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Tl e 1mrpos e of this the s is i s to examine the concep t of quotient 

s_pac e s by means of the identification map and the identification toyology. 

The transference of basic topolog ical properties from the domain of an 

identification function to its range ( or vice vers1:i) is explored. In 

addition a search for maximal und minimal topologie s on the domain space 

of a f unction that insure an identification mam,,ing provides some original 

results and thoughts on the top ic of quotient s of to1iological spaces. 
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b e defin ed within the context of tlleir usace . 
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Cltuptur I 

lN'rlWl)lJ CT ION 

The discuss ion of the iduntificution function pr8::;ontcd in thia 

thesis is not a new area of ma th ematical investigation. It apparently 

first begun with a theorem of H. L. Moorel in the 1920's, although he 

was probably not the originator of this idea. His appro11ch was that of 

decomposition spaces which sought to decora.pose the plane into curves. 

Next in the 1930's came George T. V/byburn whose basic interest was in · 

the area of Complex Analysis, 1here all non-constant analytic functions 

are open mapse With this added emphasis, Whyburn developed the qua.si-

c amp act map which, as will be seen, is merely a special case of the 

identifice.tion.2 Bringing these two ideas together in tlle 1940' s we.a 

the Bourbaki Com1r1ittee with the concept of the quotient set. Of under­

lying interest throughout all these investigations is the transference , 

of topological properties. E. A. Ucllaels deals with this quest ion for 

more advanced topological properties in his publication, 

3 
''Q.uintuple Quotient Quest ions" published in 1972 . 

1n. L. l.1oore, "Ir'o urnlations of .Point ~8 t 'l'lteory , '' A. hi. s. 
Colloquium l'ublicution, XIII, ( 1932). -----

2G.'r. \Vhyburn, '10pun an d Closed Mapp ings ,'' Duke Math Journal , 
l? (1950) G9-?4. ----

3E. i. . hlichae1S, "Q.uintuple Quotient ll tiestions , ·1 Ge norc1l~iology 
and its Appli cnt io_ns , 2 ( 19 '72) 91-138 . 

l 



!Jut, , i t, rnuy trn u:.Jl:uc.i , wl u t 1, rc, c iuel y 1:.i tliu u l g ui J'ieullc:o CJ!' Llw 

iJd r tif · cuLion f u11ct ion? IniLiull y it tuy bu ul>;1,11·vud t.l 111t 1111 op 1i a uud 

closed sur·jections u.r·e ide n·tificat i on functionLJ. 1u1d , as has alr eatiy 

b1Jcin HluH t. io l (J( l, Gu1:1plu .x Vul'lubluu lluldLJ t.l1u t. till 1,11ulyt.le fu r et, urn i uultlu 

J.uo uny cou tluuou:.i ft 1 c: Lion from 

a compa ct space to a. Hausdorf space is un idonti f ication . Sc: condly • it 

will be seen t hat tile p r operty of a f unction be ing an i dentificati on is 

s ligl tly stronger t han continuity" Thus the ide ntific!:ltion function is 

a ge neralizution which i ncludes several significant and commonly encoun­

t ered types of maps. 

In the next three chapt ers , it will bl.3 endeavored to present a 

clear und concise discussion of tl e identification function. In 

Chap ter II, an initia l discussion of the identifica tion function vi ill be 

prest:Jnted. Definitions and th eorems concern i ng the identification func­

tion as well as decomposition spaces, quas i-compact functions und the 

quotient set will be presented and reluted. The intriguin.; question of 

the transference of bas i c top olo~ical p roperti es will be discussed in 

Chap ter III. Finally in Chapte r IV t he questions about minimal und 

max:iI,tul t opolog i es on the domain SJ)ace of the identification function·{ .. 
I ,, 

1 I 

are investigated with some interesti~ results. 
I 



Chapter II 

GEl ill J., Fi.C'l'::3 CCJNCERNilJG 

THE IDEN'rH "'I CATION TOP OLOGY AND ~UO'rIENT SPACES 

Equiv c:1.l ence Helbtions c:1nd Partition_, 

•rhis se ction of definitions clears the ,11..1y for the ex1Jlorution 

of the id ent i fic ation mapping and iclentification topology. The dis­

cus sion begins with n definition. 

Definition 1 

Let X be any set. If R i s a relution from X to X (i. e . u ~ubset 

of X x X) t hen R is an equivalence relation if and only if the folloviing 

condi tions h old : 

(1) ( x , x ) Ci: R for nll x e X ( Reflexive Property) 

( 2 ) If ( x ,y) ~ R then (y, x ) € R {Syi11metric Property) 

( 3 ) If ( x ,y) €Hand (y,z) E. R, then (x ,z) E: R (Transitive Property). 

01' spe cial impor tance with reference to an equivalence relation 

is the concep t of un equivalence class. 

Definition 2 

Let X b e a set . If R is an equ ivalence relation on X and x ~ X, 

t )1en H ( x ) :- [ y €. Xt ( :x ,y) ~ n S i s called the equivalence class in x 

determined by x with r es~ec t to R. 



J\lj u rnu t.tur L, 1' JtLJL tiLio11 H( ) wlll bu uu uc1 Lo l'Oiil' U:Ju JiL Lliu 1:ie t 

co1sLsting of ol l y f X such t hn t (x ,y)~ R for ~11 

Uol'I tl e f irs t re s ult c an be s t a ted. 

ill )\. . 

The o.rem l 

Le t R b8 au e quivalence relation on a set X. s11y _µ o se also t lrn t 

[Ac,1,_ : v!...t.A J is an i ndexed family of subsets of X. Then tho following 

t wo r esults hold: 

(1) 

(2) 

P roof 

Proof for ( 1) ~ 

First it must be sho\'lll t ha t R( LJ J-l~
1

) £ lj R (A __, ). Let 
o1,e.t:,. ""- ,1..E.A '""' 

y E. H ( lJ A ,1...). Then there exi s ts x t X such t hat ( .x: ,y) £ H und 
J.. d::!, 

x t U A x mu s t be in a t l cus t one AJ Jt:A. Therefore, ye. H(a x ) • 
.,1, t.1:,. o1..· u 

How it mus t be shown that U RU1.~) £ H( U A_,). If y c:. U R(A __ J 
r.J..E/:, 4~ "'- o<.0, '-" 

t he n there exi s ts an x s uch that (x,y) ~ Rand x E A6 for some .S cib • 

y t, R(Ao )' &f..A J XE. u Ad... implie s y E: H( \J Al. 
r1.J;A r;(. fA ;( 

Proof for ( 2). 

If y € R(A0 (\ .k.,1), t hen there exi s t s an x such th1-1"\ (::x:,y)E: R 

and x E:: A0(\ Ai>,. S o f or :x:-: A0 1 y c. R(A0); c1nd simila rly if xE. A,6, 

Y E R( A8). He nce y E R(As) n H(J'"p)., 

It should be noted t hu"t the proof of theorem l d id no t actually 

make use of the firs t hypothe sis - tha t H 1..; un equivulenco r f:l lation. 

The result hold8, in fuct, even if R i s jus t a relation ( 1 o-.e. a s ubs et 

4 
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of X :x. X) . 'l' o jil'ouf o l' tl1lo fu c; t. 1'ollow13 hlLlll l. lcully to I.hut 01· thuo1·tun 1 . 

It is now oppropriute to turn to the second of the two previously 

mentioned introductory topics, the partition. 

