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ii 

Identification techniques which use quasilinearization 

as a basis are among the fastest converging, however, they 

often suffer from having a narrow region of convergence when 

applied to nonlinear systems. An identification process, 

based on quasilinearization, will be presented which has a 

larger region of convergence than other, similar methods. 

This identification process will be demonstrated and 

compared with similar methods in an example using the Van 

der Pol equation. 
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CHAPTER I 

I01TRODUCTIO N 

Identification of ------ ----- Sys t e_ia s 

In recent years, system identification has aroused 

an appreciable amount of interest. One reason for this is 

the needs of engineers in process industries to obtain a 

better knowledge of their plants. This knoNledge of plant 

dynamics is necessary to exercise the proper control of 

the dynamic systems. 

Knowledge of a system and its environments, which 

is required in the design of a proper control system is 

seldom available a priori. Identification, in the sense 

that it will be used in this paper, is the determination 

of the system dynamics. 

· L. A. Zadeh states "Identification is the 

determination, on the basis of input and output, of 

a system, within a specified class of systems, to which 

the system under test is equivalent. 111 The problem in 

identification is to determine a model Nhose output is 

1 

identical, or nearly identical, to the output of the unknown 

system for all possible inputs to that unknown system. In 

1 
L. A. Zadeh, "From Circuit Theory to System 

Theory," R_roc_._IR~, L(l962), 856-865. 



practice, a model is assumed to represent the actual system 

as closely as possible. The models used in modern control 

theory are, with few exceptions, parametric models in terms 

of state equations. The parameters are then adjusted on an 

iterative basis until the model is as nearly identical as 

possible to the actual system. 

Figure l shows a basic block diagram of how an 

adjustible model identification process works. First, the 

form of the model is determined as accurately as possible. 

Then the output of the actual system is compared with the 

model response, under the same input conditions, resulting 

in an error signal. This error signal is used in the 

adjustment of the parameters of the model. This process is 

repeated until some function of the error signal is 

satisfied. In general, the function may assume any value. 

In this paper, the value will be chosen to be zero. 

There are t~o categories of identifiers, linear and 

nonlinear system identifiers. The concern of this paper 

will be with nonlinear techniques of system identification. 

Quasilinearization 

There are many techniques for identifying unknown 

parameters of nonlinear systems. Soma of the fastest 

converging use quasilinearization as a basis. These 

techniques result in quadratic convergence when they 

converge. Unfortunately, for many nonlinear systems, 

the region of convergence is small. 

2 
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Quasllinearization is the small signal linearization 

o f the system response about a no minal path through the 

state space. It can be used to transfer a nonlinear multi-

point boundary value problem i nto a more readily solvable 

non-stationary boundary value 
2 

problem. Kumar and Sridhar 

3 
use this method to develop an identification process. 

Ho~ever, the region of conve r gence using this method can 

be extremely small. 

Eveleigh applied the technique of quasilinearization 

to the minimization of a performance index. 4 This approach, 

generally, has a wider region of convergence than Kumar 

and Sridhar's method. 

Alexander and Raju developed a method using static 

5 
optimal weighting coefficients. By applying Eveleigh's 

identification process to the system an arbitrary number 

of times, a perfor c11ance index, that is a function of the 

2 
M. Cuen o d and A . 1' • Sage , "Co .1n p <1. ·c i. so ':ls o f Some 

Methods Used for Process Identification," Identification in 
Automatic Control Systems, IFAC Symposium, (Prague:1967),1-14. 

3 
K. S. Sumar and R. Sridhar, "On the Identification 

of Control Systems by t h e Quasilinearization Method," IEE:~ 
Transactions on Automatic Control , AC-9, (April 1954), 

4 v. Eveleigh, Adaptive Control and Optimi z ation 
Techniques, (New York _: McGraw-Hill, 1967), chap. 7. 

