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In this paper, stochastic control theory is applied to the pro-

blem of designing a digital flight compensator for terminal area guidance 

along a helical flight path as a prelude to landing. The development of 

aircraft, wind and measurement models is discussed along with a control 

scheme consisting of feedback gains multiplying estimates of the aircraft 

and wind states obtained from a Kalman one-step predictor. Preliminary 

results are presented which indicate that the compensator performs satis-

factorily in the presence of both steady winds and gusts. Finally, a 

derivation of the control and predictor equations is presented in the 

appendix. 

WILLIAM F. MAAG tle~M 5 ~ 
YOUNGSTOWN STATE UNIVERSITY 
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1. INTRODUCTION 

During the past few 4ecades airports have .'become more and more 

the focus of a tremendous amount of activity. As a result, the number of 

problems associated with airport traffic has risen dramatically. Among 

the more pressing areas of c-0ncern are high noise levels near airports, 

fuel conservation, and weather-induced delays, diversions, or closures. 

In order to alleviate some of these problems, l~ASA and the FAA have 

jointly initiated a long range research effort, the TermH1al Configured 

Vehicle (TCV) program. Among the objectives of the TCV program are 

increased capability for zero-visibility operation, reduced air delays 

and route time, avoidance of sensitive areas, and reduced noise source 

intensity. These objectives can be met, at least partially, through the 

development of precise automatic control along steep, curved approach 

paths. Such paths would allow more efficient scheduling of arriving 

aircraft, avoidance of sensitive areas, all-weather automatic landings, 

and reduced noise intensity for areas near airports with a fuel saving 

over the use of engine acoustic treatment and low approach angles. 

A prerequisite to such precise automatic control is the develop

ment of improved ground-based navigation and guidance systems along with 

improved airborne control systems. The ground based improvements in 

terminal area navigation and guidance will be provided by the Microwave 

Landing System (MLS). The MLS will periodically provide accurate range, 

elevation and azimuth information to the on-board control system. 

The purpose of this thesis is to present an application of stochas

tic control theory to the problem of designing an airborne control system 
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that uses the MLS data for terminal area guidance of a Boeing 737 along 

a helical flight path as a prelude to landing. A design method is pre

sented which · is composed of three steps. First, a system model is pre

sented consisting of an aircraft model, wind model and measurement model. 

Next, the digital compensator design is presented. Finally, a digital 

simulation showing the system response using the above compensator is 

presented. 

The modeling chapter of this thesis consists of a brief su111T1ary 

of the development of the system models. This chapter is divided into 

three sections. The first contains information concerning a perturbation 

analysis performed on the general, nonlinear equations of flight about a 

helical equilibrium. The resulting model consists of six degrees of 

freedom and three kinematic constraints along with three earth positions, 

three actuator state variables (thrust, throttle and stabilizer) and six 

contols (throttle rate, stabilizer rate, elevator, rudder, aileron and 

spoiler). 

The second section summarizes the wind model which is composed 

of a linear system that processes white noise into a state vector whose 

components exhibit the Dryden spectra. Included in this vector are three 

linear gust velocities, three rotaional gust velocities and two horizon

tal steady wind components. 

Concluding the modeling chapter is a discussion of the develop

ment of a measurement model. The model is comprised of a set of nonlinear 

equations linking navigation and guidance data obtained from the MLS and 

on-board sensors to the total states of the aircraft/wind system. Also 

taken into account are measurement noise effects. 

The next chapter of this thesis deals with the design of a digiral 

compensator. The linear-quadratic-gaussian theory of stochastic optimal 



control provides the basis for this design. The compensator is made up 

of a Kalman predictor, used to obtain estimates of the aircraft and wind 

states from the measurements, and a set of control gains, used with the 

above estimates to obtain appropriate control actuator inputs. This 

section describes the -details of the control gain and predictor design. 

The final chapter of the thesis deals with a digital simulation 

of the compensated system. This chapter begins with a discussion of 

how· the simulation is used as a basis for judging the performance of a 

design and as a tool for "fine tuning" an unsatisfactory design. Follow

ing this, preliminary results using the controls obtained by the methods 

described in chapter 3 are presented for a specified segment of a descend

ing helix. These results indicate that satisfactory control can 

be obtained in the presence of both gusts and steady winds. Concluding 

the section is a discussion of the results and of the design method. 

Included in the discussion are some suggestions for further study and a 

summary of some of the computational difficulties involved in the present 

study. 

The appendix is used to present an outline of the derivations of 

the algorithms used to compute the predictor and control gains. This 

section is heavily documented to provide the interested reader with other 

sources containing more details of the theory applied in this thesis as 

well as more detailed mathematical proofs and derivations of the above 

gains. 
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2. THE SYSTEM MODELS 

In this chapter1 the aircraft, wind, and measurement models are 

developed. In Section 2.1, the nonlinear equations of motion are presented 

and a perturbation model about a helical equilibrium of those equations 

developed. The wind model, consisting of a linear system subjected to 

white noise, yielding wind components exhibiting the Dryden spectra, is 

presented in Section 2.2. Finally, the MLS data as well as on board sensor 

readings are expressed in terms of state variables and inputs, and a suit

able linear measurement model is developed in Section 2.3. 

2.1 The Aircraft Model 

The following development is carried out assuming the Earth is an 

inertial system and is locally flat. The notation here follows closely 

that in Etkin [2]. Thus, FI and FE denote inertial and Earth reference 

frames, respectively, and VI and vE denote a vector quantity V measured 

with respect to F1 and FE' respectively. Also, ~ denotes the vector V 

measured with respect to FE expressed in Fv coordinates. Thus, under the 

assump·tion·s above, if Vis the mass center velocity of an aircraft, 
...£ ...£ VE = Vv . 

Let W denote the wind velocity with respect to the Earth (i.e., 

W = wE) and let FA be an atmosphere-fixed reference frame. Also, let V 

denote mass center velocity with respect to FA (i.e., V = vA). Then 

vE = W + V. It will be convenient to express the wind velocity as the 

sum of a steady wind Ws and gust term Wg. Then vE = V + Ws + Wg. 

The force equation, f = mac, where ac is the mass center inertial 

1The material in this chapter closely follows Foulkes ·. [1]. 



acceleration and f is the external force, will be expressed in the body 

axis reference frame. Under the assumptions stated above, ac =VE, so 

that 
_ .!..E --8 ..£ i 

acB - VB + wB x VB , 

where W: = [p q r]'
2 

is the angular velocity and~ is the mass center 

inertial velocity, both expressed along body axes. 

5 

In order to use airspeed V, angle of attack a, and sideslip angle a 
' as state variables, VB is expressed as LBW VW, where Vw = [V O O]' and 

LBW transfonns wind-axes components into body-axis components (see [2 ]}. 

Then 

acB = ~t (LBW VW + LBV WsV + WgB) 

+ ~ x (LBW Vw + LBV ws + wg } 
V B 

d ~ . . ~ 

= dt (LBw Vw) + wB x LBw Vw + w + wB x w 
gB gB (2.1.1) 

The external force is computed as fB = AB + m gB + TB' where AB is 

the aerodynamic force, TB is the thrust, and mgB the gravity force. The 

scalar components of gB are given by 

gB = [- g sine g cos e sin~ g cos e cos~]'. 

To get the scalar components of TB' it is assumed the thrust vector is in 

the xz-plane of the body-axis frame and makes an angle aT with respect to 

x-axis. Then 

1The dot notation is used for time differentiation. Thus, x means 
dx/dt. 

