ANALYSIS OF A TENSION SPLICE BY FINITE

ELEMENT TECHNIQUES

by

Somasundaram Palanivel

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Engineering

in the

Civil Engineering

Program

Adviser

Dean, Graduate School

YOUNGSTOWN STATE UNIVERSITY

Date

August 1973

ABSTRACT ANALYSIS OF A TENSION SPLICE BY FINITE ELEMENT TECHNIQUES

Somasundaram Palanivel Master of Science in Engineering Youngstown State University, 1973

The purpose of this thesis was to analyze a tension splice connection used in the bottom chord of long roof truss. Using finite element techniques and the STRUDL-II program, analytical results were obtained and then verified experimentally. Test specimens were strain gaged at points of maximum stress, as obtained from analytical results, and then tested to a maximum load of 70,000 lbs. Based on the experimental verification of the analytical results, the correct analytical procedure or modeling technique was obtained and thereby enabling the analyst to determine the load capacity of the splice connection.

ACKNOWLEDGEMENT

The author wishes to express his gratitude to his advisor, Dr. Jack D. Bakos, Jr., for the time, support, encouragement, and advise which he provided in the development, preparation and completion of this thesis.

The author also wishes to thank his review committee Dr. Paul X. Bellini and Dr. Michael K. Householder for their time and valuable suggestions in the development of this work.

Finally, greatful appreciation extended to Mr. Mike J. Repetski for his assistance in the laboratory and to Mrs. Sally Bartlett for typing this thesis. Special thanks goes out to my brother, Dr. S. K. Sekaran and his wife Dr. Kamalesh Sekaran for their encouragement and financial support during the study when it was most needed.

TABLE OF CONTENTS

																		PAGE
ABSTRACT												•	•					ii
ACKNOWLEI	OGEMENTS													•				iii
TABLE OF	CONTENT	S							•							•	•	iv
LIST OF F	GURES											•	•		•			v
LIST OF 7	TABLES .								•		•		•		•			vii
CHAPTER																		
I.	INTRODU	CTI	ON					•			•			•	•			1
II.	ANALYTI	CAL	PR	OC	EDI	URE	C							•		•	•	3
III.	TESTING	PRO	OCE	DU	RE					•				•	•			47
IV.	TEST RE	SUL	rs											•				52
ν.	COMPARI	SONS	s c	F	RES	SUI	TS	5										68
VI.	CONCLUS	IONS	S A	ND	RH	ECO	MN	EN	IDA	T	ION	IS						99
APPENDIX	A																	101
REFERENCE	cs																	120

LIST OF FIGURES

FIGURE

1.1	General Truss	2
1.2	Splice Connection	2
2.1	Details of Specimen	4
2.2	Typical Element Arrangement	5
2.3	Distribution of Weld Forces	6
2.4	Weld Line Representation	7
2.5	Free Body Diagram of Splice Plate	. 9
2.6	Elastic Support Distribution	10
2.7	Sign Convention of Displacement	11
2.8	Sign Convention of Stress	12
2.9	Details of Case I	15
2.10	Typical Portions of Input and Output for Case I	16-20
2.11	Stress (T_{yy}) For Case I	21
2.12	Stress $(\overline{\sigma}_{xx})$ For Case I	22
2.13	Details of Case II	23
2.14	Typical Portions of Input and Output for Case II	24-28
2.15	Stress (σ_{yy}) For Case II	29
2.16	Stress (σ_{xx}) For Case II	30
2.17	Details of Case III	31
2.18	Typical Portions of Input and Output for Case III	32-36
2.19	Stress (Tyy) For Case III	37
2.20	Stress (σ_{xx}) For Case III	38
2.21	Details of Case IV	39

LIST OF FIGURES (CONTINUED)

FIGURE

PAGE

2.22	Typical Portions of Input and Output for Case IV	40-44
2.23	Stress (σ_{yy}) For Case IV	45
2.24	Stress (σ_{xx}) For Case IV	46
3.1	Strain Gages on Test Specimen	50
3.2	Specimen in the Testing Machine	50
3.3	Specimen in the Testing Machine	51
3.4	Test Set Up	51
4.1	Strain Gage Locations	53
4.2-4.11	Load-Strain Curve	56-65
5.1	Computed Displacements for Case I	74
5.2	Computed Displacements for Case II	75
5.3	Computed Displacements for Case III	76
5.4	Computed Displacements for Case IV	77
5.5	Deformed Shape of Plate	78
5.6-5.25	Displacement Distribution Curve	79-98
A.1	Displacement Directions	103
A.2	Sign Convention of Stress	106
A.3	Square Plate All Sides Simply Supported	107
A.4	1/4 of Square Plate for Strudl Analysis	107
A.5	Plate Fixed at Top and Other Sides Free	111
A.6	1/2 of Plate for Strudl Analysis	111
A.7	Plate One Side Fixed and Others Free .	114

LIST OF TABLES

TABLE

4.1	Recorded Test Results For Test Specimen	54
4.2	Recorded Test Results For Test Specimen	55
4.3	Stress (Tyy) For The Test Specimen at the Gage Locations	66
4.4	Stress (σ_{xx}) For The Test Specimen at the Gage Locations	67
5.1	Comparison of Results (Stress σ_{yy})	70
5.2	Comparison of Results (Stress σ_{xx})	71
5.3	Comparison of Results (Stress Tyy)	72
5.4	Comparison of Results (Stress σ_{xx})	73
A.1	Strudl Input for Example-1	.08
A.2	Strudl Output for Example-1	.09
A.3	Strudl Input for Example-2	.12
A.4	Strudl Output for Example-2	.13
A.5	Strudl Input for Example-3	.15
A.6	Strudl Output for Example-3	.16
A.7	Comparison of Results	.18
A.8	Comparison of Results	19

PAGE

CHAPTER I

INTRODUCTION

The objective of this thesis was to analyze the reliability of a tension splice connection used in the bottom chord of long roof trusses, i.e. spans over 40 feet. Figures 1.1 and 1.2 show the pertinent details of a general truss and the corresponding splice. The analysis was accomplished using finite element techniques and the STRUDL-II^{*} program. This type of splice is utilized primarily for ease in shop fabrication and for ease during field erection.

A problem arises due to the fact that the force in the chord does not act at the center of gravity of the splice plate and hence, the splice plate is subjected to considerable bending due to the resulting eccentric loading. It was required, therefore, to determine the corresponding stress levels and distribution, and to determine structural adequacy of the splice.

The following steps were used in this study:

- Analysis of the splice plate using finite element techniques by means of the STRUDL-II program.
- Verification of the analytical results by experimentation.

See Appendix A.

Figure 1.1 GENERAL TRUSS

Figure 1.2 SPLICE CONNECTION

CHAPTER II

ANALYTICAL PROCEDURE

The splice, which uses two bolts, is shown in detail in Figure 2.1. Taking advantage of symmetry, one half of the plate was divided into 134 rectangular elements having 164 nodes, as shown in Figure 2.2.

Using the techniques outlined in any steel design $text^{(1)}^*$, (2) the stresses in the welds are given by

$f = \frac{P}{A} \pm \frac{Mc}{I}$

in which the welds are treated as lines having no width. These weld forces can be distributed to the nodes as shown in Figure 2.3.

Considering the weld as shown in Figure 2.4, the moment of inertia, the area, and the centroid of the weld group are as follows:

- 1) Moment of inertia $(I_{xx}) = 113 \text{ in}^3$
- 2) Area = 19.25 in
- 3) Centroid $\bar{y} = 3.0$ in

Since the force does not act at the centroid of the weld group, a couple will develop having a moment equal to P(3.0 - 7/8) or 2.125 P. Thus, the forces in the welds can be determined as:

$$F = \frac{P}{A} \pm 2.125P \frac{y}{I}$$

Number in parenthesis indicates reference cited.

Figure 2.1 DETAILS OF SPECIMEN

Distance, Inches

Figure 2.2 TYPICAL ELEMENT ARRANGEMENT

Figure 2.3 DISTRIBUTION OF WELD FORCES

Figure 2.4 WELD LINE REPRESENTATION

YOUNGSTOWN STATE UNIVERSITY

where F = force per linear inch of weld

P = applied load in KIPS

y = distance from centroid in inches

I = moment of inertia about x-x

Figure 2.5 show the weld forces developed under the eccentric loading. Again, it should be noted that the weld forces are in KIPS per linear inch of weld.

For purpose of analysis, the bolt was assumed to act as a reaction point, i.e., the splice plate was assumed to be supported at the bolt positions. Since the bolts carry a large tensile load, considerable displacement in the bolts could result. For this reason, the bolts were considered to act as elastic supports having the following stiffness:

$$K = \frac{AE}{L}$$

where

K = spring constant, KIPS/inch
A = area of bolt, in square inches
E = Young's Modulus, KIPS/in²
L = length of bolt, in inches

Various methods were used to model the elastic support provided by the bolt at the nodes around bolt hole. It was finally decided to distribute the elastic support equally to all nodes around the bolt hole as shown in Figure 2.6.

As mentioned early, one half of the plate was analyzed due to symmetry. This helped to save computer time. However, care must be taken at the line of symmetry. The support

Figure 2.5a

Figure 2.5b

Figure 2.5 FREE BODY DIAGRAM OF SPLICE PLATE

conditions along the line of symmetry differ from the original electer conditions. The nades must be treated to coupports and thereproduces along the line of symmetry, force in the 1 direction and the moment y should be released. Uses Figure 2.7 and 2.81 There are no retetions about the 2 able along the line of symmetry and so releases oned be hade in that direction.

Elastic Support with K = 1856.25 K-in

Figure 2.6 ELASTIC SUPPORT DISTRIBUTION

conditions along the line of symmetry differ from the original plate conditions. The nodes must be treated as supports and the appropriate releases must be made.⁽³⁾ In order to model the nodes along the line of symmetry, force in the z direction and the moment y should be released. (see Figure 2.7 and 2.8) There are no rotations about the x axis along the line of symmetry and no releases need be made in that direction.

Figure 2.7 SIGN CONVENTION OF DISPLACEMENT

The following four cases were considered for the analysis:

<u>Case I</u>: In this case, the boundary conditions around the plate exterior edges were assumed as free edges. The weld forces were taken to act as shown in Figure 2.9. The bolt was assumed to provide equal elastic support at all nodes on the bolt hole,

Figure 2.8 SIGN CONVENTION OF STRESS

i.e., node 63 to 66, 75, 76, 85, 86, 95 to 98 as shown in Figure 2.9. Along the line of symmetry, the nodes were classified and treated as supports and the appropriate releases, i.e., force z and moment y, were accomplished. Typical portions of input and output of the STRUDL program are presented in Figure 2.10. From the output, the stresses were calculated and plotted as shown in Figures 2.11 and 2.12. Case II: In this case the boundary condition at the top edge of the plate was assumed to be simply supported and the other exterior edges as free. The weld forces were taken as shown in Figure 2.13. In this case the bolt was also assumed to provide equal elastic support to all the nodes around the bolt hole. Along line of symmetry, the nodes were classified and treated as supports with the force z and moment y released. At the top edge where simply supported conditions were assumed, a rotation about x axis occurs, and therefore, the moment x at all nodes were released. These boundary conditions and the applied forces are shown in Figure 2.13. Using these boundary conditions and forces, the stiffness analysis was made. Typical portions of input and output of the STRUDL program are presented in Figure 2.14. From the output, the stresses were calculated and plotted as shown in Figures 2.15 and 2.16.

<u>Case III</u>: In this case, the adjacent splice plate was assumed to provide simple support up to 0.5 inch from the top edge. All other exterior edges were considered free. The weld forces were unchanged and the elastic support provided by the bolt

was unaltered. As before, the force z and moment y were released along line of symmetry. At the simply supported support, i.e., those near the top edge of the plate, moment x was released at all nodes. The boundary conditions and forces acting are shown in Figure 2.17. Typical portions of input and output of the STRUDL program are presented in Figure 2.18. The results are plotted as shown in Figures 2.19 and 2.20. <u>Case IV</u>: Same as Case III except that the adjacent splice plate was assumed to provide simple support down to 0.75 inch from the top edge of the plate. The boundary conditions and forces acting are shown in Figure 2.21. Typical portions of input and output of the STRUDL program are presented in Figure 2.22. The results are plotted as shown in Figures 2.23 and 2.24.

