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ABSTRACT

ELASTIC STABILITY CHARACTERISTICS

+  ILLUSTRATED BY SIMPLE MODELS

 HARISHCHANDRA S. PATEL
Master of Science in Engineering

Youngstown State University, 1974

The purpose of this thesis is to obtain a simple model,
which gives the load-deflection relationship resembling the load versus
lateral deflection plot for an axially-compressed thin cylindrical
shell, Hence four simple mathematical models consisting of a rigid
rod combined with a linear spring are investigated using the criteria
of static and dynamic stability. Similarly, two more mathematical
models consisting of a rigid rod combined with a linear and a torsional
spring are also investigated.

The basic laws of elastic stability are also interpreted
mathematically and geometrically for the suitable models, The mathema-
tical solutions for both stable and unstable equilibrium states are
illustrated graphically, in the statical case, by potential energy
and load-deflection curves.In the case of dynamic analysis, the.concept

of phase=plane is utilised.
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CHAPTER I

INTRODUCTION
Object: |
The structural engineering elements. have been studied exten-

sively for the criteria of load stability. However stability of certain
systems such as, an axially-compressed long cylindrical shell, have
been‘observed to be governed by perturbing lateral deformations, which
is explained by Panovko and Gu'banova..3 It follows from the above refer-
ence that, the critical compressive stress, based on Euler's method,
was approximately given as,

Ger =

O6Eh 2

where,

E= The modulus of elasticity of the material of the shell,

h= The thickness of the shell, and

(f

The radius of the cylinder,

The geometric shape, of shell upon loss of stability is shown dotted,

in the figure (1-a). Subsequent experimental tests on the thin cylin-
drical shells have not supported the results, which were derived, on
the basis of Euler's method, where the terminal axial displacements
were not considered. The figure (1-c), shows the result of non-dim-
ensional axial load versus, the longitudinal shortening ¢ magnified

by the factor R/h, which is obtained by taking into consideration the
terminal displacements. The segement O-A of the figure (1-c) shows that,
in the begining the stress increases rapidly, following a linear law,

Point A shows the critical stress given by Eulerian approach. At this
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Initial Configuration Displaced Configuration

Model One

Model Six
Figure (1 -e)
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stage, the shape of the cylindrical surface gets distorted and shows
deep rhombic dents as shown in the figure (i—b). Hence, longitudinal
rigidity of the shell decreases suddenly and for the same value of the
end shortening, a considerably smaller value of the dimensionless siresé
is noted as shown by the point B. If further shortening at the ends

is followed, the stresses increase slowly and follow the path of the
segment shown by the curve B=C,

The above phenomena is shown in a different manner in the
figure (1-d), where dimensionless stress versus lateral displacement
of the shell is presented. The stable portion of the curve is shown
by the heavy line, while unstable portion is marked by the stars,
Hence the figure (1-d) shows that, for a thin cylindrical.shell, com-
pressed with an axial load, the effect of the lateral perturbing def-
ormations, distorting the rigorously cylindrical shape, is to lower
the value of the critical stress, governing the stability of the cyl-
inder, Hence in such a system, the lateral deformation is more important
for stability analysis.,

It is the purpose of this thesis, to exemplify the criteria
of lateral deformations governing the elastic stability, by means of
simple mafhematical models, and thus to analyse in details, the models
which show load versus lateral displacement curves, similar to the
curve shown in the figure (1-d).

As shown in the figure (1-e), six simple mathematical models
are selected to illustrate this stability criteria. The figure (1-f)
shows the typical load-deflection curves for all the systems.

Model one is the modified form of the system suggested by

Panovko and Guba.nova.3 Model two and three are not analysed in detail,



as load-deflection curves obtained, are similar to the specific case
of model one.

Model one, four and five representing a single degree of free=
dom and model six of two degrees of freedom system are analysed in
detail, for the stability characteristics.

