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- ABSTRACT

MATRIX METHODS IN THE NONLINEAR

THEORY OF ELASTICITY
&
Boonchai Kuntakom

Master of Science in Engineering

Youngstown State University, 1977

The purpose of this thesis is to introduce the
concepts of matrix algebra and matrix calculus to the field
of nonlinear elasticity in order to bridge the gap between
a theoritical tensor analysis approach requiring extensive
cgmplex mathematics and a basic scalar component approach
requiring an extensive memory capacity.

The general nonlinear theory of elasticity including
the strain-displacement equations, the equations of equilibrium,
and the stress-strain laws are derived in matrix form for the
general case,

Three special cases of the general theory are
considered:

a) Elongations and shears are small in comparison

to unity.

b) Elongations, shears, and angles of rotation

are small in comparison to unity.

¢) Classical linear elasticity equations.



iii
The nonlinear theory of elasticity, being an
essential generalization of the classical theory permits
an approach to the solution of a series of important problems
which do not arise in the latter theory because of its
limitations,
The special case of the large deflection of a

thin rod is considered to illustrate the nonlinear theory.
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CHAPTER I
INTRODUCTION

1.1 Introduction

The basic concepts in the theory of Nonlinear
Elasticity of Elastic Solids has by tradition been incorporated
in a more broad course entitled Continuum Mechanics which
includes the principles of both solid and fluid mechanics.,

This classical approach requires a through knowledge of "
Tensor Analysis including tensor algebra and tensor calculusfl'Z)
Most approaches utilize curvilinear tensor notation including
notations of contravariant and covariant tensors.(a'u)

Cartesian tensor notation is usually considered as a special

case, Some authors(s’é) have introduced a combination of

both tensor analysis and matrix analysis in nonlinear solid
mechanics,

Probably the most well known text in this area is
that written by Novozhilov(7 which totally eliminates the
use of tensor operations. Atmost, a reader requires an
elementary course in partial differentiation as prerequisite
to reading the text which presents all concepts using

"scalar operations." This scalar approach produces an

extensive number of equations with no commonality among them.

* Numbers in parenthesis referred to Literature Cited.
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The reader is confronted with a requirement of recalling
literally hundreds of complex equations in order to understand
the principles,

The purpose of this thesis is to introduce the
concepts of matrix algebra and matrix calculus to the field
of nonlinear elasticity in order to bridge the gap between a
theorjitical tensor approach requiring extensive mathematics
and a basic scalar approach requiring extensive memory
capacity. The matrix appreach has a prime advantage of
forming a common bhasis for all mathematical operations as
well as forming a direct connection for interpretation of

mathematical results to real, physical, engineering problems,

1.2 Coordinates

Given the positions of the points of the body in its
initial state (i.e., before deformation) and in its terminal
state (i.e., after deformation), determine the change in the
digstance between two arbitary infinitely near points of the
body caused by its transition from the first state to the second.

Let the positions of the points of the body in its
initial state be described by their projections x,, X2, X3
on the axes of some rectangular system of Cartesian Coordinates
X1,%X,,X, |

Furthermore, let the points of the body undergo
displacements with components U, le) Us regarded as
preassighed functions of X,) X, and X3 along the same axes.
Then the terminal position of an arbitary point of the body is

fiven the Cartesian coordinates



*
X1 = Xq + U1(X4,X2,X3)

Xi= X2 + Wz (X1, X2, X3)
Xy = X3 4+ Us (X4, Xa,X3) el
The functions W4, W, , Us as well as their partial derivatives
with respect to X , X, and X; are assumed continuous.

This restriction is called the continuity condition of the
deformation.

It follows from equation (1-1) that the terminal

position of the points of the body are described in two cases:

Case 1 -

X4, X2, X3 are rectangular Cartesian coordinates
for the initial state and become curvilinear coordinates for
the terminal state. When X, , Xg and X3 are considered as
curvilinear coordinates of the deformed body, they are marked
with tildes (~~ ) for the curvilinear coordinates and stars (¥)

for the deformed coordinates (See figure (I-1)),

r)\{x
x3/\ 3
X3
Ml’
M X ~

[ 8 x1* \ E

X

X4 . X1

Y = Xz

X

Figure (I-1) Coordinate Axes, Case 1



L

Thus X4, X2, X3 are Cartesian coordinates for the initial

state, ’)Z;‘?g’(’f ’ ?(I;‘ are Curvilinear coordinates for the

deformed body.

Case 11

X:J x: 3 xi are rectangular Cartesian coordinates

for the deformed body and X, , %L) %5 are curvilinear

coordinates for the body before deformation (See figure (I-2)).

X
1\ 3 x§
X3 —")'k’ MX X2
X4
M ~
X2
X
o ﬁ\_ XL
X4 Figure!I—Z) Coordinate Axes-Case II

A set of continuous points of the body lying on a
curve are "fiber of the body", and an infinitesimal element
of a fiber is called "line element of the body." Further
the set of points of the body on a surface are called a

"layer of the body", and on infinitesimal element of a layer

is called an "element of area of the body."




1.3 Angular Directions of the Coordinate Lines

As a result of the deformation the point hﬂ(X1)X13X3)

is displaced to the position M* having the Cartesian coordinates
N S :

XUX.9.7X5 whereas the point N (¥4+ de Xy + dxl) X3+ o\x3)
infinitesimaly near M is displaced to the position N* having

. * b S X X* ooy
coordinates x1+~d>q)x1+dxl,x3+dx§ . The vector MN has the
—_—

X X J .
projections (;{xbdx‘1 de The vector MN has the projections dx:}
J

dxy , dx3.

A
X, ' .
|
| N* d)(a
Mfzk =P S
7 AU
: dxf
I dx
E . dX5
/M / B u?.
< d
de X1 /
Uy
) > X,

X'1
Figure(l-}) Rectangular Coordinates - Deformed Geometry
Applying Equation (1-1) to the point hJ(x1+dxt,xl+dxb
X;+0x;) and expanding the right-hand sides in Taylor Series
about AA(X},X})X3) (retaining only infinitesimals of

the first order only) gives




* @Ux /ﬂd U4 dy p
dxi Ly 2% % g
X
dx, 1 = == +Ql QU | 4 dx
X
’ Uy AUy g W || s
L X1 N Xy X3 y,

(1-2)'

Where
| [J] = [1]1+L[0P] (3
| ) -
eIl oty A
(;;(1 WXy X3
(D] = | QU QU PUz (1-4a)
QX4 X2 X
Aus opu
0 %1 AU (0X3
| -
iy 5
L} = 0 1 0 » 5 L)
@) @) 1
: |




Introducing the notation

e” = /a_u:1 9 ell= (buz 9 ‘e = (Dua
ft))('] O)‘a\ 0)(9

€= 02U ou y €3= QU1 0Us | €a3= nU Uy
NXay — O%4 PX3 X4 Xy DX

AWy =0 oUr , aw,= QW _ AU gw,= AU_uy
OXa, NX3 X3 /DX1 OXd (0Xq,

then [J] is expressed in the form

[(J1=[I]+[D]=[I]+[w]+[e] (1-5)

where

8 £ é €3 |

T
[€] = J:feu. €1 jie% 5 e]=[e] (1-6a)

| |
281 x5 ©a

(W]l=| W3 O =wy| > (w]= ~[w] (1-6Db)
I

Noting Equations (1-4a), (1l-4c), (1-4d), it follows that

[e1= L(CpT+(D1) ; [w]= £ (CD]-~CD]) (1-6¢)




e

[D] =2

-

—

It

[J]

and finally,

Le —w, le.+w,]
€4 7 C127 %3 21T W2
St €2 % 13- Wy
19-.8,3-002 1—2‘6234' w1 835
_
1+ 611 11 €~ ().JB 47' €|3+ 002.
1
7 €t Ws 1+ €27 5 €a3- 0
Ley-w; L epy+u f+ €5

1d¢] = [[T]1+0e] +[wl]{dsd

The geometry of the coordinates of the deformation

Case 1T

section (1.1) are considered.

-

through the point M are parallel to the X1, X5 Xy

(1-7a)

(1-7b)

(1-7¢)

divided into two cases (Case 1 and Case II) from the previous

Before deformation the line elements which pass
axes

(rectangular cartesian coordinate), after the result of



9
° - Xa
X4 Figure (I-4) Curvilinear Coordinates-Case I
f:'* I)’* ’:"l‘ .
where (;, L, 6 L, are the unit vectors tangent to the curve

~ .

lines %f) xL,'If at point M*, and {, , L,, L
are the unit vectors of the X;,X,, Xj axes respectively,
Let the line element MN before deformation be

parallel to the X; - axis and have the projections

(MN)X1= dX.‘, (MN)XZ=‘O (MN)X5= o .

b

Then according to (1-7) its projections after deformation are

*k ¥
dx1= (1+e11) dX1 e dx&=(-}:€u+w3) dX1 s

dxii’,c = (f € ~ W;) dxy
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Its length after deformation is

IMN'] = (0% + (A + (i
\/(|+€||7L+ (%elz‘*wsf“'(&etg”wzf 5
| also
% %
IMN‘ = (1+E4) dX1 (1-8)

where E4 1is defined as the relative elongation of element

dx1 under the deformation

A 4
or E, = IMN*| ~ [MN| (1-9a)
[MN |

* %

or |[MN|= (1+E7) [MN]|
= 1+ Ey) dx (1-9b)

. s " i g
MN (in this case before deformation parallel to :XA axis)
is expressed in terms of the projections on X{ ,X;j ,Xy  axes.
Thus = X3 *T‘

M*N*= dx’f Ly + dxy i, T dxs i (1-10)

* %
The unit vector tangent to the arc line MN is denoted by

. e » ) 2
with [* = dd [, 4+ dd L+ dx G
|MN| IMN| IMN*|

G+ed) dxy i L Gentw)dul , (s w) dx s
(1 +Eq) dxq C(I+Eq)  dy C1+E¢) dxy

or

I




i o |
hence,
n - £ £ S e
¢ e e L Ci3~ W,
(= (e iy + (zC€ptWs) Ly  (2€n~Wa) iy (1-11a)
(1+E9 C+ Ey) C(+Eq)
By applying analogous arguments to the line elements
dx, and dxs , one obtains
y Lo ~w.y 7 1 Ley+ W) ?
(.,*= (Z€n~wW3) 1+ (1) {, 4+ (28 1) s (1-11b)
*C+ED I+ Ey) C1+ Ep) ]
’Eﬁa (5€3 +Wa) L 5 (% €13 ~W1) ':l.+ (1+€33) -('.45
CI+E3) CI+Es) (1+E3) (1<31c)

In matrix form the latter equations become

{”f"} = [A ]Tif} (1-12)

where

(~¢L/‘\
2
%
—
1]
_A
2
> ox
Y
o
—
-l
——
]
-]
p

iy -
Ly Ly
L -

n TR Vw -
Where ( , i, , L, are the unit vectors tangent to
~ N*

X1, Xy, ")’(;* respectively.



and ~ g L : =
1+ €n 7 €12~ W3 Z€i3t Wy
LAl = ge L
Z2CntWs 1+ €2, 7 €23 ~ Wy (1-13a)
1+Eq 1+ E2 1+E3
|
Eelg‘wz _‘i6)_§+w1 1+853
1+ E1 1+E, 1+E5 |

where E, 5By E, are defined as the relative elongation
of element MN, which are parallel to X; ,X; , Xy axes

before deformation respectively, and where the matrix [A]

is written in terms of direction cosines as

(— -~

cos (11, T)) Le b o
0 I) 1 CD&(LL) 1 CDS(L,)L1)

(1= | sl es@T el [0 0130

x T Yy y =
ws (U7, () osCiz,l,) s cla,L,ﬂ
_

Noting Equations (1-7b) and (1-13a), it follows that,

+ 5
ul=L=][J];s or [Al=[J][7F] (1-14)
‘ where ) -
, i O O
[TlE] E 0 1 o
1+E, (1-15)
0 1
i 1+8; |

12
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Consideration of Equation (1-2)

Taking [J]~1= Ld]
[[J]]
it follows that -
[«] = [eor(7]] it i
with
(ST QT S AT
i
[]=|c1 <aa 43| = [GOF[J]]
o3 K3y *33
[ (14ey,)(1+es3) - (Y4 ey y); —(festws) (1+e33) + (% €t %e.ti “’1)§
+ (i_{eu'*' W) (4\643*“)1) ~(3eywy) (1+€w);
[=] = | -(5aws)(1+eg)+ (hegtwn(Le prun); (e (1+€55) (% €5 )5

_ (1tep)(teytw)+ (3 Gsmw)( Les-tdy);

(L€ -ws) (£ ey -(+8) (Fesre); -(1+e)(§gswy) t(F 6ra)
. f 16stw)s
- L+ em)U+eay) — (Taen-ws);
Noting Equation (1-14), one obtains

(OF [J]T = [coF LJ]]T= COF [[4+EJ+EA]T] = COF[1+E]COF [A:lT

hence [«<] = COF [1+E] coF[[AT] (1-18)
where

1+ Eq O @) -1
- [&]
4+E3

O O i

S—

"
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Case I1

Before deformation the line elements of the body
which pass through the point M are the elements of the lines

X1

~ ~ oy
3 Xf) Xg and become parallel to X;,X, ,X, axes
(Rectangular Cartesian Coordinate) after deformation.

(See Figure (I-5))

X2

N

Figure(I-5) Curvilinear Coordinates-Case II

Let now examine the line element de y 1.e., the

‘line element parallel to the Xy - Axis after deformation,

{
According to (1-9), its projections before deformation are

e = % dx; y  dxp= % de ; dxy= o6 dxt
1L3]] 0311 15



Its length before deformation is 29
IMN| = \/(dX1)L+ (dxa) + (dxs)
ol OBy . ot # o) dxr
|CI]|
also
*
IMN| = __dxi (1-19)
1+ Ef
where
Ef = IMN' ~IMN| = MW\ _,
[MN| [ MN|
= dxs by
Al oy Al
\C3]l
*
Eq = I[J” 1 (1-20)

-~
PR

«/«xﬁ'+-asﬁ + K3

BT
=1 18 defined as the relative elongation of element MN

Inder deformation, which is parallel to X; axis after deformation,
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. o
MN (in this case before deformation is the curve line X; )
is expressed in terms of the projections on A5 X s Xg axes

as follows,

—

MN = d)(1 i+ A% by + d)‘; [

Va%s
The unit vector tangent to the arc line MN is denoted by (4

g - -~ ~
with Ly = dX1 L, 4 dXz La & an 15
[MNI| [MN] [MNI
’2’ X ‘.-' X Ll X —
or L1 = (1+E) Xy L1 + (H'E’l) Kap Ly 4 (1+Eq) K3 i; (1-21a)
(LI ICJ1l [[3]]
Analogously
’-\J »* = v _—
o= (B2l | (14Ep) Xaaly | (HEN) a3 1 (1-21D)
1031l [[3]] R3]
~ * Ty X - > —
(= (HE3 oyt 4 (HE3) Xag Ly | ((+E3) X3l (1-21c)
%2 (2l |C3]]

In matrix form the latter equations become

1y = [B]Ti—f} | (1-22)
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where
[
L1
~ ~
{l}= ﬁ by
o
L3
N v ~

~Nooow~N
L“Lz’Lj are denoted the unit vectors tangent to line X1 X; X,
respectively (before deformation).

and where
P — -

X *
(HE)) & (HEDy  (1+Es)olyy

[B] = S (HEY a1 (HEDAy, (1+Ep) a3 (1-23a)

*
(4+EN Xy (HE) oy (1455 e
- -

%
E1. EZ. E; are the relative elongations of the element MN,

which are parallel to X, X, X; axes after deformation

respectively,

latrix EB] is written in terms of direction cosines as

T
F ¢ N T T
¢os (.L1;('1) Cos (LL;L1) w5(t3)b1)
o = ®¥ 7 ~N -
[6] g Cos ({1, ‘-)_) s (Lz, La) w5(.t,5) Lg) (1-23b)
' (o3 (f:)@) ws (1, Us) cosc73753)
—_— N J



™ i

Noting Equations (1-22), (1-23a), it follows that

~ T =
{0y =t [1+E"I[=T i} (1-24)
\(31
where
e 1
14+ E4 @) O
[1+E] = 0 i+E; o)
O @) 1+E;,e

- J

Noting Equations (1-22), (1-24), it follows that

[Bir =1 [1+67 [(X]T. (1-25)
(C3]]

In order to determine the relationship between
matrices [A] and [B} » consider the Equation (1-14), it
follows that

[T] = [AT[1+E]
17 = [ 0AT

ik
[«1= {031 (5 ][A]
Msideration of Equation (1-25) gives

[8]=_1  [X][1+E"]
|31



19

Hence,

[8] = [ﬂz][Af[HE*] (1-26)

o »
[® J+E]1= [T ][AT,
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CHAPTER II
GEOMETRY OF STRAIN

2.1 Strain Components

The square of the distance between the points M

and N (See Figure (I-3)) before deformation is

de = dxi +dx; +dxs (2-1a)

and after deformation is

d$*= dxi*+ g +d Xy (2-1b)
Thus,

d¢ dé = {dx} {dx} - {dx}§dx}
= $axYLTI0T]8dx} - {A5dx)
- idx}T[[JJT[J] - [I]]{dx} (2-1c)

Defining E, as the relative elongation at the point M in the
direction of the point N, then

Emn = iS*_‘_d_S_
ds
X

it follows that

Z
E;N+25M~+7 = cis"
, ds*
Wwith )
X2 2
EMN(7+Z/{EM~>= éz{——_dsd;zds ) (2-2)
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In matrix form this is written

Em (14 4 = {dXUTE] & (2-32)
dds as

where dX = as :
{ ds 9.0 (Z-Bb)

ds
dxs

ds
| where [Ei]is defined as the strain component matrix in the form
| By T2 LEns

(€] = | 282 €1 fEw (2-3c)

1 1
2B abs By
It follows from Equation (2-1c) that

poddtds L1 1[I - [11] $4K
) ds* o 3 ds*
i = 1 {9 ToonTal - o gy
{%ﬁ}[i] 3_’;} - {%T%[[Jj [9]- [T)]§& (2-34)

Comparing both sides of the latter equations yields

[e] = L[031L31-[1]] (2-ba)

Upbn substituting Equations (1-3 ) and (1-5), one obtains
e] = gftoT cn)mnn] - [1]]
= L[IDIP] + 003+ (0T +{11- (1] (2oup)

= L[[p]+[p] +[DIp]]
= L[2[e] +[e] - [w]le] +[e]fw] - [w]*]
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Finally,

[e] =[el+ L [[e]+[elw]-[wliel~[w] ] (2-ke)
Let

d_’(‘l:7\1 ,(i)fz:?\z’ q_l<3=7\3

ds ds A ds
r dx - - : (2-58.)
’ ds) ~ {ng = f?\;}

where Ay,A, A; are the direction cosines of Vector NN,

it follows from Equation (2-3a) that
EMN("'/"%EMN) = {71}1.[?5_]517\} (2-5b)

If element under consideration is parallel to the X axis
before deformation, one obtains
Emn = Eq 5 dXro
ds

d
E1(1+%E1) = iq{d-’;’ » 0, O}[E] {

1
S

QO O &I

Thus,
E1(1+ 2E) = &,

or E11=J 14+ 2 Eqq il

Analogously, |
Ea(""“:lz'EJ.) Eaa s or Ea = v 7+ & Eyy —1
EsC1+3B) = Eg3 5 or £3= o143 ~1

Therefore, the strain components En,

1

E:.\, Eas characterize the

elongation of those line elements which, before deformation,

re parallel to the co-ordinates axes,



In order to clarify the physical meaning of the
strain components g Ei3, Eas, 2 determination of the direction
cosines of the angles which the vectors L,,Aj Lj form with
one another (i.e., the cosines of the angles between the
tangents to the lines'§:’§:)§§ passing through the point M%)

From Equation (1-12), one obtains

% Ix = 043 o x 3
o= Cos(lyX1) by + QoS (is,Xy) ia + COSCL K3) i3
Yx

N - od 3 - % -t
Ly = CoSsSCg X))y + Cos (Lo, X)Ly + C0SC L;)Xﬂbg

T eos (00,00 (2-7)

% o o f B
005(ir,03)= CO5CU,X1) cos (1s,%1) + €05 CLr %) oS (5)%)
w ~
+ (05 (1 %g) W3 (1, %) (2-8a)

Replacing the direction cosines by their values given in (1-13a)

and simplifying yields

0os (%, %) < E1z
(1+E1) (1+E))

(2-8Db)

Before deformation, the angle between the line elements
dX4,dXZis a right angle.
Let ‘Pn denote the angular increment due to the deformation,

then Ny
Cos( {1, Th)= €03 (Tz ~Pp)

‘ = ATV’[ q),z: E |z
logously, C1+EN(1+EL) (2-8¢)
A O = £i3
(1+EI(1+E3)
/}-TV‘ q>23 = El?’

(M1+E2)C1+E3)
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The angles d),,_) d)% (1)25 are called "shears,"
It follows from the above equations, that the strain
components E,z,‘é,a,z,, characterize the shears, and that if
these three strain components vanish, then the angles bétween

the line elements dx”cuz#hgremain right angles after deformation.

2.2 Transformation of Strain Components under Change

of Axes,

A given deformation is congidered in two different
Cartesian coordinate systems. 1In all such cases it is
characterized completely by the six strain components, whose
values, however, depend on the choice of directions of the
coordinate axes,

Consider, together with the basic system X4, Xz, X3,
another system X;,x{,x; the directions of whose axes relative
to the axes ot the first system are given in the following

equations,

X1 2 Dy Xqt AprXay+ NatXs
Xz = N1z X1+ N2z X+ N3z Xa (2-9a)

Xy = i3 X1 + Nz X, v 7\35X3

In matrix form

X} = [7\]T§XS (2-9b)




» /\xz
X3
Xy
0 > Xz
X
1 %
Figure 1I-1 Change of Rectangular Coordinate Axes
Defining [7\] as direction cosines matrix
IAT= N3 5 i=12,3 5 §=4,2,3.
where i —p first system
J =D second system
Since both systems are rectangular, [\] is the orthogonal
- matrix, hence
4
BIIAR] = '
S (2-10)
(AT = [A]
" A the g L B
A Nz N OS5 ( X15X1) COS(X19X1) C05( Xq,X3)
1 Da Mz Naz | =] W08 (xeyXi) 06 (¥a,Xa) C05(xa,x3) | (B-11)

N3 Naz N3 tos (X3, %7 ) €05 (X5, Xa) ws(xa,x;ﬂ
E i

—
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The projections on the axes of the first system of a line
element having the components dxf)dx;,tﬁxg along the axes of

the second system, are given by

{dy = (AT1dx3 (2-12a)
or ldf} = [7\fr§dx§ (2-12b)

I

From the basic chain-rule of multivariate calculus, one obtains

[ dy, o o ou | gy
| OX{ X3  (0X3
= |OXe 0% 0% . 2-12
J dx axi X (0 aKa ( ¢)
B % | |4
kd)"’ oK o o ?