Defin i tion 3 

If X is f.l nonf:;lnp ty set , the n [ fli,( : II(_, ~:X. fonns a p1fftition of 

X if and only if the following three conditions hold: 

(1) AJ....1 'f for each r.1...EA 

{ 2 ) ;~b. A ,1._ ~ X 

(3) Forol..1PiA either A"'--= n..p orAp(_n A~::~~ -

The precise r e lationship be tween the partition and equivalence 

relations presents itself in the next result which is stated v1ithout 

proof. 

Theorem 2 

If His an equivalence relation on X with x, y c:_ X then either 

R(x) ~ R(y) or R(x) ( \ R(y) ~qi . 

A corollary to this result spells out the aforementioned relation-

ship. 

Corollary i 

If His an equivalence r elt:J.tion on the set X, then the equivalence 

clas ses of R form a purtition on X. 



Proof 

Wh!it rnust l.J ti done i s to :::i liow t hut [_ H(x): x cc x~ forms u J,urt1-

tion of X. 

Since x £ H( x ) by t he ref l exive property of uu eq_uivulence re­

latiou, H(x),={ for ull xc:X and LJ R(x) := X. 
f.E.f. 

Finb.lly the fact that either R(x) :c. H(y) or H(x) ( ) R(y) =- cp for 

any two partition elements follows immediately from theorem 2u 

It · is also possible to r everse the process and :,how thut any parti­

tion of a set determines an eq_uivo.lence relation. However, first it is 

necessary to define the relation determined by a partition. 

Definition .i 

If P is a partition of the set X, the relation determined by the 

partition is defined a s follows: For x,y c:. X, (x,y) E:::. t. R if and only 

if x and y are in the s a rne partition element. 

Utilizing this definition the follo·wing can now be proved. 

Theorem 3 

If P is a partition of a s et X then the relation determined by 

Pis an equivalence relation. 

Proof' ___,_ 

Let P =-t__A .l: v'...E.~} , Since each x ~ X belont;s to A.1_ for some 

v<...E.~ by partition specification (2), it follows thut (x,x) E R. Hence 

R is r eflexive. 



Al:.10 if ( x ,y) cS R then x !:ind y belong to the same })Urtition 

element. Therefore (y,x) c H. R iu symmetric . 

Finally, if x and y 1:1re in tile same partition el ement , Ac::,, 

and y !:illd z ure in the !;;UJne partition element, At3 , then x and z are in 

the same p1:1rti tion eleaent. This result follows from y&.rtition speci­

fication (3} : If y € A~ and y ( li.tJ then A.,( = A/J. 

? 

It is clear that 1:1n equivalence relation determines u partition 

which in turn determines un equivalence relation identical to the original. 

Analogously I a partition deterrnines an equivalence relation which determines 

a partition identice:1. to the original. 

With all the results wnassed thus far, it is now possible to con­

sider not only our original set , X, but ulso the set of equivalence clai:;sea 

on X with respect to an equivalence relation, R. 1'his Bet will bo reffiirred 

to as tl e quotient set. 

Definition 5 

Given a set, X, und an equivalemce relation Ron X, x/R denotes 

the quotient set of X relative to R. Its elements are the equivalence 

classes of X under R. 

The Identification Map and Topology 

If f: X--1> Y , where X and Y l:u'u sets , und X has the topology !Jx , 
/'-- - \ 7 

then .J.:/'l. V: f- (V) E !J"x5<::Y f orms ti topology on Y. 



Proof 

Cl u11rly • Y 11ll 

I , 
tp IU'O olum, l\\,IJ o1' ;_)~, • :.Huell 1' - , (Un V) -

f -I (U)()r-' (V) where f~ 1(U) and f- 1 (V)E Jx. lence r- 1 (U(W) t:: J~ 
f'"7' 

wli i cl i u i,lio s U (l V c! :J-t, • Fir ully, the cuue for UL' bit. rur y un i ur :1 01' 

oyun uuts mutl t bu oonuiJuruJ. 

I I u L' Therefore. u v ,;;;; J " 
# 0cr Q + 

Definition 6 

,-
Let (X, .Jx) bnd Y be a topological space and a set, respec-

tivel y. 
,-

If f is 11 mapping fror. X onto Y, then the toyology Jt, as· 

described in the immediately preceding lera1111:1 , forms the identification 

r. 
top ology on Y with respect to f and Jx. 

It should be mentioned at this time that requiring the function, 

f, to be onto does not weuken t he definition of tho identificution to­

pology. If f:X->Y is not onto, then f(X) is l.loth open und closed in 

~ and for all y fi. f(X), [y J €~. It is clear that the omission of the 

onto requirement is not advantageous. 

In a manner anulogous to what has already appeared, the defini­

tion of an identificution function can novi be presented. 

Definition ? 

If the sets X &.nd Y together with their respective topologies 

form topological space s and if f:X-,Y is a surjection thon f i G un iden­

titica tion function if and only if the topology on Y i s the identification 

topology. 



/\II iu11ni-1diu l- o 0 0 1 ll lHlU ll llO , iliun,foru , 01' U1i11 c.io1'i11Hio11 i tJ tl ut 

whenever Y hu::i t he i dentificHtio n topology I f :x--,.y is continuous. 

'J 

'l'II<, fol lowiug points out two imyortu11t cl1:1 :100LJ of itl untif i cution 

fu nct ion!:! : tt e oµen contiuuous surjo ct ions und tho closeu continuous our-

jections. 

Theorem 4 

If (X 1 ~-x) and (Y, !Iy) are topological spaces and f:X~Y is a 

continuous open surjection, then f is an identification function. 

Proof 

It must be shown that the topology on Y is identical to the de-

sired identification topology. 

For Uc:~' f- 1(U) EJx. Also since f is a surjection f(f - 1(U) )=U~ 

Furthermore since f is O11en, U is OIJen in Y. Hence U ~ Jy. How for 

U E JY , f ~1(U) is O1)en in X since f is continuous. Therefore by the 
,.... 

definition of the identification t opology, U E Jt u Hence the conclusion 
r' ('-.J 

Jl---\ holds. 

Specifications for an open se t in the identification topology 

are given by the definition. The following lemma delineates exactly 

what can be classified as a closed set in the topology. 

Lemma 2 --
If f is an identification function from X to Y and if F~Y, then 

,-
F is closed relative to Jf if and only if f -\(F) is closed relative to 

J 

.'.Jx • 



1-'r oor 

r-
to ~ x by the continuity of f. 

r t Conversely• if f -\ (F) is closed relat ive to ~X, then 

x\r- 1 (1!') ti . .How ever X \r- 1 (F) = f- 1 (Y\F). Hence Y\F is open 

relative to -~ and• therefore, ]' is closed relative to J~. 

10 

Ji. parallel result to that of 'rheorein 4 can be achieved through 

the use of Lenuna 2. It is stated without proof as the following theorwn .. 

Theorem 5 

If (X, Jx) and (Y, ~y) are topological spaces and f:x-,y is a 

continuous closed surjection, then f is an identification function. 

Corollary _g_ 

If f:X_.,Y is a continuous surjection from a compact space, X, 

to a Hausdorff space. Y, it is an identification function. 

Proof 

If Fis a closed subset ot X then Fis compact. f(F) is also 

compact. But a compact subset of a T2 space must be closed. Hence 

f (F) is closed which implies that the mapping, f', is closed. The con­

clusion follows immediately through an application of theorem 5. 

I n the next result., a special c1:1se of function composition aids 

in i s olating t he ide ntification function. 



Thuorem G 

If f :X- ,Y is u coutinuous func tion und t i ere oxinta u contin-

uous function, g , such t hnt g rnuvs Y into X wi th rs tlw idontity mup 

then f is en idont ificution function. 

Proof 

In proving f to be an identification function it i s necessary 

to show two things : First, that! is a surjection and second that the 

image space off has the identification topology. 

