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ABSTRACT

THE FORCED VIBRATION OF A LUMPED MASS SYSTEM
by Pankaj C. Dave
Master of Science in Engineering

Youngstown State University, 1973

The purpose of this thesis is to determine a general
closed-form solution of a discrete linear dynamic system having n
degrees of freedom. The solution includes the effect of axial force
as well as the effect of both damped and undamped motion. Viscous-
type damping is considered for the assumed mathematical model.

The solution is given in a compact matrix form which
eliminates the necessity of a series-type solution. The matrix
solution is given in Duhamel's integral form which allows for the
application of any type of time-varying external forcing function.

Two numerical problems are solved to illustrate the results.
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CHAPTER I
INTRODUCTION

The forced vibration of lumped mass systems, both includ-

ing and excluding the effect of viscous damping, is considered by

3
Crandall and McCalley( ). A matrix formulation is used throughout

the entire analysis and a closed-form solution is given in series-type

(4)

form. In addition, Foss considered coordinate uncoupling of the

equations of motion for linear damped systems. Also, Caughey and

2)

O'Kelly( considered the classical normal mode form of the linear
damped systems.

The static stability problem of lumped-mass system including
the effect of axial force is considered by Timoshenko,(lo) where the
inertial terms are neglected and general solution is given in algebraic
form. The matrix formulation of static stability problem is considered
by Rubinstein.( "

The purpose of this thesis is to combine the effect of inertial
forces, axial forces, damping forces, linear restoring forces and
arbitrary external time varying forces. The effect of rigid body motions
is neglected for the mathematical models considered. The general equa-
tions of motion for this special case are formulated in matrix form by

(8)

Newmark and Rosenblueth. The later reference does not present a

solution to the formulated equations.



Herein, a formal closed-form matrix-type solution is pre-
sented for arbitrary external time varying forces. This solution is
formulated for the special case where the mass, stiffness, and axial

force matrices are simultaneously diagonalized by a non-singular matrix.



CHAPTER II
GENERAL FORMULATION OF PROBLEM

Consider a linearly dynamic system with n degrees of freedom
where the motion of the system is described by n generalized displace-
ments Xj(t), g5 = 1; 2, *=ren,. Also, fj(t), =1, 2, ****n represents

arbitrary external time varying forces and the term Pjij i=1, 2, ¢«+++n
3 j=l, 2' escen

are the scalar components defining the external conservative axial-type
forces.

The total kinetic energy T and dissipation function D is then
expressed in a quadratic form as a function of generalized velocity

ij(t), 4 =412 %t 1 (T matrix form it follows that,

L=
]

L :
z UFIMIENY _ (1a)
Leo7 : |
ana 0= 2 {X}[CILX} (1b)
where [M] designates the masé matrix and [C] the viscous damping matrix.

The total internal potential energy V; is expressed in terms

of the generalized displacements in the following form:

v; = %{xf[x]{p, (10)

where [K] defines the stiffness matrix.
The total external potential energy is comprised of two parts:
the part due to axial conservative forces and the part due to non-

conservative time-varying forces. The total external potential energy



Ve is then written in the following form:

T
Ve = TINIIPI{KY + {FOT VY i

where [P] is defined as stability matrix.

The Lagrangian of the system L is written as L =T -V,
where V is defineé as the total potential of the system, or V = Vg + V;.
ki)

Using Hamilton's principle , it follows that the equations of motion

must satisfy the following differential equations:

d _a_l' BL = "—'1,2,“'7).
J’E(B%\;) - AN AR,

Using the matrix quadratic forms given by equations (la) through (14d),

one obtains the following set of differential equations in matrix form:

[MILRY + [CITRy + [ Ik1-TP1]En) = Leew}. @

The above equation is given by Newmark(8 ).




CHAPTER III

GENERAL SOLUTION OF THE EQUATIONS OF MOTION
NEGLECTING THE EFFECT OF DAMPING

The undamped equations of motion are obtained by setting
the matrix [C] = [0] in equation (2), and take the following matrix

form:

pisy + lo-en) g = el - )

Before the general closed-form solution of equation (3) is determined,
one must first obtain the solutions to the following three equations:

1. the free vibration problem given by the matrix equation

[MIRY + [kI{X) = {0}, (42)

2. the static stability problem given by the matrix equation

[[K]-[P]]{ﬂ = {0} , and (4b)

3. the free vibration problem including the effect of axial

force given by the matrix equation

(4c)

[MItKY + [ix3-tP1lixy = {o}Y.
i | ¥ SOLUTION OF THE FREE VIBRATION PROBLEM

Referring to equation (4a), the general solution is assumed

to take the form

£t eiwt{ud ) - (5)



where @) is defined as natural frequency of free vibration and the
vector {ud is defined as the associated eigenvector. Substituting

equation (5) into equation (4a) yields

[-dimy+tkalingy = {0}, ©

which for non-trivial solutions of the vector {ud requires that,

aet [ [ K] - «*mi] - o (1)

