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ABSTRACT

AN OPTIMAL NONLINEAR SYSTEM IDENTIFIER BASED ON

QUASILINEARIZATION

Victor L. Hanna
Master of Science

Youngstown State University, 1974

Identification techniques which use quasilinearization
as a basis are among the fastest converging, however, they
often suffer from having a narrow region of convergence when
applied to nonlinear systems. An identification process,
based on quasilinearization, will be presented which has a
larger region of convergence than other, similar methods.

This identification process will be demonstrated and
compared with similar methods in an example using the Van

der Pol equation.
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CHAPTER T

INTRODUCTION

Identification of Systems

In recent years, system identification has aroused
an appreciable amount of interast. One reaéon foxr- this ia
the needs of engineers in process industries to obtain a
better knowledge of their plants. This knowledge of plant
dynamics is necessary to exercise the proper control of
the dynamic systems.

Knowledge of a system and its environments, which
is required in the design of a proper control system is
seldom available a priori. Identification, in the sense
that it will be used in this paper, is the determination
of the system dynamics.

"L, A. Zadeh states "Identification is the
determination, on the basis of inbut and output, of
a system, within a specified class of systems, to which
the system under test ‘is equivalent.”l The problem in
identification is to determine a model whose output is
identical, or nearly identical, to the output of the unknown
system for all possible inputs to that unknown system. In

1L. A, Zadeh, "From Circuit Theory to System
Theory, " Proc. "IRE, 'L(I962), 856+865.




practice, a model is assumed to represent the actual system
as closely as possible. The models used in modern ‘control
theory dre, with few exceptions, parametric models in terms
of state equations. The parameters are then adjusted on an
iterative basis until the model is as nearly identical as
possible to the actual system.

Figure 1 shows a basic block diagram of how an
adjustible model identification process works. First, the
form of the model is determined as accurately as possible.
Then the output of the actual system is compared with the
model response, under the same input conditions, resulting
in an error signal. This error signal is used in the
adjustment of the parameters of the model. This process is
repeated until some function of the error signal is
satisfied. In general, the function may assume any value.
In this paper, the value will be chosen to be zero.

There are two categories of identifiers, linear and
nonlinéar syétem identifiers. The concern of this paper

will be with nonlinear techniques of system identification.

Quasilinearization

There are many techniques for identifying uunknown
parameters of nonlinear systems. Some of the fastest
converging use quasilinearization as a basis. These
techniques result in quadratic convergence when they
converge. Unfortunately, for many nonlinear systems,

the region of convergence is small.
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Quasilinearization is the small signal - linearization

of the system response about a nominal path through the

state space. It can be used to transfer a nonlinear multi-

point boundary value problem into a more readily solvable

Kumar and Sridhar

3
use this method to develop an identification process.

non-stationary boundary value problem.

However, the region of convergence using this method can

be extremely small.
Eveleigh applied the tachnique of quasilinearization

to the minimization of a performance index.  This approach,

generally, has a wider region of convergence than Kumar

and Sridhar's method.
Alexander and Raju developed a method using static

optimal weighting coefficients. By applying Eveleigh's

identification process to the system an arbitrary number

of times, a performance index, that is a function of the

2
M. Cuenod and A. P, Sage, "Comparisons of Some
Methods Used for Process Identification," Identification in

Automatic Control Systems, IFAC qugggi&@,—m

3K. 8. ‘Sumar and ‘R
of Control Systems by the Quasilinearization Method,"
Transactions on Automatic Control, AC-9, (April 1934),

Sridhax, "On the Identification
IEEE

4V. Eveleigh, Adaptive Control and Optimization
Technigues, (New York: McGraw-Hill, 1967),chap.7.

5C. K. Alexander and G. V. S. Raju, "System
Identification by Quasilinearization Using Weighting
Coefficients," Proc. Eighth Annual Allerton Conference on
Circuit and System Theory, (Urbana,Ill:1970),131-140. =

(Prague:1967), 1-14.




difference between the actual system unknowns and tha
computed approximations of these unknowns, is formulated.
Tais performance index is then minimized with respect to
weighting coefficients resulting in an optimal set of
weighting coefficients. Use of these optimal values results
in a new identification process called '"The Method of
Optimal Static Weighting Coefficients," This process
converges faster and has a larger region of convergence
than either Kumar and Sridhar's or Eveleigh's methods.

