J) and (74), the following two transcen

dental equations holda 

= = 0 • (75) 

Applying each function of equation (75) to equation (71) 

noting equation (74), and the following modal matrix [Uk] 
is obtained, 



1 1 

[ Uk] = -1 1 

C. 0 

2t+ (t1Ef + 6 

where cl kt-2dEI 
= L et ~Iv 2\f+P +al:"" 

a a t-2'tfEf 
• 

The orthogonality conditions of the mode shapes defined 

for the stiffness method become 

where 

= 

0 

= 

0 

= 

1. ~ O for the condition q = 0 • 
CL 

40 I 

( 76) 

(77) 

(78) 



J.2 Simply Supported-Frame. 

Consider the orthogonal, portal frame ABCD, 

in Figo 8 in the case of simple supports, that is kt 1 = 

kt= 0 and M.= M = 0 (see Fig. 9) • 'l, ,. 11, 

P, Pi 

B i.-------.+ C 
L, EI 

L,, EL 

A D 

Ftg. 9 Simply Supported-Orthogonal, Portal Frame 

Equation (71) reduces to the form 

0 JEI, 4EI -2EI ~EI, e.( 
- + L L - ,L, ~L, 

0 = -2iJ )EI, L~EI JEI et, 
L 'f"-L, + L 'fiL, 

0 2.EI, )EI, { 1+1 ,. } EI, 6. 
-y,L, 3/'2L1 'f, y,_-4 (U.+'V L, L, • 

41 

(80) 



The determinant of the reduced stiffness matrix yields 

For the special case where P1 = Pt= P, L
1
= L 

and I 1 = I , equation (81) becomes 

3 

-12u (~ ) (2u tan 2u - 6) C-~+2) (y;) ( ta; 2u) = o. 

Noting equation (82), the following four transcendental 

equations holds 

2u tanai - 6 -1 
= r + 2 

1 
= r = 

1 

tan2u = 0 • 

42 

(81) 

( 82) 

(8J) 

1 1 
It should be noted that the functions r = tan 2u 

= 0 yield the condition { 0sr} = 0, hence equation (8J) 

does not hold. 

The modal matrix [uk]of equation (76) becomes 

1 1 

[ Uk] = -1 1 (84) 

d.s 0 ' 

where d.s = 2r+ 1 = 3.2946 • r= 1.147J 



Noting equations (70) and (84) , the modal matrix [ LJ,] 
for flexibility becomes 

1 1 

4J 

= (85) 

-1 1 • 

The orthogonality conditions of the mode shapes defined 

for the stiffness method take the form 

C3 (2u tan2u - 6) O 

0 

1 

(86) 

where C3 = -4u(2VI + 1) 
/ tan 2u 

0 for the condition 

2 u tan2 u - 6 = O • 

The diagonal terms of the matrix [/\kt] define the indi

vidual transcendental functions which yield the following 

critical buckling loads: 

1 ! 82~EI 
L 

0 

[/\er] 
(87) 

= 
0 12 1 888EI 

L" • 

The associated mode shapes are shown in Figo 12, 
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J.2A Simply Supported-Frame Neglecting Sidesway 

In the case where sideway is neglected, t::. = O , 

"' hence 0,.8 

equation (80) reduces to the form 

0 
,1EI, 4EI- EI 

0ec -+ -2 -'I{ L, L L 

= 

0 -2EI ,2.EI1+ 4EI 0ca 
L '-f{L, L • 

For the special case where ~=Pi= P, L,= L and 

I 1 = I , the determinant of the reduced stiffness matrix 

yields 

= 0 • 

Noting equation (89), the following two transcendental 

equations hold1 

= = 0 • 

(88) 

(89) 

(90) 

Applying each function of equation (90) to equation (88), 

and the following modal matrix [Uk] 1s obtained 1 



1 1 

= 

1 -1 • 

Noting equati9ns (70) and (91) , the modal matrix [Ur] 
for flexibility becomes 

1 1 

= 

1 -1 • 

The orthogonality conditions of the mode shapes defined 

for the stiffness method reduces to 

= 

= 2lil 
L 

2 + 2 y 

0 

0 

The diagonal terms of the matrix [./\kt] · def 1ne the 

individual transcendental functions which yield the 

following critical buckling loads: 

12!888EI 0 

r \ l 
L* 

= . I 
• nj 

0 15.80EI 
Lt • 

The resulting mode shapes are shown in Fig. 12. 