2Vector quantities are treated as column vectors; the prime means 
transpose. 
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where T is the thrust magnitude, The aerodynamic force is given in tenns 

of the lift L, sideforce Y, and drag D: 

AB = LBW Aw = Lew [ ~ r l 
To put the force equations in state variable form, the scalar com-

ponents of ac
8 

= ~ T8 are written out and solved for V, $, and a, yielding 

• T D V = m cos {ex. + cx.T) cos 13 - m 

+ g {- cos ex. cos 13 sin e + sin S cos e sin ¢ 
' 

+ sin ex. cos 13 cos e cos ¢) 
. . 

- ug cos ex. cos ~ - vg sin 13 - wg sin ex. cos 13 

+ ug {-r sin 13 + q sin ex. cos 13) + vg{r cos ex. cos 13 - p sin ex. cos .s) 

+ w {-q cos ex. cos 13 + p sin 13) {2.l.2a) g 

. T y 
13 = IDV cos {cx.+cx.T) sin 13 + mV 

+~{cos ex. sin 13 sine.+ cos 13 cos e si~ ¢ - sin ex. sins cos e cos¢) 
u v 

~ cos ex. + p sin ex. + v9- cos ex. sin 13 - { cos 13 
w u 

+ v9- sin ex. sin 13 - v9-{r cos S + q sin ex. sin S) 
v . 

+ { {p sin ex. sin 13 - r cos ex. sin 13) 

. w 
+ '.jl {p cos 13 + q cos ex. sin S) 

~ = - V T 13 sin {ex. + ex....) m COS I m v cos e 
+ V c~s 13 {sin ex. sin e + cos ex. cos e cos ¢) + q 

u 
r sin ex. tan S - p cos ex. tan S + V 9 

13 sin a cos 
w

9 
u 

V cos S cos a + V c~s S {q cos ex.) 

v :~s 13 (p cos ex. + r sin ex.) + v :~s a {q sin a) 

{2. l. 2b) 

{2. l. 2c) 
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Following [ 2], the vector moment equation is G = h, where G is 
. 

the external moment and h is the angular momentum. Assuming I = 0 and 

neglecting any elastic components of h, Fl8 = I ~' where I denotes the 

body axes moments of inertia. Then G8 = 118 + ~xn8 = I ~ + ~ xI W: . 
The scalar moment equations are given below for the case of a rigid 

body with a plane of symmetry, where tr8 = [L MN]': 

L = Ix p - Izx r - Izx pq - (Iy - Iz)qr 

. 2 2 ' 
M = Iy q - Iz(r - p ) - (Iz - Ix) rp 

N = Iz r - Izx p - Izx qr - (Ix - Iy) pq. 

To arrange in state variable form, the equations are solved for 
. 

p, q, and r: 

I(I -I)-I 2 
pq + z Y z zx qr 

I I - I 2 
x z zx 

7 

+ I I - I 2 L + 
Ix I - I 2 N (2. 1. 3a) 

x z zx 

I 2 + I (Ix - Iy) 
r = zx x 

2 
Ix 1z - Izx 

+ 
I Iz - I 2 
x zx 

L + 

Z ZX 

M (2. l.3b) 

I (I + Iy - lz) zx x 
pq + I I - I 2 

x z zx 
qr 

N (2. l. 3c) 

Since p, q, and r are components of inertial angular momentum 

(along body axes), the only wind effects in these equations are the 

effects of the gust angular velocities Pg' qg, and rg on the e~ternal 

f LUAM F. MAAG dB 4r S .;; 
YOUNGSTOWN STATE UNIVERSl.T1 
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moments L, M, and N, These effects will be taken into account in the 

development of the perturbation model. 

In addition to the six-degrees of freedom presented above, the 

basic nonlinear model contains three kinematic constraints relating body

axes Euler angle rates to the body-axes angular velocities p, q, and r: 

' ¢ = p + q sin ¢ tan e + r cos ¢ tan e 

' e = q cos ¢ - r sin ¢ 
. ' w = (q sin ¢ + r cos ¢) sec e 

(2. l.4a) 

( 2. 1. 4b) 

(2. 1. 4c) 

In order to choose Earth position variables, it is assumed that 

the helix center is known with respect to some fixed reference point such 

as the MLS origin. Then the Earth position is described in cylindrical 

coordinates with origin at the helix center at ground level. The position 

variables are radius R, angle v, and vertical Earth position zE; their 

rates are given by 

R = V(A cos v + B sin v) - WR + ug cos e cos (w -v ) 

+ vg (sin ¢sin e cos (w - v) - cos ¢ sin (w - v)) 

+ w (cos ¢ sin e cos (w - v) + sin ¢ sin (w - v)) g 

V WT u v = R ('B cos v - A sin v) + R-+ if cos e sin (w - v) 
v 

+~(sin¢ sine sin (¢ - v) + cos¢ cos (w - v)) 

w 
+ ifl (cos ¢ sin e sin (¢ - v) - sin¢ cos (w - v)) 

(2 .1. 5a) 

(2.1.5b) 

iE = - V sin y - ug sin 8 + v
9 

sin ¢ cos 8 + w
9 

cos ¢ cos e 

(2. l.5c) 

where A = cos a. cos 13 cos e cos w + sin 13(sin ¢ sin e sin w - cos ¢ sin w) 

+sin a. cos 13 (cos¢ sine cos w + stn ¢sin w), 
B = cos a. cos 13 cos e sin ¢ + sin 13 (sin ¢ sin e sin ¢ 

+cos¢ cos¢)+ sin a. cos B (cos¢ sine sin w - sin¢ cos w), 



sin y = cos a cos. S sin e - sin S sin ~ cos e 

- sin a cos S cos~ cos e, 

and WR and WT are the (inward) radial and tangential components of the 

steady wind, respectively. 

9 

The remaini.ng state variables in the ai·rcraft model result from 

modeling the thrust-throttle and stabilizer actuator systems. The thrust

throttle relation is modeled as a first-order lag with a time constant of 

0.5 second. In addition, the conunanded input will be throttle rate, so 

that throttle position also becomes a state variable. Finally, stabilizer 

rate is co1T111anded so that stabilizer position is considered a state vari

able. The relations describing the behavior of these variables are given 

with the development of the perturbation model. 

The nonlinear aircraft model consists of the force equations (2.1.2), 

the moment equations (2.1.3), the kinematic constraints (2.1.4), the inertial 

velocity equations (2.1.5), and the actuator state variable equations. 

The model can be represented as a single no.nlinear vector equation 
. . 
X = f(X, U, W, W), 

where 

x = [V sap q r ~ e w R v ZE T TI~]· 

is the total state vector, 
. . 

u = [rr ~ oe or oa osp]' 

is the input vector, and 

w = [ug vg wg Pg qp rg WR WT]' 

is the wind vector. 

The perturbation model consists of the first-order terms in a Taylor 

series expansion of the nonlinear equation about a descending helical 

equilibrium. The equilibrium is determined under a zero wind condition by 
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solving the nonlinear equation . 
Xe= f (Xe' Ue, O, 0), 

where the subscript e denotes an equilibrium value! In order to find a 

unique solution, additional constraints are provided by choosing equilibrium 

values for airspeed Ve' bank angle <Pe' and angle of elevation Ye' and by 

constraining the aircraft to fly a "truly banked" turn [2 ], This means 

that the aircraft angular velocity is constant and vertical and that the 

sideforce is zero. 