Noting Equations (2-12¢) and (2-12a), it follows that

. -
o%1 QX1 X

©X7 0%5 0%

_ | 0% 0% (2-12d)
[ﬂl & X7 X5 %3

X3 (% (%
07 (%1 m;J

L

Recalling Equation (é-l). the left-hand side represents
;the increment of the square of the distance between the points

M and N, resulting from the deformation, The choice of these
i?ints is independent of the choice of the coordinate system,
}Orefofe. the left-hgnd side of Equation (2-1) is also

ndeépendent of it, and remains invariant under a change of axes,
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Noting Equations (2-1lc) and (2-2), it follows that
T .
4= dé = §dx} [[IITT-[T1] {olx}

Eun (14 5 Eun)dd= $dx¥ [E]5dx} (2-13a)
of F,(1+%Emdd = 145 [E]1dX3 (2-13b)
Substitute Equation (2-12), into Equation (2-13a) gives

¢ 2 /T L i (2
Eun (1+ %2 Ew0)ds = {dX} [NILETLAT {dX} RS
Comparing Equations (2-13c) to Equation (2-13b) yields
, ]
[e] = [ATLellN] [5s3%)

Hence, it is clear that Equation (2-14) gives the desired
law of transformation of the strain matrix in passing from one
rectangular coordinate system to another rectangular coordinate

system,

2.3 Principal Axes of Strain

According to the classical theory of eigen-value -

eigen.vector problem, it follows that

[(eIln]1 =L[NILE4] (2-15)
Where B .
’ & oy o
[Ed] = | 0 € O
O O ea

L

P
e1,¢1,63 = The extremal values of the strains components

€11,€,,,E3 (Principal strains).
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Thus Equation (2-14) is rewritten as
7 T
(BT = [(ATINTLEa] (2-16a)
[€1 = C&d] (2-16b)

Therefore Equation (2-16b) exists by the condition of

Equation (2-15).
£y =l e / P - P
Furthermore, E¢=€1 , Epn= €z , Ezz= €; _—

rd ” 7/
E2 = Ej3 = Ez3 = O.

Also, matrix [7\] is the direction cosines of the principal
axes of this principal strains.
Note further that the eigen-values - eigen-vectors problem

also gives the following equation

[[e1- €111]4{n} = {0} (2-17)

where € ’4 are defined as eigen-values
P .
and {7\8 = elgen-~vectors

For non-zero value of {7\} , it follows that

[e]- €r11] = © (2-18a)

Which yields the characteristic equation (of this matrix L[E] )
ich is solved directly for the eigen-values, The general

m of Equation (2-18a) becomes

Cépf—- Gz(é’)z+ 04(6P)1- Go(e”’ = O (2-18b)
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where

dz = Trace of the matrix

P P P

= Ent €y t+Ey = € teELtE, (2-18c)

04 = Sum of the determinant minors of the diagonal
components of matrix
2 2 2
= 811 EZZ + E11 &53 =g &21_ 683 il 1/4(8"-1- E’|3+ Eza)
P 14 p P

= ey + €le; + er6; (2-184)

(o= The determinant of matrix
_ 2 2 2
= EnExpnEas 4/4(51:‘?.25‘*‘ E228 13+ E33Fi2 — En2Ep3 Ez;)
p. PP
= €€, €; (2-181)
| I .

| The roots of the Equation (2-18b), €,,€,,€; are the

eigen-value of matrix [E].

The eigen-values of Equation (2-18b) are individually
substituted into Equation (2-17) and the corresponding
eigen-vectors %ﬂ}f are obtained which directly define the
direction cosines of the principal axes. These vectors are
then combined to form the columns of the matrix [A] which is
~ the same matrix [A] in Equation (2-15).

Thus, it shows that for every point of the body one can choose
three mutually perpendicular direction X:, x‘:_) xg for which
“the strain components E,I: y &;,523 (and consequently also the
relative elongations Ef, E:, E: ) have extremal values,

_<‘ereas the strain components E.Z,E.’;, Ez?a (and consequently

: P
S0 the shears ¢|z, ci)‘f;, CbzP3) are equal to zero,
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These three directions are called “the principal
axes of strain" at the point M (X4,X;,X;), and denote the
corresponding extremal values of the strain components g,
EZZ) €3 b3 éf) ez Y 62 °

As a result of the deformation, the fibers along
the directions ef,eaz,éﬁ which remain mutually perpendicular
may undergo a .certain rotations,

The unit vectors of the principal axes after the
deformation are denoted as Efté?;E?Ki.e.. the directions
possessed after the deformation by fibers which, before
deformation, had the directions G:, efjeg ).

The angles between the mutually perpendicular
vectors ef,ez, e; and the mutually perpendicular vectors
€}, €%, €F characterize the rotation which an infinitesimal
element of the body about the point M undergoes as a result

of the deformation,
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2,4 Transformation of the Parameters €1,€12,€;3,812,€/3, €a3

and Wh1,W,,ws under Change of Co-ordinate Axes

The components along the new axes, of the displacement
of an arbitary point of the body, are expressed in terms of its

components along the old axes by the obvious formulas

3
{w} = (11wl (2-192)
where »
U1 U4
Wi=qur 7 3 juf=qw
U3 Us

From the basic chain-rule of multivariate calculus, one obtains

A [ ax X A% | [0
X4 Xy Xy OX X1
P& = | X1 X (X3 = 2-19b)
X7 RXi X  (0X; QX2 (Pl
3 X1 X2 @ | |
0X3 QX5 (UX3  (OX3 (0X3

Noting Equation (2-12d), it follows that

{V/} = [ﬂfi V} (2-19¢)

where o R
o T
W= 4% 5 iV {m
i ©_
X (0X3

“tording to Equation (1l-4a)

(VHuj = [ (2-200)
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[p7 = [M} VWA
= [n] [p][A] (2-20D)
[B]= [7\]T[D] L] (2-20c)
Equation (1-6¢) is also written as
[€7= 4% [[B1+ (0] ] (2-21)
Substitution of Equations (2-20b) and (2-20c) gives
[€1= % [[ATLDILA] + [ATLDOI[A]]
= [A] % [(p1+[01] 7]
[€7= [A1LEILN] (2-22)

Thus it follows that, under a change of Cartesian co-ordinates
axes, the given parameters matrix [ej transform according

to the same transformation law as the strain matrix [E],
Consider the transformation formulas for Wi, W, ,W3 under
a'change of co-ordinate axes, Since according to Equation (1-6c¢),

the same simplification is used with the parameters matrix (W]

[W] = [ﬂ]T[w] (7] (2-23a)
e =t e
[wis) gy o 0w (2-23b)
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After matrix multiplication, the components of Equation (2-23a)

become

w1 = Wq ( N2 N33~ N3 7\23) + wz(’\gzﬂla—hl‘l.?\a!) “¥ C‘)_:’(7\“?.7\'25"'7\217\%7
w; = Wy (A3 Nay =Ny N33) + wz( Ny 7\53—7\‘37’90 + (‘)5(7\4"”!5*7\237]“)

/
W3 = (D1(7\,u7\37_“7]»7\3,7 + W,y (7\3,7\1‘3“ 7\!(7\32)*'003(7\“7\22" 7\,“7\\1) .

which are written in the matrix form

o
Wy = [eor.rA1] {w} i
where
W, W1
jw} = Jas SR (0] SER AN
w3 W3

Because of [7\] is an orthogonal matrix, it possessed the

following properties

2 [AIIA] = [I]
b) (AT = [n]
c) IIA]] = 1.
il = [eor(n]]’
I[N
= [CoF[A]]
[ﬂjr " [QOF[ﬂ]]T (2-25)
d) [AT = [cor[A]]

us, Equation (2-24) reduces to the form

o} = [n]{w} (2-26
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This shows that, under a change of coordinates, the parameters

P §
Wys Wye W3 transform as the projection of the axial vector W

whose length is

|| = [w?—rw?i 4+ 60% (2-27a)
= % Trace [[w]Tw]] (2-27b)

and whose directions are given by the cosines

cos ((]3,)(4) = SU:‘L
|
- :
cos (W,%2) = Wz
||
cos (W,X3) =L (2-27¢)

8
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2.5 Geometrical Meaning of the Parameters&Ulliyp.(bb
The point M is imagined to coincide with the point
M*, and the origin of the coordinate system X, X;, X3 1is
transferred to this common point (without changing the
directions of the axes), (See Figure (1I-2)), MN and NN

have the following projections.

..._i
> ”" * X
MN ~  dxy, 0%, dg
X3 A
3 X
N
X
N d)(g
X
M,M - X2
ﬁ 7
dxz A
dxg

Figure (I1-2) Rotation of Line Elements

Under a deformation, however, not only do the relative

directions of the fibers change, but also their absolute
lirections, In view of this, and infinitesimal element of
olume of the body in its initial position undergoes a certain

Otation, in addition to a deformation, in passing to the




36

The term rotation, as applied to an element of
volume which, in the process of displacement, alters not only
its position but also its dimensions and form, will be
understood to represent the mean value of the rotations
experienced by the totality of line elements belonging to
the given element of volume,

Let the angle of rotation of a fiber which rotates
about an axisEE » to which it is perpendicular to before
deformation, be defined by the angle between this fiber MN
(before deformation), and the projection of M#N#* after
deformati on (i.é..bANf) on a plane which is perpendicular to

the given axis [H} (as shown in Figure (1I-3)).

Figure (II-3) Projections of Line Flements and

Rotation Angles
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To clarify the magnitudes characterizing the
rotation which a neighborhood of the point M undergoes as a
result of the displacements w,, U,» U,, Equation (1-7c)
is applied for the special case where the line element MN is

perpendicular to the X -axis with dx;= O (See Fugure (II-4)),

X2

Figure (II-4) Special Case of Line Element Rotation

Figure II-4 shows the Xy - X, plane, where the
segment MN represents the line element before the deformation
and the segment MN, * is the projection of M*N* on the plane

under consideration, From the Figure (II-3) it is clear that

Tom 6 = dn s +avn e* = okﬁ (2-28a)
dx4 dxs
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From Equation (1-7c¢), it follows that
{dx*} = [[11+[e]1+[]] 1dx]

with dx4

{dx} dxz.
@

* X : i
Replacing dx;, dx, by their values in latter equations, one

)

obtains

_/un.ex - ('% €+ Ws3) dxqs + (14 €,,) dxa

(1 +eq)dxs + (Le,-ws)dk st
Equation (2-28a) gives
dxy = dxa = dea?se )
‘om 6 snod
Eliminating dxs, in Equation (2-28b) there results
dane = (L€nt+Wws) wse + (1+e,,)Ainb
(14€11) s + (2€12-W3) Ainb o
From Figure (II-3) it follows that
4’3: 6*-9. or 6‘=(P5+6
e, , qj3= angle of rotation of MN about the x3-axis.
Noting the following identity
fancy;+0)= o0+ fan Us _ (hen+ws)eos o+ (es) bing i

1- tanotands  (1+eu) 50 +(5en-wWy)sing
- q

—_—

with 2

a ~a+ane1’amp3 = btane + bTands

fands b +atane) = a- bfano

’t‘an(_pa = a- b"_awe
b+ atanb
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It follows from Equation (2-28f) that
a- btane = (4/2812*'(03) w56 + (1+€22) pne - (U+e4) A6
"(.l/?.'wa) sin’e
wse
s6 | % 5
Also,
| b+ atane = 1 (4+_4i_elz$('wze + €4 0050 + €435 O)
(pse
Finally,
- w3the Vo (22— €4¢) &T
+an A 3T 2€n 0520 + 12 (€22-Cy) B1W26 (2-28¢)

1+ €41 0050 + €256 + e, Sin 20
The mean value of tan Qg in the interval from 6 = 0 to 6 = 2T
(i.,e,, its mean value for all the fibers perpendicular to

X3-axis before the deformation) is given by the expression

ar
fan @3 = _1_/ Tan ¢ do = 1, + 1, (2-29)
ar )

Here

ar
T o w; de (2-29a)
8T Jo 1+€400s9 + €,5iH0+ 1,0, 5126 g
¢! ,
£ < ¢ 7 €r Q0520 + % (E-e) 526 dg (2-29D)

R Jy 1+ €49 Cos’e +&,,s5in0 + 21. €12 31N 26
"he integral 1, is evaluated by making the substitution
2 o 1 "
: f = 1+€,08050 +©,, Sin0 + Y2 e 5in 20 (2-300)

d/ = ( 2 5""'6 050 (€22-€41) +Cn Cos20)dO (2-30b)
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ich d
which yields .,
. / d
“2 Z
4 6=0
=T
.___4_<Jn0£)[“ = 8 (2-31a)
4T 9=0
The integral I, is reducible to the form
" 2T
I, = W do
T Jy 21 2€4005% +26,8in'0 +8, 5in26
2m
- a@/ de
T Jo 2+ (1+C0520) @)+ (1- 0026)E,,+Ei7 §N20
amr
= W3 de .
g R +Cr1 +Eiy+ (C17— Cys) A0SO + €2 Singe
ar
=i de (2-31Db)
i — r
T % X + €+ Egy 1 [(61,—62,,,)°‘+e;]’“ smc.se+>5)
where
L, -1
)9_—_ Sin ( €1 - Cn )
*\/(611"9.247&-/- en
(2-32)

g = 005—1< Cr )
(Cn-C)* + €
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Now let ¢ =20+8. or 6= (2*B) with do-1do
2 Z
and at © =0, ¢ =P
e = 21 ¢ = lﬂﬂ'P
hence, Wi+ B
W d o
Ty = 23 —— (2-33a)
QT 8 A+ €t Eyyt+ [(Eyy-C)+€ ] % sing
uir+f
= U do
aT o A+ Bsind
AT+
= W3 \_J_ , +am-1(A+ﬂ"d)/z+B) F
ar | Ja—p* N A*-B* B
-1 dws
2T '\[( +€y+ 3.2&)4" (€n "5’-"-\)‘l ¥ eli 4T+8
1 p g
+tan (;z+eu+e.m+wnd}z+J(eu'ﬁﬂ*eﬂ (2-33b)
q/@+e,,+€,,,)1— (en- f;,a)&— e/’-{
Consider

X 2 PR
\/(o? 4 6114-63;_7"" (814—8“) €1 = 2 \/ 1+ €47 ot €€ — /A= P
Equation (2-33b) becomes

Tantpy = 1. _ s , AT+
s 7
- \/7*911"'8.2&"‘ Cn €~ Jai
ot
fo! (2t ent@w) fan Yl en @it | (2-33¢)
AN 7+ Cy + oy + CuCaa Ya e B
ince the last function of the right hand side of Equation (2-33c)

multi-valued, the result obtained is indefinite. This

definiteness, however, is removed by taking into account the
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fact that as e,,J €,,,6y, tend to zero, the integral I
(and therefore also tan 3 ) must tend to w,, as from Equation
(2-33a), Consequently in Equation (2-33c¢c) one obtains
4W+F
an [ (2t en+ e ) Tan % +4/ cey- €7+ ehy
2\/ 1+€41+ Copt €1€yr~1a er ?
AT+$
_ o[ atnts]
= 2 ?
AT+
= ‘(gﬁlf
= 2T (2-34)
which leads to the following expression for tan *s
» w3
Tangs = — (2-352)
\/(1+e11)(1+ezz) -4 en
Analogously
W2
Tan ¢z = = (2-35b)
\/(1+e41)(1+399) - Y4 €%
@)
gy = < (2-35¢)

\/(.1+ezz7(1+3;9) -Ya ei}s

~ Which determine the mean values of the tangents of the angles

- of rotation about the X1~ and.Xy~axes, of the line elements

of the body perpendicular to these axes before the deformation.
The three parameters t—;nkp,. ‘c_a?uPz. 't;.-n(Pg characterize
the rotation of an infinitesimal volume containing the point

’ they are proportional to W, W, and W,, and vanish whenever

"l€se parameters are equal to zero.
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It is clear from (2-26) that if w,, W,, wWj are

equal to zero in some co-ordinate system X;, X,, X3, then
they are equal to zero in any other coordinate system, It
follows that if the relations

We= Wz =Wz = 0O (2-36)

holds at some point of the body, then, in the mean, the line’
elements passing through this point will not undergo a rotation

to any axis passing through this point.

2,6 Fibers Preserving Direction Under Deformation

Now consider in the conditions for absence of
rotation and establish the fact that at every point in the
body, there exists at least one fiber which preserves its
direction under a deformation., For such a fiber the vectors
MN and M N (Figure (II-1)) are identical in direction which
implies that their projections satisfy the relations

dxi - dxr - Q_X’E = Z = (onstant, (2-37a)
a x4 d X2 dXs
wh -
ere 7 - IMNF| e (2-37b)
|MN|
and E is the elongation in the direction NN,
Thus
{d¥} = (1+E) dx} (2-37¢)

According to Equation (1-2), it follows that

(1+€) §dx} = [J11dx}y
(M+EXLTT8dxy = [ JIT1dxy
[3]9dx} - +BLT] 0y = §oF
[[31-C+B)[T) ] = §of (2-38a)
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By dividing Equation (2-38a) by IMNl. Equation (2-38a) is

rewritten in the form

[[o1-e+B[11] {55} = {o} (2-38b)

i [[J]-G+E)IT] §NY = S0} (2-380)

For non-zero value of {7\3 y it follows that

[(71-+e)(11| = o (2-38)

or [fo7- &L2] |

o . (2-38e)

Since

[J1-U+EX[TI] = [pI+[11-[11- EL(1]
(pT-EL1]

the Equation (2-38c) yields the characteristic equation of

I

the matrix [D] which is solved directly for the eigenvalues.

The general form of Equation (2-38c) becomes

(E)- b,(E)+ biE)- bo

b, = €m + €5+ €33

@) (2-39a)
Trace of matrix [0 (2-39b)

~ where
: 1 2 2 e
br1= €11€2 + yeas+ €ney -4 (Entez+ey,)
2 % 2
+ Wy + Wy + W3 (2-39¢)
2 2
b,= Eneuey+ Y (Erenty -ezzefi ~€33€2-€1€y3)
2 z
+ Wi ey + W7 €+ Ws €e3 + W W28 + W3 €13 + W, W3 €3
= |[D]] (2-39d)

@ O
'€ roots of the Equation (2-39a) E , E , E@ are the

gen-values of [ D]
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The quantities b,, b,, b,, remain invariant under a transforma-
tion of coordinates. Recalling the three invariants of [€]

as

by= €+ €t €3 (2-40a)
b = ) b8

by = €nCaut €nCsst a8, - Ta( €+ €n+ e}s) (2-40D)
bo = €1€43€33 + Y4 (eneness —euef, —euef‘a —65387-7.) (2-40c)

and the three invariants of (W] as

/4

b2 O (2-40d)
" 2 2 X

by = Wyt Wy + Wy (2-40e)
b= O (2-40f)

it follows that

b, = by + b7 (2-40g)

2 N
bo . bg+ wWien+ (Ufﬁn-i- w;eaa T(A)1w'le|2_+ (AJ1CO5€|3 (2-40h)

+ W,w; €,,
must also be invariants.,

Since Equation (2-39a) is a cubic equation with real
coefficients, at least one root must be real which implies
that they exist at least one direction for which the

rotation is zero,.
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2.6a The General Picture of the Deformation in the

Neighborhood of an Arbitary Point of the Body

It follows from Equation (1-2) that the projections
of the vector ﬁT&* (i.e., the projections of an arbitary'line
element of the body after deformation) are connected by means
of linear relations with the projections of the vector ﬁﬁ

(i.e., with the projections of the same element before

deformation), Correspondingly, the inverse relations

expressible by Equation (1-16) are also linear, The coefficients
in Equation (1-2) and Equation (1-16) are to be taken constant
and equal to their values at the point M, thus the deformation

of an infinitesimal region containing the point M is described

by a linear transformation with constant coefficients,

A Xg

dx
] 3

Mg_____

dx,

40

o] -8
7

X2

Figure (II-5) Deformation of a Rectangular Parallelopied.
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In particular, the rectangular parallelopiped with
edges Oxq,dx,, dx; parallel to the coordinate axes is transformed
by the deformation into an oblique parallelopiped with edges
(1+ENAx1, (1+E X, , (1+E3) dxy  forming angles '
( To- dn), (T2~ On), (Ta-@ss) as shown in Figure (II-5),
In case of principal axes, the parallelopiped whose
edges before deformation coincide with the principal axes
at the point in question is still rectangular after the
deformation, and has edges (1&-Ef)(ia1)(++EI)daz)(1+Ef)d03
where a;,a;‘,a3 are the lengths of the edges before deformation,
The foregoing gives some idea.of the character of the
deformation of an infinitesimal region surrounding the point M.

' Under a deformation, this region first undergoes a translation,

as a result of which the point M coincides with the point M#*;
secondly, it experiences a rotation, under which the fibers
directed along €1P) e-,_f 3 eg become directed along e:“, 64*, é; H
and finally, undergoes a pure strain, in which the fibers
ef,x, 6?; ef;* receive elongations Ef) Ej, E§ .

From this standpoint, displacements and rotation are
called the characteristics of the deformation of a body as a
whole, whereas elongations and shears are called the characteris-
tics of the deformation of an infinitesimal element of volume
of the body,

These definitions must not be confused, It should be
®mphasized that the assumption that the displacements and.

Totation are small is a greater restriction of the generality

of the arguments than the assumption that the strain components




L8
are small, The first assumption implies the second, but the
converse is false, It must also be remarked that, in those
cases where the necessity of small displacements is indicated,
it is ordinarily not specified what they must be small in
comparison with, Such a specification, however, is absolutely
necessary, since displacements are dimensional quantities,

Thus in conclusion, the term "small deformation,"
means the smallness of the elongations and shears compared

to unity.

2,7 Change in Volume
A X3

Figure(II-6) Volumetric Change

An infinitesimal rectangular parallelopiped with
edges dx1,dx4,dx, parallel to the coordinate axes is transformed
by the deformation into an oblique parallelopiped with edges

dsy, dsy , dsy, forming angles (™a- anz),(TVz—d)la),(‘r/z‘d’aa)

in Figure (71.5).
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‘Noting
V = dyx,dx, dxs; = The volume of the element before
deformation (2-41a)
af e .
[(dqxd%f)-ds,] (2-41b)

from Equation (1-2) as

{ds}} = 1dx*} = [T]ds} = [TT1dx}
B i 3
X QU4 U1 084
dX1 (4+ OM> DXy X3 dX1
* UL (0 Ux WU
dir= | B R B
3 | ox X3, % | 3

For the line element before deformation

dX1

{ds& =<0

0

one obtains
4+@W)dx1
1o L OB gy
{d51} { DXq :
() dX1
L (D X4

= The volume of the oblique parallelopiped.