Figure 2.9 DETAILS OF CASE I

ungstown . State University COMPUTER CENTER

STRUDL "PB-S1" "FIXED AT BOLT AND WELD FORCE ONLY" 40000

	*	*
	* ICES STRUDL-II	*
	* THE STRUCTURAL DESIGN LANGUAGE	*
	*	*
	* CIVIL ENGINEERING SYSTEMS LABORATORY	卒
	* MASSACHUSETTS INSTITUTE OF TECHNOLOGY	*
	* CAMBRIDGE, MASSACHUSETTS	卒
	* V2 MO OCTOBER, 1970	*
	* 3:26:14 3/16/73	*
	*	*
\$ SPRING (UNIT KIPS	CONSTANT K USED FOR JOINT RELEASES AROUND BOLT	
\$ SPRING (UNIT KIPS SET ELEMEN	CONSTANT K USED FOR JOINT RELEASES AROUND BOLT INCHES NTS INTEGER RDINATES	
SPRING (UNIT KIPS SET ELEMEN JOINT COOP 1 0.0 0.0	CONSTANT K USED FOR JOINT RELEASES AROUND BOLT INCHES NTS INTEGER RDINATES	
SPRING (UNIT KIPS SET ELEMEN JOINT COO 1 0.0 0.0 2 0.4375 (CONSTANT K USED FOR JOINT RELEASES AROUND BOLT INCHES NTS INTEGER RDINATES	
SPRING (UNIT KIPS SET ELEMEN JOINT COOR 1 0.0 0.0 2 0.4375 (3 0.875 0	CONSTANT K USED FOR JOINT RELEASES AROUND BOLT INCHES NTS INTEGER RDINATES 0.0	

Figure 2.10 TYPICAL PORTIONS OF INPUT AND OUTPUT FOR CASE I

	/ No	de N	umber					
		x Co	ordinat	e				
	an. and	Г	y Coor	dina port	te Condi	tion		
65	1.875 2	2.25	¥ S	119	Ŏ.875	4.75	164 5.0 6.0	
66	2.375	2.25	S	120	1.375	4.75	TYPE PLATE BENDIN	(
67	2.875	2.25		121	1.875	4.75	ELEMENT INCIDENCE	\$
68	3.375	2.25		122	2.375	4.75	1 1 2 14 13	
69	3.875	2.25		123	2.875	4.75	2 2 3 15 14	
70	4.375	2.25		124	3.375	4.75	3 3 4 16 15	
71	4.625	2.25		125	3.875	4.75	4 4 5 17 16	
72	5.0 2.	25 S		126	4.375	4.75	5 5 6 18 17	
73	0.0 2.	75		127	4.625	4.75	6 6 7 19 18	
74	0.4375	2.7	5	128	5.0 4.	75 S	7 7 8 20 19	
75	0.875	2.75	S	129	0.0 5.	25	8 8 9 21 20	
76	2.375	2.75	S	130	0.4375	5.25	9 9 10 22 21	
77	2.875	2.75		131	0.875	5.25	10 10 11 23 22	
78	3.375	2.75		132	1.375	5.25	11 11 12 24 23	
79	3.875	2.75		133	1.875	5.25	12 13 14 26 25	
80	4.375	2.75		134	2.375	5.25	13 14 15 27 26	
81	4.625	2.75		135	2.875	5.25	14 15 16 28 27	
82	5.0 2.	75 S		136	3.375	5.25	15 16 17 29 28	
83	0.0 3.	25		137	3.875	5.25	16 17 18 30 29	
84	0.4375	3.2	5	138	4.375	5.25	17 18 19 31 30	
85	0.875	3.25	S	139	4.625	5.25	18 19 20 32 31	

Figure 2.10 (Cont'd)

ELEMENT PROPERTIES

1 TO 134 TYPE "BPR" THICKNESS 1.0

CONSTANTS

E 30000. ALL

POISSON 0.3 ALL

\$ SPRING CONSTANT K USED FOR JOINT RELEASES AROUND BOLT

JOINT RELEASES

12 24 36 48 60 72 82 92 104 116 128 140 152 FURCE Z MOMENT X

63 TO 66 75 76 85 86 95 TO 98 KFZ 1856.25

\$ WELD FORCE ONLY

LOADING 1 'WELD FORCE AT JOINTS'

JOINT LOADS

157 TO 161 FORCE Z 0.298

162 FORCE Z 0.223

163 FURCE Z 0.242

145 TO 148 FORCE Z 0.374

149 FORCE Z 0.280	23 FURCE Z 0.939
150 FORCE Z 0.189	11 FORCE Z 0.731
151 FORCE Z 0.263	10 FORCE Z 0.75
139 FORCE Z 0.304	5 TO 9 FORCE Z 1.0
127 FURCE Z 0.416	STIFFNESS ANALYSIS
138 FORCE Z 0.304	OUTPUT DECIMAL 4
	LIST DISPLACEMENT STRESSES ALL

Figure 2.10 (Cont'd)

RESULTS OF LATEST ANALYSES ********************************

PROBLEM - PB-SI TITLE - FIXED AT BOLT AND WELD FORCE ONLY

ACTIVE UNITS INCH KIP RAD DEGF SEC ACTIVE STRUCTURE TYPE PLATE BENDING ACTIVE COORDINATE AXES X Y

LOADING - 1 WELD FORCE AT JOINTS

ELEMENT STRESSES

ELEMENT

2222

NODE	1	MXX	0.156908E 00	MYY	0.155180E 00	MXY	0.374752E 00
NODE	2	MXX	-0.109111E 01	MYY	-0.473726E-01	MXY	0.716039E 00
NODE	14	MXX	-0.710599E 00	MYY	-0.123618E 01	MXY	0.965951E 00
NODE	13	MXX	-0.424106E-01	MYY	-0.143242E 01	MXY	0.624663E 00
NDDE	2	MXX	-0.104802E 01	MYY	-0.344272E-01	MXY	0.722757E 00
NODE	3	MXX	-0.166704E 01	MYY	-0.163928E-01	MXY	0.116106E 01
NODE	15	MXX	-0.137926E 01	MYY	-0.114972E 01	MXY	0.137680E 01
NODE	14	MXX	-0.736257E 00	MYY	-0.124389E 01	MXY	0.938498E 00

Figure 2.10 (Cont'd)

JOINT		/	DISPLACEMENT			-ROTATION
		X DISP.	Y DISP.	Z DISP. X P	ROT.	Y ROT.
1	GLOBAL			0.0026	-0.0017	-0.0014
2	GLOBAL			0.0032	-0.0018	-0.0014
3	GLOBAL			0.0039	-0.0020	-0.0017
4	GLOBAL			0.0048	-0.0024	-0.0020
5	GLOBAL			0.0059	-0.0028	-0.0023
6	GLOBAL			0.0071	-0.0033	-0.0025
7	GLOBAL			0.0084	-0.0036	-0.0025
8	GLOBAL			0.0096	-0.0039	-0.0023
9	GLOBAL			0.0106	-0.0041	-0.0018
10	GLOBAL			0.0114	-0.0043	-0.0011
11	GLOBAL			0.0116	-0.0043	-0.0006
13	GLOBAL			0.0018	-0.0015	-0.0012
14	GLOBAL			0.0023	-0.0017	-0.0012
15	GLOBAL			0.0029	-0.0020	-0.0014
16	GLOBAL			0.0036	-0.0024	-0.0016
17	GLOBAL			0.0045	-0.0028	-0.0019
18	GLOBAL			0.0055	-0.0032	-0.0021
19	GLOBAL			0.0066	-0.0036	-0.0022

RESULTANT JOINT DISPLACEMENTS - FREE JOINTS

Figure 2.10 (Cont'd)

Distance, Inches

600	-										195
	0.24	0.18	0.0	0.0	-1.50	-2.94	-1.26	-1.92	-3.96	-64	-5,58
5.50	0.72	0.48	0.18	-0.54	-2.64	-6.54	-4.0B	- 4.20	-7.86	-129	-9:72
	1.14	1.02	0.72	0.0	-1-20	-2.64	-3.42	-4.80	-6.12	-7-0	-7.94
4.75		1									
	1-68	1.80	2.16	2.28	1.62	0.12	-2.10	-4-26	-5-34	-57	-6.12
4.25			2.01	C 00	0	2 40	0.0	0.00	1.00	-69	7.26
3.75	1.28	2.40	2.40	29.62	4.0	2.40	-4-02	- 1. 14	-6-+0	-04	- 1 20
3.25	0.66	6.36	1			- 5.28	- 8.04	-870	-9.18	-9.3	-9.60
275	6.24	0.90)	-9.90	-13-86	-13-74	-12.72	-118	-11-BB
2.15	-2.16	-22.38	1			-20.52	-14-22	-19:20	-15.60	-13-8	-13.44
225	-10.80	-18.24	-33.60	- 44.88	-61.92	- 56.40	-27.66	-21.12	- 15-72	-134	-12.64
1.75									C. C. Star		
	-17.04	-19.62	-24.0	-29.10	-30.60	-27.42	-22.50	-1692	-12.36	-99	-9:36
1.25	-14.04	-14.16	-15.0	-15.60	-15+0	-13-86	-12.06	-9.66	-672	-4-8	- 4-62
0.75	-9.9	-9.00	- D AL	7.61	- 4.49	5.64	- 4.92	2.01	-2 11	100	-1.02
0.50			0,40	- 1.06	-0.10	- 5.04	-4.12	- 5.46	2 40		
0.0	-3.84	-3.66	-330	-2.70	-2.04	-1.68	-1.38	-1.02	-0.48	0.0	-0.06

0. 4375 0.875 1.375 1.875 2.375 2.875 3.375 3.875 4.375 4.625 5.0

Distance, Inches

Figure 2.11 STRESS (yy) FOR CASE I, KSI

Distance, Inches

6.00	-										1.15
	0.18	0.54	0.84	0.72	-2.22	- 5, 40	-0.78	0.18	0.0	0.0	-1.20
5.50	-0.24	0,60	0.90	0.90	-0.18	-7.86	-0.72	0.06	-1.14	-9-6	-2.46
	6.18	0.60	0.96	1.02	-0.48	- 3.60	-2.28	-1.08	-1-50	-2.7	-2.28
75	2.10	0.60	0.72	0.90	LOB	1.10	-3.30	-7.22	-078	-0.5	-0.74
25	2.10	0.00	0.12	0,10	1.00	1.14	- 0. 50			-0.0	-0.21
-	0.36	1.14	1.0B	1.50	3.36	-1.62	- 5.04	-3.0	2.70	1-86	1.92
15	1.50	1.92	/		1	-9.0	-7-86	-3.06	1-74	0 - 42	4.56
5	1.50	4.98	1			-18.60	-13.14	-2.82	3.96	7.2	7.68
5)						
5	0.36	9.84	1	_		-34.98	-13.20	1.14	6.84	10.6	11.10
1	0.72	0.72	-29.12	-16.50	-25.56	-41.40	-10-Bo	1.68	9.96	14.2	14.76
5	-5.76	-5.40	-10.20	-15.90	-21-7B	-18.0	-6.96	4.20	13.02	17.8	18.60
5			-							-	
-	-1-62	-5,22	-9.36	-13.08	-19-16	-10.44	-1.92	7.44	16.02	21.0	21.90
0	-2.04	-6.06	-9.60	-10.80	-9.24	- 4.92	2.10	10.32	16-80	23.2	23.64
>	-2.52	-7:20	-10.08	-9.60	-7.26	-3.24	5.04	12.90	20.40	25.9	25.2

0.4375 0.875 1.375 1.875 2.375 2.875 3.375 3.875 4.375 4.625 5.0

Distance, Inches

Figure 2.12 STRESS (Txx) FOR CASE I, KSI

Figure 2.13 DETAILS OF CASE II

STRUDL "PB-3" "S.S. AT TOP FIXED AT BOLT AND WELD FORCE ONLY" 40000

***	*****	****	*****	*****	*****	****
*						*
*	ICI	ES STR	UDL-IT			*
*	THE STRUCT	URAL D	ESIGN L	ANGUAG	E	*
坎						*
*	CIVIL FNGINEE	RING S	YSTEMS-	LABORA	TORY	*
*	MASSACHUSETTS	INSTI	TUTE OF	TECHN	OLOGY	苹
*	CAMBRID	GE, MA	SSACHUS	ETTS		*
*	V2 M0	OCT	OBER, 1	970		*
*	7:14:	59	5/19	173		*
*						*
SPRING CONST	ANT K USED FOR	JOINT	RELFASE	****** S AROU	ND BOL	**** T
\$ SPRING CONST UNIT KIPS INCH SET FLEMFNTS I	ANT K USED FOR	JOINT	RELFASE	S AROU	******	T
\$ SPRING CONST UNIT KIPS INCH SET FLEMFNTS I JOINT COORDINA	ANT K USED FOR HES NTEGER	JOINT	RELFASE	S AROU	*****	T
\$ SPRING CONST UNIT KIPS INCH SET FLEMFNTS I JOINT COORDINA 1 0.0 0.0	ANT K USED FOR	JOINT	RELFASE	\$ AROU	*****	T
\$ SPRING CONST UNIT KIPS INCH SET FLEMFNTS I JOINT COORDINA 1 0.0 0.0 2 0.4375 0.0	ANT K USED FOR HES NTEGER TES	JOINT	RELFASE	S AROU	******	T
\$ SPRING CONST UNIT KIPS INCH SET FLEMFNTS I JOINT COORDINA 1 0.0 0.0 2 0.4375 0.0 3 0.875 0.0	ANT K USED FOR IES NTEGER ITES	JOINT	RELFASE	S AROU	******	T