(91) 

(92) 

(9J) 

(94) 



46 

It 1s seen that the lower critical buckling load 

neglecting sidesway is the same as the higher one of 1nclu

d1ng sidesway-case. Hence, the lowest critical buckling 

load occurs when sidesway is presento 



3oJ Fixed Supported-Frame 

Consider the orthogonal, portal frame ABCD in 

Flgo 8 in the case of fixed supports, that is kti= kt,= oc, 

and eA& = = o (see Fig. to) • 

L,EI 

A D 

Fig. 10 Fixed Supported-Orthogonal, Portal Frame 

Equation (71) reduces to the form 

0 2~EL + 4EI -2EI _ ( 2~+ ~,)EI, 0ec 
,L1 L T a, a1 L1 

0 = 2 
EI 2~EI 4tI (2~ ~,EI, 9ca ( 95) 

- L L + a, a Li 

0 -( 2f+ <k.~ EI1 ( 2 l/!i/e~ 1U, k» 6 
0.1 Cl1 L1 a, a L, T1 



where = 

The determinant of the reduced stiffness matrix yields 

For the special case where ~=Pi= P, L1 = L and 

I 1 = I, equation (97) becomes 

, ' 
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(97) 

-&( ~r) ( 2u+6 tan2u) MJ1' 1){ t~2u) ht!,~ { 2'(:~) ( 2f-~) = o, C 98) 

It should be noted that the functions 1 1 
tan2u = U¼-tanu 

1 1 
21f+cf, = 2r-c/> = 0 yield the cond1 tion { 0sr) = 0, , 
hence,equation (98) does not hold. 

The modal matrix [Uk] of equation (76) takes the form 

1 1 

-1 1 (99) 



where d,4 2r 1.704. = -+2r-cf> = 2r+o Y= 2.8J8 
cf> = 4.528 

Noting equations (70) and ( 99), the modal matrix [ Ur] 
for flexibility becomes 

1 1 

[ Ur] -0.911 o.415 
= 

0.911 o.415: 

1 -1 • 

The orthogonality conditions of the mode shapes defined 

for the stiffness method take the form 

[uS[K,,][u] 
= [Akt] 

EI 
= L 

0 

0 

0 for 

49 

(100) 

(101) 

The dl,agonal tenns -of the matrix [J\kt]define the indi

vidual transcendental functions which yield the following 
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critical buckling loads: 

7.J71EI 0 

[ Acr] 
L"' 

= (102) 

0 22.20EI 
L' • 

The associated mode shapes are shown in Fig. 12 • 

J.JA Fixed Supported-Frame Neglecting S1desway 

In the case where side sway is neglected, A = o, 
• • • • 

thus e,.. = . e,., 
' e,A = e.,. ' eto = eCD eDC C 0oi:.and 

equation (95) reduces to the form 

0 2~I1 4EI _
2

EI 
a.,L1 + L L 

= (103) 

0 
2

EI 2~I+ 4EI a. 
- L O.,Li L 

For the speclal case where ~ = P1.= P, L,= Land I,= I , 

the determinant of the reduced stiffness matrix yields 

= 0 

Noting equation (104) , the following two trancendental 

equations hold• 

0 

(104) 

(105) 
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Applying each function of equation (105) to equation (10J), 

the following modal matrix [uk] 1s obtained1 

1 1 

= 

1 -1 

Noting equations (70) and (106) , the modal matrix [uf] 
for flexibility becomes 

1 1 

[ Ur] 
o.415 0.76 

= 

o.415 -0.76 

-1 1 • 

The orthogonality conditions of the shapes defined for 

the stiffness method become 

T 

[Uk] [Ksr][uk] 
= [AkJ 

~•+1 0 

= 4
EI 

3 (4~•+~ L 
0 • 

( 106) 

(107) 

(108) 



The diagonal terms of th~ matrix [/\it] define the indi

vidual transcendental functions which yield the following 

critical buckling loads: 

2,2.20EI 
Lt 0 
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[ J\~] = (109) 

0 J0.~26EI 
LL • 

The resulting mode shapes a.re shown in Fig, 12. 

It 1s seen that the lowest critical buckling 

load occurs for the case where s1desway is present. 
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J.4 Fixed, Simply Supported-Frame 

Consider the orthogonal, portal frame ABCD in 

Fig.8 .. for. the case of a simple support on the left and a 

fixed support on the right end, that is kt. = 0, kt2 = oc, 

M,.., = O and 8 0c:= 0 (see Fig. 11). 

L,EI 

L,, EL 

A D 

Fig. 11 Fixed, Simply Supported-Orthogonal, Portal Frame 

Equation (71) reduces to the form 

0 JEI,+ 4EI _2EI _JEI, Gae 
'ftL1 L L fiL, 

0 = _2EI 2~I l-1,El ( 2f+ ~1)EI 1 a (110) -'+ -
L 1L1 L 1 t L1 

0 _lEI1 ( 2r.+8~Eit1 + 2(2t+3•)- 4 (u;._J)}E~ 6 
Y1L, t t L, ft 1 t L1 L, 



The determinant of the reduced stiffness matrix yields 

For the special case where P1 = P1 = P , L
1 
= L. , and 

I 1 = I equation (111) becomes 

54 

(111) 

This equation yields many r,oots of transcendehtai·function, 

one eons1ders the first two., root·s. 

