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ABSTRACT 

. 
INTERACTIVE COMPUTER PROGRAMS 

FOR SHEET PILE DESIGN 

Robert Gagich Jr. 

Master of Science in Engineering 
I 

Youngstown State University, 197S 

This study was pri1118rily concerned with the numerical solution 

to the free and fixed earth support methods of sheet pile design. New­

mark's Numerical Method will be briefly reviewed as it pretains to the 

sheet· pile problem, and some sample beam problems will be solved 

numerically. The fixed earth support and free earth support methods of 

sheet pile design will also be reviewed. The sheet pile problem will 

ultimately be reduced to that of a specially loaded beam. Interactive 

computer programs will then be introduced to numerically solve the 

sheet pile problem using the free earth support and fixed earth support 

methods of sheet pile design. 
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CHAPTER I 

NEWMARK'S NUMERICAL METHOD 

1-1. Introduction 

Numerical techniques have proven to be a powerful tool in 

structural analysis as a means to investigate the behavior of structures 

subjected to complex loading conditions. Depending upon the degree of 

complexity, numerical results may vary from exact to very close approxi­

mations. It is often the case that the only logical approach to a 

problem may be with the use of numerical procedures. Numerical analysis, 

however, has one major drawback; the repetitive calculations utilized to 

arrive at a solution, although not difficult, can become tedious and 

time consuming. As the complexity of a problem increases, so does the 

number of calculations and time required for solution. For this reason 

accuracy is usually sacrificed for time and other means are employed to 

arrive at the solution to a complex problem. 

Modern computers perform calculations at a speed approaching 

that of light. The large number of repetitive calculations used in 

numerical analysis, therefore, makes the method ideally suited to 

computerization. This study was primarily concerned with the numerical 

solution to the free and fixed earth support methods of sheet pile de­

sign. Interactive computer programs were written to numerically analyze 

anchored sheet pile bulkheads to determine the required depth of 

embeddment. 
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1-2. Statically Equivalent Concentrated Loads. 

Newmark's Numerical Method (l)* consists of dividing the span of 

a beam into increments called chords. The ends of the chords are called 

joints or nodes. The behavior of the loaded structure can be investi­

gated only at the joints. A joint is located at the point of applica­

tion of each concentrated load qn a structure. The numerical analysis 

of a point °loaded structure will yield exact results at the node points 

along the structure. Statically equivalent joint loads must be deter­

mined and applied to each joint on a structure subjected to a distributed 

loading. The ordinates of the distributed load are described by the 

equation of a curve. The accuracy of the nwnerical analysis of a 

structure having distributed loading depends upon the degree of the 

curve that describes the loading, and the length and number of incre-

ments. 

To analyze a structure by Newmark1s Numerical Method, it has 

already been pointed out that the loading must be comprised of point 

loads applied at the joints. The structure's behavior can then be 

exactly investigated only at the joints~ This poses no problem for a 

point loaded structure. The behavior of a structure between the joints 

on a point loa~ed structure is also known since no load is applied 

between the joints. The exact behavior between the joints of a 

structure subjected to a distributed load cannot be determined with 

Newmark 1s Numerical Method. However, on a distributive loaded struc­

ture, the average change in behavior over the increment lengths can 

"'Number in parenthesis indicates reference cited. 



be found by converting the distri~uted load into statically equivalent 

concentrated loads applied at the joints. The load conversion makes it 

possible to predict the change in shear or moment across an increment 

subjected to a distributed load, thereby permitting very accurate 

analysis of the structure at the joints. 

Concentration formulae have been derived that properly propor• 

tion the area under the loading furve over any two adjacent increments, 

such that the distributed load on the two increments is converted into 

statically equivalent concentrated. loads acting at the appropriate 

joints. The method of converting a distributed load into equivalent 

joint loads using the concentration formulae is similar to the Trape­

zoidal Rule or Simpson's Ruie of the calculus. 

Refering to ~igure 1-1, the problem is to determine the area 

under the curve 

yc:F(x) (1-1) 

from x-a to x•b. The Trapezoidal Rule states that this area may be 

divided into a number of trapezoids. The area of each trapezoid is 

then determined and the sum of these areas approximates the total area 

under the curve. The· interval (a ,b] in Figure 1-1 was partitioned into 

subintervals and ordinates were erected to the curve from each of the 

partitioning points. The points in which successive ordinates met the 

curve were connected by straight line segments in the Trapezoidal Rule; 

in Simpson's Rule the points are connected by segments of parabolas. 

The area under a linear or parabolic curve may be exactly 

determined by using the Trapezoidal Rule or Simpson's Rule respectively. 

The area under a third degree or higher order curve may be found by 

using either linear or parabolic approximations to the curve. The 

3 



x=a X 

• Figure 1-1. The Trap9zoidal Rule. 

accuracy of the results depends upon the selection of the number and 
., 

size· of the subintervals. This same reasoning applies when converting 

an Nth order loading curve into statically equivalent concentrated 

loads with the concentration formulae. The subintervals would be 

analogous to beam increm~nts and the partitioning points may be con­

sidered as nodes or joints on the. beam. 

A distributed load must always be converted into equivalent 

joint loads before the numerical technique can procede. Concentration 

formulae are used for this purpose. Concentration formulae have been 

derived for both linear and parabolic load distributions. The Trape­

zoidal Rule and Simpson's Rule are respectively analogous to the linear 

~nd parabolic concentration formulae used in Newmark's Numerical Method. 

Concentration formulae may be derived for higher order curves, but 

4 
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for practical applications this is not necessary. The accuracy of the 

equivalent joint loads as computed by the concentration formulae is 

determined by the selection of the number ·and length of the beam 

increments. The derivation (1) ~f the concentration formulae will be 

avoided here and only their use will be presented herein. 

5 

Refering to Figure 1-2, Wa, W"b, and We are the loading ordinates 

of the distributed load Wat joints a, b~ and c respectively. The increm­

ent lengths are Bab and Hbc• The following notation is used in Figure 1-2 

to specify the concentrated values of the distributed load Wat joint b; 

Jba • equivalent concentrated load at joint b due to Won increment ba 

Jbc • equivalent concentrated load at joint b due to Won increment be 

Jb • Jba+Jbc-= total statically equivalent joint load at b due to W 

The linear concentration formulae used to compute the statically equiv­

alent joint loads at joints band care as follows: 

Jb -= Jba+Jbc 

. Jba .. !wl,(2Wb+Wa) 
6 

Jbc -= !!w:,(2Wb+Wc) 
6 

(1-2) 

(1-3) 

(1-4) 

(1-5) 

The parabolic concentration formulae used to compute st~tically equ~va­

. lent joint loads at joints band care: 

Jb .. Jba+Jbc (1-6) 

Jba "" Hba ra (..1....t-l)+WI, (R+4) -We (...!...+R-1~ 
12 l+R l+R 

(1-7) 

where, R-= Hba/Hbc (1-8) 

Jbc a .!!lur,~~(--Lt-l)+wt,(R+4)-Wa (...!...+R-1~ 
12 l+R l+R 

(l-9) 

vhere, R-= Hbc/Hba (1-10) 

Jcb .. Jc -= .&.ll~c(-!.-t-3)+Wb(R+2) •Wa (J....+.R-1~ 
12 l+R l+R 

(1-11) 

where, R-= Hbc/Hba (1-12) 



;; 

Wb . 
Wa We c:::J:j 
A~C 

JJlt J: 

Wa 

A 
Hab B Hbc C 

J!!L + Jc 

Jb 

.. 
Figure 1-2. Linear and Parabolic Load Distribution 

For equal chord lengths R equals unity, and the papabolic concentrat­

ion formulae reduce to: 

6 

Jba -= .!!wt(3Wa+10wt,-Wc) 
24 

Jbc-= .!!w:,(3Wc+l0Wb-Wa) 
24 

Jcb-= Jc-= !!s::J2.(7Wc+6Wb-Wa) 
24 

(1-13) 

(1-14) 

(1-15) 

(1-16) 

The computed shears and moments are exact at the joints of a 

point loaded structure analyzed by Newmark's Numerical Method. The accur-

• acy of the computed shears and moments at the join.ts of a diatributive 

loaded structure depends upon the accuracy of the statically equivalent 

concentrated joint loads as computed with the concentration formulae. 

Deflections at the joints of a beam can be determined by loading 

a conjugate beam with an elastic load of intensity M/EI. Mis the 

.. 
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moment distribution of the real beam while E and! are the modulus of 

elasticity and moment of inertia of the section. The moment diagram of 

a loaded beam will always be described by a curve of at least order one, 

i.e. the elastic load will always be a distributed load. Equivalent 

concentrated loads must be determined from the M/E! diagram and applied 

to the respective joints on the conjugate beam. Shears and moments in 

the joints of the conjugate beam'are then computed by Newmark's Numerical 

Method. The shear in the joints of the conjugate beam equals the slope 

at the respective joints of the real beam. The moments in the joints of 

the conjugate beam equals the deflections at the respective joints of 

the real beam. Newmark 1s Numerical Method will n:r« be explained and some 

example problems worked. 

1-3. The Numerical Procedure 

The following sign convention will be used throughout this study: 

positive moment will tend to bend an element of the beam concave upward, 

positive shear tends to rotate a ~eam element _ clo,kwise, positive load­

ing is considered as acting upwards, and positive deflection is taken as 

upward. 

The technique used ~n Newmark 1s Numerical Method is one of 

numerical integration. Taking into account the end conditions, inte­

gration is carried forward in a step-by-step manner from one joint 

to the next. The numerical procedure is shown in its general form in 

Figure 1-3. The equivalent joint loads Ja, Jb, Jc, and Jd are shown 

acting in the positive direction and are applied at the joints a, b, c, 

and -d respectively. Increment lengths are Hab• Hbc• and Hcd• To 

determine the shears and moments at the joints, two values must be 

Ul\\l\11\t,I\\U\\- ~, ~ 'T~ "~"1l\\~\1'{ 
,uu"ua1UTI'1 ~ J~5$1: 

"I 



Line Quantity 

Joint Load 

Shear 

~~ment 
Increment led 

(-=ScdHcd) 

8 

1 

I 
t 

Moment 
·I 

Md 
(-=Mc+lcd) 

Figure 1-3~ Forward Integration Procedure 

knowrt; at least one shear and one moment, or two moments. These values 

come directly from the end conditions of the beam and they are es;en­

tial in order to integrate from load to shear and from shear to m0tnent. 