If y c. Y, then g(y) ._ x , x € X. By hypotheHis, f(x);:::. y ~· 

Therefore f is a surjection. 

Now it remuins t o show t hat Y has the identification topology~ 

If U € 'Jy, f -I {U) is open by the continuity of f. This implies that 

U E .Jo\ . If U ~ .Js;, then f- 1(U) E. J;. Since g is continuous, 

,~ 
g-1 (f- 1 (U} ) f .J y. It should be noted t hat by by1>othesis . fg is a 

surjection. Therefore, the followin g holds: 

) ::: fg(g -I tr- 1 (U) 
- I r • 

) -::. fg(fg (U) ) ::. U £ Jy. 

In theorem '7 function comp osition again comes into play. 

Theorem '7 

If (X, '5y. ), (Y, 0\) and (Z, S'z.) are topological spac es with 

f mapping X to Y and g mapp i ng Y to Z identHicat ion functions, t hen 

the contposi tion gf:X-,Z is an identification function. 

lL 



Proof 

CJ. uurl y g f lu u c; n\-inuuu!:.l :Ju.l' u .1.lun. lJuw H rt,111ui1 w tu :Jhow 

il ut Z Lolds the idoni ificotion tOjJO lO&Y• If' U t. 'J:z_ 1 (gf )-I (U) .:. ~ 

by t ho continuity of gf. 
r.~ 

Tt ererore I U ~ .J5,.: . 

C 
) ~ J~. Since r is tW ideut ificution function 

g - l (U)C !Jr .Also because g is an iden tificatio11 function, Uc: (J-;. 

In the last three theorems, it was necesSlil'Y to prove that a 

particular topology was contained in the identification topology, ttnd 

in each case the proof was identical. This fact leads to a. result ,. for;_ 

ma.liaed in tlle next theoren1v 

Theorem 8 

If (X, :Tx,) and (Y,0'y) are topological spaces with f:X->Y an 

identification function, then Gy is t h e largest topolo_-:y on Y which 

makes f continuous. 

Proof 

If U is a.n open set in any topology that rnukes f continuous, 

r 1 ( U) f. -'fx • lience U is an element of the identification topology. 

Continuity is again of major concern in the next result. 

Theorem 9 

If (X, ~-x), (Y, './~) and tz, G°z) aro topological spac•s with 

f:X--'>Y an identification function and g any function mapping Y to z, then 

g is continuous if and only if gf is conti11uoua. 



l--1·0 f 

I f it i s ssullu f i r :, t tl1ut c i s continuous, t htm t he r<rn ult 

fo l lows di r e ctly since g und f a r e both c ont i nuou s . 

Conver se ly , if it is u ·sumc:d that g1' i s continuous , -i;hen f or 

U ~~ . gf -I {U )::. f -I ( g-l {U) ) E~ . Si n ce f i s an i dent ification 

f unction , B -I ( LJ) ~ {;( which yields the r esult. 

Now t he disc ussion is turned to the i dent i fic a tion t op olog y fo r 

sub spaces . If f is an ident i fication rnapp i ng from X t o Y and s~ Y the n 

Scan h ave two topolog i es : 

{ l ) 5:::. the subspace topolog y . 

( 2 ) .J-tS , t he top ology de t err i n ed by t he sur j e ction f : f _, (S )• S . 

- 1 ) ,,:_ Si nce f : f (S --, s i s continuous when S car r i es ....,.., it follows t h c:1t 

f. c.. r-J :.Js - ~. Howev er , t !.e r everse set c ont a inment does not alwa ys hold 

as i s ill us trate d by the foll owi ng examp l e . 

Lt:Jt S b e t he set of irrationals i n LO, 1], Y=[13U S , and Y 

has t he ident ific ation top olog y tl e t er 11 ined by f : I • Y wher e f (x ) ~ x if 

x c S and f ( x ):: l otherwi se ; t he only nonemp ty open s e ts in Y containing 

l a r e those of the form f (W) wher e WS I i s op en a nd contains r\s.. Thus 

. ~ r. 
t he se t S (\ ( O, l / 2 )<\ !Js; howeve r , S (\( O, 1/ 2 ) C.J~S. 

The next t heorem g i ves several s uffi cie nt c onditions for 

eq_uali ty . 

Theorem 10 

I f f:X• Y i s an ident i fic ati on funct ion and S6-Y and if ei t her 

(1 ) S is open (or closed ) i ll Y or 

( 2 ) f i s an open {or closed ) map , 
,- ,.... 

the n ~b:i 4 S. 



!'roof 

r: r' 
Uy proviuuu conunon t.li 1 ;,,; ~ 5-. J~,:-

r.' 
Utilizing assumption (1) l where S is open), if UC.:.. .J~~ then 

11: 

f -I (U) is open in the open r-l (S). The refore U ~ S-5 • V/hen S is clos ed 

tho proof follows sim1l1;;.rly. 

If f is an open map, then Ut::J~silnplies that r- 1 (u) is open in 

f~1 (S) so the.t f -\ (U):: f -\ (S) (\V whera V is open in X:o Therefore, 

U-= S(\ r(V) and since t is an open map, U is open in ½. Th• proof for 

f, a closed map, again follows similarly. 

~uetient and Decomposition Space #l)proaches 
to the Identification Topology 

If (X, !i,. ) is a topological space and R an equivalence relation 

on X, there is a surjective projection function p:X--tX/R given by 

p(x) = R(x) for each :x: ~ X. This projection function is the device by 

which X/R is topologized. 

Definition B 

If (X, [ix) is a space, R an equivalence relation on X, and 
I 

p:X• X/R, the projection function, then the quotient topology on X/R ia 

r.' the identification topology induced by p and~~-

. The set X/R, together with the quotient topology is called a 

quotient spaoeo 

Therefore, with the quotient topology on X/R, p is an identifi­

cation function so that the results of t h e previous section are now ap­

Plicable. 
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1rheorem 11 

Ir (X, 5) is a spu.co und R is un equi vulence rola.tion on X with 

X/R the respe ctive quotient space, then p: X-?X/R is open (closed) if and 

only if for each open (closed) U s; X, R(U) = Ull H ( x) is open (closed) in 
Xl 

x. 

Proof 

If it is assumed that U is open in X then p -I (p (U) ) c 1. How-

ever, the inverse image of elements in x/R yields not only the set U, but 

R (0) 1 i.e. lJ R(x). 
X'-l..l 

f':' 
Hence, R(U)6J. 

Conversely, since p :X• X/R is an identification function and 

p- 1 (p(U)) = R(U) which is open in X, then p(U) is open in x/R. 

If f:X-->Y is a sur jective function, a relution can be defined on 

X as 1'ollowa: For any two points xl' :x:2 t X, (x
1

, x2) c:: R it' and only if 

f(:x:
1

);;:, f(:x:2 ). It can easily be shown that R is an equivalence relation 

and since it is induced by the function, f, it is denoted by R (f}. Now 

the quotient ee1 can be fonned; and since f is a surjection, a bijective 

function h: Y• X/R (f) may be defined in the following mimner. For each 

y c: Y, h(y) -- R(a) if and only if f(a) -.a y. This leads to the following 

result. 

Theorem 12 

If f:X • Y is a continuous s urjection, then h :Y+x/R (f) is a 

homeomorphism if and only if f is an identificati on function. 



JG 

Proof 

From the 11 r ec0 Lling remarks, it i8 clear thu"t y :: hf'. 

Assuming initially that h is a homeomorphism, it should he noted 

thut f =- h •I p and thut both p and h' 1 are identif'ic1:1tion functions. 