Approach: ’
A complete analysis of a stability model includes,
1. Static stability analysis, and
2, Dynamic stability analysis.
Hence the stability models are analysed both statically and dynamic-
ally,.
1. Static stability analysis:

The criteria for static stability is based on the potential
energy function of the system designated as V. If the function must
be atleast twice differentiable in (a,b) then a necessary condition
for the existence of an equilibrium state at 90 for which 6,<64<6,1is
that, dv/de at(6,)=0. This condition is not sufficient to guarantee
- that 6, is a state of stable equilibrium, A sufficient condition for
a stable equilibrium state or an unstable equilibrium state is deter-
mined by iﬁvestigating the sign of the function V" (@, )=dV/de%

If v (8,)<0, This corresponds to a maximum point and thus an
unstable state of equilibrium exists,

If v (e, )>0, This signifies a minium point exists and hence,
a stable point of equilibrium,

Finally, if V" (8,)=0, the point is neither a stable point nor an

unstable point, This condition determines the critical positions of

the system separating a stable and an unstable zone of equilibrium,



It is designated as neutral equilibrium,
2, Dynamic stability analysis:

Fundamental to dynamic stability analysis is the formulation
of the differential equation of motion, which is usually of the non=-
linear type even for the most simplified stability problems, The equ=
ation of motion is reduced in order, in£o a set of first order differ-
ential equations which have inherent in them a form of the potential
energy of the system, Secondly, an intermediate energy intigral equation
which exists for a conservative force system, in which direction of
an external applied force remains vertical throughout, is formed.
This equation states the condition that the sum of the kinetic and
the potential energies remain constant for all values of time t. For
a one degree of freedom system, a function of the variables results
which is plotted as a surface in three space, the variables being
displacement, velocity and the potential energy. The projections of
this surface onto the displacement=velocity plane define the phase=-
plane, A specified level of potential yields a single continuous
trace or curve on the phase plane. A geometric interpretation of the
phase plane plots yields the criteria for stable and unstable equi=-
librium configurations,

The various plots of the analysis of each model are included
at the end of each chapter, showing the results of static analysis

and dynamic analysis geometrically.
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CHAPTER II

ANALYSIS OF STABILITY MODEL :ONE

4~

Initial Configuration \ Displaced Configuration
Figure (2-a) Figure (2-b)

2.1 STATIC ANALYSIS
The geometrical configuration of the model, shown in figure
(?-éL consists of a vertical and horizontal frictionless guide cons=-
training the movement of the rigid rod. A vertical load P is applied
as shown. .
The following assumptions are made for the idealized mathe=-
matical model:
1. The bar is assumed to be a rigid body,
2., The springs are assumed to have a lineér load~-displacement

relationship.



3. The external applied force P acts in the vertical direction for all
values of the angular rotation 6 and is thus a conservative force,
4. The weight of the bar is neglected.
5« The total mass of the bar m is assumed as a point mass located at
the point of application of load P,
Refering to figure(?~®, the displaced configuration of the

model yields the dimensionless potential energy function as:

V = 0% KO1-0-0%"%7-2P01-0- 0% 2] ()
where, |

{ = VLvakaLT]

ﬁ:: P/ Kol

0= U/L , and

K= KI/KZ .

It follows that,

- R

Voo lpek@-09-K-P0-09721,  am @
) Ap =3 .

V=2 01+K(-08) 2K -Bo -0y~ 7, i

For static stability analysis, the necessary condition, for the
A
existence of a possible equilibrium state at © = 6, is that V‘= 0y

this condition yields,

lg:.[l—ﬁz_]'/z-t-K[l -(:—O")"ZJ (4)

Equation (4) gives a relation between dimensionless load ﬁ and dime-
£ ¢
nsionless displacement U .

The sufficiency condition for neutral equilibrium is given by the

A
condition V= 0, this condition yields
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A R A 2. 2
p =1-0%2+Kk[i-Q-0%72] (5)
Simultaneous solution of equations (4) and (5) yields the critical

value of displacement ﬁcr and the critical value of load ﬁcr as

Ui)ee =0. ) ¢ and (6)

U)ca=t,0 : (6-a)
and

Rler =1, and (7)

(Po)cr =K. : (7-a)

A plot of the family of dimensionless load-deflection curves is shown

in figure(?-q} for various values of the parameter K.

aaasaly - stable
ey unstable
eoo0ve 'neutral
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From figure 2-c, it follows that for K = 1 and 0<(0'<1, load-
displacement curve is a straight line, |

For K = 0, the shape of the curve is the classical cosine
function,

For 0<K <1 and 06651 s the slope of the curve is negative
and ’ increasing.

For K>1 and 0<U<1 , the slope of the curve is positive and
increasing.