' These known values are, in fact, the constants of integration. 

Let it be assumed that the moment at joint a, Ma, and the 

change· in shear over increment ab, Sab, are known. The change in shear 

over all the other increments can be found by adding across as follows: 

Sbc --Sa b +lt, 

Scd -=Soc -+Jc 

(1-17) 

(1-18) 

The known shear will usually be at one end of the beam due to a given 

end condition, although correct results can be obtained if the chord 

shear is known at any othe~ location on the span. 

The loading consists of point loads applied only at the joints, 
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and there is no load acting on the beam segment between joints. The 

change in moment between joints, therefore, is the increment average 

shear multiplied by the increment length and i& called the moment 

increment. Since the moment at ,joint a, Ma, is known, and the change 

in moment, I, between joints is also known, the moments at all the 

other joints can be found by adding across the beam from joint to 

joint as follows: 

Mb-=Ma+ I ab 

Mc•Mb+Ibc 

Md-=Mc+Icd 

. ' 
(1-19) 

(1-20) 

(1-21) 

·The known moment will u~ually be at one end of the beam due to a given 

end condition, although correct results can be obtained if the moment 

is known at any other location on. the span; ·--

In order to determine the real shear Vat a joint, Figure 1-3 is 

again utilized and the following procedure is used: 

Va-=Va 

Vb-Va+.Jab+.Jba 

V c-Vb+J°bc i".Jcb· 

V dc:V c+Jcd +Jdc 

'.file real shear at joint a,or at any other joint, must be known. 

(1-22) 

(1-23) 

(1-24) 

(1-25) 

The initial assumption in the foregoing discussion was that a 

known shear and a known moment exist, such as at the free end of a 

cantilever beam. Two end moments are readily known in the case of a 

simply supported beam. A shear value~ i.e. an end sheaG can be deter­

mined by summing moments but this is not necessary. When analyzing a 

simply supported beam, the average shear in any increment is assigned 

an arbitrary value. The shears and moments are then computed by the 
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numerical procedure. The computed values at the joints will be in error 

unless the assumed shear value was correct. A linear correction can 

then be applied to the moments to ma.ke then conform to the two known 

moment conditions. The correct average shear values can then be 

obtained by working back from the corrected moment values. 

Some example beam probl~ will now be presented to illustrate 

the procedure and techniques involved in Newmark's Numerical Method: 



Example Problem 1-1. 

Given: The cantilevered beam shown below. E • 29Xl06 psi, 
! = 100 in4• 

Find: Shear and moment at A, B, c, and D. 

Solution: 

10k 
I 

8k 5k 

2' 3' 5' 

A B C 

I I .. 
I I 
I I 

Line I 
~uantitx I 

Joint I 
Load -10 +5 -8 

1\J' ,, I 

' Shear I -10 . I -5 -13 
I 

Moment I 

' Increment l -20 -15 -65 

I/\:/' 
Moment 0 . -20· -35 

I 

Moment 
Diagram 

D 

Units 

K 

K 

K-FT 

' -100 K-FT 

I 

~ K-FT 

-100 ' 

11 
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Example Problem 1-2. 

Given: The simply supported beam loaded as shown below. 

Find: Shear and moment at A, B, C, D, and E. 

Solution: 

10k 3k 4k 

4 
4' ! 4' ~ 8' ! 4' 

B C D ~ 
Line I. I 

I I 
guantiti I I Units 

I I 
I t 

Joint I I ' Load I -10 -3 +4 I K 

1 )'1~ / I ' I 
Assumed Shear I 8 . I __ -2 . I -s -1 I K 

' 1 
I I I 

I 
Moment Iner. 32 -8 -40 I -4 I K-FT 

6/ ~~21' 
I I I 

• I 

Moment 24 -16 -20 · K-FT 
I I 

. I 
I 

' I 
20 

' ' 16 

Linear Moment · o -4 8 1+ K-FT 
Correction 

' ,-
Corrected I I I 

Moment 0 36 32 0 0 K-FT 
I I I I 

Corrected 
' I \. f I 

Shear 9 
' 

-1 ..4 -4 _J 0 -·I K . I 

I 
I ' I I 

J 
1 

,, I 

36 ., I 
' I ' I ' I 
I I . 

Moment l 

Diagram 0 0 O+ K-FT 
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Example Problem 1-3. 

Given: The cantilevered beam of Example Problem 1-1 and 
its associated M/E! diagram. 

Find: Deflection at points A, B, C, and D. 

Solution: 

B 

E! 
I 

' ' ' I 
' 

3' I C 

E! 
I 
I 
I 
I 

5' D 

-100 
E!• 

Conjugate 
Beam 

Units ' ' I Ml ,~ ~· 

Line 
Quantity 

K-Fr2/E! I~ C""ilar. ~,~ ~• 
' \D ~ ,.: Ir\ --t ~. 

Joint 
Load 

1 717 "fl'j4 t I 

' . I ' I -6.67 -50.83 -186.67~ -195.83 
I 1 / I .'-... ~ I 
I -431.3 I -380.5 I -193.83 

" . 

" Shear 

IC-Fr3/E! : -862.6 : -1141\ l /969.85, 
,. 
I Moment 

Increment 

" 

Inches 

-2974 -2111.4 -969.85 . o.o Moment 

Multiplying the above moments by C gives the deflection 
in inches. 

C •(1000 LB}(1728 IN3). • 5.96Xlo-4 IN 
(29Xl06 LB )(100 IN4) 
I IN2 I 
I I I 

I I 
-1. 77 

I 
-1.26 -0.58 

I I 
0.0 Deflection 

I of the 
Real Beam 
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CHAPTER II 

THE FREE EARTH SUPPORT METHOD 

2-1. General 

The basic assumption in the free earth support method of 

anchored sheet pile bulkhead design is that the soil below the dredge 

line cannot develop sufficient restraint so as to produce negative 

bending moments in the ~heet pile section. Negative bending can only 

occur in that section of the pile above the anchor point. 

Refering to Figure 2-1, the bulkhead is first considered fixed 

14 

at a depth Z, where Z is the distance from the anchor point to the· 

bottom of the pile. The assumption of fixity at Z implies both moment 

{Kz) and shear (Vz) exist at that point. The resultant forces produced 

by the active and passive soil pressures are Pa and Pp respectively. The 

distance from the anchor point to Pa is Za and the distance from the 

anchor point to Pp is Zp• 

Stability requires that the sum of the moments about the anchor 

point equal zero. Neglecting Mz and Vz for the time being 

ignoring the anchor force temporarily, the moment at Z is found by 

SUDllling moments about Z 

(2-1) 

(2•2) 

Still ignoring the anchor force and summing forces in the horizontal 

direction determines the shear at Z 

(2-3) 



Ill 

.., 

Ap 

water level 

N 

dredge line 
A A .' A . I\ A 

Figure 2-1. Pree Earth Support Method 

Substituting (2-3) into (2•2) 

Hz"" Vz(Z)+PpZp•PaZa 

Substituting (2-1) i~to (2-4) 

Mz "" Vz(Z) 

N 

Thus the only Z for which equation (2-1) holds is the same Z which 

is required to satisfy (2-5). 
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(2-4) 

(2-5) 

The required depth of embeddment is determined by analyzing the 
I 

cantilevered ~ember shown in Figure 2-2. The rotated pile is subjected 

to distributed loading due to the active and passive soil pressures. 

Neglecting the anchor force, the shear Vt. and moment Mz are computed 

at the support for various values of Z until equation (2-5) is satisfied, 

1. e. when Mz equals Vz multiplied by z, the required depth of embedd• 

ment has been obtained. The bottom tip of the pile is at z, and 



.&.J~-------~z"------------:!...il c:: .... 
0 
0.. 

H D 

I. . i' 

Figure 2-2. Cantilevered Beam with Distributed Load 
. ,:"•" 

Due to Active and Passive Soil Pressures 

since the free end of a member can carry no shear or moment, the un­

balanced shear must be balanced by the anchor or 

16 

(2-6) 

thus, the real shear at Z is zero. Consider now the· anchor force 

applied to the member in Figure 2-2. Summing moments about z, deter-
. 

mines the real moment at z. In equation form 

(2-7) 

The real moment at Z is zero as it should be at a free end. 
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2-2. NumeriCJll Method for Free Earth Support 

The tr~al and error approach used to find the required depth 

of cmbeddment is facilitated by using Newmark 1s·Numerical Method when 

computing~ and Vz(Z) for a given soil pressure distribution. Once 

this depth is determined, the numerical values of all the forces acting 

upon the bulkhead are then known. Newmark's Numerical Method can ~hen 

be used to determine the actual shears and bending moments induced by 

these forces. The computational procedure will be illustrated by 

numerically analyzing the loaded bulkhead shown in Figure 2-3 by the 

free earth support method. 

The active and passive soil pressu~es shown in Figure 2-3 are 

purely arbitrary. The distributio~ and intensity of the assumed soil 

pressures, although unrealistic, will expedite the hand solution to 

the protlem by simplifying the calculations. The linear p~essure 

distributions will also makE {t easier to check the results by summing 

~ents and forces. 

The first step in the free earth support method is to assume a 

depth of embeddment D. A canti~evered beam of length H+D is loaded 

with a distributed load due to the assumed active and passive soil 

pressures. The anchor force is neglected initially. The span is then 

divided into increments with joints at the ends of each increment. The 

,. increments need not be of equal length. A joint must, however, be 

l~cated at the anchor point since the anchor force will be a point load. 

The joints are numbered for convenience. Concentration formulae can 

then be used to convert the distributed soil loads into equivalent 

concentrated loads applied at the joints. The shears and moments at ____ , 



Figure 2-3. 

-:x: 

·P=37.5D 

Dredgi! Line 

.. 
' 

Ground Surface 

I \ t 

A=l0(6+D) 

Example Problem for Sheet Pile Design. 

0 
+ 
Ii 
N 

the joints are computed by NeWII18rk's Numerical Method beginning at a 

point of known moment or shear; in this case, at the free end of the 

cantilever pile section. The computed moment at the support, i.e. 

18 

the embedded tip, is then compared to the shear at the same location 

multiplied by z. The required depth of embeddment is obtained when 

these quantities are equal. A new embeddment depth is selected and the 

process is repeated if equality does not exist. 

The loading used in the procedure thus far was that due only to 

soil loads. The anchor force was ignored and it must now be considered. 