Theorem 7 now yields the re::iult. 

Conversely, if f is an identification fw1ction, then by Tlrnorern 9 

the nap h is continuous since pis continuous and f is an identification 

function. For similar reasons, h- 1 is continuous. Therefore, h is a 

homeomorph 1 s:m., 

Thus far in the discussion, two approaches have been taken to 

quotient spacos. These tv10 approaches are ttioso of the identification 

function and the oquivalence relation. Given an identification function, 

f:X--.Y, a quotient space can be defined on the image s_µacfi of f througll 

r.-
.:J~ and R(f). However, it is also possible to begin with an equivalence 

relation, R, yielding the corresponding quotient set, x/R. This q_uotierr~ 

set may now be given an identificution topology corros:ponding to tlle 

projection fw1Ction, p :X• X/R. As can be seen the relation between the 

two approaches is very close and is delineated in the last theorem. 

In contrast to the equivalence relation and the identifict1tion 

function, the partition has been seen mainly as a result of the given 

equivalence relationo The next definitions lilld results cast a new light 

on the usefulness of the partition and its relationship to previouslr 

mentioned results concerning open and closed mappings.. The following 

definition and theorem present generalities about partitions and tho 

topology that can be induced on them. 
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Defi nit i on 9 

Le t (X, !; xl be n topo l og icul space a nd 1; a p a r ti t ion of X. R i s 

t h e eq uivul<:mcc r elc-tti o 11 defi nccl by .P . P t og e t h er v-i ith the quoti ent t opol ­

ogy f or X/R =: P i s called t lrn decor.1p os i tion Bp uce of X d e t er mi ned by p , or 

sj1nply, the decomposition spa ce P . 

It should be no t ed t hat the na tural p roj e ction ll :X-tP (X/R) i s a n 

id en tification. 

Theor om 1 3 

If (X,~) i s a t opolog ica l space and Pis a ptirtition of X with 

S ~ P , t he n S i s open (cl o s ed) in the d e compo s i t il,n sp uce P if an d only i f 

~tAl.a. Eo sJ i s op e n ( cl0sed) in X. 

Pr oof 

Le t p:X • P be t h e n a tura l pro j e ction. Cl early , . 

p ,1 ( S ) ::. U [ AI A €. S J . Th o r esult now f ollows f rom l emma l aud def i n ition 

6 (op en ) and f' ram l er.u:ia 2 (closed). 

The following defin itions single out import ant special t yp es of 

dec ompo si tion sp aces . 

Definition 10 

P i s call ed un upper se r,1i cont i nuous de compos i t ion of (X.~) p r o ­

v·id ed t ha t f or each closed s ub s e t , F, in X t he un i on of tlie collect ion of 

al l e l en1en t s of .P tha t interse ct F is clo sed i n X, i. e . for all 1'' clo sed 

U(J\. E:. P [ 1 (\F r-43 i s cl o s ed in X. 



l!l 

E:.c· ,pl~ 1:_ 

Le t (X, 1J) be u topolo~icul s1ai.c;o wHh l!~ u closed 1:1ubstjt or X. 

Ltit P = L FJU'i:ix1\ ~ 2 X\F0~ • 'l'llu1 olee.rly P i:.i uu upper semicontinuoua 

docoroposi tion space. P is sometin es called the decom_posi tion sp ace ob­

tained by ideu tHyin~ tht:i oloued s1:J t F'o to n point. 

D~finition 11 

P is called a lower semicontinuous decanposition of (X, :f) pro­

vided that for each open set U in X the union of the collection of all 

elements in P that intersect U is open in X, i.e. for all U open 

UiA c P \ A (\ U 1 ~~ is open in X. 

Exam-ole 2 

If (X~1) is a topological space and u0s Xis open, then 

P .::'l_ uJ U l [ xJ \ x I=. i\UJ :i.s a l ower s amicontinuous decoDLposi tiono 

Theorem 14 

If (X, 'I) is a tovological space und P is a decomposition space 

of X t hen P is an upper sernicontinuous deoomposi tion space if and only 

if the nat ural projection is closed. 

Proof -
Let p: x-,.p be tha natural projection for s ~x, p(s)~ . tfl1ra.P\«os11} 

From this tho result i s clear. 



Th· llnxt t hnorum, whi ch wi ll be pru:Hm ted wi"thou t 1-iroo t' , of f li r tJ 

u re s ul t pa r a lle l t o t h ut of tho l u.s t t h e or(jrn conc eruinu tlrn low t:J r t11,r.1i-

conti11uo ut1 deoompouit ion. 

'l'hoorern 1~ 

If X is a topological space tind P is a de composition spact:J of X 

t hen P is e. lower semicontinuous decomposition s pace if and only if the 

natural projoction is oyen. 

The next two rasults link uyp er semicontinuous decomposition and 

lower semicontinuous decompos ition to op en and closed sets respecttvely. 

Theorem 16 

If (X, 1) is 1:1 topologicul space, und P is a decompos ition of X 

then P is a.n upper se1nicontinuous d e composition if and only if for all 

Uf.5, U [ Jd A~ P and A'U3 is open. 

Proof 

Clearly for UcJ, A(\ (X\ U) \ ~ or AC: U for all Ac P. Thertt-

fore, (UtA l A~P and ~ n(X\U)-t'rJ) U (Ut Al A~P and A<;U)):::x. 

From this both results follow immediately. 

Theorem l? 

If (X,..J) is a topological sp ace and P is a decompos ition of X 

then }l is a lower s emicont b .uous decomposition if a nd only if for all F 

ClOSt:ld in (x,J ) ' tJ i. A\ AC:P and ~C.}' ) i s cl osed. 



:~u 

The proof' of' t :iis las t Lheorem follows in very much the same 

wuy 11:1 diu i tu ooun Lor y art. l!'o1· .,hi :J t·uuu o 11 , uu p r u if will I.Jo 11ru:.J 1i11 Lutl 

here. 

A very important me a ns t'or c onne cting tho thrt:e appro uches to 

quotient spuces i s the it.lea of point inverses. 

De:fini tion 12 

If f:X-Y is a surjectivc rnupping then p,::;. f r-1 (y) t y €o'l~ is a 

decomposition of X where f -, (y) a.re called point inverses. 

Theor em 18 

f:X • Y is an open continuo us surjection 

' 
if and only if P is a lower semicontinuous decon1position of X. 

Proof 

If f i s an open continuous · mapp ing, with U an OfJ en subset of X, 

t hen f -I f 1C.U] is equal to the un i on of the collection of all elements of 

P that intersect U. Since U i s op\:ln , f [ u1 is open because f is an open 

mapping. Also since f is continuo us f • 1 f LU] is open in Xo Hence P ia 

a lower scmicontinuous deqomposition of X. 

Conversely if l-' forms a lower semicontinuous deoomposi tion then 

for U open in x,lfi._f-\ (y) \ yE !'(U)S = [x~ ;.(Et' "1f( U)~ is open iu x. 

f(U) is, therefore, open in Y by the results of def1uition ~-

Once again a parallel re s ult cnn be stated with reference to an 
. ·~· 

upp er sen:i continuous decomposition of X. 



'11heoru11l l CJ 

f:X-)' il:l c l mrnd cunti:1uo lrn uurjection with i';;;fr- 1 (y) \ yf;; y1 
if a nd only if P is an uppe r semi continuous dec omposition of X. 

The proof or this tl1eorbm follows in much the same way as does 

its cow1tor1J urt LU d, hence, wi l l no t bu JJI'trnentod htire. 

The last defiui t ion and tlie las1; theorem lead to the I'ollow in& 

definition. 