By expanding on this method, a new technique called
"Modified Dynamic Weighting Coefficients and Sampling
Intervall s developed? Again, Evelesigh's identification
process is employed to determine a performance index. This
performance index is then minimized with respect to both
the weighting coefficients and sampling time interval after
each iteration. Thus, a set of optimal weighting coefficients
and sappling interval is determined for each iteration. The
advantage of this technique over the others is a still

larger region of convergence.

6Victor Hanna and Charles Alexander, '"System
Identification Using Quasilinearization and Dynamic-Optimal
Weighting Coefficients," Proc. Fifth Modeling and Simulation
Conference, “(Plttshurgh, Pa,: : 1974). R




CHAPTER II
QUASILINEARIZATION

Quasilinearization is the method of approximating
the solution trajectories of a vector set of differemtial
equations by another, nearby, set of solution trajectories
and a linear approximation of the difference between the
two trajectories.

Let x*(t) represent the set of solution trajectories
of a system response to the input control, u*(t). Let the
nearby solution trajectories be formed by the response of

the system equations shown in equation (1).

k= £(x,u,t) ' (1)

where:
an underlined term denotes a vector or array and

Nxl state vector

Is¢

Mx1l control vector

| e
"

independent variable

T
i1

Assume that f and its derivatives, relative to x
and u are continuous functions of x and u. Also assume

that x*(t) and u*(t) are known over the interval [Fo,tf].

Expand é*(t) in a Taylor series about x(t) as shown

in equation (2).




N 9fy R
k% = k.4 2 8.+ > Su+o0(e) ; i=1,2,...N (2)
;1 i e i = k
j= 1 dx. k=1 auk
3
where:
éxj: x:»’j - xj

5uk: u*k ~ g
O(e) = higher ordered terms

The higher ordered terms in equation (2) can be
neglected if x*(t) is sufficiently near x(t). Let 6&*:&*-3.
Neglecting the higher ordered terms, equation (2) reduces

to equation (3).

N Of; M 9f;
§iy2 S §x,+ 2. Bt o 1.8 .1 B sl (3)
J=]_ ax. k=1 auk
j
or
Sk :£8x+g8u (4)
where:
Fafl ot i
3x1 axz QXN
£- g

o ! STATE UNIVERSITY

¢
bt
et
e
“}
(op



e -

r £ a *
Qtl aLl f1
#uy , duy Juy
83 . . 5 (6)
I JfN I
[Juy  duy 3“M_4
The " *# " in equations (5) and (6) denote ‘that £

and g are evaluated along the nominal solution trajectories,
x*(t).

The state equations in (4) are linear equations
which are easily solved even though their coefficients are
generally time dependent,

How well the solution of equations (4) and (5)
approxiﬁates x*(t) depends on the degree of nonlinearity
of the system equations and the value of x*(t) - x(t).

Kumar and sridhar applied the technique of
quasilinearization directly to boundary value problems to
obtain solutions.7 However, Alexander has shown that the

region of convergence for this method can be seriously

restricted.8

7K. S. Kumar and R,. Sridhar, op cit.

8
C. K. Alexander, "System Identification," (Ph.D

dissertation, Ohio University, 1971), 61-67.



CHAPTER III1

EVELEIGH'S METHOD9

Eveleigh uses quasilinearization and a weighted
integral squared error performance index, where the error
is the measure of the difference between the actual system
response and the model response.