Once the required depth of embeddment has been obtained, the computed 

shear force at the support, i.e. the embeddment tip, is equaled to the 
I 

anchor force. The numerical procedure must then be repeated, but this 

time to include the anchor force. The. resulting shears and moments 



computed at the joints will then be the actual shears and moments on 

the pile in accordance with t~e given loads and assumptions of the free 

earth support method. 

19 

The set-up and computational procedure is illustrated in the 

following example. For conv_ience, the required depth of embeddment has 

been predetermined with the aid of the computer. The check at the end of 

the procedure verifies that this ' depth is correct. 



Example Problem ·2-1. 

Given: The loaded bulkhead shown in Figure 2-3. 
- . 

Pind: Required embeddment depth, shears, moments, and anchor force. Use the free earth 
support method. 
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Example Problem 2-1 (continued) •. 

Mz ~ -1388.9, Vz(Z) • (-160.1)(8.675) • -1388.9, therefore 4.675 ft. is the required embeddment depth. 
Now compute real shears and moments to include the anchor force. 
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The check of the results tn the foregoing example problem re­

veals the presence of a small negative bending moment at the bottom of 

the pile. If the same problem is reworked using a slightly smaller 

depth D, the final computed moment at the bottom of the pile will be 

either a smaller negative one, or a ~mall positive one. This would 

imply that a point of contraflexure must exist near the bottom of the 

pile. This situation may exist in reality, but for design purposes it 
I 
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is contrary to the initial assumption of the free earth support method, 

i.e., the soil into Yhich t~e pile is driven cannot offer sufficient 

resi~tance so as to induce negative bending moments in the pile section. 

The sign of the final moment at the bottom tip of the pile is useful in 

determining the next embeddment .depth during the trial procedure. A 

positive moment indicates the trial embeddment depth is too small and 

that the nezt trial depth should be larger. A negative moment indicates 

the present embeddment depth is too large and that a snaller depth 

should be used in the next trial. The exact depth of embeddment about 

~hich the summation of moments is uniquely zero may never be determined. 

However, by using the moment sign indicators, the required embeddment 

depth may be hand calculated to within a fraction of a foot in only a 

few trials, and to within a fraction of an inch using a high speed 

computer. 

Restrictions have not been pla~ed,on displacements at the bottom 

tip of the pile in the free earth support method. This point may, in 

fact, displace. Compatibility conditions OR deflectio~ have not been im­

posed and, therefore, the conjugate beam method, or any o~her method, 

cannot be employed tc calculate deflections at the remaining joints. 



CHAPTER III 

THE FIXED EARTH SUPPORT METHOD 

3-1. General 

I 

The basic ass\DDption in the fixed earth s~pport method is that 

the soil into which the pile is driven can offer sufficient resistance 

so as to induce negative bending moments in the pile below the dredge 

line. A po~nt of contraflexure, therefore, exists and the bulkhead 

acts like a· partially built:in beam. The fixed earth support method 

involves a number of simplifying assumptions. These assumptions will 

be explained in the following discussion of the procedure. 
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Refering to 1igure 3-1 a depth of embeddment D1 is selected and 

the active and passive soil pressure distributions are determined over 

the length Ht D' to point t. To model the pile action below point t, 

the depth D1 is extended by an additional amount equal to 0.2D 1 • A 

concentrated force R is placed on the bulkhead at point tin a direction 

such that it will tend to resist the passive earth pressures. The · 

magnitude of R equals the resultant of the passive pressure distribution 

over the length of the additional 0.2D 1 below point t. The anchor 

force, Ap, is found by summing forces in the . horizontal direction in 

figure 3-1 to include the force Rand the active and passive pressure 

distributions over the length H+ D 1 • A deflection line of the bulkhead 

can then be determined for the known loading. 

The elastic line of the bulkhead is assumed to be tangent to the 

vertical at point t and int.er.sec.ts the vertical at the anchor point, 
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Figure 3-1. Fixed Earth Support Method. 

i.e., the deflection at the anchor point is zero (Figure 3-1). If the 

elastic line thus determined does not intersect the vertical at tbe 

anchor point, then the depth D' has been estimated incorrectly and is 

not compatible with the conditions of equilibrium imposed. A new 

value must then be selected for D' and .the entire procedure of deter­

mining the elastic line has to be repeated for the new depth. The 

required depth of embeddment has been obtained when the deflection of 

the elastic line is zero at the anchor point. 

3-2. Numerical Method for Fixed Earth Support 
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A depth of embeddment D' is selected and a cantilever beam of 

length H+o'is loaded with the active and passive pressure distributions 

as shown in Figure 3-2. The span is then divided into increments with 



25 

Figure 3-2. Cantilever Beam Used in Fixed Earth Support Method 

joint6 at the ends of each increment. The joints are numbered for 

convenience. A joint must be located at .the anchor point because the 

deflection of · that point constitutes a design parameter and also be­

cause the anchor force at that poi~t is a concentrated load. Concentra­

tion formulae can then be used to convert the active and passive 

pressure distributions into equivalent concentrated loads applied at the 

joints. Newmark's Numerical Method can then be used to compute the 

shear and moment at each joint due to the soil loads. 

The reaction at the support of the cantilever pile equals the 

resultant of the passive pressure distribution over the additional length 

0.2D' positioned at the bottom of the pile (the area enclosed by the 

dashed lines in Figure 3-2). The only remaining unknown is the anchor 

force and it is found by summing forces. All the forces acting upon 



the bulkhead are now known and the induced shears and moments at the 

joints can be computed by Newmark's Numerical Method. 

Deflection at each joint can now be determined. A conjugate 

beam is loaded with an elastic ~oad equal to the moment distribution 

of the real beam divided _by El•.. Concentration formulae can again be 

used to convert the distributed elastic load into a series of equiv• 

alent concentrated loads applied 1at the joints. Starting at the free 

end of the conjugate beam1 Newmark's Numerical Method is used to com­

pute the shear and moment at the joints due to the elastic load. The 
.. 

shear at the joints on the conjugate beam equals the slope at the 
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joints on the real beam1 and the moment at the joints on the conju­

gate beam equals the deflection at the joints on the real beam. The 

required depth of embeddment has been obtained if the computed deflec­

tion at the anchor point equals zero. It must be added that no deflec­

tion or slope is experienced at each assumed embedded end of the pile. 

The foregoing procedure will now be illustrated with an ex­

ample problem. The required embeddment depth for the bulkhead shown 

in Figure 2-3 will be computed by numerical procedures with the fixed 

earth support method. This same problem was worked by the free earth 

support method in example problem 2-1. 
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Example Problem 3-1. 

Given: The anchored bulkhead shown in Figure 2-3 and reproduced 
below. E = 290,000 psi and!= 10 in.4/ft. 

Find: Required embeddment depth, shear, moment, and deflection 
by the fixed earth support method. 

Solution: Assume D1 equals 3.469 ft. Use 2 ft. increments. 

> 

. . 



Example Problem 3-l(continued). 

Temporarily ignoring the anchor force, compute joint shears and moments for the assumed D' by 
Newmark's Numerical method: 

Use Linear 
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Example Problem 3-1 (continued). 

The reaction R • (130.1+156;1)(0.6938) • 99.28 UJ/n: 
. 2 

The anchor force• -Vz-B • (-)(-222.67)-99.28 • +123.~ uslrr. 
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Example Problem 3-1 (continued). 

Deflection equals moment on a conjugate beam loaded as defined by the M/EI diagram. . 

I 
Use Parabolic ' Concentration I Formulae 
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The computed deflection at the anchor point in the foregoing 

-2 example problem is 4.0Xl0 inch for the given depth of embeddment. A 

positive deflection indicates displacement in the direction of the 

anchor force, that is, opposite to the direction of the active pressure 

forces. If example problem 3-1 is rewor~ed using a slightly larger 

embeddment depth, the computed deflection at the anchor point will be 

I 
either smaller, i.e. positive or reversed, i.e. negative. This change 

in sign can be used, therefore, as an indicator when selecting the 

next trial embeddment depth. A positive sign for the computed deflec­

tion at the anchor point implies the assumed embeddment depth is too 

small, and an increased length should be used for the next trial. A 

negative deflection at the anchor point implies the trial embeddment 

depth is too large. 

The depth at which the deflection·at the anchor point is unique­

ly zero may never be determined. In order to illustrate this point, 

example problem 3-1 was worked using the computer and the deflection at 
. -4 
the anchor point was found to be 5.052Xl0 inch for a D equal to 

-4 4.16352 feet, and -3.499Xl0 inch for D equal to 4.16364 feet. The de-

flection at the anchor point changed sign from positive to negative by 

increasing the embeddment depth an additional .00012 feet. It would 

not be feasible to attempt to determine the embeddment depth D to closer 

a tolerance than this. The difference in magnitude of the shears and 

moments in the pile section over a change in embeddment depth this 

small is insignificant • . 



CHAPTER IV 

CONCLUSIONS 

4-1. Selection of Computational Method 

A conservative embeddment1 depth will always be obtained when 

designing a bulkhead by the free earth support method. The design 

parameters of example problems 2-1 and 3-1 are identical but example 

problem 2-1 was worked by the free earth support method, and example 

problem 3-1 was worked by the fixed earth support method. A compar­

ison of the required embeddment depths for the two example problems 

reveals that a larger embeddment depth was determined for the bulk­

head designed by the free earth Sl~pport method. Bulkheads embedded in 

soft clay or soils having questionable loading characteristics should, 

therefore, be designed by the free earth support method. 

The fixed earth support method may be used to design bulkheads 

embedded in sand or predominately granular soils. Field measurements 

indicate that stiff, overconsolidated clays also provide sheet p~le 

fixation below the dredge line just as effectively as do sands. 

No data is available for clays of medium stiffness, nor for complex._ -

types of soils such as silt or mixtures of silt with sand and clay(2). 

Engineering judgement must be used to estimate the extent of sheet 

pile fixation in such soils. 
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4-2. Accuracy of Results. 

The deoign of sheet pile bulkheads using numerical procedures 

is nearly exact in accordance with the assumed soil pressure distri­

butions and the assumptions of the particular design method being used. 

The assumptions in the free and fixed earth support methods are based 

on theoretical and experimental results, but they cannot be applied 
I 
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specifically to every situation. Factors such as soil moisture content, 

s~il type, density, angle of internal friction, wall friction, etc. 

make each sheet pile design problem unique. For example, in the fixed 

earth support method, it may be that the true length over which the 

resultant of the passive soil pressure is determined, and applied to 

the bottom of the pile as a concentrated reaction, is equal to a value 

other than .2 D'. This length may even V3ry with different soil types 

or soil properties. The criteria of no negative bending of the bulk­

head in the free ~rth support method is also a design assumption. 