Definition 13 

If f:X • Y, then h. S X such that JI.; r' (C) where O ~ f [ xJ 
is an inverse set. 

Corresponding to the goncept of an inverse sot is the mapp ing 

which uses this idea, the quasi-compact mapp ing. 

Definition 14 

If f:X• Y is a surjection such t hat for F, a closed inverse set, 

f(F) i s clos ed; and for U, an open inverse set, f(U) is open, then f is 

said to be a quasi-compact mapping. 

The follovling theorem links the idtia of a quasi-comp11ct mapping 

and the identification fwiction. 

Theorem 20 

,-
If f :X•'{ is a surjection with the respective topologies ;Jx and 

j 
'{ on X and Y , the n '.J" i.s the i dentification to_polog y for Y determined 

by r and ~~ if and only if f is cont inuous and quasi-compact. 



Proof 

Flrut. 11, vdJl bu uuuurnu <.1 tliut. J' iu L1.H it1tinl.11'1cutlon function. 

If U is llU opan inver~w 8tJt tl 1:1n f -I (f (U) 

the identification tovology f ( U )c Jy, the uume cu11t1truction will worlc 

for 1'" , u clo sed inver!rn :Jet in X. llence, f i ~ quusi-compact. 

C nversely, if it is asswned thut f is continuou::1 &nd <1uusi­

r. 
compact, t h en it must be shown tha t J1 is actually the identification 

r" r. r 
topology, Jt . Dy theorem B, :Jf CJ~ the reverse set containment will uow 

be shown. If W ( 1~, then r- 1 
( W) ( 'ix and f- 1 

( W) is an inverse set far 

which ff-, L W l :. w Since f ts 

two topolog ies are equal. 

.r 
uP..S).-compact VI t. .J(. Therefore the 
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In ti i:.J ch u_1.,tor vuri o s tGJ;Ol0gi c c1l prupurti e!:I ur u tu !.l tud on 

identification map s to check whether or not t he imago space of t he func­

tion has a certain property v1hen tl e domain sp ace has the proper ty. The 

case of checking the rever se, tl at is whether or not the dor.tain space 

possesses a certain t opological i,roperty when the image space does., turned 

out much t he s ame in every inst ance - it was proved false by a simple 

countere xample. 

Then in the second section added hypothe ses are investiga ted to 

aid in the transference of t he topological p rop~rt ies when the identifi­

cation mai,p ing alone proved ins uffici ent. 

The topological properties to be con s idered are the following; 

firs t count able, second c ountable , T0 , T1 , •r1. , T
3 

, '14, regular, normal, 

compl e tely regular, conne cted, l ocally conne cted, compact, local ly com~act, 

separable , nnd motrizable. 

Transference PY t ba I dentific ation mapping 
with ~ Additional Hypothese s 

l<' irst Countable 

If the domain space of an identification function is first count-

able, t e image spo.ce need not be. This i s illust r ated by the following 

exampl e . 



Lu t, X. bu 1, lw :;pucu of .1: ll u l 11w111.J u r u v1l Ll1 Ll w ui1uul Lupo l0i-;y, Y tbt:t 

s ot co1 :.;LJ Li1 1t:,; uf O nml ul l x 11 t l111~ lll'cJ no t i 11 Lu1:,;u l' u , urnl dtiJ' i nu 1' :X >Y 

as f oll ws : 1'(X): x for ull ::u,R i l,at ul'e not i ut ectJr s ; f (x )= 0 fo r 1111 

x s uch t hn t x i s an i nte ger. l.t' rom t li i s i nfou riat i on the ident i fi cation 

topolo~y cun eu s ily be d educed. Hhat rr.us t li e shown i s that the s pa ce Y is 

no t first countable f or each y€ Y. The el ement in Y t l a t is tlie exception 

wi 1 be shovm to be O. The yroof is as follows. 

Let l U1~ be a cowitable ba s is of Y at 0. It can be .shown that an 

open s et can be constructed so t hat no basis element i s a subse t of that 

op en se t. Let & : ~ &i be an open se t in X such th at 90= (-l'.XJ , ½), 
I= 0 

~,~ (1 -~,, 1 + C: 1 ) ~ r' (U1), l)2...=- (2 -'c.2., 2 -r ~J ~ f - l (U2 ), .. a, 

GI\ .. (n - ~n, n 4- f.K) &, r-\ (Un) where O .::::. £ ·1< 2 for all io Bec1:1use 

8 i s a n open inverse sei f [S} is hll open s et i n Y find, for all i, 

Ui~r[GJ by the choice of t he i.i ' s. Therefore tte conclus i ou 011 t h e 

truns fe r en ce o f t he first countable property is s ubstantiated. Also note 

t hat one can obt a in the point inver se de composition s p u.ce by id entifying 

t he closed s e t ot' in tegers to a point. Therefore , f i s closed. 

Se cond Countable 

Aguin using exain_pl e 1 it i s cl ear tli nt for f :X--,Y, in i dentification 

m8.pping, t he property of ::ie cond counta.bili ty i s not ne cessarily transferred 

from tt e dollluin space to the imag o op ace. 

-----

John L. Ke l ley Gen_e r al 'l'opo l oJ£l. ( i' r i nce t on, Hew J er s ey: D. Van 
No str an d Compan y , In c .'. 19551, _p . 1 04 . 



It is clear frur. a s i mplo 0xwrtp l ti thtit tlie fact tl1ut t he domain 

of an iuer tificetion funct i on i s To do e s not iwces::;arily imp ly that the 

:unug~ 11 11 :1 Lli d SUll lll lJl'OJ.llll:'ly. 'l'li e :t'ullov1i~ vroviu uu tli u duuir~ti u..1u1111p le. 

Exur.iple 2 

Let X be RJ with the u s uul topology and Y::: 'l_o , l) then the topol­

ogy on Y 1ndu9ed by the map f:X • Y defined by f(x}= O, x-= R\Q (Q, the 

set of rational numbers), fl x ) ~ 1, x~ <., is not T0 • The id entif icution 

topology would be simply the ind i scre te topology on lO,lJ. 

'I' l 

Utilizin5 t he results of example 2, i t can bt:J concluded t hli t the 

transferen ce of the T1 prop erty cannot always be guaranteed by an iden­

tificat ion mapping. 

Again with the results of exomple 2, t he non-transference of the 

T2 property by an identification mapping is shown. 

Regular 

Up on the examinat ion of the next example it v1 ill be ahown that 

if th e domain space of an identification tunction is r eg ul ar then the 

image s pace need not b e . 



Lti t X l.Ji, [C',1.) wlth L!Ju u nuul topol ogy u11c.i Y.:: [ O,l} , tl1un tl1e 

function f::X?Y mopp ing f( x )== 1 for xElo ,½) ,md f (x)= 0 for xt[-~,11 
givea ri s e to an iden tification top ology on Y tbut iH not rogulur de­

spite tho fuct tlut Xis. 'l'lii s topology iu f[1L [o, l~ ,~. 

The topological property, T3, is not necessarily tranafel'red by 

an identification function. This fact is proved by example 3. 

Normal 

Once again it is found -chat another topological property is not 

transferred by an identification function. No:nnality is definitely not 

preserved in the following example. 

Example! 

Let X be [o, 11 with the usual topology and Y~[a,b,c) then the 

function f:X..,.Y mapping f(x):: a, for X£19,¼1 ; f(x·) = b, for xe:(¼, 2 ); and 

f(x) "c, f or )(.E. l ½,11 induces an iclentifice.tion topology such that Y with 

this topology is not normal. The identification topology on Y is [[a,bJ, 

t b} , ~b, c) , [ u, b, c ~ , ~ J. Hence the closed sets [a."S and fe.3 cannot be 

separated. 

