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The purpose of tnis thesis is to introduce the 

concepts of matrix al gebra and matrix calculus to the field 

of nonlinear elas ticity in order to bridge the gap betw~en 

a theoritical tensor analysis approach requiring eYt~nsive 

complex mathematics and a basic scalar component approach 
• 

requirine ~n extensive memory capacity. 

The general nonlinear theory of elasticity including 

th e strain-displacement equations, the equations of equilibrium, 

and the stress-strain laws are derived in matrix form for the 

genera] ca~P.. 

Three special cases of the· g~neral theory are 

considered: 

a) Elongations and shears are small in comparison 

to unity. 

b) Elongations, Rhears, and anrles of rotation 

8re small in comparison to unity. 

c) Class~cal linear elasticity equations. 



The nonlinear theory of elasticity, being an 

essential generalization of the classical theory permits 

ii i 

an approach to the solution of a series of important problems 

which do not arise in the latter theory because of i ts 

limitations. 

The special cas~ of the large deflection of a 

thin ro~ is considered to illustrate the nonlinear theory. 



ACKNOWLEDGEMENTS 

I would like to express my deep gratitude to 

Dr. Paul X. Bellini, my advisor whose guidance and support 

were a great help to me in completing this thesis. 

I am also grateful to the review committee, 

Dr. Michael K. Householder and Professor John F. Ritter, 

for sharing their valuable time with me in order that the 

requirements of this work be completed. 

iv 

Special appreciation goes to my parents, Mr. and 

Mrs. Kuntakom, for their support and encouragement throughout 

my college career. 



TABLE OF CONTENTS 

ABSTRACT, . 

AC1<NOWLEDG f.MENTS 

TABLE OF CONTENTS 

LIST OF NOTAT JOf S 

LI S'l' 0-P FIGURES • 

CH /\ 1?TF.R 

• • 

. . 

• • • 

T. INTR ODU CT1 ON . ,,. . . . 
1. 1 

1.2 

Introdu c tion 

Coordinates 

• • • . . . • • . . 

1. J Angular Direc ti ons o·f the •.•. , . 

Coordinate Lines 

JJ . GEO 'IETRY OF STRAIN 

?.l Strain Compon ents • • • . . . ~ . . 

2 . 2 Transformation of Strain Components 

uPd er Change of Axes • • . • . . 
2.J Pr incipal Axes of Strain • . . • . 
2 .4 Transformation of the Parameter 

e,,, ezi J e.'3 / e1,. J e ,?>, e13 and W 1 .J C.01, W3 

1Jnd er Chang e of Coordinate Ax es . . 
2. 5 G8ometrical f\1ean int: of the 

ParAmeter W -1, W .t., W .3 . • . . • . 

2 . 6 Fibe:rs PresArvine Directi on mder 

Dt? forrnation . . • . . • . . . . . . 

. 

• 

• 

• 

PAGE 

ii . 

i v 

V 

ix 

xi 

1 

1 

2 

5 

20 

24 

27 

Jl 

35 

4J 

V 



III. 

2.68. 

2.7 

2.8 

The General Pi cture of the Deformation 

in the Nei e hborhood of an Arbitary 

Point of the Body . . . • . . . . . 
Change in Volume •.•••••••• ~ 

The Theory of Small Deformation .•.• 

(Case 2) 

2.9 The Case of Small Deformation and 

Small Angles of Rotation (Case J). . . . 

vi 

PAGE 

46 

48 

53 

54 

2.10 The Transjt ion to the Equations of the 

Classical Theory (Case 4) ••..•.• 61 

2,11 On the Transition to Curvilinear 

Coordinates 

2.12 Summary .•••• • •••••.•••• 

THE EQUILIBRIUM -OF AN ELEMENT OF VOLUME OF 

• ~ • • ~ • • ~ 8 A BODY 

J.l Stresses • . . . . . . . . . . ~ . . . . 
J.2 Transformation of Stress Components 

Under Change of ·coordinate System 

J.J Conditions for Equilibrium of an 

Elementary Volume Isolated from a 

Deformed Body • • • • • • • • • • 

J .4 Transformation of th Equntion of 

Equilibr iu m of an Element of Vol ume 

to the Cartesian Coordina tes of the 

Point;- of thP Body Befor e j+,s 

. . . 

. . . 

D~formation . . ~ ~ . . ~ . . . . . ~ . 

62 

73 

77 

77 

84 

86 

91 



vii 

PAGE 

3.5 Ca e 2, Simplification of the Equations 

of Equilibr·um in the Case of Small 

Elongation and Shears 97 

J. 6 Case J, Simplification of t he EquiJibr i um 

Equation of Small Rota ions . . . 100 

J .7 Cas e 4. Transition to the Classical 

Equations of Equilibrium ••••.•• , 100 

J.8 Transition to Curvilinear Coordinates . . 101 

J.9 Summary ..•. • •• • •.• . •..• 108 

IV. STRAIN ENERGY , BOUNDARY CONDITIONS, STRESS-

STRAIN LAW ••••.•••••• • • • ••••• 110 

4.1 Strain Energy ••••..•••••.•• 110 

4.2 The Principle of Virtual Displacements •• 113 

4.J Derivation of the Differential Equations 

of Equilibrium of a Deformed Isotropic 

Body from the Principle of Virtual 

Displacements 

4.4 The Relation Between Stress and Strain 

Components • e ,. • • • • • • 

Bonndary Cond i tions • ti' • • • 

4. 6 The Simplif i cations of the Der ived 

Erpiat ions in th e Cas e of a Smal 1 

. . 

• llli. 

• • 

• • 

120 

122 

De formation 

Hooke ' s Law 

. - . . . . ~ • • . • • • 123 

. . . ~ ~ ~ . . . • • • • • • 12 5 



viii 

PAGE 

4 .8 On the Appli cability of Equation (4-19 ) 

to Elastic- Plastic Deformations ••• • • 129 

4. 9 On the Simpl est Variants of Nonlinear 

Stress-Strain Re l a tions . . . , . • 134 

ii- .JO Summary .•••••• • .•••.•••. 1J8 

V. PR OBT ,El't. ON THE DEPORMATJON OF FLEXIBLE BODIES .. 139 

5.1 r eformation of Rods 

(First Approximation) ••••••. • •• 139 

5.2 

5.J 

Deformation of Rods 

(Second Approx i mation) 

Pure Torsion , ~ • • 8 • • • • • . . 
5.4 The Final Expr essions for the Strain 

. • 155 

. . 163 

Components of a Thin Rod •••.•••• 166 

VJ. DI SCUSSION AND CONCLU SIONS • •••..••••• 168 

t .l Di s cussion .•••••••.••.••• 168 

6 .2 

APPENDIX I 

Conclusions 

APPENDIX 1 I • • 

LITERATURE CITED 

. . . • • • • " . - . 
. . 

. . . - - . . . -
• • • " 4 • • • • . . 

• • 172 

•• 174 

• • 178 

• 180 



SYMBOL 

bJ., b1 , b o 

I I / 
b.L, b 1 J b 0 

b '' b
11 

h 
11 

1., I, 0 

[1] 

tr1 

5 
T 

{ u.} 

LIST OF NOTATIONS 

DEFINITION 

The thr ee matrix invari::tnts of 

The three matrix invariants of 

The three ma t rix inv,:iriants of 

The three matrix invariants of 

The three matrix invariants of 

- [e] + [w] 

The relative elongations 

Young ' s modulus of elasticity 

Ve c tor of body forces 

Vector of surface forces 

Lame coeffici ents 

The identity matrix 

[E. J 
[DJ 

[eJ 

[wl 
~ 

[~o 1 

Unit vectors of rectangular CarteRian 

coordinate s ystem 

Unit vectors of tangents to the curve 

line of curvilinear coordinate s ys tem 

Jacobian matrix 

External normal unit vector 

The virtual work due to body f orce s 

The vjrtual work of the surface forces 

Surface art~8. S 

Th0 intensity of tangential stre SP8 

The 1nt~ns ity of shParine st r ain s 

Vector of a·s pl~cements 

ix 



SYT'J'. OL 

V 

w 

N 

COF L ] 

[o<.J 

~ 
~ 

[c J 
[T] 
[7'\J 

p 
¢12 _, Q) ,~., ¢13 
cp,_, d),._,(D3 

o<:.,?,"6 
o( 1 _, c,( .2. , o<.3 

tJJ1 , <Ji.,_., (h 
)( 

I c JI 

DEFIN1'J'1 N 

Volume 

Total work done 

Re ctangul ~r Car tes i~n coordinate s 

Curviline ar coordinate 

Deformed st8°tl?. 

Curvilinear s ystem 

Cofactor of the ma t rix 

[COF[JJ]T 
(()~ 

= - (c)Gl1 

Specific strain ener rr y 

Stra i n ma t r i x 

Stre s s matr ix 

Orthogon~l t ransformed mat ri x 

Poiss on' s r~tio 

Shears 

Eu ler ~ne les of rotations 

E tler ~ngles of rotations 

Orthogonal curvilinear lines 

an~les of rot8tion 

Coss product of vec tors 

D!tPrm1nant of matrix 

X 



FIGU RF. 

T- 1 

1-2 

I-J 

I- 4 

I - 5 

TI - 1 

II-2 

II-J 

II-4 

IT- 5 

TI - G 

TI-7 

JJ _p, 

II-9 

LIST OF FIGURES 

. . ,.. . .. . Coor di n~te Axes. CRse I. 

Coord: nat e Axes, Case I •• . ~ . - . . ~ 

9ectRn ~ular Coordinate s -Deformed Ge ome t ry 

8urv i J. '_nea r Coordjnates-Case I •. 

Cu r rilinear Coordinates -Case I I ,. . . . . . ,. 

ChRn ~P of Rectan~ulRr Coordinate Axes 

Rot<1 t: :ion of Line El ements .•••.•. 

Project·ons of LinP Elements and Rotation 

An[)P.!:: .... ,. . . . . . . 

. . Spe iRl Case of Line Elements Rotation .. 

Defo r~R t ·on of a Re ctangular Parallelopipe rt 

Volumetric Change ..••••.•••..•• 

Euler An Jes for Rotations .••..••..• 

Curv jlinear Coordjnat e Axes 

Example of Curvilinear Coordinates . ' .. 

ITT-la Equ i libr ium of a Volume Element 

PAGE 

J 

4 

5 

9 

14 

25 

35 

J6 

J7 

46 

48 

56 

62 

6J 

78 

III-lb Curv i lin~ar Equili brium Element . • . • • • • 82 

IIT-2 Equil i brjum of an Elementary Volume • • . . . 86 

TII-J Ge omPt ry of Undeformed and Deforme d El ements. 92 

TJ J _LJ. 

Defor ation ..... 

ITJ- 5 , Curvj l ·n8a.r Coordin:itP. System 

TV-1~ T hP Ex t P~si on-ComprP ssj on Curve 

TV-lb The FYtens5 0n- Compression Curve 

.. . . " . . 

98 

lOJ 

135 

xj 



FIGURE 

V-1 Thi n Prismatic Ro d . . . . ~ . . . . . . 
V-2 Ge ome tr·c Deformation of Point on th e Ax is of 

t. he Thin Rod • [II , • • • . . • • • • • • . . . 
.1-1J.er Angles of Rotat i ons , . . . .. . .. 

PAGE 

139 

147 

148 

xi i 



1.1 Introduction 

CHAPTER I 

INTRODUCTION 

1 

The basic concepts in the theory of Nonline ar 

Elas ticity of Elastic Solids has by tradition been incorporated 

in a more broad course entitled Continuum Mechanics which 

includes the principles of both solid and fluid mechanics. 

This classical approach requires a through knowledge of 
(1,2)* 

Tensor Analysis including tensor algebra and tensor ca lculus. 

Mos t approaches utilize curvilinear tensor notation including 
( J, 4) 

nota tions of contravariant and covariant tensors. 

Cartesian tensor notation is usually considered as a s pecial 
(5,6) 

case . Some authors have introduced a combination of 

both tens or analysis and matrix analysis in nonlinear solid 

mechanics. 

Probably the most well known text in this area is 
( 7) 

that written by Novozhilov which tbtally eliminates the 

us e of tensor operations. Atmost, a reader requires an 

elementary course in partial differentiation as prerequisite 

to reading the text which presents all concepts using 

"scalar operations ." This scalar approach produces an 

ex tensive number of equations with no commonality among them. 

* Numbers in par enthesis referred to Literature Cited. 
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The reader is confronted with a requirement of recalling 

literally hundreds of complex equations in order to understand 

the principles. 

The purpose of this thesis is to introduce the · 

concepts of matrix algebra and matrix calculus to the field 

of nonlinear elasticity in order to bridge the gap between a 

theoritical tensor approach requiring extensive mathematics 

and a basic scalar approach requiring extensive memory 

capacity. The matrix approach has a prime advantage of 

forming a common basis f or all mathematical operations as 

well as forming a direct connection for interpretation of 

mathematical results to real, physical, engineering problems. 

1.2 Coordinates 

Given the positions of the points of the body in its 

initial state (i.e., before deformation) and in its terminal 

state (i.e., after deformation), determine the change in the 

distance between two arbitary infinitely near points of the 

body caused by its transition from the first state to the second. 

Let the positions of the points of the body in its 

initial state be described by their projections x1 , x~, x3 

on the axes of some rectangular system of Cartesian Coordinates 

X 1 ,Xi,,X.3 
Furthermore, let the points of the body undergo 

displacements with components U1 , U 2 , U~ regarded as 

preassigned fun ctions of x1 ., X1. and x3 along the same axes. 

Then the terminal position of an arbitary point of the body is 

~iven the Cartesian coordinates 



J 

* 
X1 = X1 + u1(x~,x2,X3) 

* X2. = X2 i- U.2. (X1, X.2.J X3) 
:t. (1-1) 

X3 == x., + U~ (X1, X2., X3 ') 

The functions 11 11 U3 as well as their partial der1'vat1·ves v..1 ) I.I\. z. ) 

with respect to X 1 ., X.i and X3 are assumed continuous. 

This restriction is called the continuity condition of the 

deformation. 

It follows from equation (1-1) that the terminal 

position of the points of the body are described in two casess 

Case I -

X1., X 2, X 3 are rectangular Cartesian coordinates 

for the initial state and become curvilinear coordinates for 

the terminal state. When X1 , X2. and X3 are considered as 

curvilinear coordinates of the deformed body, they are marked 

with tildes ( rv) for the curvilinear coordinates and stars (*) 

for the deformed coordinates (See figure (I-1)). 

Figure (I-1) Coord i nate Axes, Cas e I 
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Thus X1 ., X2., X3 

/V)I: "'>t rv* state, X1 , X). , x3 

are Cartesian coordinates for the initial 

are Curvilinear coordinates for the 

deformed body. 

Case II 

>t * )k x1 ) X~ Y x3 are rectangular Cartesian coordinates 
N ,v fV 

for the deformed body and X1 , x~J X3 are curvilinear 

coordinates for the body before deformation (See figure(I-2)). 

o~--------------------,~x~ 

Figure(I-2) Coordinate Axes~Case II 

A set of continuous points of the body lying on a 

curve are "fiber of the body", and an infinitesimal element 

of a fiber is called "line element of the body." Further 

the set of points of the body on a surface are called a 

"layer of the body", and on infinitesimal element of a layer 

is called an "element of area of the body." 
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1.3 Angular Directions of the Coordinate Lines 

As a result of the deformation the point M (X1; X.t., X~) 

is displaced to the position M* having the . Cartesian coordinates 

.'1..,x;,x: whereas the point N (X1+ dx1.J X,1+d.x.,,) X3+ dx.,) 
infinitesimaly near Mis displaced to the position N* having 

* d t ~ J,t .t d * _.. coordinates X1 + X11 x1 +U1X.1.
1

X.3t X'.3. The vector MN has the 
~ 

. d d d 1 
' · • d ~ project1.ons x.,J XJ.J )(-'• The vector MN has the proJections x1; 

d * d t X.1., )(,. 

Figure (I-J) Rectangular Coordinates - Deformed Geometry 

Applying Equation ( 1-1) to the point N ( x1+ dx1 _., X.1 + ch.,., 

X3+cix3 ) and expanding the right-hand sides in Taylor Series 

about M ( ><1., X.z J X3) (retainin~ only infinitesimals of 

the first order only) g ives 



6 

* 1 
0U1 foU1 /oU.1 dx~ · dx1 + lo X1 Iv 'x.2. loXJ 

dx! = 0U2. 1+~ ~U1. dx~ 
dx; 

(;)X1 rv X '- r.> X3 

fc) U3 ru U.3 1+ (.)U3 dx, 
(;) X1 (.) x~ D"/.3 

{ d;} = [ J] { dx} (1-2) 

where 

[ J] = [I]+[D] (1-J) 

1uU1 (c) U.1 (v lA.1 
- -

(.) )( 1 ~X1 rJ X!> 

[ DJ = fr>Lh. (DU2. (vU2. (l-4a) 
/JX1 rJ X?... iJX8 

fc) IA3 nu~ (oU3 

(c) X1 (i)U . 0X3 

1 0 0 

(I] = 0 1 0 (l-4b) 

0 0 1 



Introducine the notation 

, e,_,_-=- (D Lh 
r.J'h. ... 

e 12 = foU1 + ro U2. 
(;)'Xi {i))( 1 

el~= 0J,/z. + (c) U~ 
r.>><~ 0.X;. 

J W1 = foU3 r.>U1. J J.W.t::: (vl(1 _ (oU3) ~wj~ (c)U1._(v~ 

0X.:i. r.JX ~ (i))(~ fJ ~1 °>'1 (.))(,,_ 

then [J] is expressed in the form 

[J] = [I] +[DJ== [I]-t[W]+te] 

where 

e11 ½ e,2. 

ceJ l. e1.2 :: i e, 2. 

± e,, I 
i e'-3 

0 - W3 

[W] = W3 0 

- Wi. Ll1 

½ e,~ 

~~; 

e.3~ 

(J.)z_ 

-W1 

0 

. 
J 

' 

T 
(eJ.,, [eJ 

l" 
[W] = - [W] 

Noting Equations (l-4a), (l-4c), (l-4d), it follows that 

[eJ,,, }(col+ [DJ) 
T 

[ W] = i ( [D] - [D]) 

7 

(1-5) 

(l-6a) 

(l-6b) 

(1-6c) 
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€11 ½ e12 - w 3 °t e13 + W2. 

[D] = ~ e11+W.3 €-22 1 
2 e2,-W1 (1-?a) 

~e,~-W2 1 € 1~+ W1 
1 

8 a; 

1 + e11 ½:_ e,2 -W3 \ e1,+W1, 

[J] 
1 

1 + e2.2. 1 - 2€11 +W3 1 e.13 - c..o1 (1-?b) -

i e1?> - W 2 
;J., 

t e23-t W1 1 + e3., 

and finally, 

{l-7c) 

The geometry of the coordinates of the deformation 

divided into two cases (Case I and Case II) from the previous 

section (1.1) are considered. 

Case I 

Before deformation the line elements which pass 

through the point M are parallel to the X1 -,x1-, Xf axes 

(rectaneular cartesian coordinate), after the result of 

deformation, they become elements of arc of the lines /Vx * 
1 ' 

in the deformed body as shown in figure(I-4) 
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X3 ('If_ 

X1. .... 
l!, --;' 

L2, 

M 
X1.. 

;' 

~1 

X1 

0 Xz. 

1<-1 Figure(I-4) Curvilinear Coordinates-Case I 

where 

lines 

'r~ ,.,, * ~ ~ 
L1 , LL .J L~ 
rJ 'Jf- ,., ,t ,N .If 

X1 , XL ' xl 

are the unit vectors tangent to the curve 

at point M*, and l. 1 , Lz., L~ 

are the unit vectors of the X1 , x1 , X-' axes respectively. 

Let the line element MN before deformation be 

parallel to the X1 - axis and have the projections 

Then according to (1-7) its pro j ections after deformation are 

., 
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Its length after deformation is 

al s o 

* ~ 
\MN\= (l+E1)dx1 

(1-8) 

where E1 is defined as the relative elongation of element 

dx1 under the deformation 

or 

or 

E
1 

= \M~N,y./ - /MN) 

IMNI 

IMN~l = ( 1+ E1) lMNI 

= (1-1-E,)dx1 

(l-9a) 

(l-9b) 

~~ ~ 
MN (in this case before deformation parallel to .l\.1 axis) 

is expressed in terms of the projections on .X,- ,Xi .J Xi" axes. 

Thus 
(l-10) 

"' * The unit vector tangent to the arc line MN is denoted by 
':"• 
L1 . 

With * _. ~ ..... + dl<:z. L1. + c\)(3 t.3 

I MN~I I M"N:t: I 
or 



hence, 

L*= (1+e11) f, + (-k:.e12t-W3)t1 +c-ke,~-w2.) ·t~ 
1 

(1+E1) (1+E1) (l+E1) 

By applying analog ous arguments to the line elements 

dx 2 and d x3 , one obtains 

"!* c½ e,2. - t.u.3) Y1 -t-
-:I. ( t e,1~ + W1) 

_,. 

( I +ez.2) L2. • 
(., = + (.,~ 

~ 
(_ t+E.z.) (_1+E2 ) (1+E2 ; 

~ J.. ....... r: '/< (.\e,3 +W.i.) [., + 
__. 

( ~ e.t~ -w1) ~2. (1+e~~) [3 
L~= + 

(I+ E.3) ( 1-t E3) (!+Ea) 

In matrix fonn t he latter equations become 

where 

... 
rf>1r 

, 

l1 L1 

1l*} "!,;. {-r} ... 
= = L2. L 2.. _) 

r! * -~ 
L3 L3 

"I• ~=I rt'#-
Where L1 , L 1 , L, are the uni t vectors tangent to 

xt' , x; , x: respective ly. 

11 

(1-lla) 

(1-llb) 

(1-llc) 

(1-12) 



and 
J_ 1 1+ e11 2 e12 - W3 2. e1? + W1.. 

1 + E1 1+E1. 1+E.3 

[A 1 == I 
le12+W3 1+e22 -½-~? -l(_)1 (1-lJa) 

1 + E 1 1+ E2. 1+£3 
I I 
2 e1~-W2. 2 e.J.~ t W1 1+ e33 

1 + E1 1 +£.1 1+£3 

wher e E1 'EL, E3 are defined as the relative elongation 

of element MN, which are parallel to X1- ,Xi , ~- axes 

before deformation respectively, and where the matrix [Al 
is written in terms of direction cosines as 

"'" .... ,.,,._. j 

"' ..... cos ( i.,_, t 1 ) COS>( Lz._, t 1 ) cos o:., t,) 

[A J = -:'~ -;' 
C..0S ( L 1 , L2.) 

"'~ -I e.os ( l2., t.2.) 
/V~ 7 

C.,05 (i.3,, Lz) 
(1-lJb) 

,.., - ~-II .. ,-J'I ~ •-It • 
cos(L1,1,) COS(li._,L1 ) CJ>s U3' i..~) 

Noting Equations (l-7b) and (1-lJa), it follows that, 

i" 1 J T 
[A]= [ T+F [ J] j or [A]= [J] [ 1~E] (1-14) 

where 

_1_ 0 0 

[ 11E 1 
1+E1 

::: 0 _1_ 0 
1 + E2 (1-15) 

0 0 1 
1+ E3 

12 



lJ 

Consider~t i on of Equation (l-2) 

(1-16 ) 

Taking 
-1 

[J] = 
[o<J 

I [JJ l 
it follows t hat 

v,i th 

(1-17) 

( 1+ e.1J.) C 1 + e.H) - C 1/4 el3- ~); - ( f e..1+Wa) ( 1 + e33) t-(½ e,3-w.,_)( } e.2.3 ({)1); 

+ lie,,_+ 4J~) cl ~~+w1)-(1e,~-w,J (1+e.u), 

[ex] == -( \e,,.-w:3) ( 1+ e,H) + ( i e.,_3+ W1)( ,le 1-3 -t-W.1.) j C 1+~,, )( 1-t- ea3) ( ~ ei;--w;); 

- (1-te,,)(fe.,_3+w1H-C1 e,:3-w.t.)( 1e1.1.-c.(.J1); 

,( ± e,.1 -w3) ( -1 -e,,,_3- (,,)1)-(1+ e.,_,.) { /:. e,3 +wJ.) j - (1+ei1) Cf. ~a-w1} +(Je,J.-~) 
Cf e,a+w.y; 

1 A ~ (1-+ e11) C 1 + e.,.J.) - ( Y4 e.1.,._ -w3); 
Noting Equat i on (1-14), one obtains 

T. T 
()OF [ J ]T = [ eoF [JJ] T_ COF [[1+EJt-[A]] :: COF [1 +E.J WF (A:} 

hence [cxJ c:: COF [1+E] COF[CAlJ (l-lB) 

where 

[1+E] 0 

0 

0 

1+E1_ 

0 

0 

0 = [1~e J 
-1 



Case II 

Before deformation the line elements of the body 

which pass through the point Mare the elements of the lines 
fY :,t,: ~ i ,..., * 
X1 , Xz. .J X~ and become parallel to X1 , X, ,Y:?> axes 

(Rectangular Cartesian Coordinate) after deformation. 

(See Figure (I-5)) 

~ 
L,- lt _ ___,,""---r----+ X1 

Figure(I-5) Curvilinear Coordinates-Case II 

Let now examine the line element d ~r , i.e. ' the 

line element parallel to the X1 - Axis after deformation. 

Accordin,g to ( 1-9), its projections before deformation are 

' 
* dx2 = o<.:1.1 dx 1 

I c J J l 
) d X; =- o<31 d X f 

I [JJI 

14 



Its l eng th before deformation is 

also 

where 

IMNI == 

E~ .:: 

* dx1 
1+ Ef 

I M,tN" 1 - I MN I 
IMNI 

= 

dx1 
I CJJ I 

/M~N~/ 
- 1 

I MN\ 

I j ex,~ + o<.l°t + o<.~' dxf 
I [JJ/ 

* E1 - I [ JJ / - 1 -J-:==='l..=====2.=====).:::, 
o< II + o(.l.l + o(3 I 

- 1 

* E1 is defined as the relative e longation of element MN 

15 

(1-19) 

(l-20) 

Under deformation, which is parallel to X1 axis after deformation. 



__) N 

MN ( in this case before deformation is the curve line x1 ) 

is expressed in t erms of the projections on X 1 JX1.-, x~ axes 

as follows , 

MN -

N 

The unit vector tangent to the arc line MN is denoted by L1 

with Z1 = ~ r1 + dx2. C1 + 
\MNI IMNI 

~ * .... :t __. .,. _. 
or L1 :. (1+E1) o<11 l 1 + (1+E1) lX2.1 ~1 + (1+E1 )o<31 [ 3 (l-2la) 

ICJJI ICJJJ /[JJI 

Analogously 

(l-2lb) 

r! ~ • -X ...l ~ _. 

l3 = (l+E3)o(,?, L1 + (1+E3) o<J.:3 L2 + (!+E3)o<HL3 (l-2lc) 

l[JJI l[JJI ICJJI 

In matrix form the lat t er equations become 

(1-22) 

16 



where 

~ 
L 1 

{T} ~ r: 
L1 
~ 
Lj 

"' ,-J ~ /V "' /V 

t.17 L2, L3 are denoted the unit vectors tangent to line X1 ~ XlJ X3 

respectively (before deformation). 

and where 

[BJ = 

( ,t * 

1 

/[JJ/ 
(l-2Ja) 

E
1

, Ez, E
3 

are the relative elongations of the element MN. 

which are par allel to X1, -X2 ,x3 axes after deformation 

respectively. 