Investigation of an existing bulkhead designed by the free earth sup­

port method may, in fact, reveal the existance of a point of contra­

flexure in the bulkhead below the dredge line. Error may also be 

introduced in assuming the type of curve which describes the soii pres­

sures acting upon the bulkhead. Errors of the above nature, rather than 

inherent errors in the numerical technique itself, will govem the 

accuracy of a bulkhead designed using Newmark's Numerical Method with 

the free or fixed earth support methods. 

It must ·be pointed out that no soil constraints, such as permis~ 

sable soil displacement,4ra imposed with the free or fixed earth support 

methods. ·This is advantageous in that, once the required depth of 



embeddment is obtained by the fixed earth support method, the designer 

can vary the pile section modulus and compute deflections by Newmark's 

Numerical Method until any desired deflection is obtained. Also, by 

using Newmark's Numerical Method, a very accurate analysis can be ob­

tained for any given soil pressure distribution or loading condition. 

4-3. Summary 

Except for the work of a few individuals such as Rowe, Blum, 

and Tschebotarioff (2), relatively little experimental work has been 

done to correlate theoretical results, nor to supplement or alter 

existing assumptions of the free or fixed earth support methods of 

sheet pile design. This lack of experimentation is probably due to 

the complexity of the problem with respect to the large number of 

variables involved. Full scale tests to include all combinations of 

these variables would be pract_ically and economically infeasible • 
. 

This study is not intended to criticize or make recommendations 
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to the existing assumptions of the free or fixed earth support methods. 

The main objective here is to introduce more proficient computational 

techniques and methods for the existing design criteria. This is 

accomplished with the aid of Newmark's Numerical Method which has already 

been presented, and interactive computer programs which will be dis­

cussed later. Regardless of the fact that some basic assumptions may 

be questionable, the free and fixed earth support methods have proven 

to furnish reliable design criteria for anchored flexible sheet.pile 

bulkheads. Nevertheless, _safety factors and good engineering judge- · 

ment should be included in every sheet pile design. 
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CHAPTER V 

INTERACTIVE COMPUIER PROGRAMS 

5-1. Description of Programs 

The programs presented he~ein have been written in the BASIC 

language to facilitate on-line user interaction wit~ the computer. The 

computer will "ask" for input of data and variables as the program pro­

cedes. The user will supply this information at the terminal, as "call­

ed for" by the computer. A knowledge of the BASIC language is, there­

fore, useful, but not necessary to design anchored bulkheads with 

these programs. 

The trial and error approach for finding the required depth of 

embeddment by the free or fixed earth support methods of sheet pile 

. design, and computation of the pile section's behavior by Newmark's 
. 
Numerical Method, is greatly facilitated by computer programming. The 

computational" techniques used in the programs are identical with those 

illustrated in example -problems 2-1 and 3-1, with the exception that 

results are obtained with g~eater speed and accuracy. 
\ 

To set ~pa problem for computer solution, the designer must 

first assume an embeddment depth D for the ~ree earth support method, or 

D' for the fixed earth support method. The active and passive soil 

pressure distributions are then assumed, taking into consideration soil 

densitir.d, surcharge loads, etc. The pile is then divided irito incre­

ments, and the joints at the ends of each increment are numbered consec• 

utively from top to bottom of the bulkhead. A joint must be located at 
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the anchor point on the bulkhead.· The number of doints thus determined 

will be refered to henceforth as "the original number of joints". It is 

not necessary for the increment lengths to be equal or for the pressure 

distributions to be linear. The active and passive loading ordinates 

corresponding to each joint are determined by the designer in pounds 

per linear foot of bulkhead and read into the computer for calculation 

of the equivalent joint loads. 

It is recOIIDllended that the initial assumption for the em­

beddment depth be larger than what is felt by the designer to be actually 

required. This reasoning can be justified through the use of Figure 5-1, 

which illustrates the portion of a bulkhead below the dredge line. DO 

represents the initial assumed embeddment depth. The embeddment depths 

used _in the next two succeeding trials are Dl and D2. A4 and P4 are 

the active and passive loading ordinates corresponding to joint 4. The 

increment length at the bottom of the pile between the last two joints 

(3&4) is designated by L3. It can be seen in Figure 5-1 that the last 

increment length wiil change as the embeddment depth changes. This will 

cause the last joint at the bottom of the pile to be relocated. For the 

smaller embeddment depth D' in Figure 5-1, the last increment length L3 

will be smaller, and joint 4 will be repositioned between its original 

location and joint · 3; 

This is desirable since a second degree approximation to the 

third order M/E,! diagram is used to compute deflections in the fixed 

earth support method, and small increment lengths will increa~e the 

accuracy of the computed deflections. The last increment · length L3 

in Figure 5-1 will be larger for the larger embeddment depth D2, i.e. 

joint 4 will be repositioned at a greater distance from joint 3. The 

•' 
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Figure 5-1. Relocation of Last Joint for Various Embeddment Depths 

initial selection of the embeddment depth should be large enough to pro­

vide an ample numlJer of increments, such that for succeeding trial 

aepths, the location of the bottom joint on the pile will always fall 

between two originally exist1~g joints. 

Parameters such as the original number of joints, increment 

lengths, and the active and passive loading ordinates that defined the 

original problem are automatically reset by the computer before any com­

putations are performed for a new trial depth. Th~ computer will also 

calculate the active and passive loading ordinates associated with the 

newly relocated bottom joint for each new trial embeddment depth before 

any other computation procedes. 

Two seperate computer programs have been written; one facilitates 

sheet pile design by the free earth support method and the other by the 



fixed earth support method. The programs are currently titled FRE and 

FIX. The input data for both programs is identical, the exception 

being that relative values of E and! for the ~ile section must be 

input for the program FIX which.eventually computes displacements. 

Dimensions of the input data for both programs are as follows: the 

active and passive loading ordinates at each joint are in pounds per 

linear foot of bulkhead, incremen~ lengths are in feet, and trial em­

beddment depths are in feet. For program FIX, Eis in pounds per 

square inch per linear foot of bulkhead and 1 is in inc~es fourth per 

linear foot of bulkhead. 
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The program FRE utilizes the free earth support method of sheet 

pile design which was explained in Chapter II. With this program, the 

designer interacts with the computer by inputting various values for D 

(embeddment depth), and comparing relat.ive values of M and V z(Z). When 

M equals Vz(Z) the required depth of embeddmcnt has been reached. The 

computer will then print, if directed by the designer, joint load, 
. 
shear, and moment at each joint. The anchor force will also be printed, 

and the program terminates. 

The .program FIX utilizes the fixed earth support method of sheet 

pile design which was explained in Chapter III. Designer interaction 

consists o: inputting various values for D', and observing the com­

puted relative deflection of the bulkhead at the anchor point. Relative 

deflections are due to relative E and 1 values originally input by the 

designer. When the relative deflection at the anchor is very small or 

zero, the computer will print, if directed by the designer, equivalent 

Joint load, shear, and moment at each joint. The anchor force will alsu 
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be printed. The computer will then "ask" for real values of E and!• 

When these are input by the designer, real deflection in inches will be 

printed for each joint. The computer will then "ask" for another ! 

value. The designer can then terminate the program, or the designer 

can continue to input various values for! until satisfied that the 

computed joint deflections obtained are tolerable. 

The normal procedure for 1 terminating the FIX program is to input 

the letter N (which stands for no) when the computer "asks" for another 

! value. Both the FIX and FRE programs will be terminated whenever a 

value of zero is input for D1 or D. 
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APPENDIX A 

Example Anchored Bulkhead Design Problems 
and Their Computer Solutions 

Example Problem 1-A• 

-"' ,-I 

='= 

A 

ground surface 

V 

Given: The bulkhead shown above. o•:120 pcf, G•2.65, 'P•30~ 
Factor of safety a 2. 

Find: Computer bulkhead design by both free and fixed earth 
support methods • 
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Example Problem 1-A (continued) • .. 

Soh1tion: 

osub. • O-(~G) -= 120-(120/2.65) = 75.0 pcf 

Ka-= TAN2(45-</>/2) = TAN2(30) = 0.333 

lCp C 1/Ka = 1/0.333 0:: 3.0 

PO-= qb(Ka) = (300)(1)(0.333) = 100.0 lb/ft 

Pl= bO(3.0)(Ka) • (1)(120)(3)(0.G33) c 120.0 lb/ft 

Pa= bDsub.(H+D-3)(Ka) = (1)(75)(12+D)(0.333) = 25(12+D) lb/ft 

Pp = Osub.bD(Kp/F.s.) = (75) (l)D(3)/2 = 113.0(D) lb/ft 

Assume an original embeddment depth of 15 feet. Use 2 foot 

increments. The loading ordinates at the joints are as follows: 

t>A.P. 
245 

295 

345 

395 -0 
M 

445 D 

-N 
495 

545 ... = II.I 
s 

595 Cl) 

~ ,, 0 
• c:: 

/ 645 -..I -11"1 "' .-f r-1 

• 695 

-A 745 ... 
0 

A 
795 

' 845 

1695 895 
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• Example Problem 1-A (continued). 

Free earth support computer solution. 

t: basfc fre 
INPUT ANCHOR POIJJT JOINT HUMBER. 
? 2 
lrJPUT ORIGINAL rmMRER OF JOINTS. 
? 16 

, 

INPUT ACTIVE ANO PASSIVE LOADiNG ORDINATES (LBS/FT) 
. ? 100,0 
-? 180,0 
? 245,0 
? 295,0 
? 345,0 
? 395,0 

. ? 4fi5,0 
? 495, 0 
? 545,113 
? 595,339 
? 645,565 

- ? 695,791 
? 745,1017 
? .795,1243 
? 845,1469 
? 895,1695 
INPUT I NCREf.1ENT LENGTHS ·(FT) 
? 2 

.. ·? 2 
?-2 
? 2 

,. ? 2 
? 2 
? 2 

. ? -2 
? 2 

. ? 2 

. ? 2 
. ? 2 

? 2 
? 2 ... 

1' ; ? 2 

- . ~ . .. -. .. . 
. ,, 

.... 

IMPllT IMBEDDMENT DEPTH O (FT) 
? 13 - .. .. .. .. . -... 