Equations (6) and (7) define the generalized eigenvalue-eigenvector
problem as given by Hildebrana( 5) . Equation (7) yields j values of
the parameter sz, j=1, 2, ****n. Corresponding to each value of
ij' equation (6) yields a single eigenvector 'U"‘f}j, p | A SRR RS o
Defining the matrix [Ug] whose columns contain the eigenvectors

j =1, 2, =***n, it follows that

T :
(U] (M) iU{] e B iy T and (8a)

(U KU = (Mgl o (8)

where [Am] y and [I\KF] are diagonal matrices (1), Referring to

equation (6), it follows that,

[KITU;l = IMI UM AWl (9)

where [L\w] is a diagonal matrix with terms sz, j =1, 2, *enn,

]
Premultiplying equation (9) by [U;] and noting equations (8a) and

(8b), it follows that

[Aks) = [Aml [ Ae) e



32 SOLUTION OF THE STATIC STABILITY PROBLEM

Referring to equation (4b), the following identity is
defined:

[Pl = PLPI, (11)

where P is an arbitrary scalar constant. Using equation (11),

equation (4b) is rewritten

[ta-prbilixy = {0}. (o

. For non-trivial solutions of the vector {X} in equation (12), it follows

that

det[[K]—P[[S]] = o. ' (13)

Equations (12) and (13) again describe the generalized eigenvalue-
eigenvector problem. Equation (13) yields (pcr)j values of the parameter
(pcr)j, 3 = 1;.24,.%%%n, ‘where (pcr)j is defined as the critical buckling
load in the jth mode shape. Corresponding to each value of the term
(Pcr)jr j=1, 2, *+*n, equation (12) yields a single eigenvector {zkﬁj
j=1, 2, *+*n. Defining the matrix [\Js]whose columns contain the

eigenvector {ﬂjsii 3= Yg 1@ 5 o0, it follows that
3

(U K] [ Us)
[Us) [ P11 Us]

(M) , ot a0
[AP] - (14b)

where [AKS] , and [[\P] are diagonal matrices. Referring to

i"

equation (12), it follows that

(KI[Us) = [ F,;] EUd L) Cas)

YOUNGSIOWN STATE uNivERSITY | He578

i IRBADY



where [1;57] is a diagonal matrix with terms (p.,.) ., J =1, 2, ;14
T J
Premultiplying equation (15) by [IJ%] and noting equations (14a) and

(14b) , one obtains
[hsed = [Ap][l\u] . (16)

Bed THE CONDITIONS FOR SIMULTANEOUS DIAGONALIZATION
OF THE MASS, STIFFNESS, AND AXIAL FORCE MATRICES.

Referring to equations (9) and (15) the question is asked;
"Under what condition does the matrix equality [IJ%] = IIng hold".
The mathematical requirement is interpreted as follows, "What mathe-
matical constraints must apply, if the eigenvectors of the free vibration
problem are identical to the eigenvectors of static stability problem".
Noting that the matrix product [M].‘[K] and {{3\]-‘[ K] are
non-symmetric, it follows thaf two non-symmetric matrices are simultan-
eously diagonalized by the same non-singular eigenvector matrix [[J] i€

(6)

and only if the matrix product commutes . This condition takes the

mathematical form

lemr'walleb'ik]) = CobTti) iimitia] . oo

Assuming the stiffness matrix [K] is non-singular, equation (17) reduces

to the form

-1 A=l e -1 :
IMIKICP] = [PILKI[M] (18)

The form of equation (18) requires that simultaneously the mass, stiffness,

and axial force matrices be non-singular. This condition holds only if



the rigid body motions are neglected. For convenience, the following

- notation is defined:

R e 4

Also from equations (8b) and (4a),

{Akf] 2 [AKQ] " [AK} . (20)

3.4 GENERAL SOLUTION OF THE FREE VIBRATION PROBLEM
INCLUDING THE EFFECT OF AXIAL FORCE

Referring to equation (4c), and making the substitution

{5 o e e

it follows that,

IMIU1LEY + [IKITUT- PLAITUTIIYY = (0. @

T
Premultiplying equation (22) by [U] and noting equations (8a), (8b),

(14a), (14b), (19), and (20), one obtains
INdL§Y +[(ad- PIAGI Yy = {0} . @

Substituting equations (10), (16), and (20) into equation (23) and

premultiplying the result by [Am] yields

| [11{Y¥} + [An]{Y]} =10}, (24)
were,  [Na] = [NellID-PlAGT) .

The matrix [[\.Q is a diagonal matrix with QX ‘2, j =1, 2, **°n, where
J

nj is the natural frequency of free vibration including the effect of

axial force.
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3.5 GENERAL SOLUTION OF THE FORCED VIBRATION PROBLEM
INCLUDING THE EFFECT OF AXIAL FORCE
Substituting equation (11) into equation (3), premultiplying
T
the result by [U] , and noting equations (8a), (8b), (l14a), (14b), (19),

(20), and (21), yields

20+ [NJ-PINRY] 1Y) = [UlTfct) . 26

Substituting equations (10), (16), (20), and (25) into equation (26), it

follows that ,'

(11(¥) + [Aal{¥} = 19w} , e
where, {S(t)s = [A-m]-'[U]?{‘F(t)} 4 i (28)