Matrix [B] is written in terms of direction cosines as 

N .... 
C-Os ct.J I1 ) 

,v 
(',OS ( L1., 1- 1) c..os(C3 ~1) 

.J 

[BJ= IV - tv - /V -

C.Os U,, Lz.) ttis ( L 2. ., ~ 1 ) (1)5 (_ ~ 3 ~ 2.) 
) 

/V -> ,.., - IV -

{:J)s (L17L3) U)S(l2.,~3) los C L 3, (; .3) 

(l-2Jb) 

17 
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Noting Equat i ons (1-22), (l-2Ja ), it follows that 

/V T _. 

{ c \ ~ 1 [1+E~J[o<l \i.1 (1,-24) --
\[JJI 

where 

* 1 +- E1 0 0 
'It )4 

[1+E] =- 0 1 + E2 0 

'I<' 

0 0 1+ E3 

Noting Equations (1-22), (1-24), it follows that 

'i T 

[BJ =_!_[1+~J[o<J. (1-25) 

I CJ 11 

In order to determine the relationship between 

matr ices [A] and [ B] , consider the Equation ( 1-14) • it 

follows that 

[J] = [A] [1+E] 
-1 _j_ -1 

[JJ = C1+EJ[A] 

1 -1 
[ o< ]= \[JJIC1+EJ[A] 

Consideration of Equat1on (1-25) gives 

[B] = 1 [ o<] [ 1 + E~ J 
I CJJ I 
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Hence, 

(1-26) 
~ -1 1 -1 

[ f> ] [1+E] = [ 1 + E] [A] . 



CHAPTER II 

GEOMETRY OF STRAIN 

2.1 Strain Components 

20 

The square of the distance between the points M 

and N (See Figure(I- J )) before deformation i s 

qs2. = dx~ + d )(1 + dx~ 

and after deformation is 

•:1. d •2. r1 ,-z. d i 2 
d-s = X1 + v1X.2, + X3 

Thus , 

d/2:_ cis2. = { dl }T\ cl/} - { dx} Tt dx} 
T T T 

- fdx}[J][J]{dx}- 1dx}idx} 
T T 

= ~dx3 [[JJ[JJ - [I]} {dx} 

(2-la) 

(2-lb) 

(2-lc) 

Defining EMN as the relative elong~tion at the point Min the 

di rection of the point N, then 

or 

dst - ds 

ds~ 
ds 

ds 

it f ollows that 
:J. 

£MN + /t. E,.,,N -t- 1 

With 

E ( t J_ { dst 2._ ds2..) MN 1+ ~ E,.,N) = 
:J. ds'J. 

(2-2) 



In matrix form this is written 

where 

{da:JT[G]1.~:) 
dx1 
cts 
ctX1. 
as 
O.X3 
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(2-Ja) 

(2-Jb) 

where [E ] is defined as 
~ 
the strain component matrix in the form 

t11 ½ ~12. ½ E.13 

[~] = f E.12. 'c21 t E,-3 (2-Jc) 

1 E.B ¾ t::3 E~3 

It follows from Equation (2-lc) that 

1 df4-ctsi. = 1 1dx}T[[JJ[JJ - [I]] 1~x} 
2 d$2. ~ ds 4 

= ½ 1 ~: J T [ [ J] [ J J - [ I J1 \ ~~) 
{~;}EtH !:~ = 1 ~S ½ [(JfoJ- crJH~:~ (2-Jd) 

Comparing both sides of the latter equations yields 

[f J -r 

= ¾ [[J][J] -[IJ] (2-4a) 

Upon subs ti tu ting Equations ( 1- 3 ) and ( 1- 5 ) , one obtains 

-t T 

= ~[[D][D]-t-[D]+[D] -t[IJ-[r]] (2-4b) 

T T 

::: ~[[D]+[D] +[D][DJ] 

= ~ [2[eJ +[eJ"·- [w][e] +[eJ[wJ-[wJ
2J 



Finally, 

[ L LJ [f] - [e] + f [eJ +[eJ[w]-[co][eJ-[wJ (2-4c) 

Let 

d X1 -== i\1 dxz. = 7\ 2 ' 
dx3 :::: 1\3 J 

d s 
cis r; cts 

or {~:} = i 7\\ C ~i (2-5a) 

where 7\, 7\.t,, 7\3 are the direction cosines of Vector MN, 

it f ollows from Equation (2-Ja) that . 

(2-5b) 

If element under considerat i on is parallel to the x1 axis 

before deformation, one obtains 

EMN = E 1 
. 
) 

f1(1+ 1E1) 

Thus, 

E1 C 1 + ~ £1) 

or f 11 

Analogou s ly, 

E:i. C 1 + } £).) = l:.,_.,_ 

E 3 C 1 + ± E3 ) = E ~.3 

-

= 

:::: 

. 
) 

. 
) 

d X1 = 1 
ds 

tdx1, o., o} [r] as r·1 dS 0 
0 

~ 11 ~ 

J 1 + 2 E11 - 1 

or­

or 

EJ. =- ) 1-+ :) t.,; -1 

E 3 = j 1-+ ~ C33 
1 

-1 

Therefore, the strain components l:.11., E,.1., E~ characterize the 

elongati 6n of t hos e line elements which, before deformation, 

are parallel to the co-ordi na tes axes. 

22 
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In order to clarify the physical meaning of the 

strain components E,:i.., E,;_, E,-.3_, a determination of the direction 
. . r:~ r:, "!1- • 

cosines of the angles which the vectors ~ ,L~, c3 form with 

one another (i.e., the cosines of the angles between the 

t t the lines /Vf. "'" rv.,, tangen s o X1 , X-J..J x3 passing through the point M*) 

From Equation (1-12), one obtains 

/Y, 
L1 ::. 

';''I' __,, N,r. _. ~,'C 7'° 
(!,o5(L1X1) i1 + ~s(i1.,X2.)L'2.+ C.05Cli/:3)t3 

/:'~ 
LJ. = 

r-:i,, _. . ~" "7 /V"' -J. 

(!,o 5 (_ I i J X1 ) ~, + e..t)$ ( L 1.} ,< .1) I, 1 + e.t,.s C C1,) X 3) ~~ 

/'/'f: r.'Jf, 
( L1 • L .,_ ) = (2-7) 

(2-8a) 

Replacing the direction cosines by their values given in (1-lJa) 

and simplifying yields 

(2-8b) 

Before deformation, the angle between. the line elements 

dx1, dx2. is a right angle. 

Let 'P,2. denote the angular increment due to the deformation, 

then 

Analogously ~ 

J;;i_~ <P,3 = --~--=<13 __ ......, 
(1+E 1)(1+E3) 

h-fVl cp13 =- f 2?1 

(1+E2)C 1-t-E3) 

(2-8c) 

/ 
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The angles cp 12 ) <p,3 ) cp
23 

are called "shears." 

It follows from the above equations, that the strain 

components 1: 12 , t. 13 , "E,} characterize the shears, and that if 

these three strain components vanish, then the angles between 

the· line elements dx1, dxz,dX~ remain right angles after deformation. 

2.2 Transformation of Strain Components under Change 

of Axes. 

A given deformation is considered in two different 

Cartesian coordinate systems. In all such cases it is 

characterized completely by the six strain components, whose 

values, however, depend on the choice of directions of the 

coordinate axes. 

Consider, together with the basic syRtem X1 J Xz, X3 ~ 
/ ,, / 

another system X1 , X2., x3 the directions of whose axes relative 

to the axes 01' the first system are given in the following 

equations. 

/' 

X1 = A11 X 1 + 7\2.1 X2. + 7\31 X 3 

x; = 7\12. X1 + '1'.22 X2 t- A32 X3 (2-9a) 

,, 
l\,~ X1 -t 7\.2.~ X2 t- 7\ 3~ X.3 X3 :: 

In matrix form 

(2-9b) 



Figure II-1 Change of Rectangular Coordinate Axes 

Defi ning [7\] as direction cosines matrix 

[ ,7\7 = 7\. . . 
J l} J 

where i =::t> first · system 

j =t> second system 

Since both systems are rectangular• ( l\ J is the orthogonal 

matrix, hence 
T 

25 

[ 1\ 1 [J\ 1 = [ I ] 

cl\l-;:: [ 7\ 1-1 
(2-10) 

where 

1\11 7\r2 7\,; c.DS ( X1,x;) cos c x1, x; > 
.,, 

CW.,(X1,~) 

[l\ J ::: 7'i l.l 7\12. 7\ .2 3 = Q..os c x2., x;) (OS ( X2.J X~) COS ( X:z., x;) (2-11) 

1\ 31 7\ 32.. 7\H tos ( X3J x;) cos ( x~1 x;) COS ( X3,X; ) 
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The projections on the axes of the first system of a line 

element having the components dx;) dx~, dxi along the axes of 

the second s ystem, are g iven by 

(2-12a) 

or 
T 

- [7\J 1dx! (2-12b) 

From the basic chain-rule of multivariate calculus, one obtains 

dx1 0X1 mx1 fZlX1 &x; 
ll>X{ fDXi. (DX3 

& )(z_ - ~•1t. !7)Y.z_ ({JX:i... 
&x~ (2-12c) - ~x; rox,: roxt 

cix, (OX~ (VY.~ /VX3 d~; 
rox( (V'f.£ rOY:; 

Noting Equations (2-12c) and (2-12a), it follows that 

0X1 (c))(1 0x1 
(())(1 rox:: mx; 

[ 7\ 1 rox2. rDY.l-- (O'/.z. (2-12d) - r11x; -
rZ> )( 1 ro'ia 
/() )( j (OX3 ~Xj 

/OX1 (?JX.i: 0'1-; 

Recalling Equation (2-1), the left-hand side represents 

the increment of the square of the distance between the points 

Mand N, resulting from the deformation. The choice of these 

Points is independent of the choice of the coordinate system, 

therefo;e, the left-hand side of Equation (2-1) is also 

i ndependent of i t, and remai ns invariant under a change of axes, 



Noting Equat i ons (2-lc) and (2-2), it follows that 

~ T T 

dt- dl = ~dx} [[JJ [JJ- [IJ] tclx} 
T 

Er,1N(1+ -½.E~N)ds= ~cix} [t.] 1dx} 

or E-.1NC1+½EMN)d-s == 1_di}T[t. .. ] 1_dXJ 

Substitute Equation (2~12), into Equation (2-lJa) gives 

Comparing Equations (2-lJc) to Equation (2-lJb) yields 

... T 

[EJ = [/\1["£JL7\J 

27 

(2-lJa) 

(2-lJb) 

(2-lJc) 

(2-14) 

Hence, •it is clear that Equation (2-14) gives the desired 

law of trans formation of the strain matrix in passing from one 

rec t angular coordinate system to another rectangular coordinate 

system. 

2.J Principal Axes of Strain 

According to the classical theory of eigen-value -

eigen-vector problem, it follows that 

[1:] [7\] == [7\ J [ E~] (2-15) 

where 
~/ 0 0 1 

[Ea] = 0 
E. p 

2. 0 

0 0 c: 
and 

t/ f> p , , c.t, E-3 = The extremal values of the strai ns components 

E.11, ~2.2.) t?,3 (Principal strains). 



Thus Equation (2-14) is rewritten as 

/ T 

[ ~ 1 = [ 1\ l [ 7\ l l EJ J 

[(J = [E~] 

Therefore Equation (2-16b) exists by ·the condition of 

Equation (2-1 5). 

Furthermore. E;1 = E.f ; E;1. = E.: ~ E ; 3 = e: and 
/ .,, / 

E12. = E1a = Cz3 = O . 

28 

(2-16a) 

(2-16b) 

Also• matrix [ 7\ 1 is the direction cosines of the principal 

axes of this principal strains. 

Note further that the eigen-values - eigen-vectors problem 

also gives the following equation 

(2-17) 

where E 'J:, are defined as eigen-values 

and 5"7\lp L ) = eigen-vectors 

For non- zero value of { 'l\} , it follows that 

I ct: J - E:I' c 1 J l == 0 (2-18a) 

Which yields the characteristic equation ( of this matrix [ f J ) 

Which is solved directly for the eigen-values. The general 

form of Equation (2-18a) becomes 

P 3 p2. p1 pO 
(E:) - Ch(E:) + CA1(E:.) - Qo(E.) = O (2-18b) 
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where 

Oz = Trace of the matrix 
C p f' p 

= E11 + c: 22. + E 33 = c:, -t E.2. + E.3 (2-18c) 

01 = Sum of the determinant minors of the diagonal 

(2-18d) 

Oo= The determinant of matrix 

( 
z. 2.. 2. 

== E11E 22 E~ - 1/4 E11~2.3+ Euf,~+ t33t11.-£,2.'E13c23) 

= E.f ti E.~ ( 2-18f) 
p f f 

The roots of the Equation ( 2-18b), E1 ., E:2.., E:. 3 are the 

eigen-value of matrix [E] . 

The eigen-values of Equation (2-18b) are individually 

substituted into Equation (2-17) and the corresponding 

eigen-vectors ~~~fare obtained which directly define the 

direction cosines of the principal axes. These vectors are 

then combined to form the columns of the matrix [Tl] which is 

the same matrix [71] in Equation (2-15). 

Thus, it shows that for every point of the body one can choose 

th ? p p 
ree mutually perpendicular direction x1~xz.~ x3 for which 

the strain components E~ , c::2 , c:3 (and consequently also the 
· 1 f' p f re ative elongations E1 ~ E..z., E::.~ ) have extremal values, 

Wheroas the s train components 
p p f 

Erz., E.13 y t.23 ( and cons equently 

also the shears th P rhp ,.i._ P ) 
4'12, 4'1a, 4'z.3 are equal to zero. 



These three directions are called "the principal 

axes of strain" at the point M Cx1J X,2., x3 ) , and denote the 

corresponding extremal values of the strain components t 11 .J 

f' p p 
'l2.2 ) c. 3 3 b ~ E: 1 ) e 2. 7 e.? • 

As a result of the deformation, the fibers along 

JO 

. . f' f> f' h. h . 11 . the directions E 1 7 
E.2 , E3 w J.c remain mutua y perpendicular 

may undergo a .certain rotations. 

The unit vectors of the principal axes after the 
f'¥ f,r f-t 

deformation are denoted as ~ 1 ,E2 ,E3 (i.e., the directions 

possessed after the deformation by fibers which, before 
f> p f' 

deformation, had the directions E 1 1 E.2. J E:3 ). 

The angles between the mutually perpendicular 
p f' f 

vectors E1 ,E2 , E:3 and the mutually perpendicular vectors 

E:'i, E:~~ E:* characterize the rotation which an infinitesimal 

element of the body about the point M undergoes as a result 

of the deformation. 



Jl 
2. 4 Transfor mation of the Parameters e11,eu,eH,er2., e,8 , e~3 

and W1,wz.,W3 under Change of Co-ordinate Axes 

The components along the new axes, of the displacement 

of an arbitary point of the body, are expres s ed in terms of its 

components a lone the old axe s by the obvious formulas 

T 

{ ti} = [7)] 1 Ll} (2-19a) 

where / 

U1 L( 1 

1 L(~ == u; . 1 lA~ = U2. ) 

U3 u~ 

From the basic chain-rule of multivariate calculus, one obtains 

~ fc)X1 f?J X1. fuX3 fr) 

1ox{ r.>X1 rux1 (J)(,{ rvX1 

ra fv X1 (;))(2 r;)X.3 {u -,, 
ro'h fvXi ruxi (OX2 (c)X2 

(2-19b) 

fa . (c)X1 (c)Xz (oX:3 ((J 
le)';(; {JX3 ruxa rox; (OX'.3 

Noting Equat ion (2-12d), it fo llows that 

{v} = 
T 

[7\1 iV} (2-19c) 

where lo lo 
(D)(,( roX1 

\iJ (0 ~v} - (a 
::. . -

(DX{ 
, ro><z. 

(7) (D _,, 
(o )( 3 rvX~ 

According to Equation (l-4a) 

T. 
[ D,,J T ~ v} i u~} = (2-20a) 



T T 

= [ 7\ ] [ D J [.l'i] 

/ T 

[1> J = [7\ J [DJ [_ 71] 

Equation (l-6c) is also written as 

Substitution of Equations (2-20b) and (2-20c) gives 

[e] = ½_ [ [11]\ DJ [11] + [n]T[ DJ
1
['1]] 

- [7\]T ;z [[DJ+ [D1T] ['it] 
,, T 

[e J = [ 1\ J [ eJ [ 7\ J 

J2 

(2-20b) 

(2-20c) 

(2-21) 

(2-22) 

Thus it follows that. under a change of Cartesian co-ordinates 

axes, the given parameters matrix [eJ transform according 

to the same transformation law as the strain matrix [EJ. 

Consider t he transformation formulas for W1J W.:2. J w3 under 

a change of co-ordinate axes. Since according to Equation (l-6c), 

the same simplification is used with the parameters matrix [WJ 

,,. T 
[w J:::: [7\] [W] [71] (2-23a) 

where ,,. ,,, 
0 -W.3 W:2. 

[UJJ == 
/ / 

UJ3 0 -W1 (2-2Jb) 

,,. ,,. 
0 -W2 W1 
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After matrix multiplication, the components of Equation (2-2Ja) 

become 

/ 

W1 = W1 ( 7'.zz 7\33 - l\ 32. 7\ B) + W.z ("~2.1\ 13 - 7\,-z. 7\uJ + W/ 7\ 12.'l\i~ - t\i7\13J 

/ 

c.o 3 -= W1 ( ?\.t.11'32 -11).,1. 7\31 I + W:z c, .... ~,T\;_,1,- 7\ II 7\~7.) + W3(?'\ 111\12- 7\,1.17) 121 . 

which are written in the matrix form 

T 

{cu"; = [ CoF. [?\]] {w} (2-24) 

where 

Because of [ 7\ J is an orthogonal matrix. it possessed the 

following properties 

a ) 

b) 

c) 

d) 

T 

[7\J [7\l ,. 
[7\1 

I [7\J I 
-1 

C7\J 

T 

[ 7\ 1 

[ 7\l 

= [I] 
-1 

= [i\] 

= 1. 

::: [COF[l\J] 
T 

I [7\11 
- [ C,OF [7\]] 

= L C,OF [7\]] 
T 

= [cof [1'J] 
Thus. Equation (2-24) reduces to the form 

(2-25) 

(2-26) 
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This shows that, under a change of coordinates, the parameters 
~ 

w1, uJ2 , W..3 transform as the projection of the axial vector w 
whos e length is 

1 T ] 
== ;z Trtli~e[[wJ[wJ 

and whose directions are given by the cosines 

...J. 

cos (CD., Xz.) 

- u.J1 

lwl 
=. W,z. 

lwl 
_ W3 

- lwl 

(2-27a) 

(2-27b) 

(2-27c) 



2.5 Geometrical Meaning of the Parameters -w~~J 

The point Mis imagined to coincide with the point 

M*, and the origin of the coordinate system X1 J X2._, X3 is 

transferred to this common point (without changing the 

directions of the axes)J 
X A 

( See Figure (II-2 )) • MN and M N 

have the following projections. 

d X 1 J d X 2-J d. l(.3 , 

ctx~ , OXi J dx; _ 
X3 

Figure (II-2) Rotation of Line Elements 

5 

Under a deformation, however, not only do the relative 

directions bf the fibers change, but also their absolute 

directions. In view of thi s , and infinitesimal element of 

volume of the body in its initial position undergoes a certain 

rotatiori, in addition to a deformation, in passing to the 

terminal position. 
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The term rotation. as applied to an element of 

volume which, in the process of displacement, alters not only 

its position but also its dimensions and form. will be 

understood to represent the mean value of the rotations 

experienced by the totality of line elements belonging to 

th e g iven element of volume. 

Let the angle of rotation of a fiber which rotates 
• r".1 

about an axis H, , to .which it is perpendicular to before 

deformation, be defined by the angle between this fiber MN 

(b efore deformation), and th e projection of M*N~ after 

deformation (i.e., MN1) on a plane which is perpendicular to 

the given axis 8 (as shown in Figure(II-J)). 

'E 

* N 

Fi gur e UI - J) Projections of Line El ements and 

Rotat i on Angles 



To clarify the magnitudes characterizing the 

rotation which a neighborhood of the point M undergoes as a 

result of the displacements ~1 , ~t• u3 • Equation (1-?c) 

is applied for the special case where the line element MN is 

perpendicular to the X
3 

-axis with J X 3 = o. ( See Fugure (I I-4)) • 

* M,M 

Figure(II-4) Special Case of Line Element Rotation 

J? 

Figure II-L~ shows the x1 - X 2 plane, wh ere the 

segment MN represents the line element before the deformation 

and the segment MN1* is the projection of M~N~ on the plane 

under cons idera t ion. From the Figure (II-3) it is clear that 

. 
) 

+avi e~ = dx1 
dxf 

(2-28a) 
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From Equation (1-?c), it follows that 

{ cAlr = [CI]+ [e] + [CU] J 1.dx} 
with 

\dx} = {t:~J 
Repl acing dx~, d x! by their values in latter equations , one 

obtains 

-1--ane* _ ({e,2+W3)dx1 -f- c1+e22)dx2. 

C 1 +e11) dx1 + ( \ e,2. -W3) ct)(-i. 

Equation (2-28a) g ives 

Eliminat ing cix1, in Equation (2-28b) there results 

-tan e1" = ( -t e,z. + UJ3) cos 0 + ( 1 +en.) ,.D ivt 0 

(1+e11) c..ose + ( 112.e12.-W3) .bine 

From Figure (II-J) it follows that 

f3= et-0 . or e'J.=<p3 +0 
i.e.• <p

3 
= angle of rotation of MN about the x3-axis. 

Noting the f ollowing identity 

fan c.~~ +e) = +a~ e + f0rvr (j}3 _ 
1 - fan e fan c.jJ3 

With 

Tuvi tjJ3 c_b + a tavi e,) 

ta YI q}3 

a 
b 

bTcH1 8 + b tavi q}3 

_ a- bt"an e 
a- b tc:i11 e 
b+ a tane 

(2-28b) 

(2-28c) 

(2-28d) 
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It follows from Equation (2-28f) that 

(A- btane = che,1.+W3) MS0 + (1-tei1..)bivte - c1+e11)J>ivie 

-l111- -w; 1 srv?e 
c»se 

Also, 

b--t aTuvie = i ( 1 + .i e, 2 ~in2e + e11 UJs'"e + e:1 stvie) 
C,ose 2 

Finally_ 

c:: W3 -t 1/z e12 w5 2 e + 1/2 (ezc e11) Ji~ 2G 

1 + en <1os2e + ei1- -sTvl·e + h e 12 'Sin .2.e 
(2-28g ) 

The mean value of tan 4'3 in the interval from e = O to e = :2 ,r 

(i.e., its mean value for all the fibers perpend i cular to 

x3-axis before the deformation) i s given by the expression 

ril.7T 

Here 

fan c/J3 = !_ j fan cf 3 de = I 1 + T2.. 
!;}:f ( 

0 

. (2-29) 

(2-29a) 

(2-29b) 

The integral 12 i s evaluated by making the substitution 

2.. . l 1 • - 1 + e11 (!os e + ea s,n 0 + 1/z. e 12 s,n 20 (2-J0a) 

=- (zsinecose cen-e11)+€?r2- et>.sze)de (2-J0b) 
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which yields ~ 

1 e=:i.,, dt 
T:: j 
-, 41r ~=o I 

==- _1 ( lvi .f.) / e::.2. ir ::: o 
4Tf a ~,.O 

(2-Jla) 

The inteiral I 1 is reducible to the form 

211'" 

W3 j de 
1f O 2-r 2.e11 (!,,()s';L0 +2e11.'>6in10+e12 t>in2.e 

= 

where 

(2-)2) 
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Now let ~ = 20 +? · or e = ( <P + ~) with de =i. ct¢ 
2 :l 

and at e = 0, ~ = -r 
e = 2rf I ~ = 4"f+{3 

hence, Jfrr'+r 

I1 ::: W31 d ¢ 
.. ur 13 J. + e11 + e.,.1.+ [ce11 -en1,._+-e1~Jh sincp 

(2-JJa) 

Cons ider 

= ;;J 
= W3 

.. ·nr 

lfrr'+.P 

A + B :sin cp 

+~vi1 (A+~~ ~2.-+ B) \A-rr +f 
\I A2._ B~ f3 

=-1. ,=~=W=3========~~ -rr / ~ .>. .l' 
:t 1 "(J..+e"+e.1J)-(e,,-e.,,.)-e0, 

-1 J_ ¢ j .1.. i... I 
fe1vi (.:t+e,,+e.2.,_, ~1aM ;z+ ce11-eJ;""')+e11-

y ~ + e11 + e.,,.t l- ( e,,- c.,,.1/- e,~ 

Equation (2-J)b) becomes 

:::: 1 

(2-JJb) 

.;nr / 1 -+ e11 + e~,_ + e11 e"'.,, - '}/4 e11 
+ -1 (J + e11 +eJ.l) fan <P/.t + ✓ce11- ~s + €t~' ( 2-JJc) 

· 1an 1 I' ,;_ ✓ 1-1- e11 -t e.u + e11e.u. - /4- e,J $ 

, 

Since the last function of the right hand side of Equation (2-J)c) 

is multi-~alued. t he result obtained is indefinite. This _____ , _ _ _ 
indefiniteness, howevBr, is removed by taking into account the 



fact that as e 11 J e22 J e12 tend to zero, the integral I 1 

(and therefore also tan y,3 ) must tend to u.>3 , as from Equation 

(2 - JJa). Consequently in Equation (2-JJc) one obtains 

-

--

= 

tar1-1 l (2+ e,, + e ,2l fon ¢/2 +JC e,, ~ e,,: + ef,] 
2 ✓ 1 + e 11 + ezz t e1181.2 - ¼t e12 

41f+t3 

f an-
1 

[ J. t:vi <P;z] 

f I ¢ (if+~ 
1/,2. -f 

2,r 
which leads to the following expression for tan t~ 

• 

Analogously 

4rr+r 

(2-34) 

(2-J5a) 

(2-J5b) 

(2-J5c) 

which determine the mean values of the tangents of the angles 

of rotation about the x1- and ,X2-axes, of the line elements 

of the body perpendicular to these axes before t he deformation. 

The three parameters tan t1, tan o/2.• tan f 3 characterize 

the rotation of an infinitesimal volume containing the point 

Ma they are proportional to W1 , Wz. and w
3

, and vanish whenever 

these parameters are ~qual to zero. 
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It is clear from (2-26) that if W1 , W1 , w3 are 

equal to zero in some co-ordinate system x1 , x2 , x3 , then 

they are equal to zero in any other coordinate system. It­

follows that if the relations 

(2-J6) 

holds at some point of the body, then, in the mean, the line · 

elements passing through this point will not undergo a rotation 

to any axis passing through this point. 

2.6 Fibers Preserving Direction Under Deformation 

Now consider i n the conditions for absence of 

rotation and establish the fact that at every point in the 

body, there exists at least one fiber which preserves its 

direction under a deformation. For such a fiber the vectors 

MN and M._ N1!" (Figure (II-1)) are identical in direction which 

implies that their projections satisfy the relations 

= ~OVIS +ant., 

where 
I Mi-N~ I 

= 1+ E: l. = 

IM N \ 

and Eis the elongation in the direction MN. 

Thus 

{dl'l = (1+E) idx} 
According to Equation (l-2), it follows that 

(1+E) ldx1 - [J]1dx-y 

l1+i;)[I.11d)(,~ -= [J]td)<; 

[JHctx} - (1+E)[I] i°'XJ = 10~ 
[[J]-(1-tE)[I}l~ch:r= {oj 

(2-J7a) 

(2-J7b) 

(2-J7c) 

(2-J8a) 



By dividing Equation (2-J8a) by IMN\, Equation (2-J8a) is 

rewritten in the form 

[ [J]- (1+E) [I]] \~:NI} = {o) 

or [[J]-(1+E)[IJ] \7\~ = 10} 

For non-zero value of f 7\ \ , it follows that 

I [ J J - ( 1 + E) [ I 1 I = 0 

or I [DJ - E [I] I = 0 -

Since 

[J] - (1+()[1] - [DJ+ [ 1]-(11- E(I] 

= [D]-E[IJ 

(2-J8b) 

(2-J8c) 

(2-J8d) 

{2-J8e) 

the Equation (2-J8c) yields the characteristic equation of 

the matrix [D] which is solved directly for the eigenvalues. 

