
THE FORCED VIBRATION OF A LUMPED MASS SYSTEM 

by 

Pankaj C. Dave 

Submitted in Partial Fulfillment of the Requirements 

De 

for the Degree of 

Master of Science in Engineering 

in the 

Civil Engineering 

Program 

YOUNGSTOWN STATE UNIVERSITY 

June, 1973 



ABSTRACT 

THE FORCED VIBRATION OF A LUMPED MASS SYSTEM 

by Pankaj c. Dave 

Master of Science in Engineering 

Youngstown State University, 1973 

The purpose of this thesis is to determine a general 

closed-form solution of a discrete linear dynamic system having n 

degrees of freedom. The solution includes the effect of axial force 

as well as the effect of both damped and undamped motion. Viscous­

type damping is considered for the assumed mathematical model. 

The solution is given in a compact matrix form which 

eliminates the necessity of a series-type solution. The matrix 

solution is given in Duhamel's integral form which allows for the 

application of . any type of time-varying external forcing function. 

Two numerical problems are solved to illustrate the results. 
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CHAPTER I 

INTRODUCTION 

The forced vibration of lumped mass systems, both includ­

ing and excluding the effect of viscous damping, is considered by 

( 3) 
Crandall and Mccalley • A matrix fonnulation is used throughout 

the entire analysis and a closed-fonn solution is given in series-type 

form. In addition, Foss( 4 ) considered coordinate uncoupling of the 

equations of motion for linear damped systems. Also, Caughey and 

O'Kelly( 2 >considered the classical normal mode fonn of the linear 

damped systems. 

The static stability problem of lumped-mass system including 

h ff f . 1 f . "d d . h (lO) h h tee ect o axia orce is consi ere by Timos enko, were t e 

inertial tenns are negle_cted and general solution is given in algebraic 

form. The matrix formulation of static stability problem is considered 

by Rb . t. (9) u ins ein. 

l 

The purpose of this thesis is to combine the effect of inertial 

forces, axial forces, damping forces, linear restoring forces and 

arbitrary external time varying forces. The effect of rigid body motions 

is neglected for the mathematical models considered. The general equa­

tions of motion for this special case are formulated in matrix form by 

Newmark and Rosenblueth. ( B) The later reference does not present a 

solution to the formulated equations. 



Herein, a formal closed-form matrix-type solution is pre­

sented for arbitrary external time varying forces. This solution is 

formulated for the special case where the mass, stiffness, and axial 

force matrices are simultaneously diagonalized by a non-singular matrix. 

2 



CHAPTER J;I 

GENERAL FORMULATION OF PROBLEM 

Consider a linearly dynamic system with n degrees of freedom 

where the motion of the system is described by n generalized displace­

ments xj(t), j = 1, 2, ····n. Also, fj(t), j = 1, 2, ··••n represents 

arbitrary external time varying forces and the term Pij i = 1, 2, •·••n 
j = 1, 2, ····n 

are the scalar components defining the external conservative axial-type 

forces. 

The total kinetic energy T and dissipation function Dis then 

expressed in a quadratic form as a function of generalized velocity 

Xj(t), j = 1, 2, ····n. In matrix form it follows that, 

and 

T = ! { X l [ M] t j) 

o = ½ t£1 ccJtxl 

(la) 

' 

' 
(lb) 

where [M] designates the mass matrix and [CJ the viscous damping matrix. 

The total internal potential energy Vi is expressed in terms 

of the generalized displacements in the following form: 

(le) 

where (K] defines the stiffness matrix. 

The total external potential energy is comprised of two parts: 

the part due to axial conservative forces and the part due to non­

conservative time-varying forces. The total external potential energy 

3 



Ve is then written in the following form: 

(ld) 

where [P] is defined as stability matrix. 

The Lagrangian of the system Lis written as L = T - V, 

where Vis defined as the total potential of the system, or V =Ve+ Vi. 

Using Hamilton's principle{?), it follows that the equations of motion 

must satisfy the following differential equations: 

d (al) dt "o~j + 0 , . 
J = 1, 2, · • • n. 

Using the matrix quadratic forms given by equations {~a) through (ld), 

one obtains the following set of differential equations in matrix form: 

(2) 

The above equation is given by Newmark { 8 ) • 

4 



CHAPTER III 

GENERAL SOLUTION OF THE EQUATIONS OF MOTION 
NEGLECTING THE EFFECT OF DAMPING 

The undamped equations of motion are obtained by setting 

the matrix [CJ = [OJ in equation (2), and take the following matrix 

form: 

(3) 

Before the general closed-form solution of equation (3) is determined, 

one must first obtain the solutions to the following three equations: 

1. the free vibration problem given by the matrix equation 

(4a) 

2. the static stability problem given by the matrix equation 

and (4b) 

' 
3. the free vibration problem including the effect of axial 

force given by the matrix equation 

(4c) 

3.1 SOLUTION OF THE FREE VIBRATION PROBLEM 

Referring to equation (4a), the general solution is assumed 

to take the form 

(5) 
) 

5 



where Wis defined as natural frequency of free vibration and the 

vector {U.il is defined as the associated eigenvector. Substituting 

equation (5) into equation (4a) yields 

(6) 

which for non-trivial solutions of the vector lU.f\requires that, 

0. (7) 

Equations (6) and (7) define the generalized eigenvalue-eigenvector 

problem as given by Hildebrand( 5 ). Equation (7) yields j values of 

the pararneter"-'j 2 , j = 1, 2, ····n. Corresponding to each value of 

Wj 2 , equation (6) yields a single eigenvector l~)j, j = 1, 2, •···n. 