Applying the function of equation (112) to equation (110), 

the following modal matrix [Uk] is obtained a 

1 1 

-8.316 0.20409 (113) 

0.20830 

Noting equations ( 70) and ( 113) , the modal !llatrix [Ur] 
for flexibility becomes 

1 1 

-1,'109 -0.3295 (114) 

-2.194 -0.41.39 



The orthogonality conditions of the mode shapes defined 

for the stiffness method become 

where e,, = 

= 

= 

= EI 
L 

326 • 04+280.391'+ 71.041cp+ JlJ.89-1044.25 U. y o a · 

1. SBo4 +0. 42 69:f + O. 1 718f+ 3. 3502-0. 3471 u , 
'f a a 

- 2 4,760+7.324of+ 5.3592f+ 1J.4J5-19.0J86u r a a 

Equating e,, = 0 , it follows that, 2u = 2.103, 

55 

(115) 

(116) 

1.5184, 0 

values, one obtains 

= 1. 954 , a = 0.9006. For these 

0 0 

0 -15.3690 

where it 1s noted that e 1'1. = O • 

Equating eu = 0, it follows that, 2u = J.8765 , 

'( = -o.66125 , f = -2.71710, and o = -0.93894. 

(117) 
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. : 

For these values, one obtains 

-3699.1671 0 

[/\kt] = (118) 

0 0 

w1 th the condition that e 12 = O • 

The associated critical load matrix takes the form 

0 

= (119) 

0 15.027EI 
Lt 

'rhe resulting mode shapes are shown in Fig. 12 • 

J.4A Fixed, Simply Supported-Frame Neglecting Sidesway 

In the case where sidesway is neglected, 6. = 0 ' • e,.~ • • hence e .... = eBA = eH ecp = eCP . 
• 

0oc = 0oc and equation (110) to the form 

0 }EI+ 4EI -2EI 0ec 
'rL L L 

= (120) 

0 -2EI 2'f-EI+4EI et. • 
L a L L 

For the special case where ~ = ~= P, L1 = L and I
1 
= I , 



the determinant of the reduced stiffness matrix yields 

= 0 

Noting equation (121) , the following transcendental 

equations holds 

57 

( 121) 

= 
1 

r = = 0 • ( 122) 

Applying each function of equation (122) to equation (120), 

the following modal matrix [ Uk] is obtained: 

1 1 

= (123) 

0.36 5.01 

It should be noted that the functions .1. = 1 = 

1 = 0 yield the condition { eST) 0 
r 2y+~ 

= , hence 
2f-¢ 

(117) does not hold. The modal matrix [ Ui] is equation 

obtained from the first transcendental function. 

Noting equations ( 70) and ( 12J) , the modal matrix [ Uf] 
for flexibility becomes 

= 

1 

-0.175 

-0. 3014 

1 

( 124) 



/) 
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The orthogonality conditions of the mode shapes defined 

for the stiffness method take the form 

i 

[ Uk] [ Ksr] [ Uk] = [K:r] 

[ 
Tl" n.,] 

= EI (125) 
L 

Tlll Tiu. 

where nH = ; + 0.259 'f!+ J. 078 a . 

'Tl u. = l+50.2lf+ 84.36 , and (126) . 
'r a 

'YI,, = TI 'a.I = 
3 + J.61 't+ o.474 r a . 

Equating 1111 = 0 , it follows that, 2u = 3.76 f 

1r = -0.9192 , ¢ = -J.1973 , and a = -1.141 • 

For these values, one obtains 

0 0 

[J\kt] = ( 127) 

0 121.538 

where it is noted that TI,'I. = 0 

Equating na = 0 , it follows that, 2u = 5.28 , 

y = o.4732 , ¢, = -t.5718 t and Cl = :...0.2624 • 

For these values, one obtains 

[J\kt] = 
[i!, 9:07 :] (128) 



with the condition that 0 • 

The associated critical load matrix takes the form 

14.1J8EI 
La 

0 
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(129) 

0 27.878EI 
L1 

The associated mode shapes are shown in Fig. i2 • 

It is seen that the lowest critical buckling 

load occurs for the case where sidesway is present and 

the next higher critical buckling load occurs for the case 

when sidesway is neglected. 



Simple .Supports Fixed Supports Fixed, Simple 
Supports · 
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Fig. 12 The l 'ossi ble Mode Shapes of 
the Orthogonal Portal Frame 
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CHAPTER IV 

TABULAR RESULTS OF MINIMUM CRI'rICAL BUCKLING LOADS 

Boundary Conditions Two Spans Three Spans Four Spans 

1 a l 

Sintple · Supports 91 EI <J! EI 9/ EI 
77 77 -v 

Simple,-Fixed 12.816EI 11.22EI 10.628EI 
Supports Ll La Lt 

Fixed Supports 20.19EI 14.75EI 12.816EI 
Lz L2 L;: 

Table 4.1 Minimum Critical Buckling Loads for 

Continuous Columns 

Boundary Conditions 1st 1st Non- 2nd 

Sidesway S1desway Sidesway 

Simple Supports 1.82JEI 12.888EI -L2 LI 

Simpl~ ,-Fixed ;J.42JEI 14.1J8EI 1,2. 022EI 
Supports L2 La L2 

Fixed Supports /.J71EI 25.202EI -12 LZ 

Table 4.2 Critical Buckling Loads for the 

Ortho '.;onal Portal Prames 

2nctNon-
Sidesw:ay 

15.S0EI 
L2 

27.8Z8EI 
Lt 

JO.526EI 
Li 
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

5.1 Discussion 

For the static stability problem, considering the 

axial forces in the column only, the use of the stiffness 

method is more efficient than the flexibility method, since 

the minimum critical buckling load is always obtained and 

the mode shapes defined by the ratio of the joint rotations 

are easily produced. The flexibility method is also useful, 

but possesses certain irregularities. One is not assured 

that the minimum critical buckling load and the associated 

mode shape are produced. It is, however, not necessary to 

make the system statically determinant by removal of certain 

redundant forces, as in the general bending problem since 

the application of the boundary conditions yield a set of 

homogeneous equations. 