The constraint equations were solved numerically for a specified 

airspeed of 120 knots, bank angle of 15°, and angle of elevation of -3° using 

data for the Boeing 737 used in the TCV program. In addition, from the 737 

data, the first partial derivatives of the force equations (2.1.2), moment 

equations (2.1.3), and kinematic constraint equations (2.1.4) with respect 

to V, S, a, p, q, r, cp ·e, and~ were evaluated numerically at the equili-

brium. These derivatives are the coefficients of V, S, a, p, q, r, cp, e, 

and~ in the perturbation model. 

The coefficients of the wind terms in the perturbation model as wel l 

as all coefficients in the inertial velocity equations (2.1.5) were computed 

by evaluating the appropriate partial derivatives at the equilibrium. The 

coefficients of the angular gust velocities Pg' qg, and rg in the moment 

equations were computed by evaluating the partials of the aerodynamic terms 

with respects to p, q, and r, respectively. 

The remaining equations in the perturbation model describe the 

actuator system state variables, viz •. , thrust, throttle, and stabilizer. 

Other actuator variables (elevator, rudder, ~ileron, and spoiler), in 

addition to stabilizer rate and throttle rate, are used as corrrnanded inputs. 

The thrust-throttle relation is given by 

oT = - l oT + 626,66 on 
2 2 
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where oT is the thrust in pounds from the equilibrium value and oTI is the 

throttle setting in degrees from the equilibrium throttle setting. The 
• 

last two equations simply state that throttle rate (TI) and stabilizer rate 
. 

(~) are conunanded inputs, 

Using the state vector 

x = [oV oB oa op oq or 0¢ oe o~ oR av ozE oT oTI o~J·, 

the input vector 
• • 

U = (oTI 0.S oe 0 0 1 0 ] I r a sp ' 
and the wind vector 

w = [ug vg wg Pg qg rg WR WT]', 

the perturbation model in usual state-variable form is 
. 
x = Ax + Bu + 001 w + 002 w • (2.1.6) 

Note that all coordinates of the vectors are perturbations. 

In order to minimize the variance in the magnitudes of the entries 

in the coefficient matrices A, B, 001 , and 002 , nonnalized variables are 

used. The translational velocity variables oV, ug vg' t"g.' WR' and WT are 

normalized by the equilibrium airspeed Ve. Hence x1 (the first state 
u 

variable)= ~V, e.g., while w1 = V9-. Also, angular positions and velo-
e e 

cities are expressed in radians and radians/second. The helix radius i s 

normalized by the equilibrium radius Re' so that x10 = ~: . Finally, both 

vertical Earth position ozE and thrust oT are normalized by a factor of 1000. 

2.2 The Wind Model 

As seen in section 2. 1, the wind vector in the aircraft model consists 

of three translational gust velocities ug, v~, and wg; three rotational gust 

velocities Pg' qg' and rg; and two steady wind components WR and WT. The gust 

velocities, all of which are components along the body-axes, are modeled as 
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having the Dryden spectra and are produced for simulation and filter design 

purposes by a linear system processi.ng white noise. As an example of the 

linear system design, consider the gust velocity u , normalized by the 
. g 

equilibrium airspeed Ve. The power density spectrum of the normalized ug is 

[ 3 ] 
2L 2 

u0 u 
v 3 
e l + 

, where ou is the rms gust velo-

city in ft/sec, Lu is a turbulence scale factor in feet, and w is the fre

quency variable in rad/sec. 

Now, if a linear system with 

H(jw) = l 
L 

1 + jw ~ 
Ve 

is subjected to a white noise 

transfer function 

input with variance 02 = 
2L o 2 

u u 
V 3 , the 

output is a random process with the spectrum ~u .(w) [ 4 ]. e A system 
. g 

with the required transfer function is described in state-variable form by 

2L 2 
U OU 

where s1 is a mean zero white noise process with variance ~V-3~- , Xwl 

is a state variable, and w1 is the output having the required e spectrum. 

The remaining gust velocities are generated in a similar manner. 

The spectra of the gust components are shown in Table 2.2.1. 

As indicated in the previous section, WR and WT are the radial and 

tangential components of the steady wind (figure 2.2.1), which are related 

to the n·arth wind WN and east wind WE by the spiral angle v: 
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VELOCITY SPECTRUM* 

2L a 2 
l u u 

ug v 3 L 
e 1 + ( u w )2 v; 

L 
L ·cr 2 l + 3 (_y_w) 2 

Translational ' vg 
v v Ve 
v 3 L 2 
e 1 + (-v- w)2 

Ve 

L. 

L (J 2 1 + 3 (~ w)2 

wg 
w w Ve 
v 3 L 2 
e 1 + (2L w)2 

Ve 

1 
2 7TLW "! 

0.8dw (w) l 
Pg Lw Ve 

1 + (4b w)2 
7rVe 

2 w 
<I>w . (w) 

Rotational qg 
1 + (4b w)2 

7rVe 
g 

w2 
~v (w) rg 3b )2 l + (7TV 

g 

e 
" 

Table 2.2.1. Gust Spectra (Dryden) 

*Lu' Lv' Lw are turbulence scale factors. b is the aircraft wing 
span. Ve is equilibrium airspeed. au' av' ow are rms translational gust 
velocities. 
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N 

Figure 2.2.1. Steady Wind Components 

WR= WN cos v +WE sin v (2.2.1) 

. . . 
Thus, WR = - v WT and WT = v WR. (2.2.2) 

For simulation purposes, north and east winds are selected and WR 

and WT are computed using equations (2.2.1). For the filter design, 

because a constant coefficient wind model is desired and the equilibrium 

wind is zero, equations (2.2.2) are approximated by 

• 

w = T 
(2.2.3) 

where ve is the equilibrium spiral angle rate, which is constant and equal 

to Ve cos Ye/Re. 
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Putting together the. gust system equations and the steady wind 

equations (2.2.3) yields a time-invariant, linear wind model of the form 

where z; is the white noise vector generating the. gusts, xw is the state 

vector of the wind model, and 

is the wind vector used in the perturbation model. In order to use~ in 
. 

the perturbation model equations, w = Cw ~ and w = Cw~~+ Cw Bw z; 

are substituted into equation (2.1.6) to give a combined aircraft/wind 

model: 

x = A x + Bu + Do xw + D1 I:; 

~ = Aw xw + Bw z; (2.2.4) 

2.3 The Measurement Model 

Measurements available for control purposes consist of the MLS data 

(range, azimuth, and elevation) and a number of on~board sensor readings. 

The total measurement vector is 

y = [~ Az El p q r ¢ e ~ V hb hb x8 .Y8 i 8J' 

where ~. Az, El are the MLS data; p, q, r are angular velocities from rate 

gyros; ¢, e, ~ are bank angle, pitch, and heading from position gyros; V is . 
an airspeed indicator reading, hb and hb are barometric altimeter and 

vertical speed indicator readings; and x8, yB, i
8 

are body-mounted acceler

ometer readings, 

The total measurements are computed for simulation purposes by 

computing the total state variables as equilibrium values plus increments 



and expressing the measurements in terms of the states. In order to 

compute the MLS data, it is assumed that n, Nz., and El are measured 

with respect to a corrmon origin and that the helix center is known with 

respect to that origin. If the ground coordinates of the helix center 

with respect the MLS origin are (x0, y
0

), then (see figure 2.3.1) 

n 

----
El Az 

.. .... 

--

.... 