5 
C. K. Alexander and G. V. S. Raju, "System 

Identification by Quasilinearization Using Weighting 
Coefficients," Proc. Eighth Annual Allerton Conference on 
Circuit and System_Theory, (Urbana,Ill: 1970), 131-140. 



difference bet•,veen the actual systetT1 1.t!1k •1J ,.1ns and th2 

cor:1p,1ted app .c oxima.t:i.ons oE these uniu10,1:1s, is for.i-J :1 l1t ed. 

Tiis performance index is then minimized w i th r es pect to 

weighting coefficients resulting in an optimal set of 

weighting coefficients. Use of these optimal values results 

in a new identification process called "The Method of 

Optimal Static Weighting Coefficients." This process 

converges faster and has a larger region of convergence 

than either Kumar and Sridhar's or Eveleigh's methods. 

By expanding on this method, a new technique called 

"Modified Dynamic Weighting Coefficients and Sampling 

Interval" is 
6 

developed. Agai~, Eveleigh's identification 

process is employed to determine a performance index. This 

performance index is then minimized with respect to both 

5 

the weighting coefficients and sampling time interval after 

each iteration. Thus, a set of optimal weighting coefficients 

and sampling interval is determined for each iteration. The 

advantage of this technique over the others is a still 

larger region of convergence. 

6victor Hanna and Charles Alexander, "System 
Identification Using Quasilinearization and Dynamic-Optimal 
Weighting Coefficients," Proc. Fifth Modeling and Simulation 
Conference, (Pittsburgh, Pa. 1974). 



CHAPTER II 

QUASILIN EAR IZATIO N 

Quasilinearization is the method of appro x imating 

the solution trajectories of a vector set of differential 

equations by another, nearby, set of solution trajectories 

and a linear approximation of the difference between the 

two trajectories. 

6 

Let ~*(t) represent the set of solution trajectories 

of a system response to the input control, ~*(t). Let the 

nearby solution trajectories be for med by the response of 

the system equations shown in equation (1). 

(1) 

where: 
an underlined term denotes a vector or array and 

x= Nxl state vector 

u = Mxl control vector 

t:. independent variable 

Assume that f and its derivatives ., relative to x 

and u are continuous functions of x and u. Also assume 

that x-!<(t) and ~*(t) are known over the interval (to, tf]• 

Expand x*(t) in a Taylor series about x(t) as shown 

in equation (2). 
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N of· M df · z:___: Ox -t- L --1.6uk+O(e) 
· - 1 "'.\ j k-- 1 °'uk 

i=l,2, .. . N (2) 
J- ox· 0 

J 

where: 

- x. 
J 

0 (e): higher ordered terms 

The higher ordered terms in equation (2) can be 

neglected if ~*(t) is sufficiently near ~(t). Let Ox*:x-l<-x. 
Neglecting the higher ordered terms, equation (2) reduces 

to equation (3). 

N df. 
dx.: "'"' __::_ c&x. -+ 

1.~ "\ J 
j= 1 ax. 

J 

i.: 1,2, ... N (3) 

or 

(4) 

where: 

* 

-··· 

31.1276 



df 
1 

cJ f 
1 

df 
1 

-{, 

-
dU 1 • du 2 dU M 

.&· ( 6 ) 

dfN dfN dfN 
-

dUM ~UM dUM 

The 11 * 11 in equations (5) and (6) denote that.!_ 

and ~ are evaluated along the nominal solution trajectories, 

~* ( t) . 

The state equations i n (4) are linear equations 

which are easily solved even though their coefficients are 

generally time dependent. 

How w e 1 1 the s o 1 u t i o n o f e q u a t :i. on s ( 4 )' a n d ( 5 ) 

approximates ~*(t) depends on the degree of nonlinearity 

of the system equations and the value of ~*(t) - x(t). 

Kumar and sridhar applied the technique of 

quasilinearization directly to boundary value problems to 

7 
obtain solutions. However, Alexander has shown that the 

region of convergenGe for this method can be seriously 

restricted. 8 

7
K. S. Kumar and R. Sridhar, op cit. 

8 c. K. Alexander, "System Identification,"(Ph.D 
d is s er ta ti on, Ohio Univ er s i t y, 1 9 7 1) , 6 1 - 6 7 . 