Defining the matrix [Uf) whose columns contain the eigenvectors 

j = 1, 2, · · · · n, it follows that 

= and (Ba) 

(Sb) 

where [ Am] , and [ .[\Kf) a:re diagonal matrices ( 1 ) • Referring to 

equation (6), it follows that, 

(9) 

where ( £\.w]is a diagonal matrix with termsWj 2 , j = 1, 2, ····n. 

T 
Premultiplying equation (9) by l\Jf) and noting equations (Ba) and 

(Sb), it follows that 

(10) 

6 



3.2 SOLUTION OF THE STATIC STABILITY PROBLEM 

Referring to equation (4b), the following identity is 

defined: 

[ PJ " p [ P] , (11) 

where p is an arbitrary scalar constant. Using equation (11), 

equation (4b) is rewritten 

(12) 

. For non-trivial solutions of the vector {X} in equation (12), it follows 

that 

aet [ [ K] - p [ p ] 1 = 0. (13) 

Equations (12) and (13) again describe the generalized eigenvalue-

7 

eigenvector problem. Equation (13) yields (Per>. values of the parameter 
J 

<Per>., j = 1, 2, ···n, where <Per>. is defined as the critical buckling 
J J 

load in the jth mode shape. Corresponding to each value of the term 

<Per> ·., j = 1, 2, · · ·n, equation (12) yields a single eigenvector {U.,}, 
J ~ 

j = 1, 2, · · ·n. Defining the matrix [Us) whose columns contain the 

eigenvector tu.~1. j = 1, 2, 
JJ , 

···n, it follows that 

T 
[U$] [ k] [ Us) : [AKiJ , 

[Us]T [ PJ ( Us] ~ [j\? 1 
' 

and (14a) 

(14b) 

where [ J\.Ks] , and [ A., p) are diagonal matrices. Referring to 

equation (12), it follows that 

YOUNGSTOWN STA1E UNIVERSlll 
UBRAllY 

' 
(15) 



where is a diagonal matrix with terms (Per>., j = 1, 2, ···n. 
T J 

Premultiplying equation (15) by ( Us] and noting equations (14a) and 

(14b), one obtains 

(16) 
• 

3.3 THE CONDITIONS FOR SIMULTANEOUS DIAGONALIZATION 
OF THE MASS, STIFFNESS, AND AXIAL FORCE MATRICES. 

Referring to equations (9) and (15) the question is asked, 

"Under what condition does the matrix equality [Uf] = l Us1 hold". 

8 

The mathematical requirement is interpreted as follows, "What mathe­

matical constraints must apply, if the eigenvectors of the free vibration 

problem are identical to the eigenvectors of static stability problem". _, 
Noting that the matrix product ( M) [K] and 

"-I 
(P] [1<1 are 

non-symmetric, it follows that two non-symmetric matrices are simultan­

eously diagonalized by the same non-singular eigenvector matrix [U] if 

and only if the matrix product commutes( 
6

). This condition takes the 

mathematical form 

Assuming the stiffness matrix (K] is non-singular, equation (17) reduces 

to the form 

= [ P ][ K] [ Mf1 
(18) 

The form of equation (18) requires that simultaneously the mass, stiffness, 

and axial force matrices be non-singular. This condition holds only if 



the rigid body motions are neglected. For convenience, the following 

notation is defined: 

[U,l = [U~J -: l U] (19) 

Also from equations (Sb) and U4a), 

(20) 

3.4 GENERAL SOLUTION OF THE FREE VIBRATION PROBLEM 
INCLUDING THE EFFECT OF AXIAL FORCE 

Referring to equation (4c), and making the substitution 

, (21) 

it fol.lows that, 

[M1[Ull~l t ((K](UJ- ~lP][U)]\°taJ: {O). <
22

> 

T 
Premultiplyin9 equation (22) by [U] and noting equations (Sa), (Sb), 

(14a), (14b), (19), and (20), one obtains 

Substituting equations (10), (16), and (20) into equation (23) and 
-I 

premul tiplying the result by [Arn] yields 

where, 

[I] {~l 1- [l\..n]t 11} = lo~ , 

[ l\. .n] = [ l\. 001 ( [ I] - ~ [AC)' ]
1
] 

(24) 

(25) 

The matrix [!\..n.1 is a diagonal matrix with ..n. j 2 , j = 1, 2, ·•·n, where 

..!L.j is the natural frequency of free vibration including the effect of 

axial force. 

9 
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3.5 GENERAL SOLUTION OF THE FORCED VIBRATION PROBLEM 
INCLUDING THE EFFECT OF AXIAL FORCE 

Substituting equation (11) into equation (3), premultiplying 

T 
the result by [Ul , and noting equations (8a), (8b), (14a), (14b), (19), 

(20), and (21), yields 

Substituting equations (10), (16), (20), and (25) into equation (26), it 

follows that, 

(27) 

where, { set> l (28) 

The form of equation (26) represents a total uncoupling of equations 

of motion. The jth scalar equation of matrix equation (27) takes the 

form 

-- (29) 

Using Lagrange variation of parameters, the solution of equation_ (29) 

becomes 

(30) 

Equation (30) is written in the matrix form as follows: 

where, matrices [A), [B], and (E] are diagonal matrices with terms 

cos.n•t, Sinn•t, and ':)i'Yl .nitt-t) respectively. Substituting equation 
J J " 



(31) into equation (21) yields 

{tli>l =- (U] [/\] {a.} + (U][A..n.1~(B1tbl 
. '..-t 

+ [U] [A .n.l½ J [E] (S(t') dt • (
321 

• ~=O 
Similarly, l'il-U~ is written as follows: 

I 

{X(i)) = -[U] [A.n.1i7.(B]{tl.} + [U][A]tbl 
t'=t 

+ ( U l J [ F 1 { 9 t t.' > d l' , 
. t=Q 

(33) 

where, lF) is a diagonal matrix with terms cos njtt.-t') . 