For a continuous column simply supported at both 

ends, the ratios of bending moments at each support takes 

the form 8 which is an undefined quantity, Therefore~the · 

flexibility method cannot be utilized conveniently to deter- · 

mine critical buckling loads. 
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For a continuous column fixed at both ends, the 

ratios of rotations at each support is equal to §. Hence, 

the use of stiffness method is mathematically restricted. 

In the case of a continuous column with one end 

simply supported and the other is fixed, the ratio of bending 

moments or the ratio of the joint rotations are always a 

defined values. Thus, both the stiffness method and the 

flexibility method are equally convenient to use. 

For the continuous column-problem, the lowest 

critical buckling load is always determined by the stiffness 

method. If the flexibility method is used, the lowest cri

tical buckling load 'Il@.y or may not be determined, 

For a orthogonal portal frame, the ratio of joint 

rotations and the ratio of bending moments are always defined. 

The lowest critical buckling load occurs for the case where 

sidesway is present, regardless of the type of boundary 

conditions. The use of the stiffness method is more efficient, 

since the lowest critical buckling load and corresponding 

mode shape are always produced. 
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5.2 Conclusions 

Generally, the stiffness method is more complete, 

convenient and useful to solve the structural stability 

problem. 

For the simply-supported two, three and four-span 

continuous columns of equal span lengths, one obtains the 

sa!Ile lowest critical buckling load Per = 7LE.I for each case. 
Lz 

The value of the lowest critical buckling loads 

for a continuous column fixed at both ends and having equal 

span lengths are determined for the two, three, and four

span geometry respectively as Pera= 20.19EI, Per= 14.71EI, 
L 1 3 

L 
and Per= 12.816EI. It is seen that as the number of equal 

4 Le 
length spans increase, the lowest critical load decreases. 

For the case of a continuous columns fixed at one 

end and simply-supported at the other, the minimum critical 

buckling loads for the two, three, and four-span conditions 

become 

Pc-r = + 

Per = 12.816EI , Per = 11.22EI , and 
t Lt ~ L ~ 

10.628EI • Hence, as the number of equal length spans 
L 

increase, the value of the minimum critical buckling load 

decreases. 

As the degree of fixity of the continuous column 

increase, the value of the lowest critical buckling load 
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increases, 

For the orthogonal portal frames, the value of 

the lowest critical buckling load always occurs for the 

case where sidesway is present, The next higher critical 

buckling load usually occurs as the first ·· non-s1desway mode, 

The lowest critical buckling loads for the oases of simple 

supports at both ends, simple-fixed supports and fixed 

supports at both ends are respectively, Pier = 1, 82~EI, 
L 

4. 42 3EI , and P,cr = 
L~ 

7,371EI • 
L,. 

For a simply supported column, the ·value of the 
.2 

Euler load is given as Pe = ff EJ; • For the simply supported 
L 

frame, the lowest value of Per 1s only 18, 47 % of the Euler 

buckling load. That is, the critical buckling load 1s reduce 

by 81,53 % , 

For the case of fixed-simply supported frame, 

the lowest value of Per is 44,81 % of the Euler buckling 

load. 

For the ease of fixed-fixed supported frame, the 

lowest value of Per 1s 74,66 % of the Euler buckling load, 
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APPENDIX A 

SUMMARY OF THE TnHEE AND TWO SPAN-CONTINUOUS COLUMN 



A. 1 'l'hree-Span ColYmn 

Stiffness Matrix 

M,.., I I 25 -g 0 0 0 O l r 9Aa l 
M,,. I I -t 2f 0 0 0 o 11e,A I 

M,, I 0 0 2'[ -g 0 0 8,c 

=EI 
L 

-i 2'/! Mee I 0 0 0 0 0c.a 
a a 

Mc.o I 10 0 0 o 2)£/ -t I I eu I a a 

MDC I 10 0 0 0 -g 2r 11eDC I 

r eA, l 

1 ea,. I 

9oc 

= L 
6EI 

0c, 

10" I 

1eoc I 

Flexibility Matrix 

j 2}11' ¢ 0 0 0 0 I I MAI, 

I~ 2y 0 0 0 0 I I M,A 

I o 0 2y ¢ 0 0 I I M,e 

I o 0 ¢ 2'( 0 0 I I Mc, 

I o 0 0 0 2'f/ ¢ I I Meo 

I o 0 0 0 9 2'f I I Moc 

0\ 
---,J 



Six boundary conditions 

Simple Supports 

M,.. = 0 

M.,,. = Ma, = M, 

M,. = MCD = Mc 

Mo, = 0 

e,. = -0ac = e, ,and 

, ec:a = -ec. = ec 

Fixed Supports 

M 6A = Mr.c = M. 