It follows that dsf,dsz,dsfis expressed into the vector form

(2-42a)
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Analogously,
U dx,
X2
y .
{dsi"} = 4 (1+7%) de (2-42D)
fa_ua dx,
Xy
i %
U4 dX5
MDX3
Uz >
{ds);} = ﬁ era dx3 (2-“20)
. U3 dx
which also before deformation are given as
0 0
{dsf=4dx. [ 5 {ds,} =<0 and
(@] d)g
Equation (2-41b) is expressed in matrix form as
X X b
X
(V) = {[dsh]{dsi}}{ ds3}
T T "
* X
= ‘{d52} [d51] {d53}
The component form becomes
() = (o), a1 [ o o e ] (o)
fDXz 0%, X4 = A X3
-pUs O 14 Uy < nuz > dxdx,dx
%1 Ve %, e
N U; —(1+ U4 @, 4!
mx: ( X4 (T*mfb
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The determinant of [JJ is defined as
(++ iy s U
X1 0%y X3
/a&. U2 (O Uy,
Jeaal = a6 OtEE G
2Us @Eb (1+ T8y
L Xy Xa 0X3
_ {@M_ua ~ () B | (g, QWY Gl Gl
= (%, 0 aYy! QX K1 @X3 X
U3
X4
(1+ YO 1) =T 1L s
oxq/ > AXQ Xy (X4 0Ky
+n%)
=~ -
,D_(A3 —'ﬂ_!J /b_g3
@ X4 X1 X4
AU (p RUry Uy _Pus U1 nu
{’DXA( f?Xa) ”’Yzj o O Uy, f&i
U
= —(14 @4 w
5 f0x1) " (“‘%3)
% L + 3
Thereforeq(\/) is rewritten the form
(VY = |[J]] dxsdxzdxs
= H:J]l (V) (2-43a)
X
or ¥ - l[J”
V

A - [)
*\/
= Vv =
% Y
A A
Y

Defining /\ as the relative change in volume due to deformation.

(2-431b)

(2-43¢c)




2.8 The Theory of Small Deformation (Case 2)

The equations derived in the previous sections
place no restrictions on the eloncations and shears as compared
to unity, A restriction in the size of these parameters is
now accounted for in this section. Introducing into
Equation (2-6) the approximation that E ,,<K 1, it follows that

E%En , Epa%€y , Eg%Ess (2-46a)

Further, Equation (2-8c) is reduced by taking into consideration
that E423<<1 , it follows that

CPn.x E"- ’ ¢’3x E15 3 szg“ Ez; (2-46Db)
where

Sindn % Gn , sindy % O, , sindy2 o (2-L6c)

Thus for the small relative deformations, the components
Ep, En, £33 are identified with g Ez,Es respectively,
and Ey,%¥,%, are identified with ¢, ¢, ,d,; respectively.
Therefore, the increment of volume A in Equation (2-45)

is reduced to the form

As E,+*E,+Es

% EntEnt Ex =0 = €rrELtE] (Boisy
Analogously, the Equation (1-12) and (1-22) take the form
Ny T . .
{i,}'x [J]4L} (2-L6e)
” LI
{ty = [=]ily (2-461)

[+EI=x [1]
[1+E]% [1]
L3I = (1+ENU+E(+ES)

R

1



Squaring both sides yields
2 2
+4) = (10311
- = | (31031
From Equation (2-4a), it follows that
“T
afe]+(1]= [JI[J]
Thus T
(910])= | 2Le1+(1]|
ol (1+AY = |2 [€] +[1]] Kehad
In case of principal axes | E] changes to the form
g .o o
[é’] = (0] e; O
@ S ea
B®  (eaf = | 20€7 4113
= (aeh+)el +)(ael+)
or A - \/(ze$+1)<aef+1>(ae2+17 =1
By using Equation (2-6), one obtains the form
A = EEO+E(I+Es Y =1 (2-45)

PP P
where £,,E,, Es are the principal elongations at the point

Where the change in volume is calculated.
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2.9 The Case of Small Deformation and Small Angles

of Rotation (Case 3)

If the angles of rotation as well as the strain
components are small compared to unity, then the directions

(3 Y D
3 and te,

x

of the vectors Ly , L,
from those of ,xq),xz,x5 by only a small amount,

As a result, the diagonal members of [A] , and [B]
(See Equations (1-13a) and (1-23a)) differ from unity only by
quantities of the second order which the remaining members
of these matrix are quantities of the first order (if the
maximum value of an angle of rotation is taken to be a quantity

of the first order).

Considering the two dimensional axes of matrix DA]’[EJ

2 3
s d  sind | _ 1+%+.._ ¢—‘a_bl+..

. . (2-472a)
—-stmd  eosd ~(p-P+-n) 1405 -
8l 21
with psd %1 , smdx ¢ for small angles of rotations P
(2-471p)

Noting Equations (1-18), (1-14) withfsz)5<3:1,. one obtains

[x] = coF[4]
 or [X] = cCoF [JJT. (2-48a)

Equation (2-48a) is expressed as follow

X33 (1+em) (1t+ey,) = (Y4 e ~w; )

Hence

%,
Xag ~ w; = (1+eu)(1+€,5) — 4/4 E12 (2-48b)

4 : ‘
lz,l3 with obviously deviate.
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Thus Equation (2-35a) is rewritten in the form
W>
fangs % = (2-48¢)
X33 — Ws
Consider the following definitions
’ - w
é’r, sin ‘-Ps = _3
w3 N X33
%\ Cos by = No33- 03
,.‘ K33~ W3 N X33
In accordance with Equations (1-23a) and (1-23b)
’ . *
33 % (0S (?,la,La) for a small deformation (E3<<1)
therefore
5w1¢3 = O (2-484)

\/QOSC?;)LQ)

It is noted above that in the present case the cosine of the

angle between the X3-axis and vector T differs from unity

3
only by a quantity of the second order. Moreover, since the
- rotations is small, —LP} differs from S_i_l:q)j only by quantities
. of the third order. Hence, neglecting the squares of the

- angle of rotation compared to unity, Equation (2-48d) is

rewritten as follows:

%. v Ws (2-49a)




56

Analogously

Furthermore, the formulas for the strain components [EJ are
simplified under the assumption that the angles of rotation
and the strain components are small comparedto unity as follows:

Consider the Euler angles:

A%
/t’x
1 ~
S /’—Xf 03 b1
€ %
18 L {H} =19 sind sy, (2-50a)
S X1 0‘9’4‘\ d XZ . .
s %@f/ SINdysin
SIND, SNy
X3
X2
4\
x z .
?%:‘ (" » 51N, Sinoy
S|tz o My
= 0 2-50b
) Ly av ULy =1 €050 (2-50D)
S, %Z c\'l » .Y\
B €05 Yy 5N
SIND, CO5 %,
X4
ALXS
" L — 0y 3 .
S|4 y 3[’:3 = Sl'n(bgﬁm)é; (2-50c)
1
e, % ne? i S
/6\4,5'\3%/’/" Y] d)}

 SING, 005%;
X2

Figure (II-7) Euler Angles for Rotations




57

Let these vectors be combined to form the column of

the matrix [M] with

8
ws ¢, SinGasin®s  sindse0X, |
[M] = BN g L0 Koy s Sindysinl, |(2-504)
le'nd)1s«'n%1 Sty os%y 005Dy
It follows that B
{1y - tmT5ey (22508)

After making a comparison with Equation (1-12), one obtains

(AT = (M7 (2-51)

Consequently, in accordance with Equations (2-51), and (2-6),

(2-41a), one obtains

[+€4 & 4= @9.
2

AN 1+ 2Ep

£
4+ 8z o - %" | (2-52Db)

(2-52a)

r A
d+ %8 x4 - b

I\J1+2E53 2
~ Y,

where Cb,,d),,7d)5 are the angles between if and Xl-axis. 'L;‘_ and

0%
Xz-axis. L§ and X3-axis. regspectively, and also are the same

(2-52¢)

order of magnitude as the angles of rotation,
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Consider the binomial equation
" n-1) m-2), 4
(a+b) = a"+na b+(-1D& bH----  (2-53a)
Y /) -%,
+renU+2E) = (e (1 + 1)U 7 ) (LEy)+ - -+

= (1+€¢1)(1‘E41)

= 1+ 841 o 811'- Eﬁeﬂ o (2'53b)

» Since the strain components are assumed to be small incomparison

to unity, the product of‘E and e’ are neglected, Thus,

Equation (2-53b) becomes

2
1+Cu-8yq = 1- d>yz_
2
or Bi—=Bu =B 1, (2-54a)
Analogously
b
Eun-€, = 2 (2-54b)
2
s~ €33 = CP; (2-5ke)
2

Tflus in this case, the quantities eﬁ,eu)eu differ from
the corresponding strain components Eﬁ)‘gn)}’;aa only by
magnitudes of the same order as the squares of the angles of
rotation. Furthermore, in accordance with Equations (2-51).
and by using the definition of Equation (2-47b) then the off

diagonal terms of Equation (1l-13a) are expressed as:

1 ~ o
7€t Wy (1)1 05904 H 1/2,642_— W3 ~ 4).7,/6'“%4,
).i e9.5+ w1 X d).\ CDS%& ; 4/"1'6)‘3_(1)1 % q>3 SFV\%j
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Now consider the shear strain components 51.1., E1a) 513 obtained
from the dot product between Equations (2-50a), (2-50b) and
(2-50c), it follows that
E T = (YRGS
cos(ff,f’i) S, = 005 dysindssinde,+ Losdysindy os ¥
+ SInd, 5 Py 5N W05,  (2-56a)

NN . . ‘ :
ws(f;‘)ug‘)= st P = 0sDy N os%s + Cos s sindy 5in %+
+ sindy sind, s¥qSin%s (2-56b)

oy o _ . )
€0s Cl'.;,‘, (3) = 51 Pya = 05Dy 5imbsbinb, + @°5d>55""d>:_305%,b
+ Sind)& sin Py sint 7%y 05 Voy (2-56¢)

By comparing Equations (2-3c) and (2-37b) with the above
equations, noting the condition that EL%3<K:1 » and omitting
all terms containing CD to higher than the second power,

one obtains

Eu. ~ d>,15'.n%.l ~+ d)1 w5%1+ d>1¢z‘5l.ﬂ%1 wb%,b
Eqg v s Cos%s + d)1 3in %1+q>,d>3 C0s9o45(N %3 (2-57)
Eyy Dy SINTos+ Da 05 %, + P, P3 310 %y o5 Ko

Combination of Equation (2-55) with Equation (2-57), yields
En-€nx O Dy, Sin %y LOS Ky,

Ei3— C13 ® D1 Ds 05 % Al %3
ta— G ® Gy D3 8in %, tos %,

(2-58)
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which implies that the parameters eu,e‘;,eu differ from the
corresponding strain components only by quantities of the
same order as the products of the angles of rotation,

Consider Equation (2-4c)

[g1= [el+4 [[eT+[eIw]-Twitel - [wI"]
It is seen that the squares of the parameters matrix [ €]
may neglected, because they are the same order as the fourth
powers of the angles of rotation, thus Equation (2-4c¢c) is

reduced into

[e]x [el+%[(ellwl- [wile] - [wI*] , (2-59)

and also [e][w] 3 [WI(e] have the same power as the cubes

of angles of rotation, so they may neglected in comparison with
&
(W], thus
2
4

[e]l= [e]-2[wl . (2-59b)
These equations are correct to within the accuracy obtainable
by neglecting the angles of rotation and the strains in

comparison to unity,
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2.10 The Transition to the Equations of the Classical

Theory (Case 4)

Assuming that the squares and products of the angles
of rotation may be neglected in comparison with el &

Equation (2-49c¢) reduces to

lel~ [e] = % [[1%[0]] (2-60)
These are the equations of the classical theory of elasticity.

It is seen from the two proceeding sections that the
expressions for the strain components become linear only under
the two following conditions:

a) The elongation, shears, and angles of rotation

must be small compared to unity,

b) The terms of the second degree in the angles of
rotation appearing in Equation (2-59b) must be
small compared to the corresponding strain
components,

The last requirement can be formulated, roughly
speaking, as the condition that the squares of the angles of
rotation be negligibly small compared to the elongations and
shears, If the body is MASSIVE, i.e., is of the same order
of magnitude in all three of its dimensions, then condition (a)
implies condition (b).

This is not true if the body is flexible, i.e,,
if its dimensions in one or two direections is essentially

Small compared to its remaining dimensions (rod, plate, shell).
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In this case the angles of rotation may considerably exceed

the elongations and shears, so that Equation (2-60) are in

general not applicable to such bodies. This implies that the

linear Equation (2-60) is to be used primarily in analyzing
the deformation of massive bodies, while the non linear
Equation (2-4¢) and (2-59b) are applicable to deformation of
flexible bodies.

2,11 On the Transition to Curvilinear Coordinates

It has been assumed up to now that the positions of
the points of a body are expressed in terms of Cartesian coordinates
x1))(2) X3 . In the solution of some engineering problems, it
is more convenient to use orthogonal curvilinear coordinates.

Let the curvilinear co-ordinates be related to the

Cartesian coordinates in accordance with the equations

Xy= 'f1 (°<1,°(.z)°‘5) s Xp= {&(“1) %y ,%3) 5 X3= {3@/1)0(4)0(5) *

Figure(II-B) Curvilinear Coordinate Axes

These equations determine three families of curves,

the coordinate lines &, ,X, 5{,. Denote the unit vectors tangent
MITRHTS

to the coordinate lines by k1,h;,{3respectively. as shown in

Figure (11.8).
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Since the curvilinear co-ordinates are assumed to be
orthogonal.k1,k4,k3 form at every point a mutually perpendicular
trihedral of local coordinate axes (reference is made to local
axes because, unlike a Cartesian system, the directions of these

axes change from one point to another).

Figure (1I1-9) Example of Curvilinear Coordinates

Considering vector P in Figure (I1I-9)

— - = —
Po= Xelgt Xply ¥ Xz, (2-62a)
- = = -
Pr = X1 Ly + RXa Ly + DX> b3
N4 LS oty &4
AF = Xl + @Xa i, + D% G (2-62b)
foO(Q_ MKa DKy fDIXL
@_ = @__)(1 Z1 + (U_Xl -l;,.L -+ (b_)_(_s Ej
T
ny _ '
{mc) = [K]1E] (2-62¢)
where -~ u
X4 0 X1 XA
A4 mO(g K3
Xz nx 0 Xa
K] = | % B A (2-62d)
DXy (X3 X
LS 0y (T3
and ‘ % S =
rr
1 oy (2-62e)
nPrl =< of ‘
0K mg(.;,
oy
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The unit vectors in o4, X, , ®; directions are expressed as
follow & " R
nr i or v
N X P £ oK
k1 = : ) }22: = i e ] bs - o " (2_633)
H4 Hz Hs
where = =
= Nr = (0X1 (VX2 QX3
i D1 /( romy ¥ (rooa) ((Do(q)
- O o ey, ek, 2
Hz ARy, ,\/ Lfaoﬂa) % ( NAiq v (,)0(2,> (2-63b)

| 5 -
i G (BT

Writing the latter equations in the matrix form gives

{R}= [RTTEY = [+ 101403 (LA

where
[R] - [KIL%] (2-63d)
: e —
Ha O & aﬁ 214 ‘fla
1
Bhl= [0 @ © |5[RI<|Ru R Ry |- (2:639)
LO @) %3 L_Kai Rsa Ra;_

According to Equation (2-63c), matrix [R] is the transformation
matrix from {IS to 3_?.3

Since both sets of coordinates axes are orthogonal then

[RIIR] = [R1[R1 = [T] . i

Assuming that at each point in the field.the «4,X, X, axes
~ are rotated so that they coineide with the X1,%5,Xy  axes

at point P, (See Figure (II-10)), it follows that
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dotq dxy
the vector dx, r has the same direction as the vectorq{gx, p -
d o3 dxs
Hence, the matrix [K] vecomes diagonal with
RX L X1 L DXa L 0% L 0% . @%s 2 O, gun
PRy Xy AKX Xy sy DX 3

4
and the components of diagonal matrix [-g] reduce to the form

e DK, L @ = XL (g

/o o4 2 poy 37 By

As a result, at point P the units vectors coincide

or {RY = {i} (2-6kc)
and the [R] matrix becomes

PR w LI (2-6144)
According to .the well-known chain rule of multivariate calculus

T
{V,(} - [K] in} (2-65a)
A T -
{7} = [KI{vS (2-65b)

CE]
From Equations (2-63d) and (2-64d)

[R] = [KI[#] =[1]
[KI[1]

[}2] (2-65¢c)

)

i [KILK]

—
N
—)
—/
X
—
<~
| -
]

- [4#]




Therefore,Equation (2-65b) is rewritten as
' 1
(%=l %] 1V (2-654)
where
o o)
F’TX,‘ Fb-a'1
=J& i, P 3 LA
%V,(-% Y\ oaxg [ %Vo«}‘ roo«',,T (2-65e)
(B Q_
X A
| % ey
L Thus,
D X4 Hyq 0%y
1% = 1 0 (2-65f1)
Q—Txl Hy o<y
n 1.0
EX; Ha D0y
Consider the point P in Figure (II-10), Upon differentiating
Equation (2-63f) with respect to X, » oOne obtains
T T
9R ][2] & [R][@E] = O (2-66a)
,DX1 GX1
which when evaluated at point P (i.,e,[R]=[I] ), it follows
that -
nR MR
el t[T2] Len (2-66b)
; : R
Equation (2-66b) defines matrix [ﬁﬂa] as a skew-symmetric
matrix, or
BRii ~ 0 ;, PRk -~ ~QRki . k#{=1,1,3,
T ) % % > 5 (2-66¢c)

Similary at point P these relations remain valid if X, is

replaced by X25X3,%1, A3y X3 «
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Consider the component Rz

0 Xs
DKy /09‘1

@)

X4
PRz = 1 PRz =1 @ (1 Q%
D X4 Hy QX1 Hy D% Hz My
St (1 %
H1 Hz 60(1’00(2
The function '%é? = o0 at point P, thus
: 3
PFs2 - 1 1 X3
0 X4 Hy Ho Rxn%,

Noting the following differentiation

Ra - 1 @ (1 2%
/bxz HZ (OD( H'1 f00(1
:1[L@@ % @ (1
H, Hy %K,y Dok (0K, Hy
R . fax;

The following equality holds:

)

BR3 = @Ry,
PXa DXy
Analogously,
RRxi _ (2 Ra3 ond DRz = K2
X3 0 X1 X2 X3
According to Equation (2-66¢)
MR - — @Ry - — @Rz - @Rz - @R - _ ARy

By using Equation (2-65e)

(2-67a)

(2-67b)

(2-67¢)

(2-67d)
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Compariéon of Equations (2-67c) with (2-66c¢) gives
@_&Z: fo__R_3.1 = O

0 X4 DXz
ARy - @Ra - PRn . @Ry - 0. (2-671)
X4 0 X3 0 X3 @ Xa
And also PR32 - @Ry - MRy - @Rz = @R - ®Rs - O,
DXy Doy D K4 X3 Doy o
Now consider the component frao_f?l at point P, Equation (2-63d)
3
gives
Ry = A ©@X3
then
i R A R - W E A
D3 Hy (Do, Qcy PXz MKz Hz
or H MRz = /‘D”X; ' (2-68a)

XS n «, 00y
In accordance with Equation (2-63b)

OG- R C RO

Differentiating Equation (2-63b) with respect to o<, yields
when evaluated at point P
2 2 2
2H5®H5=2 (OX1(OX1 +2(DX1(OX1 +2(D_-X3 (DX,%

Ry MX3 DXz Dy DKy QX dxz (D3 Doy DXy
p %

or QHy = 2% (2-68c)

Doy 0 0(2/00(3

2
thus » @3 = Hl fb_g_éjz = ) X3 i
Le) 0 X3 DX 2D K3

Because %;i] is a skew-gsymmetrix, it follows that

-f_O_Qaz = 1 o Hs L Rzs

e 2-68d
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Analogously

QRs1 - 1 MHs
N K3 He %4
PRa _ 1 NH,
K2 H1 /a°<1
ORis _ 1 W
RXy  Hz My
ARe _ 1
CLS TR T
R .. 1 OH:
VX1 Hz DXy

i
|

1

D
n
>

I
I
S)
)
2

)

_1 0Hy
Hay Ry

1 Dt

- 'H3 fbo(5

4 1
’H‘z mb(g,,

O

O

1 mH
Hg ey

O

@)
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(2-684)

Combining the values from Equations (2-67f) and (2-68d) yields
i

(2-69a)

(2-69Db)
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O O -1mis
H oty
R _1roR -1 |oO o -L o |
OX3]1 T H, /Wa] H3 H2 (0o (2-69c)
1P L OHs i
Hy ooy Hapee R
Consider the displacement vector -LL
;‘ l Ux1
| {ux} =<{ Ux2 with respect to rectangular
q’ U.xs[ Cartesian axes
Ut
and also {u,(} =< Wx2 W.,R.,T, curvilinear coordinate axes.
W3
It follows that
"
{ud = [RT {ws (2-708)

fuxy = [RT {uxj
mx1{ux} . Xd[?] u.(}}
[mx1[R] {“"} R]{m {u.(}} (2-70D)

Substituting the values of [%XER]] from Equation (2-69a) and
Equating [R]= [I] for the condition at point P,, one obtains

i 1 H 1 oM [ 1 [ 2Uer)
2 g 1 0O U
= Ho 0%y Hy g Hut o A X4
70 iux} 1 | -1 @H O 1 0 D Ux
% = | W% 0 o) Uz » + % f,
1 (OH4 1 Ues
~ 1 e s —
H3 0‘3 O O J l/(o(g, -O J mx1j




or finally the three terms
i P
U ll@ﬂ“u&lﬁ-iim_mu“+i%1
X1 Ho] Hz 0193 H1 H3 fbo(_;, ‘H1 0 K4
Uy 4 RUwx I L BT :
‘<TD7(4 Hy x4 Hi Ha RX2 i : (2-70¢)
U3 2 QUss — 14 DH Yy
L(b><1 H1 Dy Hy Hy PRy
Analogously
/
s | [1 U=t _ 1 1 @H Uxa
| ,ﬁz Hy D X2 Hy Hz Qo4
| N 4 RUxa 1 1 Ry, 1 1 RH Uy
ﬂ R Xa. » = { He Dxa +'H1 Hy @4 +H2_ 3 DXy (2-704)
us 1 RUxs _ 1 1 Ot Yuy
X,y Ha A%y Hy H3 K3
SIREE \
A 1 AU«t _ 1 1 @Hs Uxg
" X3 H3 Qo3 Hi Hs Qx4
Ry oL, G gy
L Ax, — L 3 Ux (2-70e)
P X3 i £ Hy H3 Rx2 ¢
QU A omUsta 101 Oy ey 4 41013 Uk,
Thus, —X'5 'Ha 0 X3 “1 Hg 0 X4 2 Hy 23}
~
€= QU1 = 1 1 DHi Uy 4 1 1 @1 Uy, 4 1 BUKS
0 X4 Hy Hy X2 Hy Hz Dy Hy X4
€,= AU = 1 DUsz 4 1 1 Oz yees 4 1 1 @Hz Uny
MXq Hz Rz Hy Hy D% H, Hy 0%y
2-71
’é;s'—‘ PUs = 4 MUxz 4 4 1 OH3 Uus 4 1 1 O3 Unz et
D X3 Hz X3 Hy Hy DKy Hy H, DX,
~S
Cp= QU1 AUz = 1/dUxt _ 1 1 B g, 4 1 PUxz _ 1 1 AH
DXz (X4 QMH2 0 A,y Hq Hy P4 Hy 0 Xy Hy Hy MK,
—_ 11 Hq ==Y . R H1 Yxq 2 U<z _ Ha
. E—l-i_z( /00(;1,_ N Hy +%1:le Hzow] Uo(q.%—;“)‘H:
1 H2
2
= W0 (914>+ e e
Hy X2\ H1 Hq (0044 Ha

71
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€, — MUt PUs _ Hi D _o_«) Ha 7 (tm)
13 = 04 AU H1 4 H» fo (2
nX3 X4 Ha fafxg H Mg\ Hz

H
€= Oz, pUy . by @ (Uhts) . be 0 (e
MX3  ©Xz Hz @%2\ Ha 10343 Ha
~ fQUs _ @MUz = 1 AU«3 —1 4 (DH 1 (TUx 1 4 H
w = &3~ 182 = 1 U1 1 OHa yy, - 1 Tt L 4 1 RHs Ueg
2 Xy X3 Hy nxq Hy Hy 0K3 : H3 Oxs Hz H3 0Kz
vl e MUy (T H3 0 Uz, (JHz.
- Fb[(H3 *""‘50&) (“ 27y T U2 )]
i 1 [ra — @ Ut
Wy = 0 Hauﬂa) (t2 1)]
! 2 HzH3 mD(z.( B3
A 1 (Hq U )— (#3 Usts)
' TR [ 1 U4 3 W)
W = JiH, {&1 Ha ) = 5 (Helbocr) 4

~
Finally matrix [E] in the orthogonal curvilinear co-ordinate

igs written as follow

[£]=[€]+% [[ET-[O1E] + [E1[@1- (6] (2-73)




73

2,12 Summary

Case 1 General Nonlinear Equation,

Elongations:

Py =BalIlgey s (T} =[eeT 1<)

T 103l
[] = COF[J]
E«(1+ % E) = &y
E:.(1‘+1/J.EL) = Ea
Est+YaEs)= £g3.
Shears:
i el (54:54)(1+E;)’
i ufgn( +EB3)
Sin QPag = Ex3
(14+E) (1+E3)
Angle of rotation: (mean values)
tan ¢y = W 1 %
V(e es)-lhed
I "
s J(ren+ess) — 1a €3 7
fandy = “s

V(1+ ) (1+ea) - g e .