Since the domain space of the identification fw1ction described 

in example 4 is also T I it follovrn, by example 4, that tl e T4 property is 

not preserved by an identification mapping. 
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Completely Regular 

In reviewing tho example cited to show that the property of beirie 

r egulnr is not transferred by an identification function (examp le 3), it 

becomes clear that the example is al so sufficient for illustrating the 

non-transference of the ccmpletely regular p roperty. It follows again by 

example 3 thnt if the domain space of an identification mapping is T3n­
the image space need not be. 

Separable 

In contrast to all cases considered t hus far, an identification 

function tranafere separability. This does not come aa any surprise, 

however, since it is known that the transference hol<.ls for any continuous 

surjection. Properties unique to the identification mapping were no~ 

made use of here. A short proof illustrates this facto 

Let f:X • Y be a continuous surjection. If Dis a countable dense 

set in X, tllon D:: X which implies f(D) -:!Ye Howover, .f(D)c. Y bu\ f(D)c.f(D} 

by continuity. Hence Y= r{D) and Y is separable. 

Connected 

It is clear, once again, that the transference of this topological 

property holds, not due to the fact that an identification function is 

used but t hat the function in question is a continuous surjection. Tho 

proof of this fact is standard and will be omitt ed here. 



Locally Connected 

In the case for local connectivity t ransference can be shown. 

The proof is as fol.lows. 

Theorem 1 

If (X, .Jx), and (Y, !1y) are topological spaces, the n the iden­

tification function f : X• Y with X locally conne cted insures t lJ e fact 

that Y is locally connected. 

Proof 

28 

In this proof it munt be sho,·m that components of an arbitrary 

open set in the image space of an identification function are themselves 

open. 

Let :r: X--'Y be an identification function with X locally connected. 

If Q. is a component of any set U <;;. Y then f -\ ( Q) is the union of a col­

lect ion of components of f-l(u); for if Risa component of r-t {U) that 

intersects f-\ (Q.) then f(R) ~ Q. since f(R) is connected, lies in U, nnd 

int·ersects Q.. Hence Rc;f-\ f(R) Sf ·\(Q.). 

If Q. is a component of any open set, U, in Y, then f -L (~} is open 

in X since r·\ (~} is t he union of a collection of components of the open 

s~\ :r·\ (U) where each component is open by the local connectednes~ of 

the space X. Therofore the fact th a t f-\ (Q,} is open in X implies that 

Q. is open in Y r~lativa to the identification topology. Hence Y is 

locally connectedo 



Compact 

Using only the criteria specified by a continuous surjection, 

compactness of the donain space of an identification function is trans­

ferred to the image space. The proof ig, again, standard and will not 

be presented hereo 

Locally Compact 

The topological property, locally compact, is not transferred 

by the identification mapping. An instance of this non-transference 

29 

can be found in example 1. Clearly the domain space of the cited function 

is locally compact. However the image space Y is not. A short justi­

fication of this claim is now appropriate. 

"' ( • Suppose Y is local ly compact, then for anyt1fJy there exists a 

compact neighborhood of O contairwd in 9. o Call it &1 By the structure 

of the mapping there exists an i:::.; for nll i in the set of integers such 

that [ i -£i, i+£.J ~ r- 1[8,1 where O <.£.i< ½ for all i • For n, en integer, 

tf(n-1-~ll )J = l n+Z::11.,~ form a sequence in SJ,.· By the compactness of 9, there 

exists a cluster po int, x, in &, . Clearly xi O since the image of 

u-:tR:t it- £j{, 1 +!Vi_)\ 1 is an integer~ would not contain any points of the 

sequence. Now it remains to pick a ,)0 sueh that (x-r, x+S ) in X contains 

no integers. This is an open inverse set which contains at most finitely 

many terms of the sequence. Hence Y is not locally compact. 



Metrizable 

Example 3 serves to il l ustrate the f act that a metrizable 

domain space in an identification function does not necessarily ins ure 

n metrizable image space~ 

Transference of Topological Properties 
Utilizing Add ed HyPothesea 

30 

In showing the transference of topological properties from the 

domain to the image · space of an identification fW1ction one finds that 

the added hypotheses of upper sem.icontinuoua and/or lower semicontinuous 

decompositions on the domain s paces induced by point inverses to be of 

great assistance. It is interesting to note that for an identification 

function, f, to say that f induces an upper semicontinuous decomposition 

on its domain space is equivalent to saying f is a closed mup. In ft 

parallel result, for f again an identification mapping, to say that f 

induces lower semicontinuous decomposition. on its domain space is equiT­

alent to saying f is an open map. These fnct s follow directly from the 

result s in Chapter II. 

In the first theorem presented in thi s section an upper semi­

continuous decomposition of the domain space of an identification func­

tion is introduced as an added hypothesis and yields some desirous re­

sults with reference t o normality. 



Theorem 2 

If f:X • Y i s an identificat i on funct i on with X normal and if 

poi n t invers e s wi t h re spe ct to f induce an upper semicontinuous decom­

position of X, then Y is normal. 5 

Proof 

If F1 and F
2 

are closed sets in Y t h en f - 1 (F1 ) and f-l (F2 ) 

are closed in X. By normality of X, t here exists ~, and 0-L open in X 

such that f - I (F1) <::- ~, and f -\ (F2 ) ~ &z where bot ()&,L -=-~. Also by 

theorem 15 of Chapter II, V [r-l (y)\ f-\(y) s&,~ :::&1 , and 
l\ 

LJ[r-' (y)\ r-1 (y) ~&;s~~2.are op e n in X and are inverse sets. Hence 
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r[&,] , r~&J are op en in Y with F, <:: r[~J , F 2s r[&J e.nd r~J (\r[~Ji. 

Therefore Y is normal. 

Next assuming a lower semicontinuous decomposition on the domain 

space of an identification function, the property of first countability 

is tra.nsfe rred. 

Theorem 3 

If f: X• Y is an irtentification function with X first countable 

and if the point inverse s with respect to f induce a lower semi continuous 

decomposition on X, then Y is fir s t countable. 6 

Consid er Y'- Y, x(. r- 1 ( y ), ond S.f. ~Y such tha t yEtJ., thAn 

5Hob ~r t l . Kun r to l, Und or1_;r1 dnuto T~ iolOGY (P h iludclµh i n : 
W. B. S:rn nder3 Compan y , 1 971T,- -p-.- 237 . -

6Ku or ial , p . 8~? . 



r -i (t,) f J x . Sinco X il:l f'ir l:l t co uutubli, trwre e .b ts a countlible locul 

basis i uJ at x tlren Ui S r -i (b-) for tiOffitj 1. .1-u. ao s inco the point inverses 

i•d uco " l ow or oomi ount i nu,iuts duoo111 p,w 1t i ou on X, O · LJZ 1' - I ( z) \ ~ ti y u nd 
11 

r- 1 
( z) r\ u 1 c\l 3 

n is 11n open inverse set in ;c ,·.h.ich i.mplie.a f(Cn) 1s 

open in Y tor all llo 'l'ho only t hing tl ttt 1•cnu1ina to be 1iroved is thnt 

f(0 1 )~ &,. Sino• ui ~ r- 1 (&),. f(U
1

) Sr f'. 1 (&) '- &- • Uow(jvtir f(Ui) =­

f(Ci) by construciiono Hence f(Ci) Se &- and the [rtc11 )5 'a foi,n a countable 

looal busia for Yo Y is first countable" 

A lower semicontinl.U>us decompo si tion again comes into _µlay as an 

added hypothesis to aid in tha transference of second countability ··from 

the dOJ, ain space to the image s pa ce of identi:ficution function. 