A specific form of equation is assumed to describe
the system under study. The system is observed over a given
time interval and all availaBle inputs and outputs over that
interval are stored in memory for future reference. The
observed inputs are then applied to the assumed model in the
computer and the model responses are compared to those of
the actual system using a performance index, p, to measure
difference., The model equations are linearized relative to
small changes in model parameters. The model parameters are
then adjusted in an effort to reduce p. The procedure is
repeated, if necessary, until p is sufficiently near
minimum to justify stopping. The resulting coefficients
represent the best available system approximation. A block
diagram of the process is shown in Figure 2. |

The problem is to choose the model parameters, a,

and initial states, x°, that minimize p. The resulting

9V. Eveleigh, op. ecit.
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parameter vector a provides the desired system identification.

The form of the assumed model is:

x = f(a,x,m) ; &Ly P00 (7)

where:

a = constant Axl parameter vector

Xz Noxl state vector
m = Mx1 control vector
£==Nox1 vector set of functions assumed differentiable
with respect to a and x
The performance index which is to be minimized is
given by:
| Ry e
o o 2
P= Z gi(xi"ii) dt (8)
t, i=1

g4 ° weighting factors
T : sampling interval
R,z observed system response

xi = model response

The gi's corresponding to unobservable states are
zero. The sampling interval, T, is chosen such that the
time variations of the system unknowns are negligible over

the interval. It must be large enough, however, to provide




1

adequate information from which the desired unknowns can be

obtained with acceptable accuracy.

o

Since the values of x° and a which minimize p are

o

desired, x“ and a may be treated alike. Thus, the state

equations can be augmented in the following way:

s Dog, be iR (9)

Thus, x°= E(to) becomes an Nxl vector where N= A*N_ and

equation (7) becomes:
x: £(x,m) i B (k)5 8" (10)

The problem now is to find 50 such that the model
response is equal to the actual system response. The first
step is to guess an 50. Then equation (10) is linearized
about the nominal éolution trajectory. These linearized

equations are:

N OJf.
I T ij ; 1¢ i€ N (11)
j* 1 ij

dx . = changes in X from the nominal solution trajectory
§%. : incremental changes in the time derivative of xj

Jdf;
ij

: time varying coefficients evaluated along the

nominal solution trajectory using equation (10)
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of .

1

axj forms the Jacobian, J, and when evaluated
along the nominal solution path, can be represented by an NxN

matrix F given in the following equation.
- o ;
E-_i[x(x ﬂ (12)

Equation (l1) can now be rewritten as:

§x:F &x (13)
Dependence of &E(t) upon 650 is given by:
Ix(r): #(t,t,) dx° (14)

where @ (t,t,) is the fundamental solution matrix obtained

by solving the following equation:

Bt e )z F B(t, ty) ; B (ty,to) = I

(15)

For given values of x©, the particular change Jio
which minimizes equation (8) must be determined.
The model response to initial conditions 504 §x°

is given by:

x(x% §x°) T x(x%)+ § {x° (16)
or
(e} Oy~ o N J o
x; (20 Ex9)F x5 (x°) + 'Zl x5 943 | (17)
J:

By substituting equation (17) into equation (8),

p may be expressed as:
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5 % 0+ZN_ 4 ¢ - A 18
P, s B BT Ay R (18)
o

For minimum with respect to Xy it is necessary

Since the values of g; and T are assumed, all
functions in the integrand of the above equation are known
i : J o : :
with the exception of %, . However, equation (19) provides

N algebraic equations from which Jzo can be determined.

Then, a new set of initial conditions for the model is

formed from the previous set as shown in equation (20).

fgew: Egld* Jﬁo' (20)

The entire process is then repeated based on these

new initial conditions. The iterative process is terminated

when improvements ({50) are negligible.

This process converges very rapidly when the guessed

values are chosen close to the actual values, but may fail

to converge if the initial model parameter choice is far

from the true value, or if the system is highly nonlinear.
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CHAPTER 1V
METHOD OF OPTIMAL STATIC WEIGHTING COEFFICIENTS

In the performance index used in Eveleigh's method,
the values of the weighting coefficients, G, and the
sampling time interval, T, were assumed known. However, it
can be shown that, for certain values of G and T, the
identification process has a larger region of convergence
than the process does for other values of G and T.10