The form of equation (26) represents a total uncoupling of equations
of motion. The jth scalar equation of matrix equation (27) takes the

form

Y+ y5i) = . o

Using Lagrange variation of parameters, the solution of equation_(29)

becomes

. = b.l _f).
£=t
.(-%'.J SSJ(t) Sin £ (t'{)d{ . (30)

Equation (30) is written in the matrix form as follows:

t=t
{‘d} (Al{a}+ [tm]"l[ RI{b}+[An] S [E]iﬂ(t)}dt,(m

where, matrices [A], [B], and [E] are diagonal matrices with terms

CQS_Q_jt, Spnﬂjt, and QN .D.J(t{) respectively. Substituting equation



(31) into equation (21) yields

Y = (UTIA]{a} + tum\n]”mnbs

& (32)
+ [UIIA a] J [E]{9t) dt .
Similarly, {‘[\({)s is written as follows:
K@Y = ~[U] [Aa]*(B1AY + (UTALb]
=t
(33)

(V) J [F1L3t) db' |

where, [f] is a diagonal matrix with terms (:()SS Jlu(t-C) .

Using the following prescribed initial conditions

(Y @ t=0, {x}={xod, a“d}
()@ t=0, kW] =1Xo} ki

it follows that,

= [Ul{ay - and
{Xeo) = [UI{bY.

A Noting equation (8a) and (19), one obtains

ol
{a}: [Am][U]T[M‘] {XOy’ and | (35a)
ibi= [I\mj‘[Uir[M]{ X0y, | (35b)

The general solution of equation (3) then takes the following form:

IX®Y = [UIIAL AW LUTTMIER @)
¢ lunml’*[e,nm Mo}

* L0041 T A ] ‘Sreum{ﬂmdt

Equation (36) is investigated for the spec1al case of the externally

applied force (i.e.{f(1)} ).

Taking the initial condition as zero,

11




12

{X(O)} ra {%(0)} & {.0} , and {‘F("E)} = {'F(O)} , where the external

forces are assumed as constants, equation (36) reduces to the form

Xl =[u] [An]"[ A,,j' leoa- [A]]EU]T{Rm} £

Also, assuming the initial conditions as zero and the externally applied

forces as harmonic variation of time in the form

e 3
f,5ind 1’

f29indqt

{Fw)] .

fnSindnt

— —

it follows that, for steady state motion only, equation (36) reduces

to the form
ph | AR
WY = (Ul IA AR AT TUlFWwY
where
& Nel Ly y
. 'n'li" &2 Ty : um-ﬂ-’\"‘*}u
. (38)

01




3

f the i fr i e i 1 LA - fF
If any o e impressed frequencies, o(" Ka, «, is equal to any o
the natural frequencies, Sl flg . .. ., - then the resulting
motion is unstable, that is at least one of the generalized displacements

xj (t) takes on an infinite value.

3.6 NUMERICAL EXAMPLE OF FORCED VIBRATION PROBLEM
NEGLECTING THE EFFECT OF VISCOUS DAMPING

fi (t)

P

Fig: s 3.la Fig. 3.1b
Initial Configuration Displaced Configuration
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The following three scalar functions are defined for the mathematical

model shown above:

i

5 M6y + 1 mAé)?
i
2

T

!

Vi Ky (0,-6)* + %Kt( 9,,1-03)2, (39)

Ve

P(3%-%cos0,-RCOsP,-RCOS6s)

+ Fi(t)Rsing, + caculs:nesu

where for small angles of rotation G?_ = 93- 0.

Considering rotations small in comparison to unity, the following matrices

are obtained:

g ) (5 -4
[M]=m [K] = Kq
_O 1_ 3 E4 S_J .
2 .| ’ 5 Py
- [P]= P& | where [P] = A
:1 2— ’ :1 \2_
. s, i 0.(h)
{Fal - and {X(§)=
Afa)| 8a(t)
From equation (18), it follows that
‘ T
-l A=l A=l -| K
IMI[KI[P] =[PI[KIIM] = %t
m 4
kg 2
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Carrying out the eigenvalue - eigenvector problem, one obtains

Pi ﬂ’
(U] =[Usl = (U] - %

1 -1

Py A~ ’

where [U] is an orthonormal matrix.

In addition, the following diagonal matrices are obtained:

Sig (o} ] 1 0
[Ne] = LAm] = mh
[Ae] = f:" i and [Aq] = %ﬁu-%) 5
ks oK (- PA
0 s, 0 et 3k

For special case of constant external transverse forces

(% £,(0)]

{fn)} = = ARSI S
9~*‘:3(0)J
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and neglecting the effect of initial conditions, equation (37) yields

3 %

0, ()

P jm

01(t)

i i
{ -1
= &
e .
(1- cosn,t)
- PA
Ke(1- ?t)

O

iy
Ke(1- P4
¢( Kt)
0
@)
(1-cos{iat)

- A
3Kt(3 EE*)-A

Defining the external forcing function in the form

ff =

XFs Sinedat

[\ £, Sin ot |

J

t

[04,¢0) ]

A§300)

and neglecting initial conditions, equation (38) for steady state motion

becomes

[ §,(t)]

N e

83(t)
b Bl v

§ 0
RO-T)
0 i
3K1-_(3" Kt) "