Theorem 4 

If f:X • Y i s an idtmtificHtion function with X second countable 

and if t he point inverses with resp ec t to f induce a lower semicontinuous 

decomposit ion on X, then Y i s se cond countable. 7 

Proof 

If [u-1\ f o rms a countable basis of X then Ci= U l.1' -I (z.)I z_e.Y and 

r· 1 
( :z.. )(\Lkit~~ is an open inverse set in X. Theref ore f( ci1 . is an open 

aet in Y. It remains to be shown that the (_ f [ci15 's !arm a basis tor Y . ., 

7 
Kasr iel , p . 237. 



Cons id e r Oc.Jr ith yE.0 and x €. r - 1 (y) th en X 6 f - 1 (&)c~- l3 tl e 

se cond cowitabi lity of X thc.:r·e <...xis ts Vi '= r· 1 
( $ ) s uch tll11t x t:. Ui . 

Hencu by con!cltruct ion , us in tr c: urn11 ~, of LLi!:! cl1u_pter , y"1' [.cd~&. 
This c ive s tl e desired r esult Y is se cond countable . 

The added hypothesis of u lower se1, icontinuous d e composi i; i ou of 

t lrn domain !,pace of cm identificntion mapping aids i n th e i;rnnsference 

of the locally compact p r operty. 

Thoorem 5 

I f f: x ~ Y i s un i dentificat ion m1:1ppine with X locally c ompact 

and if f induces a l owe r semicontinuous de compos ition on X, then y is 

locally compuct. 8 

La t & be un open set in Y and l et y fQ. It mus t be shown that 9 
cont ain:; a co1.pa ct neic;hborho od of y. S ince x Ea f" 1 ( &,) is open in X and 

X i s locally compact, f _, ( 19) contains a K and U such that x E U c:Jx und K 

i s a comp uct sub set of X viith US K. l:ly lowur semicontin uity, f(U)E. !I y 

y=f( x )(f(U)tJy a nd f(K) is compact and f(U)~ f(K)~&. Hew.:e Y i s 

locally compact. 

Further r esults concerni1 ~ the se:purut io11 p r opertfos may be ob­

tained with upper and lower semi continuous decom1io si tion induced on th e 

8:Kus riel , p . 23?. 



do,nttill :..s1mc t: by tl1u id1 :Jtt i l' ic1:1tion fu 11 c.:ti o11 . Iiov1,; vur , buf'ure t he 

sepur& t i on propurti es c.1re con:.; id ured one r e ::;ult must b e _µr c s,;11 t e d to 

fuc il itute t 1d i:.3cu:.3::;ion . 

'l'h8orcm G 

It' 1': X• Y i s un iuentificut ion functioll thn n Y i:..s '1\ if unti 

ouly if r- ' (y) i::; clo::; ed for all y Y. 

Proof 

If it is fi r st atisumed tLut Y i s T1 then it follows t hut [yJ is 

closed for all yf:Y. Since Y holds the identificl:ition t opology , lyJ is 

closed in Y if and only if r- 1 (y) i s closed for ally ~ Y. 

Hext if it i s asswned th a t f • I ( y j is closed for all y (. Y then it 

follows i mmediateiy thl:it [ y J is clos td in Y s ince Y 111:is the ident ifica­

tion t opology. Hence Y i s T1 • 

This leads to the next re s ult for T1 . 

Theorem ? 

If f: X • Y i s un identifica tion function with X, T1 , aud if f 

induces an upper semi continuous decomposition on X then Y is T1 • 

It should be not ed th!it it is s uffici en t to show thut f- 1 (y) is 

c;losed for all y ~Y. 

For x , y E. Y and for ~Ef ·I ( x) and y E r- 1 (y), f~ ! and {}~ are c losed 

set s in X. Hence by the upp er se111icontinuity of X, u{!- 1 (z) \ zE.Y and 

r-'(z)(\l'iJt~{r- 1 (x) und Ufr-1 (z)I z{Y and f" 1 (z) (\ lYJ1~}=t- 1 (yj 

are closed . Hence fJ and [y ! are closed in Y. Y is, therefore, T1 . 



Vii th the re ~rn l t s 110 w uvail1,b e , it i:-J p0us ib l 11 t o ]iro~ent u 1·u-

sul t of tlteoremu l untl p. 

Corollary 1_ 

Ir f: X• Y is au itientil'icution mupping anc.1 if f inc.luces an 

upper semi continuous dec omposition on X with X,'1' 4 , -chen Y is T
2

• 

Proof 

If x 1 'I'- Y where x f y, then f ·I (x) and f · 1 (y) are closed in X 

by theorem 6, Hence [ x1 and [~1 are clo s ed in Y and by the normality 

gives ns a result in Theorem 1, there exist open se ts ~X and &y ,in Y 

such that )(E:, &x and yf Gp1itb &xnGy=~. 

1 result f or T4 can be found with r e lation to upper sern.iconti­

nuity of a dacomposi t ion on X induced by an identification mapping f 

Coroll a ry 2 

If f: X• Y is un ident ification mapping and if f induces an 

upp e r semi continuous deoomposit ion on X with X, T4 , then Y is T4 • 

Proof 

The .Proof is a direct result o f theorems l · and 6. 

In proceeding with the discussion of the transference of these 

top ol ogical properties, it now bec omes apparent tlw.t the singul ar added 

hypotllesis of an upper or a lower semicontinuous decor.1;:i osition i s no 

longer sufficient in obtaining further results. lfon ce another concept 

is introduced - that of the p erfect map. 



Definition 1 

If f: X"7Y is a closed continuous s urjection such that f -'I (y) 

is compac t for all ye. Y then f i s called u perf e ct mo.po 

As is obvious, this pos sible hypothesis is s tronger than upper 

semicontinuity whAn nn ident ification map is considered. Ir f is an 

ident ificution map, f, perfect, implies f induces <in upper semicontin­

uous decomposition on X. 

However, before results are introduced on top ological properties 

not yet mentioned, another result using the hypothesis of a perfect map 

and a top ologica l prop er ty already considered will be presented. 

Theorem 8 

If' f: X• Y is an· identification mapping with X, T2, and f 

perfect, then Y is T2• 

Proof 

For x, yE. Y with x tY, r ··.I (x) and f ~1(y) ure compact, disjoint 

closed sets in X. Hence there exists E:., ancl S.z. oyen sets in X such thl:it 

r -I (x) s;~\ and r- 1(y) .£GL. Further by the upper semicontinuous decom­

po:Ji tion induced by f, the sets c1 and C,) can be defined suob. that ... 
cl,_l)[ r· 1 (z.H z_E. Y and f · 1 (z.) s B1~ and c2 -:.U[r -, {z.)I z.~Y and 

r-l ( z.) ~l3J with c1 and c2 open inverse sets. Therefore xi f [ c11and 

Hence Y is T~. 

J\gain making us e of def i n ition l of this chap ter the followi~ 

result call be obtained f or t he topological property ot' r egularity. 



:5'l 

'rheorein 9 

If f : X• Y i s u 1,Jerfect inupping with X: re.;ulnr then Y is re~ular . 