The general form of Equation (2-J8c) becomes 

.3 '2. 

(E) - b/E) + b.,(E)- bo = o 
where b2 = e11 + e22 + e .33 = Trace of matrix [DJ 

b 1c_2. 1. ,__ 
1 = e11€22. + e11eH + e.22.e.33 -1/4 e12..+e,~+e.1a) 

'2. l. 2. 
+ W1 + C.U2 + W3 

b 2. l. .t 
0 = e11€.22. eH + 1/4- ( e,2.e2.3 e,~ - eu €13 - e.33 e,1. -e u e1~) 

{2-J9a) 

{2-J9b) 

{2-39c) 

2. 2. l. + W1 e11 + C.V2 eJ.I. + Wa e.H + W1W2 er? + W1W3 e,~ + W,2W3 e,13 

= I [DJ I {2-J9d) 

The root's of © ® ® the Equation (2-J9a) E, E, E are the 

eigen-values of [DJ · 



The quantit~es b2 , b1 , b0 , remain invariant under a transforma­

tion of coordinates. Recalling the three invariants of [e] 

as 

and the three invariants of [ W] as 

it follows that 

must also be invariants. 

(2-40a) 

(2-40b) 

(2-40c) 

(2-40d) 

(2-40e) 

(2-40f) 

(2-40g) 

(2-40h) 

Since Equation (2-J9a) is a cubic equation with real 

coefficients, at least one root must be real which implies 

that they exist at least one direction for which the 

rotation is . zero. 



2.6a The General Picture of the Deformation in the 

Neighborhood of an Arbitar7 Point of the Body 
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It fo l lows from Equation (1-2) that the projections 
_____,. 

of the vector MiN 1 (i . e., the projections of an arbitary line 

element of the body after deformation) are connected by means 
_,. 

of linear relations with the projections of the vector MN 

.(i.e. , with the projections of the same element before 

deformation). Correspondingly, the inverse relations 

expressible by Equation (1-16) are also linear. The coefficients 

in Equation (l-2) and Equation (l-16) are to be taken constant 

and equal to their values at the point M, thus the deformation 

of an infinitesimal region containing the point Mis described 

by a linear transformation with constant coefficients, 

o.,,.._ _____________ _ 
X2. 

Figure(II-5) Deformation of a Rectangular Parallelopied, 



In particular, the rectangular parallelopiped with 

edges dx1J dx.u ~x3 parallel to the coordinate axes is transformed 

by the deformation into an oblique parallelepiped with edges 

(1+E1)dx1, (1+EJ)O.X.1.., (1+E 3 ) dx 3 forming angles 

( 11/.z-CD 12),(1f;2-Q),3),(11/.t-(p,1.3J as shown in Figure (II-5) , 

In case of principal axes, the parallelepiped whose 

edges before deformation coincide with the principal axes 

at the point in question is still rectangular after the 

Pd ? fct deformation, and has edges ( 1 + E1 ) a1 J ( 1-t-E.1) da.2.J (1+ E&) 0.3 
/ 

where a 1 , a.\ J a3 are the leng ths of the edges before deformation. 

The foregoing gives some idea . of the character of the 

deformation of an infinitesimal region surrounding the point M. 

Under a deformation, this region first undergoes a translation, 

as a result of which the point M coincides with the point M*s 

secondly, it experiences a rotation, under which the fibers 
P f> f P"' f.>t ·U-

directed along E.1 J E:-_,. , E.3 become directed along E:1 J E..1. _, E, 3 ; 

and finally , undergoes a pure strain, in which the fibers 
f..r r, fX P f 1" 

E.1 , E:..t, e,3 receive elongations f 1 J E.t , E3 • 

From this standpoint, displacements and rotation are 

called the characteristics of the deformation of a body as a 

whole, whereas elongations and shears are called the characteris­

tics of the deformation of an infinitesimal element of volume 

Of the body. 

These definitions must not be confused. It should be 

emphasized that the assumption that the displacements and 

rotation are small is a greater restriction of t he generality 

of the arguments than the as s umption that the strain component s 
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are small. The first assumption implies the second, but the 

converse is false. It must also be remarked that, in those 

cases where the necessity of small displacements is indicated, 

it is ordinarily not specified what they must be small in 

comparison with. Such a specification, however, is absolutely 

necessary, since displacements are dimensional quantities. 

Thus in conclusion, the term "small deformation," 

means the smallness of the elongations and shears compared 

to unity. 

2.7 Change in Volume 

o,.,,.__ ______________ _ 

Figure(II-6) Volumetric Change 

An infinitesimal rectangular parallelopiped with 

edges dx1 J dx~Jdx., parallel to the coordinate axes is transformed 

by the deformation into an oblique parallelopiped with edges 

as: 1 d,s; , (1 s; , forming angles L 11i.t - <P12. \ ( 11i.t -(p,3)-' ( 11/.2. -¢,.3) 

in Figure ( I I-6). 
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•Noting 

V = dx1 d'}(2 dx3 = The volume of the element before 

deformation 

= The volume of the oblique parallelopiped. 

(2-4la) 

(2-4lb) 

d__... " d_.. , d_.. 1 It follows that 5 1 , s~, 5~is expressed into the vector form 

from Equation (1-2) as 

dxf ( 1 + n>U.1) ~(,{1 ~6(,1 

0X1 roxi (c)X3 

~ fl) u ,I. 1 + (Olli. n, lA.'.2. 
dxz. = ~')(1 rn:J.. (l) )(~ 

dx! (() I,(~ ~(A; 1 + (Z)Ua -
(DX 1 (0 XJ. ~ )(3 

For the line element before deformation 

one obtains 

(DU'l. ,____ 
{l) )<1 

(1U3 dh 
~ .><1 

(2-42a) 



Analogously, 

{ dsJ} == (1+ r;~:) dx2. 

loU.3 dx2 
I?) X2. 

(l)U.1 ch~ 
IL) )(3 

~U1. dx.3 
rD x~ 

which also before deformation are given as 

,; { d s~} = { ~ } and 

dx~ 

Equation (2-4lb) is expressed in matrix form as 

T 

C v~) = { [ d s~] { d sl}} { d s; J 
T T 

= { dsJ} L dsf] { ds~} 
't'he component form becomes 

(v { /1ll(1 c /l)l,{7.) ~} 0 
f/)L.(J t1> Uz. 

) , = f'1>Xz.' 1 + {l)'J<?. ., aJx1 f'OX1 - rdXi 

- (l)U~ 0 ( 1 + f'OU1) 
a, X1 ~>:1 

~th. -(1+~U.1) 0 
i'OX1 /'O X1 

50 

(2-42b) 

(2-42c) 

fl> U1 
~X3 

~lh dx1dx2dx3 
~X,; 

( 1 +mu.,) 
fDX3 



51 

The determinant of [J] is defined as 

. lcJJI 

( 1 + f"OU1} ~ U.1 (?)U1 

rux1 (l) X,1. ~ )(3 

lo U..2. ( 1-t- ~U.i.) (211,{,_ 

- ~X1 rox,. ~)(3 

~U.; ~u~ ( ,i+ ~u, ) 
~ X1 rD'h .. ~XJ 

_ {rDU1~U,1. -(1+~U:)~U1 J ( 1 +(i)U1)- ~U1 tou,_ J 
- toY.J.. 0)(~ f3Y,_ (i)Jc) <c>X1 cc)'/.~ rDXJ 

0 m1A3 - f'bUl 
<11><1 (c) )(1 

~l,(.3 

to X1 

~ l.{3 
("J )<J_ 

(1 + nu~) 
nx~ 

(1)U3 
luX1 

-~U3 Q ( + (<)U1 ) 
nx1 1 

~)(1 
~U3 
<oXi 

~u.i. 
- - ( H ~U1) 0 
0)(1 ~ )( 1 

Therefore, ( yi) is rewritten the form 

\ ~-t (dLl3) 
f'JY.3 

( vi) - /[JJI dx1dx2.d.><3 -

- I [JJI (V) {2-4.)a) 

Vt l CJJI or - -
V 

Defining ,6 as the relative change in volume due to deformation . 
or 

L = ( v: y) (2-4Jb) 

or j. 

- V -1 
and y"I- y 

1+6 -
V hence (2-4Jc) 
/[JJ/: 1 -t- fl 
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2.8 The Theory of Small Deformation (Case 2) 

The equations derived in the previous sections 

place no restrictions on the elon ations and shears as compared 

to unity. A restriction in the size of these parameters .is 

now accounted for in this section. Introducing into 

Equation (2-6) the approximation that E1,z.,~<-< 1, it follows that 

(2-46a) 

Further, Equation (2-Bc) is reduced by taking into consideration 

that E~,t,\<<1 , it followe that 

(2-46b) 

where 

(2-46c) 

Thus for the small relative deformations, the components 

c. 11 , 'Ez2 , 1 33 are identified with ~1 , Ez.,E.; respectively, 

and 't.12 , t. 13 , 'E23 are identified with q> 12 ., q,,3 1 
¢13 respectively. 

Therefore, the increment of volume 6 in Equation (2-45) 

is reduced to the form 

p f f 

~ t.~1 + E22. + t33 -= Oz. = E1 + E..z.-+ f.3 (2-46d) 

Analogously, t-he Equation (1-12) and (1-22) take the form 

Where 
' [1+E]~ [I] 

=i- . 
[1+E] ~ (I] 

l[JJI ~ (1-t-E1)(1+E2)(1+E3) X 

(2-46e) 

(2-46f) 



Squaring both sides yields 

2. )2 
(1+Ll) '.:= (ICJJI 

or = I c1fcJJ I 
From Equation (2-4a). it follows that 

T 

:,_[1c_]+[I] = [JJ [ J] 

Thus T 

l[J][J]/: I 2[~]+[I]/ 

or (~+L\).:: I 2 [E] + [I] I 
In ca se of principal axes [ E] changes to the form 

thus 

p 
E::, 

0 

0 0 

0 

0 

E:~ 

( 1 + {l) == I 2 [ f!] + [ I ] i 

== ('-E.~+1)(~E:;-t1)(.1.e.{+1) 

or Li = J ( 2 f.~ + 1) (,). tf + 1) ( J E: ~ + .1 ) ' - 1 

By using Equation (2-6). one obtains the form 

p f f 

(2-44) 

(2-45) 

where f 1 , £.,_, f.3 are the principal elongations at the point 

Where the change in volume i s calculated. 
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2.9 The Case of Small Deformation and Small Angles 

of Rotation (Case J) 

If the angles of rotation as well as the strain 

components are small compared to unity, then the directions 
r:). r:,,,_. r:-11 r;J r;' ~ 

of the vectors L1 , L2-, 1., 3 and t 1 J Lz.J L. .3 with obviously deviate . 

from those of X1 ) X2,, )(_, by only a small amount. 

As a result, the diagonal members of [A], and [B] 
(See Equations (1-lJa) and (l-2Ja))differ from unity only by 

quantities of the second order which the remaining members 

of these matrix are quantities of the first order (if the 

maximum value of an angle of rotation is taken to be a quantity 

of the first order). 

Cons idering the two dimensional axes of matrix [A J., [f>J 

ws cp ~iVl ¢ 1 + ~t+ ... ¢3 
¢--g-,+· ·· - .:t I (2-47a) - • • 

- ~i~q:> (!,,o.s(l) - ( (j)- gt+... ) 1+ ¢\ .. . 
31 JI • • 

for small angles of rotations¢ 

( 2-47b) 

Noting Equations ( 1-18), ( 1-14) with E 
1
-'z.-'

3 
<< 1. , one obtains 

[o<J = QOF[A] 
T 

or [ o( ] = (OF [ J] T. (2-48a) 

Equation (2-48a) is expressed as follow 

Hence 

(2-48b) 
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Thus Equation (2-J5a) is rewritten in the form 

IV 

"'Jo<33- wt' 
(2-48c) 

Consider the following definitions 

In accordance with Equations (l-23a) and (l-2Jb) 

c,(;3 % cos(t'3 _,[ 3) for a small deformation (E:<<1) 
therefore 

=- (2-48d) 

It is noted above that in the present case the cosine of the 
f"IJ 

angle between the X:raxis and vector L~ differs from unity 

only by a quantity of the second order. Moreover, since the 

rotations is small, ~ 3 differs from sin <..p,; only by quantities 

of the third order. Hence, neglecting the squares of the 

angle of rotation compared to unity, Equation (2-48d) is 

rewritten as follows1 

(2-49a) 
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Analogously 

. ., (2-49b,c) 

Furthermore, the formulas for the strain components [ t J _are 

simplified under the assumption that the angles of rotation 

and the strain components are small comparedto unity as follows, 

Consider the Euler angles, 
)(1 

"':It 
X1 ('..()$ 4>1 

{(~ 5 = Si t1 q> 1 C1JS,X,1 
(2-50a) 

X2. 
$i vt4>1 Si VI %.t 

sil'\<hsit1~.,_ 

tr:~ :: COS~l (2-50b) 

c.,o 5 )', J '5 i Y1 cPc1-

(2-50c) 

Fieur<"! (TI~?) Eulr>r Ang les for Rotations 



57 

Let these vectors be combined to form the column of 

the matrix [M] with 

(los¢1 sivid>.2~i~%.i si~¢3~s~ 
[Ml~ bivt ¢1 ~S%1 (!,oSQ).i 'f,j~~;Si1/foj ( 2-50d) 

si vi cp1 $i ~ %1 1,ivt cµ~ cos~ U>S ~.3 

It follows that 

(2-50e) 

After making a comparison with Equation (1-12), one obtains 

T T 
[A 1 := [ M 1 (2-51) 

Consequently, in accordance with Equations (2-51). and (2-6), 

(2-4la), one obtains 

1 + e.11 ~ 1-
(/),-2.. 

✓ 1+ 2E11 
2. 

1 + €.22. 
~ 1 - dJZ -

✓ 1-t2f,21 
:t 

1 + e~3 
~ 1 -

ct>: -
~ 1 + 2 E03 

~ 

/'; f. 
where ¢1., d>.2., cp3 are the angles between L1 and x1-axis, 

I;'* 
X2-axis, L3 and x3-axis, respectively, and also are the 

order of magnitude as the angles of rotation, 

(2-52a) 

{2-52b) 

(2-52c) 

rv 
L ~ and 

2.. 

same 



Consider t he bi nomial equation 

VI 
(a+ b) = 

~ (l')-1) (11-l) J.. 
q + Vl a b + c vi-1) C< b + - - - -

-½. -½, 
- (1+e11)(1 +(-Y.i)(1 )(.tt11)+-- -

C1+ e11)( 1- E11) 
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(2-5Ja) 

(2-5Jb) 

Since the s train components are assumed to be small incomparis on 
,, "" ,, ~ 

to unity, the product of E. and e are neglected. Thus, 

Equation (2-5Jb) becomes 

1+ e11- c-11 - 1- <Pyz_ 

or 'c11 - e11 :::: ¢~ (2-54a ) 
,2 

Analogously 

c2.2 - e2.2 .::. ct>; 
T 

(2-54b) 

E?3 - e33 ::. '¢~ - (2-54c) 
z_ 

Thus in this case, the quantities e 11.., e2,1.) e 33 differ from 

the corresponding strain components l:11 J 'f.u) E 33 only by 

magnitudes of the same order as the squares of the angles of 

rotation. Furthermore, in accordance with Equa tions (2-51) , 

and by using the definition of Equation (2-47b ) then the off 

diagonal terms of Equation (1-lJa) are expressed as, 

!,,-2. e12.+ W:i, ~ q)1 toS¾:,1 

~ e'1o + w ~ ~ ¢ 3 ~~ % _, 

~ €-.1.; + W1 % cp J.. tcs %:;. 

j ,½_ e12.- W3 ~ (+},i )c, i Vt %,i 

; Yi~~ -w.t ~ ¢ 1 <;;i11 %1 

; %, e_,_3 - w.i ~ cp3 sir1 %~ 

(2-55) 
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Now consider the shear strain components t. 1,i) E18 J c.,__, obtained 

from the dot product between Equations (2-50a), (2-50b) and 

(2- 50c), it follows that 
';' i l';'y. ~ "I .t l TS ,:'~ 1. 

( l1 • L).. ) = 1 L 1 J l L ~ J 

':'.,_ ':"* 0 ,+. 
cos ( l1 ' L, ,,J = SI V1 '+'11, = C!,os cp1 sin <1'.t sivi %.,2. + ~S(p.2,Si~ 4)1 L.os ')b1 

+ 5i..,q>1 ~iv, q),2, ~.,., ¾/os%.,. (2-56a) 
,.., ,., 

ws (l ;) L ;) = Si VI G>13 = Co 5 d>1 S j Y1 cp3 cos%,; + (,e>.S cp3 5i VI <P1 si .-, )':, 1 

+ ~i..-i(t,1 '5iVl (PJ u,s,:.1 'Sit-1¼3 (2-56b) 

By comparing Equations (2-Jc) and (2-J7b) with the above 

equations, noting the condition that E1, 1,~ (< 1. , and omitting 

all terms containing ¢ to higher than the second power• 

one obtains 

1\i ~ (j).,_-siV1%.1. + cp1 ws.'.X>1+ cp1¢.i ~iV1~1 c,o~%'° 

~ 13 ~ cp3 cos%, + CD1 ~i., ~1 + ¢, CD3 cos ~1 <;,in x; .3 

E,., ~ ¢
3 

si~ ¼, + cp~ cos X>.t + ¢,)_ q>, ii~ %J. ~s ~ 3 

(2-57) 

Combination of Equation (2-55) with Equation (2-57), yields 

t, 1.l - e1 ~ ~ {+)1 <:Pot _st~ %1 Ll>S '%.t, 

t1?, - e13 ~ ¢1 ¢3 C..05 %1 ,&iVl %.3 

~:; _ e,_3 ~ cpl. cj) 3 -0ivi ¾l. &>.s %3 

(2-58) 



which implies that the parameters e1.2., € 1;, eJ-3 differ from the 

corresponding strain components only by quantities of the 

same order as the products of the angles of rotation, 

Consider Equation (2-4c) 

[ 

.L 2] [f1= ce1 -t ~ [e1 -t [eJ[WJ -[wJceJ - [wJ 

It is seen that the squares of the parameters matrix [ e] 

may neglected. because they are the same order as the fourth 

powers of the angles of rotation, thus Equation (2-4c) is 

reduced into 

0 

[ 't] ~ [ eJ + ½, [ceJtc.oJ - [wJ[eJ - [caJ 1 J , {2-59a) 

and also [e][w] .) [W][eJ have the same power as the cubes 

of angles of rotation. so they may neglected in comparison with 
.i 

[W] J thus 
'2. 

[E] ~ [e] - /2. [W] . {2-59b) 

These equations are correct to within the accuracy obtainable 

by neglecting the angles of rotation and the strains in 

comparison to unity. 



2.10 The Transition to the Equations of the Classical 

Theory (Case 4) 

~l 

Assuming that the squares and products of the angles 

of rotation may be neglected in comparison with [e], 

Equation (2-49c) reduces to 

(2-60) 

These are the equations of the classical theory of elasticity. 

It is seen from the two proceeding sections that the 

expressions for the strain components become linear only under 

the two following conditions: 

a) The elongation, shears, and angles of rotation 

must be small compared to unity. 

b) The terms of the second degree in the angles of 

rotation appearing in Equation (2-59b) must be 

small compared to the corresponding strain 

components. 

The last requirement can be formulated, roughly 

speaking , as the condition that the squares of the angles of 

rotation be negligibly small compared to the elongations ~d 

shears. If the body is MASSIVE• i.e., is of the same order 

of magnitude .in all three of its dimensions, then condition (a) 

implies condition (b). 

This is not true i f the body is flexible, i.e., 

if its dimensions in one or two direr.+,ions is essentially 

small compared to its· r emaining dimensions (rod , plate, shell). 
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In this case the angles of rotation may considerably exceed 

the elongations and shears, so that Equation (2-60) are in 

general not applicable to such bodies. This implies that the 

linear Equation (2-60) is to be used primarily in analyzing 

the deformation of massive bodies, while the non linear 

Equation (2-4c) and (2-59b) are applicable to deformation of 

flexible bodies. 

2.11 On the Transition to Curvilinear Coordinates 

It has been assumed up to now that the positions of 

the points of a body ar e expressed in terms of Cartes i an coordinates 

v X X In the solution of some engineering problems, it "'1; 2, .3 • 

is more convenient to use orthogonal curvilinear coordinates. 

Let the curvilinear co-ordinates be related to the 

Cartesian coordinates in accordance with the equations 

X1 = l1 (ot.1J(>(J./X3 J ) X.2.== fJ. ( o<1__, o(.1/J(~) ) XO= '" (o/1,o<'.,_)~). 

X3 

-
L.2. 

Figure (rr-8) Curvilinear Coordinate Axes 

These equations determine three families of curves, 

the coordinate lines ?(1 ,~JD<'.'1 • Denote the unit vectors tangent 

to the coordinate lines by k.1, le .l, k.3 respectively, as shown in 

Figure (II- 8 ), 



6J 

Since the curvilinear co-ordinates are assumed to be 

orthogonal ~ k1..,~.t.., k-3 form at every point a mutually perpendicular 

trihedral of local coordinate axes (reference i s made to local 

axe s because, unlike a Cartesian system, the directions of these 

axes change from one point to another). 

)(.3 

Figure (II- 2) Exampl e of Curvilinear Coordinates 

Considering vector 
...... 
r in Figure (II- 9) 

-'-
X2.L-2. -t X3l.3 (2-62a) r - X1 i.. 1 + 

-'- - -
(iy V' ~X1 L. 1 ~ X2. L 1 (?) x~ , 

- + + \, 3 

(()o<.1 roo<.1 lo o<.1 n o<.1 

~ - (2-62b) ror rox1 
, 

+ ~'j.:z, t (DX3 - L1 + l,3 

fDr::l-2. rvo<J.. (or:t.,_ !2. (Do<1, 

.... 
mXl l,L , ror = 0x1 i. 1 + + (o x~ L .3 

foo'.3 (Oo(~ (7) °'-?> (i)d,.?, 

1~} 
T 

[ k] {C} (2-62c) 

where 
(1) X 1 a>X1 0X1 -
~o<.1 (bo<.,_ (?) o<~ 

lK] ~ l]X:2, 17> X.1.. 
f'3 o<.1 <?ro(,_ ~o<.~ (2-62d) 

~ X3 {7)Y, 3 (D 'j.3 

fbri.... (VO(.). ({Jo(.3 

and -> ror 

t:} = 
!'/Jo<1 (2-62e ) 
ro f 
ror;t.J, 

rar 
(0~3 



The unit ve c tors in o<1 , <XJ., o<3 directions are express ed as 

follow 
~ _,. ~ 

(V'(' ror (o 'r - n,o<1 k = ("j)o(.'l (c)~,., 

~1 = ' ' k. = 
H1 

ii 
H2 

3 
H.3 

(2-6Ja) 

where ~ 

( rDX1 y- -t ( ~ X2, }2, + ( (c) X~ '/' H1 = ror ::; 

~1)(1 (uo(-, (u ol1 (i)c,{1 

_,. 
= J l(()X1 )~ + ( (o 'XL)~ + ( ~ X?> )~ H.i ~ rlr 

~~Ji Rd...,. ~ <1-.1 r'J rf.-2, 
(2-6Jb) 

_., 

= J (~x1) + (rvx~)'"' + (rox?,)JJ 1-h-= 
(c)r . 
(ufl..3 rJ~, ra~3 ~~5 

Writing the latter equat ions i n the matrix form gives 

T T 

{ R} = [RJ 1 ~ ~ = [~)[K]f[} (2-6Jc) 

where 

[R-] = [ K] [ ~] (2-6Jd) 

1 
0 0 .g,11 -R1,,t -1?13 1-1.., 

[~]:: 
1 

f<..t.1 0 - 0 ; [R]= -R.1.,_ t<13 ti 2, 
(2-6Je) 

~ 
Rai RB,. Ra3 0 0 -

~.3 

According to Equation (2-6Jc), matrix [R] is the transformation 

matrix from {fJ to 7.e). 
Since both sets of coordinates axes are orthogonal then 

T "T 

[R]lRJ =-[R][R] ==[I]. <2-63r) 

Assuming that at each point i n the f i eld , the o<. 1 j o<.t, o<.3 axes 

are rota~ed so tha t they coin~ido wi th the x1 ,x 2 ,xJ axes 

at Point P. (See Fi gure UI-10)~ it follows t hat 
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the vector {
do<1} d °"2, has the same direction as 

di ct.?, 

the vector{~;:} . 
d x., 

Hence• the matrix [ K] becomes diagonal with 

(c)X-1 =- ~.X1 = 
(0 o< ,7... (l) o< ..3 

0X.lJ -= (?}X?J : ~3 ::; 0 
r1J o(~ (Do( 1 a; o< ,_ (2-64 a ) 

and the components of diagonal matrix [ ~ ] reduce to the form 

(2-64b) 

As a result, at point P the units vectors coincide 

or (2-64c) 

and the [ R J matrix becomes 

[RJ ~ [IJ. (2-64d) 

According to the well-known chain rule of multivariate calculus 
T 

{Vo<} = [~ J 1 'vk} (2-65a) 

" T . 

{ V1 } = [ K ] {Vo<; (2-65b) 

With [K]LKJ = [I] . 

From Equations (2-6Jd) and (2-64d) 

[ R ] -= [K] [ ~ ] ~ [ I J 

lK l[k ][ ~ J == [K][ IJ 
or 

~ 

[il=[K]. (2-65c) 



Therefore,-Equation (2-65b) is rewritten as 

where 

Thus, 

::: 

~ ra 
H1 (()0( 1 

1 ro 
H2. r?J()(.z. 

,1 rtJ - -
H3 rD CX3 

(2-65d) 

(2-650) 

(2-65f) 

Consider the point Pin Figure (II-10). Upon differentiating 

Equation (2-6Jf) with respect to x1 , one obtains 

T T 

[toR 1[~] + [RJ[toR] :::. 0. 
0X1 '<JX, 

{2-66a) 

which when evaluated at point P (i.e. [ R] ::: [ I J ) , it follows 

that 
T 

[ /DR ] + [ a>R] 
0X1 IDX1 

0. (2-66b) 

Equation (2-66b) defines matrix [~
1

] as a skew-symmetric 

matrix, or 

; (o R~R ::: - 0R.~i ; lef j."' 1Jz.J3. 

l?J X1 taX1 
{2-66c) 

Simi lary at point P these relations remain valid if x1 is 

replaced by x2 ,x3, o<1 ., _c,<. 2 , o<3 • 
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Consider the component 0R3z. . By us i ng Equation (2-65e) 
~ X1 

= .!.. ( .!_ rc/-x, + ~xo<~. ~~
1
( ~ ) 1 . 

H1 Hi fao<11l>o<.z 'V 1oo IUV' / 

The function lox,. = o at point P , thus 
I?) o<z. 

:i. 
taR3z. :: 1 1 0X_3 _ , 

(2-67a) 
0X1 H1 Hz. /"3&><1 ,orx..J.. 

Not i ng the f ollowing difr"erentiation 

2. 

~~J :1)] ::: .!. [ ~ to .x.~ -t 
rDX3 

Hz H1 /"3 o<1 mo<). ~ °'1 

== J_ L f&1...X3 
(2-67b) 

H, H2. ra i><.1 ro I)( 2. 