Alexander developed a method of identification
that uses a performance index with optimal static weighting
coefficients and sampling interval.ll 4 performance index,
P(G,T), is formed by squaring the difference between the
system unknowns and the approximations of these unknowns
obtained by applying Eveleigh's process an arbitrary number
of Eimes, K. E(Q,T) is then minimized with respect to E and
T to ostain g optimal and T optimal. These values of E and T
are used in p to obtain the performance index p optimal.
Quasilinearization is used to obtain a linearized
approximation of the measured system response. The performance

index, p optimal, is then minimized with respect to the

linear approximation. The results are then used to adjust

10C. K. Alexander; iop cit.; Ch. "IV,

p 5 |
CloCR. Alexandert*opTcit., , ChisT0T,
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the system model values. This yields an iterative process
that can converge to the actual system unknowns.
For convenience, the performance index is given

again in equation (21).

: o o N N
o o AN Ea 2
P 2 8i[xi<z°)* = & ¢ij"xi(_’io] dt (21)
£ i=1 j=1
(]
where:

T s sampling time interval
N znumber of states in augmented state equations
g; * ith component of the 1xN weighting coefficient

vector g

EO: Nxl vector representing initial conditions of the

actual system

xi(xo) 2 ith component of the Nx1 model response vector

E(Eo) with the initial conditions ﬁo

"

%i(go) ith component of the Nxl1 actual system response

Ao & o A
vector x(R°) with initial conditions x°

¢ij: ijth element of the NxN fundamental matrix §
Jx?i jth component of the Nxl1 perturbation vector‘Jéo

Differentiating equation (21) with respect to xj:

op ELET LR N
e =0:j v Z{gi[xi (_)_(_o)‘l‘ ZJX& ¢ik—§i (go)] ¢ij}dt (22)
9dx; fo iT1 kel _

LT o AR
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Jio is found by solving equation (22) in terms of

o

T go’ x , and G. Equation (22) can be rewritten as;

t+T N
Jo b2 gi["zi(§°)“xi(§°)] Q’ij} At 2

to iz 1
£ T N
So > i i Jxﬁ B ¢ij]dt (23)
6y e ksl
OF
N t0+T »
Z g3 [xi(§°)-xi(_}5°)] ¢ij dFL R
is 1 g
N N tG‘T
i 3 B3y 95 pae| dxg (24)
k=i jel to
Let:
N to"T
g & g1 (Byy P33)dt (25)
izl Jtg

N t0+T i
o Z gi{[xi@o)'xi<_>_<°>] ¢ij} dt _ (26)

G= [l,gz,g3,....gNo,O,O,....O] (27)
Therefore, equation (24) becomes:

€16, x°%, X°, 4y 8 446, %% D) . §=° (28)

e gl

dxts A s dn®c, 2%, 200 (29)



|

Jéo is found by solving equation (22) in terms of

Ty o 20 io’ and G. Equation (22) can be rewritten as;

EstE A A
s gi[xi(go)"xiOio)] ¢ij} ik &

to iz 1
I A N
ts 1= 1 k=1l
or
N to*T .
Z 8i [xi (§°)-xi(35°)] B\ de =
iz 1 to
N N L+t
Z z gj_ S <¢ik ¢ij)dt Jxﬁ (24)
jezq izl to
Let:
N to"T
Aj: 2 gy (B Py4)dt (25)
i1 to

N to+T %
Cj: Z gi{[xicgo)'xi(_}_co)] Q)IJ} dt : (26)

izl to
Gz [l,gz,gB, gy, > 040 0] (27)
Therefore, equation (24) becomes:
o %o o o
€(6,x%,%%, 1) = A(6,x°,T) dx (28)

32 £

dath i e dn®ic, 2%, 59,0 (29)
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Thus, for a given set of x©9, go’ G, and T, the Kth*1l set of
initial conditions is obtained from the Kth by the following

equation:

[xO]K+l;[§0]K+J§o(—G_, [EO]K,EO,T) bl

The problem now is to find the value of G and T

which will result in the most rapid convergence for all Eo

and 30. From the initial design, it is possible to determine

o o

the limits of the values of x" and g . The convergence should

. . »
¥ approaches one limit, and X© approaches

be the worst as x
the other. Therefore, the values of G and T that are optimal

with respect to these limits can be assumed to be optimal,

or near optimal for all intermediate values. G optimal and

T optimal are obtained by using a least squares fit

performance index, P(G,T), given in equation (31).