___ ... 
__ .,,.. I 

I 

: -zE 
I 
I 

,, 
, , , , 

Figure 2.3.1. MLS Coordinates Definitions 

n = -"1 (x0 + R cosv) 2 + (Y
0 

+ R sinv) 2 + zE2 

Az = tan - l - 0-----[
y +Rsinvl 
x0 + R cos v ' 

El = [ 

- ZE 
-1 2 

tan -./ (xd + R cosv) 2 + (y
0 

+ R sinv) 

~o 

] ' 
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where R, v, and zE are coordinates 10, 11, and 12 of the total state vector 

(seep. 9).· 
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The fourth through tenth measurements are the same as total states. 
. . 

Also hb = - zE and hb = - zE = Ve sin ye - 1000. x12 , where the derivative 
. 
x12 is computed from equation (2.2.4). Finally, expressions for the accel-

erometer readings are obtained by writing out the scalar components of the 

acceleration acB from equation (2.1.l): 

~B = V cos a cos S - V S cos a sin S . 
- V a sin a cos S + u - Vr sin S 

g • 

+ Vq sin a cos S - r vg + q wg 

~ . 

y = V sin S + V S cos S + Vr cos a cos S B 

- Vp sin a cos S + vg + r ug - p wg 

• z = V s i n a cos S - V S s i n a s i n S B 

+ V a cos a cos S - Vq cos a cos S + Vp sin S 

+ w - q u + p vg . g g 

(2.3.la) 

(2.3.lb) 

(2.3.1c) 

In the simulation, the measurements are generated using the above 

formulas along with random noise effects. Except for the airspeed and 

vertical speed indicators, the noise is an additive, white~ mean zero 

Gaussian process with standard deviation as shown in Table 2.3.l (see 

[ 5] and [ 6 ]). The airspeed and vertical speed indicator noises are 

multiplicative, where the indicated measurement is obtained by multiplying 

the actual measurement by a normal random variable of mean 1 and standard 

deviation as given in Table 2.3.1. 

The incremental measurements to be used with the perturbation 

model are to be of the form 

y = c x + c x + v, w w 
Where v is a noise term and x and xw are the aircraft and wind model state 



MEASUREMENT 

Range 

Azimuth 

Elevation 

Rate gyros (p, q, r) 

Bank gyro 

Pitch gyro 

Heading gyro 

Ai rs peed · 

Barometric altimeter 

Vertical speed indicator 

Accelerometer (xB' zB) 

Accelerometer (y~) 

NOISE STANDARD DEVIATION 

1 foot 

0.41 x 10-3 rad 
-3 0.61 x 10 rad 

0.1 deg/sec 1 

0.5 deg/sec 1 

0.15 deg/sec 1 

1. deg/sec 2 

.022 

27.5 feet 2 

.05 2 

(.005) 32.2 ft/sec 2 1
. 

(.0005) 32.2 ft/sec 1 

Table 2.3.1. Measurement Noise Standard Deviations 

1See reference [·5] 

2 See reference [6] 
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vectors, respectively. These measurements are processed from the total 

measurement vector y discussed above. The first 12 coordinates of the 

incremental measurement vector y are given below. 

y - <SR = x 
l - Re lo 

y2 = ov = x11 
oz 

Y - E - x 3 - 1000. - 12 
I 

yK = xK, K = 4 ,5, .•. , 9 

oV 
Y10 = V = xl 

e 
ohb 

Y11 = 1000. - - xl2 

1000. 
xl2 Ve 

1000. 
Ve 

19 

where E~ denotes a row vector with j coordinates, all 0 except the ;th, 

which is 1. The last three incremental measurements are derived from the 

accelerometer readings by expanding the acceleration equations {2.3.l) 

about equilibrium values, keeping through first-order terms only, and 

defining the measurement as the difference between the total acceleration 

and the terms in the expansion involving the equilibrium values and controls. 

Thus, 
x8 = - Vere sin Se + Ve qe sin ae cos Se 

+ cos ae cos Be oV - Ve cos ae sin Be oB 
. . 

Ve sin ae cos B oa + u + (-r sin B + q sin ae cos Be) oV e g e e e 

Ve (re cos Be + qe sin ae sin Se) oB 

+ Ve qe cos ae cos Be oa • Ve sin Be or 

+ Ve sin ae cos Be oq - re v9 + qe w9. 



20 

Substituting from the perturbation model equations (2.2.4) for the deriva

tives and putting the control and equilibrium terms on the left-hand side 

gives 

Y13 = xB + Ve re sin Se - Ve qe sin a.e cos Se 

- v e cos a.e cos S ElS 
e l Bu + v e cos a.e sin S ElS 

e 2 Bu 

+ v e sin Se cos E El5 
e 3 Bu (2.3.2a) 

= Ve cos cie cos S ElS (Ax + 0
0 

><w) e l 

- v e cos ae sin S ElS 
e l (Ax + 0 . x ) 

0 w 

V sin cos 0 Els (Ax + D x ) e a.e µe l o w 

+ Ve _ (-re sin Se + qe sin a.e cos Se) x1 

+ Ve (qe cos ae cos Se) x3 + Ve sin a.e cos Se xs 

- Ve sin Se x6 + E~ Cw Aw xw - re E~ Cw xw + qe E~ Cw xw (2.3.2b) 

The incremental measurements derived from y8 and i 8 are handled 

in a similar way. Finally, the y13 , y14 , and ylS measurements are all 

normalized by dividing by Ve. 

As seen from the above discussion the fifteen incremental measure-

ments are linear ftinct1ons of x and xw. Thus, y may be written as 

y = c x + c x + v w w 
where v is a noise term that depends on the noise in the total measurements. 

This expression for y is used in the filter design later. In the simula

tion, y is processed from Y by using equations such as (2.3.2a) for the 

accelerations and by subtracting equilibrium values from total measurements 

in the other cases . For y1, y2, and y3, total helix radius R, helix 



angle v, and vertical Earth position zE must be calculated from range, 

azimuth, and elevation. The equations are 

R = ~ (n cos El cos Az - x
0

)
2 + (n cos El sin Az - y

0
)
2 

_1 [ n cos El sin Az - y0 J 
v = tan n cos El cos Az - x

0 

zE ~ - n sin El . 

21 

The noise effects i n the incremental measurements are assumed to 

be white, mean zero Gaussian processes with standard deviations that are 

the same as for the total measurements except for the noise terms in y1, 

y2, y3, y10 , and y12 . Since y10 = (1 +Ev) V, where Vis total airspeed 

and Ev is a mean zero Gaussian random variable with 0.02 standard devia

tion, the standard deviation of the perturbation airspeed was approximated 

by 0.02 Ve. Similarly, the standard deviation of the perturbation sink 

rate was approximated by 0.05 times the equilibrium sink rate. 

The standard deviations in the helix radius, helix angle, and 

altitude perturbations derived from the MLS data were approximated using 

the standard deviations of the MLS data. For a helix radius of about 5000 

feet , an initial altitude of 3000 feet, and helix center ground coordinates 

of x
0 

= 0 and y
0 

= 2Re' the altitude standard deviation was approximated 

by the maximum range times the standard deviation in the elevation. This 

result was rounded to 10 feet. The radius standard deviation was approxi-

mated by t he average distance to the helix ground track times the standard 

deviation in the azimuth. This result was rounded to 5 feet. Finally, the 

helix angle standard 'deviation was approximated by the standard deviation 

in the azimuth, multiplied by the ratio of the maximum distance to the 

helix ground track to the nominal helix radius, and the result rounded to 

10-3 radian. 
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3. THE DESIGN OF A CONTROL SYSTEM 

Using the aircraft, wind and measurement models presented in the 

previous section the problem can be restated mathematically as a varia

tion of the Linear-Quadratic-Gaussian (LQG) problem of stochastic control. 