The following equality holds, 

ra R31 = ({) /<32 

ro xl, ({) x,, (2-67c) 

Analogously , 

lo R.t I ::: to R.i, tH1d rc) !<13 ;::: ~R,1. 
J --

fox'; ro X1 (c) X '2. le) x, (2-67d) 

According to Equation (2-66c) 

ra R.1~ = - to R21 = ro R12 = 
lvX1 (i)X3 0X3 

(ul<13 = - (r)R31 , { 2-6?e) 
(<)X2 0X2 
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Comparison of Equations (2-67c) with (2-66c) gives 

'oR,2. -= (o R31 = 0 -
0X1 rux2.. 

(3 'R2~ = (() 1<21 =: rDR11. = rD R13 =- o. (2-67f) - -
0X1 ru X3 fv X 3 (c) X ,_ 

And also 
toR32. = re, Ra, (i)/<2.3 (0 ~ll (v 1<11 (() 12,3 o. :. = = = ::: 

(i)D( 1 l'v ex 2. fl) i,(.1 (u o/..3 0 ()( o (() cl. 1 

Now consider the component (7) Ra 2. 

ro X3 
at point P. Equation (2-6Jd) 

gives 

then ro ~32 
'2. 

= 1 lo X3 + rDX3 ~~} ~z) - -
~tx3 Hz (()o<,. ~o<3 ~o<.2. 

or H · fu R31 :s rr/-X3 (2-68a) 
2. (0 o<3 rtJ 11(:z.RJol.3 

In accordance with Equation (2-6Jb) 

(2-68b) 

Differentiating Equation (2-6Jb) with respect to o< 2 yields 

when evaluated at point P 
1. ). 2. 

2H foH3= z 0X1(()X1 + 2 rDXi0X2. + 2 (Dt.3(0>(3 
3 too<2. (1)o<3 l?Jrl..2. (!Jc<!> (l)ol.3 0o<.ato°'a rDol.3 {l)o<z0o<.3 

or ~3 ::: efx3 (2-68c) 
f'D o(').. ~ o<,_ (() o<3 

'2. 
thus, ([)H3 = H2 to R32. ::::: ro X3 

Q, c,( 2. 'o o<3 (?) o( 1. 0 ~ 

Because [~~] is a skew-symmetrix, it follows that 

· IOR32. = 1 ~H3 = (?) R2.!> 
(2-68d) 

(() o< 3 ++i rf) o< 1. 0 o<.3 
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Analogously 

ra R12. = ra H1 

foCX:1 H2. loO(z 

0R13 = . _1 ~H1 
'?>o<1 H3 rtJo<.5 

= 

= 

ro R.2.1 
(lJ ~1 
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(2-68d) 

Combining the values from Equations (2-67f) and (2-68d) yields 

0 

0 0 (2-69a) 

0 0 

0 
1 (D H2. 0 - -
H1 (() o<1 

[roR ] 1 [ ~R ] 1 ~ 0 
1 (() H2. (2-69b) 

f'l>X1. ' =- Hz. (()D(l - H2. H1 mo< 1 H3 rD()(.3 

0 
1 a, H2 

0 ---
-H.3 ro ()(_, 



0 0 - 1 (D '13 
-H1 f'Dol.1 

[a,R l 1 [ roR ] = 1 0 0 -1- rD§ 
(2-69c) -

H3 th (Drx1. (l)X?, ~ H3 ~IX!) 

i (Dti.3 i ('tH; 
0 H,2 ~r/.z. -H1 (Do(.i 

Cons ider the displacement 

U.x1 

{ Ux} ::: Llx2 

Lh~ 

Ll..(1 

and also { U.o<} = U.o<2. 

l(_ o<3 

It follows that 

T 

{ uo<} - [ R] { Ux~ 

Substituting the values of 

.... 
vector u.. 

with respect to rectangular 

Cartesian axes 

W. R, T. curvilinear coordinate axes . 

(2-70a) 

(2-70b) 

[ ro [R]] 
(()X1 

from Equation (2-69a) and 
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Equating [R]: [I] for the condition at point p •• one obtains 

0 1 foH1 1 l'i'H1 
Uo1.1 1 0 0 fb Uot1 - - :J:!3 I() o<3 ~ X1 t\2. ro C(.:i. 

1o h~x} 1 _ 1 @H1 
UoC.2. 

0 1 0 a, Uo<:1. - -- 0 0 + ' !ZlX1 H1 H2 0 t><2. ~ )(1 

1 rD H1. 
0 0 UQ(3 0 0 1 (0 (,.(oc3 - - -

+13 f3 rJ..3 ~ X1 



or finally the three terms 

Analogously 

nv.1 
ftl X3 
(i}lh 

tu X3 

fc) U3 
Thus• /VX3 

IV 

e11 == (() U 1 

(i) X1 
l"V 

fiJU2. e22.-== 
rDX2. 

rv 

E.33 = (()U3 

ro X3 

= 

::: 

=. 

: 

:::. 

l_ 113 H1 Uo<t + .i ~ '1.J:!.1 Uo<~ + ~ 13 Uo<1 
H1 H,_ f'3o<2. H1 tt.3 to°'3 -H1 (i)l)(1 

1 (o lAo<2. 1 1 ~1 \A.oq 
t-11 ~o<-1 H1 -th. ~cf...2 

1 lo Uo<1 '- 1 1 fa H:z.. Uo<1. 
H1 llJ o<1 H1 H1 (?) o<1 

.i fa (,{D(:z.. + 1. !_ (Z)+i,. Uoc1 + i 1__ (Z)H.2. Llc,(3 
Hi. 0o<'l. -H1 -H2. 0o<1 +Ii +-l3 ~o<3 

.!._ 1... fo +h Uo<2. 
H2- th 0rl-.3 

..!_ !.._ ~H3 l{o(3 

+11 fh 0o<1 

1 !__ ro H1 Uo(2 + .i_ .!_ (D H1_ Uo<3 +...!_f"5Uil<1 -
H1 Hi. fiJr:f...7. H 1 -H 3 rD c<~ H1 f2>i'<1 

1 f2) (,( P'.2. + J. ..! fiJ+-h Uo<1 + ..!_ .1. fu-H2. Ui?<3 
Hz. f7Jct--2. f-11 H2. 12) c,<.1 l-+2. H 3 0 oi_ 3 

1 (o l.{o<2 + J_ i._ !VH3 Uc,(1 + J_ J_ ~-1-!3 U.p<2. 

H3 lo'o<.3 t{ 1 -H3 n, o<- 1 H2 -H~ roo<2. 
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(2-70c) 

(2-70d) 

(2-70e) 

(2-71) 



/'\J 

e13 =- (C) U1 -+ (?) U3 = .tLJ 0 ( lAo1.1) + H? lo ( ~) 
/'2) x, n>X1 H3 too<; H1 1-11 ~o(1 +-13 

/V 

€23 :: f'OLh + IOU~ = .t!J. '!__ ( U.o) + H2. ~ ( Uo<t) -- -
IOX3 m X1. H:z. ~ci<2. Ha !-11 (3 oc'.3 ½12 

"' 2W 

_ 1 1 I( (?!U..o(3 folt3) ( r3L'..l2. ~H:z.)J - H2. H.3 L i-1.3 (i)ol.2. + Uo1.~ fvtl.2. - H.2 (do<.3 + (,{.e<2. fde,(, 

__ 1_ [~ ( H3 Uo<,)- fa ( tlz Uoc2)] 
2 +tz lt3 ~,:,(2. ~ ~ 

_1_ [: P< ( H1 U,q) - ;o<
1 

( -H.3 l,{i,(~)] 
- 2.ft1H3 3 

-= i: 
1 

f+2. [~~/Hz lLc<1.) - ;o(.2. ( H1 .U..,,c1)] 

,./ 

Finally matr ix [E] in the orthog onal curvilinear co-ordinate 

is written as follow 

[t] (2-73) 
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2,12 Summary 

Cas e 1 General Nonlinear Equation. 

Elongations : 
w T 

tL1 }= [1~EJ [J] 1 L3 , { L J = [ 1 + E*] [ els ] T ~ L ~ , 

[ o( ] =- COF [ J ] T 

E-1(1+1/.,_E,) = l11 

E.1 ( 1-+ ½. E,..) -== c.,.,. 

· \(1)1 

Shearsi 

_ E 11 

' (1+E~)(1+E.t) 

si~ q> 13 

5ivi ¢.n - Ei3 

( 1+E1 ) ( 1+ E3) 

Angle of rotation: (mean values) 

fav, Cf)1 = W 1 

./ C 1 -t- e,u)( 1+e3,)-Y-4 ef?J 
, 

t~ V\ q;_,_ W.t -
/c1+e.11)C1+e;?,) - }'4- e,}3' J 

t~ VI Q}3 uJ.3 -
✓ ( 1+ e11)( 1+f.2.11-1:zt. ei1 ' 
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Change in Volume: 

General nonlinear strain equation: 
l lJ [EJ= [eJ+½[[eJ+[e][wJ-[w][eJ-[wJ . 

Cas e 2 Small Deformation 

The elongations and shear parameters are s mall in 

comparison to unity. Thus, 

E1) EJ.J E 3 L..._<...1 

or 

[~1 [I] IV ~ 

[1-+El!'] IV [I] ,-.J 

Jc J JI ,-.I 1, ~ 
and 

Sin ¢11. ~ cp,,. 
Sin Q) ,~ N cp /j ,v 

Sivi Q).i.3 % cj)" 
Elongation: 

Shears: 

¢ I l ~ ~ 1 '- J cp I '3 ~ t, 13 _, q> .J.,; ~ le 13 . 

Angles of Rotations: 

J ( 1 + e.u) C 1+ e3 3) - ¼ et \ 
W.t 

✓ (f+eu)(f+e~,)-1/4 e~ 

W.3 
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Change in Volume: 

!i ,;!., E1 + E.t + E:3 ~ t.11 + E..u + E.33 

1 L>t~ = [ J] Ti L j 
,..J l" 

1L1 ~ L°'J ti} 
General nonlinear strain equation, 

1 J 
[f] -= [e] + i [[e] + [e][w]-[w][e,J-[wJ ] 

Cas e J Small Deformation and Small Angle of Rotation 

In addition to the elongations and shear parameters, 

the rotation angles are smal l in comparison to unity . 

Thus, 

anr1 
1 

) s r vi ~ ~ cP - q:,/2 l 

El ongati on: 

E1 ':!IE, Ii 

Shear: 

',bi~cp~q>. 

<p12.~ E1:i. _; cp,~ ~ ~,, ; q).2.3 ~ t..J.3. 

Angle of rotation: 

~1 ~ W1 ' 1.1. ~ ul,- .> 13 ~ c.u 3 , 

~11- e II ';::j {?~.t, 
'E.u- e .1.1. ~ <'.Pi/,2. 

, E..n - e~3 ?6 Q):i.3/.t 

t.1.t. - e,.l.. ~ cp,cb.t s,v, 1'>1 c.os X.t 
!:11., - e,3 ~ d>1ch ~s ,C,1 s,n ,%3 

E.u - e 13 ~ ct>~¢" s,vi .%.t e.os ¼,3 



wh ere ¢~ = Euler angle of rotation , 

The nonlinear strain equation reduces into 

[ f J t!. [ e J - 1/2 [ w J ~ 

Case 4 Equation of Classical Theory 

Neglecting the square of the angles of rotation 

compare to [e] 

Elongation, 

E 1 ~ E. 11 , Es.~ E, ,u , E 3 X E. H . 

Shear: 

q)12. ~ ~I!. , ¢13 r;:!., f1~ J (p,1.3 ~ C-13. 

Angle of rotation: 

cp1 'f., W1 / (p.1 ~ WJ_ J (p3 ~ W3 • 

The nonlinear strain equation reduces into, 

[E] ~ [e J . 

\ 
7 



CHAPTER III 

THE EQUILIBRIUM OF AN ELEMENT OF 

VOLUME OF A BODY 

J.1 Stresses 

In this chapter the investigation of the conditions 

for the equilibrium of an arbitary infinitesimal element of 

volume of the deformed body is considered, 

77 

It is necessary to apply to this isolated element 

forces distributed over its surface which repre s ent the effect 

of the surrounding medium on this element. Consider an 
.. 

element of area dA on the g iven surface. Its orientation 

is described by a unit vector n~ along the normal, which is 

regarded as positive if directed toward the exterior of the 

elP,ment of volume in question; denoting 
)II 

TdA as the force acting on the e lement of area 
4 

"i"" as the vector representing the intensity 

of the surface loading on the area 
~ 

The magnitude ~nd direction of~ depend on the position of 

the area (which is specified by the coordinates 
... :f. # 

x,, x.,, x., 

of its centroid) as well as on the orientation of the area 

(i.e .• on~--). 
ft. ... l!( 

The triple x 1, x2 , x 3 however,determines a 
...1 

radiu s vector r ex t ending from the oriB: n 0f coordinates to 

the centroid of the ar ea , s o that 

-l. .....l. ...l..:f< 
= V c r_, vi ) (J-la) 



Thus,~ is a function of two vectors, and is odd with respect 

ton* 
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_... 
The vector \f 

(J-lb) 

is called the stress. In sequel it is marked 

wi t h a subs cript indicating the direction of the normal to t he 

ar ea on wh i ch it acts, n * h indicating the strained s t ate, and 
,, // 

N indicating the curvilinear coordinate system . 

Consider an element of volume which is a tetrahedron, three 

of whose edges are parallel to the coordinate axes Xi, X,., X3 
,.J * ,.J • * and equal to vix1., (,,4X2.Jox3re spectively as shown in Figure (III-la). 

where 

dA* 

vi* 
Fx: * 

d A~ 
o,_ _ _ ___________ ~x~ 

Figure(III-la) Equilibrium of a Volume Element 

= 

= 

= 

the area of the inclined face of the tetrahedron; 

unit vector of its external nor mal 

i s the mean value of the spec i fic body for ce 

acting 6n the tetrahedron . 



;,t 

~-)(1 

jc 

~-x:L 
t 

~-)(3 

dAf 

dA~ 

= 

= 

= 

= 

= 

the stress on the area, perpendicular toX1 -axis 

the stress on the area, perpendicular to X~-axi s 

the stress on the area, perpendicular to X
3
-axis 

the area of the face of the tetrahedron which is 

normal toX
1
-axis = ;,'z dxfdxj 

the area of the face of the tetrahedron which is 

normal to X2 -axis = Yz d x/ dx! 
dA!= cix~d-x2.x, 

2 

For the given element to be in equilibrium, it is necessary, 

first of all, that the sum of all the forces acting on it 

be equal to zero . (including gravitational forces). Thus, 

_..l. d :t u-t d >r ~')f: d * ~ * * ~ir ., ~ j .,,.. Tn* A + "-x1 A1 + 'f_xi Az. -t °V:x3 0A3 + F dx1clX2.01X,= 0. (J-Z) 
6 ..... * ~,. -1.-:f' 

The subscripts of the three stresses "J'" rr r. are -><1, ~-xi., ~:..x, 

negative becaus e the directions of the external normals to 
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the correspond i ng areas are opposite to those of the coordinate 

axe s (See Figure(III-la)). 

Dividing Equation (J-2) by dA* and noting Equation (J-lb), 

one obtains 

_.)t' ~*q~l 
Tn = V"x1 dA>I' 

where dA~., dAi, dA! are 

dA* on 

(J-J) 

the projections of t he i nclined face 

so that 

(J-4) 
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. d x~ dx! rJx; Furthermore, the fraction 
6 

~A• represents the ratio of 

the volume of the tetrahedron to the area of its incl ined 

face, and is therefore a magnitude of the order of the linear 

dimension of the tetrahedron (i.e., and infinitesimal quantity). 

Hence, the last term in Equation (J-J) is also an inf initesimal, 

and is negl ected. 

Combining Equations (J-J) and (3-4) yields the auchy's 

(J-5) 

Considering the following definitions, 

* * t 
~,... 

\J"n11 , ~YI 11. , Vr113 - the projections of ~111 on X1., X2) X3 axes. 

Vi.r :t ,r projections * 
/I ' 'f,i , Vi~ - the of ~X1 on X1, X:i._, X3 axes. 

:t * :t 
~2.1 ., ~.l ) ~~ - the projections of * "'fx~ on X 17 >( l J X3 axes. 

)I: )t ~ the projections · of 1 
X1)X2.

1
X3 'r31 , v~.,_ J V",n - ~)(~ on axes. 

Thus, Equation (J-5) is rewritten as , 

t * ~).( * ~Yl11 ~1 ~,1 
ll * * MS (V1L X1) -t >t ,t l 

~rill - 1"11 "f22. e.os ( n1,x1.)-t 1°31 to.s (~1., )(3) . 

i' 

' f.1~ t Vni, "f13 "fn (J-6a) 

-" )C 
By mean of the expression of vector \f~1 of an inclined face 

which is indicated by unit vector ~/normal to this face, 

Equation (J-6a) is 

,;;r.* ' it ~.,.7 it i 
n11 ~1 ifa1 ~OS ( v11 , X1) 

* ~t • * ~ (J-6b) 1fn11. 1"1J. <f,J. MsCr11JX:i.) 

)\' 

fri,~ 'f,; ./t 
T.l~ 

,t 

V-B 
,r 

~oscn1,X3) 



where 

::: 

0.0.s ( nt X1) 

(!,os U11_, X.d 

* &).s Ot3J X!J) 
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(J-6c) 

(J-6d) 

-l .:« ...). 
Analogously for the other two vectors V-n2 ~'f"~; (See Figure(III-lb)) 

are also be expressed as 

{ r~~l }= 
T 

[r/J 1 vi:1 
{ 1"n~} = [ ~/] T{ ~!} 

where 

..t 
"f vi2.1 

{v;i} * ; { ~~} = = Tn22 

'#: 
Vri13 

'fn~1 

{ v~~} * ·' { n~J = 'fm1. :: ) 

* ~Vl3, 

.t 
Vlll 

~ 
Vl:i.1 = 
~ 

nJ3 

* Vl;1 

;f 

Y131. :::. 

J<. 
Y13~ 

* CoS ( Vl1) x .. ) 
>t 005 ( Vl1, 'Xl) 

JI: 
C))~( ~lJ'x'3) 

(1,0S cnt J X1) 

~ 
M.) C ri 3., ><,J 

&>scr1f,x~) 

. 

(J-6e) 

(3-6f) 

These vectors are then combined to form the columns of the 
>t T 

matrix [~1v J and matrix [e.] as follow 

[{ Vn~ }{ ~;i.}{ ~~t3}] = [r/] [ { nf} int} { n:}J 
[ 'fvi:-t JT = [To* J [ C,J (J-7) 
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where 
)I: >t * ~n11 V rt 11. V°Yl 13 

)t it;- '¥ 1 (J-8a ) [l"~ J = "{[ YI :z.l c:r Yl 21 1fl'123 

* * * 1fn31 Tvi.t~ 'fv, B; 

:t ~ 

C-05 ( V11) )(3/ 0.0S C.~1., Xi) MS ( Vl1 ,x2) 
T 

[CJ ,; * * {J-8b ) WS (Vl.1_, X1) M.S CM2J X2.) (!,o.S (_ lr1~ ')(3) 

)/( 

C,OS C v,?>J X 1) QvS C41t Xi) C,05 C Mi J '/--.'!)) 
Thus, Equation D-7) becomes 

~ T 

["fvi 1 =- [ C] [ ~:] {J-9a) 

)I:' - T lt:' 

[ ~] = [ t] [ 'rri] (J-9b ) 

X.3 -t 
YH ...,)j:' 

l<'3 

-!' n,. 
-I ll: 
'fvr.1. 

Figure (I II-lb) Curvilinear Equil i brium El ement 

* _,_ :t _.. * .....J. -t 
Where , ['Jn] i s the projections of the vectors ~n1 J "fvi1. and "t, 3 

on the Ca r t es i a n coord i na te s ys t em (X1,X2.,X3 a xes) 

( See F i gur e (III - l b)) . 



/"V* 
'fYI /I 
rv * 
TYltf 

8J 

(J-9c ) 

[ l'I*] [ * In determj ning the relation between matrix \fvi and Vti J 
one obtains 

-4:ll * * :- * -::-
\JYll = '\J"n11 l1 + Vri22 Lz. + ~1'123 L3 D-lOa) 

--l.* * * - ~ -;-
~n~ = \[°m1 L1 + "f1-1~2. L1. + 'fr133 L.3 

In matrix forms, th e latter equation becomes 

* * * V"n11 ~v,11. ~n1, 

* * * ~Yl.lt TYln ""ft1l~ 

* * .:ic: 
~n?i1 \fY'l~'l. Tn33 

(J-lOb) 

Anal oe; ously for the curvilinear coordinate 

~* N'if. '""* ,-.J "/* 
Tn1 ~ Y111 'fn11. lfnf:; L-1 
-l:jl 

Vm 
N'K: 

'J°r'ltl 
~ * 1'"ri22 "'* 'lfrin ~* 

L-' 
~ ..... 

,-.J * rJ * ,-.J * ~1< 
'Tm i na1 'fY13'l. Vn~ L; 

(J-lOc) 

Then, 

[ r; J { r } = [ f n* J { Y *} (J-lOd) 

Accord ~ng to Equation (1-12), it follows that 

= [ V n~ ] [ A ] T{ [ } (J-lOe) 

or 
IV T 

[V-n*] [A] (J-lOf) 
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J.2 Trans formation of Stress Components Under Change 

of Coordinate System 
,, / / 

Cons ider another rectangular system X1,xlJ X3 , 

the direct i ons of whose axes relative to the ax es of the f irst 

sys tem x1 , Xz, x3 are given by [ 7\]. 

Therefore, it follows from Equation (2-12b) 

{ Tn~} ~ [ 7\ J T{ \f n~ } 

{ r1~} == [ /\ ] T { v1~} 
According from Equation (J- 6b) 

{ \[~;} 
{T~} 

~ T:1} 

,, T 
[ ~/] { rit r} 

,, T T 

['f/] [l\ J { vi{} 
[J\] L \J":*,,JT[J\ JT{~1) 

Comparing Equations (J-lld) and . (J-6b), one obtains 

*T T 
['fo J [l\"] l v-:/1 [ ""JT 

* T T :le T 
[~o,,] = [ l\] [To] [l\] or 

It will be shown later in this sectiqn that 

Thus Equation (J-11) is rewritten as followss 

(J-lla) 

(J-llb) 

(J-llc) 

(J-lld) 

(3-ll e ) 

{J-12) 

(J-lJ) 

Comparing (J-13) with (2-14) one can see that t he transformat i on 

of the ,stress components under a change of axes is similar to 

that of the strain [E]. 



For this reason, the series of results proved in the precedina 

chapter for the strain components are immediately asserted 

also for the stress components. Thus the principal normal 
f> f' f 

stresses ~ .... , V2.) 'q""~ ( the extremal values of the normal stresses 

at the point M~) and the principal axes of the state of 

stress (the directions of the normals to the axes on which 
p f p 

those V-1 , ~., ~ 3 act) are determined as follows 1 

according to Equation (J-6c) 

{'f:} ~ [v:J{~{}={[IJ{~*} (J-lha) 

or l ['f o*] - V [I]] { n*} = { 0} (J-14b) 

For the non-zero value of { v{} 
= 0 (3-14c) 

which yields the chara'cter:i stic equation of matrix 

which is solved directly for the eigen-values. 

form of Equation (J-14c) 
3 2 J 

(1iff)-c
2
(v)+C 1 (~)-Co= 0 

where ~ * )c f> f' f 
C2. ::: "\f,1 + V-2.1 + V°H = -V-1 + 'ii + l'.J"°b 

C1 i< * * * ~2. ,jo2. *2.. 
= "f11 Vi2. -t v;, V-33 - 12 - Vi~ - v-~ 

f f f p f f 
= v; Vi_ + 'f1 v-,, + Vi V3 

The general 

(J-14d) 

(J-15a) 

(J-l5b) 



3.3 Conditions for Equilibrium of an Elementary 

Volume Isolated from a Deformed Body 
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Figure (III-2) Equilibrium of an Elementary Volume 

From a deformed body, the static equilibrium 

equation of an elementary volume is written in the form 

-I.* 
where fx = the mean value of the specific body force 

(Body force pen unit volume) 
~-.: 
~= the stress on the surface area 

(J-16) 

n't = the unit vector normal to the surface area 

( as shown in Figure (III-2 )) . 

From the definition of "Guass Theorem" 

(J-17) 



where 

* 

* TjL = 
* n· = j 

Vji._, j = 

n* = t v{} 

{ v}T['J!] . 

Consider jjf.,,* ds* by mean of "CAUCH Y EQUATION" 

J !c~:)c cis* ::: 
* 

I -

{J-18a ) 

where nj = unit vector normal to the surface area which 
-1..l( 

Vr, act. 

According to "Gauss Theorem" 

{J-18b) 

Thus Equation {J-16) is rewritten as 

///cF,t)l dv* + j / j ~:,j dvif = o. D-19a) 

f [ [(C F;)t + Vj:)j) dv* = o. (J-19b) 

* (F:)i ~C)j + - o. (J-19c) -

or 
* f. -j(. 

/i, ITj, rDV11 ro V.31 ~ 

lb xi'' + - + - -+ Fx1 = 0 roxr (OX"!,if. 

~ v-; a>\li} )' :t (J-19d) -t + rDV-31. + F,c1 = 0 
/?JXl roxt lb xt 
rov1; ',/- '\< ¥ 

+ (0~3 ;- (0 V°"H -+ Fx~ = 0 
fOX1 "" rox,l rox t 

Matrix form of Equation (J-19d) becomes 

~ T * { F/} T 
T 

{ V} [\fo] + = {o} (J-20) 
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where to 
t 

fx1 
rox1* 

~ {~~1 = rri • { Fx~} = Fx1 
mxf ' \=)<~ ta 
rtJ Xl 

Equation (J-20) is the equation of equilibrium for every 

poi nt in the deformed body. In accordance with the Figure ITI -2 

and by using the indicial tensor notations and also t he 

permutation symbol (Jrd order tensor), it is shown that 

where 

j I J er X f,/) dv~ = ///Ejjk Xj (F:J. dv* 

; I c r x t:) d s * = / / r:c ;j k x j ( ..-: J. d $ ~ 

EiJ°k = 1 if Li j ¥ ~ 
Eij 1c. ::. 0 if L. = j , or j = ~ J or R "" L 

E: ·,jc = -1 if C, j' ~ are not in order, 

t ~j etc. 

According to the "CAUCHY EQUATION'', Equation (J-2lb) is 

rewritten i n this form 

I J ( r ~~~) ds* == f /€:if'- ·x; v;.: n; cts* 
By using "Guass Theorem," one obtains 

//crx Vri*) ds~ == !//ccijk xj·q):)~1 civ* 
JI/ c E;jk xj,1 \f1t + E:iJ.k Xj ~;)1) d v*. 