I • . .· 

·- -

-.. 
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• t 

.. 
D= 13 REL. M= 10.4185 REL. V(Z)= 10.8678 

D SHOULD BE lttCnEASEO. 
SHALL I PRINT ALL JL, V, M (TYPE Y•YES, N=NO). 
? n 

• . .,. 
., 



IPIPIIT I MAEDOMF.Pff OE PTH O ( FT-) 
? 14 

43 

.[la 14 REL. f1= 10.803ft REL. V(Z)= 9.48223 ... . . 
0 SHOIII.O RE OF.CREASF.O. 
~HALL PRINT ALL JL, V, M. (TYPE Y=YES, N=NO). 
? n 

INPUT IMBEDDt1ENT DF.PTH D (FT) 
? 1~.25 

D-= 13.25 REL. t1= 10.521 

[l sfmtJLO RE I fJCREASED. 

REL. V(Z)= 10.5556 

SHALL PRINT ALL JL, V, M (TYPE Y=YES, N•NO). 
? n 

INPUT IMBEDDMENi DEPTH ·D (FT) 
? 13.27 

0-= 13.27 REL. Ma 10.5291 

D SHOIILD BE INCREASED. 

REL. V(Z)= 10.5297 

~HALL I PRINT ALL JL, V, M (TYPE Y=YES, N=NO). 
? n 

- IN~JT IMBEDDMENT DEPTH D (FT) 
? 13.275 

D= 13.275 REL. M= 10.5311 

D SHOULD BE DECREASED. 

! 

REL. V(Z)= 10.5232 

· st4ALL I PRINT All JL, V, M (TYPE Y=YES, N=NO). 
? n 

INPUT IMREODMENT OEPTH D (FT) 
? 13.272 

D= 13.272 REL. M-= 10.5299 

0 SHOULD BE DECREASED. 

REL. V(Z)= 10.5271-

SHALL I PRINT All JL, V, M (TYPE Y=YES, N•NO). 
? n 

. , 
.•. i . --------- ---·-·---- -



INPUT IMREDOf-1ENT DEPTH O (FT.) 
? 1~.2705 

44 

O= 13.2705 REL. M= 10.5293 REL. V(Z)= 10.529 

D SHOULD RE DECREASED. 
S~ALL I PRINT ALL JL, V, M (TYPE Y=YES, N=HO). 
? n 

lfJPUT IHREOOMENT DEPTH D (FT) 
? 13.2704 

D= 13.2704 REL. M= 10.5292 REL. V(Z)= 10.5292 

D SHOULD BE DECREASED. 
SHALi. I PRINT ALL ~L .. V, M (TYPE Y=YES, N=NO). 
? y 

FOR IMREDOMENT 
PJOOE rJO. 

1 
2 
3 
4 
5 
6 
7 

' R 
.9 

· · 10 
11 
12 
13 · 
14 
15 . 
16 

DEPTH (FT)= 13.2704 
JOIUT LOAD (LB) 
-126.667 

3653. 
-485. 
-590. 
-690. 
-790. 
-891'). 
-952.333 
-826.333 
-512 
-160 

192 
· 544 

896 
· 650.766 

86.5048 

ANCHOR FORCE (LBS)= 4008. 

SHEAR (LB) 
. 0 
-280. 

3303. 
2763 

· 2123. 
1383. 
543.001 

-396.999 
-1324. 

--2012. 
-2348. 
-2332. 
-1964. 
-1244. 
-171.998 
-6.09131F:-02 

MOMEUT 
•. 0 

-253.333 
6799.33 
12882. 
17784.7 
21307.3 
23250. 
23412.7 
21670.7 
18276. 
13857.3 
9118.67 . 
4764.0l 
1497.34 
22.6807 

-.725586 



45 

Example Problem 1-A (continued). 

Fixed earth support computer solution: 

basic fix 

I UPIIT AtJCl-lOR POI UT JOINT NUMBER 
? 2 
INPOT l'?ELATIVE VALUES FOR E, I 
? 3nnnnono,so 
I r1PflT OP. I CH NAL UIJt~OF.P. OF JO I tJTS 
? ,.6 
I f!PlfT ACTIVE ANO PASSIVE LOADING ORDINATES (LBS/FT. OF \/ALL) 
? 100,0 
? 180,0 
? 245,0 
? 295,0 ... 

? 34:5·, 0 . 
? 395,0 
? 4115,0 . ·-

? 495,0 ... 
? 5115,·113 . 
? 595,339 ........ : . . - -- . ~ . 

? 6115,565 ' 
? 695,791 
? 745,1017 ....... .r ...... .. . ... . .. .. ~- ... 

? 795,1243 
? R45,l469 
? 895,1695 ·; 

IUPllT I NCREr-1F.NT LEtmTJ•s. 
? 2 
? 2 ·- - ;,, - .. .. -
? 2 . 
? 2 
? 2 .. -·. 
? 2 .. ? 2 
? 2 . .. 

? 2 
? 2 

I;; ? 2 . . .. . . . . .. 
? 2 
? 2 
? 2 - ... ~ . .......... ·-.. .. 
? 2 . .. .. 

... .. 



IPIPl'T fl PPIP1E (FT). 
? 10 

0 PIH '1E = 10 

0 PR I ~1F SHOIJLO RE lrlCREASED 
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REL. Of:FL. AT A. P. = .65822 

SftM.l I PRINT All JI., 'I, M, OEFL? .(TYPE M FOR NO, Y FOR YES.) 
? n .. 

ftJPIIT O PRIME (FT). 
? 10.25 

0 PR HA E = 1 O • 2 5 

0 PRIME SHOIJLO AE DECREASED 

I. 

REL. OEFL. AT A. P. =-.507456 

SffALL I PRINT ALL Jl, v, M, OEFL? (TYPE N FOR rm, y FOR YES.) 
- ? -n-·---·-- · -- .. ·- ·· ·-···. --- --• -----. -·.-.- - -- ·- ·- ··---··- - · 

IHPUT O PRlf1E (FT). 
? 10.15 

.D PR I ME = 1 O • 15 REL. DEFL. AT A.P. =-2.74763E•02 

0 PRIME SHOIJtri RE OECREASEO 
SHALL I PRIUT All JL, V, M, OEFL? (TYPE N FOR NO, y FOR YES. ) · 
? n 

.. 

INPUT 0 PRlf.1E CFT). 
? 10.l.4 

0 PR I ME ~ 10.14 -REL. OEFL. AT A. P. = 1. 9_li519E-02 

0 PRIME SftOlJLD BE INCREASED • 
· · s~ALL I PRINT All JL, 'I, M, OEFL? CTYPF. N FOR NO, Y FOR YES.) 

? n 

r= 

IN PUT O PR H•F. C FT). 
? 10.145 

0 PRIME= 10.145 - REL. OEFL. AT A.P. =-3.95447E-03 

I' PR I f1E suour.o BE riECREASEO 
~f~AU. I PRlt1T All JL, V, f1, OEFL? (TYPF. N FC'IR NO, Y FOR YES.) 
? n 

.. 
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rt:PUT O PRlt-fE (FT). 
? 10.!44 

0 PPlr!E = lf'l.144 

D PRIME SHOULO BE ltJCP.EASEO 

47 

F?EL. rEFL. AT A. P. = 7. 21037E-04 

SfJAI.I. I PPlrJT ALL JL, v, '1, OEFL? (TYPE N FOP rw, y FOR YES.) 
? y 

FnP n PR lr1E (FT)= 10. 1'• 4 

JOINT ~JO. JOIMT LOAO (LBS) SHEAR (LAS) MOMENT (ft-lb)' ,. -126.fiG7 0 
2 - 2690.ng -280. 
3 -485. 2340.n~ 
4 -590. 1sno.nq 
5 -690. 1160.n9 
6 -790. 42n.091 
7 -890. -419 ~909 
8 -952.333 -1359.91 
q -826.333 -22R6.91 
,. n -512 -2974.91 
,.1 -160 -3310.91 
12 192 -3294.91 
13 388.112 · -2926.91 
14 193.973 -255~.16 

AfJCffOR FORCE (LBS)= 3045.09 

I tJPlJT PF.AL \/AI.IJES FOR E, I (PSI & I f!CPES FOURTH) 
? 29000000,50 

FOR I = 50 D PRIME = 10 ·.144 

JnruT NO. REAL DEFLECTION (IN) 
1 .211303 
2 7.46727E-04 
~ -.20888 
4 .:..39566 
5 -.539862 
6 -.627376 
7 -.6506fiR 
8 -.609738 
9 -.51304 
, . f) -.3779!iR 
1'. -.229604 
'?. -9. 79425E-rl2 ,., -1.44fi25E-02 
!4 0 . --r . ··-· ··--· ·--

. Q 
-253.333 

4873.51 
903!l.35 
12on1.2 
13G04. 
13620.9 
11857.7 
8189.92 
2369.44 

-3475.04 
-10139.5 
-16420 
-19568.4 

'• 

.. 



UOlll.f' 
? yP.s 
ltJPUT 
? 2 !i 
FOR I 

YOU LI KE TO TRY AUOTHE-R I ???(TYPE YES OR rm) . 

= 25 

Jn I tlT rm. 
. ! 

?. 
~ 

4 
5 
6 
7 
R 
9 
10 
11 
12 
13 . 
,.4 

D PRIME= 10.144 

REAL DEFLECTION (IN) 
.422608 
1.49584E-n3 

· -.417757 
- • 7 91. ,1a 
-1.07~72 
-1.25475 I 

-1.,0133 
-l.219L•7 
-1.02r,nn 
-.75!i91~ 
-.459208 
-.195885 
-2.89250E-02 

0 

~-IOULD YOU LIKE TO TRV ANOTHER I ???(TYPE YES on NO) 
? no 

48 

('ONT r=orrnET, YOOVE BEEN INPUTING O PRlf1E. THE REAL 0=1.2(0') 

FltJAL lr1RF.nr.r-1F.tJt OEPTH (FT) = !.2(0 PJUf-1E) = 12.1728 · .. 

.. 



Example Problem 2-A. 

Given: The anchored bulkhead of Example Problems 2-1 and 3-1. 
E•2909 000 psi and.!= 10 in4/ft. 

Find: Computer bulkhead design by both free and fixed earth 
support methods. 

Solution: Use 21 increments. 

~ 
1M 

co 
D 

-A 
~ 
0 

A 

,,,__. ___ 300_--...------------1. 