Figure 2.14 TYPICAL PORTIONS OF INPUT AND OUTPUT FOR CASE II

Г	Node Number		
	Coordinate		
	y Coord	linate	
	Sur Sur	oport Condition	
36	2.375 3.25 \$	119 0.875 4.75	164 5.0 6.0 5
87	2.875 3.25	120 1.375 4.75	TYPE PLATE BENDING.
88	3.375 3.25	121 1.875 4.75	ELEMENT INCIDENCES
89	3.875 3.25	122 2.375 4.75	1 1 2 14 13
90	4.375 3.25	123 2.875 4.75	2 2 3 15 14
91	4.625 3.25	124 3.375 4.75	3 3 4 16 15
92	5.0 3.25 \$	125 3.875 4.75	4 4 5 17 16
13	0.0 3.75	126 4.375 4.75	5 5 6 18 17
94	0.4375 3.75	127 4.625 4.75	6 6 7 19 18
95	0.875 3.75 S	128 5.0 4.75 S	7 7 8 20 19
96	1.375 3.75 S	129 0.0 5.25	8 8 9 21 20
97	1.875 3.75 S	130 0.4375 5.25	9 9 10 22 21
98	2.375 3.75 \$	131 0.875 5.25	10 10 11 23 22
90	2.875 3.75	132 1.375 5.25	11 11 12 24 23
100	3.375 3.75	133 1.875 5.25	12 13 14 26 25
101	1 3.875 3.75	134 2.375 5.25	13 14 15 27 26
1,0 2	2 4.375 3.75	135 2.875 5.25	14 15 10 28 27
103	3 4.625 3.75	136 3.375 5.25	15 16 17 29 28
104	4 5.0 3.75 S	137 3.875 5.25	16 17 18 30 29
105	5 0.0 4.25	138 4.375 5.25	17 18 19 31 30
108	5 0.4375 4.25	139 4.625 5.25	18 19 20 32 31

Figure 2.14 (Cont'd)

FLEMENT PROPERTIES

1 TO 134 TYPE 'BPR' THICKNESS 1.0

CONSTANTS

E 30000. ALL

POISSON 0.3 ALL

\$ SPRING CONSTANT K USED FOR JOINT RELEASES AROUND BOLT

JCINT RELEASES

12 24 36 48 60 72 82 92 104 116 128 140 152 FORCE Z MOMENT X

53 TO 66 75 76 85 86 95 TO 98 KFZ 1856.25

153 TO 164 MOMENT X

\$ WELD FORCE ONLY

.OADING 1 'WELD FORCE AT JOINTS'

JCINT LUADS

157 TO 161 FORCE Z 0.298

162 FURCE Z 0.223

163 FORCE Z 0.242

46	FORCE	Z 0.662	23 FORCE Z 0.939
34	FORCE	Z 0.678	11 FORCE Z 0.731
22	FORCE	Z 0.689	10 FORCE Z 0.75
21	FORCE	Z 0.693	5 TO 9 FORCE Z 1.0
17	TO 20	FORCE Z 0.924	STIFFNESS ANALYSIS
47	FURCE	Z 0.882	OUTPUT DECIMAL 4
35	FORCE	Z 0.899	LIST DISPLACEMENT STRESSES ALL

Figure 2.14 (Cont'd)

RFSULTS OF LATEST ANALYSES

PROBLEM - PB-3 TITLE - S.S. AT TOP FIXED AT BOLT AND WELD FORCE UNLY

ACTIVE UNITS INCH KIP RAD DEGF SEC

ACTIVE STRUCTURE TYPE PLATE BENDING

ACTIVE COORDINATE AXES X Y

LOADING - 1 WELD FORCE AT JOINTS

ELFMENT STRESSES

ELEMENT

NODE	1	MXX	0.156867E 00	MYY	0.155308E 00	MXY	J. 374903E 00
NODE	2	MXX	-0.109173E 01	MYY	-0.474143E-01	MXY	U.716101E 00
NODE	14	MXX	-0.711491E 00	MYY	-0.123595E 01	14XY	J.966268E 00
NODE	13	MXX	-0.424299E-01	MYY	-0.143250E 01	MXY	U.625070E 00
NODE	2	MVV	0 10/0705 01	MVV	0 2// 7705 01		7000115
NUUE	2	MAA	-0.104870E 01	MAA	-0.344110E-01	MXY	J. 122841E UU
NODE	3	MXX	-0.166799E 01	MYY	-0.164089E-01	YXM	J.116088E 01
NODE	15	MXX	-0.138059E 01	MYY	-0.114943E 01	MXY	J.137676E 01
NODE	14	MXX	-0.737178E 00	MYY	-0.124368E 01	MXY	J. 938721E 00
	NODE NODE NODE NODE NODE NODE NODE	NODE 1 NODE 2 NODE 14 NODE 13 NODE 13 NODE 2 NODE 3 NODE 15 NODE 14	NODE1MXXNODE2MXXNODE14MXXNODE13MXXNODE2MXXNODE3MXXNODE15MXXNODE14MXX	NODE 1 MXX 0.156867E 00 NODE 2 MXX -0.109173E 01 NODE 14 MXX -0.711491F 00 NODE 13 MXX -0.424299E-01 NODE 3 MXX -0.104870E 01 NODE 3 MXX -0.166799E 01 NODE 15 MXX -0.138059E 01 NODE 14 MXX -0.737178E 00	NODE 1 MXX 0.156867E 00 MYY NODE 2 MXX -0.109173E 01 MYY NODE 14 MXX -0.711491E 00 MYY NODE 13 MXX -0.424299E-01 MYY NODE 13 MXX -0.104870E 01 MYY NODE 3 MXX -0.166799E 01 MYY NODE 15 MXX -0.138059E 01 MYY NODE 14 MXX -0.737178E 00 MYY	NODE 1 MXX 0.156867E 00 MYY 0.155308E 00 NODE 2 MXX -0.109173E 01 MYY -0.474143E-01 NODE 14 MXX -0.711491E 00 MYY -0.123595E 01 NODE 13 MXX -0.424299E-01 MYY -0.143250E 01 NODE 3 MXX -0.166799E 01 MYY -0.164089E-01 NODE 3 MXX -0.138059E 01 MYY -0.114943E 01 NODE 15 MXX -0.737178E 00 MYY -0.124368E 01	NODE 1 MXX 0.156867E 00 MYY 0.155308E 00 MXY NODE 2 MXX -0.109173E 01 MYY -0.474143E-01 MXY NODE 14 MXX -0.711491E 00 MYY -0.123595E 01 MXY NODE 13 MXX -0.424299E-01 MYY -0.143250E 01 MXY NODE 13 MXX -0.104870E 01 MYY -0.344770E-01 MXY NODE 13 MXX -0.166799E 01 MYY -0.164089E-01 MXY NODE 3 MXX -0.138059E 01 MYY -0.114943E 01 MXY NODE 15 MXX -0.737178E 00 MYY -0.124368E 01 MXY

Figure 2.14 (Cont'd)

LOADING - 1 WELD FORCE AT JOINTS

RESULTANT JOINT DISPLACEMENTS - SUPPORTS

JCINT		/	DISPLACEMENT			RUTATIUN-
		X DISP.	Y DISP.	Z DISP.	JT.	Y ROT.
12	GLOBAL			0.0116	-0.0043	U.0
24	GLOBAL.			0.0095	-0.0041	0.0
36	GLOBAL			0.0085	-0.0034	0.0
48	GLOBAL			0.0067	-1.0030	0.0
60	GLOBAL			0.0050	-1.0031	10.0
63	GLOBAL			0.0006	3.0	0.0
64	GLOBAL			0.0008	J.U	U.0
65	GLOBAL			0.0010	J.0	0.0
66	GLOBAL			0.0012	J.0	0.0
72	GLOBAL			0.0036	-1.0025	0.0
75	GLOBAL			0.0005	0.0	0.0
76	GLOBAL			0.0009	J.0	0.0
82	GLOBAL			0.0025	-1.0019	0.0
85	GLOBAL			0.0004	v.0	0.0
86	GLOBAL			0.0007	0.0	0.0
92	GLOBAL			0.0017	-1.0014	0.0
95	GLOBAL			0.0004	J.0	U.C
96	GLOBAL			0.0004	J.0	0.0
97	GLOBAL			0.0004	. U.O .	.0.0
98	GLOBAL			0.0005	J.0	0.0
104	GLOBAL			0.0010	-J.0011	0.0
116	GLOBAL			0.0005	-J.0008	0.0
128	GLOBAL			0.0003	-0.0005	0.0
140	GLOBAL			0.0001	-0.0003	0.0
141	GLOBAL			0.0	-0.0001	0.0
142	GLOBAL			0.0	-J.0001	.0.0
143	GLOBAL			0.0	-0.0001	0.0

Figure 2.14 (Cont'd)

Distance, Inches

6.00		-							-	-	
	0.42	0.36	0.12	-0.18	-1.14	-3.42	-3.30	-2.04	-4.80	-79	-5-64-
5.50	1.14	0.98	5.70	-0.24	-2.58	-6.60	- 4.26	-4.38	-8.22	-132	-10.92
	1.86	1-68	1-32	0.42	-1.02	-2.64	-3.54	- 4.38	-6.36	-7.7	-8.04
4.75										-	
	2.76	2.82	3.06	3.06	1.98	0.24	-2.10	- 4.38	-5-62	-5.6	-6.42
4.25								-			
3.75	2.52	4.08	5.70	6.66	9.84	3.54	-4.20	-5.40	- 6.60	-7-1	-7.38
	1.50	0.90	/		/	-6.0	-8.16	-8.76	- 9.30	-9.4	-9.60
3.25	0.66	1.08	(-8.10	- 13.86	-13.74	-12.7B	-12-0	-11-94
2.75	-1.98	-1.68				-20.5B	-2.3.82	-19.20	-15.60	-13-8	-11.64
2.25				-						-	
.75	-10-80	-18.30	-33-60	-45.00	-61-86	-56.34	-27.66	-21.12	-15.66	-137	-12-84
	-17.04	-19.62	-24.0	-29.10	-30.54	-27.42	-22.50	-16.92	-12.36	-9.9	-9-36
-25									1 . 2 / 11	-	-
	-14.04	-14.16	-15.0	-15.60	-15.12	-13.80	-12.06	-9.60	-6.72	-4-8	-4.32
50	-9.90	-9.00	- 8.46	-7.56	-6,48	-5-64	-4.92	-3.96	-2.40	-1.2	-1.14
0.0	-3.84	-3.66	-3.30	-2.70	-2.04	-\.68	-1-3B	-1.02	-0.54	0.0	-0.06

0.4375.0.875 1.375 1.875 2.375 2.875 3.375 3.875 4.375 4.625 5.0 Distance, Inches

Figure 2.15 STRESS (yy) FOR CASE II, KSI
Distance, Inches

.00	-		-	-							
	0.06	0.18	0.30	0.48	0.78	- 4.20	0.66	0.12	0.54	-7.1	-0.72
50 25	-0.12	0.47	0.72	1-14	0.60	-6.48	0.0	0.12	-1.86	-9.6	-2.2B
5	-0.24	-0.66	1.0B	1-32	0.12	-2.54	-1-74	-0.96	-1-86	-30	-2.2.8
	0.30	0.96	1.32	1.32	1.64	-0.66	-2.94	-2-10	-0.89	-0.2	-0.66
	0.48	1.98	4.74	3.72	3-60	-1.50	- 4-86	-2.76	0.18	1.64	1.64
	0.96	2.40	1		1	-9.1B	-8.40	-3.12	1-74	41	4.64
	1.56	5.04	()	-18-36	-11-64	-2.82	3.90	7.1	7.56
	1.56	9.84	1			- 34.92	-13-26	-1.20	6.84	10-5	11-10
	-0.66	-3.84	-12.0	-1650	-25.50	-41,16	-10-80	-1.32	9.96	14-1	19.76
	-0.64	- 5.40	-11-16	-15.72	-21.90	-18.24	-7,20	4.14	13.02	177	18.48
	-1.62	-5.22	-9.72	-13.08	-14.16	- 10-62	-1-92	4.44	14.82	211	21.90
,	-2-16	-6.06	-9.60	-10.80	-9.24	- 4.92	2.10	10.26	18.30	232	23.8
	-2.52	-7.20	-10.20	-9-66	-636	-3.18	5.04	12.84	20.40	249	25.20

0.4375 0.875 1.375 1.875 2.375 2.875 3.375 3.875 4.375 4.625 5.0 Distance, Inches

Figure 2.16 STRESS (Txx) FOR CASE II, KSI

Figure 2.17 DETAILS OF CASE III

****** ICES STRUDL-II 24 THE STRUCTURAL DESIGN LANGUAGE 2º 赤 CIVIL ENGINEERING SYSTEMS LABORATORY * * MASSACHUSETTS INSTITUTE OF TECHNOLOGY * * CAMBRIDGE, MASSACHUSETTS V2 MO OCTOBER, 1970 7:46:12 5/19/73 ***************** \$ SPRING CONSTANT K USED FOR JOINT RELEASES AROUND BOLT UNIT KIPS INCHES SET ELEMENTS INTEGER JOINT COORDINATES 1 0.0 0.0 2 0.4375 0.0 3 0.875 0.0 4 1.375 0.0 5 1.875 0.0 6 2.375 0.0 7 2.875 0.0 8 3.375 0.0 Figure 2.18 TYPICAL PORTIONS OF INPUT AND OUTPUT FOR CASE III