M C'B = Meo = Mt-

e,.. = 0 

e,. = -e," = e, 

ec, = - e," = ec ,and 

eoc = 0 • 

Fixed, Simple Supports 

M,.. = 0 • 

MBA = M,e = M, 

Me, = Meo = M" 

e BA = -eat= e, 

eea = -eCD = 9c ,and 

ellt = 0 

o, 
O:> 



Stiffness Method 

Simple Supports Fixed Supports Fixed, Simple Supports 

Applying the boundary conditions, one obtains 

o I l2'f -t 0 0 eA& 0 21J! -f 0 11 e., a 
a a 

o I 1-ci 4Y!_ t 0 e"' r O l r 4{ t lf 0• 1 0 = EI -<}_ 4'f' 1 Ilea a a a L a a a 
=EI 

o I IO p 41f cj_ ec [oj L l ~ 4( J l ec j . l o j l 0 g 4( ll0e a a a 

o I k) 0 p_ 2y eK 
a a 

L .J L. 

The determinant of 'J;he reduced stiffness matrix yields 

t 4y/-;) ( 4'(+$) 0 • (4'(-~)(4'f"+c/>) 0 • y<4'f'-/J> C4'(+/J) 0 = = = 21f + ). ( 2\(- ) • 

°' '-0 



Simple Supports 

The transcendental equations becomes 

1 0 
2'f+~ = • 

4f-<p = 0 
' 

4'f+f = 0 ,and 

1 
0 

2'f-¥ = • 

The modal matrix [ Uk] takes the rorm 

1 1 1 1 
1 1 

-1 · [Uk] = I 1 
- --

[Uk] 2 2 
1 1 -1 -1 2 2 

1 -1 1 -1 • 

Fixed Supports 

· 4f-~ = 0 ,and 

4Y+¢ = 0 • 

: [ _: :] [ u~J = 
• 

F1xed, Simple Supports 

4lf'-/J = 0 
' 

'r' = 0 ,and 

4f+fj = o. 

1 1 1 
/3 [5 
2 0 -i 1 -- 1 -- I • 2 2 

"'-..J 
0 



Simple Supports Fixed Supports Fixed, Simple Supports 

The modal matrix [ Ur] becomes 

0 0 0 0 I I 1 1 0 0 0 

1 1 0 0 1 1 
1 1 1 

[ uf] =I [ Ur] 
-2 2 [ uf] = = 

1 1 l-!3 ff -1 1 0 0 -2 -~ 0 

0 0 0 0 1 -1 I I 2 -1 2 

T 

The orthogonality conditions are [Akt] = [ LJ k] [ K sr] [Uk] , or 

1 0 0 0 14f-[3 0 0 2y+cJ, 

[J\kt] = I 
0 4'f'-f 0 0 

[ 41-t O l [Akt] = I 0 r 0 

[J\kt] = 
4'f+<f O L o ti,r+[j 0 0 0 4'f'+1 0 . ...... .. 

0 0 0 1 
2'f-~ 

"'1 
!..A 



Simple Supports Fixed · Supports 

The critical buckling loads reduce to 

[/\crJ ~ 

2 

{nf)EI,n-l J 5 0 O Lt - , , • • 

0 

0 

0 

14 • .22EI 
Lt 

0 

0 

0 0 

26~EI 0 
La 

2 

O (n1)~I'n=2,4,6 •• 
L 

14.t..25EI 

[ Act] = 

La 
0 

Fixed, Simple Supports 

1l.22EI 0 0 
La 

[Acr] = 0 20 1 l~EI 0 
L 

0 0 32 .89EI 
L' 

L 

7 

0 26~EI 
L 

-.,J 
I\) 



Flex1b111t.l._Method 

Simple Supports Fixed Supports Fixed, Simple Supports 

Applying the boundary conditions, one obtains 

0 2'f' <b 0 011 MAe I I
O 
I I 4Y ~ OI I M8 I 

: l ~6i1 ['I: :J [ :J 0 cf, 4r ~ 011 Ms I IO 1=_L_ I <p 4f <p I I MG 
= L 6EI 

6EI 
0 0 0 4f t Mc lOJ L o <p 2\/j L Moc - • 

o I I o 0 1 2f Moc 

The determinant of the reduced flexibility matrix yields 

C4f-1> (4Y+c/>) = o • (4'(-fH4\f/+1><2lf1+1> (2f-1>> = o • '(<4y-JJ> (4f+JJ> = o • 

-.J 
w 



Simple Supports Fixed Supports 

The transcendental equations become 

4Y-¢ = O ,and 4Y,-¢ = 0 , 

4Y,+¢ = 0 • 4Y+515 = 0 ' 

2Y,,+~ = o ,and 

2r-~ = 0 • 

The modal matrix [Ur] takes the form 

r 
1 1 1 1 

[Ur]: [_:. :]_ 
1 1 1 -1 

[ Ur] = 
-2 2 

1 -~ 1 1 -2 

1 -1 1 -1 

Fixed, Simple Supports 

41/'-vJ = 0 

'f = 0 ,and 

4f+.f5 = 0 

I i 1 1 

[Ur] = 1-vJ 0 v'j 

12 -1 2 

--.J 
~ 



Simple Supports Fixed Supports 

The modal matrix [ uk] becomes 

1 1 0 0 0 0 

1_: 
1 1 1 0 0 

[ u~] -
[Uk] = 2 = 1 -1 1 0 0 2 

1 -1 0 0 0 0 . 