Ground Surface 
;c }( )( }\ 

----i►i.-- A.P. 

,i • I 

>---------..al40 
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I. 
r • 
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kxample Problem 2-A (continued). · 

P~ee earth support computer solution. 

basic fre 
INPUT At-JCIIOR POINT JO I tff tJUMBER. 
? 2 
INPUT ORIGINAL NUMBER OF JOINTS. 
? 8 
INPUT ACTIVE ANO PASSI VE LOADING ORDINATES (LBS/FT) 
? o, 0 
? 20, 0 
? 40,0 
? 60,0 
? 80,75 
? 100,150 
? 120,225 
? t4n, 300 
INPUT INCREMENT LENGTHS (FT) 
? 2 

·1 2 
? 2 
? 2 . •. 

· .. -· . •.·- . .,. - - *• . ... 

? 2 
? 2 
? 2 . - -· J •• ,. 4 .. - • • .. -
INPUT I MBEODt1Et4T OEPTH 0 (FT) 
? 3 

. . .. . . . . . 

Da 3 . REI.: M= .104625 REL. V(Z)a .165375 

D SHOULD BE INCREASED. 
SHALL I PRINT ALL JL, , V, M (TYPE Y•YES, N=NO). 
? n . - . - -- . . . .. .. . ·-- . . ... . .. - ..... 

INPUT IMREDDMENT DEPTH D (FT) .. -- -
? 4 

Oa 4 · .. . --- --·· ·- - . - REL. f•1= • 126667 REL • 

n SfJOlJLD BE INCREASEO. 
~HALL I PRltn ALL JL, v, H (TYPE _Y=YES, N=t!O). 
? n 

. . .. . ·-- ...... 

,,c z) • .16 

.. 

' 



' I NPlJT urn EOr>MENT DEPTH D ( FT·) 
? 5 
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O= S REL. M= .143708 REL~ V(Z)= .122625 

D SHOULD BE DECREASED. 
~HALL I PRlrlT ALL JL, 'I, M, (TYPE Y•YES, N=NO). 
? n 

INPUT IMBEDDMENT DEPTH D (FT) 
? 4 • 5 I 

Oa 4.5 REL. M= .135984 REL V(Z)= ~14582R . 

. 0 !-;PC'ULO BE I t-!CREASEO. ; 
SHALL PRINT ALL JL, V, M (TYPE Y=YES, · N=NO). 
? n 

: . INPUT IMBEOOMENT r>EPTH D (FJ') 
? 4. 6 

·- REL. M= .13766R -· REL. V(Z)= .141943 

~ SHOULD BE INCREASED. 
~HALL I PRINT ALL JL, V, M (TYPE Y=YES, N=NO). 
? n 

INPUT IMREDDMENT DEPTH D (FT) .· 
? , 4.75 

REL. M= .140067 REL. V(Z)= .135419 

D SHOULD BE DECREASED. 
~HALL I PRINT ALL JL, V, M (TYPE YcYES, N•NO) • 

. ? n 

INPUT IMREODMENT DEPTH D (FT) 
? 4'.6733 

· D= 4.6733 REL. H= • 138859 
. 

D SHOULD BE lt~CREASEO. 
~HALL I PRltJT ALL JL, \/, M (TYPE Y•YES, 
? n· 

REL • 

N•NO). 

.. 
V(Z)= .138861 

... .. -

.. 
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-INPUT lt1REOOt1ENT DEPTH O CF'f) 
? 4.67.,,35 

D= 4.67"»:'15 REL. M= .13886 REL~ V(Z)= .138858 

D SffOULO BE OECnEASED. 
~HALL I P~INT ALL JL, V, M. (TYPE Y=YES, N=NO). 
? n 

INPUT IMBEOOMENT DEPTH O CfiT) 
· ? 4.67334 

D= 4.67334 · REL. M= .13886 REL. V(Z)= .138859 

D SHOllLO BE DECREASED. 
SHALL I .PRlflT Alt JL, V, M 
? y 

C'rYPE V=YES, N=NO). 

FOR IMREDOMENT DEPTH (FT)= 4.67J34 
NOOE NO. JOINT LOAD (LB) 

1 -6.66667 
2 . 120.098 
3 .. . -. ' ·· .:.so. 
4 -95_ 
5 -10. . •' 
6 50.5782 
7 . 20.9895 

ANCHOR FORCE (LBS)= 160.098 

SHEAR (LB) 
o· 

· -20. 
. 80.0985 
· -19.9015 
= ~s4.90l5 

-39.9015 
-4.42505E-04 

MOMENT 
0 . 

-13.3333 
213.53 
280.394 

. 157.257 
- 14.1211 
-1.22824E-02 
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-Example Problem 2-A (continued) • . 

•. · Fixed earth support computer solution • 

basic fix 

I tJPUT AUCHOR PO I NT JO I UT Uut1BER 
? 2 
IUPUT RELATIVE VALUES FOR E,I 
? ~n~nnnnn,5 , 
ltJPIIT OP.IGIUAL tJCJMRER OF JOIUTS 
? R 

. 

53 

rttPIIT ACT I \J~ Arm PASS I VE LOAO I NG ORI) 'IIJATES (LOS/FT. ·oF \/ALL) 
? o,n 
? 20,0 
? 4 n, n 
? 60, n 
? 80,75 
? 100,150 
? 120,225 
? 140,'\00 
I UPUT I NCREP1F.NT LENGTffS. 
? 2 
? 2 

. ? 2 
? 2 
? 2 
? 2 
? 2 

INPUT O PRIME (FT). 
? 4 

• • I • 

D PRIP1E = 4 REL; DEFL. AT A.P. =-.120105 

f' PP. UH: SHOlJU'I BE OECRF.ASEO 
SHALL I PRIUT ALL JL, ,, , M, OEFL? (TYPE H FOR NO, Y FOR YES.) 
? n 

. .. - .. 

INPUT 0 PR I f1E (FT). 
? ,.s 
0 PP. lf1E = 3.5 REL~ DEFL. AT A~ P. =-S.17001E-03 

0 PR I f.1F. SJfOllLO AE DECREASF.O 
.Sf-'ALL PR lrJT ALL JL, 'I, f.1, OEFL? (TYPE N FOR NO, y FOR YES.) 

• . ? " · • 



; . . , . 

IL1PIIT I" PRIME (FT). 
? ~-4~ 

r> PP. I 11E SHOO LO RE lfJCREASEO 

54 

REL. OEFL. AT A.P. = 3.25252E-n3 

. ~HALL I PRll!T ALL JL, V, t1, OEFL? (TYPE N FOR UO, Y FOR YES.) 
? n 

I NPllT O PfH f1F. C FT). 
? 3.46 

I • -• • 

D PRIME= 3.46 REL. OEFL. AT A.P. = 1.60715E-03 

r> PPlt•F. SHOIJLI" RF. lfJCREASEO 
Sf.JALL I PRINT ALL ,JL, v, ,1, ()EFL? (TYPE N FOR rm, Y FOR YES.) 
? n 

INPllT O PP.IME (FT). 
? 3.467 

D PRIME= 3.467 REL. DEFL. AT A.P. = 4.43920E-04 

. 0 PR ,r, F. Sf IOU LO BE I NCR EA5 EO 
St~AI.L PRINT ALL JL, V, tt, OEFL? (TYPE fJ FOR NO, Y FOR YES. l 

·- ? y 

FORD PRIME (FT)= 3.467 

JOltJT 
,1 
2 

.. 3 
4 

NO. 

, 

JOINT LOAO (LB5) 
.-6.6'5667 

83.5775 
-· -·-- ····- ···· -80. 

.. 95 
. -17.1371 5 

·6· · -- · - - ·--- ·- - ·-· ... 16 0 6 . . . 
ANC~OR FORCE (LBS)= 123.577 

SHEAR (LBS) 
0 

-20. 
-43.5775 
-56.4225 
-121.422 
-99.1662 

MOMENT 
0 

-13.3333 
140.488 

· 134.31 
-61.8633 

. -230. 905 

.. 



. , 

I r!PIIT REAL VALIJF.S FOR F., 
? 29nonn,1n 

(PSI & INCHES FOURTH) 

FOR I = 10 

JOI UT rm. 
1 
2 
3 
4 

. 5 
6 

D PR It~ E = 3. 4 u 7 

REAL DEFLECTION (IN) 
.3G5138 
2.2!lfi19E-02 

-.317793 
-.3554R1 
-.!10786 I 

0 

NOlJl[) YOU LIKE TO TRY AIJOTHER l???(TYPE YES OR rm) 
? yes 
INPUT 
? sno 
FOR I = 5 ·· D PRIME = 3.467 

JOIUT NO. 
1 
2 
3 
4 
5 
6 

REAL OEFLECTION (IN) 
.730275 
4.59227E-02 

-.635587 
.-.?109fi2 
-.221572_ 

0 

WOULD YOll LI KE TO TRY ANOTftER I ???(TYPE YES OR HO) 
?· no 

55 

DotJT Fl'HHH:T, YOlJVE BEEIJ lt!PUTING O PRIME. THE REAL D=l.2(D PRfr1E) 

FINAL lt1REDDf:1F.t·IT DEPTH (FT) = 1.2(0 PRIME) = 4.1604 

.. 