—

0
al-ey

FLaog
ai-ok

' XF.%ino(,‘:

X‘Fs Sino(zt
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CHAPTER IV

GENERAL SOLUTION OF THE EQUATIONS OF MOTION
INCLUDING THE EFFECTS OF AXIAL FORCE AND VISCOUS DAMPING

Premultiplying equation (2) by (U1T and noting equations

(8a), (8b), (11), (l4a), (14b), (19), (20), and (21), one obtains

[hed 15« 1C1L9Y + [ingd - P LA LYY = TUT fr}eo

where [E] = ‘U]T[C]‘.U-.\ . (41)

Substituting equations (10), (16), and (20) into equation (40) and
-]
premultiplying the result by [Am] yields-:

. - T . |

where {3&)3 is defined by equation (28). Equation (42) is rewritten

in the following partitioned matrix form:

PRl el sl g



» VIBRATIOL

, of equatu {3 }u

» VIBRATIOL

% ¥ whi g
(9 LYYy

s g
| |

4 g g 3}
s s A
| | | VIBRATION PROBLEM

3 3 3
k k . of equation (43) is assumed as

; ‘ q;t *
» VIBRATIOl: VIBRATIOl: VIBRATIOl @ {u.} - (44)

A

eigenvalue and the vector
. of equat!i of equatl of equat

a+ = a+ = a+ x tor.
VIBRATIOl: VIBRATIOl: VIBRATION

Substituting equation (44)

ion (43) yields

. of equatli of equat} of equat

(45)

, = 10Y

euy vl ; ; | (L9 1]

9

and



which for non-trivial solution of the vector {ﬁ} requires that,

det (‘i[a] + [%] ) = 0. (46)

Equation (46) yields 2n values of the parameter a;, T E R o T
Corresponding to each value of qj equation (45) yields a single
* *
" eigenvector {uJ} H i=12,2, ***2n. 'The matrix [U] is defined
*
as the one whose columns contain the eigenvectors {'U:"} . [The first

YL columns contain the eigenvectors {u,_n} {un.‘.‘} ¥ the

remaining n columns contain the additional n eigenvectors

{un} {u‘} . Noting the partitioned form of equation (45),

it follows that,

gy ] [aqu]

(47)

&?;j |

Rl Rl #

*

19

For convenience the matrix [U] is defined in the following partitioned

i Wdlad  WIIAL!
0 -

(48)

5 (U] Ul
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where the matrix [U,;] contains the eigenvectors {2&J3 4 j=n+ 1,

n+ 2, °°*2n, and the matrix [U;] contains the eigenvectors

{u;y-

j=n,n-1, **°1l. Also, the eigenvalue matrices are defined as follows:

g PR T O- an 5 - 0T
O g+ 0 s Shate O R TCON
IA,]= ft l. S RNYE R % S TED
s 0 0 R,
0 (@) nfiJ 4 _J

Noting equations (48), and (49), equation (45) is rewritten in the follow-

ing partitioned matrix form:

rdichy + (RiO1AY - (o)

(50)

-

it ol s Mg fipas 4
where [I\.] o

(51)

{tom] - [

% x
Since [U] simultaneously diagonalizes both [S] and [R], the following

matrix equations hold:

n

SIS

[ A-*sl 9 (52)
07 [RIL T

U( R] : (53)

and



»* *
where [ _[\s] and [[\R] are diagonal, partitioned

matrices defined as follows:

=

e o : (IA.] [O]
[As] 5 [[\g] =

, —

Noting equations (50), (52), and (53), it follows that,

N G R e

4.2 SOLUTION OF THE FORCED VIBRATION PROBLEM

The non-homogeneous solution of equation (43) is assumed
X* ¥ * (55)
¢ as Y
| Law) = [ulzwy |
@

where -7_ N 3 T

. . ¥ TS
[{2,) b

{]_‘}J ]

b ™ -5 3 k3l

Substituting equation (55) into equation (43), and premultiplying the

[O] E.[\s |]_ [O] D\Rl]_i y

21



22
result by [U]T, and noting equations (52), (53), (54), one obtains

1108} - [R1tZY = Lhiny, oo

% -\

e Ty sl Dpd T (Bl y . P

The form of equation (56) represents a total uncoupling of equations
of motion. The jth scalar equation of matrix equation (56) takes the

following form:

ZJ 1 ci-JZJ ¥ hJ‘Ct) ,.J.=‘,2.'“2n.<58)

The homogeneous solution of equation (58) is assumed as

&t
i o d (59)

Substituting equation (59) into equation (58), and using Lagrange

variation of parameters, the solution of equation (58) becomes

q_-t f’:t . q_J'(t't') |
Z:(t) = e a;@+ J hjlthe” dt. (60)
K d t=0

Equation (60) is rewritten in the following partitioned matrix form:

et
2} = [expLAH]faio) ij [ex [N ihwide @

where # rs{_a.,.(O)}m (62)
{a(o) = |

{ana}| -



Substituting equation (55) into equation (61) yields

¥
{fYywiy = [U][EKP[AH] {.0.(0)}
+ [U]j [exP[A(t -0)]] {h(t)} dt (63

From equation (21), it follows that,

# = *
¢4y = [BILY , , (64)
' -—'-!"nﬂ
where (A" 1,.._, %* P[U] [Of ‘

) .
- ] (Ll @

L{x} :-:—a L.[O] Lul

X
b
Substituting eauatlon (63) 1nto equatlon (64) yields

(X -tuum[expmu {a(or}

-l-[ﬁ]{U]J[CXP[A.(t £1]] {h(t)} L s e ag
Using the following prescribed initial conditions
*® ¥
@ t=0, {Xxw} ={xol,
it follows that,
» ‘k L "
X} =[Ul{u] et} | (67)