Now consider the following term, 

* lT 
~j,1 = { v'j ~ >C'J 

D-2la ) 

(J-2lb) 

i.e., 

(J-2lc) 

(3-2ld ) 

D-2le ) 
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l\' ~ )\' 

'2l X-1 /?J X-1 '2P<1 
rDx..,• /1 X°l* ~x; 

* to xl ~ X1"' mxl' 
Xj,l rc,x1* ~xt ro x3• 

,t 

Id X! /7) xt roxt 
I() >'1 f'O X2._ (l) ')( 3* 

1-
The off diagonal terms of Xj ,l are equal to zero. Thus, 

Equation (J- 21e) is rewritten as follow 

1 0 0 

* Xj,l - 0 1 0 

0 0 1 

= [ I] = 83.t 
where iji C KRONECKER DELTA 

(J-2lf) 

if j:: ~ i1-t ::: 1 

jfl ~Ji ==- 0 

Eq uat i on (J-2ld) is rewritten as follow 

((:..:,. ...i. 'K * ((/, ~ * * * * 
J J(rx.. 'ifri )cis = JI j(Eijk oji \J}k + Eijk. Xj VfkJ!) dv 

=- // /(Eijk '\f"Jk + E.ijK xj IJi:,A) dv~. <J-21g ) 

In accordance with the Figure(III-2h the static equilibrium 

Equation (J-16) is written in the form 

{3-22a) 

Substuting Equati ons (J-2la), (J-2lg) into Equation (J-22a) 

the equilibrium equation takes the form 

(J-22b) 
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(J-22c) 

In accordance with Equation (J-19c), the second term of the 

left-hand side of Equation (J-22c) is equal to zero, thus, 

Equation (J -22c) is rewritten as follow 

f J f 6 ijk ~t dvt = 0 U-22d) 

* eu\( ~~ =. 0 D-22e) 

For the value of L = t 

-t * * = E.1-1kT11q_ -t- E:111-tVii.. + E.13k ~k 
,¥:- * k k 

=- E:12.1 "'f.1.1 + E.111~:2'1- + E:123\[i~ + E.1a1'1""211 

+E.132~si + E133~a! • (J-22f) 

By using the properties of "Permutation symbol", Equation 

(3-22f) becomes 

* * . * 
t:ijk ~K = ~H - ~l 

~ * '½3 :::,, \J31 
Ana logously 

* * Ti1 = ~I 

* * ~lo = \J"""a, 
Thus, it is concluded that 

* * \Jij = '\J]t 

[zo*] - [l:J T 

=O (J-22g ) 

(J-22h) 

(J-22h) 

(J-22h) 

(J-22i) 

(J-22j) 
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J.4 Transformation of the Equation of Equilibrium of 

an Element of Volume to the Cartesian Coordinates 

of the Points of the Body Before its Deformation 

In passing from differentiation with respect 
~ )( * 

to X1_, X:i., Xo to differentiation with respect to X1 ~ X.2, X,3 

it follows, by using the definition of chain-rule, that 

where 
llX1 f1'X1 rox1 
rox1* ~x1• rux{ 

( R~l ~XJ. (OX1 (OX3 
= (O'K{ (6Xf (DXl 

1o x~ ~)(3 roX~ 
rD x,.lf (DX/ ~x; 

Also by us e of the chain-rule, one obtains 

In accordance with Equation (1-2), it follows that 

[Re,] = [ J] 
[ o( J 

- [[J]j 

-1 

T [ol ]T 
[Ri] = ITTTT 

= 
[COF [J]]T 

I lJ 1 l 

Then Equation (J-2Ja)" is writ ten in the fo r m 

{ v*} = r ol J Ti v} 
I [JJ I 

1 v*JT =- {.v}r B 
I [JJ I 

Note i V} T does not operate on [ex] 
I PJ \ 

(J-2Ja) 

(J-2Jb) 

(J-23c) 

(J-2Jd) 

(J-2Je) 

(J-2Jf) 

{J-24-a) 

D-24b) 



Therefore,Equation (J-20) is rewritten as follow 

+ i F; J T 

i- I [ J J I 1 F x* JT - i O ~ 1 

The combination of matrix [ r:,1. J and [ '[/J 

{ V}T[o{ J [~:J 
I CJ Jl 

i ~JT[~] [1-:] ·{J-25 ) 

has a definite 

physical meaning which is interpretable by the following 

considerations : 

- d Xz. 
l-t. 

Before De f ormation After Deformation 

Pigure(III-J) Geometry of Undeformed and 

Deformed Elements 

Supposing that a rectangular area perpendicular to X3 - axis 

and with sides ctr1,dx~is isblated from the body before the 

deformation. As a result of the deformat ion, this area 

becomes a parallelogram. the directions of whose sides are 
,-y:t N.,t 

given by L1 , ~ 2 (Equation(l-lJb)). Consequently, the unit 

vector ' in the direction of the normal to the given area is 

found from the equation 

92 
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(J-26a) 
where 

r;* "Y,r -;- ~y -; ,:-'t -:-
L.1 = e,os C 1. 1 J X1) L1 t (!.o5 ( L0 X.,.') L2 + c..os( ' ·"--' x3) t 3 . 

ry~ N~ ';" ,-,J/' -;- r;/ -

L~ = (!J)S(L2.,X1) l1-+ ~.s(L.1,Xi)t,,_+ ~sct{,x~)C~ 

/V* 
~3 = the unit vector in the direction of the normal 

r.'l.1* l\,,d 7't, to the plane of WV1 .,.._ 

';" - -; . 
L1 L2. l,?, 

r' rJ /V* ,;' it ~* 
([1' J( ½.) Cos ( L1_,X,r) c.,o5C.t,..,x,.) W~Ct1.,X?,) 

= 
rJ 

Cos ei;,x,) 
,.J* 

~sl('.2.,x.,_) 
~,t 

C.05 ( l.,_, X ~) 

/V ,..J 

(L~ )Cc:)= (cz.,_ er, -e1,.ez3) L1 + ( C:r~ C:.r1- Cr, ~r~) 1.'.1-

+ ( e,,, rrl - cr1 ~ h) c.3 
wh ere 

(J-26b) 

c.r~ ~ ~oscZr,x.,_),, e11 =t> Co.sc.t~..,x,)' ~r,~ ~osctf,X.3)J ele,. 

An alog ous l y 

~"' r:'k (r1 C - -Ct~ .x L1) = L-3i ,.;- er,.e33) r, -t C C1'1C~~ - tr, ~,3) L,. 

+ c er, t,~ -u,ci,., T~ {J-26c) 

-+ Ct t1 ~?.,_ - l??, e.r.1) L3 
( J-26d) 

In matrix forms, these equBtions become 

T 

[~oF[AJ] t[; (J-26e) 
Where 
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In accord ance with Equation (J-26a), it follows that 

(J-27a) 

where 
. ,,: t ~,r 

$P'1(1lJL!l) 0 0 

[ siY1J = 0 • 7,t ~") 
S1Vl(l3_,~1 0 (J-27b) 

0 0 
• ,y~ '7',r) 

SIVl(l1JL'-

= unit vectors normal to the 

planes 

respectively. 

By the comparison of the Equations (J-27a) and (J-26e), 

one obtains 

(J-27c) 

(J-28) 

Referring to Figure(III-3). the following equations holds 

53 = dx1 ctx2 = area of the rectangular 

before deformation . 

s! = (1+E11C1+E.;i.) dx1dx1 5iV1CLf,Li;2.) 
where Si= area of the parallelogram 

after deformation. 

Thus, 
s; 
S,3 (J-29a) 

Analogously 

(J-29b) 

(J- 29 c) 



In matrix form, the latter equations become 

* [S/5] = [~OF[1+EJ] [5iVl] 

where 

0 

0 

5!1 
.).I S,1 

0 

0 
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{J-29d) 

(J-29e) 

r;''t "::' ,I r:',;. 'i* ~-- ,...,* Consider. the unit vectors normal to L1 - t,,_ , t,,- 1., 3 , L 1- L3 

planes, they are expressed as follows, 

"'* VJ1 ~s c_;t, x1) C1 -t eo.s c ~1*, ><:i.) I2 + (!,0.S c ~-t_, x-') Y., 
,..,* 
Vii = 

"'* - "':1. -:- /Vjt -: 
~SCV12.,X.1)L 1 -t UJ.s( YJ,_, >(.,.) ~,. + e,osu,,._,x3) t,-3 {J-JOa) 

(V 'K 
r'l3 = (!Os c v(; _, ><1) I1 + ~.s C Cl;, x.1) I,. + ~s C v(t, X3) {3 . 

Thus, 

1 Vll} [t] 
-r -

- i L} (J-JOb) 