7L
Change in Volume:

P { P
A = (+EN(+E)(1+E) — 1,
General nonlinear strain equation:

1= rel+s[efs elfwl-Twife]- [wl ]

Case 2 Small Deformation

The elongations and shear parameters are small in

comparison to unity, Thus,

Eq, E.t,Eg LA
k] *
[1+E*] ~ [1]
03] 1,

3

and

simhp % Du

Sin Cbna % CDI}
SinDay ~ Qu -
Elongation:

E, % E Ey» & Egx E
Shears: 2 e 4 RS PR ks

Cblzz En, Pnx £33 5 Pua® Eas.

Angles of Rotations:

TOM Qh -~ L —
J(1+€22)(1+833) -4 e
+aV|—q).t = Wa
Jren(i+es) o el
+an q)5 = w3

J+en (1+es) ~14eh
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Change in Volume:

A % Ej+Ex+Es; % Ey+EatEs
1™ = [3114
§T) = [*1'4

General nonlinear strain equation:

(€] = [e] + & [e]+ [e](w] - [w][e] - []"]
Case 3 Small Deformation and Small Angle of Rotation
In addition to the elongations and éhear parameters,
the rotation angles are small in comparison to unity.
Thus,

E1,2,3 K1

ani

005¢941+Cb;gl. , Sih ¢*¢/;L

s ¥ 1 o, pimd D
Elongation: |

Efy¥By ; E,%Ey ; Yt~ Ejz.
Shear:

Pp¥En 5 Py by y Pus® Eas,

Anzle of rotation:

@1’«‘4 Wy (-_PA’:" Wa —475”“’5’
8- ¥ <bﬁ®

En-e,x Gifs

Epn-€nx ¢13/.z

Bl = G m (hcb.z SN Xoq C0S %4

Eis - €1y dhd% CoS Yor Sin %3 ’
€is = Cu3 d),_d)J Sin Xy eos )é:j




where dDL= Euler angle of rotation,

The nonlinear strain equation reduces into
3
(] = [e]- Ylw]

Case 4 Equation of Classical Theory

Neglecting the square of the angles of rotation
compare to [€] ;
Elongation:

E1%En , EgnEyy , E3®Ey .
Shear:

O AT d)u-a?’/ €, Pus® €13,

Angle of rotation:
gy Wy, Gamow, 32 ws,

The nonlinear strain equation reduces into:

(E]l= [e].
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CHAPTER III
THE EQUILIBRIUM OF AN ELEMENT OF
VOLUME OF A BODY

3.1 Stresses
In this chapter the investigation of the conditions
for the equilibrium of an arbitary infinitesimal element of

: volume of the deformed body is considered,

It is necessary to apply to this isolated element
forces distributed over its surface which represent the effect
of the surrounding medium on this element, Consider an
element of area dilon the given surface, Its orientation
is deseribed by a unit vector n* along the normal, which is
regarded as positive if directed toward the exterior of the
element of volume in question; denoting

TdA' ag the force acting on the element of area

EF as the vector representing the intensity

of the surface loading on the area .
The magnitude and direction of ﬁt depend on the position of
the area (which is specified by the coordinates xi,xf,x:
of its centroid) as well as on the orientation of the area
(i.e., on n*), The triple xﬁ,i:,xﬁ however,determines a

. - . ¢ s
radius vector r extending from the origin of coordinates to

the centroid of the area, so that

-

¥ =93 (¥,n%) (3-1a)
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Thus, Y is a function of two vectors, and is odd with respect
to-ﬁ* '

V(T,n*) = —=v(F,-n% (3-1b)
The vector i? is called the stress. In sequel it is marked
with a subscript indicating the direction of the normal to the
area on which it acts.“%” indicating the strained state, and
“a indicating the curvilinear coordinate system.
Consider an element of volume which is a tetrahedron, three
of whose edges are parallel to the coordinate axes X4;Xz, X5

* *
and equal to dx,,dx{ﬂbgrespectively as shown in Figure (III-1a),

Figure (III-la) Equilibrium of a Volume Element

where
‘jA* = the area of the inclined face of the tetrahedron;
¥ = unit vector of its external normal
‘a* = 1is the mean value of the specific body force

acting on the tetrahedron.
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X

‘Ex1 = the stress on the area, perpendicular to X,-axis
Yﬁﬁz = the stiress on the area, perpendicular to X,-axis
Y[ia = the stress on the area, perpendicular to Xa-axis
dA¥ = the area of the face of the tetrahedron which is
normal to X, -axis = Y dx:dxy
dAt = the area of the face of the tetrahedron which is
normal to X,-axis = 3 d)(fdxz
dAT = dxd dx*,
Z

For the given element to be in equilibrium, it is necessary,
first of all, that the sum of all the forces acting on it

be equal to zero (including gravitational forces). Thus,

?ﬁ,‘tdA*+ Y-f‘_’fﬂ daY + T°, dar + ﬁi:, A3 + F*dxfdxfdx;_._ 0. (3-2)
The subscripts of the three stresses ﬁi:“ﬁ'_;l, ﬁ, are
negative because the directions of the external normals to
the corresponding areas are opposite to those of the coordinate
axes (See Figure(III-la)).

Dividing Equation (3-2) by dA* and noting Equation (3-1b),

one obtains

= 2x daf ., o ddl s dd  2eddde?dd
V.Y = Y %f* *+ Y dar + Vxs 0‘—3; F _61_017:5‘_} (3-3)

where dA:)dAz,dAﬁ are the projections of the inclined face
dA* on the X7X3, X{ %y, X=X, planes, so that

dAx
a711= QOS (.V‘t X4)

X

§§i= Cos (n X,) (3-4)
X

o s’ xy),

da*™
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dx; dxs

x
Py Ax, represents the ratio of

the volume of the tetrahedron to the area of its inclined

Furthermore, the fraction

face, and is therefore a magnitude of the order of the linear
dimension of the tetrahedron (i.e.,, and infinitesimal quantity).
Hence, the last term in Equation (3-3) is also an infinitesimal,
and is neglected.
Combining Equations (3-3) and (3-4) yields the auchy's
equations as

'y = % - »§ =

T = Vyq 0o50r¥ xq) + g CosC, X2+ Ty cos (M x3) (3-5)
Considering the following definitions:

X * X . —ﬁ-_\.x’

Nhni ,Vniz Y- the projections of Nm on X X, X, axes,

¥ % . *
Y s Vg , Vﬁ’- the projections of Tyx4 on X1, X2, X; axes.

¥ * X
V;'l) q—;l }) v:l&

X X
Vat, Vh.,vﬁ
Thus, Equation (3-5) is rewritten as

the projections of ‘V;; on X,,Xz)X3 axes,

the projections of ‘Wﬁ; on X1)X1)X3 axes,

x

Unn ‘ﬁr if T;

T b = Th 005 (1}, %q) T+ Vz: ws(”:,xﬂ'\' V'a*z OOSCVIT‘,Xg)'
¥ X

Unis T Vas P (3-6a)

—
By mean of the expression of vector W}f of an inclined face
which is indicated by unit vector ﬁf’normal to this face,

Equation (3-6a) is

( p -

VnTn l ‘T‘M‘t Vo Tot 005 (1, %)

T [ = | Taf\. T 005 (w;’) x2) [ (3-6b)
R Th Th T 005 (M15X3)

—
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{‘fnﬁ}= [V{]T{ Wf} (3-6¢)
where .
n 003 (1 x)
{”’T}'-' Ml = epsnd xa)p (3-6d)
VIE,J eo\&(n’;)x,)

Analogously for the other two vectors ﬁi”y’,'l)ﬁ’; (See Figure(III-1b))

are also be expressed as

b 4 ¥ T % ;
{2 (w7
% T
{We}= [W'] {n} (3-6%)
where
X
AP Mot 005 C1E, X
X * .
{Y]'m} =4 Tnn ’ {ni} =43 p= 005 (N3, Xa)
Thzs nys L0SC ), X3)
X %
‘Tnan N3y 005 (Yl:) X1)
X X , * X *
Vna} =4 TUnng 5 Y03 =< N3 p =4 005 (M3,%2)
X
Tns N33 005 (13, %3)

These vectors are then combined to form the columns of the

5
matrix [Vy | and matrix [¢] as follow

L{vnH v Wit ]= (W[} i) ins)]
[w1  =[wIle] g




where
- X *
T Vel i
*
Thu Qan Vﬂﬁa (3-8a)

¥ * ¥
Thar Y VhabJ
L

(V]

[C ] ol Cos Cn;))ﬁ) t0s CMZ’.*, X2) (oS CM:’xs) (3-8b)

00s (N3 X1) (05 CH3,X1)  (ps (M3, %)
Thus, Equation (3-7) becomes

[Tnle [C]T[\T:] (3-9a)
[%]= [C]—T[ Tn] (3-90)

¥
n

-

§'

X1

Figure (I1I-1b) Curvilinear Equilibrium Element

* k) - e
where [Y,] is the projections of the vectors Y P Tn: and )5
on the Cartesian coordinate system (X4,X;,X3 axes)

(See Figure (I11-1b)) .




.Y, ~ 5 ~ 3
X ¥
Y Sniz Vnns
N %k ~ % ~
Untt Yz Nnzs

~ % % o%
LVnu Yh3z V—H%J

1)

[Tn]
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(3-9c)

~
In determining the relation between matrix [V}r] and [V}f]

one obtains

o i S ¥ = , P ¥ T
Ynt = Nnm U1 + Unaly + Vs L3
— X ¥ = % T b S
Un = Vna L4 + Tnzg tz + Tnas b3
= % = ¥ = * =
n» = Vr’lksl 4y + Tnaz 2 + Unaz Ls

In matrix forms, the latter equation becomes

= 4 ™ X * % 1 [z

Y1 Vnu Yoz nni ( U4

=% ¥ X ¥ ¥

Nnz ¢ = Tna Tz Vhw [§ L2

=% % X X v

\'n3 \ Ynat nzz  Thnas ] (s
e

{if\n*}: [\Tn*] { ?}

Analogously for the curvilinear coordinate

] "~y % o & ¥
Tm Tt Une  Unis Ly
= 1 N ~ g N oy X
Ym = | Ypu Ynn  VUnn is
= ~x ~ox ~x ¥
VV\; L Tﬂal Vm‘l VH”_J Ly

{int= [Fa {7}
(Wi} = [ {0

According to Equation (1-12), it follows that
(W11} = [V ITATHE)
o0 9] = [f(AT

Then,

(3-10a)

(3-10Db)

(3-10c)

(3-104)

(3-10e)

(3-10f)
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3.2 Transformation of Stress Components Under Change

of Coordinate System

Consider another rectangular system X{,X{J x{ y
the directions of whose axes relative to the axes of the first
system X1, Xz, X; are given by [N].
Therefore, it follows from Equation (2-12b)

{w} =[n]{w) s
{V\:} o [A]T{”T} (3-11b)

According from Equation (3-6Db)

{wi} = [V,;]Tiw:'} (3-11c)
] {w) = (W1 AT i)
{Tm} = (AT AT i (3-110)
Comparing Equations (3-11d) and (3-6b), one obtains
(W] = AV TIAT
or [To']T= [MT[\T,*]T[AJ (3-1le)

It will be shown later in this section that

LHICR (3-12)

Thus Equation (3-11) is rewritten as follows:

.
[vo1= [AT [T 1[A] (3-13)
Comparing (3-13) with (2-14) one can see that the transformation

of the stress components under a change of axes is similar to

that of the strain [E],
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For this reason, the series of results proved in the preceding
chapter for the strain components are immediately asserted
also for the stress components. Thus the principal normal
stresses ‘Qf,V{,Qf (the extremal values of the normallstresses
at the point M*) and the principal axes of the state of

stress (the directions of the normals to the axes on which

p_#
those V},‘ﬁ,‘l’: act) are determined as follows:

according to Equation (3-6c)

{\T:} = [‘T:H”*} o \T?[I]{Vl*} (3-1ba)
or ).[V:J_ V?[I”{Y‘*} = {O} ' (3-1L4b)
For the non-zero value of {vf} :
N']-¥TI1] =o (3-1bc)
which yields the characteristic equation of matrix

which is solved directly for the eigen-values. The general

form of Equation (3-1l4c)

(79 - e (vT+ ¢, - 0= O o

where Cs = Vi + Ty + s = Vit Vo + T (3-15a)
Co= VnVpt+ WiTay — Vi = Vs — Vis

B IR (3-150
T Vo2 Vo + 2 W:W:Tz*; - Vi Vs - TZ;_V};"Z— V:a Vt{zz
‘T1PTzP Tsr . Lol

)
Q
1

1}
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3.3 Conditions for Equilibrium of an Elementary

Volume Isolated from a Deformed Body

X,

=l
=)

Ox
N

Figure (ITI-2) Equilibrium of an Elementary Volume

From a deformed body, the static equilibrium

equation of an elementary volume is written in the form

f/ B dv* +//§f‘,’f ds'= o | (1o16)

= %
where Fx = the mean value of the specific body force
(Body force pen unit volume)
S
Uy = the stress on the surface area

Vs

Nn*= the unit vector normal to the surface area

(as shown in Figure (1I1-2)),

From the definition of "Guass Theorem"

///V;: ”} ds' = ///Vﬁ” dv' (3-17)




where V]t = [V’:]
ni= At o= AN
¥ Tr X
Vjiyj = {v} V]
Consider [ T, ds* by mean of "CAUCHY EQUATION"

% * ¥ % X
Sl ds = [[vn as (3-182)
*
where “j = unit vector normal to the surface area which
pcnd,
‘Tn act.

According to "Gauss Theorem”

//Vj*i njds’ = ///ﬁn,j dv’ (3-18b)

Thus Equation (3-16) is rewritten as

//‘/(F’:t)L d\/* +///TJ:J V' = 0. (3-19a)
% 5

* * X )
[[ [+ o) v = G
X " _
Njisj + (F" )i = 0. (3-19¢)
or ]
AT, A% A X
X’ Xy axy T =0
RS y
"_V'n_ + m_‘ﬁi + /lﬂ'__% -+ Fx’fl. = 0 (3-194)
X{ OXr  DXs
TR + OB + P% +FY— o
Xy Xy X3

Matrix form of Equation (3-19d) becomes

AT + AR =Y (3-20)




r ‘ .

where n_ F;
DXy

({2t 5 {B}=q™

V}“ DX; A ¥

) x3
nXs

| Equation (3-20) is the equation of equilibrium for every

point in the deformed body. 1In accordance with the Figure IT1-2
and by using the indicial tensor notations and also the

permutation symbol (3rd order tensor), it is shown that

///(?x RV = ///ejjh Xj (F)e AV (3-21a)

[[(FxT)ds’ = [[€ie x5 (W)eds’ (3-21b)
where éf\l'h = 1 if [ij # R
Eijk = O it C:j,orj=k)ork=i
Erje = -1 if  (,j,k are not in order, i.e.,
lkj etc.

According to the "CAUCHY EQUATION", Equation (3-21b) is

rewritten in this form

Y X
[[(xT2) ds* = //GIJ‘k Xi Vi np ds* (3-21c)
By using "Guass Theorem," one obtains
Py — X ¥ *
//(rXVn*) ds* =///(&|‘jk XJng))IdV
X * ¥
= [/ i XG Tk + Eije X Tinyn) AV (3-214)

Now consider the following term,

_ T
G = 1973 1) (3-210)




Caxt aXa gt

/'b_x( 0 Xa* E—X;
Rxf axyt  ox*
ax* Pt X
RXs X3 s
L DXT x> oXs

X
Xj,l -

89

%
The off diagonal terms of X;,l are equal to zero. Thus,

Fquation (3-2le) is rewritten as follow

S - B
%
X =10 1 0
S < B
= [I] = Bt

where %j!; = KRONECKER DELTA
if j:ﬂ %jf. = 1
jEL Sl =0

Equation (3-21d) is rewritten as follow

/:/(?xﬁ“,,*)olsg_///(efjk%ﬂ Wik + Eik Xj W:,JL) N
:///(Gijkﬂ’;k + Eij X; v}:,‘) dv*,

(3.211)

(3-21g)

In accordance with the Figure(III-ZL the static equilibrium

Equation (3-16) is written in the form

//('Fx %n*) ds*-i-f//(?x?x*)d\/* w £ a

(3-22a)

Substuting Equations (3-2la), (3-21g) into Equation (3-22a)

the equilibrium equation takes the form

X X ¥
f//(éu“ “]k*‘égkvazk)ﬁ Eijkx](Fr) dV' = O »

(3-22b)
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R vl * X
///{ €1j Wik €1jX] (Vi + CFx)k)} dy: =.,0% (3-22¢)
In accordance with Equation (3-19¢), the second term of the
left-hand side of Equation (3-22c¢) is equal to zero, thus,
Equation (3-22c) is rewritten as follow
¥ ¥
///'eidwjk dv = O {3uidd)
X
e‘d“‘ ‘]‘Jk = O . (3-22e)
For the value of (=1.
X X ¥ ¥
6—1jk Tik = €Euk Tk + Eizk ok + €431 Tk
X ¥
a €T + €N + €Tis + €453
+6132V';; + é|;3Va§ . (3-22f1)
By using the properties of "Permutation symbol"”, Equation
(3-22f) becomes
¥ ¥ .
é:iJk Uik = Yy — Véf =P (3-22¢)
Vs = U (3-22h)
Analogously
* X ‘
V’h = q}.l (3-22h)
v oW | i
Thus, it is concluded that
* ¥
V—U = Vi (3-221i)

[T,*] = [V,*JT (3-225)
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3.4 Transformation of the Equation of Equilibrium of

an Element of Volume to the Cartesian Coordinates

of the Points of the Body Before its Deformation

In passing from differentiation with respect
I { %
to X1, X2, X3 to differentiation with respect to X1, X2,X3

it follows, by using the definition of c¢hain-rule, that

v = [K]T{V} (3-23a)

where [ X X (X4 w
nxF axt  oxf

I

n X; (X3 X3
L oxt o oxt X3
Also by use of the chain-rule, one obtains

fdx} = [Rel{dX (3-23¢)

In accordance with Equation (1-2), it follows that

(R1=[3] (5-230)
[«] _[co:[J]] Wi
=I5 o iy
T
-1
Then Equation (3-23a) is written in the form

["‘]T (3-24a)

1V <A
{ { } [+] (3-24b)

[IEi]

*
I. Note {V} does not operate on %:]J—‘




Therefore,Equation (3-20) is rewritten as follow
T + (81T - ol
ST« 1EWT + (NIET = fof] (3-25)

The combination of matrix [«] and [ Y] has a definite

physical meaning which is interpretable by the following

considerations ;

A X

%) =) o xz

V] b

Ly 5
M dxy
X3
Before Deformation After Deformation

Figure (I1I-3) Geometry of Undeformed and

Deformed Elements

Supposing that a rectangular area perpendicular to X; - axis
and with sides dx1,dxzis isolated from the body before the
deformation. As a result of the deformation, this area
becomes a parallelogram, the directions of whose sides are
given by T},tﬁ (Equation (1-13b)). Consequently, the unit
vector in the direction of the normal to the given area is

- found from the equation

92
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':’* ~ ~ . Ve
(Lq X i) = aFsin(i5,T) (3-26a)
where
¥ y v ~x : T¥ w7
Lp = CoSClqg,Xe) Ly t Cos(LyyXa) iy + COSCig, %) (5
% . B g v o -
ba = 008Uz, X1 b+ €03 (i3, Xadla+ 0osCIX, xa) 0a
N ¥ , )
s = the unit vector 1n the direction of the normal

to the plane of , omd La-

[~ -~ - -

14

L1 Lg L3

~ ~x ¥ ¥
(’{'*x o Cos CinyXe)  CoSCli,Xa)  COS(igy X3)
1 —

et ~x
Cos (ix)  tos ClarXa) 105 (14, Xs)