For the case fI = 0, all points on the vertical axis are stable
for O<$ <13 for '1; = 1 neutral equilibrium exists, and for 371 all

points are unstable,

For O<$<1 » 211 points on curves for 0<K <1, are uastable,
for all values of f] s but excluding 6 = 1, where neutral equilibrium
exists, For given values of ? ’ fl with 0=<K<1 , if resulting point
falls on the prescribed load-displacement curve, the system is unste
able and motion occurs, so that the system attains the neutral equi-
librium position at ﬁ = 1,

If X>1 and the point falls on the curve the system is stable.
For K>1 all points on the load=-deflection curves are stable exc.lud-
ing G = 0,

The points corresponding to the condition K = 0, O<$.<1 and
0<G<1 are unstable since Q' = 0 and ,V\'" is negative, ¥Yor K = 1, B=1
and 0<'I\I<1 all points on line are in neutral equilibrium, For K>1 ,
O<ﬁ<1 all points on load-displacement curves are stable. For $>1,

all points on vertical axis are unstable for 2ll values of K.
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2,2 DYNAMIC ANALYSIS
Assuming the mass of the bar m’ as a point mass located at the
pointAof application of load P, the Lagrangian of the system ﬁ is defi=
. :

ned as L = $ - G ’
where

f = kinetic energy of the system / ('/2J<zﬁL), and

4 2

V = potential energy of the system / ('Iz_ Ko lf ),

hence it follows that

L =L¢b,6,8) = ‘/zMGZ-Ec'J (8)
where,
i =2m/Kg 4 and
f =0/ .

The differential equation of motion satisfies the following

Lagrange equation:
A
o _ 2 oLl N _
W I\ ) =O. (9)

which yields, g
MmO +(0) =o. (10)
where,'Q' denotes first derivative with respect to 6 .
Equation (10) is reduced to a pair of first order differential

equations in the form

AL A

(o= ~[04 /M, (12)

where,
A A
U=1
1
eyt d
A A A
U= U1 = U2 .
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Integration of equation (12) yields,

l/zm(()z)z-r\'} =FoCUyP) =CONSTANT, (13)
that is,.the sum of the kinetic energy plus the potential energy of the
system remains constant, which is the special case of a conservative
force field, The parameter E, (61, %) represents the sum of the kinetic
energy plus the potential energy evaluated at the time t = to = 0,

Solving equation (13), yields

» = [ 2/m(E.-0)7"% (14)

where for convenience,

(Z/M)kz =l » Yyields .
02 =2[E~07" (19)
Equation (15) gives the relationship between angular displacement,
the stability load, the initial energy of the elastic system at any
time t, and the velocity of motion in non-dimensional form.

For this one degree of freedom system shown, the phase=plane
diagram of the non~dimensional velocity versus displacement is plotted
with the dimensionless potential energy on the third axis, The proje=
ctions of this three dimensional surface on to the phase-plane produce
the phase-plane trajectories, For each value of $ a separate phase-
plane diagram is produced, Noting the load-deflection curve in figure
2=c, the following values of $ are jnvestigated:

Buog, Peom, Pa1.00 anad il
For the special case K = 0, the phase=plane trajectories are

shown in figure ( 2-@) through ( 2-%),
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Figure ( 2-@) represents phase-plane trajectories which are
| produced for load /1\’ = 0, They are characterized by a stable point at
the origin, Hence, all oscillatqry motion about the origin is stable,
For load P = 0.8, figure (2-%) illustrates the phase-pia.ne
trajectories, A stable point A at the origin,.and an unstable point B
on the 61 axis at the point ¥ = * 0.6 is shown in the figure ( 2-%).
For load B = 1, figure (2-8) illustrates a set of traje=-
ctories showing point A,as unstable point of equilibrium,
Thus, for K =.0, as '13 increases the unstable point B moves
to the left and approches the' stable point A. Points A and B coincide

for ﬁ = 1 , producing an unstable point,
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Figure (2-9)
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A
V' Vs displacement for K=1,0

Figure (2-19
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V! Vs displacement for K=2,0

Figure (2-1)
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Figure (2-P)
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CHAPTER III

ANALYSIS OF STABILITY MODEL TWO

Ka Y

Initial Configuration Displaced Configuration
Figure (3-3) Figure (3-b)
3«1 STATIC ANALYSIS
The geometrical configuration of the model shown in figure @-a)
consists of a vertical and a circular frictionless guide constraining
the movement of the rigid rod..A vertical load P is applied as shown.
The assumptions regarding the type of rigid rod, the linear
spring, and the direction of load P are same as mentioned in chapter
two for the stability model one,
Refering to figure (3-b) the displaced configuration of the

model yields the dimensionless potential energy function as
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¥ =2{TaN [0 G-0%2T 2>