STRUDE "PB-SS' "S.S. UPTO .5 INCH FROM TOP AND WELD FORCE

Node Number	ate	
-y Co	ordinate	
53 1.875 1.75	131 0.875 5.25	164 5.0 6.0 5
54 2.375 1.75	132 1.375 5.25	TYPE PLATE BENDING
55 2.875 1.75	133 1.875 5.25	ELEMENT INCIDENCES
56 3.375 1.75	134 2.375 5.25	1 1 2 14 13
57 3.875 1.75	135 2.875 5.25	2 2 3 15 14
58 4.375 1.75	136 3.375 5.25	3 3 4 16 15
59 4.625 1.75	137 3.875 5.25	4 4 5 17 16
60 5.0 1.75 S	138 4.375 5.25	5 5 6 18 17
61 0.0 2.25	139 4.625 5.25	6 6 7 19 18
62 0.4375 2.25	140 5.0 5.25 S	7 7 8 20 19
63 0.875 2.25 S	141 0.0 5.50 S	8 8 9 21 20
64 1.375 2.25 S	142 0.4375 5.50 S	9 9 10 22 21
65 1.875 2.25 S	143 0.875 5.50 S	10 10 11 23 22
66 2.375 2.25 S	144 1.375 5.50 S	11 11 12 24 23
67 2.875 2.25	145 1.875 5.50 S	12 13 14 26 25
68 3.375 2.25	146 2.375 5.50 S	13 14 15 27 26
69 3.875 2.25	147 2.875 5.50 S	14 15 16 28 27
70 4.375 2.25	148 3.375 5.50 S	15 16 17 29 28
71 4.625 2.25	149 3.875 5.50 S	16 17 18 30 29
72 5.0 2.25 S	150 4.375 5.50 S	17 18 19 31 30
73 0.0 2.75	151 4.625 5.50 S	18 19 20 32 31
	- As manufactures -	and the second second second second

Figure 2.18 (Cont'd)

ELEMENT PROPERTIES

1 TO 134 TYPE 'BPR' THICKNESS 1.0

CONSTANTS

E 30000. ALL

POISSON 0.3 ALL

\$ SPRING CONSTANT K USED FOR JOINT RELEASES AROUND BOLT

JOINT RELEASES

12 24 36 48 60 72 82 92 104 116 128 140 152 FORCE Z MOMENT X

63 TO 66 75 76 85 86 95 TO 93 KFZ 1856.25

141 TO 151 153 TO 164 MOMENT X

\$ WELD FORCE ONLY

LOADING 1 'WELD FORCE AT JUINTS'

JOINT LOADS

157 TO 161 FORCE Z 0.298

162 FORCE Z 0.223

163 FORCE Z 0.242

46	FORCE	Z 0.662		23 FORCE Z 0.939
34	FORCE	Z_0.678		11 FORCE Z 0.731
22	FORCE	Z 0.689		10 FORCE Z 0.75
21	FORCE	Z 0.693		5 TO 9 FORCE Z 1.0
17	TO 20	FORCE Z	0.924	STIFFNESS ANALYSIS
47	FORCE	Z 0.882		OUTPUT DECIMAL 4
35	FORCE	Z 0.899		LIST DISPLACEMENT STRESSES ALL

Figure 2.18 (Cont'd)

PROBLEM - PB-SS TITLE - S.S. UPTO .5 INCH FROM TOP AND WELD FORCE ONLY

ACTIVE UNITS INCH KIP RAD DEGF SEC

ACTIVE STRUCTURE TYPE PLATE BENDING

ACTIVE COORDINATE AXES X Y

LOADING - 1 WELD FORCE AT JOINTS

ELEMENT STRESSES

ELEMENT

1	NODE	1	MXX	0.156827E 00	MYY	0.155561E 00	MXY	J. 375128E 00
1	NODE	2	MXX	-0.109293E 01	MYY	-0.474492E-01	MXY	J.716049E 00
1	NODE	14	MXX	-0.713166E 00	MYY	-0.123512E 01	YXY	J. 966595E 00
1	NODE	13	MXX	-0.424836E-01	MYY	-0.143199E 01	MXY	J.625674E 00
1								
2	NODE	2	MXX	-0.104992E 01	MYY	-0.345649E-01	MXY	J.722821E 00
2	NODE	3	MXX	-0.167029E 01	MYY	-0.165100E-01	MXY	J.116037E 01
2	NODE	15	MXX	-0.138330E 01	MYY	-0.114877E 01	MXY	J.137643E 01
2	NODE	14	MXX	-0.738931F 00	MYY	-0.1242835 01	MXY	938879E 00

Figure 2.18 (Cont'd)

LCADING - 1 WELD FORCE AT JOINTS

FESULTANT JOINT DISPLACEMENTS - SUPPORTS

JUINT		/	DISPLACEMENT	/,	, =====================================
		X DISP.	Y DISP.	Z DISP.	X RUT.
12	GLOBAL			0.0117	-J.0043
24	GLOBAL			0.0096	-0.0040
36	GLOBAL			0.0086	-0.0039
48	GLOBAL			0.0067	-3.0035
60	GLOBAL			0.0051	-3.0031
63	GLOBAL	and the second second second		0.0007	0.0
64	GLOBAL			0.0009	0.0
65	GLOBAL			0.0011	J.0
65	GLOBAL			0.0013	J. O
72	GLOBAL			0.0037	-3.0025
75	GLOBAL			0.0006	0.0
76	GLOBAL			0.0010	J.0
82	GLOBAL			0.0026	-0.0019
85	GLOBAL			0.0006	U.0
86	GLOBAL			0.0008	0.0
92	GLOBAL			0.0018	-J.3014
95	GLOBAL			0.0005	J.0
96	GLOBAL			0.0005	J.0
97	GLOBAL			0.0006	U.O.
98	GLOBAL			0.0006	0.0
104	GLOBAL			0.0011	-0.0011
116	GLOBAL			0.0007	-J.0008
128	GLOBAL			0.0003	-0.0006
140	GLOBAL			0.0001	-0.0003
152	GLOBAL			0.0000	-0.0002
153	GLUBAL			0.0	-0.0003
154	GL OB AL			0.0	-0.0003

Figure 2.18 (Cont'd)

Distance, Inches

6.00		-									
5.50	-3.12	-3.78	- 4.20	- 4.44	- 4.80	- 4.98	-4-64	- 3.00	-5.46	-84	-5.76
5.25	-5-52	-6.42	-7.14	-7.68	-7.26	-6.72	-7:92	-7.92	-9.18	-10-2	-10.44
	-2.94	-3.06	3.30	-3,66	- 4.02	-3.90	-5.22	-6.36	-7.19	-7:2	-7.7
4.75											
	1.02	1.26	1.74	2.22	0.96	-0:78	- 3.0	- 5-04	-6.12	-6.0	-6-84
4.25						3	-				
3.75	2.58	5.70	6.66	7.02	-10.80	3.78	- 4.44	-5.82	-7.02	-7:2	-7.56
	2.22	1.44	1			- 5.46	-8.40	-9.0	-9-6	-6-9	- 9·84
5,25	1.32	1.50	()	- 9.78	-13.80	-13.80	-12.50	-12.0	-12.12
275	-1.44	1.98	1			-29.28	-27.84	-19.14	-15-60	-138	-12.9
25	-10-38	-1824	- 33-72	- 45.0	-62.04	-56.40	-27.60	- 15- 06	-15-66	-13.2	-13.6
15	-16.92	- 19.56	-24.0	- 29.22	- 30.60	-27.42	-22:50	- 16.92	-15.36	-84	-9-36
.25	-13.98	-14-16	-15.0	-15.06	-15-12	-13.80	-12.06	-9.60	-6.90	-4.2	-5.8
.50	-9-90	-9.0	-8.4	-7.56	-6.48	-5.64	- 4.92	-3.96	-2.40	-1.2	-1.02
00	- 3.04	-3.66	-3-30	-2.40	-2.14	-1-68	-1.38	-1.0B	- 0.48	0.0	-0.6

0. 4375 0.875 1.375 1.875 2.375 2.875 3.375 3.875 4.375 4.625 5.0

Distance, Inches

Figure 2.19 STRESS (yy) FOR CASE III, KSI

Distance, Inches

.00									1		
0	- 0.78	-1.14	-1.20	-1.32	-1.44	-1.44	-1.32	-1-32	-1.62	-1.7	-390
	-1.44	-1.86	-2.10	-2.22	-2.10	-1.98	-2.22	-2.52	-2.70	2.5	-1·38
	-0.42	-0.7B	-0.78	-0-72	-1.72	-1.44	-2.40	- 3.0	-1.80	-1.4	-1.38
	0-D	0.60	0.84	0.66	1.30	0.49	- 3.30	-2.82	-0.96	0.3	0.24
	-0.60	3.12	2.52	2.34	4.19	-1.38	5.10	-3.0	0.10	2.1	2.10
	0.60	3.12	(1	- 34.80	- 13.20	-1.26	6.78	10:5	11.10
	1.20	3.18	(-10.42	-7.92	-3.24	1.74	4.2	4.50
	-1.74	5.46	1			-18.30	-11-70	- 3.0	3.90	-7.1	7.62
	-0-72	-0.60	-12.36	-29.94	-25.44	-35.16	-10.56	1.32	9.90	14-1	14.76
	-5.70	-5.46	-11-34	- 15-90	- 21-6	-12.24	-6.96	- 4.14	12.96	17.7	18.5
	-1.62	- 5.40	-9.72	-13-14	- 19-10	-10.44	-1.92	7.44	16.02	21.2	21.84
	-1.98	-6.06	-9.6	-12.60	- 9.24	- 4.92	2.10	10.26	18.30	23-2	23·B
-	-2.52	-7.26	-10.20	-9.6	-6.30	-1.74	5.04	12.84	20,40	24.9	25.2

0.4375 0.875 1.375 1.875 2.375 2.875 3.375 3.875 4.375 4.625 5.0

Distance, Inches

Figure 2.20 STRESS (Txx) FOR CASE III, KSI

Release Force z & Moment x Figure 2.21 DETAILS OF CASE IV

STRUDL "PB-SS" "S.S. UPTP 0.75 INCH FROM TOP AND WELD FORCE ONLY" 40000

	* * * * *	******	****
	*		*
	*	ICES STRUDL-TI	*
	*	THE STRUCTURAL DESIGN LANGUAGE	*
	*		*
	*	CIVIL ENGINEERING SYSTEMS LABORAT	ORY *
	*	MASSACHUSETTS INSTITUTE OF TECHNO	LOGY *
	*	CAMBRIDGE, MASSACHUSETTS	*
	*	V2 MO OCTOBER, 1970	*
	*	9:10:04 5/19/73	*
	*		*
SET ELEM	S INCH	ES	
JOINT CO	ORDINA	TES	
1 0.0 0.	0		
2 0.4375	0.0		
3 0.875	0.0		
4 1.375	0.0		

Figure 2.22 TYPICAL PORTIONS OF INPUT AND OUTPUT FOR CASE IV

Node Number		
- x coordinat	e	
	ordinate	
	ipport Condition	
86 2. 375 3.25 S	131 0.875 5.25 S	164 5.0 6.0 S
87 2.875 3.25	132 1.375 5.25 S	TYPE PLATE BENDING
88 3.375 3.25	133 1.875 5.25 S	ELEMENT INCIDENCES
89 3.875 3.25	134 2.375 5.25 S	1 1 2 14 13
90 4.375 3.25	135 2.875 5.25 S	2 2 3 15 14
91 4.625 3.25	136 3.375 5.25 S	3 3 4 16 15
92 5.0 3.25 S	137 3.875 5.25 S	4 4 5 17 16
93 0.0 3.75	138 4.375 5.25 S	5 5 6 18 17
94 0.4375 3.75	139 4.625 5.25 S	6 6 7 19 18
95 0.875 3.75 S	140 5.0 5.25 S	7 7 8 20 19
96 1.375 3.75 S	141 0.0 5.50 5	8 8 9 21 20
97 1.875 3.75 S	142 0.4375 5.50 S	9 9 10 22 21
98 2.375 3.75 S	143 0.875 5.50 S	10 10 11 23 22
99 2.875 3.75	144 1.375 5.50 S	11 11 12 24 23
100 3.375 3.75	145 1.875 5.50 S	12 13 14 26 25
101 3.875 3.75	146 2.375 5.50 S	13 14 15 27 26
102 4.375 3.75	147 2.875 5.50 S	14 15 16 28 27
103 4.625 3.75	148 3.375 5.50 S	15 16 17 29 28
104 5.0 3.75 S	149 3.875 5.50 S	16 17 18 30 29
105 0.0 4.25	150 4.375 5.50 S	17 18 19 31 30
106 0.4375 4.25	151 4.625 5.50 S	18 19 20 32 31
and a second	**************************************	

Figure 2.22 (Cont'd)