It can be classified as a time-invariant, linear, stochastic regulator 

problem. 

The total system, including the aircraft, wind and measurement 
' 

models, can be mathematically stated as follows: 1 

x(t) = A x(t) +· Bu(t) + D
0
w(t) + o 1 ~(t) 

~(t) = Aww(t) + Bw~(t) 

y(t) = C x(t) + Cww(t) + v(t) 

for t
0 

< t < tf 

( 3. 1 ) 

(3.2) 

(3.3) 

where x, u, wand y are the state, control, wind disturbanceand measurement 

vectors respectively, v(t)is a white, gaussian vector of measurement noise 

and ~(t) is a white, gaussian noise vector that drives the wind system 

and corrupts the aircraft system. The other matrices (A, B, 0
0

, o1, Aw, 

Bw, C and Cw) are time-invariant with appropriate dimensions. 

The next step is to establish some criteria against which we 

can judge the performance of the solution. For the regulator problem 

we use a quadratic cost functional of the form 

J = t df [x ' (t) Qx(t) + u' (t) Ru(t)] ~ 
tf 

to 

(3,4) 

where E is the expectation operator, the prime denotes the transpose, 

and both Q and R are positive definite, time-invariant weighting matrices. 

--- - - ·- ·-· ---·----- --·-

1All quantities are small-signal. 
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The problem can now be stated as follows. Given the linear system of 

equations(3.l-3.3),find a control u such that the cost functional J of 

equation (3.4)1s minimized. 

The first step in solving this problem is to transform the 

system of equations(3.l-3.4)into their discrete-time equivalents. This 

is done for several reasons. First, a digital compensator is desired 

since the on-board computer is , digital and any control algorithm must be 

' compatible with a digital system. Secondly, the MLS data is only pro-

vided periodically. Therefore, the measurement system is inherently a 

discrete-time one. Finally, a digital simulation is used to test each 

design. Therefore, the discrete-time equivalent difference equations 

make the simulation very easy to implement on a digital computer. 

The equivalents are obtained by integrating the system differ

ential equations and cost functional over each sampling period [ 7 ]. 

This can be seen by examining the linear differential equations(~.l)and 

(3.2). For bounded u(t), t
0 

< t < tf, the well-known solution is of the 

form: 

x(t) 

t 

~ (t,s)D1 + (! 

qi(t,s)Bu(s)ds 

cjl ( t , a )D0 ~ w(q, s)d~Bw] qs)ds 

( 3 .. 5) 
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w( t) = ct> (t,s)B r;;(s)ds w w (3.6} 

to 

where cf>w(t~t0 ) and cf> (t,t
0

) are state transition matrices which satisfy 

differential equations of the form: 

frt cf> (t,s) = A(t) cf> (t,s) t > s 

ct>( s>.s) = I where I is the identity matrix. 

The discrete-time equivalents of(3 . l)and(3.2)can now be obtained 

from(3.5)and(3.6)by changing the .interval of integration from [t ,t] to 
0 . 

[tk,tk+l]. If we restrict u(t) to be constant over the sampling period 

(i.e. u(t) = u(tk) for tk < t < tk+l), the resultant discrete-time equations 

are [7] 

where xk = x(tk), uk = u(tk), wk= w(tk), 

A(tk+l-tk) 
cp = cf> (tk+l' tk) = e 

Aw( tk+, -tk) 
cp w = cf> w(tk+l' tk) = e 

r, = r l (tk+l' tk) = 
[ f tk+l 

tk 

and 

~ (tk+l 's)d.s] B 

(3. 7) 

(3,8) 

(3 .9a) 

(3 . 9b) 

(3.9c) 
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(3.9e) 

(3,9f) 

Note that in the general time-varyi ng case these equations must 

be computed for each time interval. However, since the problem considered 

here possesses time-invariant system matrices and a fixed sampling period, 

the corresponding discrete-time equivalent matrices are time-invariant. 

Thedi.screte-tjme equivalent measurement equation can be obtained 

directly from the continuous time equation: 

Yk = Cxk + Cwwk + vk 

where vk = V(tk) and yk = y(tk). 

(3,10) 

Finally, the discrete-time equivalent of the cost functional (3,4) 

can be written as a sum of n i ntegrals similar to those in equation (3 ,9). 

Using ( ~. 5), the resultant expression for the cost functional becomes [7.8] 

where the new cost matrices are given by: 

( 3 .. l 2a) 
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tk+l 

"' A _f M = M = ¢'(t,tk)Q r 1(t,tk)dt k (3,12b) 

tk 

tk+l 

[ R + "' "' f J R = R = ri(t,tk)Q r 1(t,tk) dt k 
tk 

(3,12c) 

A "' 
tk+l 

f ' N = N = qi I ( t' tk) Q r 2(t,tk)dt k 
tk 

Once again, note that since the original system and cost matrices 

are time-invariant the discrete-time cost matrices are time-invariant. 

An interesting feature of this cost functional is the presence 
,... A 

of cross terms in the form of M and N. These come about because the 

physical system to be controlled is continuous and the original cost 

functional penalizes the state variables and controls continuously not 

just at the sampling instants. 

Another, more subtle example of this phenomena can be found by 
,.. " examining Q and R. In this case, as in most cases, the weighting 

ma t rices Q and Rare chosen to be diagonal. This is done mainly because 

off-diagonal terms have very little physical meaning. However, even for 

diagonal Q and R, the discrete-time equivalents 'Q and~ will contain off

diagonal terms. These terms, like the above cross terms, arise from 

the fact that the original model of the physical system is continuous. 

The problem can now be restated as follows. Find a control 

sequence{uJwhich minimizes the cost functional J in equation (3.Jl) 

subject to the constraints that the state equations ().7,3.8,3.10) m~st be 

satisfied; and that uk must explicitly depend only on the past 
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measurements y0 , .y
1

, y
2

; ... , yk-l when {Vk} is a zero-mean, 

gaussian, white noise sequence independent of In addition 

it must be stipulated that u be constant over the sampling period. 

The above system of equations (3. 7 !t3.8,3. T0,3.11.)can :be augmented to 

obtain a form very similar to the discrete LQG problem. However, if the 

normal method of solution is applied, an important difficulty surfaces. 

The total system may be unstable and uncontrollable due to an unstable 

wind system. Therefore, if the augmented system is solved with an un

stable wind system, the solution to the Riccati equation diverges due to 

the presence of unstable and uncontrollable poles. But, under certain 

conditions the gains will be bounded. 

It can be shown (see [ 8 ] and Appendix A) that the solution to 

the stochastic optimal control problem described previously exists and 

is given by: 

( 3. l 3a) 

( 3, l 3b) 

A 
Gk= r 1• Pk cJ> + M' e - r 1 (P ,;, +pr) ' ~wk - l wk ~w k 2 {3,13c) 

( 3 ~ l 3d) 

( 3 .. l 3e) 

h A A w ere xk and wk are one-step predicted estimates of xk and wk given by: 

~ = E {xklYk-l} and ~k = E {wklYk-l} (3.14) 

It should be noted that the above gain equations remain valid for any 

i-step predicted estimate (where ; = 0 represents a filtered estimate). 
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The one-step prediction was used here in order to account for computation-

al delays present in the on-board computer. 