% 2 T »
3 A {ay = [U] Uﬁ] {x@y | (68)

23



Noting the form of the matrix [15] from equation (53), it follows that,

* *# % 1 % _ Fa =
a@} = [ARITUT[RILU] {x@] . o
Substituting equation (69) into equation (66) and noting (57), one

obtains

-l % T %

{x} [ﬁl[Ul[expmﬂ][AR]lU]&R][U]{m)}
* f;t '
+h *j T AL RE e B NS
[U][U]t. [expEAW-O]]IARTLUI LI ()} dt,
=0

where

amllulTMl (0]

0] (A JEUfiM)
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Equation (70) represents the general solution of the equation (2).

Recasting equation (70) in partitioned matrix form yields

Ry

b

iy

|

— —

(U] (0]

K o

[exe [I\.zt.)] (0]

.

wors pest
AR LU IM]

t=t

[o]

bee

=0

RIS

N

D]  lexeing]
RESRiTRUEGS o 3l

TR

-1
0l  [AmILUITM)
[ exRin, -]

lexR A, wt1])

.

-

[UIA,)

(o] [U] 3 [U,)

LC]

o

—

[01

Eo e

(")
ety

[U11A,]]

(U]

[o]

1]

dt,

r(l\.kﬂ.i 10] W

-1 A
(1] AL

-{i(o)}-

el
ineed i 8
ROEE

&

i)

-

()



Simplification of equation (71) yields the folldwing displacement

vector {X} in the form:

{X) = [UIIUI( exklp,tl] [[Am']'mfmmi'mftwmo)}
+ [ Agyd [ALIIU T Al TUTTMITRON)
+ [ Apal TULTTAm LC A m] 'mf‘tmmco)b]
+ 00U Lexp.La ) | LARTTUNTA W3 TUTTM) oo}
+ mm]"‘m.l [UT LA m] TUTTMI LR co1}
tt + (Mgl [U.f [Am]"l cl [Aml"[U]TtMI {WH]
+[ul), | Uallexk [mct-tﬂ]mm] [Uz] Tl TUT LIC)Y

+ [U.][ e*P LAt -£1]] [ARJ [Un] “\m] (ul {‘f(t)ldt (72)

4.3 THE SPECIAL CASE OF AN UNDERDAMPED SYSTEM

For an underdamped system, the 2n eigenvalues and the corres-

ponding eigenvectors appear as n complex conjugate pairs, that is,

- the following conjugate matrices are defined:

[N,]
[ARQ_]

- e
[AJ ) [U2] ""[Ul]:
U‘Cm] , and [Agal= [K;sn] : )

where the symbol (®2) denotes the complex conjugate form.
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Noting equations (73), the following matrix reductions are noted:

. [N waad| . 1K) tol
W] = INl=|
UL o - 01 ],
" en T " en o
0 KR e [Ag]  [O] . [Ag] [0) | v
and U\s] A
_[0] Il\atl', _[0] [Asﬂ__ :

Noting equations (73) and (74), one can separate the following complex

matrices into their real and imaginary parts in the following form:

LU =0V] +ilwl, [A) =[Gl + iR, TAR)= 1G]+ i[H]
W S o (75)
Wl=[v]-i Lwl, [A;]‘[G]‘ i[H] ,LARJ‘{GJ“'[HJ
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Substituting equation (75) into equation (72) and noting equation (73),

one obtains

rwl = 2w [[V][exacotﬂtﬁl : [w][emoﬂ][ﬁ]]
[ Lo dtvi-tdtvd T amituf vt seon
+{ eI Loa0vT- HITHIVI- I o] W= Lo T |
[Awd LUTCMI LX)
+[ Lo tvi-tnItw] J At CIl AW TUTEMILR ol )
-2t ol exerotalihl + tvilexeroarl e ]
[ [ UH TVT+ L6 TTWT ] 0] TUTT MIEK 02
- [t tedtmitd’ o dtor-wftsed
(Aol LUTIMIE X (01}
[ CH ] VI+ 1G] LWJ ][M] LCI(Awm] LUJLM]{xco)}]
+2[U1 J [Lv][ exR LG ct-¢)]] 18] - twi lexp.lG w-61] (1]
[ tedtvi-thlwi]
e [EWJ[ exrlo (t—t‘)]] Lﬁ] 4 [v][ exk (G (t—t‘>]][§]]
Lew Tt tordtwd ]} adtultecs dt

(16)



The algebraic operations from which equation (76) is obtained from

equation (72) is shown in Appendix A. In equation (76), [2] » [}‘B\J .

A .