Using the following prescribed initial conditions 

(i) @> t = 0 , 

{ii) @ t = a , 
txt+.)l = {X(O>J, 

{i (t.) l = {X(O)~ 

it follows that, 

tl lO)l:: (Ulf.a.l , and 

{itml = [U1{bJ. 

Noting equation (Sa) and (19), one obtains 

-1 T 
{a.)-;: [~-,n)[U] [M 1 l ~to1l ' 

-l T 

lb]= (l\.-m1 [ UHM1 l '1' t() l l . 

and 

(34) 

(35a) 

(35b) 

The general solution of equation (3) then takes the following form: 
_, 'T 

titt) 1 = [U] [J\1 [~n.J (UJ r Mlt t-.\Ql} 

+ {Ul[.l\.a.)~[BJ[l\.m1'cuu Mlti(O)} 
I {:t 

+ l'll][A.n)1l[A..,,j' ~ [ E] [ uf{f <t')} dt'. <
36

> 
t :.C) 

Equation (36) is investigated for the special case of the externally 

applied force (i.e. {fCt)} ) . Taking the initial condition as zero, 

11 



12 

{X(O)~ = {.'i..to}l = lOJ, and lfttl} = {f(O)}, where the external 

forces are assumed as constants, equation (36) reduces to the form 

Also, assuming the initial conditions as zero and the externally applied 

forces as harmonic variation of time in the form 

.. 
• 
• 

it follows that, for steady state motion only, equation (36) reduces 

to the form 

, 

where 

1J.n ..n, 
Una .0.. I . 

.n.~- d,}· ..O.t-a<~ . 38) 

" [Ul = • • 
. • . 

'Um. 
.o..,, 

tl.nn ...O.n 
..n~ - c1..,i. 

• • • 
..n~•cl(~ 
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If any of the impressed frequencies, 0( c( ••• o<n is equal to any of 
I I 2., 

the natural frequencies, .n. 11 .0.2., . . . -0. n , then the resulting 

motion is unstable, that is at least one of the generalized displacements 

xj(t) -takes on an infinite value. 

3.6 NUMERICAL EXAMPLE OF FORCED VIBRATION PROBLEM 
NEGLECTING THE EFFECT OF VISCOUS DAMPING 

m 

m 

Fig. 3.la 
Initial Configuration 

p 

Fig. 3.lb 
Displaced Configuration 



The following three scalar functions are defined for the mathematical 

model shown above: 

1 • l i • l. T -= 2 m { l Q3) + 1 m U 91) , 

1 2. 1 l 
Vi =- 2 ~t (Q2.-&1) + 2\(82,+S~)' 

(39) 

Ve = P ( ~~ - l cos & 1 - ~ co s Q 2. - J. co s e~) 

where for small angles of rotation &2. = Q ~- 8 I, 

14 

Considering rotations small in comparison to unity, the following matrices 

are obtained: 

1 0 5 -4 
[M] = mf [K] =- Kt 

0 1 -4 5 , , 

2 -1 2. -1 

[P]: p~ " where l P] = ~ 
-1 2 , -1 

t ~~f,(tJ [ 9,(t)] 
f Ci.)~ = Q.Yld {~Ci:)= 

~f-:.C-t.) 8ltt) 
' • 

From equation (18) , it follows that 

-1 
· -l /\ -l "-l -l Kt [Ml [K1 [ Pl = [P] [K][M] ::. -

·mA4 _, 
2 • 



Carrying out the eigenvalue - eigenvector problem, one obtains 

.. lUsl = [Ul = 42. 
2 

where lu) is an orthonormal matrix. 

1 1 

1 - 1 

In _addition, the following diagonal matrices are obtained; 

0. 1 

0 o· 

, 

0 

1 

Kt 0 l<t (1-P.I.) 
m"'l. -m,ti. Kt [h.~] =- a.nd [l\..n]:: 
0 

~\(t 
0 -. m~2. , 

For special case of constant external transverse forces 

{ fto)} , 

15 

' 

0 

~Kt C,\-J?:& 
nu.2. 3Kt 
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and neglecting the effect of initial conditions, equation (37) yields 

Q, (t.) ' 1 I 0 
Kt(l-P,() 

= !. Kt 
2 1 

&1(t) 1 -1 0 3Kt. l~ - ~J.. ) 
K.t 

l1- cos.n.t) 1 
Kttl~ })J..) 0 

Kt 

0 l1- cos.n. 2.t > 
1~t ('~• ef t) t -1 

Defining the external forcing function in the form 

{fH)l = 

' 
and neglecting initial conditions, equation (38) for steady state motion 

becomes 

1 ' 1 0 Kt.l•-PJ;) 1 :. 2 Kt 
1 

1 
_, 0 ?>Kt,(~·~) 

"K~ 

.fl. I n., J.f, ~ino<,t .n..? - o<.? .nl-o<. 2: 
I 2. 

. .n 2. ..n'l.. 
n. "-0{1 - .n. 2. - d.. i. ..\ f3 s,n¾t 

~ I 2. i 



CHAPTER IV 

GENERAL SOLUTION OF THE EQUATIONS OF MOTION 
INCLUDING THE EFFECTS OF AXIAL FORCE AND VISCOUS DAMPING 

Premultiplying equation (2) by [U]T and noting equations 

(8a), (8b), (11), (14a), (14b), (19), (20), and (21), one obtains 

T 

[ .h. ml l ~ ) ... [ C] { ~ } + ( [ h Kl - ~ ( A F 11 t 1' 1 = \. u 1 tf < t) )~ 
40

) 

I\ ,. 
where [CJ = lU] lC:]lU). (41) 

Substituting equations (10), (16), and (20) into equation (40) and _, 
premultiplying the result by (.l\m) yields 

where { Slt)) is defined by equation (28). Equation (42) is rewritten 

in the following partitioned matrix form: 

(43) 

17 



18 

ll 
s -[ I] [01 

TIO~ 

ll 
uat . 