~2Pi-d-(-0H"2e 4 Q- 07)"2], 9

where, ;
0= WL ,

8 . P/KaL,
PR 7 P
u. 0

R

It follows that,

{'=24 G’—Gz/oc")“'/szaN"[G(atz-l?Z)_VZ]
A A A 2y Vi 2 HAa-Vz
—2PU[(-0%)"2- (*-07) 0 i

and

=Ll UT 0L 0% A TAN 0 (& 0774
2P OG-0y (097
2P[G-07 (2097, -4

For static stability analysis,.the necessary condition for the existe-
nce of a possible equilibrium state at © = 6,is that ?' = 0, this

condition yields,
A -1 A A2, 2WVer A2t A7)l (4
P =TAN(G/Q[O{G-07L2) (O =Ly (9
Equation (19) gives a relation between dimensionless load § and
dimensionless displacement ﬁ and a parameter o «

The sufficiency condition for neutral equilibrium is found by setting

0" = 0, this condition yields,
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B 2 0%
[t 052+ N0/ (209" ] x
[(-03 2 &2 0% 2]  (20)

Equations (19) and (20) :are - solved simultaneouly to evaluate the
critical values of displacement G;r and load s;rgin a non=dimensional
form,

A set of curves for nondimensional 1load ﬁ versus dimensionless
displacement for various values éf parameter & , are shown in figure
(3=c

A8 figure (3-c) does not resemble' the figure (1-d), further

stability analysis for this model is not done.

A

o + ¥ o + ¢ R
Typical load Vs displacement

Figure (30
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Load Vs displacement
Figure (3~d)
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CHAPTER IV

ANALYSIS OF STABILITY MODEL THREE

- 9
|

W““ s 1 g-—ww

Initial Configuration Displaced Configuration
Figure ( 4-a ) : Figure ( 4-b )
4.1 STATIC ANALYSIS

The geometrical configuration of model shown in figure (4-a)
consists of a vertical and a horizontal frictionless guide constrai-
ning the movement of the rigid rod.A vertical load P is applied as
shown, ’

The various assumptions regarding the type of rigid rod and the
linear springs are the same as described in chapter two. The direction
of the épplied external load remains vertical for all the positions
of the displaced rod.

Refering to figure (4-b), the displaced configuration of the

model yields the dimensionless potential energy function as
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V =00 20F+1)217%- 28 [1- G-02) '] p | (G

where,
=U/L !

_P/KeL,

= Ks/Kz,

% =V/}‘ZK7_E , and
F =C0Sdo =% .

-~ > o>

It follows that,
V'=2{0+xF+O)N- (6 % 2 0F +) 2B0G-0% _y} (22)

and

V=2{i+K +k(F°=t) +2.UF'+_] o p( )’3/2} (23)

For static stability analysis, the necessary condition for the
existence of a possible equilibrium state at 6 = 65 is that Vo 0,

this condition yields,
£ ={0 +k(F+O)[-(O%+20F+) ™ T}(-02'207 (24)

Equation (24) gives a relation between dimensionless load f> and dimen=-
A
tionless displacement U,
The sufficiency condition for neutral equilibrium is given by

A
the condition V" = 0, this condition yields

?:E-rk + K(FED@z L2 0F +l)"3’2_] Q_Gz)s‘/z e
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Equations (24) and (25) ‘are :: solved simultaneously to determine the
critical valuesof displacement ﬁ;r and the critical valueSof load ﬁcr'
A plot of the family of dimensionless load versus dimensionless
displacement curves is shown in figure (4-0), for various values of the
parameter K.
As figure (4;c) does not resemble the figure (1-d), further

stability analysis for this model is not done,

6

Ir2
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o-&t

o4
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Y

G- B0
Typical load Vs displacemert

Figuxe (4~
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Load Vs displacement Figure (4-d)
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CHAPTER V

ANALYSIS OF STABILITY MODEL FOUR

i' K3 '

e
Kz |
=== = | - AN
g
Initial Configuration Displaced Configuration
Figure (5-3) ‘ Figure (G-b)

51 STATIC ANALYSIS

The geometrical configuration of the model shown in figure(S-a}
which consists a vertical' and horizontal frictionless guide to constr-
ain the movement of the rigid rod,is loaded with an external vertical
load P,

The basic assumptions for the rigid rod, the linear springs,
and direction of the applied load P are same as given for model one in
chapter two.