[D], and [lE\:] are diagonal matrices with terms COS(SJ"!‘.), Sin (SJt),
COS(SJQ{‘."{':)) ,and Sin (s,j (£-t) ) g respectively. Also,

the matrices [ exp [Gt]] X and [eXF’. &) (t-t')]] are diagonal
. -
matrices with terms ey-'t " and e’fs‘“—' t)’

r§ and s§ are the real and imaginary parts of the eigenvalues

respectively. The terms

described as follows:
9 Vit 1S, ]
» = 4 s - - o
i SR I% cend 9 = r - Be

Equation (76) represents the general solution of equation (2) for the
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special case of an underdamped system. This complex form of the equation

of motion is reduced to the special case when damping is omitted,

(i.e. [C] = [0]) by noting the following simplifications:

tvl=101]1, [wl=I[ol,
# ; \ &l
G =10l , [h]=1[An]%
{
[Hl = -[AaD?, [G]=(0],

i (77)

YJ' = O,dnd ‘lj = I.SJ‘ =-l'-ﬂ-J

14

Substituting equation (77) into equation (76), one obtains

(B = TUTTATLUT IMIE %))

S UICARTIBITA w] LUTTMI T ()
P S '
'[U][Anlé[lxmllj [E][U]T{,ﬂ-t')}dt. (18)

t=0
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Noting equation (77), it follows that,

A
LAl = DA, [é\] = ~-[R], and [€]= “tEg., T

where, matrices [A], [B], and [E] are defined in the article 3.5.
Combination of equations (78) and (79) yields equation (36) in the

article 3.5.

Equation (78) is investigated for the special case of the

externally applied force (i.e. {F(t)} ). Taking the initial condition

» = LRED = % = o
as zero {‘L(O)} {X( Y {0} 2 and {F(t}} {5« )}
where the external forces are assumed as constants, eqguation (78)

reduces to the form:

xwi= 2[U) [[EVJ[[GJ[ -L1]+LA) [exk. [Gt]]] + [R] (8] [ exkot]]]
- Lw][[H][ (1 ~LR[exr(otl] + LG118] [expro]]
L tvi-tritw ']
~[wiltGakt1+ tAITexe [oe1]] + LRI 81 [exroti]]
+ vl - tlexetonl] + Q1A Lexpiot]]]
[[HE[VL[GJ'[W]T]] EA,,:]l(UﬁFw’} , (80
L4 2 ol

respectively, j = 1,2, ***n. Equation (80) reduces to the special case

A N
where [G] and [H] are diagonal matrices with terms

when damping is omitted (i.e. [C] = [0]) by noting the following simpli-

fications:

N -1
(6] =[0], and [A]= -[AR]E. ¥
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Combination of equations (77), (79), and (81) yields equation (37)

in the article 3.5.

Also, assuming the initial conditions as zero and the

externally applied forces as harmonic variation of time in the form

.
'F| Sin ad, ‘L'

" f2 Sind,t
LF)y = .

: [
S - ,
equation (76) reduces to the form:

{nwy = 'ILU][IV)[[F.J*«[FQ]][J]['LL][Q]-[N][T]+[exR[Gt]][N]
+2 LexpLoa]] LQ]LQJ] {fn}
-t ltr1+LRalE 32 chacad + 20001+ Lexeoalinat )
-9 [ene [eaIR1] 1603
- (w1ltR1+ LRl 00 [—LL][QI-[N][T]+chatet]]m
+2lexncou)tRIA1) 13
-l LRl LRI) L] [ tial I+2 INICT1+ [explotl] NI LE]

-9 [exrtotl] 110A1) {Fn}] : (82)



32

In equation (82), the following diagonal matrices are defined as under

[J] is a matrix containing terms
[L] is a matrix containing terms
[N] is a matrix containing terms
[L] is a matrix containing terﬁs

[N] is a matrix containing terms
[Q] is a matrix containing terms

[T] is a matrix containing terms

i

8. e, 2 132
(!; %i +&; ) + 4'23 3

Y (Vf'f S_‘,"-f “j")
2 2 >
(Yin Gy +9)
2 2
SjLy +Sf-%")

%S
Sind;t

CoS«;t

{fn} is a column matrix containing terms fl, f2""fn,

In addition the following matrices are defined:

(3;: V" -3 h;l: Wn) '%-lluu

§ 7 S 4

" o] =1 - ~-f
lsmvnn-hn Wrm) #‘mum . 5 . (Sran-hr,',wm)r%unu

=4 -| A o -1 =t
(3”. Viin™ hmwnn)"knum ’ & . (Sy, v..-hy,w“)v%,um

-1 -l =l - - -
ke i gt

-] -l A=y
(9y, Vi~ hv, W) Mplinn

g
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(h;,' Yy + 3*?\'«0 »ﬁ:'uu 4 . 2 (h;: Y+ 3;:' Wm)va;'u nn

[Fg] > .