8 



CHAP TER III 

EVELEIGH'S METHOD
9 

Eveleigh uses quasilinearization and a weighted 

integral squared error performance index, where the error 

is the measure of the difference between the actual system 

response and the model response. 

9 

A specific form of equation is assumed to describe 

the system under study. The system is observed over a given 

time interval and all available inputs and outputs over that 

interval are stored in memory for future reference. The 

observed inputs are then applied to the assumed model in the 

computer and the model responses are compared to those of 

the actual system using a performance index, p, to measure 

difference. The model equations are linearized relative to 

small ~hanges in model parameters. The model parameters are 

then adjusted in an effort to reduce p. The procedure is 

repeated, if necessary, until pis sufficiently near 

minimum to justify stopping. The resulting coefficients 

represent the best available system approximation. A block 

diagram of the process is shown in Figure 2. 

The problem is to choose the model parameters,~' 

and initial states, XO - , that minimize p. The resulting 

9v. E~eleigh, op. cit. 
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parameter vector~ provides the desired system identification. 

The form of the assumed model is: 

where: 

a= constant Axl parameter vector 

x = N0 xl state vector 

m; Mxl control vector 

(7) 

f:: N xl vector set of functions assumed differentiable 
0 

with respect to a and x 

The performance index which is to be minimized is 

given by: 

p:: 

where: 

g.: weighting factors 
1 

T : sampling interval 

~ - observed i - system response 

xi~ model response 

(8) 

The gi's corresponding to unobservable ~tates are 

zero. The sampling interval, T, is chosen such that the 

time variations of the system unknowns are negligible over 

the interval. It must be large enough, however, to provide 
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adequate information from which the desired unknowns can be 

obtained with acceptable accuracy. 

Since the values of x 0 and a which minimize pare 

desired, x 0 and a may be treated alike. Thus, the state 

equations can be augmented in the following way: 

i=l,2, .... A 

Thus, x 0
: x(t

0
) becomes an Nxl vector where N= A+N

0
. and 

equation (7) becomes: 

(9) 

0 
: X (10) 

The problem now is to find x 0 such that the model 

response is equal to the actual system response. The first 

step is to guess an ~o Then equation (10) is 1 inea riz ed 

about the nominal solution trajectory. These linearized 

equations are: 

where: 

N df. 
~ ----=..ix. 
j • 1 ~x . J 

J 

(11) 

changes in x~ from the nominal solution trajectory 
J 

incremental changes in the time derivative of xi 

df. 
1 -= time varying coefficients evaluated along the 

Jx. 
J 

no~inal ~olution trajectory using equation (10) 
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Jf. 
1. 

Jxj forms the Jacobian, ~' and when evaluated 

along the nominal solution path, can be represented by an NxN 

matrix K given in the following equation. 

(12) 

Equation (11) can now be rewritten as: 

( 13) 

Dependence of ~x(t) upon J~0 is given by: 

(14) 

where 0(t, t
0

) is the fundamental solution matrix obtained 

by solving the following equation: 

. 
fk(t,t

0
): F (/J(t,t 0 ) (15) 

For given values of x 0 , the particular change cfx 0 

which minimizes equation (8) must be determined. 

The model response to initial conditions X: 0 + <fx0 

is given by: 

or 

By substituting equation (17) into equation (8), 

p may be expressed as: 

(16) 

( 1 7) 
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N N 
L. g. [x. (x 0 ) + c;;:-1. ]. - C- Ox.i/J .. -x. dt ( 0 A ]2 

J 1.J ]. (18) 
i: 1 j= 1 

For minimum with respect to x _;, it is ne cessary 

that: 

(19) 

j: 1,2, .•.. N 

Since the values of gi and Tare assumed, all 

functions in the integrand of the above equation are known 

with the exceptio~ of dx~. However, equation (19) provides 

N algebraic equations from which Jx 0 can be determined. 