[Aft] 
T 

The orthogonality conditions are = [Ur] [Fsr][Ur] 
4,V-$2'.> 0 0 0 

[1\] = 14~¢ 0 

[Art]= I 
0 4)?'"+~ 0 0 

4Y.,+¢ I 0 0 2}v+<,S 0 

0 0 0 2Y,--¢ 

Fixed, Simple Supports 

1 1 1 

a. 0 
.fJ 

2 -2 [Uk] = 1 1 1 
-2 -2 

0 0 0 

, or 

4Jv-~ 0 0 

[ Ar 1) = 
0 r 0 

o o 4y+v,-

---.J 
\J\ 



Simple Supports Fixed Supports Fixed, Simple Supports 

The critical buckling loads reduce to 

14.75EI 0 I [1\cr] = :-L,.-
26.ltEI I 0 

14.~EI 0 
L 

0 26.52EI 

[Acr] = 
I La 

0 0 

0 0 

I 11.22EI L'J. 

[/\er] =1 0 

0 

-
7 

0 0 

0 - 0 

2 
( 2n'9!) EI, 

L2 n=l, 2, J •• 0 

0 80 _._z_48EI 
L2-

0 0 

20 1 12EI 
r: 

0 

0 )2. 89EI 
I: 

--,J 
0\ 



Simple Supports 

2 

(n7!~EI,n= i,3,s ... 
L 

P,c.r = 

.jJ.. ...... __ "".l....L_p 

Fixed Supports 

Pier= 14.75EI 
L 

P-- ---~~ -p 

Fixed, Simple Supports 

Pier= 11.22EI 
-"r; 

---p 

P2c, = 14. 75EI P2cr = 
L2 

....... ~~----,.... 
P -~~~---- -----=-=.,,,, --P P - - - - - .JJ:---- -P 

P:sc..-= ~2EI 
L 

p -·.j;];;----=----...,..---,~ ----::c.i.---P 

P4cr = (n~{EI,,n= 2,4,G .•• 

p ---P 

2 

P:sc..-= (2n71)EI ,n= 1,2,:s ... Lz 

p --- -P 

P2cr = 20 I 1;mr 
L 

p -~..;::..;~~;;;..:::_,::_;;-:!:L - p 

P4cr = 80 • 7J'8EI P:scr= 

-- -- -P P -- ~------- -P 

Fig. A.1 The Possible Mode Shapes of Three-Span Column "" "" 



A, 2 ~wo-Span Column 

Stiffness Matrix Flexibility Matrix 

MAB I I 2S _cp 0 O l I 9Ael I eAs l r 2y.r ¢ 0 0 I I MAB a 

MaAI 1-P 2!£r 0 0 9aA 0eA I ¢ 2yr 0 0 I I MeA a a 
= EI = L 

L 

I 9ac 
6EI 

Mui 0 0 2~ -p 9ec I 0 0 2y cj; I I Mee 
Q a 

Meal I 0 0 -<? 2¥( I I ece I I 9ce I I 0 0 <p 21/1' I I Mee. a a - - -

Four boundary conditions 

Simple Supports Fixed Supports Fixed, Simple Supports 

MAB = 0 ' Me,. = Mac = M., , MAB = 0 ' 

MBA= Mee. . = Me' eAB = 0 ' MaA = M,c. :::: Ma, 

Mee = 0 ,and 9a,. = -9ac. ::: 9 ,and e.,. ::: -8ac. = 8
8

, and . 8 
"'1 
O'.) 

6)l\A ::: -eec = ea. 8q, = 0 • 9c.a = 0 I 



Stiffness Method 

Simple Supports Fixed Supports 

Applying the boundary conditions, one obtains 

r : 

2:f -1 0 eAB 
a 0 

[ 0] ~ Ef [ 4¥] [ e.J. = EI -p 4~ .re 8B 
L a a a 

l O I I o .<E 2Jtl I eca a a 

The determinant of the reduced stiffness matrix yields 

y 
= 0 y = 0 • • 

{2y,q-9>) (2JV-9') 

Fixed, Simple Supports 

0 
= EI !