.-.,s (o] [i\.n.1 
Tid · ' ' 

J l uat., 

.ion (43) 

ll 
,. ~s 

. 
.ion (43) ' * ll l ~ 1 = 

'A2\'\ 
{'J.,J i1n-1 

. . - "'amt -. ------r~.} ~,, 
* * ~n-1 

ll l ~ }ll l ~ }ll 
1 of equat . 

al- .-.,s s s 

. 
~i a.nd , 

: VIBRATIO~ I 

* * l ~ }ll l ~ }ll 
s s 
I I 

l J l J l 
I I 

• 

: VIBRATION PROBLEM 

J l J l 1 of equation (43) is assumed as 

4. t "' 
: vIBRATio: vIBRATio: vIBRATioi e l u.1 , (44> 

: eigenvalue and the vector 
1 of equat I of equat I of equat .. 

Q l- .-_ Q l- .-_ Q l- .-_ :tor. Substituting equation (44) 

: VIBRATIO : VIBRATIO : VIBRATIO 
.ion ( 43) yields 

(45) 

' 



which for non-trivial solution of the vector { d} requires that, 

• 
det ( 'f [ R] = 0. (46) 

Equation (46) yields 2n values of the parameter qj, j = 1,2, ···2n. 

Corresponding 

eigenvector 

to each 

* {Uj), 

value of qj equation (45) yields a 

* j = 1,2, • • ·2n. The matrix [U] 

single 

is defined 

* as the one whose columns contain the eigenvectors { 'IJ..i} . The first 

·yt columns contain the eigenvectors ( U2, )'\} . . . l 'U.Yli'l ~ t the 

remaining n columns contain the additional n eigenvectors 

Noting the partitioned form of equation (45), 

it follows that, 

l'U.i.} 
* l1:LJ 1 = = (47) 

{u.,1 

... 

19 

For convenience the matrix [ U] is defined in the following partitioned 

matrix form: 

* (48) 

lU] 

· lU 11 



where the matrix [u2 J contains the eigenvectors { U.j l , j = n + 1, 

n + 2, ···2n, and the matrix [U1] contains the eigenvectors lU.j), 

20 

j = n, n - 1, ···1. Also, the eigenvalue . matrices are defined as follows: 

CJ.in 0 . . . 0 'in 0 . . . 0 

a 'i,11-1 • ' . 0 0 'in-1 · · · 0 
[A.~]:: • . ll\.i] =- . (49) • . . . • . 

• • • • . . • . 
0 0 . .. 'in1-1 Q 0 . 'i 1 , 

Noting equations (48), and (49), equation (45) is rewritten in the follow­

ing partitioned matrix form: 

* * • f\ ... 
['S][U] + [R][U1 [A1 * : ( 0) (50) 

tO] 
where (51) 

[OJ 

. "" .. • Since [U] simultaneously diagonalizes both [SJ and [R), the following 

matrix equations hold: 

* T ~ ... • lUl (S] [U1 -::. [ .l\.~J (52) 

' 
and fi: T -f:- ~ • {53) lUJ ( R1 i U) :. (1\.R] 

' 



21 

where and are diagonal, partitioned 

matrices defined as follows: 

[O] [DJ 

[OJ (0) 

Noting equations (50), (52), and (53), it follows that, 

* * [~~) ~ - l .l\R] [A1 (54) 

4.2 SOLUTION OF THE FORCED VIBRATION PROBLEM 

The non-homogeneous solution of equation (43) is assumed 

* )le' ~ 
as l ~lt)} ~ [UJ tZl-tJ J (55) 

) 

where 1-~n 

{Z2.} 
1.1Jl-\ 

.,:. . 
• {z} • - 'Z.n+J 

- - - -
{l,J 1n 

"Z.-sH 
• • . 
z, 

• 
Substituting equation (55) into equation (43), and premultiplying the 



result by [U]T, and noting equations (52), (53), (54), one obtains 

:'IE, ' 

[_I J l z} (56) 

where (57) 

The form of equation (56) represents a total uncoupling of equations 

of motion. The jth scalar equation of matrix equation (56) takes the 

following form: 

• 
Z· J 

9..z. 
J J 

• 
, J=1,2,···2n.<58) 

The homogeneous solution of equation (58) is assumed as 

(59) 
• 

Substituting equation (59) into equation (58), and using Lagrange 

variation of parameters, the solution of equation (58) becomes 

t':t <i •(t-t'} 

Z·(t} : e'l.jta.J°(ol + $ hjlt'l e ";J di! (60) 

~ t=o 

Equation (60) is rewritten in the following partitioned matrix form: 

t'=-t 

{il : [ exp.(J\t]Jta..io1] ~J [e~P.[Att-il]] f.h!tci}df c61> 
t=O 

where (62) 

22 
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Substituting equation (55) into equation (61) yields 

From equation (21), it follows that, 

' 
(64) 

where [U] t01 
. 
x, (65} 

[5.1 ' 
lO] [U1 

Substituting equation (63) into equation (64) yields 

.., ~ • r • ~ t X J -=- [ U] L U1 L ex P. [ /\ t 1 la.< 0 }} 

. * t>~t /\ *J • ] -- I · +[U](U] [exP.(l\.(t-t'l] lhtt'> 1 dt.. 
(66} 

t'so 

Using the following prescribed initial conditions 

it follows that, 

"' . " "' " t lt0 )J =- l U] l u1 tO..lO) l , (67} 

or 
* l;(Oll :. [ uf'[~f \-,Jo)l . (68) 
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~ -I 
Noting the form of the matrix [U] from equation (53), it follows that, 

Substituting equation (69) into equation (66) and noting (57), one 

obtains 

• t * t! 1 • -l ~ T ~ l -l * 
{X) = (U][Ul[exp.tJ\.t] [A~ lU)lRl (U){'kto)} 

t'=t • • " • s • * -I * 'T ""- • (70) + [U] [ U] [ e1'~ [ l\. H·t>]] [Ai1 lU) {S lt}J dt, 
t'::o . 