ELEMENT PROPERTIES

1 TO 134 TYPE "BPR" THICKNESS 1.0

CONSTANTS

E 30000. ALL

POISSON 0.3 ALL

\$ SPRING CONSTANT K USED FOP JOINT RELFASES AROUND BOLT

JOINT RELEASES

12 24 36 48 60 72 82 92 104 116 128 140 152 FORCE Z MOMENT X

63 TO 66 75 76 85 86 95 TO 98 KFZ 1856.25

129 TO 139 141 TO 151 153 TO 164 MOMENT X

\$ WELD FORCE ONLY

LOADING 1 "WELD FORCE AT JOINTS"

JOINT LOADS

157 TO 161 FORCE Z 0.298

162 FORCE Z. 0.223

163 FORCE Z 0.242

145 TO 148 FORCE Z 0.374	23 FORCE Z 0.939
149 FORCE Z 0.280	11 FORCE Z 0.731
150 FORCE Z 0.189	10 FORCE Z 0.75
151 FORCE Z 0.263	5 TO 9 FORCE Z 1.0
139 FORCE Z 0.304	STIFFNESS ANALYSIS
127 FORCE Z 0.416	OUTPUT DECIMAL 4
138 FORCE Z 0.304	LIST DISPLACEMENT STRESSES ALL

Figure 2.22 (Cont'd)

PROBLEM - PR-SS TITLE - S.S. UPTP 0.75 INCH FROM TOP AND WELD FORCE UNLY

ACTIVE UNITS INCH KIP RAD DEGF SEC

ACTIVE STRUCTURE TYPE PLATE BENDING

ACTIVE COORDINATE AXES X Y

LOADING - 1 WELD FORCE AT JOINTS

ELEMENT STRESSES

ELEMENT

1	NODE	1	MXX	0.156914E 00	MYY	0.155382E 00	YXY	J.375073E 00
1	NODE	2	MXX	-0.109206F 01	MYY	-0.475093E-01	YXN	J. 716191E UJ
1	NODE	14	MXX	-0.712002E 00	MYY	-0.123609E 01	MXY	J. 966395E UU
1	NODE	13	MXX	-0.425264E-01	MYY	-0.143266E 01	MXY	J.025277E 00
	NORE							
2	NUDE	2	MXX	-0.104899E 01	MYY	-0.345786E-01	MXY	J.723068E UJ
2	NODE	3	MXX	-0.166798E 01	MYY	-0.165288E-01	AXY	J.116100E GI
2	NODE	15	MXX	-0.138073E 01	MYY	-0.115013E 01	MXY	J.137653E 01
2	NODE	14	MXX	-0.737824E 00	MYY	-0.124385E 01	MXY	J.938598E 00

Figure 2.22 (Cont'd)

LOADING - 1 WELD FORCE AT JOINTS

PESULTANT JUINT DISPLACEMENTS - SUPPOPTS

JOINT		/DISPLACEMENT/											
		X DISP.	Y DISP.	Z DISP.	KUT.	Y RUT.							
12	GLOBAL			0.0115	-1 1043	1.0							
24	GLOBAL			0.0094	-1 0041								
36	GLOBAL			0.0084		0.0							
48	GLOBAL			0.0065	-1 0030	4.0							
60	GLOBAL			0.0049	-1.031	0.0							
63	GLOBAL			0.0006	0.0011	1.)							
64	GLOBAL			0.0007	0.0								
05	GL DEAL			0.0009	0.0	4.7							
56	GLOBAL			0.0011	0.0	0.)							
72	GLOBAL			0.0035		0.0							
75	GLUBAL			0.0004	3.0075	0.0							
76	GLOBAL			0.0008		1.0							
82	GLOBAL			0.0024	11721	0.0							
85	GLOBAL			0.0004	3.0320	0.1							
86	GLOBAL			0.0006		0.0							
92	GLOBAL			0.0015	-1.0015	3.0							
95	GLGBAL			0.0003	0.0010	0.0							
96	GLOBAL			0.0003	1.0	1.0							
97	GLOBAL			0.0003	1.0	0.0							
98	GLOPAL			0.0004	0.0								
104	GLOBAL			0.0009	-1 (011	0.0							
116	GLOBAL			0.0004	107	0.1							
128	GLOPAL			0.0001		0.0							
129	GLOBAL			0.0		0.,							
130	GLOFAL			0.0									
131	GLOBAL			0.0	0.0000								
132	GI OR AL			0 0									

Figure 2.22 (Cont'd)

Distance, Inches

6.00									- 1		
5.50	0.54	0.72	0.96	0.90	0.90	0.90	0.78	0.84	1.02	1.08	0.36
5.25	-2.76	-3.60	-4.14	-4.56	-5.04	- 4.20	-3.72	- 4-02	-5.04	-5.	-7.2
	- 4.66	- 5.76	-8.04	-7.20	-9.00	-7.44	-7.56	-8.70	-10-32	-11-4	-11.16
4.75											
.75	-0.72	0.06	0.18	0.36	0.72	-2.52	- 4.74	-6.96	-6.60	-8.4	-9.12
- 23	1.86	5.04	B.10	B. 46	10.8	3.48	- 5.40	-6.96	-8.34	-7.2	-9:30
75											
75	2.16	1-38	1		1	-5.40	-8.52	-12.60	-10.26	-10-2	-10-80
~)	1-44	1-62	(-9.48	-1374	-13-98	-13-20	-120	-12.6
75	3.48	2.70	1			-19.98	-23.40	-19.14	-15.66	-13-8	-13-68
20	-10-32	-18.30	-33.90	-45.0	-62.16	-56.22	-27.42	-21.0	-21.66	-13-2	-12.90
75										1.	
25	-16-8	-19.56	-24.06	-29.40	- 30.36	-27.60	-22.44	- 16.86	-15-30	-9.6	-9.36
	-14.04	-14.16	-15.0	-15-60	-15.0	-13.80	-12.06	- 9.60	-6.72	-0.4	- 4.28
50	-9.90	-9.0	-B. 46	-7.56	-6.48	- 5.64	- 9.92	3.96	-2.40	-0.6	-0.96
	-3.84	-3.84	-3.30	-2.70	-1.44	-1.68	-1.30	-1.02	-0.48	-0.6	-0.6
00		Cornela !	1						1 · · · ·		

0. 4375 0.875 1.375 1.875 2.375 2.875 3.375 3.875 4.375 4.625 5.0

Distance, Inches

Figure 2.23 STRESS (Jyy) FOR CASE IV, KSI

Distance, Inches

5.00											
50	0.12	0.18	0.24	0.24	0.24	0.24	0.24	0.30	0.30	0.3	0.12
25	-0.78	-1.02	-1.20	-1.32	-1.32	-1.26	-1.14	-1.20	-1.50	4.8	-1.8
	-1.14	-1.56	-1.80	-2.16	-1.92	-2.28	-2.76	-2.94	- 3.00	-3.0	-2.51
	-0.6	0.24	0.36	0.06	1.08	-0.96	-3.54	-3-24	-1.80	-0.9	-0.96
-	6.54	3.12	2.88	2.28	4.20	-1.14	-5.16	-3.42	-0.54	-1.2	-1-14
	1.20	3.42	1		1	-8.40	9.7-	-3.54	0.96	3.6	3.78
	1.80	5.64	(-17.40	-11.40	-3.06	3.48	7.62	10.02
	1.68	1.02	1			-33:84	-18.90	-1.32	6.42	9.6	10.62
	-0.72	0.60	- 13-74	- 16.26	-25:50	- 40.80	-10.44	12.6	9.72	13.8	14:34
	-0.54	-5.46	-11.22	-15,78	-21.66	-18.12	-6.84	4.14	12.84	17.9	18-18
	-1.62	-5.22	-9.72	- 13.08	-14-04	-10-38	-1.86	7.44	15.90	22.2	21.66
l	-2.16	-6.06	-9.60	-10.B	-9.18	-4-86	2.10	10.26	8.16	22.8	23.70
	-2.52	-7.20	-10-0B	-9.6	-6.36	- 1.68	-5.04	12.84	20.22	246	25.02

04375 0.875 1.375 1.875 2.375 2.875 3.375 3.875 4.375 4.625 5.0 Distance, Inches

Figure 2.24 STRESS (Txx) FOR CASE IV, KSI

CHAPTER III

TESTING PROCEDURE

3.1 Equipment:

The Baldwin HV Universal machine was used throughout the testing phase. The Model HV is a hydraulic testing machine of the conventional two-space design with a capacity of 60,000 pounds. The two major components of the machine are the straining structure and the control console. The latter is essentially the same for all capacities except for differences in the load ranges provided and in details of the electrical controls. The straining structure, in all cases, includes a lapped piston which operates without packing in a cylinder that is integral with the base of the structure. In the universal machine, tension specimens are placed between the two cross heads. The work table is fixed to the top of a hydraulic piston which moves in a cylinder and is integral with the base of the straining structure. The upper crosshead is supported on a pair of columns fixed to the base of the straining structure supports the lower crosshead which is vertically adjustable. Each crosshead contains a tapered grip jaw pocket located on the vertical axis of the load-apply cylinder and piston. Upper movement of the hydraulic piston applies load to a tension specimen supported between the crossheads. Pressure to move the piston in the cylinder is produced by a motor-driven hydraulic pump whose output passes through suitable control valves.

For the strain measurements, the BSG-6 Switch Balance and the BAM-1 Bridge Amplifier were used. The strain gages selected were SR-4, type AFX-7, 90° rosette with a gage factor of 1.97 \pm 2%. Up to six channels of the strain gages were individually connected to the inputs of the BSG-6 enabling any individual channel to be prebalanced and switched into the single channel instrumentation, i.e., the BAM-1 Bridge Amplifier.

The strain gages were placed at the locations on the splice plate shown in Figure 3.1. These points were selected from the points of maximum stress as obtained from the analysis portion of the study. It was hoped that the gage positions selected would yield a maximum and minimum stress distribution across the plate.

3.2 Test Procedure:

Using the standard bonding techniques, the strain gages were bonded on the prepared surfaces of the splice plates. The specimens were clamped between the two crossheads of the testing machine by tapered, grip jaw pockets as shown in Figures 3.2 to 3.4. The load was increased gradually in increments of 2,500 pounds. The strains were recorded at every load increment. The stresses were calculated at each gage position using the following procedure:

$$\sigma_{xx} = \frac{E}{1 - \mathcal{M}^2} \left(\epsilon_{xx} + \epsilon_{yy} \right)$$

$$\nabla yy = \underline{E} \quad (\in yy + \mathcal{U} \in xx)$$

where

T xx = stress produced in x-direction, KIPS/in²
T yy = stress produced in y-direction, KIPS/in²
E = Young's modulus, 30,000 KIPS/in²
A = Poisson's ratio, 0.3
€ xx = strain in x-direction, micro in/in
€ yy = strain in y-direction, micro in/in

Figure 3.1 STRAIN GAGES ON TEST. SPECIMEN

Figure 3.2 SPECIMEN IN THE TESTING MACHINE

g.

Figure 3.3 SPECIMEN IN THE TESTING MACHINE

Figure 3.4 TEST SETUP

CHAPTER IV

TEST RESULTS

The strain gage locations used are shown in Figure 4.1. Tables 4.1 through 4.2 inclusive tabulate the recorded strain and corresponding applied loads.

Figures 4.2 through 4.11 show the load vs. strain curves for gage locations 1 to 5. Tables 4.3 and 4.4 tabulates the stresses for gage locations 1 to 5. The tabulated stresses were obtained from recorded strain values as follows:

$$\nabla xx = \underbrace{E}_{1-\mu^2} (\epsilon_{xx} + \mu \epsilon_{yy})$$

$$yy = \frac{E}{1-\mu^2} (\epsilon_{yy} + \mu \epsilon_{xx})$$

where

E = Young's modulus, 30,000 KIPS/in² \mathcal{M} = Poisson's ratio, 0.3 \mathcal{E}_{xx} = measured strain in x-direction, (10)⁻⁶ in/in \mathcal{E}_{yy} = measured strain in y-direction, (10)⁻⁶ in/in

) Gage No. and position

Projections indicate direction of strain measurement.