2t -t 11 eAB 

L 
0 ,-, 4 -'I! I I 8s a 

( 2 v2'f'-<f) ( 2 v2}V+~) = 0 • 

--.J 

'° 



Simple Supports Fixed Supports 

The transcendental equations become 

1 
2)v+~ = 0 , 

y = 0 ,and y = Q_ 

1 = 0 • 
2y-¢ 

The modal matrix [ uk] takes the form 

1 1 1 

[ u~ J = I 1 0 -1 I l Uk] = [ 1 J. 
-1 1 --1 

Fixed, Simple Supports 

2V2y-¢ = O ,and 

2 V2y,-+¢ = 0 • 

1 1 

[ uk] = 
I .1. 1 
ifE 12 

(X) 
0 



Simple Supports 

The modal matrix [ uf] becomes 

0 0 0 

[Ur]= 0 1 0 

0 0 0 • 

The orthogonality conditions are 

1 0 0 
2'y+°cp 

[J\ttJ = l 0 y 0 

0 0 _1_ 
2'ty-¢ I • 

Fixed Supports 

1 

[ur] = 0 

-1 • 

[J\tt] = 

,. 

[Uk] [ K sr] [Uk] 

[J\kt] = [ y] • 

Fixed, Simple Supports 

I o 0 

[Ur] = I 1 1 

[v2 .fl J • 

, or 

[Att] = 
I 2 ,/i,'f-r/> 0 

I 0 21/21f+1> I 1 

CX> ..... 



Simple Supports 

The critical buckling loads reduce to 

I f'icr] = 
L 

l 

2. 

(n1!)EI, 0 0 
L2 n=t,3,Se • 

0 

0 

20~EI 
L 

0 

2 
0 {n7J)EI 'n=2,4,~ •• Li 

Fixed Supports Fixed, Simple Supports 

[f\cJ = [20 • i~E~. [ AcJ = 

12.816EI -,- 0 
L 

0 ~70JEI 
La 

en 
I\) 



Flexibilit~ Method 

Simple Supports Fixed Supports 

Applying the boundary conditions, one obtains 

01 2'f/? 0 MAB 

1 o l = 6 ir [ 4 j/] [ M,] . 0 = L ¢ 41/f 1 Me 
L J 6EI 

0 I o 0 2y,r I I Mee I 

The determinant of the reduced flexibility matrix yields 

r- = 0 • y (2'1f/+<p) (21j/-¢) = 0 . 

Fixed, Simple Supports 

0 I 4'r ¢ I I Me 
..;;: L 

0 
-6EI I 

¢ 2'yl I Mee 

( 2 v21f-c/>) c 2 {2.'r+'/>> = 0 • 

(X) 

w 



Simple Supports Fixed Supports 

The transcendental equations become 

r = 0 • tr = 0 

2'f+<f = 0 , and 

2y.,-</> = 0 • 

The modal matrix [ Ur] takes the form 

r 
1 1 11 

[uf] = [ 1 ] . [uf] = I 0 1 -11 
I 

-il 1 1 

Fixed, S1~ple Supports 

2¥2'f/-1> = O , and 

2V21f+cp = 0 • 

[Ur] ~ [ _ ~ ; ] . 

ex, 
~ 



Simple Supports Fixed Supports Fixed, Simple Supports 

The modal matrix [ uk] becomes 

1 0 0 0 1 1 1 

[ Uk] = I 0 [uk] = 1 0 0 [uk] = k -J 
1 J. lo 0 0 0 0 

The orthogonality conditions are [Art] = 

T 

[ uf] [F Sr] [Ur] , or 

7 y 0 0 
I 

I 2V21f-rp 0 

[Aft] = [y]. &\rt] = 0 2-r+</> 0 [Ar1] = 

2}V-<fl I 
0 2V21f+f 

0 0 

en 
\ft 

"::"II 



Simple Supports 

The critical buckling loads reduce to 

[ A,] = [ 20,:rr l [Acr] = 

Fixed Supports 

20~~EI 
L 

0 

0 

0 

2 0 
( 2n () ~I 'n= 1, 2, 3 • • 

L 

0 80.748EI 
Lt 

Fixed, Simple Supports 

[/\er]= 
12.816EI 

L2 
0 

0 29.703EI 
Lt 

(X) 

°' 



p 

Simple Supports 

P~cr = 

Pier = 

2. 

(n1/ )EI •n= 1,3,s . 
LI 

2 0 i_.1_2EI 
L2 

:t:-.::....:~_;::;.--;a;:---"'..:::..-=-=;...:::-1" - p 

P,c..- = 
I. 

(n1! )EI •n= 2,4 ,, · 
L~ 

Fixed Supports 

P1cr = 20.19EI 
L2. 

p -~--p 

'2 

pi c r = ( znptEI • n= 1 , t , 3 . 

P--~--p 

Plcr = 80.~8EI 
L 

--P P --~ --P 

Fixed, Simple Supports 

P1cr = 12,816EI 
L2 

p-~---p 

P2cr = 29. ? 0 JEI 
L2 

P--~-p 

Fig. A.2 The Possible Mode Shapes of Two Span-Column 

(X) 

--.J 
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APPENDIX B 

STATIC STABILITY PROBLEM 

INCLUDING THE EFFECTS OF SHEAR FORCE 

Consider Fig. 1 for the case where shearing 

v,.. and v,A are included. There are two 
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additional boundary conditions which must be considered, 

they take the form 

0 , and 

(B-1) 

Hence, equation (13) becomes 

M,.& k,, kn kll k,. e". 