APPENDIX B 

FRE and PIX Computer Program Listings 

FRE Listing. 

type fre basic 

10 PRINT 'INPUT ANCHOR POIMT JOINT NUMBER.' 
20 INPUT Q9 
30 AS='N' . 
4 o o I MA c 3 o 1 .. ~ c 3 o l, 0 c 3 o >, "c 3 o L tfc 3 o l , t c 3 o l, P. c 3 o , , Jc 3 n ~, v c 3 o , , v c 3 o , , c- c 3 o 1, , c 3 o 1 
50 DIM M(30),V(301.,E(30l 
60 PRINT'INPUT ORlnlNAL UUMBER 0~ JOINTS.' 
70 INPUT \·I 
80 PRINT 'INPUT ACTIVE ANO PASSIVE LOADING ORDINATES (LBS/FT)' 
90 FOR N•l TON 

100 IMPlJT A(N),P(N) 
110 NEXT N 
120 PRINT 'INPUT INCREHENT LENGTHS (FT) 1 

130 FOR N•l TO W-1 
14 O I N PUT H ( N ) 
150 NEXT N 
160 nl=(P(W)•HCW-1))/(P(W)-P(W-ll) 
170 Tl=O 
180 FOR Nal TO W-1 
190 Tl•Tl+H(N) 
200 t-JEXT N 
210 G=T1-n1 
220 IF Q9z1THEN250 
230 IF Q9=2THEN270 
240 IF Q9)2THEN290 

_JSO Ql =O 
VI 
(2\ 



-260 GOT0330 
270 Ql•H(l) 
2P.() GOT0330 
290 01•0 
300 FOR N=l TO Q9-1 
:nn Ol•Ql+H(N) 
320 NEXT N 
330 PRINT 'INPUT IMAEDOMENT DEPTH D (FT)' 
340 INPUT ()2 

35D IF D2=0 THEN 1650 
360 IF 02=01 THEN 390 
370 IF 02>D1 THEN 1160 
380 IF 02<Dl THEN 1280 
390 Z=W 
400 FOR N=l TO Z 
410 C(N)•ACN) 
420 U(N)=P(N) 
430 NEXT N 
440 FOR N=l TO Z- 1 
450 E(N)=H(U) 
460 NEXT N 
470 LCl)=O 
480 X(l )=0 
490 R(Z)=O 
500 Y(Z)=O 
510 FnR N=l TO Z- 1 
520 R(N)=(E(N)/6)•(2•CCN)+C(N+l))•C-1) 
530 Y(N)=(E(N)/61•(2•U(N)+U(N+l l) 
540 NEXT N 
550 FOR N= 2 TO Z . 
560 LCN)=(E(U-1)/61•C2•CCN)+C(N-l))•C-1) 
570 X(N)=(E(N-1)/6)•(2•U(N)+U(N-1)) 

· 580 NEXT N 
590 FOR N=l TO Z 
~no J(N)=L(N)+R(N)+X(N)+Y(N) 
610 NEXT N 



·. -620 
630 
640 
650 
660 
670 
6 R ll 
690 
700 
710 
720 
730 
740 
750 
760 
770 
7R0 
790 
800 
810 
820 
830 
840 
ssn 
860 
R70 
880 
890 
900 
910 
92() 
930 
940 
950 
960 
97r, 

S(l)•JCl) 
FOR N•2 TO Z-1 
S(N)aS(N•l)+J(N) 
NEXT N 
FOR N•l TO Z-1 
I (rJ)=S(N)*E(N) 
NF.XT N 
M(l)=O 
FOR tJa2 TO Z 
M OJ) =M( N-1 ) + I ( N-1 ) 
NEXT N 
V(l)=LCl)+X(l) 
FOR N=2 TO Z 
V(N)=VCN-l)+R(N-l)+Y(N-l)+l(N)+X(N) 
r,ExT N 
T2 0 
FOR N=l TO Z-1 
T=T+E(N) 
NEXT N 
Q2•T-Ol 
tF A$<> 'N' THEN 960 
PRINT 

\ 

PRltlT'D=';D2,'RF.L. M•';(-l)•M(Z)/10000,'REL. V(Z)• 1 ;(-l)•VCZ)*Q2/l0000 
PRINT 
IF ARS(M(Z))(ABS(V(Z)•Q2) THEN 890 
PRINT 'D SHOlJLO AE DECREASED.' 
rm TO 900 
PRINT 1 D SHOULD BE INCREASED.' 
PRINT 'SHALL I PRINT ALL JL, V, M (TYPE Y•YES, N•NO).' 
I tlPlJT A$ 
IF A$= 'N' THEN 1040 
R(Q9)•RCQ9l+(V(Z)•C-1)) 
V•V(Z) 
r;o TO 590 
PRINT 
PRINT 



980 PRINT 'FOR IMREDOMENT DEPTH (FT)a: 1 ;02 
. 990 PRINT 'NOOE NO.','JOINT LOAD (LB) 1 , 1 SHEAR (LB)','MOMENT (LB FT)' 
1onn FOR N =1 TO Z 
1010 PRINT N,J(N),V(N),M(N) 
1020 NEXT tl 
1030 GO TO 1620 
1040 PRINT 
1050 PRINT 
1060 PR I rn 
1070 FOR N~l TOW 
1080 C(N)=A(N) 
1090 U(N)=P(N) 
11nn tJEXT N 
1110 FOR N=l TO W-1 
!12n E(N)=H(N) 
1130 MEXT N 
1140 Z=U 
1150 GOT0330 
1160 Z=N+l 
1170 E(Z-l)=D2-D1 
1180 C(Z)=((A(W)-A(W-l))•(E(Z-l)+H(W-1))/H(W-l))+A(W-1) 
1190 U(Z)=((P(W)-P(W-l))•(E(Z-l)+H(N-1))/H(W-ll)+P(W-1) 
1200 FOR N=l TO Z-1 
121n C(N)=A(N) 
1220 t!(N)=P(N) 
12 30 f!EXT N 
1240 FOR M=l TO Z-2 
1250 E(N)=H(N) 
1260 NEXT N 
1270 GOT0470 
1280 T=O 
1290 FOR N=l TO W-1 
1300 T=T+HC,J) 
1310 IF T•G+02THEN1340 
1320 IF T>r,+02THEN1460 
1330 NEXT U 



1340 Z=N+l 
1350 ECZ-ll=HCZ-ll 
1360 C(Z)=A(Z) 
1370 tl(Z)=P{Z) 
1380 FOR N=l TO Z-1 
13'10 C(M)=A{N) 
1400 U(fJ)=PCfJ) 
141'1 f.!EXT N 
1420 FOR N=l TO Z-2 
1430 E{U)=ff{N) 
1440 f!EXT fJ 
1450 GOT0470 
1460 Z=N+l 
14 70 \/1=0 
148'1 FOR N=l TO Z-2 
149n \/1=\-ll+H{N) 
15'10 NEXT N 
1510 ~(Z-ll=G+02-Wl 
1520 FOR N=l TO Z-1 
1s3n cc rn ==AOJ> 
15 4 0 II C,.f) = P(fJ) 
1550 t~EXT N 
1560 FOR N=l TO Z-2 
15 7 0 E ( r n = H ( N ) 
15 8 0 tJF.XT N 
1sqo C{Z)={(A{Z-ll-A{Z-2))*{H{Z-2)+E{Z-l')/~{Z-2))+A{Z-2l 
lGOO U(Z)=((P{Z-1)-P{Z-2l)•CHCZ-2l+E{Z-11)/~{Z-2l)+P{Z-2\ 
1610 GOT0470 
1620 PRINT 
1630 PRINT 'ANCHOR FORCE {LBS)=';V•C-1\ 
1640 PRINT 
1650 END 

R; T=O.R6/4.08 14•22•00 

°' 0 



FIX Lis ting. 

tyr,P. fix basic 

1n PRINT 
20 PR I rJT 
">fl PRltJT 'ltJPUT ANCHOR POINT JOINT NIJMBER' 
40 I NPlfT Q9 
50 PRl~T 1 1NMJT RELATIVE VALUES FOR E,1 1 

r,n I t!PIIT ~2, fl3 . 
7" n t M Ac~ n >, Pc 3 n >, .., c,; n ) , r, ( ~ n ) , IJ( ,; o >, E c 3 n >, L c 3 o >, x c ,; o >, R c 3 o >, v c 3 n > 
RO Olt1 ~(30),F(30),K(30),0('.~n),D(3n),r,(30),Q(30),T(30) 
<) n !')I M V ( 3 0 ) , J ( 3 0 ) , S ( ~ 0 ) , I ( 3 n ) , t1( 3 0 ) 

1 nn P~ =' N' 
11n A$='rm• 
120 Pf'Jt!T 'INPUT ORIGltlAL NUMRE11 OF JOINTS' 
l~n INPUT \'I 
140 PRINT 'INPUT ACTIVE AND PASSIVE LOADING OROINATES (LBS/FT. OF WALL)' 
150 FnP N=l TO \I 
1 G O I tJ PUT A ( N ) , P ( N ) 
! 70 ~JF.XT tl 
130 PR I tJT ' I tJPIJT I tJCREMENT LENGTHS.' 
l'lO · FOR rJ=l TO U-1 
,. nn ltf PIJT H( N) 
211'1 tJEXT tJ 
22 n n,.=c P(\1/) •HCU-1) )/ ( P(l•/)-P(W-1)) 
2,;o Tl=O 
240 FOP N=l TO W-1 
25n Tl=Tl+H(N) 
2 60 tJEXT N 
21n r.=Tl-01 
2r.n Pl'INT 
2-<ln PRIUT 



• 3nn 
310 
,2n 
"'7i n 
~4tl 
7, ~ 0 
Jfin 
~,n 
~nn 
Vln 
h n n 
li 10 

. 420 
430 
44n 
45n 
4 r, n 
4 70 
4RO 
4 qn 
5 O'l 
i:;1n 
5?. I') 
s~n 
Ci Ii n 
550 
!i ri n 
51n 
!i rt 0 
5qo 
600 
610 
62 'l 
6~0 
r, r, n 
fi 5 () 

PR J ~T ., I tJ PIIT n 
I NPIJT r,2 
1 F n2 = n THEN 
IF 02=01 THF.N 
IF 02)1'11 TJ-'F.tJ 
IF. 02(01 THF.rJ 
Z=-1·! 
r-nR r~=l TO 7. 
C(fJ)=A(N) 
l'(tJ)=POO 
rJEXT tJ 
FOR tJ=l TO Z-1 
F.(M)=Ji(N) 
fJEXT N 

PRIME C FT). ' 
?.?.Rn 
3Gn 
1740 
1RGO 

0~=((11(7.)-ll(Z-1 ))•(E(Z-11+( .2•02 ))/E(Z-1' )+lJCZ-1) 
07=((1J(Z)+Q8)/2)•C.2•D21 
LC 1) =n 
X(l)=O 
R(Z)=O 
v C 7.) =n 
FOR tl =l TO Z•l 
P(N)=(E(~)/G)•C2•C(N)+C(N+l))•(-1) 
Y(fJ)=(E(N)/6)•(2•lJ(N)+lJ(N+l)) 
NEXT t1 
FOR tJ=2 TO Z 
L(N)=(E(N-1)/6)•C2•C(N)+C(N-1')•(-1) 
xcrn =C r:crJ-1 >/fi >•C '*"C N>+uc N-1 > > 
NEXT N 
VO. 1=LC1 )+X(l) 
Fnn N=2 TO Z 
V(N)=V(N-l)+R(N-l)+Y(tt-ll+L(N)+X(N) 
NEXT f.l 
06=(07•V(7.))•(-1) 
P(O~\=R(0.9)+Q6 
i:on tJ=l TO z 
J(tl) =LC N) +R( fJ)+X( tJ )+Vern °' N 