Then, a new set of initial conditions for the model is 

formed from the previous set as shown in equation (20). 

(20) 

The entire process is then repeated based on these 

new initial conditions. The iterative process is terminated 

when improvements (dx 0
) are negligible. 

This process converges very rapidly when the guessed 

values are chosen close to the actual values, but may fail 

to converge if the initial model parameter choice is far 

from the true value, or if the system is highly nonlinear. 
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CHAPTER IV 

METHOD OF OPTIMAL STATIC WEIGHTING COEFFICIENTS 

In the performance index used in Eveleigh's method, 

the values of the weighting coefficients, G, and the 

sampling time interval, T, were assumed known. However, it 

can be shown that, for certain values of G and T, the 

identification process has a larger region of convergence 

10 than the process does for other values of G and T. 

Alexander developed a method of identification 

that uses a performance index with optimal static weighting 

coefficients and sampling interval. 11 A performance index, 

R(G,T), is formed by squaring the difference between the 

system unknowns and the approximations of these unknowns 

obtained by applying Eveleigh 1 s process an arbitrary number 

of times, K. R(G,T) is then minimized with respect to G and 

T to obtain G optimal and T optimal. These values of G and T 

are used in p to obtain the performance index p optimal. 

Quasilinearization is used to obtain a linearized 

approximation of the measured system response. The performance 

i n d ex, p o p t i ma 1 , i s then mi n i mi z e d w i th re s p e c t to the 

linear approximation. The results are then used to adjust 

10c. K. Alexander, op cit., Ch. IV. 

11 
C. K. Alexander, op cit., Ch. III. 
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the system model values. This yields an iterative process 

that can converge to the actual system unknowns. 

For convenience, the performance index is given 

again in equation (21). 

where: 

N 

'g-[x-(x
0

)'-­L.. ]. ]. -
i:: 1 

N 

;I. 
j:: 1 

Ox . ¢ .. - x . (x ) d t ( O I\ "'O ] 2 
J l.J ]._ 

T: sampling time interval 

N ::number of states in augmented state equations 

g. ~ ith component of the lxN weighting coefficient 
]. 

(21) 

vector G 

0 x : Nxl vector representing ini tia 1 conditions of the 

actual system 

xi (x 0
) :: i th component of the Nxl model response vector 

~(x 0 ) with the initial conditions x 0 

~- (x 0 ): ith component of the Nxl actual system response . ]. -
,. "'o "o vector x(x) with initial conditions x 

¢ij: ijth element of the NxN fundamental matrix r/J 

d xj :. j th component of the Nxl perturbation vector d x0 

Differentiating equation (21) with respect to X.: 
J 
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Jx 0 is found by solving equation (22) in terms of 

T, ~ 0 , ~
0

, and G. Equation (22) can be rewritten as; 

or 

Let; 

t { g. [~. (~O)-x. (xO)] (/J. _{ dt : 
i:l L 1 1 - 1 - 1Jj 

r/) • • 1 d t -]. J) 

g . (0 . k (/J •• ) d t 
l. 1 1 J 

Therefore, equation (24) becomes: 

or: 

(23) 

(25) 

(26) 

(2 7) 

(28) 

(2 9) 



17 

Jx 0 is found by solving equation (22) in terms of 

T J\o O ( 2) , x, ~, and G. Equation 2 

or 

Let; 

can be rewritten as; 

(/J • • 1 d t -]. J) 

g . (¢ . k (/J •• ) d t 
l. ]. J.J 

Therefore, equation (24) becomes: 

or: 

(23) 

(25) 

(26) 

(2 7) 

(28) 

(2 9) 
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Thus, for a given set o f x 0
, ~o g_, a nd T, the Kth-+1 set of 

initial conditions is obtained from the Kth by the following 

equation: 

(3 0) . 