Also, the equations above are of a recursive nature. Therefore, 

at each sampling instant a new optimal gain is calculated. To implement 

this would require storing all the intermediate values of each gain 

matrix. This, in turn, would require a greater amount of storage than 

is normally available for small, on-board computers. For these reasons, 

a suboptimal design was used consisting of only the steady state gains 

obtained when the index on the recursive relations tends to infinity. 

For the linear, time-invariant problem considered here these 

steady-state gains are bounded if Pk and Pwk converge or if all the 

poles of the aircraft system are less than one, and if the product 

(3,15) 

where p(S) denotes the spectral radius of S, and H represents the steady 

state value of Hk. In other words, the existance of a solution depends 

qn the amount of instability present in the wind system and the degree 

to which the aircraft system has been stabilized. The more stable the 

closed loop system is the greater the instability tolerable in the wind 

system . This can be seen by noting that ¢w may have unstable poles 

up to l/p(¢ - rlH). Therefore, as n -+ 00 the gains Hk and Hwk approach 

their steady state values H and H since pk and pwk both converge to 
w 

their steady state values p and p . 
w 

Finally, it should be emphasized that the optimal control for a 

system with disturbances consists of two parts. The first part feeds 

hack state estimates multiplied by an optinal gain Hk. This gain is 

exactly t he same as would havP been calculated with no disturbance 

present. The second term feeds back the disturbance estimates multiplied 
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by a gain Hwk' which depends on the disturbance. 

The next step is to obtain the state and wind estimate. This is 

accomplished by first augmenting the discrete-time equations (3.7,3.8,~.10) 

Then, a one-step Kalman predictor is used on the augmented system to ob-

The results of augmenting (3.7~3.8 , 3.10) are: 

Uk + ~~1 + X 
nk 

(3. l 6) 

(3.i7} 

where x is a white noise term representing modeling error, the signific

ance of which is discussed later. 

Given the past measurements yk, it can be shown (see Appendix B) 

that the one-step predicted estimates of xk+l and wk+l are given by the 

equations below: 

"" 
,. 

""' xk+l <1> :r 2 xk .r 1 
= + --,., I 

A 

wk+l 0'<1> wk 0 
IW 
I 

where ~o = m
0 

A E h
0
}, ~o = 0, and 

where Ek = E 

cf> ' f 
I 2 
I 

0 •cf> 
'w 
I 

A 

( 3~) 8) Uk + 
L 

yk - tc:cwJ 
xk 

k 
A 

wk 

(3. i 9) 

= is the estimation 
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error and Ek can be found by solving the Riccati type equation: 

[4 :r ] 
[Ek 

-1 

[C cw]Ek] - Ek [Ci Cw]' [ [c:cw] Ek [c:ewi· + ek] Ek+l = o~~: 

(3,20) 

with 

where (3.2la) 

and, (3,2lb) 

for a 11 k, j = 0, l , 2, ... 

It must be noted that, as with the control equations, these 

equations are recursive. For the same reasons discussed previously, a 

suboptimal predictor was implemented using only the steady state solutions 

to the above equations. 

The total system can now be represented by the block diagram 

figure 3 . .1. A more detailed diagram is shown in figure 3,2, 

Now that the optimal controls have been defined for specific cost 

matrices the main concern becomes testing to see if the chosen cost 

matrices lead to an acceptable system response or if they must be modi

fied to achieve this goal. The digital simulation described in the next 

section will provide the final step of the design procedure satisfying 

the above testing and modification requirements. 

However, before the simulation is discussed, an important rela

tionship between the Kalman estimator and the closed-loop aircraft 

system will now be presented. It is well known that in a sampled-data 
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Figure 3.1. Block Diagram of the System. 
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Figure 3.2. Detailed Block Diagram of the System. 
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system the eigenvalues {poles) of the system closest to the unit circle 

will dominate the response. This fact plays an important role in the 

overall system discussed here. As mentioned previously, the poles of 

the wind system are restricted by the degree of stability exhibited by 

the closed-loop poles of the aircraft system. Adding the estimator to 

the system can create further problems if its poles are closer to the 

unit circle than the closed-loop poles of the aircraft system. In the 
I 

event this occurs, the system response will be dominated by the estimator 

rather than the control system. Hence, the designer loses control over 

this response since choosing Q and R can only affect the aircraft not the 

estimator. This is where the modeling error tenn, x, of equation (3.J6) 

becomes significant. 

This term is normally assumed zero in the control gain calcula

tions. However, by adding a nonzero x to the noise vector (~k ~ nk)' 

used in calculating the Kalman predictor, the estimator poles tend toward 

the origin. This occurs because a larger system noise yields a larger 

error covariance, Ek' and a larger Kalman gain, Lk. Therefore, the 

residuals (see(3~18)) are weighted more heavily in calculating the esti-

mates. In essence, this means that the predictor relies more heavily on 

the actual measurements to compensate for errors in the system modeling 

and the noise matrices. A more detailed discussion of this is found in 

[ 9 J. 
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4. SIMULATION 
--~~--

The purpose of a digital simulation is twofold. First, it is used 

as a method of testing the design. The simulation provides information 

concerning the response of the aircraft to various winds and initial 

deviations from the equilibrium positions in addition to how well the 

equilibrium condition is maintained in the presence of winds once the 

transients have subsided. Since actual aircraft tests would be impractical, 

this information provides the only criterion for judging a particular set 

of weights. The responses obtained are compared to the original design 

specifications to see how well, if at all, these specifications are met. 

In this case it was determined that the important specifications are the 

position of the aircraft along the helix, the bank, the pitch, the air

speed and the absence of large, sudden changes in any of the state vari

ables. 

If the simulation results indicate that the system doesn't respond 

properly, the design must be modified (New Q's and R's). However, an 

analytic method of choosing Q and R doesn't exist at the present time. 

Therefore, Q and R are selected by trial-and-error using the simulation 

results as a guide to 11 fine-tune 11 the design. 

In this application it was determined, by trial-and-error, that 

the rates of movement (p, q, r) play an important role in obtaining a 

satisfactory response. By keeping the roll, yaw, and pitch rates close 

to their equilibrium values the aircraft system's other state variables 

are more damped and less susceptable to large, sudden deviations. This 

can be seen in the various simulation results presented next. 

The results are organized to show the various performances 

obtainable with th i s design method and the tradeoffs associated with 
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each design . The first results presented 1 (Figs. 4.1, 4. 2, 4.3), show the 

adaptability of the control system to increasing steady winds. The simu

lations were run with 10, 20 and 40 feet per second (fps) northerly winds 

respectively, all other parameters remaining constant. Note how as the 

steady wind increases, a cyclic mode becomes apparent in the bank angle, 

heading and spiral angle . This is due mainly to the fact that as the 

aircraft traverses the helix, the magnitudes of the radial and tangential 
I 

components of the steady winds are constantly changing. Therefore, in 

order to maintain a circular ground track, the other variables must com-

pensate. Note, how well the radius, and altitude are kept very close to 

their optimum values. Also note, in each case the response obtained is 

fairly smooth and damped. 

The next simulation results presented (Fig. 4.4) show how well the 

aircraft captures the helical mode from a straight and level mode. Al

though this may be exceeding the linearity region of the system model, 

the results provide valuable information concerning the settling time of 

the design. Note that all the transients have disappeared after a period 

of 10-20 seconds or approximately 1/8 revoltuion around the helix. 