. :
pe,Ty: D ¢ [x°]K - £ 4?2 i ad31)
e .L-l o] — 3
0 1= i
where:
M= 2N
o A0

A the index of the ith extreme case of X and X

K= number of iterations before E(E,T) is evaluated

The performance index is the sum of the squares of
the measured differences between the model and actual system

initial states after K iterations.



i

The M sets of (Eo,go) used in equation (31), are
formed by setting each component of x0 equal to its upper
limit or its lower limit, and the corresponding value of

20 set equal to the opposite limit. This process is repeated

(¢] 20

for all possible combinations of x~ and X".

Minimizing equation (31) with respect to G and T
simultaneously, results in an optimal set of g;, and an
optimal sampling interval. The use of G optimal and T
optimal in the performance index, p, results in p optimal.
Unknown system parameters are identified by minimizing
p optimal using quasilinearization outlined in chapter

o

© is to guess an x°. |

three., The first step in identifying g
This value of x© is augmented by 430 which is determined by
applying quasilinearization to the minimization of p optimal.
This augmented value of §° is then used as the guessed value,
and the process is repeated on an iterative basis until

the improvements Jzo are zero or near zero. The resulting

values of 50 are the desired system parameters.
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CHAPTER V

METHOD OF OPTIMAL DYNAMIC WEIGHTING COEFFICIENTS

AND SAMPLING INTERVAL

For a large class of problems, methods of system
identification which employ quasilinearization may suffer
from the limitation of a narrow region of convergence.
Alexander was able to expand the region of convergence by
using the method of "Optimal Static Weighting Coefficients"
presented in chapter four. The process developed in this
chapter will be called the method of "Optimal Dynamic
Weighting Coefficients and Sampling Interval." This method
will further increase the region of convergence., This
process determines a set of optimal weighting coefficients,
G, and sampling time interval, T, for eéach .iteration.

The performance index is the one used by Eveleigh.

It is given in equation (32).

to*T N N i
P = z gi[xi(§°)+ z JXJ ¢ij-xi(§_°)] dt (32)
to i=1 j=1
For. the :first iteration, Jéo can be determined,
in terms of G and T by following the procedure set forth

in chapter four (equations 28-36). The following result is

obtained:

J§_° (@, =2,%%, 1= A~} ¢ (33)
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where:

Eg* T
gi (DK Q)ij)dt
o

N tE$ T
R0 bt ] w] o

This value of Jﬁo is used to form the next model
initial conditions by means of the following equation:

x°) 1z x0 4 dx°

(34)
Substituting (50)1 into a least squares fit
performance index, P(G,T), results in equation (35).
i 1 2
P(G,T): 2 [(x°) - 5‘:0]. (35)
e e : o =
iz 1
where:
Mz 2V
i * index of the ith extreme case of %o and §°
E(Q,T) is then optimized with respect to G and T

to obtain G; and T; optimal. These values are used to find
Py optimal. This process is repeated for each iteration until
Py is zero or near zero. The values of the resulting

parameters are the desired system.identification,

An outline of the computational procedure is given
in the following steps.
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(1) m(t) and x(t) are recorded over T,

(2) The augmented model equations of the form:
é = £(x,m)
are programmed into the computer,.

(3) Starting conditions x© as near the true values as
possible are assumed.

(4) The model equations are linearized about the nominal
solution path.

(5) The values of JEO are determined.

(6) Using a least squares fit performance index, G; optimal
and T; optimal are obtained. These values are then used
to find Py optimal.

(7) py optimal is minimized by means of quasilinearization
to determine parameter changes fﬁr the next iteration.

(8) The process is repeated, if necessary, until sucessive
adjustments provide negligible improvements on p.