N
o Ty T =
(G X ig)= (CRaC¥s -Cxalrs) U4 + (Crslin-— CnCEs) i
+(eneg - CI1C?1)E3 (3-26b)
where
_ LTy > Cos('ff,Xa) » Cih 3 cOsC"C.‘,x,) , Cis=> cosci'f,x_;)) ele.
Analogously

(i3 x Lf) = (C%’;C’(;— CT2€%3) Ly + (€7 Cxs = L5 CT3) (s

+ (Csienm - tes) (s (3-260)
it 1 - o~ ~ o
P X th)= (€335~ Ci3C32) () + (C51 L — Cye3) (4
L
+ (L2183~ C56n) 1y (3-26d)

In matrix forms, these equations become

-
{%x &} = [eorral] i1} (3-260)
Where | 54 L oy
{Tox Ty = x|
{3 X L1

Py e
&:X Ca




In accordance with Equation (3-26a), it follows that

vx ., x : %
X lgy = [sin] 'y (3-27a)
where
¢ N T
S.ln(‘a‘; L:) @ O
. . ';, P
[sin] = o sin(i3,iH) o (3-27v)
| Py
ny
{.ﬁ*} = ﬁf = unit vectors normal to the
~ et et e o e ¥
3 planes L;—L;J ly- Ly , by=\a
respectively. (3-27¢)

By the comparison of the Equations (3-27a) and (3-26e),

one obtains

[sfw'.l%?f*j.—. [eoF[A]]Tﬁi} ' (3-28)

Referring to Figure(I1I-3), the following equations hold:

S3 = dx;dx, = area of the rectangular
' before deformation
X " Nx
S5 = (1+EDU+ED) dxydxg sin (U5 Th)
where 3; = area of the parallelogram
after deformation.
Thus, .
5! . o Y
-53-3 = (A+ENU+E,) sin (T, 1%) (3-29a)
Analogously
% oy Y
_6;2. = (1+E1)(4+ Ea) s\n (_La)(uf) (3‘29b)
OS2
of

ST = (+E)U+Es) sin (U TR (3-29¢)
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In matrix form, the latter equations become

[5’}5] = [eoF[1+E]][Sin] (3-294)
where — " m
5V5~1 0 O
X
) O 55/53
-

Uy Lo ~x

é g a x % %
Consider, the unit vectors normal to 41— Lly , Ly—Llj, WL A

planes, they are expressed as follows:

TE = 00s GIF, %) U1 + €05 (A Xa) Ly + 005 (A, Xs> T
o= sl it ws(i,wh + wsBhxn iy  (3-302)
Y = 005 (W, %) Ta+ 008 (Hf, x) Ta+ 008 (S, %20 Es.
Thus, 7
TAUERIRTE; (3-30b)
where

f N* B ~N %
4 005 (A% oS (MHX1)  ps (ﬁ'a; X4)

B =< BT 5 [O7 =] s (Rox) cos(RExd o5 (Y, %)

~ ~
ng 005 (7, x9)  Cos(s%s) 0os g, 53 |

b—

L
Substituting Equation (3-30b) into Equation (3-28), and

combining gives

[siMILCT 5t

1l

[COF[A]]TqE} (3-31a)

LS

or

- [sin] [c]T [ coF [A]]T (3-31b)

1l
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Multiplying both sides by [COF[1+E]] gives
[cort+eqsinitel = [eoF [1+E1][cor[AT]T

According to Equation (1-18), the above equation is rewritten

in the form

[cor[+E]] [5inILC]" = [«] (3-31¢)
Again according to Equation (3-29d), it is rewritten as
(571017 = [«] (3-314d)

Substituting Equation (3-31d).into the Equation (3-25),

one obtains

(WY L1l TV + (i =10} ©-32a)

By substituting [q‘o“] from Equation (3-9b) gives

v [ %I Ted [wil+ L3N8 E = S0} (3-32b)

or

{v}TIS/Zl (W] + [[3{RT=90}7  (3-320)

Equation (3-32c) is assumed by Equation (3-20) if the positions
of the points of the deformed body are determined not by the
Cartesian coordinates X:,X:,X; but by the curvilinear
coordinates %:,%:,'ig (which are the Cartesian co-ordinates
for the body in its initial state). Thus, in changing matrix
[W]to the matrix [ﬁ%*](in the direction ?&,Tﬁ,Ag ) by

using Equation (3-10f) gives

{WIBIRAI AT+ T =" sz
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By setting up matrix [Vh}
[Vl = [%%][W ][] (3-33)

where

[Vh] defined by Equation (3-33) are not, strictly .
speaking, stresses. They can be called stresses
referred to the dimensions of an element of volume
before, not after the deformation.

Thus Equation (3-32d) is rewritten as
(BB I (01 1NRY= o) ot
EV}T[W][J]T L3]I §F5Y = $ob’ (3-340)

Equation (3-34b) comprises the equations of equilibrium of

the nonlinear theory (Case 1).

3.5 Simplification of the Equations of Equilibrium in

the Case of Small Elongations and Shears (Case 2)

The ratios %ﬁ ,ii 5*, y* differ from unity only
by magnitudes of the same order athhe elongations and shears,
Hence, they are set equal to unity for small deformations and
also the conditions E,.,3<K 41 , the Equation (3-32c) assumes

the form

1R

T
§0§ (3-35a)

T _ x PR
v (W] +  1fxS
and Equation (3-32d) changes to
~ % 1 T
{3 ITn] (AT + {&Y = $of (3-35D)
In addition, neglecting the relative elongations Eq,ElaEa

in comparison with unity, Equation (3-33) is rewritten as

[Vel = [T41 (3-36)




Equation (3-34b) is rewritten as

(VY LERI[T]+ (R8T = fol”

. .
For convenience, matrix [Yn]is replaced by [Vj

where
L IR R PP
[Vl= |V W Vas | °
Vo Wz Va3

Thus, Equation (3-37a) is rewritten in the form

AN M R LI
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(3-372a)

(3-37b)

A diagram is used to clarify the geometrical nature of the

simplifications of these equations, 1Isolate a rectangular

parallelopiped, with edges dx1,0|x,,dx3parallel to the X4,X,,%

Figure(IT1-4) Rectangular Parallelopiped

Before and After Deformation

I



As a result of the deformation, this rectangular
parallelopiped becomes an oblique one, with edges («+E4)dx1,
(1+E) A%, ,(1+E;)dx, forming the angles (T, dn), (T~ da),(T,~ du)

However, the angles of rotation are large relative
to the shears $, Pig, Prsthen P, D, &, may be neglected in
comparison with the former in projecting the forces. This

means that the examined parallelopiped can also be represented

by a rectangular one after deformation (Figure (I1I1-4)).
Moreover, the smallness of the elongations and shears allows
one to ignore distinctions between its dimensions before and
after deformation, It is thus permissible to represent the
parallelopiped after the deformation, as equal to the
paparallelopiped before the deformation, but differing from
it (geometrically) only in its position in space., On the

4 ¥ "",r Ny
basis of these remarks, (,,(’, [; should be considered as

a9
mitually perpendicular (See Figure (III-4))

Summarizing, Equation (3-37b) is derived by
assuming that in studying the equilibrium of an infinitesimal
volume element of the body, one needs only take the rotation
of that element into account while its deformation may be
neglected (the equilibrium condition for an infinitesimal

volume element, valid only under small relative deformation

and arbitary rotations).
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3.6 Case 3, Simplification of the Equilibrium

Equations for small Rotations

If the angles of rotation are small compared to
unity, then, by (section 2.9), the parameters [€] differs
from the strain components [E] only by quantities of the
same order as the squares of the angles of rotation. Thus,

Equations (3-37b) are simplified by neglecting the strains

and the squares of the angles of rotation as compared to
the first powers of the angle of rotation,
Consider matrix [ J]

[(J1= [1]1+[e]l+[w] (3-38a)
By the above remarks, it reduces to
[31~ [1]+[w] (3-38b)

Thus, Equation (3-37b) is rewritten as

VIV ~[wl] + (= 037 (3-30m)
(SYIvl- @]+ {RY = o} 3-3m)

3.7 Case 4, Transition to the Classical Equations of

Equilibrium

The next step in the simplifying process is to
assume that the angles of rotation are so small that the terms
in Equation (3-39b) which contain them as factors are neglected
in comparison with the terms which do not.

Equation (3-39b) then reduces to

T

{V}TW] + S(FXST = Yol - (3-40a)
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Equation (3-40a) is derived by neglecting the rotations of
volume element when all the forces acting on it are projected,
: A & x Yy e 3
i.e., by identifying the direction iy, i3 , L} with X1,%X2, %3
In this case, the stress components [V]in the

directions of the local trihedral of the curvilinear co-ordinate

’-\'* ~x ':"* " X
system (q,(,,l3 are identical with [Vo'] the stress components

along the X, X,-,X,- axes., Hence Equation (3-40a) are also

be written in the form

T T
(VI + {547 = o1 PR
which combined with the Equation (3-22j) of the form
i x
(W] = [W7]

are the conditions of equilibrium for a volume element in

the classical theory of elasticity.

3.8 Transition to Curvilinear Coordinates

In the preceding discussion the points of the body
are referred to a Cartesian coordinate system. Such a coordinate
system is convenient for bodies which are bounded by mutually
perpendicular planes, but is much less convenient if the body
is bounded by curved surfaces. Hence the curvilinear coordinates
Should always be selected in such a way that the bounding
Surfaces of the body should at the same time be also coordinate
Surfaces, This will result in an especially simple formulation

of the boundary conditions, 1In this connection a discussion
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of the conditions of equilibrium for a body whose points
are referred to an arbitary orthogonal curvilinear coordinate
system o, X, ,x; follows.

To shorten the calculations involved in this
transformation it has been already noted, that the equations
of equilibrium of a volume element in the nonlinear theory

are similar in appearance to the corresponding equations of

the classical theory.
In the nonlinear theory the conditions of equilibrium
for an element referred to Cartesian coordinates reduce to

the Equation (3-32d)

T

T .x ~ g n X
(I [ T ) T+ DR = S} (3-320)
thus, in the linear theory, assumes the form
T T 5
iVIIV] + iR} = 10} (3-40a)
thus

[v14=[Z][Tn]l#e] 9] (3-41)
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Before Deformation After Deformation

Figure(I1T7-5) Curvilinear Coordinate System

If the points of the body are referred to curvilinear

. coordinates coordinates (Chapter I1II, Section 2), an infinite-
simal volume element is isolated which is bounded by the six
coordinate surfaces of the curvilinear system chosen, As a
result of the deformation, this element changes its position
in space (due to displacement and rotation) and, moreover,
changes its dimensions and form, 1Its edges, initially equal
to RyHy dets , Ry Hy doa  , |y HyOas , now become

kq/ Hq C'H‘E.q) do(1 5 h,{ Ha C1+Eu(l) d"z » Pa/ H3 1+ Exs) dola
where Rj, ki, ks are the unit vectors in the directions of
the linear elements which, in the unstrained state, coincided
with the vectors Rt,hz,hs.‘
The cosines of the angles between the trihedrals
Ris hz) ks and ki, Ri, Rk; are given by Equation (1-12) in
Which the values of‘the parameters matrix [g] and [@]

are determined from Equations (2-71) and (2-72),
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In analogy with the resolution of the stresses actinz on
the faces of an element in the directions L4, L5 in
the Cartesian system, now resolving the stresses acting on

the new element in the directions R{ , Ry, R; .

1KY = (A3 k]

Thus ,

(3-42)
where
kR’ Ry
£ = et ;5 {k)=]
ks R

In books on the classical theory of elasticity (See, é.g.,
Love's Mathematical Théory of Flasticity, P, 90) it is proved
that, in an orthogonal curvilinear coordinate system,
Equation (3-40a) is replaced by the following three scalar

equations:

1 { (+ﬁ&gq;1)4-@ TR i 0 HaHo ¥, }+ @ Hq Y,
T — 1 1 Velp) 109 Vol3) 7 T Vet |2
HqHaHy L4 ( ) ;) ( ) HiHa /oty
+1__. {D_‘F_"’ V:ua - .4__ /O_V' Vxn . '1 MH» va(33 + E(q = O

h‘le) (00(3 LL, (D o HyH3 oda

1 1%y 0(3.1) 272 Nolyy

H1H;H3 {@0(1 % U) Hz 3 ’30‘3
p 1 OH Vo =1 _@H3 Tigy — 1 @M Ty + Faa = O (3-43)

HyHq 1ol HgHB 0Ky HyH1 0Ky

_1_{@ Hy Vas) + 2 ((HaHy T, 2. (hyHy Y 83 Yy
H1H.1H3 CHs M Tt ( - ’("5)+’0"3( ke 35) H3H1 acy !
+'L /.‘_)_H_J VD‘S& o ('O‘H4 V—p(” . ——-4 m— qm"z’)_ + F0(5 = 0

H3Hy @42 H3Hq n &3 gta N
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Here

Hgyt,ﬁj are the Lame coefficients Equation (2-63b)

E“;EQJEB are the projections of the specific body force

on the directions «4,x,,«;
S S S |
Tdbmhlmgare the stresses on the areas perpendicular to

7 s s ’ i P
the dihedrals [ Ry, k3] , [ks, ki1, [k, k]
-—t
Vi, Var2 Sy AT€ the components of the stress Yy

along k,) k kg

ol
—
Boi q;m)‘q;”are the componen*s of the stress Vxa
along k,, kg, kg
—
Wesy, s Vags re the components of the stress Vus
along Xk,, kKa, k3.
In the linear theory no distinction is made between k,’k‘,kj
and kﬂ,k:,k;, Equation (3-43) are the equations of
equilibrium of the linear theory referred to the orthogonal

curvilinear coordinatesoz”x“e(a "

Hence,

{Vy = [T ]1kS (3-bba)

where

et Txiz Vs
[Tx] =| Vau Vusa Vwas (3-LUb)
Tws Vxsa Vass |
Vot
1% = 1 (3-btc)

V3
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Turning now to the nonlinear theory and taking into account

the similarity of Equation (3-41), it may be concluded that

(V] =[%1(T5][A] - (3-15)

where

_ Ve Ve Vg
i 4 adlf < ~ ¥ ~
[Vﬁ] = | Vau Vann .5,

~ ~ X ~
\_V&il Vo2 ﬂ;ﬁgj

N -
[Vk]' the projections of the stresses V}1)'Wh1)'Vha

on ki k; (after deformation).

In accordance with Equation (1-14), Equation (3-45) becomes

(V.1 = [*51 [T = 11017 (3-46)
Penoting

(v = [P [T ] =] (3-47)
where

-

. -Tﬁ1 Viu. Vil
(W] = | vl o 2
T T T
Then Equation (3-46) becomes
[w]= [W113] (3-48a)

[(W]= [wiIltr]+[e]- [w]] (3-148b)

In order to transform Equation (3-43) into the equations of

’)

the nonlinear theory, besides replacing the Equation (3-48a),

it is also necessary to replace Ekm,fiz,Fia respectively, by

X  x .
_V_Fol1)lFo(1

VRS
Vi Vv v

)
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%

L SR
where E@,Eqaﬁaare the projections on k1’k1,k3 of the specific

body forces relative to the strained body, while

vX
A= BF =T
where A = the volume increment,

The above rules for transforming the system
(Equation (3-34b)) to the orthogonal curvilinear coordinates
are established without neglecting any terms (Case 1).
Hence substitution of Equation (3-48a) into Equation(3-43)
will make the latter correspond precisely to Equation (3-34D).
For Case 2, if the elongations and shears are negligibly
small compared to unity, Equation (3-48a) is simplified
by identifying the matrix [R]‘Z]with the matrix [”\:J/'Ij(snction 3.5).,
For Case 3, in addition, the angles of rotation are

small compared to unity, Equation (3-48) becomes

[w]= [T (1] - [w]] (3-49)

Finally Case L4, the angles of rotation are small quantities
of the same order of magnitudes as the strain components,
the products of the stresses by the angles of rotation are

neglected in Equation (3-49), The result is

[V = [Tx] e

In this case, Equation (3-43) become identical with the
.equations of equilibrium of the linear theory referred to

the orthogonal curvilinear coordinates mg,déjpgo
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3.9 Summary

Case 1 General Nonlinear Equilibrium Equations

Y %1 [Fe] Lire)[T] + ISR = $o}

WVIYI[I] + ITNERST = fo}

where % A T
[v] = [37:1[Tn ][ J]
Case 2 Small Deformatidn
The elongations and shear parameters are small in

comparison to unity:

Thus,
E1,a,3<<1 3 [555]“[11 ! I[T1]~1.
Then,
[¥]=[TW]
and

eI+ (R} o~ o}

Case 3 Small Deformations and Small Angles of Rotation
In addition to the elongations and shear parameters
the rotation angles are small in comparison to unity:

ithus ,

[ 3] = [1]+[«]
JEFT % 1] Rl

Noting the equation of Case 2

(PYIvI0a + {E = {0

or
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The following reduction occurs
X T
(VVINI[L2]-[w]] + §5) = §0}

g VT Ov] - [VI[w]] + §F7 = fo}”

Case 4 Transition to the Classical Equations of Equilibrium

Neclecting [V] [w] compared to [V] » in Case 3 it
follows that

V3Nl +iRgT ¥ to)
and noting Equations (3-40a) and (3-20)
iVl ~ $v')T
V]~ [V]
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CHAPTER IV
STRAIN ENERGY, BOUNDARY CONDITIONS,
STRESS-STRAIN LAW

4,1 Strain Energy

The system of differential equations derived
in the last chapter, which expresses the conditions of
body in a state of strain, contains more unknowns than
equations, Indeed, it consists of six Equations (3-34b);
(3-22j) containing twelve unknowns (nine stresses and
three displacement components),

Hence, the problem of the equilibrium of a
deformed solid body remains indeterminate until six
supplementary equations are established. These relate the
stregs components to the displacement components and express
the law according to which the material of the given body
resists various forms of deformation. But at the present
time, the relation between stresses and strains, which
differs for different materials, is established mainly by
experiment, Some general properties inherent in this
relation can, however, be explained theoretically.

It is assumed that the process of deformation
is isothermal and that the work expended on changing the
volume and form of an arbitary infinitesimal rectangular
Parallelopiped isolated from the body is independent of
the manner in which- the transition from the initial state

of this element to the strained state is realized.
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In other words, the role of the dissipative
(non conservative) forces in the process of interaction
of the particles of the body undergoing deformation is
negligible compared to the role of the conservative force.

A body which satisfies this assumption must
return to its initial dimensions and form after the load
on it is removed (ideally elastic),

The work required to deform an infinitesimal
parallelopiped of an elastic body is expressed in theform

AW = Q (Bu,Eu0,85, E 00, B, 23) AX, X, AX (4-1)
The form of this function depends on the physical properties
of the given material, but it independent of the dimensions
and shape of the body, On the other hand, the strain components
always expressable in terms of the three principal strain
components é: ,ei ,ei and the direction cosines of the principal
axes of strain ez)e?z)ef; with respect to the X1 Xy, X5 axes,

Here, the direction cosines are regarded as
functions of three independent quantities, e.g., the Euler
angles 6, ¢ and ¢ which determine the orientation of the
trihedral ef,ez,eﬂ relative to the trihedral x,,x, x,.
Hence, Equation (4-1) is also rewritten as

dw = Q (el €], €l 0, &, ) dx,dx,dx, (4-2)
Equation (4-2) as well as Equation (4-1) assumes that the
body reacts to deformations differently in different
directions, i.e,, it assumes that the material of the body

is an isotropic, If the physical properties of the body are
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the same in all directions, the work expended in deforming

a volume element would not depend on quantities which

vary with a rotation of the coordinate axes, but would be
a function only the invariant quantities. It follows | |
that for an isotropic body

dw = Q(ef, ef, ,c-;i) dxy,dx, , dX, (4-3)
The three independent invariants, 65,63;£§are of value
because they have a simple physical meaning, especially 1
for small deformations, Mathematically, however, they are
inconvenient because, in order to express them in terms
of the strain components, the cubic Equation (2-18Db)
would have to be solved.

In view of this, it is more expendient to express
the work of deformation on an element of an isotropic
body as a function of the three coefficients of Equation
(2-18b) (aq,,04,do) rather than in terms of the roots by
this equation., Then the work done in deforming an elementary
parallelopiped of an isotropic body is most conveniently
written in the form

dw = @ (a2, 04,00 0x,dx, dx (b-1)
It follows that the work done in deforming the whole body is

Wim ///@ (02, 01, 00) dxy dx, dxs e |

where the integration must be extended over the whole volume
of the body in its UNSTRAINED STATE,
@((h,OhCh)= The work of deformation or the strain energy
referred to a unit volume of the body in it

unstrained (specific strain energy).
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W
dlx dx,dx.= dv

"

Total work done in deforming the whole body

The volume of an infinitesimal element of

the body before deformation.

4.2 The Principle of Virtual Displacements

Assigning to the displacements Ug (X1,X3,X3) , Uz (X4,X,5,%3)

Uy (X1,%,,%,) Virtual increments §u,,3u, Bu; respectively,
which are regarded as arbitary continuous functions of x,,X,,
X3 equal to zero at those points where the values of the
displacements are given, then the strain energy changes
by the amount O W and this must be equal to the work done
by all the exterior forces applied to the body in effecting
the above virtual displacement.
Hence, it follows that

dW = ¥R, + 8R, (4-6a)

where

3 R4 = The virtual work due to body forces
Referring to Equation (3-16)

QR1 = f//[ Far SUat By QU+ Fies S uig fdx1axzdx3 (4-6b)
where ‘V* = Volume element of the str;;ned body.
Note, the integration in Equation (4-6b) must be extended
over the body in its initial state,

BRZ = The virtual work of the surface forces,

= /[[{;1 8u1+f,f18uz+ fxﬁ §us] g_f dA (b-6c)

whererﬁz,jﬁ,Agare the components along the X;-X;~ Xj-
axes of the force acting on a unit area of the surface

of the deformed body.
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X
22 = The ratio of the elements of area in the
v
terminal and initial states.
dA = Area of a surface element in the initial

state.