Figure 4.1 STRAIN GAGE LOCATIONS OF SPECIMEN

TABLE 4.1

RECORDED TEST RESULTS FOR TEST SPECIMEN

Strain reading (105⁶ in/in

Applied Load (lbs)	Gage 1 (y)	Gage 1 (x)	Gage 2 (y)	Gage 2 (x)	Gage 3 (y)	Gage 3 (x)
0 2,500 5,000	0 - 40.0 -100.0	0 40.0 90.0	0 - 20.0 - 60.0	0 10.0 20.0	0 - 40.0 -100.0	0 30.0 100.0
10,000 12,500 15,000	-160.0 -200.0 -200.0	130.0 140.0 150.0	-100.0 -140.0 -160.0	20.0 30.0 30.0	-200.0 -240.0 -300.0	140.0 180.0 200.0 260.0
20,000 22,500 25,000	-240.0 -260.0 -280.0 -300.0	180.0 180.0 200.0	-100.0 -240.0 -220.0 -240.0	20.0 30.0 30.0	-340.0 -380.0 -400.0	280.0 300.0 320.0
27,500 30,000 32,500 35,000	-340.0 -360.0 -380.0	200.0 200.0 210.0 220.0	-280.0 -300.0 -300.0	30.0 30.0 30.0	-470.0 -500.0 -540.0	380.0 400.0 440.0
40,000 42,500 45,000	-430.0 -460.0 -480.0	240.0 240.0 260.0 260.0	-340.0 -370.0 -390.0	30.0 30.0 40.0	-600.0 -640.0 -680.0	500.0 520.0 560.0
47,500 50,000 52,500 55,000	-500.0 -520.0 -540.0 -560.0	280.0 300.0 300.0 310.0	-400.0 -430.0 -450.0 -460.0	40.0 40.0 40.0	-740.0 -780.0 -820.0	620.0 660.0 700.0
57,000 60,000 62,500 65,000	-590.0 -610.0 -630.0 -660.0	320.0 340.0 340.0 360.0	-480.0 -500.0 -520.0 -540.0	40.0 40.0 40.0 40.0	-840.0 -880.0 -920.0 -960.0	720.0 760.0 800.0 820.0
67,500 70,000	-680.0	380.0	-560.0	40.0	-990.0	900.0

TABLE 4.2

	Strain reading	$(10)^{-0}$ in/in	
Gage 4 (y)	Gage 4 (x)	Gage 5 (y)	Gage 5 (x)
(y) 0 -20.0 -20.0 -20.0 -20.0 -40.0 -50.0 -60.0 -60.0 -60.0 -100.0 -100.0 -120.0 -120.0 -120.0 -130.0 -140.0 -150.0 -160.0 -160.0 -160.0 -160.0 -160.0 -120.0 -220.0 -220.0	(x) (x) 0 10.0 30.0 40.0 40.0 40.0 40.0 20.0 20.0 20.0 20.0 20.0 20.0 -20.0	(y) 0 -20.0 -40.0 -60.0 -60.0 -70.0 -80.0 -90.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -100.0 -110.0 -110.0 -110.0 -110.0 -110.0 -110.0 -120.0 -120.0 -120.0 -130.0 -130.0 -130.0	(x) 0 10.0 20.0 40.0 40.0 60.0 70.0 80.0 100.0 140.0
-230.0	-20.0	-130.0	140.0
	Gage 4 (y) 0 - 20.0 - 20.0 - 20.0 - 20.0 - 20.0 - 40.0 - 50.0 - 60.0 - 60.0 - 60.0 - 60.0 - 60.0 - 100.0 -100.0 -120.0 -120.0 -120.0 -120.0 -130.0 -140.0 -150.0 -160.0 -160.0 -160.0 -160.0 -160.0 -160.0 -120.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -220.0 -20.0 -20.0 -100.0 -120.0 -200.0 -200.0 -200.0 -200.0 -200.0 -220.0 -220.0 -220.0 -220.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

RECORDED TEST RESULTS FOR TEST SPECIMEN

Figure 4.2 LOAD - STRAIN CURVE OF SPECIMEN, GAGE LOCATION 1 (y Direction)

Figure 4.3 LOAD - STRAIN CURVE OF SPECIMEN, GAGE LOCATION 1 (x Direction)

Figure 4.4 LOAD - STRAIN CURVE OF SPECIMEN, GAGE LOCATION 2 (y direction)

Figure 4.5 LOAD - STRAIN CURVE OF SPECIMEN, GAGE LOCATION 2 (x Direction)

Figure 4.6 LOAD - STRAIN CURVE OF SPECIMEN, GAGE LOCATION 3 (y direction)

Strain (10)⁻⁶;n./in.

Figure 4.7 LOAD - STRAIN CURVE OF SPECIMEN GAGE LOCATION 3 (x direction)

Figure 4.8 LOAD - STRAIN CURVE OF SPECIMEN, GAGE LOCATION 4 (y direction)

Figure 4.9 LOAD - STRAIN CURVE OF SPECIMEN, GAGE LOCATION 4 (x direction)

Figure 4.10 LOAD - STRAIN CURVE OF SPECIMEN, GAGE LOCATION 5 (y direction)

Figure 4.11 LOAD - STRAIN CURVE OF SPECIMEN GAGE LOCATION 5 (x direction)

65
TA	B	LE	4.	.3
-		and the second		1

STRESS (yy) FOR THE TEST SPECIMEN AT THE GAGE LOCATIONS

Stress ∇ yy = <u>E</u> (\in yy + $\mu \in xx$) (KSI) 1- μ^2

Applied Load (1bs)

(IDS)	Gage 1	Gage 2	Gage 3	Gage 4	Gage 5
2,500 5,000 7,500 10,000 12,000 12,000 2,000 22,500 25,000 27,500 30,000 32,500 35,000 37,500 40,000 42,500 45,000 45,000 52,500 55,000 57,500 55,000 57,500 60,000 62,500 65,000 67,500 70,000	-0.92 -2.41 -3.20 -3.99 -5.21 -5.78 -6.79 -7.46 -7.92 -8.91 -9.24 -9.80 -10.362 -10.82 -13.261 -13.261 -13.261 -13.261 -13.261 -13.261 -13.261 -13.261 -13.261 -13.43 -16.30 -16.76 -17.42 -18.222 -18.22 -18.67 -19.14	-0.56 -1.855 -2.44 -3.10 -4.98 -5.6306 -7.28 -9.61 -10.592 -12.8795 -12.8795 -14.78 -15.420 -16.762 -18.08 -18.74	-1.02 -2.31 -2.90 -4.82 -5.64 -5.63 -10.05 -11.15 -12.46 -13.92 -15.97 -16.86 -17.18 -20.59 -22.45 -24.75	- 0.56 - 0.39258884000055824770379992558 -	$\begin{array}{c} -0.56\\ -1.18\\ -1.58\\ -1.58\\ -1.71\\ -2.27\\ -2.31\\ -2.31\\ -2.31\\ -2.31\\ -2.21\\ -2.31\\ -2.21\\ -2.257\\ -2.57\\ -2.57\\ -2.57\\ -2.57\\ -2.57\\ -2.90\\ -2.90\\ -2.90\\ -2.90\\ -2.90\end{array}$

TABLE 4.4

Stress $(\sigma_{xx}) = \underline{E} (\epsilon_{xx} + \mu \epsilon_{yy})$ $1 - \mu^2$ KSI Applied Load (lbs)Gage 1 Gage 2 Gage 3 Gage 4 Gage 5 2,500 0.924 0.132 0.594 0.132 0.132 2.31 1.98 0.792 5,000 0.264 0.066 7,500 2.34 -0.132 3.33 1.122 0.726 10,000 2.706 -0.33 3.960 0.924 0.726 0.825 12,500 2.640 -0.396 4.22 1.287 15,000 2.772 -0.594 5.214 0.726 1.188 -0.792 5.610 17,500 2.904 0.396 1.518 20,000 3.366 -0.990 5.874 0.066 1.749 3.630 22,500 -1.386 6.138 -0.132 2.310 25,000 3.630 -1.386 6.60 -0.33 2.310 27,500 3.33 -1.584 2.310 6.864 -0.99 3.23 30,000 -1.782 7.887 -1.089 2.640 32,500 2.640 -1.980 8.250 -1.518 35,000 3.498 -1.980 9.174 -1.848 2.970 3.960 9.636 2.871 37,500 -2.277 -1.947 40,000 3.762 -2.046 -2.376 10.56 3.201 4.026 10.824 -2.145 42,500 -2.640 3.531 11.748 3.531 3.828 45,000 -2.541 -2.244 57,500 4.290 -2.640 12.87 -2.244 4.75 50,000 -3.267 13.13 -2.343 3.432 4.554 -3.135 14.058 -2.442 3.432 52,500 14.982 3.432 4.686 -3.234 -2.541 55,000 57,500 60,000 4.719 -3.430 15.440 -2.640 3.333 5.181 -3.630 16.368 -2.640 3.430 17.29 4.983 -3.828 -2.739 3.333 62,500 65,000 5.346 -4.02 -2.83 3.333 17.55 67,500 5.808 -4.224 18.57 -2.838 3.333 70,000 6.270 -4.422 19.602 -3.03 3.333

STRESS (Txx) FOR THE TEST SPECIMEN AT THE GAGE LOCATIONS

CHAPTER V

COMPARISON OF RESULTS

When comparing the analytical results and the experimental results, some flexibility was incorporated. From Figure 2.11, 2.12, 2.15, 2.16, 2.19, 2.20, 2.23 and 2.24, it can be seen that the stress at some locations is quite sensitive to small movements, i.e. from one element to another. Since it is difficult to physically place the strain gages at the exact anticipated positions, and orientations, there can exist some discrepancy between the actual gage locations and the analytical positions. In order to account for this differences, as well as any other introduced errors that might have been realized during testing, a comparison between the analytical results and the test results was made using a 1/2 inch radius around the theoretical gage location. In other words the best analytical results within a radius of 1/2 inch was taken for comparison with the experimentally obtained results.

Tables 5.1 to 5.4 tabulate the experimental and analytical results for the support cases described earlier in Chapter II. Also, the corresponding coordinates of the measured or computed stresses are tabulated.

In order further to determinate which support condition, i.e. Case I through Case IV, best models the actual conditions, the displaced shape of the plate was examined

using the analytical results. The displacements in the z direction were obtained from the STRUDL output for the support conditions described earlier in Chapter II. These displacements plotted and are shown in Figures 5.1 through 5.4 inclusive. It was hoped that the computed deformed shapes of the plate could be compared to that obtained in earlier tests ⁽⁴⁾ as shown in Figure 5.5. The displacements along different sections of the plate were drawn and are shown in Figures 5.6 to 5.25. The support conditions assumed in Case IV best describes the actual displacements. (see Figures 5.21 to 5.25) This can be explained as follows, the assumed simply supported condition across the top portion of the plate allows no displacement up to 1 inch from the top of plate as the load is initially applied. In the other support cases the plate tend to displace at the top edge which is not the actual case as can be seen in Figure 5.5. Since the plates initially support one another there must be no displacement at top edge to small loads. Thus, can be said that the Case IV best represents this actual problem. Also, referring to Tables 5.1 and 5.2 the calculated stress at the various gage locations for Case IV is close to experimental stress.

TA	RT	F.	5		٦.
TL	TTT	11	2	•	-

Experi	Experimental Stress Tyy			Analytical Results - Stress Tyy (KSI)					
Gage Location Coordinate		Stress (Tyy) KSI	Coordinate	Case I	Case II	Case III	Case IV		
l	(2.50, 1.0)	-14.20	(2.0, 1.0)	-12.48	-12.48	-12.48	-12.48		
2	(4.0, 1.0)	-13.79	(4.50, 1.0)	-14.10	-14.10	-14.10	-14.10		
3	(1.50, 2.0)	-18.28	(1.0, 1.75)	-16,50	-16.50	-16.98	-16.48		
4	(2.0, 4.25)	- 5.80	(1.50, 4.25)	- 4.32	- 4.86	- 5.40	- 6.26		
5	(4.0, 4.50)	- 2.57	(3.50, 4.50)	2.22	3.06	1.98	0.27		

TΛ	BT.	F	5		2
TU	DI.		2	٠	~

Experimental Stress Txx			Analytical Results - Stress でxx (KSI)					
Gage Location	Coordinate	Stress (Txx) KSI	Coordinate	Case I	Case II	Case III	Case IV	
1	(2.50, 1.0)	4.75	(2.0, 1.0)	- 4.02	- 4.08	- 4.02	- 3.96	
2	(4.0, 1.0)	- 3.26	(4.50, 1.0)	- 4.92	- 4.32	- 4.44	- 4.32	
3	(1.50, 2.0)	13.13	(1.0, 1.75)	11.46	11.46	11.46	11.46	
4	(4.0, 4.50)	- 2.34	(1.50, 4.25)	- 2.58	- 2.40	- 2.88	- 3.30	
5	(4.0, 4.50)	3.43	(3.50, 4.75)	0.78	1.32	0.72	0.18	

TART	F	5	3
TUDT	111	2)

Experimental Stress Tyy		Analytical Results - Stress ryy (KSI)						
Gage Location	Coordinate	Stress (^o yy) KSI	Coordinate	Case I	Case II	Case III	Case IV	
1	(2.50, 1.0)	-14.20	(2.50, 1.0)	-14.10	-14.10	-14.10	-13.73	
2	(4.0, 1.0)	-13.79	(4.0, 1.0)	-14.76	-14.76	-14.76	-14.79	
3	(1.50, 2.0)	-18.28	(1.50, 2.0)	-22.74	-22.74	-22.74	-22.56	
4	(2.0, 4.25)	- 5.80	(2.0, 4.25)	- 3.75	- 3.16	- 3.74	- 5.11	
5	(4.0, 4.50)	- 2.57	(4.0, 4.50)	2.08	3.04	1.46	0.03	

TA	BI	LE	5.	4
			1	

Experimental Stress Txx			Analytical Results - Stress Txx (KSI)						
Gage Location Coordinate		Stress (σ_{XX}) KSI	Coordinate	Case I	Case II	Case III	Case IV		
1	(2.50, 1.0)	4.75	(2.50, 1.0)	-11.40	-11.40	-11,40	-12.42		
2	(4.0, 1.0)	- 2.94	(4.0, 1.0)	- 8.55	- 8.64	- 8.58	- 8.98		
3	(1.50, 2.0)	13.13	(1.50, 2.0)	1.62	- 4.02	- 6.66	- 7.80		
4	(2.0, 4.25)	- 2.34	(2.0, 4.25)	- 4.17	- 3.97	- 4.26	- 4.38		
5	(4.0, 4.50)	3.43	(4.0, 4.50)	0.85	1.25	0.78	0.31		