6 6 I') ~.IF:~ T N 
670 SCl)aJ(l) 
6Rn FOR N=2 TO 7.-1 
690 S(N)=S(N-l)+J(N) 
7'l0 !JEXT N 
7!f) FOR rl=l TO Z-1 
720 l(N)=S(N)•E(N) 
730 ~!EXT N 
740 ,1C1)=fl 
75 O FOR tJ=2 TO Z 
760 t~(tl)=M(N-l)+l(N-J.) 
770 r!F.XT IJ 
1pn R(l)=L(l)+X(l) 
7qo Fnri t/=2 TO Z 
,rnn RCtJ)=B(tJ-1 )+R(N-1 )+Y(t~-1 )+L(N)+X(tD 
i:ti_n t!F.XT tJ 
n2n REH R IS REAL SHEAR TO ltJCLUl1E ANC~OR FORCE 
R~O P.F.H R!=S.t1., R2=F., B~=I 
R40 F(J )='l 
850 K(Z)=n 
R60 FOR tJ=l TO 7. 
87n O(N)=(M(N)•12)/(R2•83) 
8RO MF.XT rJ 
R q O R Et~ O IS t1/ EI 
9'ln n=E(l)/F.(2) 
~10 ~(l)=E(1)•((((1/(1+R))+3)•0(1))+((R+2)•0(2))-(((1/(l+P.))+R-1)•0(3))) 
920 R=E(Z-1)/E(Z-2) 
9~0 F<7)=F.(Z-1 )•((((l/(l+R))+3)•0(Z))+((R+2)•0(Z-1))-(((1/Cl•R))+R-1)•0(Z-2))) 
940 FOR N=2 TO Z-1 
95n R=E(N-1)/F.(H) 
960 F(N)=F.(N-1)•((((1/(l+n))+l)•O(N-1))+((R+4)•0(N))-(((1/(l+R))+R-l)•O(N+l))) 
970 R=E( tO/E(tJ-1) 
qsn K(N)=F.(N)•((((l/(l+R))+l)•O(N+l))+((R+4)•0(N))-(((1/(l+R))+R-l)•O(N-l))) 
99 O NEXT t~ 

1000 FOR N=Z TO 1 STEP -1 
lfllO O(N)=F(N)+K(N} 



1020 
1n~n 
1040 
1n~n 
lOGn 
1070 
~nsn 
l!'l9n 
11nn 
111n 
1120 
1130 
1140 
11i;n 
llfiO 
11 70 
1 J.IM 
11qn 
12nn 
121n 
1220 
1230 
1240 
1251') 
1260 
1270 
12 PO 
1290 
13'10 
1310 
1::;2n 
1330 
1340 
,. ~ i; n 
1360 ,~,n 

NEXT N 
r; ( 7.-1 ) =O ( 7. ) 
FOR N=Z-2 TO 1 STEP -1 
nc~)=G(N+l)+D(N+l) 
MF.XT N 
REr1 D Arm G· ARI: J.L. AND AV.V. FOR corJJ. BEAM 
FOR N= 7.-1 TO 1 STEP -1 
n(N)=G(N)•E(N)•12 
NF.XT IJ 
RF.MO IS r1.1. FOR CONJ. BEAM 
T(7.)=0 
FnR JJ= 7.-1 TO ~- STEP -1 
T ( N 1·= T ( N + 1 ) +Q ( tJ) 
~1F.XT M 
RF.MT IS OEFLF.CTIOfJ OF REAL REAM 
IF AS<>'NO' TliEtJ 1470 
IF P~ <> 'N' THF.tJ 1470 
PR I tJT 
PPl~JT 'n PRIME = 1 ;02, 1 r1EL. DEFL. AT A.P. = 1 ;T(Q9) 
PRINT 
IF T(09)<0 THEN 1250 
PntNT ·•o PPIME SHOUU) BE INCREASED' 
GO TO 12GO 
PRINT 'O PRIME S~OULD BE OF.CREASED' 
PRltJT 'SHALL I PRINT ALL JL, V, M, DEFL? (TYPE N FOR NO, Y FOR YES.)' 
I tJPUT P$ 
IF P~='N' THEN 1650 
PR ltJT 
PRINT 
PR I NT 
PRINT 'FORD PRll1E (FT)= 1 ;D2 
PRINT 
PRINT 'JOJNT N0. 1 , 1 JOINT LOAD (LBS) 1 , 1 SHEAR (LBS)','~OMENT (FT-LB)' 
FOR 11=1 TO Z 
PR I tJT N, ,J( rn, R ( N), M ( t-l ) 
NF.XT N 



-1~~0 PP.IUT 
1390 PRINT 'ANCHOR FORCE (LRS)• 1 ;Q6 
1400 PRINT 14 tn PR ltlT 1 _________________________ , • 

1420 PRINT 
143n r'RINT 'INPUT RF.AL VALUES FORE, I (PSI.!'! INCHES FOURTH)' 
14 4 n I N PUT B 2, R 3 
1.41:in PRINT 
14nn r,o TO 86n 
1470 PRINT 'FOR I • 1 ;A3, 1 0 PRIME = 1 ;02 
14RO PRINT 
1490 PRINT 'JOINT N0. 1 , 1 REAL DEFLECTIOfl (IN)' 
1500 FOR N=! TO Z 
1510 PRINT N,T(N) 
1~ 2 O NEXT f·J 
1530 PRINT 
1540 PRltJT 
1550 PPltJT 
lSGO IF A$<>'NO ' THEN 1580 
1'170 PRINT 
15RO PRINT 1 \-IOULO YOU LIKE TO TRY ANOTHER l???.(TYPE YES OR NO)' 
'15 'l O I N PUT A$ 
lfiOn IF A$= 1 N0 1 THEN 2200 
1610 PRIUT 'INPUT 11 

,_r,2 n I tlPUT R3 
163n GO TO 860 
1ti40 REM TIS OEFLECTION 
lfi50 FOR N=l TO~ 
lGGO C(tJ)=A(N) 
1Ci70 IIOO=P(N) 
1680 NEXT N 
16gn F~R N=l TO W-1 
1700 F.(N)=tf(N) 
1 7 1 n f .f F. X T t-! 
1 7 2 f' 7. .,., 
1730 GO TO 2RO °' V\ 



-1740 
1750 
17£i0 
111n 
173 0 
1790 
1s on 
vnn 
1P.2n 
1~30 
1R40 
H~~o 
l~fin 
UPO 
lP.Rll 
l~qn 
190!') 
1!'110 
1q2n 
l<l30 
1940 
1950 
1960 
1970 
1q11n 
1990 
20nf) 
201fl 
2020 
2030 
2040 
2050 
2<'60 
2070 
2080 

7.•\'!+l 
ECZ-l'•D2-Dl 
CCZ)=CCACN)-A(H-l))•CECZ-l)+H(W-1))/µ(W-1))+A(H-1) 
ll( Z )=( ( P(\1)-P(\/•l ))•( E(Z-1 )+H(l-1-1' )/H(\-/-1 ))+P(H-1' 
FOR N=l TO Z-1 
C(tJ)=A(t-J) 
U(N)=P(N) 
tJl:XT r~ 
FOR tJ=l TO Z-2 
EC N) =•t C N) 
~•F.XT rJ 
r,n TO 440 
T="l 
FOP. N=l TO i1-1 
T=T+H(fJ) 
IF T=G+02 THEN 1920 
IF T>G+D2 THEN 2040 
NEXT ~J 
Z=ll+l 
EC Z-1 ) =f4 C Z-1 ) 
r,(7.) =A(Z) 
IJ(Z)=P(Z) 
FnR M=l TO Z-1 
CC N) =A(tJ) 
tJ(N)=P(M) 
•!F.XT N 
FOR N=l TO Z-2 
f:(t')=H(N) 
tJEXT N 
no ro 440 
7.=M+l 
Wl=O 
FOR tJ=l TO 7.-2 
\lt=\-Jl +H( tJ) 
MEXT N 

... 



2n~n ECZ-l>=ri+n2-w1 
21no FOR N=l TO z-1 
2110 r.(U)=A(N) 
2120 tr(N)=P(N) 
21~n qF.xT N 
2140 FOP N=l TO Z-2 
:'150 E(rJ)=H(N) 
?. ~-() n tJF.XT N 
2170 C(Z)=((A(Z-1)-A(Z-2))•CHCZ-2)+E(Z-1))/HCZ-2))+A(Z-2) 
?.lRO tl(7.)=( ( P(7.-1 )-P(Z-2) )•(H(Z-2 )+F.(Z-1) )/H(Z-2) )+P(Z-2) 
21qo GO TO 440 
2200 PRINT 
2210 PRINT 
2220 Pf?ltJT'OONT FORGET, YOtJVE BEEN INPUTING O PRIME. THE REAL 0=1.2(0 PRIME)' 
2230 flJ=l.2•02 
224'l PRINT 
225'l 1'111tJT 'FlfJAL lr1BEDDM.ENT DEPTH (FT) = 1.2(0 PfUME) =' ;D3 
22£in P~INT 
22?0 PRltJT 
22Rn nrn 

R; T=l.12/4.47 12:07:21 



BIBLIOGRAPHY 

Books 

Albrecht, Robert L., ~!.!•BASIC. New York: John Wiley & Sons, 1973. 

Godden, William G. Numerical Analysis of Beam and Column Structures. 
Englewood Cliffs, N. J.: Prentice-Hall Inc., 1965 

Leonards, G. A.,~ al. Foundation Engineering. New York: McGraw-
Hill, 1962. 1 

Purcell, Edwin J. Calculus with Analytic Geometry. New York: Meredith, 
1965. 

Tschebotarioff, Gregory P. Soil Mechanics, Foundations, and Earth 
Structures. New York: McGraw-Hill, 1951. 

Publications 

IBM Corporation. ITF: BASIC Terminal User's Guide. New York: IBM 
Corporation, 1970. 

68 



69 

R£FERENCES 

(1) Godden, William G. Numerical Analysis of Beam and Column Structures. 
Englewood Cliffs, N.J.: Prentice-Hall ~nc., 1965. 

(2) Leonarda, G.A., .!! !.!• Foundation Engineering. New York: McGraw­
Hill, 1962. 


	097 Gagich001
	097 Gagich002