Another important specification is overshoot. In figure 4.4 overshoot is 

minimal with the exception of the bank angle (Fig. 4.4a). The overshoot 

present in the bank angle is a little large althoug~ acceptable. Since 

the bank angle affects passenger comfort, this design may need modifica

tion in this area. However, the positional variables (radius and alti

tude) were emphasised in this design and their response exhibits small 

1 In all the results, both the estimates and the actual values of 
each state variable are plotted on each graph; time is in seconds, 
angular quantaties are in degrees, and linear quantitites are in feet. 
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Figure 4.1. Aircraft Simulation (10 fps Steady Winds) 
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Figure 4.6. Aircraft Simulation, Hw = 0, (40 fps Steady Winds) 
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overshoot, fast settling time and small steady-state error. 

The final set of results presented illustrated the importance of 

feeding back the wind estimates times the wind gain, Hw. Figure 4.5 

contains data from a typical simulation with 40 fps steady winds using Hw. 

Figure 4.6 contains a similar run with 40 fps steady winds but Hw has 

been set to zero. Aside from Hw, the only difference in the two runs was 

the initial conditions which were set so a steady-state response could be 

obtained in each case. Note how the airspeed, and radius exhibit greater 

deviations when Hw = 0. Even the altitude deviation is slightly larger 

when the wind feedback is zero. These results illustrate the importance 

of Hw in controlling the aircraft in the presence of winds. This can be 

very useful if the position of the aircraft is an important design speci

fication. Also, since the aerodynamic equations used in obtaining the 

system model have been linearized for a special airspeed, the airspeed 

must be kept close to the equilibrium for the model to be valid. The 

addition of Hw improves this response as shown in the figures 4.5 and 4.6. 

In summary, all the results presented here show the versatility 

of this design method. They show how the designs obtained adapt to 

various wind conditions and how each design has a fast settling time 

and a fairly smooth, damped response. 

The thesis concludes with a discussion of a computational diffi

culty encountered in this study which must be considered in any further 

research. This difficulty arises out of the numerous computations in

volved in solving a matrix Riccati equation for a large system. Because 

of this great number of calculations, the accuracy of the solution is 

suspect. Therefore, it is very important to use the most accurate mode 

of variabje fo~ the computer solution. For example, an IBM 370/145 was 



used in this study and it was necessary to resort to double precision 

variables in order to obtain sufficient accuracy (2 to 2 1/2 digits) in 

calculating the Kalman one~step predictor. This must be kept in mind 

when extending this study to cover other helical paths (steeper), other 

bank angles or any different equilibrium conditions in general. 

43 

Another extension of this research which could prove valuable is 

the modification of the control system gains to improve the system 
I 

response in the presence of larger gusts. This ability was not exhibited 

by the designs shown in this thesis but would only require further trial

and-error experimentation with the system weighting matrices. 
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APPENDIX A 

An outline of a method for deriving the optimal control algorithm 

is presented in this section. For more detailed derivations and precise 

mathematical proofs, references [8] through [16] can be consulted. The 

approach taken here follows [8]. 

Consider the last term in the summation (3.11) fork= n: 
l A ~ 

Jn( un ) = 2 E x~+lPnxn+l + 2x~+lpwnwn+l + 2x~ Mun+ u~ Run (A-1) 
"' A where the boundary conditions Pn = Q and P = N have been used. But, wn 

xk+l and wk+l are given by (3.7) and (3.8). Substitution yields: 

Jn=} E {(¢ xn + r2wn + rlun + ~n)'Pn(¢ xn + r2wn + rlun + ~n) 

+ 2 ( ¢ x + r2w + r 1 u + E, ) • P ( cp w + n ) n n n n wn w n n 
J\ A 

+ 2x'Mu + u• Run} n n n (A-2) 

The above can be simplified by use of the fact that the state 

noise and the state and control are uncorrelated or: 

E {x c•} = E {x n'} = E {u E'} = E {u n'} = 0 (A-3) n sn n n n ~ n n n 

since they all have zero mean values. 

Using this and noting that Q is symmetric, (A-2) can be expanded 

to yield: 

Jn= l E {x' (cp 'P cp)x + 2x' cp'(P r + Pwn ¢ )w + 2 . n n n n n 2 w n 
,.. 

2u ' (r'P ~ + M')x + 2u' r'(P r + P ~ )w n 1 n ~ n n 1 n 2 wn ~w n 

(A-4) 



where all the tenns not dependent on un have been lumped in en as 

follows: 

c = -2
1 E { w' r 2• [P r 2 + 2P <P ]w + E;, ' P E;, n n n wn w n n n n 
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+ 2 E;, ' ( P r 2 + P <P ) w + 2w ' r 2• P n + 2 E;, ' P n } (A- 5) n n wn w n n wn n n wn n 

Since en depends only on wn, E;, n and nn, and these' are independent of 

un' en will be dropped from consideration in the minimization procedure. 

Also, xn depends only on un-i· Therefore, the minimization of (A-4) 

yields: 
aJn _ l "' 
at:I - 2 E { 2 ( r l P n <P + M 1 

) x n + 2 r l ( P n r 2 + P wn <P w) w n 
n 

+ 2(R + ripn r 1)un} = O (A-6) 

Since un is a deterministic function, we have: 

E {Un } = Un (A-7) 

and (A-6) becomes: 

u~ = - (R + r 1 p n r l r l [ ( r 1 p n <P + M') E { xn} 

+rl(Pn r2 + Pwn <Pw) E{ wn}] (A-8) 

where* denotes optimality. 

This equation can be further simplified using the definitions 

of Gn, Gwn and 'i\i in (3. 13) and a property of the conditi ona 1 expected 

value: 

E {x } = E {E {x jy l}} n n n- E A "' = {Xn} = xn (A-9a) 

E {Q 'f 
,. 

= = w 
n n (A-9b) 

to obtain: 

(A-10) 
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Note that u~ depends only on yn-l' Therefore, (A-9) is justified. Also, 

the inverse will exist provided 'R is positive definite and Q = P is 
n 

positive semi-definite. 

obtain: 

If we substitute this expression for u* back into (A-4) we n 

+ w' ( G 'Rn- 1 G )~ } + c n wn wn n n (A-11) 

where the definitions of (3.l3)have been used to simplify the expression. 

Next, we define estimation error as follows: 

(A-12) 

using these definitions and noting that the error and the estimate of 

the state are uncorrelated, zero-mean variables (:i.e. E {~~xn} = E {x~L~n} 

= E fw•Q } = O), it can be shown that: 
n n 

E{x' Lw}= E{X'• Lw} + E {x' Lw} n n n n n n (A-13) 

{--} E {,.,"''} {~,J} d d Also, note that E xnx~ , xnwn and E wnw~ do not epen on 

the control sequence {ui} for gaussian processes [16]. Therefore , 

adding these terms to (A-11) will not affect the optimization resul ts. 