(9) The resulting model parameters are read out as the
desired plant identification,

As will be shown by means of an example (the Van

der Pol equation), this method of identification has a

larger region of convergence than any of the other methods.
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CHAPTER VI
EXAMPLE: THE VAN DER POL EQUATION

The method of Optimal Dynamic Weighting Coefficients
and Sampling Interval is applied to the Van der Pol
equation. The state equations for the Van der Pol equation
are given as:

X, x
| 2 (36)

. 2
Xo* -e(l-x1 )x2 - uxy

Let X,z @ and X,z U, This results in the following

augmented equations:

;{12 xz
xb 2 ~xofl-% 2)x -X, X €37)
2 3 1 2 4°1
XS= 0
X4= 0
Solving for i:
0 i 0 0
2 1 3 1
X1X9Xg-Xy -x3 (1-x;7) -(1-x3 )xg =X
Je (38)
0 0 0 0
0 0 0 0 4
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(39)

|
IR}
|~
| %
~
|
o)
N

ik $(0)= I (40)

=
"
| =
RN

The following initial guessed and actual values are

used:
- 1.9 B o 2 0 -
~0.095 ol =0, 055
2 and x°, (41)
2.0 3.65
- O.SJ L1'17 f

Equations (37)-(41) lead to equation (42) for each

iteration.

& 4 A a0 o
;4'1 g;|%; &%) - x; = >I dt (42)

121.,2,3.4

The initial values and @ are used together to

evaluate equation (42).

Equation (42) can be rewritten as in equation (43).
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: S Lt o
A1 Ay2 A3 A Jxl o
A A A A §x° c
21 22 23 24 % 5 %3)
A - C
831 B39 Ay3 34 Jf‘s 3
o
A A & A c
41 42 43 Lt Jxa 4
b 4 i J L
where:

T .
Ajfs P1x P15 9ok ¢23]dt

TIr
- A AO o A ,a0 & o
Cj J _xl(f )-x, (% )] ¢1j+ gz[xz(z) xz(g)] ¢2j}dt
P(G,T) is formed for each iteration.

| 4 5
EED: ¥ (- E N (44)
J:

Minimizing E(E,T) with respect to g and T gives the

following results for three iterations.

Iteration g Optimal T Optimal
1 [1,6.5,0,0] 0.33sec.
2 [1,1.2,0,0] 2.0sec. (45)
3 {10.05:0,0,0] 0.2sec.

Using G optimal and T optimal of iteration for
iterations 4 and 5 results in convergence in five iterations.

This is the same as results obtained using Alexander's
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method. This is shown in Table 1.
When the parameter space is expanded, the method
presented here results in convergence while the others may

not. For example, let

1.9 < x] < 2.0

-0.095 < %5 L eD.085
(46)

2.0 < xg < 3.81

0.5 < X[ SRR P

Using these values, convergence resulted in five
iterations. However, Alexander's method could not converge

for the expanded parameter space. This is shown in Table 2.



TABLE 1

ol

RESULTS FOR ORIGINAL PARAMETER SPACE

Iteration Alexander Hanna

| 88.62 28.67

2 o2 30002

& 4.638 0.534
=1 o1

4 0.89x10 0.15%10

5 0.19x10"% 0.16x10""

TABLE 2

RESULTS FOR EXPANDED PARAMETER SPACE

Iteration Alexander Hanna
1 342.85 38.19
2 1947.26 18,96
3 915198 2.,56¢%
4 411,74 0.27x10"}
5 1733.44 0.37x10"°
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CRAPTIER VII
CONCLUSIONS

A method of identification for both linear and
nonlinear systems was developed. This method of Optimal
Dynamic Weighting Coefficients and Sampling Interval uses
quasilinearization as a basis. It was shown that this process
has a larger region of convergence than other methods
whiéh also employ quasilinearization.

This method requires a large amount of computer
time. However, since the result of this process is an
identifier which allows identification over a large

parameter space, the benefits outweigh this drawback.
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Flow Chart of Program Used
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Results of Original Parameter Space
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Results of Expanded Parameter Space
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