wh ere 
1\1* -"''I( 

C,.OS LY1-;.*, X1) N* Vl1 005 ( Vl 1_, X1) (U).S (~~__, X1) 

~~~y Nj . [c1 - "''If. "'J ,.., >t =- V'IJ. - ~S ('vi,> X,:i.) M.S ( vi,., X.2) ~s c Y13_, x.,_) ' N-,_ 
'r1;1 

/Vlt . 

Ms C. vi,, x,) N* 
&).S ( V'I~, X3) ""* ~.S ( Vl3., X 3) 

Substituting Equation (J-JOb) into Equation (J-28), and 

combining gives 
T T - (J-J l a) [sivi] t.CJ rL ~ = [e,of[A]] ~q 

or 

• T T 
, [S1V1] [CJ =- [ COF [A]] (J-Jlb) 



Multiplying both sides by [eoF[1+E]] gives 

[CDF[1+EJ][Sivt] lC.JT = [~OF [1+E]] [CDF-[AJ] T 

According to Equation (1-18), the above equation is rewritten 

in the form 
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[coF[1+E]] lSivtJ lC.]T = [o<J (J-J lc ) 

Ae ain accor ding to Equation (J-29d), it is rewritten as 

[Si~] [C.]T = [o<] D-Jld) 

Subs ti tu t i ng Equation D-Jld) . into the Equation ( 3-25), 

one obtains 

\v}T[ 5isJ [t]T[Vo~]-,- l[JJ\ 1F:}T=i o} T 
By substituting [To'] from Equation U-9b) gives 

iV}T[$/s] [C]T[t]T[V-¥1~]-+ l[JJliF/JT= ~o)T 
or 

(J-J2a) 

(J-J2b) 

D-J2c) 

Equation (J-J2c) is assumed b y Equation (J-20) if the positions 

of the .po i nts of the deformed body are determined not by the 

Cartesian coordinates 
* ~ ~ 

X1 , X:2., X3 but by the curvilinear 
/V >r "' Jf rJ 'Jc 

coordinates X1,X~, x 3 (which are the Cartesian co-ordinates 

for the body in its initial state). Thus, in changing matrix 

[ rr.- it] [.;;.. *] ( t:l,r ~)I'.' l'Yl)I:' ) ~~ to the matrix ~Y'I i n the dir ect i on L 1 , t., .,_, 3 by 

usinrr Equation (J-lOf) gi ves 

(3-J2d) 



By setting up matrix [~i] 

where 

[TR] ~ [sis ] [ i ~ ] [ 1~ ] (J-33) 

[1"~] defined by Equation (J-JJ) are not, strictly 

speaking, stresses. They can be called stresses 

referred to the dimensions of an element of volume 

before, not after the deformation. 

Thus Equation (J-J2d) is rewritten as 
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{v}TcsisJc1:J[1~-r:~1[JJT+ \[JJl1F:1T- ~o)T (J-J4a) 

t'v}T[\f~] [J] T -t I [JJ\ 1F:1T = iO~T (J-J4b) 

Equation (J-J4b) comprises the equations of equilibri um of 

the nonlinear theory (Case 1). 

J.5 Simplification of the Equations of Equilibrium in 

the Case of Small Elongations and Shears (Case 2) 

S1* sf s~ ,, * The ratios ~ a ....L differ from unity only 
51 ' 62. ' S.3 ' y 

by magnitudes of the same order as the elongations and shears. 

Hence, they are set equal to unity for small deformations and 

also the conditions E1, 1 ,~ << 1 

the form 

and Equation (J-J2d) chanF, es to 

, the Equation (J-J2c) assumes 

(J-J5a) 

(J-J5b) 

In addition~ neglecting the relative elongations E1 ,E~JE3 

in comparison with unity. Equation (J- JJ ) is rewritten as 

(3-36 ) 



' 
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Equation (J-J4b) is rewritten as 

(J- J 7a) 
Nt 

For convenience, matrix [s:rn] is replaced by ["f] 

where 

'r"12. 

[~] ::: -c:r11 'f'l.t °f'H • 
v~1 'f3i 'f33 

Thus, Equation (J-37a) is rewritten in the form 

(J-J7b) 

A di~gram is used to clarify the geometrical nature of the 

simplifications of these equations. Isolate a rectangular 

parallelopiped 8 with edges d"'1 j IAX:i., (A)(
3 

parallel to the ~ .,'X!.,x; 
axes, fro m the body before its deformation (See Fieure(III-4)). 

r,-'>t 
/ L?, 

-~--''-+-I. 

.J-----------------~ x~ 

Fi~ure(III-4) Re ctangular Parallelopiped 

Before and After Defor mation 



As a result of the deformation, this rectangular 

parallelopiped becomes an oblique one, with edges (1 + 1=1 ') dx1 , 
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( 1 + E 2 ) ct X2, ( 1+ E3 ) dx3 formine the angles (1J'f<P12); (11/2 - <P13t(f2- 4>:z!I). 

However, the angles of rotation are large relative 

to the shears <t',2., (pi,, 4>23 then ¢11 , ¢ 13 ) ct>~~ may be neglected in 

comparison with the former in projecting the forces. This 

means that the examined parallelopiped can also be represented 

by a rectangular one after deformation (Figure (III-4)). 

Moreover, the smallness of the elongations and shears allows 

one to ignore distinctions between its dimensions before and 

after deformation·. It is thus permissible to repre s ent the 

parallelepiped after the deformation, as equal to the 

paparallelopiped before the deformation, but differing from 

it (geometrically) only in its position in space. On the 

basis of these remarks, should be considered as 

mutually perpendicular (See Fieure(III-4)). 

Summarizing , Equation (3-J7b) is derived by 

assuming t hat in studying the equilibrium of an infinitesimal 

volume element of the body, one needs only take the rotation 

of that element into account while its deformation may be 

neglected (the equilibrium condition for an infinitesimal 

volume element, valid only under small relative deformation 

and arbitary rotations). 



J.6 Case J, Simplification of the Equilibrium 

Equations for small Rotations 

If the angles of rotation are small compared to 

unity, then, by (section 2.9), the parameters [e] differs 

from the strain components [E] only by quantities of the 

same order as the squares of the angles of rotation . Thus, 

Equations (J-J7b) are simplified by neglecting the strains 

and the squares of the angles of rotation as compared to 

the first powers of the angle of rotation. 

Consider matrix [J J 
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[JJ = [I]+ [e] -t [W] {J-38a) 

By the above remarks, it reduces to 

[JJ ~ [I]+ [W] {J-J8b) 

Thus,Equation (J-J7b) is rewritten as 

T lv} lTJ[[IJ-[wJ] 
* T T 

-t {Fx} = \05 {J-J9a) 

{ v} T[['f J - [1] lwJ] + t Fx* j T == t O} '. (J-J9b) 

J.7 Case 4, Transition to the Classical Equations of 

Equilibrium 

The next step in the simplifying process is to 

assume that the angles of rotation are so small that the terms 

in Equation (J-J9b) which contain them as factors are neglected 

in comparison with the terms which do not. 

Equati~n (3-J9b) then reduces to 

= D-4oa) 
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Equation (J-40a) is derived by neglecting the rotat i ons of 

volume element when a l l the forces acting on it are projected, 
rix ~ ,r /V'lf. 

i.e., by i dentifying the direction L1 , L,-i., l 3 with X1,x1 .,x 3 • 

I n this case, the stress components ["f] in the 

directions of the local trihedral of the curvilinear co-ord i nate 
t;-':t ':"'>1: ':"~ [ 'ir 't] 

s ystem l-1 , t,,_, L 3 are identical with ~0 the stres s components 

aJ.onp: the X1-J X2- ,X3- axes. Hence Equation (J-40a) are als o 

be written in the form 

(J- l+Ob ) 

which combined with the Equation (J-22j) of the form 

are the conditions of equilibrium for a volume element in 

the classica l theory of elasticity. 

J.8 Transition to Curvilinear Coordinates 

In the preceding discussion the points of the body 

are referred to a Cartesian coordinate system. Such a coordinate 

system is convenient for bodies which are bounded by mutually 

perpendicular planes, but is much less conveni ent if the body 

is bounded by curved surfaces. Hence the curvilinear coordinates 

should always be selected in such a way that the bounding 

surfaces of the body should at the same time be also coordina te 

surfaces. Thi s will re sult i n an especially s imple formulat i on 

of the boundary conditions. I n this connecti on a discussion 
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of the conditions of equilibrium for a body whose points 

are referred to an arbitary orthogonal curvil i near coordinate 

system o(1, o<J. ,o<3 follows. 

To shorten the calculations involved in this 

transformation it has been already noted, that the equations 

of equilibrium of a volume element in the nonlinear theory 

are similar in appearance to the corresponding equations of 

the classical theory. 

In the nonlinear theory the conditions of equilibrium 

for an element referred to Cartesian coordinates reduce to 

the Equation D-J2d) 

(J-J2d) 

thus, in the linear . theory, assumes the form 

(J-40a) 

thus 

( J-41 ) 
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o<1 

Before Deformation After Deformation 

Figure(I II -5) Curvilinear Coordinate System 

If the points of the body are referred to curvilinear 

coordinates coordinates (Chapter II, Section 2), an infinite­

simal volume element is isolated which is bounded by the six 

coordinate surfaces of the curvilinear system chosen. As a 

result of the deformation, this element changes its position 

in space (due to displacement and rotation) and. moreover, 

changes its dimensions and form. Its edges, initially equal 

to k1 H1 c(o<-, , k2 H2. d cx2. , k3 H3 O.p<a , now become 

k; H1 (1 + Eo<1) do(1 , p_{ H1i ( 1 + E'-<1) do(2. , I'<; H3 ( ~ + E°P<'?,) de(' 3 

where ~;J ~;., k; are the unit vectors in the directions of 

the linear elements which , i n the unstrain ed 0 tate. coincided 

with the vectors ~1_, R2,_, Ra. 

The cosines of the angles between the trihedrals 

~1, R2.~ Rs and ~; ~ r<{_, ~{ are given by Equation (1-12) in 
N 

Which the values of the parame ters matrix [e] and [W] 

are determined from Equations (2-71) and (?.-72 ), 

) 



In analo~y with the resolution of the stresses acting on 
• . l'Y;t r:'.>r ~* . 

the faces of an element in the d1rect1ons L-1, L 2..., t 3 1n 

the Cartes ian system, now resolving the stresses act i ng on 

the new element in the directions ~1., 'R..;., i.z; . Thus , 
T 

1~~ = [A J 1 YlJ (J-42 ) 

where 
~~ ~1 

{ ~/} = ~~ 
. { ~ ~ = k22 ) 

~; ~~ 

In books on the classical theory of elasticity (See, e.g.• 
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Love's Mathematical Theory of Elasticity, P. 90) it is proved 

that, in an orthogonal curvilinear coordinate system, 

Equation (J-40a) is replaced by the following three scalar 

equations: 

i { 1_ ( H2 H/t<11) + @_ (l-l3H1 ~,2.1)+ fl_ (\--11 H.2 Tc,(51)"L-
H1 H1 H3 -oo<.1 ~(1(.2. ~"'-J J ' 

1 ro H1 V:.,2.. 
H 1 H 2. f0o<2. 

+ _1_ ~~ ~ 13 - _1_ m~J. 'vo<...,_
1 

_ _ 1 _0~ V'°p(.H + ft><'. 1 => 0 
t11 t-'3 t1 o<.3 ii, 1-'f.t ~ cx1 f-l 1 H.3 'oo<1 

1 { ra C 1-+.i H3 '4t1.1) + ro- ( H3 H1 'v.l.u)-t IE_ ( +i1 HJ. Vix3J..) l -t _1 _ l7J Hi ~.t~ 
H1 l1.i t1.3 0o<1 fop<.,_ t7J rx3 J H2 H3 rc,o<3 

+-1- (1itl.1 Vo(.,\.) __ 1_~H.3 V-o<.33 - _1_~H1 Vo(II + Fp(.i. :::. 0 (J-43) 
+l,1H1 ac,(1 /1,1tt3 ~o(,_ . H.1H1 f0p1..3. 

+ -1_ lo H3 tJ"rt.;,­
l-l3HJ. 0fl..J. 



Here 

H
11 

H
1
,tl

3 
are the Lame coefficients Equation (2-6Jb) 

f~
11

~
1
>t

3 
are the projections of the specific body force 

on t he a irecti ons o<1, tXJ , Ol.3 
-l, -l, .....I 

~o<
1
J ~,:,1l., ~

3 
are the stresses on the areas perpendicular to 

[ 
1,.. / r r IA,, f_ / \,,,, 

+, 8 d i.he rirals 1C-J.,k.0 ], [~3,J11q]_, ["'fv,rlJJ 
-4 

"{ol11 ,Vot,2.,~,/lrf! t his components of the stres s ~o<'1 

along k 1 J k,_ .J k.3 , 
.....1. 

1:J'°ol.l, V..:u. ~ ;:!_re the component~ of the stress To(,2. 
~ ., 'J. ~ 

'\fo<~1,, 'IJ"°o<~.1/~~63 are the component s of t he s t ress "'fo<3 

along k 1 , k ,_ , k , • 

105 

In t he linear theory no distinction is made between k,,k,.,k_, 

and 
/ / ; 

k 1 , k.1, k3 .• Equation (J-43) are the equations of 

equilibrium of the linear theory ref erred to the orthogonal 

curvil i nea coordinates ~ 1 J D(.1, ~ 3 • 

Hen ce, 

~ VolJ = [ v~] 1 R} (J-44a) 

where 
~If To< 1.2 To( ,~ 

[To<] ~ ~J.I ~ >.J. r-.(.:iJ (J-44b ) 

V-..: 31 ~3.1 l[i_33 

_j 

'V°o(.1 

{ To{J 
-l. 

-= <;J"oO. 
---' 

( J-4-L~c) 

\lo(3 



Turning now to the nonlinear theory and taking into a ccount 

th e similarity of Equation (J-41), it may be concluded that 

.. rJ 

[T.L J = [s1~J [r/J [A] (J-45) 

where 
Nl ,._, 'k N* 

f,,t.11 Vi,( 1l. To<,-, 
. N 

fV t ,_,,r [ r:J ,-I* 
== 'f c,(.).J fo<2.'l 'f o( ).~ 

~ ,i: "'* ~'jl 
ri,(~I f,,ql ~of-~ 

[
,J ~] ~ * ~ JI: . -lo * rp( = the projections of the stresses "fn1 __,Tm__, Yn~ 

on 1z;.) ~:..., ~; (after deformation). 

In accordance with Equation (1-14), Equation (J-45) becomes 

(J-46) 

Denoting 

(J-47) 

where 

R It 
v-.L~1 'f,,(12. 

R 
[\fb(] = ~ ~ V:1, crc,(.,_J.. 

P- P-
Vo<~ 1 r,,_31 

Then Equation (J-46) becomes 
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[tf.l]= [fJ][J]T {J-48a) 

[T.,J =- [~:] [[IJ +[e] - [w]] (J-48b) 

In order to transform Equation (J-4J) into t he equations of 

the nonlinear theory, bes i des replac i ng the Equation (J-48a), 

it is also nece s sary to replace Ft><'.'1.., fa2 , F"3 

y* * ~ * * * _ Foi1 , Y._ Fo<.,_ J \J F'.{3 
\j \/ \/ 

respectively, by 



it- * 'Jj:-
wh ere ~1 ,~1Jt

3
are the projections on k1,ki,k3 of the s pecifi c 

body force s relative to the strained body, while 

v>v = \[J1\ = ( 1 +ti) 

whe r e 11 = the volume increment. 

The above rules for transforming the system 

(Equation (J - J4b)) to the orthogonal curvilinear coordinates 

are established without neglecting any terms (Case 1). 

Hence substitution of Equation (J-48a) into Equation(J-43) 

will make the latter correspond precisely to Equation (3-34b). 

For Case 2, if the el ongat i ons and shears are ne gligibly 

small compared to unity, Equation (J-48a) is simplif ied 

07 

by identifying the matrix [r:]with the matrix [-V}](s0ction 3. 5 ). 

For Case J, in addition, the angles of rotation are 

small compare d to unity, Equation (J-48) becomes 

[ ~] == [ r/~ ] [ [ I ] - [ w]] (3-49 ) 

Finally Ca~ e 4, the anEles of rotation are small quantities 

of the same order of magnitudes as the strain components, 

the products of the stresses by the angles of ro t ation are 

nee l ected in Equation (3-49). The result is 

[ [ 
l'-"t (J-50) 

lp(] = 1cx] 
In this case, Equation (J-4J) become identical with the 

equations of equilibrium of the linear theory referred to 

the orthoe-; onal curvilinear coordinates o<1 ) o<J..,J ~. 



J.9 Summary 

Case 1 Ge neral Nonlinear Equilibrium Equations 

or 

where 

Case 2 Small Deformation 

The elongations and shear parameters are small in 

comparison to unity: 

Thus, 

Then, 

and 

Case J Small Deformations and Small Angles of Rotation 
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In addition to the elongations and shear parameters 

the rotation angles are small in comparison to unity: 

Thus, 

[ J] 7:!J [I] + [ w] 
or 

T 

[ J ] ~ [I] - [ wJ 
Notin~ the equ a tion .of Case 2 

{ v 1 T [ ~ J [ JJ T.,. { r: ~ T . = i. o l T 



The foll owing reduction occurs 

{V1T['f] [[rJ -[wJJ + l F;} T = i o} T 

or 
T * T T 

{ V} [ ['f J - [ 1] [ w]] + i Fx } =. i o ~ . 

Cas e 4 Transition to the Classical Equations of Equilibrium 

Ne~lecting [i;:r] [W] compared to [ '\[ J , in Case J i t 

follows that 

and noting Equations {J-~Oa ) and {J-20) 

{. v}T ~ ~ v~}T 

[ l] ~ [Vo'] 

'\ 
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CHAPTER IV 

STRAIN ENERGY, BOUNDARY CONDITIONS, 

STRESS-STRAIN LAW 

4.1 Strain Energy 

The system of differential equations derived 

in the las t chapter, which expresses the conditions of 

body in a state of strain, contains more unknowns than 

equations . Indeed, it consists of six Equations (J-J4b)1 

(3-22j) containing twelve unknowns (nine stresses and 

three displacement components). 

Hence, the problem of the equilibrium of a 

deformed solid body remains indeterminate unti l s i x 

supplement ary equations are established. These relate the 

s t ress components to the displacement components and express 

t he law according to which the material of the g iven body 

r esists various forms of deformation. But at the present 

t i me, the relation between stresses and strains, which 

differs for different materials, is established mainly by 

experiment. Some general properties inherent in this 

relation can, however, be explained theoretically. 

It is assumed that the process of deformation 

is isothermal and that the work expended on chanBing the 

volume and form of an arbitary infinitesimal rectangular 

parall~lopiped isolated from the body is independent of 

the mann er in wh i ch· the trans ition from the initial sta te 

of thi s element to the strai ned state is r eal i zed . 
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In other words, the role of the dissipative 

(non cons ervative) forces in the process of interaction 

of the particles of the body undergoing deformation is 

neglig ible compared to the role of the conservative force. 

A body which satisfies this assumption must 

return to its initial dimensions and form after the load 

on it is removed (ideally elastic). 

The work required to deform an infinitesimal 

paralielopiped of an elastic body is expressed in theform 

(4-1) 

The form of this function depends on the physical properties 

of the given material, but it independent of the dimensions 
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and shape of the body, On the other hand, the strain components 

always expressable in terms of the three principal strain 
p p i' 

components e1 ,f.2 ,€:..3 and 
• p p f 

axes of strain 1=1yE:2yf.3 

the direction cosines of the principal 

with respect to the X1- x2- x - axes. 
' J 3 

Here, the direction cosines are regarded as 

functions of three independent quantities, e,g., the Euler 

angles e, cp and tp which determine the orientation of the 
p p f> 

trihedral E: 1 , E:.2 , E:. 3 relative to the trihedral x1 ,x
2
,x

3
• 

Hence, Equation (4-1) is also rewritten as 

(4-2) 

Equation (4-2) as well as Equation (4-1) assumes that the 

body reacts to deformations differentl y in different 

directions, i.e., it assumes that the material of the body 

is an isotropic. If the phys ical properti es of the body ar e 



the same in all directions. the work expended in deforming 

a volume element would not depend on quantities which 

vary with a rotation cf the coordinate axes. but would be 

a function only the invariant quantities. It follows 

that for an isotropic body 

ci 
p p p 

w = Q ( E 1 , E:2, E 3 ) dx1 } dx2 , dx3 
(4-J) 

Th th . d d t . . t ? P P e ree 1.n epen en 1.nvar1an s • E 1 ,E..2,E. 3 are of value 

because they have a simple physical meaning, especially 

for small deformations. Mathematically. however, they are 

inconvenient because, in order to express them in terms 

of the strain components, the cubic Equation (2-18b) 

would have to be solved. 

In view of this, it is more expendient to express 

the work of deformation on an element of an isotropic 

body as a function of the three coefficients of Equation 

(2-18b) (02 ,Q 1~a 0 ) rather than in terms of the roots by 

this equation. Then the work done in deforming an elementary 

parallelopiped of an isotropic body is most conveniently 

written in the form 

ciw = ~ ( Cl2., CA1, Qo) cix 1 dx2 dx3 
(4-4) 

It follows that the work done in deforming thA whole body is 

W = / // ip_ (a,,a, , oo) clx,cix,dxa (4-5) 

where the integration must be extended over the whole volume 

of the body in its UNSTRAINED STATE. 

~ ( 02J01, Clo)= The work of deformation or the s train energy 

referred to a unit volume of the body in it 

unstrained (specific strain energy). 
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'Al= Total work done in deforming the whole body 

dx1 dx1dx= dv = The volume of an infinitesimal element of 
3 

the body before deformation. 

4.2 The Principle of Virtual Displacements 

Assigning to the displacements U1 C.x1 1 x1 ,x 3) , U1 (X1,X1 ,x3 ) 

u~cx1,x1 ,x~) virtual increments Su 1 J ?3u2J '3u3 respectively , 

which are regarded as arbitary continuous functions of x1 ,X 2 , 

x3 equal to zero at those points where the values of the 

displacements are given, then the strain energy changes 

by the amount 8 Wand this must be equal to the work done 

by all the exterior forces applied to the body in effecting 

the above virtual displacement. 

Hence, it follows that 

llJ 

{4-6a) 

where 

6 R1 = The virtual work due to body forces 

Referring to Equation (J-16) 

~ R1 = JJJ [ F~ D l-<1-t- F/1. ~lA2. + Fx; i uJ V~ dx1 ~xz cix3 

* V where V = Volume element of the strained body. 

(4-6b) 

Note, the integration in Equation (4-6b) must be extended 

over the body in its initial state. 
I:\ 0R2 = The virtual work of the surface forces. 

=jf[-f{1 8u1+ ff0_ 8u1.-tfx~flu3] S~ dA (4-6c) 
Jt jx. 5n 

Where 'fx1 ,f2 ,,~are the components along the X1 -,X2-, x 3-

axes of the force a·cting on a unit area of the surface 

of the deformed body. 



s~ 
The ratio of the elements of in the - = area 

5Y1 
terminal and initial states. 

dA = Area of a surface element in the initial 

state. 

All the volume and surface integrals appearing 

in Equations (4-6b) and (4-6c) are now to be extended over 

the limits of the body in the unstrained state (and not in 

the strained state) is a great convenience, since the limits 

of integration are now independent of any unknown quantities 

For convenience, Equation (4-6b), (4-6c) are rewritten by 

using the definition of TRACE (Apprendix II) as follows 

'Se, =ff f Trace [ tsu.H F:} (1 [JJ I dx1 ctx, ct X3 (4-7a ) 

8 R2 = ff frace [ \ M { id] ;~ dA ( 4- 7b l 

(M= s~: ; F:}= ~ ; ii:}= 1f where {~ } {F*} {t*} 
~ U3 Fx~ ~X3 

4.J Derivation of the Differential Equations of 

Equilibrium of a Deformed Isotropic Body from 

the Principle of Virtual Displacements. 

On the assumption that the body i s homogeneous 

and isotropic and that the dissipative for ces play a 

neglible role in the de f orma tion, then 

3w = 8 ff r~ (a,,a,, Ool d.x1 d.x2 !J.x3 

= ff! 8 p(a2, a1, Oo) ch,, ctx2 Ox~ · (4-8 ) 
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On the other hand, by using Chain-Rule and definition of TRACE 

~ [Cpca1/ -l1., ao)] =- ra<I> ~t.11 + ro~ 8tz2+ 0 P ~t,3 + 1o~ ~~ ,2 

fo E.11 (o E.22 (o t33 f0 t 12 

+ fat ~ f.13 + (7) (D D E.2.3 . 
ro t.,3 ~ E.23 

- T~ce [[~~] [o't]J (4-9a ) -
where 

~ ~Q? le)~ 

~f.11 ri'frz. (7) E.13 

[~~] 
(Z)(l? (l)<t) (l)~ 

- ~ E12. lo E.11 ~fo:; (4-9b) 
lo~ ~ /o<Q 
f?)f,,, (O E,,_3 (DC..33 

and 

~ t11 1 s t12. ½~ t13 

[Br_] 2. 

(4-9c) = ~~ E12 2"En }8h, 
} ~ t ,3 f g c:i.; S ~~3 

According to Equation (2-4b) 

T T 
2 [E] == [DJ +[o] -t--[D][DJ 

T T 
2 [St.] = [~DJ+[oD]+ [8D][D]-t [D][8D] 

T 'T 

= [SD] [[I] +[DJ] -t [[I]+[D]] [~DJ 

== [8Df[JJ -t [JJl~D] 
thus, 

T T 

[bt] := i [BD] [JJ + ! [J][~D] (4-10) 

Accordance with Equation (l-4a) 

ci11 d12 d1; 

[D] = d21 dn d~ (4-lla) 

d,1 d32 d,, 
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Introducin~ 
lod2 ram 11)~ 

(l)d11 fZ> d12 iia'13 

[~~] ~ (l)& fDd, 
' (4-llb) =- 1c>d11 a,01.2 (7) ct.23 

rod5 (L)& 1?><'!2 
0d31 f?>ci32 rz>cfa.3 

it follows from Equation (2-4b) that 
T T 

2[t] = [D]+[D] +[D][D] 

or 
2 t11 E. 11. E1, 

E11 J. E2~ E.13 

E\, EJ~ 2ee, 

2 du+d,7 + ati +d}, , d11 -t d2.,-+ cf II d11+ cli,au +d3,ct31 J cfoda , +dud13+ d.:21dl3 +ct,,,d33 

= 2.d11+ d,~ -tdi,.+dai d.r.,+da2+d 12 d,3 +d,l).dJJ+d3-1.d~ 

J.du + d,~ -t-dh +d~ 

(4-llc) 

Dif ferenti a tinr both sides of Equation (4-llc) with respect 

to each component of matrix (D) gives 

lo E 11 -:::. 1 -t- d 11 . ro ~ 2.:1. ::: 0 . ~t-'3 = 0 
I?) ci II 

) 

a, c111 
) 

Ii:) d 11 (4-lld) 
fo ~12-- d12 ) ro E 13 = cf13 ; (1) C. 23 = o . 
~du ro d11 ~ 

By the well-known chain rule 

rap =- roE11 (?)d?_ + roE1.2 ~~ + ~E,'l. 0~ +n>t::,3 rc, ~ 
t?Jd11 ~II l1>E.,, 11>d11 f'Dt.2,2. ll>d11 17Jf1i. l1>d11 fl>E,, 

+~E.,, flJ ~ + rDt.23 ro ~ 
aid11 f7>E.13 ~d11 f?>E.2, (4-11.e) 

= (1+ d,1) ro ~ + d,2 m~ + d,3 ~~ ~ t.11 IV f.12 ~ E.13 
(4-llf) 



Analogous l y 

(£)if = 02, ro~ + ( 1 + d22 ) 10<I + d13 10&: 
~d22 rDtn. ~£22 tc1£:i.B 

tof == d3, ri,i + cl32 /?i ~ + ( 1 + d33) ro~ 
fod?3 fc}c.13 aH:.2; ?ot:"33 

to<I = (1+d11) ro~ + d12 ~~ + d,3 ml 
~ d 11 i'o[i2 ~ E:i.~ ~ E.,.3 

ro<i -= (1+ d11) /7) ~ + ci12 f?Jd2 + d,~ @.! 
fod13 ~e,, fOE2; 12JE.s.3 

iail2 == ci 3 ,~~ + d32~&. +C1+~a~)~~ 
'r)E,31 (!)£11 f'DE.11. (?)£13 

f()~ = d;tl (7)Ql + (1+d22.) ~ + d;i.3 ~t 
~d.21 ~E.11 ~E.11 (i}e.,a 

G~ -
r8di, -

lo~ -
IOQ32 -

doll rD ~ + ( 1-+ d;i~) n, ~ + d.i.; ~~ 
(c) E.1~ ru c.p3 rc> E. o3 

d 31 (/) CQ + ch2 ro ~ + C 1 + d a3) (i) ~ • 
~ £ 12. lo Ez"J. /?J ~3 

Equations (4-llf) becomes in matrix form 

Ill~ I?)~ I?)~ 
~ + ci11 d12 d,~ 

~D11 ll> D12. lllD1; 
(2)~ (u~ -rvt,1 (i) E.12. 

01 ~~ 1'3(1 - d.l.l 1+d21 dt3 (1)~ (2>~ 
-

0DJ.I ~D.u (1)0~ ru E.12- rc, E.22 

fc)~ a,~ ~~ ct~, d31 1+d33 {l)~ (V~ 

(I) D31 (l)D~2 (1)Do3 Ii)£,~ (i) E.,2~ 

[~] =[[I]+ [DJ] [~t] 
or 
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(4-l lf ) 

~~ 
rD E.13 

~ 
/lJS.l~ (4-12a) 

lo~ 

rae.0 

(4-12b) 

[~~] = [ J] [~! J. (4-12c) 

Substituting the value f r om Equation (4-10) i nto Equation 

(4-9a), one obtains 



[ 
(7)f [ ~ T T ] 

t) [f (02/~1/;'o)] = Trnce, [~e-1 z:[io][J] +{: [J] [~DJ 

~ TrqM', [ H~! J [io][JJ] + Tr11te[H~~][ JfrwJ] 

= Tr~ce [ 1,_ [iD]T[ JJ [%~ ]] 
T 

+ Tr~te, [i [~D] [J] [7£]] 
= Tra~e, [[iDJT[JJ [~ ]] 

Noting Equation (4-12c) gives 

~ C ~ (a.,_,a1,ao~ = Trn(!e, [ ['nD]'c~] 

Since [iDJ= [~v}t~u,}TJT, 
it follows that* 

which after tedious computation is shown as equal to 

Consider Guass's Theorem* 

where 

(4-lJa) 

(4-lJb ) 

(4-13c) 

(4-lJe) 

t b} ::i any vector in the x1 , X.2. > x3 coordinate 

tn} = Unit Vector normal to s urface area 

n = c.osc11.,x1) I1-t (!os(Y1_,X2) Il--t ~osc11_,x-3)13 (4-13 r ) 

(~) See appendix II for all the definition of TRACE 
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Substitute all the values into Equation (4-8) 

~ W = j JJ Tra~e [l V} HS •JT[~-f, J}] d x,~x,dr., -j f J Tme [{ Su.J{{v}[~}J J clx,dx,d~ 

In accordance with Equation (4-6a) 

(4-14b) 

substituting the values of bR-1, ~R2 and~ W • then Equati on (4-14b) 

is rewritten as 

ff Tra~e[{il.(H !~ H:f-{nf°[~UJJ dA 

T ff /Trace [{ 31.(J{j[JJ/ jF:f+ lv)[~{_l] dv ~ o ( 4:..ll~c) 

Since. the principle of virtual displacements, Equation (4-14c) 

must be satisfied for arbitary values of bV. 1/?,u 1 :,~u.3 • the 

following equation must hold at all interior points of the body 

(4-l,5a) 

together with the equation on all surface points of the body, 

= {o} 
T 

According to Equation (4-12c), then Equation (4-15a) is 

written in the form 

(4-15b) 

(4-15c) 



4.4 The Relation between Stress and Strain Components . 

Comparing Equation (4-15c) with Equations (J-J4b). 

both express the conditions of equilibrium of a volume 

element of the deformed body which initially is a 

rectangular parallelepiped with edges dx1 ., d x2_,dx-3 parallel 

to the X1-., Xi, x
3
- axes. It is seen that one of these 

systems are transformed into the other by setting 

[~i1 = [ ~ J 
It follows immediately from the above equation that 

Lv~J = 

since [~~]= 

(4-16) 

(4-17a) 

(4- 17b) 

Consider the well-known chain rule of mutivariate calculus 

c:~ J = 
rD~ [ ~ai.] + (l)~ [ ~ a1 J -+ (3~ [ ro~o] 
~Cl,2. rH.. ~ a1 rH. ~ Q0 (Df:... 

(4-l8a) 

= ~~
2

[ I] +~~
1 
[[I]a1.-[EJ]+~

0
[CoF[E]] (4-18b) 

where 

a2. = E11 + 'E22 + t.33 

[ ~:2] = [I] (4-l8c) 