L] L4 [}

( h;'an* S;Awm )ﬁl‘uﬂ 3

bty

-l o A=l
(hoyn Yan* GvnWan) My U

' -
( h;: v"'*s;n.w’h) ’%;l‘?-lm . B G Sl | h-r'g\/MS;: Wi) 'f“'ﬂ.; 'um
[ F4] = . 3 i
i . -] A=l -l 4 o
( hyﬂvﬂﬂ"' Sannn)m‘ u\)‘ ' ‘ 3 ( hmv'" +3m wlﬂ) m‘un‘
3 gl |

where s'ﬁt 1 h'ﬁ ’ mj' VU"w.‘J" Ghd u"J' are the terms of the

matrices [ GeI, (I, LAmi, [V], IN), and (U],
respectively. Equation (82) reduces to the special case when damping
is omitted (i.e. [C] = [0]) by noting equations (77), and (79), and
noting the following simplifications:

N
[F1] = {Fali= IL] = [B) = [O]. (83)

Substituting equation (83) into equation (82) and noting equation (79)

yields

ol =2tuan e e raletirar+nate1] Lond. (84)
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For steady state motion (i.e. [B] = [0]), and noting the following

simplifications:

.

g . T
[ers1+CRd)ea1cl] = 2 [An) zu\m]'[u],

= L85)

and [Q]{fn} . {F(ﬂ} ~

equation (84) reduces to the equation (38) in the article 3.5.

4.4 NUMERICAL EXAMPLE OF FORCED VIBRATION PROBLEM
INCLUDING THE EFFECTS OF VISCOUS DAMPING

fa(t)

L

P

Fig. 4.1la Fig. 4.1b
Initial Configuration Displaced Configuration
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The following four scalar functions are defined for the mathematical

model shown above: =
T = Im@g)+ ZmAey
D = ,'-: 5Cr 6 43 ¢y 83 +$cr (6 +83)"
Vi - %Kt(%'m)z + %.'Kéez +03)" - 86]
Ye = P(3X-%cos6,-Rcoser~-Lcosos)
+ H(t)hsine, + F3(t)Asme3 i

where for small angles of rotation 82_'—' 03- 8 Considering rotations

small in comparison to unity the following matrices are obtained:

[ = ¥ K%

{ 0 o -4
2
[M] m4 [K]= Kt
(8} 4 -4 5
- et ] g - 9
. - ' g
. [ 10] | % -
fcl = ¢ > P
:4 5.. 5 :1 7'_ ’ where,
j1 =1 05, '
A
[P] = X {f(‘ﬂ} =
L R$3(t)
=1 2], gt 7
[6,(t)]

ond {X(t)] =




From equation (18), it follows that

ITk1C AT = (BT IkIIM]

= K

w4

Carrying out the eigenvalue-eigenvector problem one obtains

(Uel = (U] =

where [U] is an orthonormal matrix.

diagonal matrices are obtained:

T Sl
}
[A:r] -
3Kt
A2ABIG g
e -
K

(A

(U1 = v

1

-y

In addition, the following

[Am] o~ mZ‘

[An] =

mx’-

-,
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L B o
X
[l\hl » [1\n3 ='Yn£.
3Kt
B 1 |
be o K (1-P4) i
mi> mp% Ky o
[Aw] - [[\n:] = .9 bt
‘ K
o W, o e

Referring to equation (46), and selecting m = ki = 9\ = ‘ . and p = 1/2,

where P £ (Pcr) min., the following characteristic equation holds:
4 3 2
9° 4+ 45,9 +/ (34CF+8) T+ 32C+ + 315 = O. (B1)

Choosing Cqp = 0-2, the following complex conjugate pairs of eigenvalues

are obtained:

-—

‘1| = -0:'363 + 10:G625

o= 1137 + i2:428
e (88)

=0
v
"

-0:363 — 10:625

-4-437 -12:428

(W
>
1}
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From equation (45), and (88), the following matrices are obtained:

r:'1-131-!-1'7.»42& o 3
A] =
o -0'363 +i0: 25
s o
i i ¥ -
i {
[U|] ®
r033-i4518 o-ozo-io-osz_J
S ' 3
e ISt
! 1 SO L T

Wl ® w] =

{033 o0-020
3 i3

-4.5]8 -0-052
? i ~
For special case of the constant external transverse forces

15 (0)
{ew) = = {f,
e
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and neglecting the effect of initial conditions, and referring to the

equation (80), the following matrices are obtained:

[G)

[A]

[explot]) =

(K]

CH]

— Tt

~-0-158 o

O -0-5544 :

[Cos2428)t o |
o COS (625)t
[ 11310 ¥
e
(=363t

0
E &
i —
93840 (&)
0 -1187
fo-ot4 (o) r

tH)

[B]

[G,] =

[Gr]-l %

—

re
O-338 . 0

& 499

?

[sin(er428)t o

o SN (-625)t

i o

Q... ~14r8i
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Equation (80) is solved for {x(t)s by substituting the above matrices
and simplifying.
Defining the external forcing function in the form
& 5 i
Afsink,t

O

Lfasin Lt

B

g

and neglecting initial conditions, and referring to equation (82),

the following matrices are obtained:

g : ' -
: o)
«A. 920402+ 51-061
i ™
| 1 \
O 051842+ 0235
- _J.,
-8 13- {1372 » i
[ =
o -0:120-0'363x}?
% _ i
4602+ &} o | [11:452-2. 42842 O
il [1]=
0 -0259+ &> o ~327~G25>
oy —, - s
g -2:T64 (o) F's n Ryt o
i [q1=
L8 0227 | O . Sinegt




[t] =

(F]

[Fg,] -

Equation (82) is solved for {x(t)}

& ]

Cosxt @]

(o] ’ Cos '_(z{_

o i R o

100'9¢0 2:050 2

0-008 0062

0'0i1e =-0'051¢ |

-0:595 -5:238

and simplifying.