The problem now is to find the value of G and T 

which will result in the most rapid convergence for all x 0 

and ~o From the initial design, it is possible to determine 

the limits of the values of x 0 and ~ 0 • The convergence should 

be the worst as ~o approaches one limit, and ~o approaches 

the other. Therefore, the values of G and T that are optimal 

with respect to these limits can be assumed to be optimal, 

or near optimal for all intermediate values. G optimal and 

T optimal are obtained by using a least squares fit 

performance index, ! (G, T), given in equation (31). 

M 
R_(G, T): ~ 

i= 1 

where: 

M: zN 

O J\ 0 i: the index of the ith extreme case of x and x 

K= number of iterations before P(G,T) is evaluated 

(31) 

The performance index is the sum of the squares of 

the measured differences between the model and . actual system 

initial states after K iterations. 



The M sets o f ( x 0 ,~0 ) used in equation (31), are 

formed by setting each component of xo equal to its upper 

limit or its lower limit, and the correspondin g value of 

19 

~o set equal to the opposite limit. This process is repeated 

for all possible combinations of x 0 and ~ 0 • 

Minimizing equation (31) with respect to G and T 

simultaneously, results in an optimal set of gi, and an 

optimal sampling interval. The use of G optimal and T 

optimal in the performance index, p, results in p optimal. 

Unknown system parameters are identified by minimizing 

p optimal using quasilinearization outlined in chapter 

three, The first step in identifying ~o is to guess an x 0
• 

This value of x 0 is augmented by Jx 0 which is determined by 

applying quasilinearization to the minimization of p optimal. 

This augmented value of x 0 is then used as the guessed value, 

and the process is repeated on an iterative basis until 

the improvements J~o are zero or near zero. The resulting 

values of 0 x are the desired system parameters. 



CHAPTER V 

METHOD OF OPTI MAL DY NAMI C WEIGHTING COEFFICIENTS 

AND SAMPLING INTERVAL 

20 

For a large class of problems, methods of system 

identification which employ quasilinearization may suffer 

from the limitation of a narrow region of convergence. 

Alexander was able to expand the region of convergence by 

using the method of "Optimal Static Weighting Coefficients" 

presented in chapter four. The process developed in this 

chapter will be called the method of "Optimal Dynamic 

Weighting Coefficients and Sampling Interval." This method 

will further increase the region of convergence. This 

process determines a set of optimal weighting coefficients, 

.Q., and sampling time interval, T, for e.a:ch ,i :teration. 

The performance index is the one used by Eveleigh. 

It is given in equation (32). 

N [ N r d. A l\o Q 2 L gixi(x 0 )+ ~ ox-~---x-(x) dt 
i:l j:l J iJ i -

(3 2) 

For the first iteration, Jx 0 can be determined, 

in terms of G and T by following the procedure set forth 

in chapter four (equations 28-36). The following result is 

obtained: 

(3 3) 



where: 

c/J · .l d t 1Jl 

This value of Jx 0 is used to form the next model 

initial conditions by means of the following equation: 

Substituting (x 0 )
1 into a least squares fit 

performance index, K(G,T), results in equation (35). 

where: 

i-: index of the ith extreme case of and 

21 

(34) 

(3 5) 

R(G,T) is then optimized with respect to G and T 

to obtain Q1 and T1 optimal. These values are used to find 

Pr optimal. This process is repeated for each iteration until 

is zero or near zero. The values of the resulting 

parameters are the desired system ~identification. 

An outline of the computational procedure is given 

in the following steps. 



(1 ) ~(t) and E(t) are recorded over T. 

(2) The augmented model equations of the form: 

. 
x:f(x,m) 

are programmed into the computer. 

(3) Starting conditions x 0 as near the true values as 

possible are assumed. 

(4) The model equations are linearized about the nominal 

solution path. 

(5) The values of /x 0 are determined. 

22 

(6) Using a least squares fit performance index, G1 optimal 

and T1 optimal are obtained. These values are then used 

to find p 1 optimal. 

(7) Pl optimal is minimized by means of quasilinearization 

to determine parameter changes for the next iteration. 

(8) The process is repeated, if necessary, until sucessive 

adjustments provide negligible improvements on p. 

(9) The resulting model parameters are read out as the 

desired plant identification. 