The displaced configuration of the ﬁodel shown in figuie(@-b)

yields the dimensionless potential energy function as
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v=0%k{[E-0% zQ-O")"ﬂ 2o Bfi- -0y %] @9

where,

2
V=v/rral®,
§=P/K?.L7
U=U/L, ,and
e =K3/Kz .

It follows that,

V=2l (-G -G0 (075 7
~[2 0 PG-0 z)—yﬂ ,

and

v 22[1-P-0%) %] 42k {[ 10222 ) x
O-G+@-0-0 2)y?-)z‘)_"?-_'] -
08i-0-0%"21° 09 i+ -6-09)"2)"1 4. (28)

For static stability analysis, G' = 0, governs the necessary
condition for the existence of a possible equilibrium state at 8 = 6,.

This condition yields,

= (=092 D=0 Y1699 T,

Equation (29) gives a relationship between dimensionless load ﬁ and
A
dimensionless displacement U, for a given value of parameter K.
The sufficiency condition G" = 0, governs the existence of

neutral equilibrium, It follows,
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B={l0-0 2 [-(+G-0-022f) o]+
07[1-G-0%/ *(- 0 [1+G-a- 0%'%)*] "3 x
B(‘_ 03)3/2-] 5 [Q" 62)3/2_1 o (30)

Equations (29) and (30),are solved simultaneously +to yield the critical
values of displacement ﬁcr and the critical value of load ﬁcr-
A typical set of the family of dimensionless load-deflection

curves is shown in figure (5-0), for various values of the parameter K.

)\
ok
® K=133

ofl5[— — o —critical load
A

P

©2 . . . . . . : P

° : 06 |=©

A
Y

Typical load Vs displacement Figure (5-c)
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Refering figure(5-d), it follows that for K = 19.30, and
O.jf-s‘l, the slope of the éurve changes from negative value to positive
value, and the slope is zero at § = 0.6

The point corresponding‘to ﬁ =1 and ﬁ = 0, 18 in ngutral :
equilibrium since * =0 and " =0 fork = 194305 Poxr:r LK=209, SOL L%
O.875<'1\°<1, and 0<ﬁ<0.6, all points on the load deflection curve
are unstable, since V! = 0 and V" is negative in magnitude. The points
on the curve corresponding to X = 19.30, f>>0.875, and 0>0.6 are in
stable equilibrium since % =0 and ?" is positive in magnitude.

5.2 DYNAMIC ANALXSiS

Adopting a procedure outlinedin chapter two,.the basic form of
equation (15) is used to plot a family of nhase-plane diagramsfor
various values of load 9.

As outlined for stability model one,.the projections of the
.phase~-plane surface on the plane containing non-dimensional velocity
and displacement axes are plotted for the specific values of K and ?,
as phase-plane trajectories. The load-deflection curve shown in figure

19.30 is investigated by the phase-

(5-0), for the specific value of K

plane diagrams, for D i« 0,875, B = 0,95, £ = 1.0 ana P = 1,05, to
verify the stability 2zone,

Fig‘ure(s—h) shows the set of phase-plane trajectories for $ =
0.875, representing the origin as a stable point. Hence oscillatory
motion about the origin is stable, Points B and C coinciding on 61
axis for ?J = % 0,6, represent the neutral equilibrium.

Figure (5-i) for B = 0.95 illustrates the stable points

A
A and C and unstable point B on U, axis.

1
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Figures (5-T) and (5-K illustrate the phase-plane plots for
$_= 1.0 and $ = 1,05 respectively. The points A and B coincide at the
origin, hence origin is an unstable point while point C on 61 axis is
a stable point,

Thus, for X = 19.30 as the magnitude of dimensionless load ?

increases beyond $ = 0,875, point B showing position of unstable point,
moves towards the origin and approaches point A. For '13?1, points

A and B coincide and form: an unstable poiht.
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Potential energy Vs displacement

Figure (5-e)
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V' Vs displacement

Figure(5-f)

a7



48

¥ P=-875
=z,

©4 -

02

O
Sy

—, -

—.4 -

—b -

- 08.