'c.11 t22. + t.11 t~3 + 'E22 ta.3 
2. '2. 2. 

a1-= - 1/4 ( E.11 -t E.13 + t ,_~) 

f,._2. + ta~ -1/2 t12. - h E1; 

[ !~1] == -½ t12 E11 + c33 -1/.2 E.1.3 

-½ t13 -% f.2~ E11+ t.u. 

- [ a2 [T] - [t]] (4-18d) 

120 
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Also 

2. 
( 1/4 c 13 t,1., - Yz E,, e12.) (f.l.). t ?,3 - 1/4 b.&) (Y4E12. C;_; - Y.2. f1.tt13) l foOo] = ;z. 

(1/4t12E~-Y2!~11 EHJ (lJ E, ( c,1 E3~ - 1/4 E 13) 

2. 
sy5Mfnf:TR I<!. . ( E 11 E.t.1. - ¼. E ti ) 

- [ COF · [cJ] (4-18e) 

Hence 

["f ,,_] =~!JI]+ ~t [[I] cidE]] +%i,[c.o~[EJ] (4-19) 

Equation (4-19) is the general statement of relation which 

must exist between the stress and strain components. In 

deriving this equation two assumptions have been used 

1. The body is isotropic 

2. The dissipative forces due to the 

interaction of the particles of the body 

are small enough to be neglected in 

comparis.on with the conservative forces. 

In conclusion, it should be noted that 

Equations (4-9a) and (4-16) imply that Equation (4-8) may be 

rewritten as 

% W = j J / Tmce [[ %][ '&t]] dx1dx1 dx~ (4-20) 

This equation is a generalization of the analogous expression 

of the classical theory of elasticity to the case of 
' 

deformations of arbi~ary magnitude. 



4.5 Boundary Condit i ons 

Equation (4-15b) expresses the conditions which 

must be sati sfied at those points of the bounding surface 

where the surface loading is prescribed but the displacements 

are not. 

Now consider Equation (J-J2c) compared with Equation (4-15a). 

it follows that 

1 22 

[ $i5] [ ~;] (4-2la) 

Jf: T >I' 

c~~ J [o/s] 

Substituting Equation (4-2lb) ahove into Equation 

(4-15b), it fol l ows that ~ 

l y;l [ 5/s J 1 J} = !~ { i:} 
where [~~] may be expressed in terms of the strain 

components. The left-hand side of Equation (4-2lc) may 

be r egarded as functions of the displacements. 

After these substitutions have been made, 

(4-2lb ) 

(4-2lc ) 

the given expressions become the mathematical formulation 

of the conditions which must be imposed on the displacements 

at those points of the bounding surface of the body at 

whi ch U1JU1 JUJ are not given- di rectly. 



4.6 The Simplification of The Derived Equations 

in the Case of a Small Deformation. 

All the equations that have derived from the 

beg inning of this chapter are all for Case 1 (general 

nonlinear case) which may be simplified for the case of 

small deformation as follow, 

Case 2. The Case of Small Deformation. 

12J 

If the deformation is small, its components are 

neglected in those equations where they appear together 

with terms of order unity with 

[o/s] = [I] 
y'# 

l[J Jl /y - = 1. 
~ 

SYi 
1. $YI -

Thus , Equations (4-15b), (4-15d) are rewritten as 

{ v}T[~] [[I]+[e]-[w]] +{r: f. = \a }T 

[i;JT{r1~ == {i!} 

Case 3. The Case of Sma.ll Deformation and Small Angles 

of Rotation. 

(4-22a) 

(4-22b) 

(4-22c) 

(4-2Ja) 

(4-2Jb) 

If the angles of rotation, as well as the strain 

components, are small compare to unity. then Equation (4-2Ja) 

are simplified by neglecting [e] in compari s on with matrices 

[ I J an'd l W J . 
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Hence, Equation (4-2Ja) reduces to 

T T T 
{v}[~~] [[I]-[w]] + {Fx*J = 10} (4-24a) 

(4-24b) 

Case 4 Th e Transition to the Equation of the Classical Theory 

Wi th this degree of accuracy, the only other 

s i mplification possible consists of neglecting the product 

of [~] and [ w J in comparison with ~nly the matrix [~] • 

So the Equation (4-24b ) r educes into 

T 

{v}[:~] + (4-25) 

Now representing the function ~ (Ch_,Cl1J Oo) as a power series 

in the three parameters a2.., 01., tAo • No negative powers can 

appear in the series, for otherwise the specific strain 

ener gy would tend to infinity for infinitesimal displacements 

of the points of the body from their initial position, which 

is unaccept able. 

Furthermore, if the strain enegy of the body· 

is to be zero in the initial state (the body to be free of 

all stresses), then the series must begin with terms which 

contain the s t rain components to the second power. Under 

these condi tions, it is written as 

~ (Ch,01, Oo):::: A1 Q~ + A2 01 
.3 

+ B1 Ch -t B2 Cha1 -t B3 Clo 
4 2. -z_ 

+- C1 Ch+ C2.CA2.~1 + C.302.Clo + {!4Q1 

+ D1 af + Dza~a1 + D3 a~ao+ D4Q2.Cl~+D6a1ao(4-Z6 ) 
+ ______ _ 
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where .. 
Aj ,6 = the coefficients of those terms which 

contain the strain components to the second 

power 

' Bj ,6 = correspond to the terms containing the 

strain components to the third power 
) 

C · )6 = correspond to the terms containing the j 

strain components to the fourth power. 

The series (4-2b) is regarded as the general 

expression for the strain energy of an isotropic body which, 

in its initial state, is free from any internal forces. 

4.7 Hooke's law. 

Assuming that the strain components are 

infinitely small, then, whatever the relative magnitudes 
l ,. ; , .. 

of the physical constants A5 J Bj ,C\---·• their influence is 

nullified by the infinitesimal smallness of the strains, 

Therefore, only those terms in the series (4-26) which 

contain the strain components to the smallest (i.e., second) 

power need be retained, 

Thus Equation (4-2b) reduces to 

~ (a2.,Cl1_,Clo) 
2. - A1Ch + A20i1 (4-27a) 

'()~ = zA1 a~ 
(l)(h 

0m Az • ~~ o. - ~ == 
(l') a 1 J 0C4o 



Equation (4-19) is rewritten as follow 

or 

"'f22 == 2 A1 ( E.11 +cu+ c.;~) + A2 ( t11 + c;~ ") 

1",, = 2 A 1 ( t11 + E2.z + E~3) + A1. C £11 -+ f 21-) 

Put into matrix form. it is written as 

111 

1i1. 

'r3~ :: 

l12. 

11; 

T;i; 

2A1 1A1-t-A2. 2A1 +A2. I 0 
I 

(2A1+A2.) 2A1 .2.A1-,-A2 I 0 

(2-41+ A2.) (2-A1-+A£) 2A1 
1 

0 
- - - - - - - - - - - - I - -

0 0 0 1- A2 
iz 

o O O O 

0 0 0 0 

0 0 

0 0 

0 0 
- - - -

0 0 
_ A1 O 

'l. 

- A1. 
0 1... 

'E11 

t.22. 

'E,3 

E12 

c13 

t:i.3 

A1 and A2are replaced by two new constants E and}( where 

J 
2A1+ A2 = AE 

( ,f +~)(1-2)-'-) 

2
A::: E(1-A) . 

1 (1+,M,)( 1-2),<-) 

E ~ Young 's modulus, / =Poisson's ratio 
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(4-27b) 

(4-27c) 

(4-27d) 

(4-27e) 
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It follows that 

Vii ~ ft ~ I 0 0 0 E11 (1-y-> (1- .yt-) (1-~) 
I 

(.1.:±) ;'<- I 
0 0 0 T22 ( -1-¥'-) I Eu. u-~) 

I 

~., E sy s1,u,1E ny (1 -:-JI.,,) I O O 0 c,3 
- ( 1-¥-) I - -- - - - - -'---------· 

(1+jL) I 1 0 0 0 0 0 E12 'r12 2. 

0 0 0 10 1 0 ~,, Ti, :2. 

0 0 0 0 ~ 
C.,13 "[.13 0 2 

(4-27f) 

or 

I 

E-11 
~ _J!: -~' 0 0 0 Vt1 E f El 

E22. 
M. 1 -~ 0 0 0 "f:1.2. -- E E. £ 

C.3~ M. -A 1 I 

0 0 0 \1""33 E £ E I - ---------, - - ---- ----

t.12 0 0 0 I 
2 (1+~) 

' E 
0 0 <f12 

t13 0 0 0 0 2 ( 1+),L) 
0 ~3 r;: 

t13 0 0 0 I 0 0 
.2. ( H)l) %; 

E 

(4-27g ) 



129 

Equation (4-27f) expresses the well-known law of James Hooke . 

It follows from the above that for every material a r ange 

of small de formations can be established for which Hooke's 

law is approximately valid. 

Hence, as soon as Hooke's law looses its validity 

the problem of ascertaining the stress-strain relat i on 

is complicated drastically. A further complication arises 

from the fact that the part of the dissipative forces 

increases substantially after the limit of proportionality 

ispassed. 

4.8 On the Applicability of Equation (4- 19) to 

Elastic-Plastic Deformations, 

The basic relations of Hencky's theory of 

plasticity are derived from Equation (4-19) by introducing 

su i table as sumptions regarding the nature of the dependence 

of the derivatives to<f ,0~J~on the strain components. 
/3Ch ~a1 /'Mo 

In order to show this. it is necessary to use Equation 

(4-19) to establish a relation between the two invariants 

of the stress tensor. 

(4-28a) 

;d * 2. 2. 2. ) 
0.2.- 3 C1 = ~II + "tt2.2. + 1°~33 -t 2 (V~11 '\f~a -t \JR2.l IJ'i33 + IJR 11 'JRB 

-3 ( \JRll\fR21 -t VR.11 v~~3 + VRn \JR33) + .3 ( ~R~2-+ ~'2.~3 + cr~~3) 
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ct- 3 0,~ = ~P.~ + \f :11 + 'J°R.~3 - ( V~u v-~21. + VRII VR?i3 + ~27. rR,~) 

( 
7.. l. l. 

+ 3 'f fl.12. -t- Vi13 + 'vR23) . 
1 

2 v" 1 2. 1 2- l. 
= ~ ~P.,, - v ~" ~R21. + ½ r~21. + 1/1. "i12.11 - ~" VR 33 -t 112. ~R 33 

2 1 rr2. ( 2 2. :z. 
+ ½ V°Rz.t - ~22 ~33 -t ½. ~ 1<?3 + 3 ~R.l1. + "f'R1~ + 1f"Rz3) . 

1 2. '2 2 
- ½. ( ~R.11 - ~RZZ.) + 3/2 (5f1<H-1i33) + ½ (~V. - ~~33) 

.3( 2. 'l. 2-

+ "fR1"2. + ~~13 + 'f1u~) 

= ½ { ( 'ifR11- VR21.t + (~Rn- °VR3~r + ( Tiz22 -TR33/ 

+ b (T~~2 + ~dia-+ ~:Z3)} ( 4-28b) 

According to the left-hand side of Equation (4-19) c: and cf 
are calculated in the easier way by referring to the principal 

strains 

Thus 

[E] 
E~ 

0 

0 

0 

E:~ 

0 

0 

0 

Equation (4-19) is expressed as 

~~ 0 0 ei + c3 
0 

rDCh 

[lRl = 0 
(l)~ 0 + (()~ 0 e.1+~ fl>lh ma1 

0 0 
a,f 

0 0 roa1. 
m_ ~ P f' ~ Pf ~ + rD ( E.2+ t:.3) + ~- ( E.,.f3) 0 1?Ja1. t0a1 (D Go 

0 

0 

c.1+E..l 

'<'~ + fD~ (€f+E~)+~(E~E;) = 0 
(0 a2 (DQ, fOClo 

t11c3 
(t>~ 

+- 0 ("Oao 

0 

0 

0 

0 ruQ +~fil(6f+E.;) +~~ E:;t:~ 
roa 2 rM, ~ 

(4-28c) 

0 0 

'E/., 0 

0 el2 

(4-28d) 



J )l 

= 3 ro~ + 20 il? a1 + m~ a1 
ro a2. '7HA1 ~Q0 

(4-29a) 

ct = ( ro I + (l) ~ ( E;-+ e.:) + rv m. E~ E:;) ( (i) 11. + 
(/)Q:1.. roa1 roao (D Ch 

+ r (0~ + rom (, E~ + E:) + 0li e: c:;) ( ~~ + {l)~ (E~ + E,~1 + m~ e: c1'3) 
\ (l)O:i. (c)a1 roao (Ja2 (c)q1 'J fD°" 

-+ ( ro~ + rzS ~ (e~ + ~) + (l)<D E-.~f.~ )( ~ + rv~ ( Ei+f;) + ro~ ~~E~) 
{()q2 (C)ll1 (DOo <'°1.,\.2. fDCl1 roao 

(l)f p f') ri2d2 f' f) + - (E~+E.0 + ;;;;i. E.~J-3 . (4-29b) 
(T) Cl -1 1 vu o 

3 ( ~4? )
2 
+ a,~ m~ (4a1) + ro~ (l) ~ c2a1) + (ri, ~ )2. a~ 

~a2. /OCh. toa1 r1>cto fOQz. (l)Cl1 

- 2 
+ ~t (?>~ (B Oo-t a,a2) +(~~ \ aoa:1.. 

fD ~1 . 0ao rr> ao) 

( 4-29c ) 



Experiments show that the character of only Equation (4-29c) 

is drastically changed by the transition from elastic to 

plastic def ormations. while Equation (4-29a) (which gives 

1J2 

the connection between the average value of the three principal 

stresses and the strain invariants) changes so little that 

it can be extended intact, with no serious error. to the 

plastic range. However, according to Equation (4-2lf ), in 

the elastic range 

! ( "fR 11 -t ~ R1.1-+ \f R33) (4-JOa) 

Hence, extending thi s relation to the plastic range as well. 

yields 

ID~ +'.±:Ch (D~ + i 01~~ ==- i. E Ch (4-JOb) 
ma2.. .3 ma1 .3 rc,ao ?>(1-2;-,) 

Further more, according to experiment, the stress invariant 
.% 2 

(C.2- -3 C1) can be taken to depend only on the combination of 

the strain invariants a1 ) ~ 1 i.e. , on 
• 2. 

the quant1. ty 02 - 3 01 

In order to bring the Equation (4-29c) into agreement with 

this fact i t suffices to set 

ml 
flJO..o = 0. 

ni~ ;2. and to regard n, a
1 

as a function of Ch - 3 a1 alone. 

(4-JOc) 

Taking into account these assumptions as well as Equation (4-JOb). 

Equation (4-29) assumes the form 

E {)z.. 

3(1-2)'·) 
(4-Jla) 

5 - T· ~(T) (4-Jlb ) 
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where s = J;_ J c ~.._ ?J ~r) 
$ 

(4-3lc) 

T = 1-✓ ( a~ - 3a1 J ' 
~ 

]!\T):: _ (D f 
/l)Q1 

In the theory of Plasticity, it is denoted that 

S = the intensity of tangential stress es 

T = the intensity of shearing strain 

(4-Jld) 

(4-) l e) 

Noting Equations (4-Jla), (4-28a) and (4-JOa), it follows th~t 

I.Qj = E Q1 + 1 Ch ~(T) 
ll>Q2. 3( 1-2,?-) 3 . 

* 
= -1 e,~ + 1 Ch ~(T) . (4-J2a) 

Returning now to Equation (4-19) and substituting in it the 

val ues in the Equations (4-Jle) and (4-32a), one obtains 

['f] = ( t Ci+ i 01 tc.T)) [I] 
- WCT)L[I]ch-[E]] . (4-J2b) 

Equation (4-J2b) is precisely the stress-strain relation 

proposed by Hencky for elastic-plastic bodies. 

Thus, Equation (4-J2b) for the theory of 

plasticity is a special case of Equation (4-19). In other 

words, in spite of the irreversibility of a plastic deformation, 

it can be described by means of equations derived on the 

explicit assumption that the deformation i s reversible. It 

should, however, be noted that the use of Equation (4-19) in 

the th ~ory of plasticity is admissible only if the process 

of deformat ion is an active one, i.e.• only if the deformation, 



during all its intermediate stages, is monotonic in the 

direction of increasing intensity of shearing strain . If 

unloading takes place during deformaton, Equations (4-J2b) 

ar e no lon~er valid. 

4.9 On The Simplest Variants of Nonlinear 

St r ess -Strain Relations. 

Suppose that the deformations are so large 

1)4 

as to render Hooke• s law inexact, Then as a second 

approximation, one can retain in Equation (4-26) those terms 

which contain the strain components to the third degree in 

addition to those containing them to the second degree . It 

is clear that the description of the elastic proper ties of 

the materail in this case requires a knowledge of five physical 

constants. 

(4-JJa) 

Differentiating ~ with respect to a2,a1J ao , one obtains 

1. 
zazA1+ 302.B1+B1.a1 

Az + .B.z a2 (4-JJb) 

B3 
Substituting these values into Equation (4-19 ) , gives 

['f~ l = ( 2. chA1 -t- .3 a~ B1 +a1 BJ [rJ + (A2.+B2a2.)(CIJCh- [f.J) + B3 [O.oF[EJ] 

= ai_[I](2A1+A2) -Az[E] +3 a~B-1[I] -t B201 [I]+ B.za;[r] 

- B202 [~] + B3[CoF[~]] 



Replacing A1 ,A2 , B1J B.2 and B3 by . the new constants E Y 

fa,P1Jf2J/33 ,yields 

where 

[~~ J = _§_ J ( _A_ 0.2. + I{ 021._ Cf1 +!33 ) a1) [I] 
c1+f-) t (1-2;-J 

+(1-t(r1-t-r3) Ch)'[E.] + f3 [CoF[EJj} 

. 
) 

Ai= - _E_ 
(1+))--) 

J 35 

(4-34) 

It is es sent ial to note that the second 

approximation differs from the first only in terms which are 

"even" functions of the strain components, i.e., ter ms 

which rema in invariant if the signs of all strain 

components appearing in them are chang ed. 

/ 
/ 

/ 

Figure (IV-la) 

/ 

/ 

/ 
/ 

/ 
/ 

Figure (I V-lb) 

The ExtenRi on-Compression Curv 
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The extension-compression curve for such a 

material must lie whol ly on one side of its tangent at the 

or i gin O (Figure(IV-la»* However. the majority of materials 

have extension-compression curves of the form shown in 

Figure IV-lb. It follows that deviations from Hooke's law 

are ordinarily condit i oned not so much by terms cont aining 

the strains to even powers as by ter ms containing them to 

odd powers . In view of this, Equation (4-34) by no means 

yields all possible variants of extension-compression cHrves . 

In the light of t he above remarks, it is interesti ng 

to investigate the forms of the nonlinear stress-strain 

relation in which the stresses are odd functions of the strai ns. 

Thus , assuming the specific strain energy to be of the form 

row 
r?>a2. 

lo~ 
/() 0.1 

lo~ 
(c)lfo 

2A102-t4afc.1-t2.C2a~a-i + C3 ao 

== A2 + ~za; + 2 Q4Q1 

- C3 a2. 

(4-36a ) 

(4-J6b) 

Substituting t hese values into Equation (4-J6a ) gives 

[1°1?.] :: ( 2Alh + 4 Gli ~1 + 2 C2 Gl2. C?1 + C3 ao) [ I] + ( A2 -tC2 Q~ -t 2 C4a1) 

[[I] a2.-[EJ] -t (!3Gh[CoF[E]] . 

Ch[I~ (2A1+A1) -t- a~ [I] ( 4C1+C.2) + 1a2a1 [1] C~2. +Cif.) 

+ ~3 Oo [I] - (A2.-t c.._aI + Zl!4a/) [E.]-+ C3a2 [COF ['£]] . 
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'( 4-37 ) 

or 

[VR.] = ~ [{ (~ ) Cl2 T al ( ¥3)- (2. '67 -f-~l. + 2'i.4.)a1a2. + D4 Clt> ~ [I] 
(1+,f-) 1 71-
+ ( 1-t ('trt'64)Q~ + ~1.q1) [E]-t 04 a.2 [CoF [EJ]] ( 4-JB) 

where 

2A1 +A2 = _f~h: __ _ 
(1-+)_L)C1-9?-) 

A - E z =I 

( 1 +JA,) 

J.~1 = E ("-r>1+03-t'ttf.) 
(1-f}L} 

<Y.2. = - £ Ct 1 + 't 11-) 
(1~) 

C!.3 = E. '611-
(l +f'--) 

2 rY.t;. = - I= '6 J.. 

C 1+J,L) 

(4- J9 ) 

Here E_;fJ o1,'62 ,)f
37 

"64- are six physical constants , of which 

the last five are dimension-less and the f i rst has the 

dimension of a stress. 

Hence Equation (4-)8) is the nonlinear rel ation 

between stresses and strai ns with t he sic phys ical constant~. 
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4, 10 Summary 

Cas e 1 Mi n imization of the total work 

Taking into account the characterist i c of t he mat er i al 

re f erred t o as the limi ts of proportionality of an i s otropic 

mat erial , i t follows that the minimization of the to t al work 

expres s ion yields 

or 

Compar i son of the l atter two equations with Equat ions (J-34b) 

yields 

The relati onship between stress and strain for the four cases 

is s ummari ~ed below 

for Cas e 1 and 2 

[l] 
1 ,._ ). 

= [e] + 2 [[eJ + [e] [w]- [c.o][e] - [w] J, 
for cas e 3 

[t. J ~ [e] - ~ [W]~ 

for C8.:: ~ 4 

[!] fV [eJ. rv 
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CHA PTER V 

PR OBLEMS ON THE DEFORMATION OF FLEXIBLE BODIES 

5.1 Deformation of Rod s (F i rst Approximat i on) 

Figure(V-1) Thin Prismatic Rod 

Consider a thin prismatic rod of arbitary cross 

section as shown (See Figure(V-1)) The origin of the coordinate 

system X~XJ.J~ is placed at the center of grav i ty of the area 

of one of the ends of the rod, and theX3 -axis is directed 

along the rod. The X1 - and Xi-axis lie a l one the principal 

axes of ini tia of the cros~-section. The parameters Ll1 Cx1JxJ.,x3 ) 

U.i(X 1.,xJ.., ;,<~) .., u3 (>< 1J ><.tJ X'~) denote the di s placements 

of an arbitary point of t he rod due to a deformation. 

Since ' the var 5ations of the~ and x~coordinates in this probl em 

are s ubs t antiall y smaller h~_n the variation of t he x 3 

coordinate, it i s as sumed that the power serj e~ ex pansions of 
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the displ a cements in X1 and X2 coverge rapidly enou ,h withi n 

l imits which are of interest . According ly, the di s placements 

of an arb i tary point of the bar are expressed i n th e form 

U1 (X11 X1 ,X3) ::= U1( O, 0) X~) + x1 (~) + X1 (r'iH{1) 
(DX1 o (o X1- o 

+ i x~ ( i~}) + ½ x~ ( ~~f Jo+ X,'<( ;:~•mx2) +- - · 

+ .i X1 lo u. .t -t i X,1. lo L<.t + X, Xi. ( to U.1. \ + __ _ l( ~ ) J..(.,_) .!. 

2 ·fbx1~ o ~ rox: t1X1fdx)_J 

where the oper a tion ( 

X1 =- X2 = O 

Denotinp; 

(5-1) 

) 0 implie s evaluation at the point 

A A A 
U1 = U1l0,o)x'~) J U.i = V.t(DJOJ><3 ) j U3 === U3lo> O)'x3) (5-2a) 

) c.r1 = 

) CVa. = 

i %~::: 

j -X...1 =-

(5-2b ) 

(5-2c ) 



wh ere 
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/\ ,,. .... 
( a) U1., e< 1 , U.3 are the displacements of t he point s 

on the axis of the rod and cons equ ent l y ,ar e 

func t ions of X.3 alone 

( b ) 1 + J"-1 J u,_ _, Cf' 1 J 1 + (f 2. J ~ 1 _) °)(., J. are of the 

same order of magnitude as the direct i on cos i nes 

of those fibers in the strained s tat e which were 

initially parallel to the to th e Xr and X1 -axes 

(Equation 1-l)b). In addition, i t 1 s assumed 

that these parameters (some or all of them) may 

substantially ex ceed the elongations and shea s, 

a l so are functions of X3 alone. 

( c) U1 , U1., UJ contain all remaini ng terms, 

(beg inning with the fourth), of t he power series 

for the displ acements. I t is c lear from this 

that for X1 :o,x1 =0 

U1 = U2. = Ua-= l()U1 -= n,u .. = ~U1 = mii'l, = ~~ ,. a,u~ = 0 
"'X1 l'l)X1 rbX2, rox.. /'b)C1 /JX,2 

In addj t i on , u1_, U.2.)U3 ar e regarded as the correction terms i n 

Equati on (5 - 1), which are very s mall in comparison with the 

rernai njng t erms. 

Thus, Equat i ons (5-1) becomes 

U1(X1,X1,X~) 

u1 cx~,x.t)x~) 

U.5 l 'x'1,X1.>X3) 

Q,, ( X3) + X1 U1 ( X~) + X2. ½ex,)+ u,( X1 )(',_ )(~ 
J .) 

=- C¼ ( >< ~) + X1 tj,1 (x,) -t X2 c.J,,- ()(3) + U,1 (X1;X1,><', )" ( 5- J ) 



l hJ 

Since the first two rows of the first matrix on the r i ght 

hand side of Equation (5-4c) is zero, one obtains 

~l).1 (l) U,1. IV U3 ci1 tjJ 1 ¾1 0 0 0 
1o><1 Ii) X 1 (i) ><1 

(l)U'I foU>. ~1.A3 = \Ji th %.1, + 0 0 0 
tax-,_ (0 X') (i'))(1 

I\ " I'\ 
X 0m +X ~a.,_ . X1'J~1+x1ra~. xli)'.%,1+X.1.r;,~l mv<.1 (Ht'- ~ I.A~ ~U-1 ~(,(cl, ra l).~ 

lclX'3 IW3 m<..3 {c) X3 fvX3 ~)(J 
1 ox, 2 

/vX~ ' f<lX3 m3' f.lX3 nX3 

-
(G) l.{1 Ii} LA.1. nU3 

-
(i) X1 (uX1 Iv X1 

+ ~ ~1 (3 U:i. (.) Ci3 (5-4d) 
fJXl rux1 (i) x,. 

-
f.) Ci1 /ilU, lvl<3 
M<a n)(!> /iJX3 

In symbolic form the latter equation becomes 

or 

[D]T - [D]T-t-[K]T-+[D]T 

[D] - [DJ +[1<1 +lBJ 

(5-4e) 

Substituting the values of matrix [DJ and [D]T into Equation 

(2 -4b) g ives 

[t] = i ([DJ +[D]
1

-t- [D]
1

[DJ] 

,,. ½ [C6]+[1<J-tI5J +[BJ~[1<J+[6J+ [6J'[6J 
1 T T , 'T 

+ [6][~] +[D][D] +[K][6J +(K][K]-+[l<][D] 

+ c 6 J T[ B J -+ [ o Jr K J + c tS J Tc o J J 
[E] - [S] +½[[JJ[K]+[f<][J]-t-[Kf[t<'J]+;[[6]+[D]T 

+ [o][6J + [K][6J +[l5J'[DJ +[f5J[!(J + [BJtBJ] 

where [€ J ~ ~ [[DJ +[D]T+ [D]T[DJ] 

(5-5a ) 

(5-5b ) 
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I 

Also Equation (5-J) can be r ewritten i nto the matr i x f orm as 

follows: 

lA.1 

with 

or 

~ 

fDX1 
(o 

toX1 
(o 

fil)(3 

ta l,(-1 

le) X1 

0 U1 
(0 x,. 

~U1 
rDX3 

" U.1 

" ::. U.). + 
/\ 

IJ.3 

1 U1JU,JU3J -

/0 Ul. ~ 
to X1 ~Xt 

(I) U,1 au3 
:: 

~XJ.. ~Xl 

~u,. ~U3 
tqX3 nx3 

i'1 ui 0 X1 

cµ1 (p 1 0 x,. 
¼1 cy...,_ 0 f..; 

n { A A ~ } 
li)X., U.,, , Ul, \.(3 T 

@._ 
to x'J,. 
[L 
~X3 

~ 
+ (c)X1 

I\ 

/l)U-1 

(c) x,, 
I'\ 

qu.1 
n XJ. 

" ~ IA1 
(i) )(j 

1oU1 
(<) )( 1 

-
~U1 

+ tux,. 
-

~U1 
(c)X~ 

I\ 

@_ 
m<J.. 
(d 

(DX~ 

/'D U2. 
taX1 

A 
/0 (,.(i 

n ><1. 
/\ 

Iv 1,(.1 -nx.?, 

-
13 u,_ 
(I) X1 

-

/\ 

(c} U3 

n \( 1 

A 
/3' (,(3 

tq)(J_ 

I\ 
lo~3 

n><,3 

-
fclU?I 

~X1 

-
/H,(l ~~ 
-
n X;. ~X3 

- -
ID Ll.l (i) ()~ 

ro ><?; fJX3 

U1 

-t - (5-4a) u,. 
-
l,l3 

(3 

{ X/J1 + )hU1_, ~-1 X1 + Cf.i.X,._, Xf1-tX._l(.2.} /DX1 
~ 

(?JXz. 
~ 
Ii))(' 

(5-4b) 

+ 

(5-4c) 

~1 

I 
'~ . 
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repres ents the s train matrix for points on the X
3
axis of the 

rod and consequently are fu nc tions of X3 alone; also for 

th ese po i nts 

[J] 
I\, 

-: [I]+[DJ 
A 1 I\ " 

E-11 2 Eu. iEB 
:l 

I\ 

[I] " 1 " ::::. 'l)J. ;i' f..10 

sy-mmefri(!, 
E3_; 

In the first approximation of the deformation of rods 

are neglected in comparison with the remaining terms in 

Equation (5-3). Then Equations (5-5a) become ([D1 r;:, [oJ) 

(5-5c) 

['£] =[i] +½ [[Jf[i<] +[l<][J] + [t<]T[KJ] (5-6) 

This accuracy is not adequate for the deformati on of rods, 

since a solution in this form cannot be subjected to boundary 

cond i t i ons which arise in practice. Hence. in studying the 

deformation of rods, it becomes necessary to take the 

disp l acements in the form given i n the more complicated 

Equation ( 5-5a) rather than in the Equation (5-6). However, 

for greater clarity, it is convenient to assume that Equation 

(5-6) i s adequate. After completing the computations, it will 

be f ound that enough terms have not retained to give a full 

solut i on of the problem. At this point the necessary corrections 

wil l be introduced. This will cause no special difficulties, 

s~nce by this time the reader wil l have a compl ete picture of 

the me thod. 



In the fir s t a pproximation, Equation (5-6) is expres s ed in 

the strain components as follow: 

I\ 

t.21 = 'E,1,1 
.) 

X1 ( ro~ + l% 0 ll1 + (l)1 n_l_1 + ~/u_¼1) 
rJX?> rx3 fb x~ rux1 

+ X2 (c1+ u1) ruui + t1 ~~~ + ~1 n¾i) 
~x?J rax3 rux, 

(5-7) 

Als o Equation (5- Sb) expres sed into 

- cpJ. + ½ ( D"/-+ ~; + ~:) 

0i (1+ \o/-i) + ~1C1+ (f.i.) + r'.,1~.t (5-8 ) 



Denoting 

and 

~
11 

= rciu1 1v~ + [ou~ ro~1 + (1+ (ou.;) ~1 
~ x3 rox3 ru x-3 (cl x, rn~ d x3 

du, ~e-l + ruu,. d~.1. -t (1+fv~) fo¾,. 
k.u= cix30X3 rvx~c[x3 AX~ rDX.3 

L.. ( 1+,o,-' !dli.t + rl,
1 
~~i + c:,/_

1 
(o_o/,o.t 

K11 == v1; fil x~ '-f ~ x~ r., ~ X3 

1./, _ i [ ( ~ lJ('/· -f- ( fc) ~1 '/ -t ( (v~1 )'"] 
I I - ;). fiJ X3 ) (J X 3 } ~ XJJ 

t he n Equation (5- 7) is rewritten in the form 
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(5-9 ) 

(5-10) 

(5-11 ) 

wh ere the quantities k11_, k.1.1 7 k3 are functi ons of X3 alone 

"11, Vil., Vj,_ are the coefficients . 

As wa s pointed out · be fore. all the parame t er ~J vj_J lp17 cJJ.1. /~,,17¾,.,_ 

or at least some of the, must be regarde d as substantially 

exceedin~ th e strain c omroncnts , since i n t he bending of 



a thin rod some, or all, of the ang les of rotation are 

large in c omparison with the elongations and shears. For 
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J\ ,I A I. 

the same reason, the derivativesdu1, ~:i. ,(1+d~(Equation I-lJa) 
ci X; {.{X; cfx~ · 

posses th e same property. Hence it follows that the right-

hand sides of Equation (5-8) must represent small differenc es 

of large te rms, thus 
A 

['t 1 = 0 (5-1 2 ) 

H re. naturally. the equation should not be interpreted as 

meaning that all the str~in components of the rod along 

its axis are negligible. Equation (5-8) can be rewritten 

as follow 

Th en 

[ E 1 = ~ [ [ I3 J{ DJ.,.;- [ 6 J l DJ J 
J\ "T AT11 

0 =- [D]+[DJ + [DJ[DJ 

[I] II " T .,.. 
= [ D]-t [DJ [J] -t [I] 

[I] " A T " 
= [J]+[D][J] 

[I] = [J] [J]T. 

[JJ == ORTHOGONAL MATRIX 

" T " [I]== [J] [J] 

Figur e(V-2) Geometric Deformation of Point on 

the Axis of the Thin Rod 

(5-lJa ) 

(5-lJb) 
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:Xz 

". l. \A, 
, "it 

rotate a out.X.z. <'\xis x1 ti 
~ 

~ rota te about Xi axi s 

Ll '6 rota t e ahout ~ axis 

yigure(V-J) Euler Angles of Rotations 

In accordance with Figure(V-J),a system of three mutually 

perpendicular directions are defined with respect to one 

another by means of the three Euler ang le s . It may be 

ea s ily sh own that 

(!,OS~ cos'6 ~oso< - 5i vi f3 ~i V1 P< 

0,os r sivr~ 

- (!))5 r C().5 1S $1 VI o( 

(!-o.sp £iVI~ + Ginp C{).S'!S C(JSo<. 

sir1f sivi'6 

Co.s p ~s fl._ - si vif C()::>'6 &i ri o<. 

(5-14) 



These ve c tors are then combined to form the columns of the 

or thogona l matrix 

c.osf3 C051e-o.5o< -.sin~sino<._,; -sivric.o;iP<. j cc~sivit+siv,pcos-tc..osl'( 

uis~siY1'b ~s'6 sin~siV1'6 

J.49 

- Msp c.o~'6sivio<- -sivi~ cosi.< _j ~ i YI o si vi o< j to~~ co.st - Si vtf u,s~ si ~ p(_ 

Thus, 

(5-15 ) 

(5-lc ) 

where 
T T 

[EU]= [fu] 

According to Fi gure(V-2),as a result of the 
A A .A 

deformat i on, the point M is displaced by the amounts U1___, u.,1..:, u.3 

u* and assumes the position 1v1 while the line elements are 

I f the angles of r otation of th e 

e l ements of the rod are larg e in comparison wi t h the shearR, 

the latter may be neglected in determining the directions 

~* ~ ~ A.-,t With this approximation, 1., 1,t,~,L~ are taken 

as orthogonal and the parameters 

1 + D; ) 

b 
. . . ') )/:' ~ \Y ,-:\>I" ecome equal to the direction cos i ne s of L L~ G 

1) '- J 3 

if th e e l ongati ons are neg l ected i. n compar i s on with unity . 



Recalling 

it follows that 

[ A 1 = [ J ] [ 1 ~s] 

[A 1 ~ [ JJ 
" " T -
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or ~Vt} ?;'., [ J J fd (5-17) 