As will be shown by means of an example (the Van 

der Pol equation), this method of identification has a 

larger region of convergence than any of the other methods. 
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CHAPTER VI 

EXAMPLE: THE VAN DER POL EQUATION 

The method of Optimal Dynamic Weighting Coefficients 

and Sampling Interval is applied to the Van der Pol 

equation. The state equations for the Van der Pol equation 

are given as: 

Let x
3
:e and x

4
:u. This results in the following 

augmented equations: 

. 
xl: x2 

. 2 
x2: -x3 (1-x 1 )x 2 -X4Xl 

. 
0 X3: 

. 
X4: 0 

Solving for J: 

0 1 0 0 

2x 1x 2 x 3 -x4 
2 

-x3 (1-x 1 ) - (l-x 1 ) xz 
J: 

0 0 0 0 

0 0 0 0 

(3 6) 

(3 7) 

(3 8) 
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( 3 9 ) 

. 
¢: F ¢ ¢ (0) = I (4 0) 

The followin g initial guessed and actual values are 

used: 

1.9 2.0 

-0.095 -0.055 
and (41) 

2.0 3.65 

0.5 1.17 

Equations (37)-(41) lead to equation (42) for each 

iteration. 

fa 
g . x. (x ) - x. (x ) d t 

[
,., ... o O 1 

l. l.- l.-

j:1,2,3,4 

The initial values and¢ are used together to 

evaluate equation (42). 

(42) 

Equation (42) can be rewritten as in equation (43). 
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All A12 A13 A14 Jx~ cl 

A A A A Jxo C 
21 22 23 24 2 2 (43) 

~ 

A31 A32 A A dx 0 C 
33 34 _ 3 3 

A A42 A A Ox 0 
C 

41 43 44 4 4 

where: 

!(G,T) is formed for each iteration. 

(44) 

Minimizing !(G,T) with respect to G and T gives the 

following results for three iterations. 

Iteration G Optima 1 T Optima 1 

1 [1,6.5,O,O] 0.33sec. 

2 [1,1.2,O,O] 2.0sec. (45) 

3 [1,5.O,O,O] 0.2sec. 

Using G optima 1 and T optimal of iteration for 

iterations 4 and 5 results in convergence in five iterations. 

This is the same as results obtained using Alexander's 
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method. This is shown in Table 1. 

When the parameter space is expanded, the method 

presented here results in convergence while the others may 

not. For example, let 

1. 9 ( 0 < 2.0 - xl 

-0.095 ( 0 <. -0.055 X2 
(46) 

2.0 <. 0 < 3.81 X3 

0.5 < 0 <. 1. 23 x4 

Using these values, convergence resulted in five 

iterations. However, Alexander's method could not converge 

for the expanded parameter space. This is shown in Table 2. 
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TABLE 1 

RESULTS FOR ORIGINAL PARAMETER SPACE 

Iteration Alexander Hanna 

1 88.62 28.67 

2 30.12 3.002 

3 4.638 0.534 

4 0.89xl0 -1 0.15xlo-l 

-4 -4 
5 0.19xl0 0. 16xl0 . 

TABLE 2 

RESULTS FOR EXPANDED PARAMETER SPACE 

Iteration Alexander Hanna 

1 342.85 38.19 

2 1947.26 18,96 

3 915.98 2.567 

4 411. 74 0.27xl0 -1 

-5 
5 1733.44 0.37xl0 
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CHAPTER VII 

CO NC LUSIONS 

A method of identification for both linear and 

nonlinear systems was developed. This method of Optimal 

Dynamic Weighting Coefficients and Sampling Interval uses 

quasilinearization as a basis. It was shown that this process 

has a larger region of convergence than other methods 

which also employ quasilinearization. 

This method requires a large amount of computer 

time. However, since the result of this process is an 

identifier which allows identification over a large 

parameter space, the benefits outweigh this drawback. 



APPENDIX A 
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Solution of the Van der Pol Equation 
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Results of Expanded Parameter Space 
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