' 

where 

,t. 

" -I 
[U] --

-I T 
tl\.m1 lU] [M1 (O] 

(01 



Equation (70) represents the general solution of the equation (2). 

Recasting equation (70) in partitioned matrix form yields 

li~ (U] (OJ [U2]f/\.2) ru,1 (A,J 
--

{i} [O] [U] [U2] ru,J 

re. x P. Lb .. 2. t]J [O] 
_, 

lo] t~Ri1 

[o] l e.xP. tl\.,-t:J] [o] 
-I 

[b.R1l 

I l\2) l U2) 
T 

tU1]' [O] [ I] 

T T ., " 
[A.,] lU,1 [U,1 [I] ll\.mJ [C:1 

-l T 

[.l\mJ l U] l M] 

t'=t 
(0) 

+ 

[o] (O] 
f=-0 

dt1
• · (1\) 

25 



Simplification of equation (71) yields the following displacement 

vector { 1',) in the form: 

l Xl : [U][U2l( t.x~[A.,.t]] l (ARil'tu.J ll\.mi't U]tM] { ito} J 
-l T I 

+ [AR2.] [l\,~J[U2l [A.,,-f Cu{CM]lY.lol) 

-t [ ARif'I U1lt.hm1'[ C] [/\. mf't uft Ml{ l(O))] 

+ lU](U,1 (e.x.P.tA,tl) [ [Ap_S
1
tU,]T[A\'f\f(UY[tll)tito>l 

-1 T -1 T 
+[1\.R\1 [AJ [U,] [Am] tU] [M]tt{o>} · 

f=t + LaRSruj\h-mi'tc] [A,,'1
1
(U{lM] tX(O)l) 

+ tu] J. [UJ[e-s.t'. lA2. u.-t>l) lAR1f'[u,]\l\.,,J\u{ l9tt')\ 
t-=C> I T -I T 

+ [u,1 l e1')>.[~<.t-t\l] [ARJ (U,1 [l\.m1 [U]{iH;>ldt
1
• (72) 

4.3 THE SPECIAL CASE OF AN UNDERDAMPED SYSTEM 

For an underdamped system, the 2n eigenvalues and the corres­

ponding eigenvectors appear as n complex conjugate pairs, that is, 

the following conjugate matrices are defined: 

(73) 

where the symbol (6oo)) denotes the complex conjugate form. 

26 
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Noting equations (73), the following matrix reductions are noted: 

'-'II ~ 

[U.Jll\.,] 
c.-) 

... [U,]lA.,l • I.h,1 lOl 
[U] - [Al~ -

c-, 

[A.,1 [U,l [U,1 [Ol 
' ' 

~ 

[O] ~ • [AR.) tAs.l [0] (74) 
{l\.p_] -= • (l)14 [/\rJ --

[O] {l\.R,] , {O] {As11 • 

Noting equations (73) and (74), one can separate the following complex 

matrices into their real and imaginary parts in the following form: 

lU1l =[Vl +i[Wl, [A.1 =-[(;]+i(H], laR,1:lG-v1+ i[Hr] 
v.) (75) 

[U,1=[V]-i[ WJ, [!1)-:[C,]-i[H],tiR1]1,(C:r1]-i[H1]. 
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Substituting equation {75) into equation {72) and noting equation (73), 

one obtains 

tktt> 1 -=- 2 [ UJ ( [ V] [ exp, [ G-tl] [ ~] - [ w] [ e.ll.P. [C,tJ] [ &J) 

[ [ [ eryf cvj"- [ Hvfc w{] [ ~-ml1CU{ ( M] { £co)J 

+ [ tGrft C,] [V]-r- (Hrf[H)[V]- (H,.j[e,] [w]-(C,.y)t HJtwI] 
-I T 

[l\.m] (UJ[M1 tXt0 >3 

-tr lG,]
1tvl-c Hrf[wf J (Am]CCHA.mi[U]tM]t~coJl 1 

-2 (U] [ [Wl [ e)(.P. [c,tJ] [~] + [ v]l e,r.~.(CrtJ] [~J] 

[ [ 
-I T -1 T J -I :T , 

[Hvl [VJ+ (C,,] [WJ [A.ml tU] [ Mll'kl0 >l 

- ( t H.,1[GJl V]-+ ( C:,][ H] [v{+ (Crrr [(,] [WJ-[H~
1

[HJ t WJT] 
_, 

[~'r)\] tUJ [M] ti toll 

,-[ [H yj[v!+ [Grj' twf] [l\..n5Lc][l\.)n][UJt M]{)'..to) 3} 

J
'f::t 

+ 2[U] l [ [V] [ etP, [(,. Ci-t')]] t D] -· twJ [ exP. CG (t-t)J] ceJ] 
t•O 

[ -1 T -1 T] 
[ c-,.,] [VJ - [ Hr] [WJ 

- [ [ W] [ e>'-P.(G (t-t.'>iJ tD]-t [V] ( eir. tG u.-t' >l]t~J] 

[rH ... J1
[vJ+ tG-,i'twIJ] [hjcuJtf<t13 dt: 

(1,) 



.... 