N
V'' Vs displacement

Figure (5-g)
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K=19.3
A-stable point
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Phase-pjane plot for P=0,875

Figure (5-h)
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A,C-stable points
B-unstable points
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Phase=~plane plot for §= 0.95

Figure (5-1)
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Fhase=plane plot for P=1,0

Figure (5-I)



024+

6 |

+08 1

K=19o 3

4 . C=-stable points

A,B-unstable point

[e) 05 L 0! R
Phase~plane plot for P=1,05

‘Figure (5-K)
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CHAPTER VI

ANALYSIS OF STABILITY MODEL FIVE

Initial Configuration Displaced Configuration
' Figure (6-a) Figure (6-b)

6.1 STATIC ANALYSIS

The vertical and horizontal frictionless guide is used to
constrain the movement of the rigid rod, as shown by the geometry of
the model in figure(6-é} An external load P is applied vertically on
the top of the rigid rod.

The torsional spring is assumed to have a linear moment-rota-
tion relationship of the form M = KT 6, where M denotes the moment
required to produce an angular rotation expressed as © in radians,

The other basic assumptions are same as described previously.
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Figure (6-b) representing the displaced configuration of the

model yields the dimensionless potential energy function as

0 =@Ene)Z kel +2r'3[cose—|_'_], ' (31)
where
=P /reL ’
it =V/}'p_k7_lz', and
K =Kr/kol® .

It follows that,

Q' = SIN(26) +2Ko —2PsINg : AND (32)

V"= 2.c05(20) + 21 —2Pcose (33)

For static stability analysis, the necessary condition, for
the existence of a possible equilibrium state at © = €y is that,
¢! - 3_2. = 0, this condition yields,

P =cose +Ka/sINo . (34)

Equation (34) gives a relation between non~dimensional load 8 ana

angular rotation 8.

The sufficiency condition for neutral equilibrium is given by

the condition ¥ = ‘%’L = 0, this condition yields,
N
P =[cos(2e) + aK_‘]/cose ; (35) -

Equation (34) and (35) can be solved simultaneously to evaluate the

critical value of angular rotation 8,, and the critical value of load

cY
A plot of the dimensionless load versus angular rotation is

shown in figure (6-c) for the specific value of the parameter K.
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2.0 K =10
o-critical load
T/opt— — — — '
I
I
1-0 I
I
0 . I : : o

° e - "

a
- Typical load Vs angular displacement Figure (6-0)

Refering figure(6-c) it follows that, for K = 1 and 0=<6<T,
the slope of the ioad-rotation curve changes from negative to positive
and slope is zero at © =T/g ,

The point corresponding to ﬁ =2 and © = 0, is in neutral equi=-
librium, since ¥' =0 and I" = 0, For Tadl <P<2 and 0<0<T/2, all
points on the load-rotation curve are unstable, since \ A 0 and II\I" is
negative in magnitude. The points on "curve corresponding to the condi-
tion $>1«. 57 and € >W/p are in stable équilibrium.

" 6.2 DYNAMIC ANALYSIS

Using the basic form of equation (15) , the non-dimensional
angular velocity of motion can be evaluéted for the specific value of
the initial energy E; of the elastic system at any time t, for the

known value of the dimensionless potential energy.
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The phase=plane concept is used to investigate dynamic stabi~
lity conditions for the specific value of pérameter K =1 and for vari-
ous values of non-dimensional load $.

The phasefplane trajectories, which are obtained by the proje-
ction of the phase=~plane surface on to a plane containing angular
velocity and angular rotation in non-dimensional form, are shown in
figures (6-h ) through (6-K),

Figure:(S-h) shows the set of phase~plane diagrams for $ =%
an& represents the origin as a stable point. Hence oscillatory motion
about the origin is stable. Point B which is the unstable point, coin-
cides with the point C on the axis of angular rotation at 6 = ¥ /2,

Figure (6-1) shows the set of phase-plé.ne trajectories, for
ﬁ = 1,8 and‘illustrates the stable points A and C, and an unstable
point B on the axis of angular rotation,

Figures (6—3) and(G-BOillustrate phase-plane trajectories,
for ? = 2 and ﬁ = 2,2 respectively. The unstable point B coincides
with point A at the origin, hence the origin is an unstable point
and point C is a stable point,

Thus, for K = 1, as the value of load P increases beyond ﬂVQ)
unstable point B moves fowards the or;gin and approaches point A. For
@? 2, points A and B coincide to form an unstable equilibrium at the

origin,
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Ioad Vs angular displacement

Figure (6-d)
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V' Vs angular displacement Figure (6-1‘)
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T vs angular displacement Figure (6-3)



K=1,
A=stable point
B,C=unstable.points

A
Phase-plane plot for P=1,57
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Figure (6-h)
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K=1o
A,C-stable points
B-unstable point
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Phase-plane plot for P=1,80 Figure(S-j.)
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K=1,
C-stable point
A,B-unstable points