MeA k1, kn ku ku 0&A 

= (B-2) 

VA, k,, kn kn k3• 4,. 

VJ>A k-., k41 k"'3 k44 6, 



where kll = kn = 
21fEI 

OL 

k,z = k ., = 
_ p EI 

a L 

k I} = k" = -k 14 = -k41 

-kz.3 = -k3i = kH = k 41 (B-3) 

= ( ?_~p)EI and 
o Lt 

k33 = - k 34 = -k43 = kH 

{2 ( 2"\f/+¢) (2ui'} ~~ = a 

Consider the boundary conditions of the orthogonal, 

portal frame ABCD. They are the same as those given in 

equation (69) , except two linear springs k 1 an:d · ·k, are 

included. ·A linear spring k 1 is located hor1zontally :at 

support A and a linear spring - k 1 · 1s located· .horizon.tally 

at D, two rollers-are ~o~1t1oned at both A and D 

( see Fig. B. 1) • 



Pa 

L,EI 

kt, 

Fig . B.1 Or thogonal Portal Frame 

I n cluding Linear Springs 

The eight boundary condit l ons are 

M,.a = kt,ell 

MaA = M BC = Ma 

Mes = -M co = Mc 

M~ = kt 18oc 

-8&C = e BA 

ece = e co 

. /II 
P, y: ( 0 ) -V Al( 0 ) -k 1 6-,. , EI y, ( 0 ) + = = 

Ill 
Piy:( 0 ) -Voe( 0 ) EI y 1 ( 0 ) + = = -ki 61>. 
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(B.-4) 

and 



APPENDIX C 

DYNAMIC STABILI'fY PROBLEM 

The dynamic stability problem 1s formulated from 

the basic fourth order differential equation of a column 

subjected to bending stress, axial compressive forces P 

and transverse inertia force (see Fig. 1) as 

91 

IV p // PA II 

Yx ( X , t ) + -Yx ( X , t ) + -yi ( X , t ) = 0 , 
EI EI 

(C-1) 

where E , I , P , A , and p are assumed constamt. 

The above equation is based upon the same five 

assumptions given in Chapter I , the general solution of 

equation (C-1) becomes 

y(x) = Acoshox + Bs1nhYx + CcosJx + Dsind'x , (C-2) 

J. 

where 0 = [- f + \ ff J + / lT 
cf = [ f + \ ( f) + A )']' 

;...4 
2 

= PF)AS'i 
EI , a.nd 

n is the natural frequ ency of free vibration of the 

beam-column. 

(C-3) 
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The column must satisfy the six boundary conditions 

given 1n equation (J) and two additional transverse shearing 

force-conditions for the free vibration problem given as 

0 

(C-4) 

and 
2 l 

V,.. + v • ., - PAJl.jy {x) dx 
0 

= 0 

The constants A, B, C and D of equation (C-2), 

determ.inined directly by using the first four boundary 

conditions given in equation (J), beeome 

A = 

B = 

C = 

D = 

1 ( /6 _ M,.,) 
~\ " EI 

l i 06 -1 { t 

( t+d' )sinh oL ' M.,. ~M~, .r~~ } - + - -u~cos htL 
EI EI 

. ( C-5) 

Combining equations (C-2) and (0-5) together 

with the last two boundary conditions given in equation (J) 

and equation (C-4), it follows that, 



0 

a,1 o lt 0 

where 011 = 

= 

= 

and 

0 

0 

0 

1 

M,, 
EI 

M,, 
EI 

V,..L 
EI 

1 0 

0 1 

= 
0 0 

0 0 

ocoshoL dcosdL 
(r 2+a 2 )sinhoL - (b' 2+a")sincfL ' 

o 6 
-(~

2+cf )s1nhoL + (a-2+6 2 )sind'L , 

2 

. 1 +· (ra) (~ cos hoL_!z+ L cos cS L_l), 
.r+cr2 if sin hoL o · "l sino L d; 

2 2 

tr o cos h tf L o 6 cosJL 
( er" +6 2

) sin h ~ L + C~· 2+0 1J s1n6L 

'15"/ r\f 
- ( ~'+ 6 2

) sin h ~ L - ( 0
2+ a2) sincfL 

Equation (C-6) is rewritten in the t'ollow1ng symbolic 

matrix ·form 

= 
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(C-6) 

(C-7) 

( C-8) 
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-, 
Premultiplying equation (C-8) by A, it follows that 

{ m} = (C-9) 

The matrix [K ] 
l>l'I 

is defined as the stiffness matrix 

for a single member, 

Noting equation (C-6) and (C-9), one obtains the CGBpmtent 

matrix form as 

where 

ku = = 

= 

:: 

= 

= 

= 

( a,,b,:11-a,2 b
14

) EI 

( a,, b,4, - a,z b,ll) EI 

( a,2 a,i"' a,. a,J EI 
L 

{ b,:11(a,, a:11,-a,2a,i + 6.4,(a,, a,2-a,2q) 

+ b,
5 

( a,~- a,:>} ~I , and 

(C-11) 

Algebraic simplification of equation (C-11) 

yields a symmetric stiffness matrix in equation (C-10). 
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