The algebraic operations from which equation (76) is obtained from 

equation (72) is shown in Appendix A. In equation (76), [~], [~, 

" ,... [DJ, and IE] are diagonal matrices with terms Co~lSj-l), Sir"l(Sjt), 

co~(Sj<..t-t)),and ':)1'n (~j (i:-t)) ' respectively. Also, 

the matrices [ e~f:} C C,.tJ] ' and ( e,c.~ lG<t-t>J] 
Y:lt·t') Y•t, 

matrices with terms eJ and 

' 
~ t respectively. 

are diagonal 

The terms 

rj and Sj are the real and imaginary parts of the eigenvalues 

described as follows: 

'i· • c.-:, 
Y· + a,... d C3.. 

. 
':I l S· - )'• - ISj -:.J J . ~ ., 

~ J 
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Equation (76) represents the general solution of equation (2) for the 

special case of an underdamped system. This complex £orm of the equation 

of motion is reduced to the special case when damping is omitted, 

(i.e. IC]= IO]) by noting the following simplifications: 

[VJ = [1] , 
-I -

[ G-1] :: [ 01 , 
1 

r Hl : -r l\..n.l1, c c, J = co J , 
(77) 

Substituting equation (77) into equation (76), one obtains 

_, " _, .,. . 
- [U][ L\.n] [BJ [A. ni1 (U] [MJ t>:<o>J 

-! -I 5t'-:1-l /\ T ' 
-[U](A.n.] [l\.-m] [EJ[Ultflt'>Jdt. (1BJ 

t'ro 



Noting equation (77), it follows that, 

(79) 

where, matrices [AJ, [BJ, and [EJ are defined in the article 3.5. 

Combination of equations (78) and (79) yields equation (36) in the 

article 3.5. 

Equation (78) is investigated for the special case of the 

externally applied force (i.e. {f(t)3 ). Taking the initial condition 

as zero, {'1.{0)J = lX(O)) = {O} t and lf(t'}} = {f(0)l 

where the external forces are assumed as constants, equation (78) 

reduces to the form: 

{Xltll = 2[ UJ [ ( [V] [ t&J [-tIJ + [ ~] [e~ P. tGrt.J]] + (Hl[ BJ ( e1'~tr,tJ]] 

-tw][[H]LC.1] -[~][e-,.~.(CrtJ1] + [G)[BJlex~.[GrtJ1] 
[ -r T --1 T] 

(G.,.] [ V]-[H.,.] (W] 

· -r rw][ l~l (-tI1 + [~] r e~P. [G-tJl] + [H][B] ( ex~[G-tJ]] 

·,+ [v][[H] L [IJ-[;1(eY-P,[GtJ)] + (GJ[B][e-,.P.[G,tJ1] 

[ [Hll v]+ [G-r](WJJ] (i\,,:i' cullf (ol} I (80) 

/\ " y• s I 
where [G] and [HJ are diagonal matrices with terms J and 1 ~ 

2 Y:1+s·1 Y: + 5. 'J :., "' :J 
respectively, j = 1,2, ···n. Equation (80) reduces to the special case 

when damping is omitted (i.e. [CJ = [OJ) by noting the following simpli-

fications: 

' " (G] = [OJ , a.nd " -! [H] = -[ ~ .n.] '2. • 
(81) 
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Combination of equations (77), (79), and (81) yields equation (37) 

in the article 3.5. 

Also, assuming the initial conditions as zero and the 

externally applied forces as harmonic variation of time in the form 

i, ':) ita o(. I t.' 

f2 ~i r1 Gt2, t.' 

' equation (76} reduces to the form: 

Wt> l " ?.l U] [ [V] [[ FJ + [F1l] [J] [- Lll[Q] · [N][Tl + [exp,[i:-,tJ]C N] 

+ 2 LexP.[vctl]]tN]LB]] tfr1} 

31 

-[w][r~]+t F2]1[J] [ (LJ[Q] + 2[N](T]+ [exF'.(G-t]]tNJ[€] 

-2 [e,r.p, crrtJ]t~J] tf11) 

- [W] l t ~l + t F.,.11 [J] [- t L ][~)-[N](T]+ t C>t.~ (G-i]) tNJ 

+ 2[ exP. lC7tJ]tN]tB] 1 \. fn} 

-[Vl[ tF?il+lF◄J) [J] [ [L][Q] +2 tN]CT]+ (exi,.[c,t])tNJlB] 

-2. [ exr.t Gt]] t Nn~1h f,, d . l S 2) 
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In equation (82), the following diagonal matrices are defined as under 

1 
[J) is a matrix containing terms 

[L) is a matrix containing terms 

(N] is a matrix containing terms 

" [L) is a matrix containing terms 

" Y.•S' (N] is a matrix containing terms J ~ 

(Q] is a matrix containing terms Sin~t 

[T] 
~ 

a matrix containing terms COSo<jt is 

{fn} is a column matrix containing terms f1, f 2 , ···fn. 

In addition the following matrices are defined: 

• 

• • -- • 
• • 

• 

• 

' 

... -• 1\-1 -I •I ~-t 
l~ Vr,n· hr~ W,u,) lttn Un, • • • C9v. v11 -hv, Wu) m,u.n, 

• • 
[~] - • - • • • 

• • • 
-I -1 ~I •I -l #\•I 

(Sl'>-1 v.,,n-hY>-1 Wmd U.m • • • l 9.,.,, V111-h)\1w1,,)m1u.,,1 
I 
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( •I •I ~-I h-r, V11 + 3.,, W11) 1 Uu • . _, ... ~-• ( hv1 v,.,,+ 9r1 wn,) r1Unn 