All the volume and surface integrals appearing

in Equations (4-6b) and (4-6c¢c) are now to be extended over
the limits of the body in the unstrained state (and not in
the strained state) is a great convenience, since the limits
of integration are now independent of any unknown guantities
For convenience, Equation (4-6b), (4-6c) are rewritten by

using the definition of TRACE (Apprendix II) as follow:

0%, :///Trace[iS(UJ{Ff}]T][JJ\dx1dxzdx3 (4-72a)
822=/fTrace[{Su}{{§f}T] gé dA (4-7Db)

where Qg , ﬁﬁ . 6;
{8y ={5up ;5 §RF={%% ;{gx}= fa
gu3 Fx§ «;’;

4,3 Derivation of the Differential Equations of

Equilibrium of a Deformed Isotropic Body from

the Principle of Virtual Displacements,

On the assumption that the body is homogeneous
and isotropic and that the dissipative forces play a

neglible role in the deformation, then

BW = 8[//@.(01)01)0030‘& dxz dxs
:///S@(a“a“ Qo) dxs Ol txs - (4-8)
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On the other hand, by using Chain-Rule and definition of TRACE

S L@(a’-;abao)]"‘ @ 8511 +/D_@_ 8222"‘?@ 8&33 +@£8§(7_
D € RNEq €

@ 33 ¢
+ 20 VE3+ PD PEaz
s NE s MEq3
= Tmce[[f;—g 1 [SE]J (4-9a)
where - o=
ed &  d
ey ez g3
20 ] nd 00 @
REL = | NEn  MEn s (4-9D)
R 0% 0D
fOE,I?, m&;; MEs3
and o J_
%E'ﬁ ;-. SEH %8513
[SE] . 4:i,SEIZ St %gﬁaa (43%5)
I 3 8E; 18¢eas 856&J

According to Equation (2-4b)
2[E] = [D] +[D:IT+[Djr (D]
2[8%] = [8D]+[$0]+ [3D1[0] + [DI[3D]

= [SD]T[[I] +[D]] + [[I]+[D]TJ[8D]
= [30]TJ] + [JTT8D]

I

thus,
[5E] = z (8P [IT1+ £ [I1[8D] (4-10)

Accordance with Equation (1-4a)

—

[ du  du s
[D] =| dv du dy (4-11a)
ds1 dza dy

i
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Introducing K
20 @3 ~d
Ddn ndr  dis
n® 0 (e oo ’ -
[fO_D :[ o ro%zl Aty roda .(u o
Rd ne e
| ©da 0d 3z mdan

it follows from Equation (2-4b) that

2[¢] = [p] +[D]T+ [D]T[D]
or
- 2 Ey € €n
€ 26 Eas

€i3 iy 26y

-
[—2 d"'i' dl%'f‘ dzzi +d§'| g dll" dzl"’ du diat dlldu"’d;;du 3 d|3d5; +dlld13+ dzl d;;+d;.da;
= 2 dzz + dfi T dzzz + da’;. d.z;"' daz +d/zd/3 +d,u d,13+d&dg
SYSMMETRIC sdes + diy +diy +dés
L. —
(4-1lc)

Differentiating both sides of Equation (4-11lc) with respect

to each component of matrix (D) gives

/_J;En_—_'i-}-dqq 3 Rk = O 5/?_5._”:0
Ady dn o dn (4-114)
G_EIZ‘ d1)_ 3 /D_E_m = d|g Y ('0523 - O
ndy ™ dy rdi
By the well-known chain rule
P - 0En 08 | PEn 0T , pEa 0B L 0fxn B
ndy Rdy g, ndy MEyn  ndi PE, dn PEss
PERND WEn G
dy MEj dii MEas (k-1le)
= (+dy P8 4 d,08 44,02 i
(1+dy) PEn 2 7€, 13 PE (4=1171)




Analogously

e amfa@ + (14+0) 2T 4 oy &
€22

odz2 € DEqg
28~ dy 02 4 dg @_@_ + (1+d33) o
fad% néE 3

0 - (a4dm & L d ro@ di @3

d (1+dmn) n+-lzm&{+ mmag
Rd = (+dd @l 4 mrb dix @3

fde | = |’5+ 12 + ,5/0653
X0

= dsl(b% + daz(ffé +('1+d59) /%%

2 . da (—@ +(4+dzz)@ + Oy 08
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3

(4-111)

fbd,’zl En M€

9% . g, 0D 4 (1+dy) fo@ +d:am§

E 33

D das (CRATN

B0 - dy m@ ot dm("@ + (14 dss) ”@

@daa
Equations (4-11f) becomesin matrix form

(73 2& ¢ | [ 1 [
S50 Giaicos A+ dn diz  dp ool
70 0% @F | _| dy 1+dy dy 20
@Dy Dsy Dy #Ea
08 of 0F dy  dzz A+dys| | 2Z

| @Dy MDs: @Dz | - L e

2] = ([11+I07] [
[52] =[J]0a8 ]

Substituting the value from Equation (4-10)

or

(4-9a), one obtains

d(Bo,,a,,00] = Trace [[oF] [Se]]

ra_c_I ro_@ T
Mg M £|3
e 3

Pey MEx (4-12a)
me &

(4-12D)

(4=12c)

into Equation




3 [BCar0n00] = Trace (BB 41301191 +4 [31[301]
= Trmee [%[%} [%D]T[J]]*mecc[% 'EQHJJT[SD]}
- Trace [ 4 (eTTT1[ 3 ]]
+ Tiae [ (30) [7128]]

"
= Trace [[3D7[T1[%2]] e

Noting Equation (4-12c¢) gives

S8 (a5,04,00] = Trace [ [ %Dﬂj%% s

Since [3D] = [ s} i%u,}T]T ’ \ (4-13¢)

it follows that#*

3[@(02,01,00)] = Trace [HVH%U}T] [%% ]]

which after tedious computation is shown as equal to

= Trace [ WTRE 1] Tonee [0 {VHI8T} ] (t-230)

Consider Guass's Theorem¥*

[ Free [0 i1 oute = [[Taee 555 Tds aeze)

where
ib} = any vector in the X; X, X coordinate
{n} = Unit Vector normal to surface area

no= Cos (1, X frr Gos(nsz)f,ﬁ aoscn)xe,)_g (4-131)

S

(#) See appendix II for all the definition of TRACE
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Substitute all the values into Equation (4-8)

8w = [ [ Trace (17511095 T38 ] sty - [ Tmee {55 {rTT20T3] e

=f[m@e[[’(%%]_r{3u}§n}'r] dA -[f[Tmce[{Su}i{v}T[%%ﬂ] dx1dx14x3

= f[Trace [{Su}{ﬂﬂmi lda
—/[[Tmce {%U}{{V}[ ]dequzdx_a

In accordance with Equation (4-6a)
3Ry +3R.—gwW = O (4-14D)
substituting the values of%24,%£2andgvv. then Equation (4-14b)

(4-1ba)

is rewritten as

//Tmee [{8u}{Z {52‘} W[r,,—i +] da
i+ /[/Trace [{B%{ICHI{R’}l ?V}T%%]T}]dy -0 (k=1lc)

Since, the principle of virtual displacements, Equation (4-lic)
must be satisfied for arbitary values of Juy,3u,,Qu; » the

following equation must hold at all interior points of the body

(VIR + IR} = {o} (4-15)

together with the equation on all surface points of the body.

5"{f } ] = {0}’ (4-15)

According to Equation (4 12¢), then Equation (4-15a) is

written in the form

AUV R LT T+ 4R = foT (oo




L,4 The Relation between Stress and Strain Components.
Comparing Equation (4-15c) with Equations (3-34b).
both express the conditions of equilibrium of a volume
element of the deformed body which initially is a
rectangular parallelopiped with edges dx1,dxz)dx3para11el
to the X;,xi x;y axes., It is seen that one of these
1
gystems are transformed into the other by setting
17
[el= [32] (4-16)
It follows immediately from the above equation that
T
[Tr] = [Vk] (4-17a)
T
since [%g = [%%] (L-17D)
Consider the well-known chain rule of mutivariate calculus
AL _ 80 ity ol [adi] P [
ne ] T nRa fb?—]+ 10 G4 [mﬁ i na, [m& } (4-18a)
_ 9 nd [ & ] nd ]
& roaz[ I] MY [I]Q‘L [E][+ mo[COF[E] (4-18b)
where
a,_: Eﬂ - Ezz‘i‘ E33
(b(h}
%) = (k-18c)
| elmal T
2 2 2
Oy = EnBut Enkyt Enby — 1, (B + Ep t+ E43)
[ EntEs ~%htn - lE
[ﬂﬂ =| ~hEe En+ € " Eu
mE
- 1/2 E13 ~1 Eas Eq+ Ean

I

[ag_[I'] . [E” (4-184d)
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Also
{ 2 2. L
Qo = Ey%nntas~ 74(EnEagt E2Ein+ Es3En— Epiatas)
- 5 —
(EaEss-Yatas)  (YEutn—12Entn)  (MEntss-laEuky)
0o | -
IEE] = (Eyss—Ya EDy) QAR ID)
SysMmETRIC. (EnEsa- " Er)
= [corm [e]] (4-18e)
Hence

o] =22 [1]+%2 [0 [e]]+ 35 orle]]  (hea9)

Equation (4-19) is the general statement of relation which
must exist between the stress and strain components, 1In
deriving this equation two assumptions have been used
1. The body is isotropic
2, The dissipative forces due to the
interaction of the particles of the body
are small enough to be neglected in
comparison with the conservative forces,
In conclusion, it should be noted that
Equations (4-9a) and (4-16) imply that Equation (4-8) may be

rewritten as

W =// Trace [[V’R][%Eﬂ dxdx, dxs (4-20)

This equation is a generalization of the analogous expression
of the classical theory of elasticity to the case of

deformations of arbitary magnitude,
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4,5 Boundary Conditions

Equation (4-15b) expresses the conditions which
must be satisfied at those points of the bounding surface
where the surface loading is prescribed but the displacements
are not,

Now consider Equation (3-32c) compared with Equation (4-15a),
it follows that

[%s][va] =[] (4-21a)
[V:]T[%] = [@%] (4-21b)

Substituting Equation (4-21b) above into Equation
(4-15b), it follows that

[_W] [5/5] = g‘ {gﬂ (k-21c)

where PT:]may be expressed in terms of the strain
components, The left-hand side of Equation (4-21c) may
be regarded as functions of the displacements,

After these substitutions have been made,
the given expressions become the mathematical formulation
of the conditions which must be imposed on the displacements
at those points of the bounding surface of the body at

which Ua,uqaua are not given directly.
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4,6 The Simplification of The Derived Equations

in the Case of a Small Deformation,

All the equations that have derived from the
beginning of this chapter are all for Case 1 (general
nonlinear case) which may be simplified for the case of
small deformation as follow:

Case 2, The Case of Small Deformation,

If the deformation is small, its components are

neglected in those equations where they appear together

with terms of order unity with

[¥] = [1] (k-22a)

Yo = |[3) =1 (4-22b)
X
Sn
= = 1 (b-22¢)

Thus, Equations (4-15b), (4-15d) are rewritten as
T, T
(v} [%%][[I]—%[e]—[w]] +{FI} = {o } (4-23a)
(WTind = {4} (4-23D)

Case 3, The Case of Small Deformation and Small Angles
of Rotation,
If the angles of rotation, as well as the strain
components, are small compare to unity, then Equation (4-23a)

are simplified by neglecting [€] in comparison with matrices

(1] ana [w].
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Hence, Equation (4-23a) reduces to

(VI 1[(11-[]] + {7} =
(V18] -~ [2][w]]+ iRy

Case 4 The Transition to the Equation of the Classical Theory

|
A~
Q
——
-

(4-24a)

(u-zub)

I
—_—
O
—

With this degree of accuracy, the only other
simplification possible consists of neglecting the product
of [’,%%] and [w] in comparison with only the matrix [%%] .
So the Equation (4-24b) reduces into

T

{vHige]# iR}~ o} (4-25)
Now representing the function § (92,01,@) as a power series
in the three parameters d.,Q4, Go. No negative powers can
appear in the series, for otherwise the specific strain
energy would tend to infinity for infinitesimal displacements
of the points of the body from their initial position, which
is unacceptable,

Furthermore, if the strain enegy of the body

is to be zero in the initial state (the body to be free of
all stresses), then the series must begin with terms which
contain the strain components to the second power, Under

these conditions, it is written as

2
@(Qz,aq, OO) = A1Q'L+A7_Q1
3
+ B, 0z + B0, + B; o
4
+C1 Q.+ ozaiaqa-cgazaoﬁ-c4af

+ Dy G5+ D, 0201 + Dy G2 Qo+ DaQz05+Ds0io(4=26)
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where
/&j,a = the coefficients of those terms which

contain the strain components to the second

power

Bjad = correspond to the terms containing the
strain components to the third power

C;A = correspond to the terms containing the

strain components to the fourth power,
The series (4-2b) is regarded as the general
expression for the strain energy of an isotropic body which,

in its initial state, is free from any internal forces,

4,7 Hooke's law,

Assuming that the strain components are
infinitely small, then. whatever the relative magnitudes
of the physical constants‘Aj,Bj ,Cj----» their influence is
nullified by the infinitesimal smallness of the strains,
Therefore, only those terms in the series (4-26) which
contain the strain components to the smallest (i,e,, second)
power need be retained,

Thus Equation (4-2b) reduces to

® (92,01,00) = A05 + A, 01 (b-27a)
@Q = 2A1al
02
,aé -— . @ =
Y Az 5 70 - ©
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Equation (4-19) is rewritten as follow

[W]=2A10,[T] + A, [[T]a.-[E]] (4-27D)
or
N1 = 2A4 (Eu+t Egpt E53) + A, (Ert E3s)
N22 = 2A  (Ent+ Epnt €33) + A (En+Eg3)
Ty = 2A4 (€t Epat Ess) + A2 (En + Enz) (h-27¢)
q-n.‘-‘- "%_- Az €12
U= "—4,: Az €43
%3': —jg'_' AZ 825
Put into matrix form, it is written as
r 3 [~ ; % =
\P 2A, 2MtA2. 2A4+A2, 1 O O O €
|
Tt (2A*A2)  2Ar aAtA, 0 0 O O €2
Tyl |[(AitA) Ar+AD 251_: 2 -0 D { Bas
ﬁm 0 0 o - 0 o0 o [
Tis © O 0 o -& i) En
l
LV};J ] O O O 0 o —'{_z Eas
e - (4=274d)

Ajand Aj,are replaced by two new constants E and/A where

(14 ) (1= 240)

Ag= = E_ 1A+ Az = AE
, 1+ M (4+/4-)(1-2/u.) ‘
2 A= EUM) (4-276) |

E = Young's modulus, /f/‘- = Poisson's ratio
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It follows that
o

ﬂ- ) ; - r 3
(A
Vi (1-24) (1—3p4) (/1‘_1-74-) ; © o ©O Ep
(J-p)y M l
Y2z ~— 0 o0 ole
(1-9) £4 eto | 22
\E 5YSMME 1-=A)
<_35_>= ___E_ _:/ im _my (1-2p0) J!_O © O J_E_Ea_a
(140 o e [
Vo © . © 17 0 O|&
|
4
s ~ = 10 3 O || &
4
s O o o O 5||é¢
LBJ — | ZJ L 23J
(4-271)
or
’ ”'4 I | :
ot s _A iy
En E £ 1 O @) o) Wi
|
¥ B e T 0o o o |wm
|
B |4 ~BuioLg gusalies cOuse i
< >:_‘-"_“——"‘l*’——————-——§ >
. .
Ep o o o : ZL%?&J o & T
Es O O 54 0 0 2(EML) o T
EZB O @) O O O 2(1""/“) V-Za
ST B : E i

(4-272)
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Equation (4-27f) expresses the well-known law of James Hooke.
It follows from the above that for every material a range
of small deformations can be established for which Hooke's
law is approximately valid.

Hence, as soon as Hooke's law looses its validity
the problem of ascertaining the stress-strain relation
is complicated drastically, A further complication arises
from the fact that the part of the dissipative forces
increases substantially after the limit of proportionality

ispassed,

4,8 On the Applicability of Equation (4-19) %o

Elastic-Plastic Deformations,

The basic relations of Hencky's theory of
plasticity are derived from Equation (4-19) by introducing
suitable assumptions regarding the nature of the dependence
of the derivatives @_@ ;@)@@on the strain components,

02 NGy Mo
In order to show this, it is necessary to use Equation
(4-19) to establish a relation between the two invariants
of the stress tensor,

* 2 5
C2 = Yen + Vizz =+ Vess (p=282)

2 2 2 Z
Q*;_—acfz TN + Yz + Vr3s + 2 (Ven Tezz + Vr22 Qras + Uru Vkr3s)
~3 (VenVraz + Vei Vess + VrazVras) + 3 ( Vet Tars + T2z )
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o 2 3
C, — 3¢ = Yeu+ Ven+ Vras — (VeuVezz + Ven Vess + V22 Tras )
+ 3 (Ven + Von + Vrzs) |
1/27:}( = Veu Vrzz + 72“2%1. +% Ve - VRuVras + 'l/zTiz;a
4 Z 4 2 2 2 2
2 2
Y2 (Yeu - V"Rzz)z’f Y2 (TRii-Tras) + %2 (Voaz - (as)
+55(V€;'*Vkﬁ'*qiza)
% { (- T : .
2 | (Veu~ Vezz) + (Ten— Vraz) + ( Tizz —Viss)
+ 6 (Vriz+ VRi + Tzlz_a)} (4-28b)

According to the left-hand side of Equation (4-19) (CF ana of

are calculated in the easier way by referring to the principal

strains
Thus ef & o }
[Elva2] @ »2a, - o (4-28¢)
L O O 6?3

Equation (4-19) is expressed as

~— /DQ e e ~ =
0z OT 81+E5 i - Eg_E_; o 0O

o)
n D
[e]=| © 70%1 m‘; +(0_q—1 O ¢&trgg O |+-2 10 EE, O

N 002 & O G 0 o0 & |

L

P ? (s
F%%:- (f%%q (61+65) + ((bo_%o(éléﬂ) o o :
(4-284d)

R0 08 (bl 08P 7 O
O oY Q1.+ ﬂ_3%1<€1+65)+(5_6?o(é163)

~ 8 0B (P, P\ 0o Fe
| 0 5mf5a@ﬁg)+5ma@
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The two invariants are calculated as follow

Al
0= 300 +zf0@ (e1+€5+€5) + 0 (€ele] + €] +€:63)

(Oaz foa1 (4-293.)

°Qs

b (ﬂ@ m@(e1+e;) m@e 63)( P8 0% (¢ +e1>+“’§é1éz)

maz 0 Q1. maq

e &, 08,0 0. 08l
(50 + 8 (ey+ SRl 68+ B e+ )

P, P Pt
+ ( (f%% m@% (61 % 62) o (-(Db—goe‘lez)((%z (/0021 (62+63) i ggo e.‘lég)

_ (,m L 08 (&,+e3>+mé eea)(zzodi fO@(e‘,’ne}» €)

P QA2 a1

+f%(go(e4ez+e;e:,)) (”’@ ”"P(E +e)+/°‘561é;)((mz+

+ ffp_m(eﬁeap f;goe,lea) . (4-29b)

= 2500 28 G e R R+ (R %

2
n% o +a,a @)a a
P (001_(0@0(300 12) +(foao ik

L

) 5a,ao) (4-29c)

G- 20f = (22)(d-20) +22 22 (0.0, -42)
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Experiments show that the character of only Equation (4-29c) “

is drastically changed by the transition from elastic to

the connection between the average value of the three principal

\
plastic deformations, while Equation (4-29a) (which gives
stresses and the strain invariants) changes so little that W

\

‘\
it can be extended intact, with no serious error, to the

) H
plastic range. However, according to Equation (4-21f), in ‘ i
the elastic range

jg(‘ﬁtu =+ Vra+ Tﬁab) = 1 —E—- Az (‘&-308)

3 (1-24)
Hence, extending this relation to the plastic range as well,

yields

% 20,08 +LaB = 4 (1%2—/2-) Oz (4-30D)
Further more, according to experiment, the stress invariant
(cz?—BCLD can be taken to depend only on the combination of
the strain invariants 4, gy i.e., on the quantity 0;—3Ch y
In order to bring the Equation (4-29c¢) into agreement with

~ this fact it suffices to set

0% e (4-30c)
~and to regard A a; as a function of ,-3Q4 alone,

Taking into account these assumptions as well as Equation (4-30b),

Equation (4-29) assumes the form

_E 0
8(1-2M)

-r, -9:)-(—[-) (le-Blb)

I\

(4-31a)

1l

S

1 A
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where S (4-31c)

T =2 4/ (az-30) (4-31a)

Pm= ~ 02Z (4-31¢)

In the theory of Plasticity, it is denoted that
S = the intensity of tangential stresses
T = the intensity of shearing strain
Noting Equations (4-31a), (4-28a) and (4-30a), it follows that

0 _ E 2
26 = 3-270) Gz + 2 0. P(T).

X
=1C +g-. G2 P CT). (4=-32a)

Returning now to Equation (4-19) and substituting in it the

values in the Equations (4-31e) and (4-32a), one obtainsg
[v] -($ & +50aPm)(1]
~ P [Tla-[E]], (4-32b)
Equation (4-32b) is precisely the stiress-strain relation
proposed by Hencky for elastic-plastic bodies,

Thus, Equation (4-32b) for the theory of
plasticity is a special case of Equation (4-19). In other
words, in spite of the irreversibility of a plastic deformation,
it can be described by means of equations derived on the
explicit assumption that the deformation is reversible, It
should, however, be noted that the use of Equation (4-19) in
the theory of plasticity is admissible only if the process

of deformation is an active one, i.e., only if the deformation,
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during all its intermediate stages, is monotonic in the
direction of increasing intensity of shearing strain, If
unloading takes place during deformaton, Equations (4-32b)

are no longer valid,

4.9 On The Simplest Variants of Nonlinear

Stress-Strain Relations,

Suppose that the deformations are so large
as to render Hooke's law inexact, Then as a second
approximation, one can retain in Equation (4-26) those terms
which contain the strain components to the third degree in
addition to those containing them to the second degree. It
is clear that the description of the elastic properties of
the materail in this case requires a knowledge of five physical

constants,

D (02,01,80) = A G5 +AzOit By03 + Boasas+ Bag,  (4-332)

Differentiating @ with respect to 4d,,ds, 0o , one obtains

//Db_gz' = 202A1 + 3072:51 + B, a4
m -
7;%1 = Az T B2 (4-33b)
nd
MQo = BB

Substituting these values into Equation (4-19), gives
[Ve] = (20:A1+30:8(+a:8,) [T]+ (Ar+8,0:)([1]0:~[E])+Bs[00FLe]]
= a,[1](2A A) ~A,[E] 4342801 ] + BO1[1] + B, 02 [1]
- B,0,[e]+ Balcor[E]]
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Replacing A, A,, B,, B, and B; by the new constants E,

s )BIMB3 yyields
Nrl= E { ((1 =20 A+ f 0; - (Prtps) ar)[1]

(1)
+(14(p+ B an) [E] + Fé[CoFtaﬂ} ol
where
2A0+A, = ME y P B
(14MIC1-34) (¢+/w>
3B1tB2= E 2 B =__é_]8 = —EBitss), S
(1+/u) (110) (1+m)

It ig essential to note that the second
approximation differs from the first only in terms which are
"even" functions of the strain components, i.e., terms
which remain invariant if the signs of all strain

components appearing in them are changed.,

Figure (IV-1a) Figure (IV-1b)

The Extension-Compression Curve
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The extension-compression curve for such a
material must lie wholly on one side of its tangent at the
origin 0 (Figure(IV-1a)), However, the majority of materials
have extension-compression curves of the form shown in'
Figure IV-1b, It follows that deviations from Hooke's law
are ordinarily conditioned not so much by terms containing
the strains to even powers as by terms containing them to
odd powers, In view of this, Equation (4-34) by no means
yields all possible variants of extension-compression curves.
In the light of the above remarks, it is interesiing
to investigate the forms of the nonlinear stress-strain
relation in which the stresses are odd functions of the strains.