2

A .
Phase-plane plot for P=2,0 Figure(G-’!T)
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K=1,
A,B-unstable points
C-stable point

Fhase=plane plot for §=2.2O Figure (6-]()
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CHAPTER VII

ANALYSIS OF STABILITY MODEL SIX

Initial Coﬁfiguration Displaced Configuration
Figure(7-2) Figure(7-b)

Te1 STATIC ANALYSIS

The geometrical configuration of the model shown in figure(7-2)
consists of a frictionless guide aloﬁg the axis of the rigid rod for “
the linear spring., A vertical load P is applied as shown, for this two
degrees of freedom model,

The assumptions of model five hold good for this particular
model also, Hence refering to figure(?-b} the displaced configuration

of the model yields the dimensionless potential energy function as,

\7(9,9) =(072 + 2RQ-8)* + P¥cose — B). (38)
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where,
. V¢

n

T
o

Kr ? {
¥/Le , and
K =kL5 e,
It follows that,
U = [—4r0-%) +?>cosej, ‘ (37)
U, = [a-P¥sing], , (38)

-0
r

H> ‘>
1]

For static stability analysis, the necessary condition for the

existence of a possible equilibrium state at 6 = Go is that,

G’i’ = - -%%?— = 0 and Qe = :;ﬁ;—l) = 0, these conditions yield,
A i 32 Y
¥,,.=Ve[170~ e(kTANg) 2] - (39)

Combining equations (36) and (39), yields

9(9)!,1 = 6%2 + X235 - 8 TAN 9)—') ’/2_-__] %
Vo Beose]) + (1-0(kTANG) ™ )2] -8, (40)

It follows that,

Ny : A
v, = [k(Q-D) - PCose/z]x
[{1+D) TANB + kD) (TANG-BSEC FTAN E) j(41-2)

Vs = [KQ+D) — 5cose/g] X
{F2kn)™ (TANe-8SECH(TAN"E) ™ +
G-DTAN &3, (41-b)

where,

5 1
D= D—GCKTF'Ne)"_'l/.z
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Gt =[{0+D)TANG +ErD)(TANo-0SEC?)(TAN’E] I
§ (TANG-GSEC’) (2D TAN?Q) ™+ P siNe} ]+
[{-TANe (TANE-8SEC?8) DK TANG) ™+
(1+5)(cos*e) +{rane — eSECE)R @D TNt
+(prsIN?g)~ (-1 + 8Cose/sINGY|x
D":Cl—D)— Yo fscosej ! : (42-a) .

and

Ay

V@, =J10-DTANG —(2kD) (TANE - esEC B)(TR Nze)"‘}x
{~(TaNe-esEC’Q)(2DTAND) + V2 PsINe}] +
[{~Tane( TANe —8SEC?E) (2DKTAN"E) '+
(1-D)( cos?e) " (Tano-aSECZONGCD TaN*e)
~(DKSINZE) ™' (-1 + 6 c0s50/5INE){] x
 [KQ+D) —(Fcose) ], | (42-5)

where'

=}
D =E"‘6CKTRN9> j{z'and

All d,z’\;
Yeor® ez -

For static stability analysis, the necessary condition for the

A

existence of a possible equilibrium state at & = eo is that, 0' =§'—:— = 0,

this condition yields
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B = 2(cosey ' (kDT C-axraney )2y, (s

Equation (43) gives relations between dimensionless load $ and angular

rotation 6 in radians.

The sufficiency condition for the neutral equilibrium is given

A
by the condition that,. %\I" = 32:,; 0. Hence the critical valuesof rota=-

tion (6, 5)op @nd critical valuesof load (ﬁ1.2)cr are  evaluated by
§ :

A
using the conditions that, (Vi'z)' = 0 and (91,2)" = 0, simultaneously.