• • • 
tF,] -= • • • 

• . , 

-1 .. , 11i•I •I -t 1\-1 
( hrr1 ~1t+S1nW1n )m1Ut1 • • • ( h. Y'n Yn n + '3 Yn W l1>'t) m., U >rri 

h-1 _, A-I _, _, ,.._, 
( 1, Vru+S,, w,i,) m11U1n • ( h.,, Vu+9r1 Wu l m, un, 

• • 

[f4] - • . -
• 

( -r . ., "·' 
• 

( -• ... ""'' hY'tl Vn11,.. ,rnWnr1)>-nn Uu,. • • , h.rn v,'11 + SY11 Wt1') m,u.,,, 

-t -l /\•I . 
where ,~. ' hYj ' m.j t Vu, w,·i, Q't\d Utj are the terms of the _, _, _, 
matrices (e,.,.], tH,1, tl\.ml, [V], tw1, O\nd tuJ, 
respectively. · Equation (82) reduces to the special case when damping 

is omitted (i.e. [C) = [O)) by noting equations (77), and (79), and 

noting the following simplifications: 

" [F1) = [F2) = [L] = [N) = [O). (83) 

Substituting equation (83) into equation (82) and noting equation (79) 

yields 

{84) 

I 

, 

.,. 



For steady state motion (i.e. IB) = IO)), and noting the following 

simplifications: 

and 
t 

equation (84) reduces to the equation (38) in the article 3.5. 

4.4 NUMERICAL EXAMPLE OF FORCED VIBRATION PROBLEM 
INCLUDING THE EFFECTS OF VISCOUS DAMPING 

p p 

Fig. 4.la 
Initial Configuration 

Fig. 4.1b 
Displaced Configuration 
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The following four scalar functions are defined for the mathematical 

model shown above: 

T f II , 2 1 (0 • ·)1 = I m (.-. Qi) + I m "$ 1 

1 •2. 1 • · 1 1 • • 1 D = i SC T &, + 1 C. T ( $ 1 • $,) + i CT ( 92. +-& 3) 

t i 1 2. 
'I,· = 1 Kt (&2,-&,) + 2~(82 + $,) 

Ye = P t~.l.- ~c.os&1 -J..c.osG1-~ cos'9s) 

+ f,(t).tSi)"l~ 1 + f3Ct)~S1>1S~ 

where for small angles of rotation 81: &3 • & I Considering rotations 

small in comparison to unity the following matrices are obtained: 

f 0 -4 

0 -4 5 

' 
, 

10 -4 l - I 

35 

-4 s 
' 

-1 'l , Where., 

1 -1 "-f, (t) ,. 
,. 

[Pl ::. l { flt)) --
""'! I 2. ~f~(t) 

' 
, 

6, ( t) 

o.Y\d l~kt.H --
&;U:) 
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From equation (18), it follows that 

-t 1\ .. 1 t-.•I •I 
[M)[l<][P] = [PJ[K]tM] --

2. -1 

•1 2 

Carrying out the eigenvalue-eigenvector problem one obtains 

i 1 

_, 
where [U] is an orthonormal matrix. In addition, the following 

diagonal matrices are obtained: 

0 1 0 

--
0 0 1 

t 

!Si 0 ~ lt- f!) 0 mA.2. m,t1 t<t. 

(Aw] = taAl -.: 
0 ~Kt 0 ~Kt l•- U) .;;u1 

' 
mi~ ?al<t • 
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0 0 

Q 0 1 
' 

, 

!Si 0 ~ (1-~) 0 m1'2. vn J. '- K \ 

[hw1 = [lul.1 -::. 

0 CbKt 0 ~(1- ~) y:;;,_1 Yf1R- aKt , 
Referring to equation (46), and selecting m =kt= l = \ , and p = 1/2, 

where P < (Per) min., the following characteristic equation holds: 

= O. (~l) 

Choosing CT= 0·2, the following complex conjugate pairs of eigenvalues 

are obtained: 

CJ. :. 
I 

-c•~G~ + io-~2'5 

,.'l. = -1·131 + i 2·428 
(f>S) 

'i?, = 
. 

-0•:>G~ - 1 0·~2.5 

t4 =- -1 · 1 31 i 2· 42 8 
• 
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From equation (45), and (88), the following matrices are obtained: 

0 

0 
I 

1 t 

0,020- io•os2 

' 

1 ·1 0 0 

LV] = [W] = 
1·03~ 0·020 -4·518 -0·052. 

' For special case of the constant external transverse forces 

{f<t)J :: 



and neglecting the effect of initial conditions, and referring to the 

equation (80), the following matrices are obtained: 

-0· ,ss 0 0·?>'38 . 0 ,.. 
[G] " - tH) :. 
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0 -O·<o~4 0 1·1 ~~ 
' 

, 

COS(2·428)t 0 0 

--
0 0 , 

(--\• lB1Jt. 
0 44·'2.~9 0 e 

( e"-P.[G-t]) = [Gv] = 
0 

(-•~Co!)t 
0 e -0•001 , 

~:,•B4c 0 0·022 0 
-t 

[H.,] :: [G,) --
0 - f· 1 S1 0 -142·8 , , 

0· 01 i 0 _, 
[H..] : 

C -o~ 842 
• 

, 



Equation (80) is solved for {x(t)l by substituting the above matrices 

and simplifying. 