		1		1		1		1	1	-
0.3	0.3	0.2	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.1
0.4	0.4	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1
0.4	0.4	0.4	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2
0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5
6.5	0.5	0.5	6.5	0.4	0.6	0.6	0.7	0.8	0.9	0.9
1.1	0.6	/		/	0.7	0.9	1-0	1.3	1.4	1.3
0.5	0.6				1.0	1.2	1.5	1.9	2.1	2.2
6.5	0.6	1			1.3	1.7	2.3	2.3	3.0	3.1
0.6	0.8	0.9	1.2	1.7	1.9	2.6	3.3	3.9	4.2	4.3
0.8	1-1	1.4	1.8	2.3	2.9	3.8	4.7	5.4	6.0	6.0
1.3	1.8	2.2	2.8	3.2	4.4	5.4	6.3	8.0	8.0	7.6
1-8	1.9	2.9	3.7	4.6	5.6	6.7	7.7	8.5	8.9	9.0
2.50	3.10	3.8	4.7	5.7	6.9	8.1	9.1	7.5	10.4	10.6
0.0	+375 0	875	-375 N Dis	·875 2 tance	- 375 2 , Inc	.875 3 hes	5.375	3.875	4.37	5 4.6

FOR CASE I

	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	T	
50							0.0	0.0	ore	010	
25	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0
75	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2
25	6.4	0.4	0.4	0.4	0.4	014	0.4	0.4	0.4	0.5	0.5
	0.5	0.5	0.5	0.5	0.5	0.6	0.6	۲.0	0-8	0.9	0.9
5	0.5	0.5	/		1	0.7	0.9	1.0	1.3	1.4	1.4
25	6.5	0.6	()	0.7	1.2	1.2	1.9	1.9	2.1
15	0.5	0.6	(1.3	1.7	2.3	2,7	3-0	2.8
5	0.6	8.0	1.0	1.3	1.4	1.9	3.3	3.6	3.9	4.2	3.2
5	0.8	1.1	1.4	1.8	2.3	2.9	3.9	4.6	5.3	6.0	5.8
5	1.3	1.8	2.2	2.8	રુ.૬	4.4	4.9	6.0	7.0	7.5	7.6
5	1.8	2.4	2.6	3.9	4.9	5.6	6.7	7.6	8.4	8.9	9.0
	2.5	3.1	3.8	4.7	5.7	6.9	8.1	9.1	9.9	10.4	10.6

Figure 5.2 COMPUTED DISPLACEMENTS IN INCHES x 10⁻³ FOR CASE II

0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0
50 0	.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0	5	0.7	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
75	2	0.2	0.2	0.2	0.2	0.2	0.3	6.0	0.3	0.4	0.5
0.	ъ	0.3	0.3	0.4	0.4	0.5	0.4	0.6	0.7	0.8	0.8
0	.4	0.5	1		1	0.6	۲.0	0,9	0.9	1-2	1.3
0	.4	0.4	(0.9	1.1	۲.)	1.8	1.9	2.0
50	.4	0.5				1.2	1.6	2.2	2.6	2.9	3.0
0	5	F.0	0.8	1-1	1.3	1.8	1.6	3.2	3.8	4-1	4.0
5 7.	2	1.0	1.3	1.7	2.2	2.9	3.7	4.5	5.2	5.6	5.8
1.	2	1.7	2.1	2.6	3.4	4.3	5.3	6.2	6.9	7.4	8.0
5	7	2.3	3.6	3.6	4.5	5.5	6.6	7.6	8.4	88	8.9
2.	4	2.9	3.7	4.6	5.6	6.8	7.4	8.8	9.6	10:3	10.3
0.0	0.	4375	0.875	1.375 1	875 2	2.375 2	2.875	3.375 3	5.875	4.37	5 4.6

Figure 5.3 COMPUTED DISPLACEMENTS IN INCHES x 10⁻³ FOR CASE III

AA - Initial Load

AA - Final Load (70 Kips)

Figure 5.5 DEFORMED SHAPE OF PLATE

Figure 5.6 DISPLACEMENT IN INCHES AT SECTION 1-1 FOR CASE I

Figure 5.7 DISPLACEMENT IN INCHES AT SECTION 2-2 FOR CASE I

Figure 5.8 DISPLACEMENT IN INCHES AT SECTION 3-3 FOR CASE I

Figure 5.9 DISPLACEMENT IN INCHES AT SECTION 4-4 FOR CASE I

Figure 5.10 DISPLACEMENT IN INCHES AT SECTION 5-5 FOR CASE I

Figure 5.11 DISPLACEMENT IN INCHES AT SECTION 1-1 FOR CASE II

Figure 5.15 DISPLACEMENT IN INCHES AT SECTION 5-5 FOR CASE II

Figure 5.16 DISPLACEMENT IN INCHES AT SECTION 1-1 FOR CASE III

Figure 5.18 DISPLACEMENT IN INCHES AT SECTION 3-3 FOR CASE III

Figure 5.19 DISPLACEMENT IN INCHES AT SECTION 4-4 FOR CASE III

Figure 5.20 DISPLACEMENT IN INCHES AT SECTION 5-5 FOR CASE III

Figure 5.21 DISPLACEMENT IN INCHES AT SECTION 1-1 FOR CASE IV

Figure 5.23 DISPLACEMENT IN INCHES AT SECTION 3-3 FOR CASE IV

Figure 5.24 DISPLACEMENT IN INCHES AT SECTION 4-4 FOR CASE IV

Figure 5.25 DISPLACEMENT IN INCHES AT SECTION 5-5 FOR CASE IV

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Finite Element techniques are often used today in structural analysis. The problem which occurs in most cases, however, is the modeling the original problem, i.e., analytically describing the physical phenomenon. Fortunately, test specimens were available in this instance to verify the analytical results.

The condition of symmetry can be effectively utilized to save computer time and thus, provide financial savings. Care must be taken, however, along the line of symmetry as explained earlier in Chapter II.

The stress conditions and displacements are available at each corner of an element, i.e., at four nodes. In order to obtain the state of stress and displacement of each element, the average of the four nodes is taken for each stress and displacement. These average results are then taken to act at the center of the element. These stresses are quite sensitive in some cases to small movements, i.e., from one element to another. Care must be taken in placing strain gages since a small error in placement or orientation can yield different results than expected.

It was extremely difficult to model this particular problem for the STRUDL-II program as evidenced by the several support cases used in this study. Because of the many support conditions tried and due to the speed and use of the computer, sufficiently accurate results were obtained in this instance. For problems of this nature, i.e., physical conditions which are difficult at best to model analytically, it is recommended that the analytical results not be taken at face value but rather only after experimental testing through full scale specimens or models.

It is recommended that this problem be further investigated using many more strain gage locations. Gage locations were limited in this study primarily due to lack of proper funding for the study.

APPENDIX A

This Appendix is presented to provide the reader, who may be unfamiliar with the STRUDL-II program, with an opportunity to become oriented to its use, application, and results. Furthermore several numerical examples are presented to demonstrate how various support conditions can be successfully modeled.

The following STRUDL commands were used in the STRUDL-II program. (5), (6)

1. <u>Problem Initiation Statement</u>: This must be the first command in a finite element job. (only the control card will precede this command)

General Form: STRUDL 'a,' ('title')

'a_l' is the problem identifier or name. As an alphanumeric element, it must be enclosed in single quotes. It is limited in length to 8 characters.

'Title' is an arbitary problem title of up to 64 characters, including blanks. It must be enclosed in single quotes. 2. <u>Dimensional Units For Input And Output</u>: The units statement is used to define the dimensional units of input data which follows in subsequent requested output. Any number of units statements may be used in a problem. 3. <u>Identification Mode Command</u>: Set element command is optional. If used, it must appear before any member, joint loading condition names are used. The integer identification
mode is provided to make implementation of efficiency considerations easier.

4. Joint Coordinate Command: This command is used to describe the geometry of the structures. Any coordinate not given is taken as zero. The status of a joint is represented either as free or support. A support joint is assumed fixed against motion, except as modified by the release command. A free joint has no external displacement constraints acting upon it. If not specified, free is assumed.

5. <u>Structural Type Command</u>: It specifies the type of structure used for analysis. This statement must appear before each and every element incidences command.

6. <u>Element Commands</u>: The element incidences define the problem topology, or connectivity.

Tabular Form Element Incidences

[1] 'a,']

Elements:

i1 - integer element identifier

'a,' - alphanumeric element identifier

6a. <u>Element Properties Command</u>: The element properties may be input in a variety of forms. The type of properties specified depends on the problem and element type. For the analysis type 'BPR' is used. 'BPR' is a rectangular element with four nodal points, the corner points. The thickness used was 1.0 inch.

7. Specification Of Member Constants:

General Form: Constants (constant description)

Constant Description = G Poisson

E refers to Young's modulus for members G refers to the Shear Modulus for members Poisson refers to Poisson's Ratio

8. Joint Release Command: Unless qualified by releases, Strudl assumes all support joints to be rigidly supported according to the structural type. A support joint in a frame or grid, unless released, allows no displacement or rotation. The displacement directions are shown in Figure A.1.

Figure A.1 DISPLACEMENT DIRECTIONS

T HAAR H

The released displacement components are specified with the joint release command. Joint releases specify conditions on joints only. They specify the fixity of the joint to the support. If a joint is elastically supported in any direction, the joint is initially specified as a support joint and the elastic stiffness coefficient in the desired direction is given using the joint release command. To allow displacement in the desired direction, the force in that direction is released in this command. To allow rotation in the desired direction, the moment in that direction is released using joint release command.

9. <u>Specification Of Structural Loading</u>: The STRUDL language contains three types of statements for the specification of loads: Loading Condition Identifiers, Joint Load Statement, and Member Load Statements.

9a. Loading Condition Identifier: Loading Command Loading (NAME) ('TITLE')

This command identifies the loading condition to which the loads listed below it apply. The name may be either an integer or an alphanumeric identifier. If alphanumeric, the name will be enclosed in single quotes and have a maximum length of 8 characters. The title is optional and if used must be enclosed in single quotes.

9b. <u>Joint Loads</u>: This may be applied to free joints or at supports in the direction corresponding to a joint release. This command take the following form:

Joint Loads

(Joint Name) Force (Direction Of Force) (Magnitude Of Force)

The joint name may be the name of a single node corresponding to the point of application of the given force or may be a list of joints which are to be loaded with forces of the same magnitude and direction. For Plate Bending problems, force must be in the z direction.

10. <u>Analysis Command</u>: The Stiffness Analysis command is used to execute a Finite Element analysis of a discretized structure. This command may be given any number of times during a problem. The form of the command is Stiffness Analysis.

As this is an execution command all the data required for an analysis must appear before the command. 11. <u>List Command</u>: To obtain the results of a finite element analysis it is necessary to use the list command. The nodal displacements and stresses are available as output. It is possible to obtain the results for all the nodes and elements or any subset of the complete set of nodes and elements. The stress quantities are positive as shown in Figure A.2. The form of command is List Displacements Stresses All. EXAMPLE 1

Consider a square plate simply supported on all four sides and subjected to a uniform distributed loading of q intensity as shown in Figure A.3. The material can be assumed to be isotropic. Using symmetry conditions, only one quarter of the plate will be used for the STRUDL analysis as shown in

Figure A.2 SIGN CONVENTION OF STRESS

Figure A.4.