Doing this and making use of (A-13), we can rewrite (A-11) to yield : 

J* = l E [ x I [ ,f, ' p cli -GI 'R- 1 G J x + 2 x I ,f, I [ p r + p ti-. J n 2 n o/ n n n n n no/ n 2 wn o/w wn 

+ d n (A-14) 
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where all the terms independent of {ui} have been lumped with en in 

dn. Since P and~ are both symmetric, ~-l is syrrrnetric. Therefore, n n 
(A-14) can be simplified further to obtain: 

J* = l E {x'[¢ 'P ¢ - G1R'-lG] n 2 n n n n n 

+ d 
n (A-15) 

If we add t he next term in the summation (3.ll)to (A-15) we have: 

+ 2x'[N + ¢'(P r 2 + P ¢ ) - G'R- 1G ]w n n wn w n n wn n 
A A 

+ 2x~ -l Mun-l + un_ 1Run-l} + dn (A-16) 

But, utilizing (3.13),this can be rewritten- to obtain: 

+ U I ,'Ru l} + d n- n- n (A-17) 

Note, since dn does not depend on {ui} this equation is equiva

lent to the previously minimized (A-1) with n replaced by n-1. Therefore, 

the opti mi zation of this equation will yield the same results as before 

with t he index decremented by one unit . 
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APPENDIX B 

A derivation of the Kalman one-step predictor equations is pre

sented here. The interested reader is refered to references [9-11, 14-19] 

for further, more in depth information concerning the exact mathematical 

descri ptions and properties of the Kalman estimator. The presentation 

here fo l lows [11]. 

We begin by presenting three identities [11] used extensively in 

the derivation. They are: 1 

,J 

E {x!y, ;n = E {x! y , l} 
,., ,.I 

E {x!y, l} = E {x!y} · E {xll} - x 

E {xjy} = x + P YP-1(y-y) x yy 

where the P's are covariances defined by: 

Pxy = E {(x-x)(y-y)'} and PYY = E {(y-y)(y-y)'} 

-and ~ is t he es t imati on error given by: 
- A l = l - l 

A 
where l is the actual value and l t he predicted estimate. 

(I-1) 

(I-2) 

(I-3) . 

(I -4 ) 

Next, i n order to simplify writing the expressions all the 

augmented system matrices are defined by single symbols. These defini

tions are given below with all unmentioned quantities retaining their 

previous definitions as given in Chapter 3. 

va lue . 
1 x,y and l are ga ussian random variables; the bar denotes mean 
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l~kl [¢!r2] [r1] [~kl = ~- ' ¢ = -,-- • r A = . -- ' CA = [C: Cw] • ~Ak = -- . 
wk A 01 ¢w O nk 

I 

Note, the subscript A denotes an augmented quantity. 

These shorthand notations are used during the derivation to 

s implify writing some of the intermediate equations. In the summary, the 

fi nal equations are put into a form consistant with the augmented system 

equations of section 3. 

Beginning with the defi nition of the one-step predicted estimate: 

~k+l = E {xk+l IYo··· ·• Yk} 

we substitute the value of xAk+l given by {3 ,16) to obtain: 

~k+l = E {¢AxAklYo•···• Yk} + E {fAukjyo•···• yk} 

+ E {~Akl Yo····• yk} 

where the expected value of a sum property was also used. 

(B-1) 

(B-2) 

Next, since ~Ak and (y
0

, ... , yk) are uncorrelated, zero-mean, 

gaussian, random variables, the last term in {B-2) is zero. Therefore, 

utilizi ng identities (I-1) and (I-2), (B-2) can be writteri as follows: 

~k+l =¢A E {xAklYo•· · ·• yk-1} +¢A E {xAklyk} 

(B-3) 

where ¢A and r A have been removed from the expectation operation since 

they are deterministic. Note, the first term in (B-3) is simply the 

def i ni tion of the one- step predicted estimate at time k; and, given 

the measurements (y
0

, . • . , yk}, uk is completely determined. Therefore, 

(B-3) becomes: 

(B-4) 
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Applying identity (I-3) to the third term in (B-4), we obtain: 

(B-5) 

since Y'k and xAk have zero means. 

Substitution of (B-5) into (B-4) yields: 
~ ~ A 
XAk+l = ¢AxAk + rAuk + Lk(yk-yk) (B-6) 

where the definiti on of the estimation error of yk was used and, 

Lk = ¢A E {xA(yk} ' (E {ykyk } )-1 (B-7) 

This can be further simplified by utilizing the definition of 

the predicted estimate and the value of yk given by (3.17) to· obtain: 

_Yk = E {ykjyo, ... , yk-1} = CA~Ak + E {vkjyo, ... , Yk-1} (B-8) 

However, vk and (y
0

, ... , yk) are uncorrelated. Hence: 

" " yk = CAxAk 

since Vk has a zero mean. Substitution of this into (B-6) yields: 

The problem now becomes one of defining Lk in terms of the 

system matrices. First, consider: 

(B-9) 

(B-10) 

( B-11 ) 

where thi s was obtained through the use of (B-9), the definition of Y'k 

and equati on (3. 17) defining yk. 

Util iz ing (B-1 1), we can write: 

(B-12) 

Since xAk and vk are uncorrelated, zero mean, random variables~ the 

last term is zero. Utilizing the definition of the estimation error, 

the remaini ng term becomes: 

E {xAkY'k} = E {~Ak;'AkcA} + E r;'Ak~AkcA} (B-13) 



51 

However, the estimation error and the estimate are uncorrelated, zero 

mean, random variables . Therefore, their cross-correlation is equal to 

zero. Hence; 

(B-14) 

Next , utilizing (B-11) we have: 
I 

E {ykyft_} = E {(CAX'Ak + \Hc;x'Ak + vk )'} (B- l 5) 

Since X'Ak and Vk are zero mean, uncorrel ated, random variables; the 

expansion of (B-1 5) yi elds : 

E {ykyk} = CAEkCA + ek (B-16) 

where e = E {v v•} k k k 

Therefore, substitution of (B-14) and (B-16) into (B-7) defini ng 

Lk yields: 

Lk = ¢AEkCA[CAEkCA + ekr 1 (B -1 7) 

which is the desired result. 

The last part of the deriva tion involves obtaining an express ion 

for Ek. This process begi ns with the definition of the error covari ance 
,., . 

and that of xAk to obtai n: 

Ek+l = E {xAk+lX'Ak+l } = E {(xAk+l - ~k+l)(xAk+l - iAk+1)'} (B-18) 

Expansion of the above using the sta te equations for xAk+l and 
A 
xAk+l given by (3 . 16) and (B-10) yie lds: 

{ - " ~ Ek+l = E ( ¢AxAk + ~Ak - Lk[yk-CAxAk]) {¢AxAk + ~Ak- Lk 

(B-19) 
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or using (B-11): 

(B-20) 

-Noting t hat xAk and ~A k are unco rrelated, the expansion of (B-20) 

yields: 

Since X'Ak and vk are uncorrelated , t he terms involving 

(~k , Y'k) can be writt en as fol l ows: 

E {xA;.Yk} = E {X'Ak( C XAk + vk )' } = EkCA 

If 1t1e def ine: 

( ) 
,_J ,J , 

and make use of B-1 6 for E {ykyk} , (B- 23) becomes: 

rk+l = <Pt\Ek<PA - <PAEkCA Lk- LkCAEk <PA + Lk( CA EkCA + ek) Lk 

(B-21 ) 

(B-22) 

(B-23) 

+ :'.! k + E {- ; Ak( Lkyk) ' - L(yk l;Ak} (B-24) 

,.J 
Looking at the last t erm , we note that ~Ak and yk are uncorrelated. 

Therefore, their cross -co r re l ati on is zero due to the fact t hat t hey 

possess zero mean values. Hence, subst i tut ion of Lk given by (B-17) 

into (B-24) yields: 

Ek+l =<PA Ek-rkcA[cArkcA + 8kJ-
1

cAEk <P I + 
A (B- 25) -::. k 

Th is equat ion i s identica l t o the desired result and the der iva-

t i on is complete. The one-s tep prediction equations derived in this 

section are rewri t ten be low usi ng the augmented system matrices. Note, 
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where 

and Ek is given by the solut ion of 

where, 
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