?

{'Fn} ¥

(Fa]

[F4l

41

-

00516 0016

-2:050 =100:96

[~0:062 0008 |

5:238  -0-505

by substituting the above matrices
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DISCUSSION

The use of the matrix type form for the equations of motion
is proven more efficient than thg series or algebraic type form. Its
efficiency arises due to the fact that matrix type solution is easily

‘programmed for computer use. The formal matrix type solution presented
in this thesis requires inversion of diagonal matrices which is extremely
impqrtant for largé scale system, since the inversion process requires
a large amount of memory core in the computer. Since the solution is
given in Duhamel's integral fofm, one can use any type of time-varying
external forcing functions. 1In this particular thesis, constant external
and harmqnic time-varying forces are solved as special cases.

b 5 démping is included, the n-degree of freedom is converted
into a.2n degree system and solved in partitioned matrix form. This
yields a matrix system which is much larger in scale than the original
system, however, mathematically the system of differential equations
uncouples much more uniquely.

The concept of overdamping and underdamping is readily
understood by use of the plot of the eigenvalues on the complex plane.
For example, for an underdamped system, all the eigenvalues appear in
complek conjugate sets with negative real parts. For an overdamped
system, all the roots appear as negative real values with no imaginary
parts.

The forced vibration problem neglecting the effect of viscous
damping is solved first in order to invegtigate the concept of critical

buckling load, and to establish a condition which simultaneously



diagonalizes the mass, stiffness, and stability matrices.

It is not the intention of ‘this thesis to develop directly
a design précedure toAconvert a physical dynamic problem into a
mathematical model as illustrated in this thesis. This ability is
obtained only by considerable éxperience both in the design office and
under actual field conditions. In an actual field situation, the
magnitude of the stiffness and damping parameters (i.e. Ky and Cg) are
usually obtained from comparison with actual field.testing and measure-

ments of the actual existing structures.
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CONCLUSION

For an underdamped n-degree of f;eedom system, simultaneous
diagonalization of the mass, stiffness, and axial force matrices by
a non-singular matrix takes place only under specific mathematical
operations which are based on matrix commutivity conditions. The most
efficient mathematical approach to the problem is a matrix-type solution
of order (n x n). In general, the matrix which simultaneously diagonalizes
the'mass, stiffness, and axial force matrices needs not diaéonalize the
damping matrix. If damping is included, the matrix solution becomes
more complex since partitioned matrices of order (2n x 2n) are required.
However, this approach is still mathematicélly more convenient. Whether
damping is considered or not, the matrix-type solution is comparatively
more efficient than series-type solution, sinée the matrix form can be
uniquely and efficiently computerized in compact program form.

The basic matrix computations present in the general solution
involve typical matrix addition and multiplication. For the case when
- matrix inv;rsion occurs, it is only necessary to invert diagonal matricés.
Also present in the mathematical solution is matrix eigenvalue-eigenvector
problem. Programs for this special type solution exist in most computer
libraries.

A closed form solution for the cases of constant external forces
or harmonic time-varying forces considerinq steady-state motion is ob-
tained in a closed form using this matrix-type éolutibn, and may be
readily programmed iﬁ an efficient compacf form. For both problems,
exact closéd form solution is presented in matrix form which may be.easily

programmed.
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APPENDIX A

" Noting equation (75), the terms.of equation (72) are expanded

as follows:

[Ullexeradl] = [Evi+itwi] Cexpton)] [exp ting]
| = [tvilexptot]] +i twilexprotl] (IR +itd]
=[LVJ[ exPLotl] (A1 - IWllexrIotl] 18)]
+i[twilexr (GtItRI+TVIlexpIo+t]] [ﬁ]]

Wallexringt)] = [tvilexrtoerthy - TWil expio 1] L8]]
' - i [twlexpre 1) A1+ LvILexp Lotl) l'é]]

. =1 - i
U] = [reds itwd] Lovd +itw] ]
= [todvT- i twl 1+ i [tevtwl+ crd vl

iU = liedtvl- td twd] - i [ bwT+ tiidtvi]

-l - = .
[AJITAJLT] = (6] +itred 1L Lo + itw1] [ i itwd ]
= [LovI LGIL VI CHITHILVT - I Lod - Ty ITH WD

. =1 - - -
1[I+ Lo THILVT + L0067 0] - T LI ]

- T - o -
NI = [l iteltv]- m]'q;] v]- L Hﬂ'tg][wf- LodtHIWT 1
- i [EMy LG IVT+ Lol LHIDVI* Tovit eI Tna- tdtrcnd ]



Substituting the above terms into equation (72) in proper order, the
imaginary parts cancel with each other and the real parts add with each

other making the solution to be real as shown in equation (76).
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