Thus, assuming the specific strain energy to be of the form

D (02,04,00) = A0z +Az 04 + O ar + 07 0204+ C3 Oallo + Q4 QY (4-36a)
nd 3
20, = 2A102+ 40,01+2C2a504 + (3 Go
nd
pa, = Azt 007 +20404 (4-36b)
o _
o, = Cal

Substituting these values into Equation (4-36a) gives

[V&]

n

(2A402+ 40304 +2 0, 0,0 + 0300) [I] +(A2+0,05+20404)
[[11a.-[e]] + @sa.[core]].

= G[T1C2AtA) + G [T](40c+02) +20,0,[T](Co* Cy)
T s 0o[1] - (Aut 207+ 204a1) [ET+ C302[COF[E]].
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[VR] = { 02(2A1+A7.)+a:(404“‘02) +2 010, (C1+Ca) + o 03} [1]

~ (AL +0,05+20400) [E]+ C30.[cor[E] ] | (4~37)

or

(Vo] = (i/k) H(ﬁz/f‘) 0yt 03 (¥3) - (2% +%,+ 214)a4az+)’4aa} [1]

+ (14 5+ 54) Opt 3200) [E]+ B2 0, [ (oF [EJ}] (4-38)

where

2147 +AZ - L

(4+/»)Cf—;u,)
Ap = — E (4-39)
(1+m4)
4Cr = £ (%+ 55+ ¥y)
1+
@G = - E (¥ + ¥u)
(14p)
0= Eu
(/+m)
2@4 A E %, .
1+

Here E')/Lc, 31,752,)’3, }54_ are six physical constants, of which
the last five are dimension-less and the first has the
dimens;on of a stress,

Hence Equation (4-38) is the nonlinear relation

between stresses and strains with the sic physical constants,
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4,10 Summary

Case 1 Minimization of the total work

Taking into account the characteristic of the material
referred to as the limits of proportionality of an isotropic
material, it follows that the minimization of the total work

expression yields

(VT2 1037 + IOTIERT = g0}

or

71T [°2 [ (xI+[e1- Cwl] + (L3I§RY = {o}"

Comparison of the latter two equations with Equations (3-34b)

[Tl =15k

The relationship between stress and strain for the four cases

yields

is summarized below

(7] = 2017+ 2 ([ [E]]+ 5% [eorlel]

for Case 1 and 2

(€] = [el+4%[rel+e][w]-[wire] - [wI']

for case 3
= p A
[e] = [e] - zlwl]

for Care L

[e] ~ [€].
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CHAPTER V
PROBLEMS ON THE DEFORMATION OF FLEXIBLE BODIES .

5.1 Deformation of Rods (First Approximation)

X2

s

X3 1’

Figure (V-1) Thin Prismatic Rod

Consider a thin prismatic rod of arbitary cross
section as shown (See Figure(V-1)) The origin of the coordinate
system xbx,}a is placed at the center of gravity of the area
of one of the ends of the rod, and the_x3-axis is directed
along the rod. The X,- and X, -axis lie along the principal
axes of initia of the cross-section. The parameters Uy (Xy,Xa,X;)

Ug(X4,%X, , X3) P Uz (X1, X2, X3) denote the displacements
of an arbitary point of the rod due to a deformation,
Since the variations of the x1and xﬁcoordinates in this probtlem

are substantially smaller than the variation of the X,

coordinate, it is assumed that the power series expansions of
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the displacements in X, and X, coverge rapidly enough within
limits which are of interest. Accordingly, the displacements

of an arbitary point of the bar are expressed in the form

U1 (x4)X1)X5) = u1(O)O) X3) + )(4((0_(4‘1) -+ Xl(m—ﬂ>
DX MNXL /o

1 0 U 1 Uy 7 U o
g™ (mxn) Ik (rax*) x"(‘(rox/oxz>+

2

Uy (Xpy X2y X3) = Uy (0,0,%3) + X (fwz) + X, (muz)

X1 Xy /0
Q LS L
+ 4% (/D“.z) 41 (mu) XXy (DU )+
oxg o 2 T\ X X100 X2
(5-1)
Ug (X4 Xa Xs) = Us(0,0,%) + X1(’P_“3) + Xa /Zis)
nX1 lo WXy lo
2 (0l 2y ok
+ 15)(1 (@i) + ixz(@“f’) + X9X2 /LL“ )+ e
nXi lo 2 X3 M X40X, /o
where the operation ( )oimplies evaluation at the point
X1 = X2= O
Denoting

I

A A A
U1 = W(0,0,X3) ; Uy= Ug(0,0,%X3) 5 Us= Us(0, 0,X3) (5-2a)

- () pi) (i
U (rax4 ° > (-P1= (ﬂm 0 5 Y= \ 2 x4 (5-2b)
2 a
TN 12 [ PUs e
Uy = g ——a) + =X (-—— )-+ X4 X ( o e
A 2 X1(/D 1/0 g e ﬁJX;’ s . X4 0Xy o
2 2
T v RV I O U2 (5-2¢)
U =—x(.—> 1y —-) ( o {Bega
ES = lx’i (LB) + Lx-l(./b"-u_a) + X4 X3 ,{‘u; ) 4= ~-
2 X/ o 2 "2\ 0x3 /s X100 Xa. /o
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where

(a) Gq,&,, 33 are the displacements of the points
on the axis of the rod and consequently,are
functions of X3 alone

(®) A+31 , 0, ¢,, 1+Ps, Ly, %,  are of the
same order of magnitude as the direction cosines
of those fibers in the strained state which were
initially parallel to the to the X4- and X, -axes
(Equation 1-13b), In addition, it is assumed
that these parameters (some or all of them) may
substantially exceed the elongations and shears,
also are functions of X3 alone.

(e) Ug, L_.l,_)ﬁa contain all remaining terms,
(beginning with the fourth), of the power series
for the displacements. It is clear from this
that for Xy=0 , X;=0

Uy= Uy = Uy = AU~ pUz = AT = Bl - AL = Phs = O
/DX

%4 DXL X2 AXq4 AXa

In addition, at,az;aa are regarded as the correction terms in
Equation (5-1), which are very small in comparison with the
remaining terms.

Thus, Fquations (5-1) becomes

Ug(Xqy X2, X3) = aq (X3) + Xq O0y(X3) + X2 U2 (x3) +a1(x1)’(=.)’(5>

Uy (Xa,Xy,%3) = (;1\1 (X3) + X4 (.P1(X5) + X, ‘-Pg(xa) +[I,\(X1,xz,xa)' (5-3)

A —
Ug (X 4yXy, X3) Us (X3) + x1‘)Q1(x3\ + X%y (X3) + Uz (Xy,Xy,X;)




143

Since the first two rows of the first matrix on the right

hand side of Equation (5-4¢) is zero, one obtains |

ow ow oaw T g g x| [ o | [

= (@]
PX1 0X1 Axh 0
m_ﬂ @i; ’3_23 = % 0 o 0]
AXy (X3 NX1 a;‘ w’- O

A A A
oM pua AU Au OUx RUs MQQ
L X3 0%y x| [ aXy, exy exXa) L%

—

R, x A%y . A,y 0%
+X2m(5 LR 1/‘”‘3,)(10)( + X2

A%

IC; a1 " a“- n_&;
(D_X; /.b_Xq 79X1
4+ | 2% el Al |
PXa Xy Xy
Ak Al Al
| PXy axs AX

(5-44d)

In symbolic form the latter equation becomes
T AT T -
[p] = [D]+[k]+[D]" (5-te)

[0] = [D]+[X]+[D]
Substituting the values of matrix [D] and [D]Tinto Equation
(2-4b) gives

[&] = £ (0] +[o]™ [01T0]]
- 7 [[B1+[<]1+[B] +[61+ [x]+[D]+ (B (D]

or

+[BIIKT + [51T5] + (K116 + [ kITK] +[KI[B]
+ (57161 +[D1[x1+[51T51]
(e = (8] +3[030kT + [KIT3T + [k TT] + 3[BT +[B]

F 163051+ (KTL5) +ISTBI+IBIk] +[5Tt61] (3-8
"ere 8] = L[(B1+18]™+ [5]TB1] (5-5)




Also Equation (5-3) can be

e

nxq

nu3
Xy

s
X3

follows:
W
ul =
Us
with
n
X4 i u1) u;,u;}
0
0%y
%3
or
[Bug Uy
X1 X4
IV
MXy OXQ
Rus AU
0)(3 @xj

_0; i

G Gy

965 %o

’3_"4"}
X Wy Uy, Us

n
DX
n
P X3
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- / -
rewritten into the matrix form as

Uy (5-ka)

{xa‘%mt’h, Uy Xyt ‘-}'.1’(1,%’(1"’79 ’(l}

(5-4Db)
v ¢4 %1
Vs N &, f
1A o¢ ad; %1,y k| I}
xﬂf)oi»fx % X2+ X?;,X; x/gg
(5-ke)

E |
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represents the strain matrix for points on the X,axis of the

rod and consequently are functions of X3 alone; also for

these points

fo ]

i
=
H
st
+
™
o>
—

A A A w

i En S En LEn

w] R (5-50)
sgmdeL

In the first approximation of the deformation of rods

are neglected in comparison with the remaining terms in
Equation (5-3). Then Equations (5-5a) become C[ﬁ]%[o])
[e]=[81+5 (1701 + kI3 + [TTKI] (5-6)
This accuracy is not adequate for the deformation of rods,
since a solution in this form cannot be subjected to boundary
conditions which arise in practice, Hence, in studying the
deformation of rods, it becomes necessary to take the
displacements in the form given in the more complicated
Equation (5-5a) rather than in the Equation (5-6). However,
for zreater clarity, it is convenient to assume that Equation
(5-6) is adequate, After completing the computations, it will
be found that enough terms have not retained to give a full
solution of the problem, At this point the necessary corrections
Will be introduced. This will cause no special difficulties,

Since by this time the reader will have a complete picture of

the method.
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In the first approximation, Equation (5-6) is expressed in

the strain components as follow:

4 A
E'ﬁ = E'ﬂ ) B2 = Ea P Eqz= B2
A %
z Xy (A% U nd1 s 0%
Fo R 0X5+ 11@X;+ w1n +34(%m)
+ Xz((4+U1) f_@_o-l -+ 4)1@_4)& + Doy 0_7&.\)
0 X3 X3 R X3

Ei_;: E;g + x4 (02 -[—% +(4+d}l)f()_cp1 +%A?%1)

T Xs (5-7)

+ X2 (”’_C_b* + G2+ o2y %,,’0_9_“-\)
D X3 X3 X3 X3

\533’-'- é33 + X1 (/a_&« (I /D_Q" @’ +(4+@_‘:\(’ ’6}1)

PX3 M X3 X3 @dx3 MX3/ X3
e g 0 0k . 0l m)
NX3 X3 10Xy (0X3 RUs/ n Xi
3 o g -
R ICARCAR AR G5

+ quz[’b_‘% aofa ol o, | 0%t f"i‘?ﬁ]
PX3 @Xy  AXy NX3 DXy X3

Also Equation (5-5b) expressed into

2:.“ = @’1‘?‘;‘(0’1&'!' Gr + %‘;)
Gut & (5 3+ %)
By = 0a(1+07) + PrC1+ ) + %rq

(82}
ro
>

Il

(5-8)
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A

A A
U AUy Yy
En— (1+O‘) v T 4’1; + % (1+

NX3 X R X3
ads
= o_tb 1 U4 (ncu_) /au; P
En= ox T2 [(on) NX3 nx;)
Denoting

A A A
aur 20 Us Au %
Ry = U OY . Al %+U+ J)%*

NX3 X3 {DX3 nX3 nxs
da, 00 fa“l d‘P‘l 10 %or -
Ray = d—x; 2 X3 o Xy d X + 0+ /oXa M X3 (5-9)
/DO' f
ko= (140) =2 + U ,,ff’; 71 f’;?f;
and
1 [0 (%) “—1>1
Vi = 2[(_?3)+(m_><;) +(nxa J
ARG\, (W), (R%2)?
Vay = H(Txﬁ) ay s +(5%)] \5edt)
Vi = @000 L 0t Ay Q%%
= RXs @X3 AXs X3 nX3 X3

then Equation (5-7) is rewritten in the form

A A A
T = En , Baa = Eqa 5 Enn=En

- b de
Eiz = &3 + Xy —X“ + Xaleay " (5-11)
de

%

A 3 A
Tay = EBa + Xy ( %%;l - kn) + Xq a_X-g.

2 X
533= é\aa + X1 leu + Xa k&l"' X1 \/%1 + Xa Vi + XgXe V;Z

where the quantities hu, lt,u, ks are functions of X3 alone

Viﬂ, Viz; Vi, are the coefficients.

As was pointed out-before, all the parameters 03)0;) LP,,(D;.]%U%*

Or at least some of the, must be regarded as substantially

eXxceeding the strain components, since in the bending of




147

a thin rod some, or all, of the angles of rotation are
large in comparison with the elongations and shears. For
the same reason, the derivatives %«3, %%,(H%GS(Equation.I-lja)
posses the same property. Hence it follows that the right-
hand sides of Equation (5-8) must represent small differences
of large terms, t?us

(el =0 (5-12)
Here, naturally, the equation should not be interpreted as
meaning that all the strain components of the rod along
its axis are negligible. Equation (5-8) can be rewritten

as follow

[e71=4[191 57 [81761]

0 = [BI1+[HT+ [DITH]

[11 = [81+(61TF] +(1]

(1] = [ 53+ [8117]

r11= (310017 (5-13a)
Then

[7] = ORTHOGONAL MATRIX

[1]=[3173] 4T

Figure(V-2) Geometric Deformation of Point on

the Axis of the Thin Rod
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¥ rotate about X, axis
A
B rotate about X axis

¥ Trotate about ¥; axis

Figure(y-j) Euler Angles of Rotations

In accordance with Figure(V-B)Ja system of three mutually
perpendicular directions are defined with respect to one
anocther by means of the three Euler angles. Tt may be
easily shown that
00s B C0s% CosX — S5in Bsinx
Ax )
{'&1}: Cos B sin¥

—-MSP%SK&n%-—ﬁMpcMK

=Adinscos <
4
{5} =<{ cosy (5-14)
SINY¥sink

(os B Sin¥ + 6inB CosB CHSX
{1 il
ly J = &npsm%
Gos)B@oso(— Sfm]Bcoa‘Asino(




149
These vectors are then combined to form the columns of the
orthogonal matrix
Ny AT N
[eul = [{} {4} 167)
005 B CoSY COSA—SINBsINK; —SIN O3 5 COSPSING +SiNP LoSY Los X
= wspsind tosY¥ sinpsing
= (05P LooBSNA~SINPLOSK ;SN YSiN K 5 €05 B CoSK = 5iMBosTEIU & (5-15)
Thus, B
A$ T
ERITIET (5-16)
where Ax
A L1 T T
o= 4 %x and [EUV|=|FU
%l} :1 [ ] [ ]
R
Ly

According to Figure(V-2),as a result of the
deformation, the point M is displaced by the amounts at,agja3

X
and assumes the position M while the line elements are

! Ay Ak Ax .
directed along Lly,L,,l3 . If the angles of rotation of the

elements of the rod are large in comparison with the shears,
the latter may be neglected in determining the directions

2 N N . 4* A* /\*
LT,L;, (; . With this approximation, tj 1% ,l% are taken

as orthogonal and the parameters

dl//(\4 d_('l:ﬁ. 44_9;&2
1+®;) a;7¢1-01+(,'71’%1)%;)a—x;7d¥57 dx_;

: ) 4 A A
become equal to the direction cosines of Lf} U;J Lg

if the elongations are neglected in comparison with unity.
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Recalling [A] = [JJET%E]
it follows that [A] % [J]
A AT
or 1y =~ [J] {8 (5-17)
Comparing Equation (5-17) with Equation (5-16), one obtains
[J] [EU] (5-18a)

since both are orthogonal matrices, thus,it follows from

Equations (5-13a) and (5-13b) that

A T
[J] = [EV] (5-18b)
o Lk 4
since the orthogonal condition [EU] [EUT = [eV][EV] .
Thus A
- 0Yy
{+07  O0r  7xs
nd
Gy 1+ 5
4+rﬁ’
:X1 Y2 %3 |
1058 WS COSK~SIMPSINe ) 0SB SINY 5~ s PLos¥sin=5iK B COSK
= = SIn% sy ws¥ sin¥sinx
@ospsiwxﬁ-siwpcosxaosa(; simps(wzs)- o,og?(wSo(-SfW}scos‘é‘siu‘é (5-18¢c)
Differentiating the matrix LEU] with respect to X3 and
expanding yields
R0y = eosp ensy (- sfwm_&iﬁ_ + Cos« (co5$ (-5in¥) d¥_
+ ws¥(-5MB)dE 5in B cos olx,,. STn i cos
? 61)(3) [ P Fd,\j]

~ (osp osssin + Sing cos) du dx - (Cosa cosy sinp

* sineceos p) 98 — cosuccosp sin¥ 4
2
= al_fugli_'%4 dAs _ cosx Uy A% (5-19)

d 3 Xa J}B _a_X-a
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RAfa = oeosg sy d¥ — siny¥ sing d
X3 P Axs ?IE

= = % g‘% T Wsp (4‘1'4)4) %3,‘(3

d%t = (eosp eosd — cosBsiupsMa) de | (epsycose cos
X3 ( F F d X3 ( ?
_ st sin _ opsX sin8 siny A%
)B)_)?g P dk_a

- (d“’ﬂ) = (m“)dj' i AX;

Ay = Ay sinxde —  cosK cos¥ AX¥

dixz— | X3 A X3
= dls A& — eosx (4+y) d¥
Ax3  dxy X3

X3 AX3

dyu = SM{BMSX d‘ﬁ & sm*écosgig_
olxy
sth P(H“PA) dx, T @'& A%

Substituting Equation (5-19) into Equation (5-9), one obtains

k” = (j_O( d—E- 005

d¥Xa d X3
iy o= @osxsmx@ - X%‘é (5-20a)
AXs
= ¥ y dg
klg oS X5 +  Sln xsiny %
or in matrix form as
. F T db(
L 1 o5 ® axs
) v i |4 08 (5-20b)
" = O  cosxsind —Sink|4 gy,
23
O sSinksiny  Cosx | | d¥

Ly = -axg
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thus, -1
i - - <
ge 4 005 o R
)
dp | _ A
4 ng = | o  cos<sind  -SiMk|{ Ry » o (5-200)
¥ ) :
— o) SNk siny 0ns K k
kdxb b N 35
By using the inverse operation, Equation (5-20c) becomes
de —005%CosK  — SN Cpsd
ax 1 : ¥ Ryt
AX3 3in¥ 5in
tos K Sine
%g; = > 5inY SinYy kaa (5-204)
% @) ~5in« PosK Ria
)

Substituting the values from Equations (5-19) into Equation
(5-10) and using Equation (5-20a), the relations between k",

b;; , Ryg and \711, V'u, Vi, are

Vi = Y% Clei+ \E]tg_)
vie = % Ckit ki) (5-20e)
V-R = kl[ hn "

If these values of the coefficients Vit, iy, vy AT substituted
into the last of Equations (5-11) for (Eas) , the result

becomes
A K 2
& ER |
+4/,z(k_u+k.l.t)x,z+kuhu X1Xy . (5-21)
It is seen that the terms corresponding to these coefficients

may be neglected, being quantities of the same order as the

squares of the elongations and shears.
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With this approximation, Equation (5-11) becomes
A A A
E‘|1-'= E'ﬂ P E,,f: Eas s Eia= €

4
EI5= €‘3+ X1 331 + Xg hll

X3
A " ay
" E
Ey3= Eag+ Xa d___EJa + X4 ( dx"‘ - k“‘) (5-22)
B d X3 3
Ean= E33 + X4k T Xz k1-’.
where R, Ry, Rjg are determined by Equation (5-20a).
: e o dén  dén | dEn s
Since the derivatives dxs > dxs djé are ordinarily small

compared to kﬂ,hujk;L which characterize the curvature of
the axis of the rod in the strained state, the terms in
Equation (5-22) containing these derivatives may be neglected.
Hence, it follows that
A A A
t.ﬁ = 511 P E.!)= Eal B) E1a = el’l
A
Ei3=Ep t+ XeRia
N
Eay = Ea3 — X1Ry2

E33= E;g = X1 tQ'ﬁ + Xz kzz

(5-23)

since in Equation (5-23), the terms X,kiz,x1Raz, x4k, xskae

are of the same order of magnitude as the strain components.
These equations are based on the assumption that

the elongations and shears are negligibly small in comparison

with unity and the angles of rotation of the elements of the

rod. However, in deriving Equation (5-23), it was postulated

that only the first three terms of the Taylor series for the

displacements need be retained. This assumption is not

correct, as is seen by applying Equations (5-23) to the special

case in which the rod is not bent but only twisted uniformly

along its whole length,
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For this case

Ko = O, B= B (5-20a)
where ¥ is a constant coefficient. Substituting these
values of the Euler angles into Equation (5-18c), the results

are
G = - (=057 Xs)
Oy = sintXs
Uy = - Sin Txs (5-240)
Qg e = (1= Cos ¥ X3)

%&. - d(?.: dlza -dla/(\b F—3 O.

Xa dxg aX5

%y

D

Substituting the values above into Equation (5-3), the

results of the displacements are

U= = X (1= Cos TXs) + X2 SiNTXs
W, = — x18in Uxz ~ X2 (1- Cos ¥ X3) (5-24c)

(by neglecting Uy, Uz, Us in this first approximation).
For the strain components, substitution into Fquation (5-23),

gives

1"
O

Epp = Esy =Eja = E3aa
Eia= X2

(5-24d)

E;a - X'Ihﬁ

J
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These expressions coincide with the "old" theory of torsion,
rather than with the Saint-Venant Theory. The former, as is
well-known, is inadequate since it does not permit the freeing
of the lateral surface of the rod from stresses, which is
essential in this problem. Hence it is clear that the general
Equations (5-23) are also inadequate and must be corrected so
as to yield Sain-Venant's Theory of torsion as a special case.
In order to correct the results of this section the second
approximation has to be derived by adding the remaining terms

uf)&:._,a.a.

5.2 Deformation of Rods (Second Approximation)

In this second approximation, the whole Fquation

(5-5a) is used, Then it follows that

[e] = [E1+1[03Ik]+IKI51 + IkTU ]+ & (61 +15T
+ [B751+ [KII51+[51 0] + [5ITk] +[5IC51 .