The input and output of the strudl program for Example 1 are shown in tables A.1 and A.2. As can be seen in Figure A.4, nodes 1 to 9, except 5, were treated as supports, i.e., restraining the translation and rotation normal to the boundary. Along the symmetry axis 1-1 (see Figure A.3) there is a translation and normal rotation, therefore, \bowtie and Θ_1 must be released. The corresponding STRUDL statement is Joint Release 8 FORCE Z MOMENT Y Along the symmetry axis 2-2 (see Figure A.3) there is a translation (\bigotimes) and normal rotation (Θ_x) about Z and X axes

Figure A.4 1/4 OF SQUARE PLATE FOR STRUDL ANALYSIS

STRUDL 'EX-1' 'ALL SIDES SIN \$ THIS EXAMPLE MAKES USE OF JOINT COORDINATES	APLY SUPPORTED	40000 LYZE 1/4 OF PLATE
1 0.0 0.0 S		
2 0.5 0.0 S		
3 1.0 0.0 S		
4 0.0 0.5 S		
5 0.5 0.5		
6 1.0 0.5 S		
7 0.0 1.0 S		
8 0.5 1.0 S		
9 1.0 1.0 S		
FIRMENT INCIDENCES		
1 1 2 5 LL		
2 2 3 6 5		
3 4 5 8 7		
45698		
ELEMENT PROPERTIES		
1 TO 4 TYPE 'BPR' THICKNESS	0.1	
CONSTANTS		
E 10920. ALL		
PUISSON .3 ALL	ON DIAME!	
FIEMENT LOADS	ON PLATE.	
1 TO 4 SURFACE FORCE GLOBAL	P7 = 1.0	
JOINT RELEASES		
2 3 MOMENT X		*
4 7 MOMENT Y		
6 FORCE Z MOMENT X		
8 FORCE Z MOMENT Y		
9 FORCE Z		
STIFFNESS ANALYSIS		
LIST DISPLACEMENTS STRESSES	ALL	
FINISH		

Resultant Joint Displacements						
Joint Z Displacement X Rotation Y Rotation						
127456789	0.0 0.0 0.0 -0.0364 -0.0501 0.0 -0.0501 -0.0692		0.0 -0.0848 -0.1149 0.0 -0.0538 -0.0748 0.0 0.0 0.0			0.0 0.0 0.0848 0.0538 0.0 0.1149 0.0748 0.0
ELEMENT STRESSES						
Element	Node No.	M _{xx}		Муу		M _{xy}
1 1 1 1	1 2 5 4	0.0 -0.0060 -0.1350 -0.0201		0.0 -0.0 -0.1 -0.6	201 350 058	0.1356 0.0921 0.0487 0.0921
2 2 2 2 2	2 36 5	-0.0060 -0.0048 -0.1564 -0.1332		-0.0 -0.0 -0.1 -0.1	201 163 781 345	0.0791 0.0038 -0.0089 0.0664
n n n n n	4 5 8 7	-0.0202 -0.1345 -0.1781 -0.0163		$\begin{array}{ccc} 02 & -0.0060 \\ +5 & -0.1333 \\ 31 & -0.1564 \\ 63 & -0.0048 \end{array}$		0.0792 0.0664 -0.0089 0.0038
4 4 4 4	5 6 9 8	-0.1 -0.1 -0.2	L327 L547 2086 L726	-0.1 -0.1 -0.2 -0.1	327 726 086 547	0.0434 0.0140 -0.1531 0.1405

PROBLEM - EX-1 ALL SIDES SIMPLY SUPPORTED

respectively. Since node 6 along 2-2 was restrained before, it must also be released using the joint release command as follows 6 FORCE Z MOMENT X.

As explained previously, if there is a translation, a rotation, or both about any axes, (translation about Z axis, rotations about X or Y axis) the corresponding release must be made using the release command.

The analytical solution to Example 1 is available in Timoshenko.⁽⁷⁾ The maximum deflection occurs at the center of the plate and is given by

$$\max = (0.00406) \frac{q a^4}{D_R}$$
 1.1

where

q = Intensity of load, Kips

a = Length of side of plate, inches

 D_p = Flexural rigidity, Kip - inches

The deflection using equation 1.1 is 0.06496 inch and by the STRUDL analysis, 0.06925 inch. The difference is very small. EXAMPLE 2

Consider a square plate with one side fixed and other sides free as shown in Figure A.5. Two point loads act as shown in Figure A.5. Taking advantage of symmetry, one half of the plate will be considered in the STRUDL analysis as pictured in Figure A.6. The input and output for STRUDL program for Example 2 are presented in Tables A.3 and A.4. Along the line of symmetry, the translations and rotations

0.25 0.25"

Figure A.6 1/2 OF PLATE FOR STRUDL ANALYSIS

111

STRUDL 'EX-2' 'ONE SIDE FIXED AND OTHERS FREE' 40000 \$ THIS EXAMPLE MAKES USE OF SYMMETRY TO ANALYZE 1/2 OF PLATE JOINT COORDINATES 0.0 0.0 1 2 0.25 0.0 0.50 0.0 S 3 4 0.0 0.5 5 0.25 0.5 6 0.5 0.5 5 0.25 0.5 6 0.5 0.5 S 7 0.0 1.0 S 8 0.25 1.0 S 9 0.5 1.0 S TYPE PLATE BENDING ELEMENT INCIDENCES 1 1 2 5 4 2 2 3 6 5 3 4 5 8 7 1 1 2 5 4 2 2 3 6 5 3 4 5 8 7 4 5 6 9 8 ELEMENT PROPERTIES 1 TO 4 TYPE 'BPR' THICKNESS 0.1 CONSTANTS E 30000 ALL POISSON 0.3 ALL JOINT RELEASES 3 6 FORCE Z MOMENT X LOADING 'ONE' 'POINT LOAD AT JOINTS' JOINT LOADS 5 FORCE Z -1.0 STIFFNESS ANALYSIS LIST DISPLACEMENT STRESSES ALL

PROBLEM - EX-2 ONE SIDE FIXED AND OTHERS FREE

	Resultant	Joint	Disp	Lacements	The second with
Joint	Z Displacement		XI	Rotation	Y Rotation
123456789	$ \begin{array}{r} -0.0770 \\ -0.0781 \\ -0.0788 \\ -0.0289 \\ -0.0312 \\ -0.0313 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{array} $			0972 0949 0960 0918 0932 0941 0 0	0.0039 0.0042 0.0 0.0140 0.0038 0.0 0.0 0.0 0.0 0.0
		ELEMENT	STRI	ESSES	
Element	Node No.	M _{xx}		Муу	M _{xy}
1 1 1 1	1 2 5 4	0.0235 -0.0202 -0.1300 -0.0673		-0.0157 0.0097 -0.0374 0.0568	0.0383 -0.0017 -0.0301 0.0098
2 2 2 2 2	2 3 6 5	-0.0076 -0.0752 +0.0559 -0.1395		0.0135 -0.0075 0.0206 -0.0402	-0.0015 -0.0002 0.0009 -0.0003
3333	4 5 8 7	-0.0594 -0.1338 0.3104 0.2693		0.0834 -0.0498 1.0349 0.8976	-0.0291 0.0099 0.0206 -0.0184
4 4 4 4	5698	-0.14 0.05 0.30 0.31	32 54 96 .04	-0.0527 0.0189 1.0321 1.0349	-0.0204 -0.0055 0.0017 -0.0135

course out at

about Z and X axis were released respectively.

EXAMPLE 3

Consider the same boundary conditions as in Example 2. The whole plate will now be analyzed as shown in Figure A.7. There are no releases made, since the support allows no translation or rotation. The input and output of the STRUDL program are presented in Tables A.5 and A.6. The results for Example 2 and Example 3 are tabulated in Tables A.7 and A.8 for ease of comparison. These tables show no differences, and thus, symmetry conditions can be effectively used, and can save computer time.

Figure A.7 PLATE ONE SIDE FIXED AND OTHERS FREE

STRUDL 'EX-3' 'ONE JOINT COORDINATES 1 0.00 0.0 2 0.25 0.0 3 0.50 0.0 4 0.75 0.0	SIDE FIXED	AND OTHERS F.	REE' 40000
5 1.00 0.0 6 0.0 0.5			1. 4.
7 0.25 0.5 8 0.5 0.5 9 0.75 0.5 10 1.0 0.5 11 0.0 1.0 S 12 0.25 1.0 S 13 0.5 1.0 S 14 0.75 1.0 S 15 1.0 1.0 S TYPE PLATE BENDING ELEMENT INCIDENCES 1 1 2 7 6 2 2 3 8 7 3 3 4 9 8 4 4 5 10 9 5 6 7 12 11			
7 8 9 14 13			
ELEMENT PROPERTIES			
1 TO 8 TYPE 'BPR' ' CONSTANTS	THICKNESS 0.	1	
E 30000 ALL POISSON 0.3 ALL JOINT RELEASES			
LOADING 'ONE' 'CONG JOINT LOADS 7 9 FORCE Z -1.0 STIFFNESS ANALYSIS LIST DISPLACEMENT S	CENTRATED LO D STRESSES ALL	AD AT JOINTS	
LINIOU			

TABLE A.6

	Lana la				
	Result	ant Joint	Displacement	S	
Joint	Z Displac	ement	X Rotation	Y Rotation	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	-0.0770 -0.0781 -0.0788 -0.0781 -0.0770 -0.0289 -0.0312 -0.0312 -0.0312 -0.0289 0.0 0.0 0.0 0.0 0.0 0.0		0.0972 0.0949 0.0960 0.0949 0.0972 0.0918 0.0932 0.0941 0.0932 0.0918 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} 0.0039\\ 0.0042\\ 0.0\\ -0.0042\\ -0.0039\\ 0.0140\\ 0.0038\\ 0.0\\ -0.0038\\ -0.1404\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ $	
		FI FMFNT C	DECCEC		
		ELEMENT 5.	TRESSES	1	
Element	Node No.	Mxx	Муу	M _{xy}	
1 1 1	1 2 7 6	0.0235 -0.0202 -0.1300 -0.0673	-0.0157 0.0097 -0.0374 0.0568	0.0383 -0.0017 -0.0301 0.0098	
2222	2 3 8 7	-0.0078 -0.0752 0.0559 -0.1395	-0.0074 0.0206 -0.0402	-0.0015 -0.0002 0.0009 -0.0003	
3 3 3 3 3	3 4 9 8	-0.0752 -0.0076 -0.1395 0.0559	-0.0074 0.0134 -0.0402 0.0206	0.0002 0.0015 0.0003 -0.0009	
4 4 4 4	4 5 10 9	-0.0202 0.0235 -0.0673 -0.1300	0.0097 -0.0157 0.0568 -0.0374	0.0017 -0.0383 -0.0098 0.0301	

PROBLEM - EX-3 ONE SIDE FIXED AND OTHERS FREE

TABLE A.6 Continued

ELEMENT STRESSES					
Element	Node No.	M _{xx}	м _{уу}	M _{xy}	
5555	6	-0.0594	0.0834	-0.0291	
	7	-0.1338	-0.0498	0.0099	
	12	0.3104	1.0349	0.0206	
	11	0.2692	0.8976	-0.01844	
6 6 6	7 8 13 12	-0.1432 0.0554 0.0309 0.3104	-0.0527 0.0189 1.0321 1.0349	-0.0204 -0.0055 0.0017 -0.0131	
7	8	0.0554	0.0189	0.0055	
7	9	-0.1432	-0.0527	0.0204	
7	14	0.3104	1.0349	0.0131	
7	13	0.3096	1.0321	-0.0017	
8	9	-0.1338	-0.0498	-0.0099	
8	10	-0.0594	0.0834	0.0291	
8	15	0.2693	0.8976	0.0184	
8	14	0.3104	1.0349	-0.0206	

TA	BLE	A-7	7

Results of Example 2 (use of symmtry)		Results of Example 3					
Node No.	Displacement	Rotation-x	Rotation-y	Node No.	Displacement	Rotation-x	Rotation-y
1	-0.0770	0.0972	0.0039	1	-0.0770	0.0972	0.0039
2	-0.0781	0.0949	0.0042	2	-0.0781	0.0949	0.0042
3	-0.0788	0.0960	0.0	3	-0.0788	0.0960	0.0
4	-0.02891	0.0918	0.0140	6	-0.0289	0.0918	0.0140
5	-0.0312	0.0932	0.0038	7	-0.0312	0.0932	0.0038
6	-0.0313	0.0960	0.0	8	-0.0313	0.0941	0.0
7	0.0	0.0	0.0	11	0.0	0.0	0.0
8	0.0	0.0	0.0	12	0.0	0.0	0.0
9	0.0	0.0	0.0	13	0.0	0.0	0.0

TA	BI	E	A-	8

Results of Example 2 (use of symmtry)			E	xample 3	
Element No.	Stress (T xx) KSi	Stress (Tyy) KSi	Element No.	Stress (Txx) KSi	Stress (Tyy) KSi
					an a
1	-0.294	0.0198	1	-0.294	0.0198
2	-0.2406	0.0204	2	-0.2406	0.0204
3	0.5796	2.94	5	0.5796	2.94
4	0.7968	3.06	6	0.7968	3.06

REFERENCES

- 1. Beedle S. Lynn, et al, Structural Steel Design. The Ronald Press Company, New York, 1964.
- 2. Bresler Boris, T. Y. Lin, and Scalzi B. John, <u>Design of Steel</u> <u>Structures</u>. John Wiley & Sons, Inc., New York, 1967.
- 3. Connor J. and Will G. <u>Computer-Aided Teaching of The Finite</u> <u>Element Displacement Method</u>. School of Engineering, <u>Massachusetts Institute of Technology</u>, Cambridge, <u>Massachusetts</u>, 1969.
- 4. Patel H. Ramesh. <u>Thesis: Evaluation of Tension Splice</u> <u>Design in Roof Truss</u>. Youngstown State University, Youngstown, Ohio 1971.
- 5. Robert D. Logcher, et al, <u>ICES STRUDL-II The Structural</u> <u>Design Language Engineering User's Manual Volume 1</u> <u>Frame Analysis</u>. School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1968.
- 6. Robert D. Logcher, et al, <u>ICES STRUDL-II The Structural</u> <u>Design Language Engineering User's Manual Volume 2</u> <u>Additional Design and Analysis Facilities</u>. School of Engineering, Massachusetts Institute of Technology Cambridge, Massachusetts, 1971.
- Timoshenko S. and Woinowsky-Krieger S. <u>Theory of Plates and</u> <u>Shells</u>. McGraw-Hill Book Company, Inc., New York, 1959.