Defining the external forcing function in the form 

{fCt)l = 

' 
and neglecting initial conditions, and referring to equation (82), 

the following matrices are obtained: 

1 0 
.[Jj --

1 
0 

- 8· 1 ,~- f·1'~1 oe.t 0 
[L] = 

0 -o• l ~o - o• o<o:,c<f 
t 

-4·~02 +6'..i'- 0 11·4 52-2·42.So<l° 

[N] ~ . 1' 

[LJ = 

40 

' 

0 

-0•25~+ ot.?- 0 -·a11-•,1s~t 
' 

-2.·1G>i 0 Sin °",t 0 I\ 
[N] : [Ql = 

C -0•221 0 sin«1t 
' ' 

, 
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0 
[T] = 

0 cos -<2.t 
' ' 

O•01eo -o·os,~ 

[Fa] 

' 
O·OOg O•O<o 2. -O•OC,2. 0·008 

[F~] = [F4] =-

-0·5~5 -5·2~8 5•2.3S -0•5'?)5 
' • 

Equation (82) is solved _for { x (t)} by substituting the above matrices 

and simplifying. 
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DISCUSSION 

The use of the matrix type form tor the equations of motion 

is proven more efficient than the series or algebraic type form. Its 

efficiency arises due to the fact that matrix type solution is easily 

programmed for computer use. The formal matrix type solution presented 

in this thesis requires inversion of diagonal matrices which is extremely 

important for large scale system, since the inversion process requires 

a large amount of memory core in the computer. Since the solution is 

given in Duhamel's integral form, one can use any type of time-varying 

external forcing functions. In this particular thesi~, constant external 

and harmonic time-varying forces are solved as special cases. 

If damping is included, then-degree of freedom is converted 

into a 2n degree system and solved in partitioned matrix form. This 

yields a matrix system which is much larger in scale than the original 

system, however, mathematically the system of differential equations 

uncouples much more uniquely. 

The concept of overdamping and underdamping is readily 

understood by use of the plot of the eigenvalues on the complex plane. 

For example, for an underdamped system, all the eigenvalues appear in 

complex conjugate sets with negative real parts. For an overdamped 

system, all the roots appear as negative real values with no imaginary 

parts. 

The forced vibration problem neglecting the effect -of viscous 

damping is solved first in order to investigate the concept of critical 

buckling load, and to establish a condition which simultaneously 



diagonalizes the mass, stiffness, and stability matrices. 

It is not the intention of · this thesis to develop directly 

a design procedure to convert a physical dynamic problem into a 

mathematical model as illustrated in this thesis. This ability is 

obtained only by considerable experience both in the design office and 

under actual field conditions. In an actual field situation, the 

magnitude of the stiffness and damping parameters (i.e. Kt and CT) are 

usually obtained from comparison with actual field testing and measure­

ments of the actual existing structures. 
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CONCLUSION 

. For an underdamped n-degree of freedom system, simultaneous 

diagonalization of the mass, stiffness, and axial force matrices by 

a non-singular matrix takes place only under specific mathematical 

operations which are based on matrix commutivity conditions. The most 

efficient mathematical approach to the problem is a matrix-type solution 
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of order (n x n). In general, the matrix which simultaneously diagonalizes 

the mass, stiffness, and axial force matrices needs not diagonalize the 

damping matrix. If damping is included, the matrix solution becomes 

more complex since partitioned matrices of order (2n x 2n) are required. 

However, this ~pproach is still mathematically more convenient. Whether 

damping is considered or not, the matrix-type solution is comparatively 

more efficient than series-type solution, since the matrix form can be 

uniquely and efficiently computerized in compact program form. 

The basic matrix computations present in the general solution 

involve typical matrix addition and multiplication. For the case when 

matrix inversion occurs, it is only necessary to invert diagonal matrices. 

Also present in the mathematical solution is matrix eigenvalue-eigenvector 

problem. Programs for this special type solution exist in most computer 

libraries. 

A closed form solution for the cases of constant external forces 

or harm9nic time-varying forces considering steady-state motion is ob­

tained in a closed form using this matrix-type solution, and may be 

readily programmed in an efficient compact form. For both problems, 

exact closed form solution is presented in matrix form which may be easily 

programmed. 



APPENDIX A 

Noting equation (75), the terms .of equation (72) are expanded 

as follows: 

= CtvJ+itw11 [ex.~tCJt)] [exp.[.iHt1] 

=- [ tvJ[ex~.(e,.tJ] +, twJtexP.[C:rtJ]] (r~J+iCaJ] 

=[tvJ[e~P.tG-tJ] t~]-tW)[e~P.[C7tJ] CB)] 
+ i [tw][exP. (GrtJt~1+(VJ[exP.[<;tJ]tsJ] 

= [cvJ(ex~ tGtJ ttJ - [ W] [ ex ~-tu tJ] t €11 
- i [tw] [ exF>. C Gt]) [ ~1 + LV] (e-,.p. tCrt]J te;J] 

': r Ccn-f+ i (Hyj'] [ rvl Ti ( WJ] 
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[ 
-1 T -1 'T) [ •1 T -t T] 

=- [C:,.,] (V) - tHv1 (W] ~ i tG-r][W] + [Hr] lVl 

~ [cc;.,j[_ VJ- [Hy]\ wf] - i [C <;v)t.WJ + (riv]( VJ] 

: [cc,.yj\.,· tH.,i'] l te:J + i tHJ 1 [ tvl+ itWJ] 
[ 

-1 T _, ,- -I :r -I "t'] 
:. (C,..,] [(,][ V] - tHv][\,]tVJ -[HY](G-](W]-[(;r][H][W] 

+ i faHvfterJ l v],. + cc;yjb-tJ LVJ + t c,.,]
1
tGJ twl - tHyjtHHJ] 

[ 
•I T -1 T -I T -I :r) 

= Co,.][G-J tY]-CH.,,](Hl(V] :..[H1] tc,][WJ- (ur]tH][WJ 
• [ •I 1 -I :f -1 :T .f.. ,-] 

- 1 CH.,] (G Jt VJ+ [Cr,) LH] LYJ + [CJyJ[ G-] LWJ - lHvl LH] CWJ . 



Substituting the above terms into equation (72) in proper order, the 

imaginary parts cancel with each other and the real parts add with each 

other making the solution to be real as shown in equation (76). 
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