Comparing Equation (5-17) with Equation (5-16), one obtains 

,.._ T T 

[JJ = [EU] (5- 18a) 

since both are orthogonal matrices, thusJit foJlows from 

Equations (5-13a) and (5-lJb) that 
" T 

[J] = [EU] (5-l8b) 
T T 

s i nce the orthogonal condi t ion [~U] [EU]= [EU][E.U], 

'f hus 
" 

1 + u1 6i ~ (d')(3 

(J, 1 1 + qJ,_ 
(HJ.1 

(.)~ ,.. 

cy_ 1 
nu., 

Y-). 1 + ~)(3 

~$~ C..OSll c..oso<-Sivtrsino< i U>S ~ sin~ , -wsreostsiV1-Sit1 ~coso<. 

- si ri '6 cos'6 ~s i sivr 'b' siri~ 

~srsiv,lS+Si~co5'6C-O~o(; <51~r~1~6 j ~s~C.OSo<- ~1v1f C-06t1>i11"b (5-18c) 

Differentiating the matrix [EU] with respect to X3 and 

expanding yields 

~5 ~ U>:3'1s (- Si v1 t'<'.) d i< + C-D so< ( UJS f C-~ivnO di 
d~ d~ 

-+ ffl5~ (-SiV1f) ~ )- [-sil'l rcoso< ci t<+ sivio<~.sp0J3l 
d x 3 o. x 3 dx 3 

- - ( (V)~~ cos'6 ,;iv, p(_ -+ sivip eost<) d.D<'. - (tost?<w.s~sivip 
d X.3 

+ sf Yl oCQ.os p) d..I? - ~s D<:'. CC>s s s i VJ 't Al 
· rfx~ 1 dx.? 

d u.1 do( ¾ 
1 

d ~ e,o.s c< u; d.. ~ ( 5-1 9 ) 
OX3 ~x, Jx3 dX.3 



to th _ W5 r CCs'6 d '6 - Sivi 'JS' SiYl ~ ~ 
roX3 dx~ d.x3 

- - ¾J. ~-f; + U>Sf ( 1-t- ~~) 4rl,3 
Q.1&1 = (eospc.osc{- c,,o5~'i>iV1p-srY1o<) c{oC +(w~~w5o(C.O.Sr 
ct~ d~ 

_ Si Vl o( St VJ £3 ) .di _ C,()5 CX:. $ i \11 P '$ i Vl ~ d °<5 

I ctx3 c:0<.3 

= ( d ~) + 1 ) 0 o( + ( u; + 1) b - 71 s i Y1 B d {) 
d:,<3 ch3 G\X3 I v\X3 

JiVi~SiY1ozdo< _ ~so<'.cos'i d't 
Tx3 c0<'3 

- cl Q,,. ~ - ~s c1-. (_ ~ + ~1·) <i1. 
cA. )(3 ctx3 dx'3 

d¼ = 

ctx., 

J 51 

Substitut i n~ Equation (5-19) into Equation (5-9), one obtains 

~II 
do( + ~ CU>s o :=. 
cl)(~ O.X3 

~!tl = G,os b( sin '6 QI! - siYJ'6 dt 
ct )1'3 dx3 

(5-20a) 

k1;1. ~ C,o s 0( ct 'b -t 
dx'3 

5iYJ o<. sivi't ~ 
X3 

or in matrix form as 
J I( 

'R II 1 ~5 '6 0 JX3 

c.o so( s I v1 '6 
0 Q_f 

RH 
- 0 - SinP'- O X3 

0 SiYJclsin~ tos D<. d?l 

(5- 20b) 

f 11 ct ',(J 
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thus, -1 
di,( Q.os '6 0 R11 ch; 

91 0 coso<.-sino - Si v1c< ~ll. • · ( 5-20c ) 
ch3 
ch 

0 'Si V\o( $iYI "6 Q.,os ,,( lz3~ a-x., 
By using the inverse operation, Equation (5-20c) be c omes 

c;l.o<'. 

1 
- VJS '6 C!.-0.S I( - si111o<:cos'6 

R11 G\ X3 'Sivt"t -£,iVl'b 

lit 0 ~so<. 5jY1o( 
k.u ct.x, - sivi'i Sivt ~ (5-20d ) -

gi 0 - 5l YI rl. ~SP< ~I.I. 
Ok; 

Substituting the values from Equations (5-19) into Equati on 

( 5-10) anct using Equati on (5-20a), the relations between k11 , 

~,.,. ' R1J.. and v11) v21, ~,1 are 

"11 = 1h (le~+ le7,_) 

\/J_J. ½Ck~+ ~~) (5-20e) . 

V-1l.. = 1<11 ~;t.,_. 
If these values of th~ coefficients v--11 ., VJJ.) v-

1
,__ are substituted 

into the last of Equations (5-11) for Ct 33 ) , the result 

becomes 
~ l ~ ~ 

c3a - E33 + X1 ~11 + x~ ~.a+ 1/.,_ (k11 + k1.a.) X1 

-t- ¼ C le~+ ~~.t ") x~ + ~ 11 k.1.1 x 1 x'.t • (5-21 ) 

It is seen that the terms corresponding to thesA coefficients 

may be, neglected, being quantities of th e '.'i ame order as the 

squares of the el ongati ons and shears . 



With th is app r oximation, Equation (5-11) becomes 
,\ A A. 

E11 = E.11 , t._,.,_= c.J.,. J E.u == E.1.1-

,,.. ~ 

t.10 = 'E.13 + X1 %1 + X2 ~l'.l. 
ax~ 

C.g=- E.13 + x, di.~,. + X1 ( d£17. _ lr'<1l) 
d X3 °ifx3 

/I 

'E3?-== Eo2> + ><11:211 -t X2. ~.1.t. 

where RH_,RJJ, lz 1l are determined by Equation (5-20a ) . 
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(5- 22 ) 

Since the deri va ti ves di;~, d i.J.,_ J d 6 r1. are ordinarily small 
dx3 ., ch~ ~ 

compared to k11., R1.1J ~:.t. which characterize the curvature of 

the axis of the rod in th e strained state, th e terms in 

Equation (5-22) conta ining th ese derivat i ves may be neglected. 

Hence, it follows that 
.;\ A A 

t.11 -=- E.11 ~ t J..t = t,:i,t. _, ~1, = E. l'l 

(5-2J ) 

,.. 
t33::::: ~?>3 + X1 ~11 + X2. Y<22. 

since in Equation ( 5-23). the terms X2 k.11.., X1 k12.~ X1 k11., x2. ~22. 

are of the same order of magnitude as the strain components. 

These equations are bas ed on the assumption that 

the elongations and s hears are neglig ibl y sma ll in compari son 

with unity and the angles of rotation of t he elements of the 

rod. However . i n de riv i ng Equati on (5-2)). it was postulatPd 

that only the first three terms of the Taylor series for the 

di splacemen ts need be retained. Thi s assumption is not 

correct. as is seen by appJying Equations (5 -2 J) to t he special 

case in which the rod is not bent but only twi sted uniforml y 

alon~ i t s who l e l en~th. 
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For this case 

== 0 
) (5-24a ) 

wh ere 't is a constant coefficient. Substituting these 

values of the Euler angles into Equation (5-lBc), t he iesul t s 

ar e 

tl1 ~ - ( 1- ~s ~ X?i) 

lo/.,_= ~iVl t XJ 

CV1 = - £ivi tx~ 

ctJ2 = -(1-(l)S~X?.) 

Substitutjng the values above into Equation (5-J), the 

results of the displacements are 

U.1 = ~ X1 ( 1- (!,os t' X~J + X2 <;i Vl t X3 

Ui = X1 .Oivi "rx3 - X2 (1- eos ix~) 

l,{3 = 0 

- -(by neg lecting u1 J U.1_, L,( 3 in th i s first approxima tion). 

(5-24b ) 

(5-24c ) 

For the strain components, substitution in t o f.qua tion (5-2J), 

g ives 

(5-24d) 
c,_3 = - X{C. 
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These expres sjons coincide with the "old" theory of torsion 

r a ther thRn wi th the Saint-Venant Theory. The form er, as i 

we l l-known , i s inadequate since i t does not permit th e free ing 

of the la t eral surface of the rod from stresses , which is 

essential i n this problem. Henc e it is clear that th e general 

Equat i ons (5-23) are also i nadequat e and must be cor rected so 

as to yie ld Sain-Venant's Theory of torsion as a spec ial case . 

In order to correct the results of this section the second 

approximation has to be derived by adding the r ema i ning terms 

5.2 Deformation of Rods (Second Approx i ma tion ) 

In this second approximation, the who le F.quation 

(5-5a) is used , Then it follows that 

c r J :::: c? 1 + ½ [ c 5 fr K J -t-[~Jc 5 J + [ K f u~ 1 J -t- ~ [ c r5 1 + [ o J T 

+ [6l[J5J+ [K][D]-t-[D]T[D] + [ISl[K] +[(5][5]. 

As in the preceding section, Equation (5-5a) is written in 

the form 

[f] = [ Fir.st Ap.proxi nrnf;ovi] -+ ½ [ [6/+ [15] + [ D][ 6] 

+ [K][D] + f5JT[D] + [B{[K]] (5-25a) 

whe re [First Approximatio~ is the same as Fquation (5-23). 

In accorrlance with Equat ion ( 5-5c), Equa t i on (5-25a) is 

r ewritten in the form 

[E] - [First AppynxiMahovi] +1 [ [J{[BJ +[B][J] 

[~i [I5 J -t [r5 JC 1<J] (5-2 5b) 



Denoting 
T " T T 

[6] = [JJ +[K] 
" [6]== [J]+[k] 

Equation (5-25b) becomes 

[t- J :: [ Firs+ Arproxirnaho~J,.. 1 [ [GJT[D] + [DJ[GJJ 
Denoting 

where 

= su pplementary displacements 

-
U-1 

1 u} -- u,. -
(J .3 

1 + lJi 3'2 dtl1 +x1 cJB;, + x,. dtt. 
d.x~ d )(; cJ.. x3 

[6] = tj, 1 1+q;1 d '2.,. + x ~1 + x ~2-cl X3 1 X.3 .3 )(, 

'¼1 ¼,1. O+ dll~} + X1 d~1 + X; ~.i 
c;(\(~ ciX3 cJ_K_, 

U1 JU1 JU3 are the functions of all three co-ordinates 

X1 JXi
7 

X3 with the followine propertie s 1 

(5-25 c) 

(5-25d ) 

(5-26a ) 

(5-26b ) 

(a) They are small in compar i son with the la teral 

dimensions of t h~ rod and their rl riva t ives 



are of the same ord er of magnitude a s the 

strain components. Thus, the products of 
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paits of derivatives and product of a derivative 

by a quantity of the order of maeni tude of t he 

strain components are neglected. 

( b ) For X 1 = 0 ) X 1 = O 

U 1 = U 2 :: U 3 = r'v U1 :: ro UJ _ (o V1 = ro U ,._ = r?J T..h = ra U 3 :=. o • 
r'V X 1 rv X 1 - fV X J.. rc, X).. (c) X 1 (D X ,-

D j ff er en ti at ing Equation (5-26a) with respect t o x1 ,x~, x3J 

one obtains 
T 

_0_ {u j = [ 1 [ 6] T J { u_} + [ 0] }X 1 U J 
dx1 x1 l/\ 1 

i {ut - [l! [0JTJ s u} = [0(A s Ci} 
ciV1 J d~ l d~ l (5-27 a ) 

T 

- [Co] fx,_ ~ D. J 
T 

:= [ 0] 1x31u} 
These vec t ors are then comb inPo to form t he co lumns of the 

matrices [ f] and [D] as follow1 

[ { l, tuH t,[0fJ j an { i,M-[ i,rwl]f u-}} I t,,\u}-[ MlJ \D )} ) 
T , 

- [C9J[{fx} 0~J 11xiiLLJ} {fx)CT}}J 
T 

or [P] = [6] [5] (5- 27h ) 
T _ T 

[PJ = [DJ [0] 
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Equat i on (5-25d) becomes 
T 

[EJ = [ FiYst Approx irna·hovi] +} [ [P] + [PJ J ( 5- 28a ) 

where 

g'J_J1 du1 (dD1_Q1cUJ1 -u~Jc/J1_ u.g~) 
OX1 d.X1 0,)(3 dK3 dX3 ,x., 

[PJ= 
dUJ. 0 VJ. ( d U,1. _ U.1 d LJ.t _ [1,-~.1 _ ~ d'.¾,1) 
ctx t d.><J.. c:fx} Ji~ ulx3 dx3 

( d. o; _ u 
1 
o u-i _ u). cf~~ _ u3 d % 1) ; ( d t13 _ ~ d Di _ u..,. J l! _ ~ d "°~ i P.33 

(A X1 ciX3 ~ Gfx3 d XJ (Jx3 d. X3 ~KJ 

(5-2Rb ) 

2. i ) - d J." ~1. t x1d {}; + x,.d lt. - u..,_ ( ur + x, ~J + x_,.~~) 
dxt d..X/ ~ dx~ Ch'.j 

- 0"3 (ct~J3 + X1 cl.!,%-1 + X.1. d1.foJ.) 
Tx~ d.x3 ~l 

The Equat i on (5-28a) is expressed i nto the t erms of strain 

component as follow 

" t.3-.).:: C.JJ.. + d V!_ 
ct x,_ 

(5- 29 ) 

In ad di ti on t o the ·sec ond app oxi mati on, the pos sibili ty of 

wh ic h was establ i s hed i n th e f irst approxi mati on. the und e rJ i ned 

terms i n Equation (5-~9 ) may al s o be neBlP cted . 



159 

Denoting 

(5-JOa ) 

Subs t i tu t ing Equation (5-19 ) jnto the Equation ( 5-JO) , yield~ 

= do<. ( l,(1 ~ + Ci.2. du~ + u.3(aa~ t-1)) +(-%1 u1 + (B:j-t-1) ~) d~ 
ctx3 CAX'; c(x-3 dx, t¾3 

..:.. ( tI1 ~5 0< u,_ + u.,._ ~.l6P<. ( 1 + c{'.t) + u.3 o/{Sivr p) d '6 
dx.3 

(5-JOb) 

where Ji1 -= O 

Writing Equation (5-JOb) into the matrix form gives 

{X-1} ::: [ J11 J1.i J13] ~ (5-J0c) 

X.2 J;.1 J.:i..1 JJ.3 dt 
OX1 

Substituting Equation (5-20d) into th e Equat i on ( 5-JOc) 

above yi ~lds 
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x~ J11 311 Ji,] ~ 
_ @osi WS()(. _ Siv1 K C()S'6 

"11 
SiVl '6 sivio -- &J5 c(. 5 i 11ol 

X2 J.'21 J.u J,3 0 ~,..,_ . (5- J0d ) 
U)S'6 '5i 1-1 tf 

0 - siv1 cL.. &JSi ~1i 
(5- JO d) 

Equation (5-J0d) is expressed in terms of X 1 and X1 as fol l ow 

X1 = J11~11 + (- J11 &JS~ &JS~ -t J12 CJJSti<. - J1_351v7P<'.)k?.H. 
5l11'lS 5iVl'1$' 

+(-J11 siv,o(e,oso'+ J12 '5i_Y1cx'. + J19 $~1'1°<.) ~12. (5- Jla ) 
~iV\'6 ~IVl°l, SIV1'6 

- J11 ~11 + ( J22 ~ 5 r1. - J:23 siY1 ti.) ~~J. 
. sino 

+(J22~;~~ + J23 ~oso<) R12. (5-J lb) 

By consid ering the individual terms in Equations (5-Jla) and 

( 5-Jlb), 1t follows that 

T ~OS cl- J $iVlo<'. 
v22 - - 23 

ST V1 '6 

- _ ¾.,_ u1 e.oso< + U.3l); e/J5oc _ ( LZ1 ~.sp (1+~2)- fi.2. siY1~ 
Si'vt 'IS ~i VI 'lS 

Analo.aousJy 

+ S t VI~ ( 1 + Cf .,1. ) U3) $ i i1 oC 

0>.srsivio<.(,i+~.2)) + u,. Si1t11S"5iV1oC 

+ u3 (17; ~-5~ _ stn()(5i'nf (1+~9)) 
°SI Y1 ~ 

J22 StY/ D( + J23 M5 o< = 
SJVl ~ 

(1+ EY1) u1 + cJ)1CiJ. + %1 ~ 

= U1 l 

(5- J2a ) 

(5- J 2b ) 
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(5- J2 c) 

(5- J2ct) 

In accordanc e with Equation ( 5-26a ), U3 is expre ss ed. into tho 

following form 

U:i. = d u1 u1 + o. u.,_ u). + (~+ CZJb )'Ct., + x1 ( d c'1 u1 + dc/,1 U:.i + ct¾1 U:3) 
;.} 0. X.3 d X'3 d )(3 cJ. X3 ci x., tfx.3 

+ X1 ( d uj_ U1 + rc, 4J2. u1 + d "1.i U3) 
ciX3 <fx., d X3 

or 

U3 - J11 -t X1 X 1+ X.1X2. 

J11 - U3 - X1 X 1- x;z.2 ( 5-J2e ) 

Taking all the above into account, Equation (5-Jla), (5-Jlb) 

are rewri t ten as follows 

or 

x.1 = ( u., - x1X1 - x2X2) k11 - u-J~42 
Zz. = ( u3 - x1X1 - X:z.X.1..) f<J.I. - U 1 R,i~ 

X1 ~~.:i. =: ( U 3 - X1X1 - X:i.X:z.) k11 ~,\ - U2 k11.~'2.'l. 

A2.k11 = (U3-X1X1- X2.X1) ~"~11-U1~,,,~11 

By subtracting Equations (5-JJb), it follows t hat 

X.2 k11 - X-1 ki, = U1 ~'1 '- ~ II -t- U2. t<12 k22 

or X2. == X ~.u 
1 

R11 
+ U 1<12. -t u3 k12 k21 

1 
f'<- II 

and 
~ U2. (1 + X.2 ~H) !R.12 - U1 X:z. ~ II ~12. 

X1 U3k11 -
( 1 + X1 le II -t- Xi. Y<.2,1..) 

(.5-J Ja ) 

(5-JJ b ) 

(5-J4a ) 
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Analogou s ly, 

X = 
2 

lh ~22 - U1 ( 1 +- X1. ~,,) k1~ ~ U:2X1 b2.l'<.1:J. 
( 1 + X1 ~ ll --t Xi ~J..l) 

(5- J4a) 

In accordance with Equations ( 5-23), x1 Ru__, X.1 ~.u are of the 

same order of magnitude as the strain components, which ar e 

s mall compared to the unity, and a l so X.1~1,R1.A.J x, ~.u, k,.1.may be 

omi tted. Thus , Equation (5-J4a) is rewritten as f ollow 

X1 ~ 113 k11 - u.2 k11 

Xi ~ U., Q,.:i_ t U1 k~l, 
( 5-J L~b) 

Thus, ·the functions X~.., X~ i n Equation ( 5-J4b ) are of the 

same order of magnitude as t he product of U 1 J -U"., U.3 by the 

curvature parameters of the axis of the rod in the strained 

state. But the supplyrnentary displacements U1.) u,,,., U 3 are 

always very small compared to the lateral dimensions of rods . 

Hence, s i nee the products of the curvature parameters ~ 11., )Q.~,_, ku 

of axis of the rod by the lateral dimensions are of the same 

or.der of magnitude as the strain components, one may conclude 

that X1 and X2 are always small in comparison with the 

elongations and shear s. Similarly, it may be shown that the 

three last terms in the last of Equation (5-29 ) may be omitted. 

Hence, with these approximation ~ t he following 

expressions for the stra ·n components of~ t hin initially 
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Adjusting the supplementary displacements U1 J U:2 J U3 1 one 

may bring Equations . (5-35) into agreement with boundary 

conditions on the lateral surface of rod. 

5. 3 Pure Torsion 

By subjecting a r od to a uniform torsion al ong its 

whole l eng th, it follows that 

whe,,,-e 1:', = ~ovisTANT­

Substituting ~Jr,~ into Equat i ons (5-20a), gi ve s 

lz11 = r<u = 0 .) ~12. = 0 (5-J6a) 

Furthermore, by neglecting the strains which are uniformly 

distributed along the cross-section of the rod, yields 
I\ 

[ E J = 0 (5-J6b) 

wi th 

(5- 36c) 

Noting the above, Equation (5-4a) is written in the form 
-. 

IJ.1 - ( 1- <!05 'tX3) 51r1'tX3 0 X1 U.1 

- S ivr ~X3 -(1-~ostX3) Xi + - (5- J6d) U.1 0 U:z. 

U3 0 0 0 X; th 
Also Equation (5-35) is rewritten in the f orm 

t11 == IVV1 .J cJ.). = fi)U.1 ' 
fl) X1 ro X.i. 

c 1~ = X:i.'L + ~ U1 + (c) CJ~ 
(DX.3 (c) X1 

(5-J6e ) 

c~~= -X1 t + rDU'l l?>U, 
17>X.3-+ (DX~ 

Setting 

U1 = U;)_ = 0 ) U3= k,1(X3)cp(X1_,X.2)::: 1tcp(X1Xl-)1 (5-J?a) 
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then, Equations (5-J6e) becomes 
. 
t.11 = t'.a =- ~-<i = 't ~3 =- o 

E 1~ = Z ( ~t + X2) 
t ,_ ~ ~ 1t- ( : t ,_ - X1 1 

(5- J 7b) 

and thus yieldsthe equations of Saint-Venant's Theor y of 

torsion. It is noted that the displacements of points of the 

twisted rod are determined by Equation (5-J6d) not by the 

expressions of the classical theory , (i.e •• the first 

approximation): Thus, in accoraance with Equation (5-26a) 

it is shown that -, 
{u,3 == [G] {u} (5-37c) 

Substituting Equations (5-24b) into Equation (5-J?c) gives 

c.os tx3 SiV1"t:X3 (-X1tsivi"CX.} t X:{CWS't)(~) 

[6] - C.05 "t' XJ 

0 

(- X1"C cos tx3 -X:i.'L. si Vl~X3) 

1 

Supposing that i.e. , assuming that the angles of 

rotation under torsion are negligibly small compared to 

unity, one obtains 

'16ivi ~x~ x 'l:X3 

ios"rx~~ 1 . 

Then, the matrix [G J becomes 

1 1t x'3 

[6] -tx3 1 

0 0 
with 

)c0J I l i 
= 1 + t X3 

,. 
(-X1'tX3-t- xl~) 

.,_ 
( - ><'1 't. - Xi 't X?,) 

1 

(5-J Ba ) 



and 
1 "rX3 

c 1+ rc 1x{) ( 1-t 't'.J.Xt) 
-1 

- ~X3 1 [G] - 1 + rr, 1Xi ~ + t:"xt 

- t, X,1. 't'. ><1 

Thus. Equ a t · on (5-J7c) becomes 
~ ft'. )(3 

U..1 
(1+ ~.1X3) C~ + ~1xg ) 

- ~X2 1 
U:i. 

1+~
1xt 1 + i"x; -

Ll?J - rex,._ "r, X 1 

It follows that, 

u.,_ = o ) 

0 

0 

0 

0 

1 
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· (_5 - J8b) 

0 

0 (5-J8c) 

(_5-J8d) 

Substitut i ng Equati ons (_5-J8d) into Equation (5-J6d). yields 

u.1 = - x,._x?, r, 
u_,. =- X 1 X 3 t, (_5-J8e) 

Lh = ~ ¢ (X1J X.t) 
These are the classical displacement components for a slender 

rod in pur e torsion subject to negligibly small rotation 

restrictions in comparison to unity. 



5.4 The Final Expres s ions for the Strain Components 

of a Thin Rod 
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It can be s een that in the general cas e of the 

deformation of a rod (when it is subjected not only to 

twisting but also to bending ), Equations (5-23) are inadequate. 

I t may fu r thermore be seen that the necessary corrections 

which must be introduced into these equations have t he same 

character in the general case as they do in the case of pure 

torsion. More specifically. these corrections must be allowed 

to remove the stresses whi ch twist the rod and act on its 

lateral surface, which arise unavoidably in using Equations 

(5-23) (for rods of non-circular cross-sections). Hence 

an attempt is made to construct a general theory of deformation 

of thin r od by setting, as in the preceding s ection, 

/ 
(5-39) 

Equations (5-J6e) then assume the forms 

(5-40) 

Equation (5-40) above are actually adequate for the problem 

at hand. With them as a basis, a consistent theory of 

deformation of flexible rods may be constructed, restr icted 
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only by the assumption that the el ongations and sh ears are 

negligible when compared to unity. The error i n thi s theory 

is estima ted by comparing the elongations and s hears with 

the ane les of rotation, since the former are. neglec t ed in 

comparison with the latter in Equation (5-J6e). 



CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

6, 1 Discussion 
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The tradition. established i n the majority of book 

on the th eory of Elasticity, refer to the equati on 

l ~ 

[E.J == [e1 +1/z_[[eJ+[eJ[wJ-[wJ[eJ -[wJ J 
a s the ''components of a f "nite deformation." This evitably 

implies that the equat j on 

[tJ ~ [eJ 
of the clas sical theory are the "components of an infinitesimal 

deformation." Chapter II makes it completely clear, however, 

that the degree of smallness of the elongations and shears 

compared to unity is not at all a sufficient criterjon for 

p; ssing from former equation to the latter equation. The 

ma nitude of the angles of rotation play an es sential role 

transform j ng the g~neral case to the special cas e (i.e •• th e 

classical linear case ) . 

In s ome problems the use of the linear equations of 

elasti~ity is inadmissible even for very s mal l elongations 

and s hears (compression of a thin rod, be dine of a thin 

plate). I n other problRms the linear equati on ~ are applicable 

even though the elongations and shear are much lar ger 

(exteri s ion of rod, bending a thick plate). 

Thus, both t h . ~0 linear theory (ca se 1) an th e 

classical thPory of Elastic jty (case 4) deal wi th f i nite 
I, 

I 
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deformations, and, moreover, as a rule, wi th deforma tions of 

the same order of smallness. Otherwis e, the classica l theory 

would have no practical significance. The difference in 

approach of the se two theories in dealing with the determinat ion 

of strain cons ists only in that the linear theory ne glects 

t e influence of rotations on elongati ons and shears , while 

the nonlinear theory takes it into account. 

As a result, the nonlinear theory embraces all 

problem dealing with the elastic deformation of bodies, 

while · the linear theory appl ies only to a particular group 

of problems. 

It has been shown that nonlinearity is introduced 

into the t heory of elasticity in three ways. 

1. The formulas for the strain components 

(Equation (2-4c)) 

~ ~ 

[E] ~ [eJ+1/:i.[[eJ+[e][wJ-CwJ[e]-[uJJJ 

2. The equations of equilibrium of a volume 

element of the body (Equat i on (J-J4b)) 

J. 'I'he stress-strain equations (Eq11ati on (4-19)) 

[~~1 = !~,. [I] +~~'([I] a2- [f]] + ~~
0
[coF[~JJ 

For the first two s et s mentioned, th e re ten tion of the 

nonlinear terms, is cond itioned by geometr·c considerations, 

i.e., t hP necP. s sity _of taki ne i n t o acc ount t hP ang1 s of 

rotation in determining changes of dimension in th e line 
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eJements and in formulating the conditions of equi librium of 

a volume e lement. On the other hand, nonlinear terms appear 

in the th i rd se t if the strain exceeds in magnitud e certain 

physical constants characteristic of the material examined, 

that is, t he limits of proportinali ty. It follows that there 

are four t ypes of problems in the theory of elast ic i ty. 

1. Those having both material l y and geometrical 

linearity; 

2 . Those which are materially nonlinear but 

ee ometric8 lly linear; 

J. Tho8~ l inear materially but nonl i near 

geometrically; 

4. Those nonlinear both materially and ge ometrical ly 

In problems of the first type, the angles of rotat i on 

are of th s ame order of magnitude as the elongations and 

shears, whi l e the elongations do not exceed the limit of 

proportionality of the given material. The simplest example 

of th i s type of probl ~m is the extension of a straight rod 

by forces whjch keep he stresses within the limit of 

proportionality. 

In this problems of the second type the aneles of 

rotation may be neglected in projecting the forces which act 

on a volume element and in determining strains. However, th e 

elongations ex ceed the l i mi t of proportionaiity and this 

requires a nonlinear stress-strain relation . The example 

g iven above becomes· a problem of thi s type if it is cn~plic~ted 



by the assumpt i on that the stresses in the rod exce d the 

ljmit of proportionality. 
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In problems of the third type. the· angles of rota ti on 

are essent i ally large (with strains not excee ding the l°imit of 

proportionality). An example of this type of problem is 

i l lustrated by the bending of a thin (steel) strip. It is well 

known that strips of high strength material can straighten out 

without traces of residual deformat i on after having their ends 

brought toe ether. Tnis condition reinforces the fact that in 

these strips, even for l~r~P. displacements and angles of 

rotation, the stres ses do not exceed the yield point (which, 

for steel, is close to the limit of proportionality). 

inally. in problems of the fourth type, the strains 

ex ceed the limit of proportionality and the angles of rotation 

are so larRe that it is necessary to retain nonlinear terms 

bo t h in t he stress-strain equations, the equations of equilibrium 

of an element. as well as in the formulas for the strain 

components. The preceding example becomes one of this type 

if it is complicated by assuming that the stress es in the bent 

strip exceed the limit of proportionality. 
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6,2 Conclusions 

The complete theory of Nonlinear Elastici t y has been 

formulated in t his thesis utilizing the basic concept s of m· t rix 

al~ebra, matrix transformations and matrix calculus , The 

nonlinear equations of the strain components, the equations of 

equi librium, and the s tress-strain relationships are formulated 

efficiently and completely in the total component form using 

ma t rix techniques. This gives the reader a broad over view of 

th e total problems without reliance upon the mathematical 

complex i ty of tensor cal ulus operation, or the extensive memory 

capacity of a strict scalar components approached, 

Matrix techniques although initially apply only to 

th~ classi cal theory of Elascity have been shown in this thesis 

to be even more efficient in their operations in formulating 

an d unders t anding the general nonl inear Elasticity theory. 

In f act, th e reduction from the general nonlinear theory to the 

in t ermidate theories and fina)ly to the classical t heory is 

most easily understood using matrix these technique, since the 

required reduction in mathematical equations are performed by 

a systematically neglecting higher order terms in equations 

consisting of matrix series terms. 

It has been shown consistently t h~ou e hout this thesis 

that basic matrix definitions play a fund amental role in the 

formulation of the nonlinear theory. The se operations include 

the eigenvalue Rigenvector problem, the con cept of the three 

matrix i nvari ants, the con~ t of s pectral dec omposition, the 

the definition of t he trace of the matrix, tog Pther with the 

'I 
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more bas ic def i nition of a matrix transpose, a matr i x inver e , 

the cofactor matrix, as well as the notion of a nons ymmetri c 

matrix, a sysmmetric matrix, a skew sysmatic matrix, orthogonal 

ma t rix and a diagonal matrix. 
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APPENDIX I 



The c omparison be t ween th e notations that ar e use d 

in t his thesis and in the book "Foundations of the Nrmlinear 

Th P. ory of Elast i city" by Novozhilov are g iven as f ol l ows : 

Thesis 

X1 Xz X 3 

' 
X1 X J. 

' 
X.3 

X 1- 'J( x..., 
1 ' 

x.t., 3 

U1 ' U .t ' U3 

I [JJ I 

E1 ' E.,_' E 3 

e11, e.u., ea3_, e ,2, e1~, P 23 

/';'f l'lr. 'Y'( 
1 1 l z. J. 3 

' 
J 

uJ1 ' W.t,_,W., 

Thesis 

1\1 > 7\,._, 7\3 

d> l'l. , (p 13 , cj) .t 3 

p E:.p E..f':, 
E1 ' .t ' 

IV ,V fV IV r..J N 

t,1, t1J-_, l;,,E1.,_J'Er!>,tn 

CHAPTER I 

Novozh ilov 

X 
? 

y z 

X y 
' 

, z 

s , 1l ' ~ 
u .J 

V _, w 

D 

Ex, E ~, E~ 

exx, e~~' ezz' exy, exz. 'e yz. 

i 1 ' i 1 J i3 

Wx , W~ _; Wz. 

CHAPTER II 

Novozhilov 

7\> rt, V 

lj)x~ , l{) x. z. J <p~ z. 
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CHAPTER III 

Thesi s 

~ :I: -'',f --' f 
ifx1 , fx:i.) \fx3 

X :t it: 
S1 , S,_ ,s 3 

f f ':f 
Fx1 F)(.1. F x3 

.... * -'-* -----"t 
If V1 1 , \Jru. , 'if n3 

't t :t 
\fi 1 , ~I'- , 'if t?i 

* t * 
lf.1. 1 Tn if,., 

-' 

Novozhilov 

:t'- 1; -,f, 

Sy.> S~;Sz 

F; F~ F~ 

vs e , ~tt irt s 
lfyt~ V-ri_vi. V-1~ 

rs i:, If> vi. v-~ 5 

r 

V-xx Vx~ Vxi. 

'fy )( If~~ V-rc 

Vv< lfzj 1fzz 

* * t 
'i[y)( \J)(~ 1"xz 

* 't * "ifyx 'f4~ f'fc 
. * * l/: 
'f u lf:c y 'f n 

" "' ,...,, <1-,- o(~ rf..:i <f.. :J.. (?'; ,_ o( ) 

r-. r, r'\ 
o(_ ~ o( 1 rf.-3o<,._ c<:i,o<., 
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dW 

Q 

Thesi s 

Thesi s 

CHAPTER IV 

CHAPTER V 

Novozhilov 

dA 

Novozh ilov 

'v\x , v~~, vx_0 

U.,1.5.,'ro 

x,y 

J 77 
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APPENDIX II 



The definition and th e relation of the tra ce of 

the ma t r ice s is expressed as follow 

wh ere 

[A] = a .11 a,i al?> 

a.1., a,..,_ a,H 

a3, 
I 

a a1 aH 
I 

I 

an1 a ru. aYl?i 

= square matr i x 

i 
Trace LA 1 = Trace [ A J 

a,4 - - - . a ltl 

a J4- . - - - - a J..YI 

a:,.,,. - - a ~n 

a YIA. - - - - - a nn 

Trace [[Al±[BJ] = Trace [A]± Trace [BJ 

Trace [[A 1 [BJ] = Trace [[B] ( A]j 

Trace [{ a} 1 bf J = ~ a ( { b 1 
Trac~ [tv}{ ta\r[A]}] 

T 

= Trace [ [t'i1}1_afJ[AJJ + Trace [1 a ~{ {V}[ A]1] 

) 79 
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