As in the preceding section, Equation (5-5a) is written in

the form
[E] = [ First Approxnmaﬁom] + 3 [[DJ +[D] +[D]CDJ
+ [KILB1 +[DIL67 + [DIIK1] (5-25a)
where [First Approximatio@] is the same as Fquation (5-23).

In accordance with Equation (5-5¢), Equation (5-2%a) is

rewritten in the form

[e] = [First AFW,MM] +$ [ 151051 +1B703]
[kTt5] +[510K]] (5-25D)
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Dernoting ! ) o
[6]=[J] +[K] (5-250)
(61 =[31+1k]

Equation (5-25b) becomes

(] = [First AfFroximaFOVIJ +% [ [G]T[b]+ [5111-:6]] (5-254)

Denoting

tu} = (o110} (33488a)
where
Uy
{(j} =< p = supplementary displacements
Us
J
¢1)
Y0 =< Gy ¢ (5-26b)
u;J
. R % =
1+ 72 a-g qu&’-f zgx‘;'

[6] = s 1+, —’ X da% + X3 Eli;!({;

Yot %o 2 C4+d“5) + X1 4%4 + X3 0%3

X3

L

IL)(L)IB are the functions of all three co-ordinates
X4,Xa, X3 with the following properties:
(a) They are small in comparison with the lateral

dimensions of the rod and their derivatives
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are of the same order of magnitude as the

strain components. Thus, the products of

pairs of derivatives and product of a derivative
by a quantity of the order of magnitude‘of the

strain components are neglected.

~ For X;=0 , X3=0
Uy=Usz= Us=RUsI - 2Us . QU1 - PU, - ~Us - nUs =0,

Xy X4 MXy P Xa X1 MOXa

Differentiating Equation (5-26a) with respect to X15%3, X3,

one obtalns

dn{U}
Analogously

‘*—{_U} -

dsg U} B

b=

dx1[6] et + {

_dx1[© H } B [@ 3 } (5-27a)
4 eT]§% = (el 55

4 [6e]]98) = [0 &53)

These vectors are then combired to form the columns of the

matrices [P] and [_1—)} as follow:

| & 0Tl {00 [4el)iuly {4 00-Tagel]sos)|

-6

o § 45035 { ds ]

or [P] = LG]ED] (5-27b)
(PT = [BILE]
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Equation (5-25d) becomes

[e] = [ Fiest APPmXIma%on:{-fz [[P]*'[P.” (5-28a)
where ¢ p
U dur - dw d Ui T d 1_ o T
4 L
U du, dm dU deh _ (L o%
P %_1( % (- uaa_% uédx;)
i TR A @ U d; d 2 d% F
(‘ii’f il Tt g (0. gl 4Tk, B
(5-28Db)

= 4 A d'oy dvi) - du; dd} d3
P&a —; (Ml-q-xdxawhdx;) Ma( 1+X1 :+Xz d&)

= u5<du3 + xfﬂim +X4%‘J’:’)

The Equation (5-28a) is expressed into the terms of strain

components as follow

A A A
By = En+dU Egy= &+ dUa 5 Ea=Ep+ duy 4, doy
dxs 7 dXa dxa A xq

E] = E1 + X2b41+ be~1+ /0U5 ud& u d¢| d%»\
A PXy X S e ><5+u3 )

A
=y, — XqRia +QUz  0Us _ o (500, i d % 4T, 4%
515 3 ! X3 T X3 ( d Xy A X5 3(1)(5)

a3 = E +X1\Q41+x1 2 +dUs_ (d“‘+qu ‘7’+X.zd O’)

a X3 dX3 dxst  dxgt
q_¢1 d 4&
~ U (dxa Sl )
du; d’%1 d"%ﬁ
( e 1dx3 % dx5>

(5-29)
In addition to the second approximation, the possibility of
which was established in the first approximation, the underlined

terms in Equation (5-29) may also be neglected.
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Denoting

2 Oy dd’« dj@
X B u1ch+LL ”

dw d;é (5-30a)
% dl | 7. 2 d %o,
—X-g 1dg—xg+uldx3+u5 X

Substituting Equation (5-19) into the Equation (5-30), yields
= Ui(dinda dp_ Ay dds du
X, *(dY %, %a-— 60’4‘*(73—) (a—:%—@osx(u%)gi
+U5( ‘-PSM)BC“_f.(@]H %_E_.*.(d‘@-ﬂ d%()

Axs

= 3—"( (W %%ﬁu dis + U (d“3+1>>+( x«uq”f(a'ﬂ)ﬁfa)éﬁ

. d¥
(U1 Cos x UH Ux COAA (14 ) + Ky %5'”@5&3

o dp d g
Iy 2% 4+ J ¥
X 1dX3+ 12 a—\-J/u; a0,
Xy = GE (Colnt B ) + 4% (1608 (14U - Tyt + Tosinpants)
X = Jg.\ dp( + Jl& JE 3 JﬁSds
where J:Q‘= @)
Writing Equation (5-30b) into the m;trix form gives
%
Xal —| I JTa Jis 5{’? (5-30¢)
}{2 Jai  Jax  Jas d;

dx;
Substituting Equation (5-20d) into the Equation (5-30c)

above ylelds
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- 1
3 — Qos¥cos - SMRCHSY| [,
X_4 In T e = ]
K 0 05 K 5 Mt (5-304)
X Lo e IE ek
@ - 5ivK 005K R4y
L _

(5-304)

Equation (5-30d4) is expressed in terms of X, and X, as follow

X, = Jrky + (= Jn @—05\‘170050-( + Jrn 805X _ Jy, Sin) Ray

B SinY
_7,, Sh&cos¥ , 5 St 5mo< ez _31a)
+( 3-11 W \.)‘12‘5 % JB ) (5 J1a
K
X, = Jaku+( 22@;';3-323 SN ) Ry, ’
+(J2_2 w -+ J23 tos 0() b']Z (5-31b) |

By considering the individual terms in Equations (5-3la) and

(5-31b), it follows that
Tag Cos X _ SN
stny U3

= - %, Uy 05K . Us U, S - (I wsP(Hc})z)— Uy SMY
S\HX 5|VI$ _ .
+ sMBU+ ) U3) St

= 'Ua (= %, gosx CosB S(Wo{(’H—(P_,)) + Uy Sy s

= SN
LsX _ sinxsimB (1+(y)
+ Us (\Tg. o ]3 (Pa >

k
k
)

= W(dh) 4 m(dl) + B 4k

= Ju S
Analoéou<1y :
3225”?"; +Jps 005 = (4+ 01) Uy + Qg + 9r Us
- Ty ) (5-32b)
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—JM&M —}-J“__o’gs_p(.—(f,’a SI‘WD< =) (5_320)
sinYy sin¥
_ Sin o 0S¥ sink 4 £ =-U (5-32d)
Jn Siny 1 sin’¥ Y1808 %

In accordance with Equation (5-26a), Us is expressed into the

following form

3 +X1(g_zz‘;t71+f§%a,+3‘l:; s
Uy = JutXX+ %X,
du = Us - X1X," X2 Xy (5-32e)

Taking all the above into account, Equation (5-31a), (5-31b)

are rewritten as follow:

X1 = (Us- X1X1 2 X2X7_) kﬂ — Uzkaz

(5-33a)
Xz = (U;‘“ X'1-K4 =3 xlzz) ‘Q&.\ g W kfm
or
X1 ki&: (U3— X1X:1'— X1X-Z) h“k-'u B UQ_ h'ﬂ,kzi (5-33b)
zlk“ " (US" X" X1 3 XZX’J.) hi& hll = U‘l kn k”
By subtracting Equations (5-33b), it follows that
X, ki = X, kag = Urkiake + Us Rz k22
or X, = X1t—’1’1‘ + Uy ki + Us E%’l*-“
and
X1 - Usky — U, 1+ th?-'l)kﬂ"'UﬂXl‘QHtQm (5-34a)

('1+X11€u+ X2 Raa)




Analogously,
X, = Us Ryz = Uy (14 X2 Ry ) R1a =~ Usxq ko kia
2

(14 X Ry + Xg Rax)

(5-34a)
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\
In accordance with Equations (5-23), XqRy, XsRy5, are of the
same order of magnitude as the strain components, which are
|
small compared to the unity, and also X;RuRm, X|RyyRjq may be |

omitted, Thus, Equation (5-34a) is rewritten as follow

X4 % Usky=TUskn (5-34b)
X2 =~ Ushkyy + Uy Raa

Thus, the functions:Z4)§§z in Equation (5-34b) are of the

same arder of magnitude as the product of U,,Us, Us by the
curvature parameters of the axis of the rod in the strained
state, But the supplymentary displacements IL,I&,TJ; are
always very small compared to the lateral dimensions of rods,
Hence, since the products of the curvature parameters ku,hga,ha;
of axis of the rod by the lateral dimensions are of the same

order of magnitude as the strz2in components, one may conclude

that X, and X, are always small in comparison with the

elongations and shears., Similarly, it may be shown that the

three last téerms in the last of Equation (5-29) may be omitted.
Hence, with these approximation, the following

expressions for the strain components of a thin initially

hy 4 o U: U
By Byt -, Eaa™ Ean + 20 L= Ent {D*; + 0%,

D X4 0 X2

U1 | NUs

A
= -+ (
Ets = E4s + Xz Riz + Xy T s (5-35)

A

E — - X lQlil @2 @_QB
13= Ea3 1 + axs " Ar.

nUs
7 X

A
E33 = E3z3 + X4 h41+X:zh.!a’+ 5

|
prismatic bar are obtained:
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Adjusting the supplementary displacements 1L,1Jg)(h , one
may bring Equations (5-35) into agreement with boundary

conditions on the lateral surface of rod.

5.3 Pure Torsion

By subjecting a rod to a uniform torsion along its

whole length, it follows that

Bl | = ﬁ g ()

% = TXs where T, = QONSTANT.
Substituting u}P,‘x into Equations (5-20a), gives

Rur=Raz=0 , kyz=7T (5-36a)

Furthermore, by neglecting the strains which are uniformly

distributed along the cross-section of the rod, yields

[£1=0 (5-36b)
with
{&15 % 44 (5-36¢)
Noting the above, Equation (5-4a) is written in the form
Ui - (1-c05%tX3) sintxs o _ X4 U
Uy = | = 8inxs -(1-00s¥X3) O |4 Xop +< Uy (5-364d)
Us O 0 O | (X3 Us

Also Equation (5-35) is rewritten in the form
Eﬂzmﬂ" p) E,u= U P 6113@14‘-“}&

X4 @ Xy DXy X
€y = XA + /%% +/D/a___(;‘(i (5-36e)
Eaz= — X1V + % & %
€33 = ?ﬂ%

Setting
Uy =U.=0 U5=h,2(x5)¢(x1)xl)='-(:CP(MX;)_ (5-37a)
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then, Equations (5-36e) becomes

-

E'ﬁ = EQ; = 541 = 853 =0
tp =T (2 +X) (5-37b)
Biy = ¥ (22~ X)

and thus yields the equations of Saint-Venant's Theory of

torsion, It is noted that the displacements of points of the
twisted rod are determined by Equation (5-36d) not by the
expressions of the classical theory.(i.e., the first
approximation). Thus, in accordance with Equation (5-26a)

it is shown that

{1 = [o] {u} (5-37¢)
Substituting Equations (5-24b) into Equation (5-37c) gives
g oSUxXz  5inTxs  (-X1TsinTxs + X ws%xg)q
[G] =|-SNTXs  0sTxs (=X o5 x5 ~XaTSiNTK3)
o 0 1

Supposing that Ty K1 , i.e., assuming that the angles of
rotation under torsion are negligibly small compared to

unity, one obtains

din Txs % T3 (5-38a)
Los X 2 1.
Then, the matrix [G] becomes q
1 X3 ("Xq’tl)(g + X% )
(6] =] -2x 1 (=X1 T = X2 X3)
0 Q 1 ]

with "
el = 1+ T x




and =
1 VX3
(425 (14 *x3)
il R A+ X3
- Ty X4
-
Thus, Equation (5-37c) becomes
. [ X3
a
Tt +eixy)  (+hx3)
m # - | =X 1 .
‘ 1+0%3 1+ ¥ X5

It follows that,

a1=Oj J.l=o

Ur1= — XaX37
Wa= X1X3T
Us= T (X, Xa)

i

0

@)

,tcp (.X1 ,Xa)

5 Us = B D X5 X2) -
Substituting Equations (5-38d) into Equation (5-36d), yields
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- (5-38b)

(5-38c)

(5-38d)

(5-38e)

These are the classical displacement components for a slender

rod in pure torsion subject to negligibly small rotation

restrictions in comparison to unity,
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5.4 The Final Expressions for the Strain Components

of a Thin Rod

It can be seen that in the general case of the
deformation of a rod (when it is subjected not only to'
twisting but also to bending), Equations (5-23) are inadequate,
It may furthermore be seen that the necessary corrections
which must be introduced into these equations have the same
character in the general case as they do in the case of pure
torsion. More specifically, these corrections must be allowed
to remove the stresses which twist the rod and act on its
lateral surface, which arise unavoidably in using Equations
(5-23) (for rods of non-circular cross-sections). Hence
an attempt is made to construct a general theory of deformation

of thin rod by setting, as in the preceding section,

Up=Us=0 | Us= RaaXs)« § (x,%) (5-39)
Equations (5-36e) then assume the forms

Eu=En, Ep=En ,Ey=tp,

Ey= Eip + (@ + Xa) k12 (5-40)

Eap = E.La—\- (Mb - X1) Rig,

E33 Eg3 + X1 kl( + bli XJ, + Cb ('X1)x.t) g%’).

]

Equation (5-40) above are actually adequate for the problem
at hand, With them as a basis, a consistent theory of

deformation of flexible rods may be constructed, restricted
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only by the assumption that the elongations and shears are
negligible when compared to unity. The error in this theory
is estimated by comparing the elongations and shears with
the angles of rotation, since the former are neglected in

comparison with the latter in Equation (5-36e).
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CHAPTER VI
DISCUSSION AND CONCLUSIONS

6,1 Discussion

The tradition, established in the majority of books

on the theory of Elasticity, refer to the equation

2 2
(el = Cel+"%[le]+(ellw]-[wlle] ~[w]]
as the "components of a finite deformation." This evitably

implies that the equation

el = [€]

of the classical theory are the "components of an infinitesimal
deformation." Chapter II makes it completely clear, however,
that the degree of smallness of the elongations and shears
compared to unity is not at all a sufficient criterion for
passing from former equation to the latter equation. The
magnitude of the angles of rotation play an essential role
transforming the general case to the special case (i.e., the
classical linear case).

In some problems the use of the linear equations of
elasticity is inadmissible even for very small elongations
and shears (compression of a thin rod, bending of a thin
plate). 1In other problemes the linear equations are applicable
even though the elongations and shear are much larger
(extension of rod, bending a thick plate).

Thus, bo£h the nonlinear theory (case 1) and the

classical theory of Elasticity (case 4) deal with finite
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deformations, and, moreover, as a rule, with deformations of

the same order of smallness. Otherwise, the classical theory

would have no practical significance. The difference in

approach of these two theories in dealing with the determination

of strain consists only in that the linear theory neglects
the influence of rotations on elongations and shears, while
the nonlinear theory takes it into account.

As a result, the nonlinear theory embraces all
problem dealing with the elastic deformation of bodies,
while the linear theory applies only to a particular group
of problems.

It has been shown that nonlinearity is introduced
into the theory of elasticity in three ways.

1. The formulas for the strain components

(Equation (2-4c¢))

(] = [e]+"[led+ [el[w]-Cwlle]-[w]]
2. The equations of equilibrium of a volume

element of the body (Equation (3-34Db))

SVVIRILIT + 109U$RT = 1o}

3. The stress-strain equations (Equation (4-19))
(5 = 22 11+ 53 11105~ [e1] + 32 [cor(E1]

For the first two sets mentioned, the retention of the
nonlinear terms, is conditioned by geometric considerations,
i.e., the necessity. of taking into account the angles of

rotation in determining changes of dimension in the line
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elements and in formulating the conditions of equilibrium of
a volume element. On the other hand, nonlinear terms appear
in the third set if the strain exceeds in magnitude certain
physical constants characteristic of the material examined,
that is, the limits of proportinality. It follows that there
are four types of problems in the theory of elasticity,

1. Those having both materially and geometrical

linearity;

2. Those which are materially nonlinear but

geometrically linear;

3. Those linear materially but nonlinear

geometrically;

L, Those nonlinear both materially and geometrically

In problems of the first type, the angles of rotation
are of the same order of magnitude as the elongations and
shears, while the elongations do not exceed the limit of
proportionality of the given material, The simplest example
of this type of problem is the extension of a straight rod
by forces which keep the stresses within the limit of
proportionality.

In this problems of the second type, the angles of
rotation may be neglected in projecting the forces which act
on a volume element and in determining strains. However, the
elongations exceed the limit of proportionality and this
requires a nonlinear stress-strain relation. The example

given above becomes a problem of this type if it is complicated
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by the assumption that the stresses in the rod exceed the
limit of proportionality.

In problems of the third type, the angles of rotation
are essentially large (with strains not exceeding the limit of
proportionality). An example of this type of problem is
illustrated by the bending of a thin (steel) strip. It is well
known that strips of high strength material can straighten out
without traces of residual deformation after having their ends
brought topgether. Tnis condition reinforces the fact that in
these strips, even for large displacements and angles of
rotation, the stresses do not exceed the yield point (which,
for steel, is close to the limit of proportionality).

Finally, in problems of the fourth type, the strains
exceed the 1limit of proportionality and the angles of rotation

are so large that it is necessary to retain nonlinear terms

both in the stress-strain equations, the equations of equilibrium

of an element, as well as in the formulas for the strain
components. The preceding example becomes one of this type
if it is complicated by assuming that the stresses in the bent

strip exceed the limit of proportionality.
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6.2 Conclusions

The complete theory of Nonlinear Elasticity has been
formulated in this thesis utilizing the basic concepts of matrix
alecebra, matrix transformations and matrix calculus. The
nonlinear equations of the strain components, the equations of
equilibrium, and the stress-strain relationships are formulated
efficiently and completely in the total component form using
matrix techniques. This gives the reader a broad over view of
the total problems without reliance upon the mathematical
complexity of tensor calculus operation, or the extensive memory
capacity of a strict scalar components approached,

Matrix techniques although initially apply only to
the classical theory of Elascity have been shown in this thesis
to be even more efficient in their operations in formulating
and understanding the general nonlinear Elasticity theory.

Infact, the reduction from the general nonlinear theory to the

intermidate theories and finally to the classical theory is

most easily understood using matrix these technique, since the

required reduction in mathematical equations are performed by |

a systematically neglecting higher order terms in equations \

consisting of matrix series terms. w
It has been shown consistently throughout this thesis N

that basic matrix definitions play a fundamental role in the

formulation of the nonlinear theory. These operations include

the eigenvalue eigenvector problem, the concept of the three

matrix invariants, the concept of spectral decomposition, the

the definition of the trace of the matrix, together with the
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more basic definition of a matrix transpose, a matrix inverse,
the cofactor matrix, as well as the notion of a nonsymmetric
matrix, a sysmmetric matrix, a skew sysmatic matrix, orthogonal

matrix and a diagonal matrix.
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The comparison between the notations that are used
in this thesis and in the book "Foundations of the Nonlinear

Theory of FElasticity" by Novozhilov are given as follows :

CHAPTER 1I
Thesis Novozhilov
Xy Xp X3 X, Y, %
x4’ Xy, Xs X, ¥,z
Xy, X1, X3 B s Wou b
Uy , Uy, Uy u, v, w
LTI D
E,s Bys E Ey, Bys By
€, @11,833,2, 83, © 23 Cux, Py Pz Oy Oz, By
0.4.5 S P B
Wiy Wy, Ws Wy, Wy , Wz
CHAPTER 1T
Thesis Novozhilov

Ci1, a8, B 10,8, 803

Exx; 555)E7_z) Exj)EXZ>ESZ

7\1 ) 7\1,, 7\3 7\ b} YL) \7

d>l7.) d>‘3> d>-!3 [.ij, (PXZJ(P(\jZ'
PP P

€1961) €3 E4 5 Eg_,‘E}

q}'] 5 q}l; 4’3
~ ~ ~s ~n ~ ~
€11,82,%35,%1, €13, 3

d‘)"l,u’jk,w}

~ ~ ~ ~s ~ ~
Eu, Eas, B33, F12,E,%,3

Gx 5 Yy, §z

€y €11,33,%19,€13,893

Wy, W, , Ws

Ell D) E;J) Egg,Eu)Ela, Eﬁﬂ




Thesis

an®

bt 4

V1, T2, Vs

x x X
S;, Sy, 53
Fu PFu Fe
T T,
FTJT ’ Th . Tis

*

X *
VJ-I T;; Vls
AR A 4

BT A
W Ve Un
~ % s R ]
i T U
N* K ~ Y
Ta Vs Uss

- _
Ven Ve Ten

TRy TRax TRY3

CHAPTER III

| Vs Trox Vesp

Vo Vatin Voqs_

Twal Txax Taay

Vel Taza Tus

Novozhilov

aQ

Ve, W, Ve
* ¥ *
S)( 3 Sg 5 Sz
* % X
Un1 , Tna, Tn3

Ver » Ven Veg
Vg W Vg

Tee,  Ton Vos

!

Txx  Txy  Vxe
Tyx Ty Tyz

[ .

Vex  Vzy Vzz

f& Vﬁa Wﬁg
¥
Tz X Vzﬁ TZZ

>2 Vﬁ% Vi;l

N T Sy
O/ XAy of K3
0<>0<« 0\1"1 0’\1!?‘3

N
oy o1 d}ﬂ‘; Ky K3
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CHAPTER IV
Thesis
dw
Q
X % ¥
fxq’ fxg_’ fxg
CHAPTER V
Thesis
K, 5 k.’li,kll‘

%1 9 v:li_, \7IL
U, J) Uy, Us
EL; X-2
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Novozhilov
dA
X X ¥
fg fyL fs

Novozhilov

Kyx, Kyy, Kxy

Vix 5 Vyy » Vy
u,?0,™

XY
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APPENDIX IT




The definition and the relation of the trace of

the matrices is expressed as follow

Trace [A] = ay t agt agta,t o000 8p,
where
& F
I:A] = Ay A3 Q8 A - - - -- A n ]
8y Ay 333 334 - - - - 2an
3;3‘ a3y 9:53 ?34 -~ --3asn
] [
| ) ; | ]
|
AN B A '
L @n 2ny g Ama---- -2apn |

n

square matrix

Trace [A] = Trace [A]T

Trace[[A]i[B]]

Trace [[A][B]] Trace[[B][Al]

Trace[{a}{bf] % a}T{b}

trace [{v}{{aY[A]}] y
= Trace [[{v}{a?][A]] + Trace [5[ a%{{‘;}[ A]”

Trace [A] + Trace [B]
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