0>

o-critical load

o : 4 l i
0 0351 T/ o T

Pypical load Vs angular displacement Figure (7-c)

Y

A .plot of the family of dimensionless load ? versus rotation

curves is shown in figure(?-c) for various values of parameter K.
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A
For K=1, P1=2 and 6=0, the corresponding point on the load

A A
rotation curve is in neutral equilibrium, since V,'=0 and V1"=O. For

1
A
P,>1.484 and 0.35M<8<T, all points on the curve are in stable equi=-

librium for K=1,
A
For K=1, P2=2 and 6=0, the corresponding point is in stable

2 272 and 0<6< /2

all points on the curve are in stable equilibrium, since 62'=0 and

A
V2? is positive,

A A
equilibrium, since 02'=0 and V," is positive, For K=1, P

T.2 DYNAMIC ANALYSIS

The phase-plané concept is used to investigate the dynamic
stability of the model, for a specific value of parameter K aﬁd for
various values of non-dimensional loads,

The basic relation between the non-dimensional angular velocity,
the mnitial energy E and the potential energy V, in the form 92-6 =
+(m -V) /2 is used to evaluaie the angular velocity, by assuming
various values of potentials Eo' which are shown on the phase~plane
trajectories, for each plot,

The figure (7-K) shows phase-plane plot for $=1.484, and rep-
resents neutral equilibrium at 6=;i 0.35T, and a stable equilibrium
at ©=0,147T and an unstable origin..

The phase-plane plots of'figure (7-4) drawn for §;1.75, shows
a set of stable points for two different values of angular displace=-
ments and a set of unstable points which includes the origin.

The phase=-plane plots of figures (7-m), (7-n).and (7=-¢) drawn
for §1=2.0, §1=4.0 and §1=8.0, respectively éhow a set of stable points
including the origin and an unstable point in between the two stable

points,



70

‘A
Figure (7-f) shows phase-plane plots for P2=2.O and represents

a stable origin.

N
The phase=-plane plots shown in figure (7-a) and (7-¥) for P,=4.0

A

and P,=8,0 respectively, represent the origin as an unstable point and

2
a stable point on an angular displacement axis for different values of

© corresponding to the points onithe load-deflection curve,
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Load Vs angular displacement

Figure (7-d)
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Potential energy Vs angular displacement

Figure (7-e)




A
V! Vs angular displacement

Figure (7-£)
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Potential energy Vs angular displacement

Figure (7-h)
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N
V! Vs angular displacement

Figure (7-1)
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Phase-plane plot for B= 1.484

Figure (7-K)
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K=1,

Eo=—"326
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A
Phase=-plane plot for E=2,000

Figure (7-m)
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Phase~plane plot for Pz2.0

Figure(7-p)
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Fhase=plane plot for Pz4.0

Figure (7-&)
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CHAPTER VIII

SUMMARY
Discussion:

The load=-displacement curves of the models, one, two and three
show that, these systems do.not possess the ideal load-deflection
relationship, which can be related to that of an axially compressed
thin cylindrical shell,

Models four, five and six, show the load-deflection curves
which are ideal for illustrating the stability characteristics of an
axially compressed thin long cylinder.

From the complete analysis of these models, it is clear that
static stability analysis requires plots, at }reast for the first
derivative and the secénd derivative of the potential energy function
of the system, In certain cases even higher order of derivatives are
needed, for the determination of stable, unstable and neutral equi=-
librium points of the system, The dynamic stability analysis of one
degree of freedom system, based on the phase plane concept, ;s directly
related wifh the total potential energy of the system.

The two degree of freedom system of model six has been analysed
for the static stability and for the dynamic stability, by changing
the potential energy function of two variables, in the form of a function
of a single variable,

Hence the results of the dynamic stability analysis of a system
complement the results of the static stability analysis, Thus the combi-

nation of a static and a dynamic analysis of the stability for a system
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gives a precise interpretation of the stability based on the lateral
displacement criteria,
Conclusions

The system of model six,even for such a simple geometrical
configuration, involves a complicated mathematical analysis, The
load-deflection plot for the system shown by model five, gives a finite
value of non-dimensional load for zero deflection. As the deflection
starts increasing beyond zero, the curve follows a well defined down=
ward trend, showing an unstable segment between the two neutral equi=-
librium points. Once the deflection starts increasing beyond the second
neutral equilibrium point, the curve shows a stable segment and thus
reverses the earlier downward trend,'Hence the model five is chosen
as the most appropriate model to illustrate the lateral-deflection
criteria of the elastic stability of an axially compressed thin cylin-
drical shell, in a most simplified manner,

Throughout this thesis, non-linearity is induced geometrically,
while material properties have been assumed to possess a linear load=-
deflection relationship. Even a simple non-linear form of geometrical
configuration involves a complicated mathematical analysis as seen
from the ahalysis of model two.

Hence the effect of the non-=linearity of the material may be
investigated for the simple models of one degree of freedom systems,
which are presented in this thesis, to verify the possibility of a

further simplification of the analysis of the models,
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