P roof 

If ycY and :E' .SY where F i s closed in Y, t hen f -, (F) i n clo ned in 

X. Let xE r 1 (y) such t hnt f(x).:: y. Since X is regulur, th ere exists an 

&, and U1 such that xc-G,, f- 1(F)S ul with &,_nul--~ 0 This works in a 

similar way for all :x: ~ f"\ ( y). Hence the [Go<.~' s form an 01-> en cover for 

r- 1(y) and the corresponding tUu<.,~ 's f orm an op en cover for f- 1 (F). Now 

since f- 1 (y} is compa ct t here exists a finite subcover composed of. '9- •• 's 

for r- 1(y) with f- 1 (y)i;_U~;=& open in X. Correspondingly,{\ U1"U is 
I~\ I ~l 

open in X und contains r' (F) o Cl eurly, & (\ U"~. By the upper semicon-

tinui ty of the fwiction, sets Cl and c2 muy be defined for & and U re­

spectively as in the orem ?. The result is of course disjoint open in­

verse s ets containi~ f -1 (y) and r- 1 (1''). Hence Y is regular. 

From this r esult and that f or T1 it is now possible to stute a 

corollary that will yie ld a result for T3. 

Corollary~ 

If f:X • Y is a perfect map with X, T3, th1:m Y is also T3 • 

The next property to be investigated is that of completo re~ular­

i ty,_ Here the added hypothesis of an op en per fect mup yields tb u results. 



Th ore111 1 0 

If f:X~Y i s an ope n perfect mapping with X completely r egular, 

then Y i s al so compl e t el y r ~gulcil' . 

Proof 

38 

If F is a closed set i n Y and ye Y such that y .\, F, then r- 1 (F) 

is closed in X and r-1(y) i s a canpe.ct se t i n Y. Because r- 1(y) is com­

pact and X is completely r egular, it i s pos s ible to construct a f arnily of 

open setsl«'d \ df DJ such that r-1(y)~ S0 ,~~ @(;~ x\r-'[FJ whenever 

s < t I.ind Dis dense in lo, 1Jo9 Next the f'ollowing op en inverse sets 

may be formed through p roperties of an upper semi continuous decom1)0si. ti.on 

Ud:;U [ r· 1 (z)\ 1'
01 (z)~&i). Hence tfud) = Vd whi ch is open in Y. 

Cl ee.rly y, Vd S Y\F .for all d f; Du Now it must be shown that for t< s, 

Vd = Vs· Since Ud~t)df:.~d t.:Ss and since f induces e. lower semicontinuous 

dec onirJos i tion, U [r ·I ( z) I .f - I( z) S ~ dJ is a closed set containing Ud and 

- - -contained in Us. This i mplies tha t Ud S Us wh ich yields Vd = f(Ud) ~ 

The top ic now to be considered in this section is p erhaps the 

mo s t complex. It is the top ic of metri.zabilityo F'or conveni ence the 

di s cussion will be divided into three sections each representing differing 

added hypotheses that a id in the transf erence of metrizabili ty from tho 

doma in t o the image space of an i dentification function. 

9 
Kel l y, pp . 114,142. 
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'rl woron 11 

If f:X .. Y i s y orf11ct with X a sep ureble IUf.ltric s_paoe and f inducirtg 

a lowe r s emicontinuous dec omvouition on X t hen Y i s metrizuble. 

Proof 

The proof of this theorem is as follows. First reulize thtit a sep­

arable metric space is also second countable. Second, since f is perfect, 

Y is TJ ( corollary 3). Finally the resu1t is obtained through an appli­

cation of Urysohn'a Metrization Theorem~ 

In tho next variation, the hypotheses are strengthened by ommitting 
,, 

the s epar ability of X but we akened by requiring that f be perfecta The 

following definitions are also needed for the next theorem. 

Definition 2 

If f is ·a metric on :X:, SiX, and i>O, Vt.(s):f xl'f(x,s)'£ for sf sJ. 
Definition 3 

Ir'( is a metric on X and K1, K2 are closed bounded subsets of X, 

.li(K1,K2): int[f. ( K1~VE. (K2) and ½'=-Vt(K1 )J. H is the liausdorf'f' metric det~r­

mined by~. lO 

Theort!lll 12 

If f:X• Y is open und perfect with :X: metrizable byf,_ then f (~, ,Y2 ) = 
( ·\ • I ,..,_I'\. 

H f (y1 ) ,f (y2 )) is a metric for Y and t·Jr where H is the Hausdorff metric. 

1
°Felix Hausdorff, Set Theory, trans. John R. Jiumun, '·et 1:ll. 

(Second d ' ti N e l. on, ew York, Chelsea l_,ublishing Company, 1962), pp .166-1 ?2. 
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Proof 

It 1s true:, tl1ut f iu u ni uirio on Y uinoe f" 1 (y) iu O001.,iuot uud 130 

closed and bounded in X. 

Secondly 1 t must be showu thut !Iy: Ji(! . Consid<:Jr Yo f U €.;;, such 

that r· 1 (yll )<; r- 1(U)E,1x. By the Lesbesque Covering Lomm11 there exieta 

ani'>O such that V1. (f . 1 (y0 ))=f2.\2.e.X and ix (Xo)Z- )~f..v1here fx is 

the metric on x•js f"I (U). Now consider yc. B-f( y0 ,t..J. With this 

specification it is clear that f(y, yo)<f... Therefore H(t- 1 (y), f° 1 (y0 ))..::;E: 

and so r- 1 (y) s; VE (r-1 (y0 ).)S: f" 1 (U). Hence yf. u, thus giving uc:· '1· 
Next the reverse oet inclusion must pe shown. If~> 0 and '· y OE Y 

thenu02U[r'1 (:z) \ r·1(:;!..)~Vt/z. (r" 1(y
0
))Swithf-\(y

0
)s u

0 
is 

open in X since f induceo an upper semicontinuous decornposi tion on x. 

ilso, since f' 1 (y0 ) is compact, there exist x1 , ... , xe; r- 1 (y0 ) 
k 

such that f- 1(y0 ) £ i~\ Slfx(Xi I t/-1 ). Let Ui~ U [ t-J (yn t•I (y) n 
'3-f,/'l'i>i:./4J i~~ Note that since xi£ f-\(y0 ) s; U, and that because 

tis open (i.e. f induces a lower semicontinuous decomposition of X}, 
k 

Uj is an open inverse set in X. Hence (\ U 
i•o 

is also an open inverse 

fx(xi I x1 )..::: ~. This results in the fact that .1X'(x, x1)~ t_and that 

x~vL/2..(f-l(y) ). Hence r- 1(y0 )sVe/,(r-l(y) or i (y, y0 )=i:t,..::iwhich 

Yields y~ Bf [Yoi f.j . Therefore B 'f [yo i i..}tJr . 

*andx
0

(. f' 1 (y
0

) 



The final cons ideration und reference to metrizubility is the 

strongest result whose proof can be found in Dugundji, page 236. 

Theorem 13 
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If f:X • Y is a perfect ma.ppi~ with X metriza.ble then Y is a.lso. 

Thus far in the discussion the only results being investigated 

a.re those that transfer a. topological property from the domain space of 

an identification function to the range space, This is the case due to 

the fact that very strong hypotheses are needed to transfer the afore­

mentioned properties in the opposite directiono This discussion will be 

pursued in more depth in Chapter IV. As for the hypotheses available at 

present, thers is little that ean be accomplished. Two results a.re iln­

media.tely available; however, the first concerning oom1,actness is pre­

sented in the next theorem. 

Theorem 14 

If f:X • Y is a. _perfect identification mapping where Y is compact 

then X is a.lso comp a.ct. 

Proof -
If f~i j fonns an open cover of X, for all y ~ Y only a finite 

number of CJ 's cover f -I ( y). 
· X 

r-t (y) for a particular y EY. 

Uff~ 1(Yj ) \ f"' (y i )c.'lyj5 

Let Vy be the union of the & :x:' s ooveri~ 

Then Uy · can be defined as (, ; 
J --

an open inverse set. Hence [r(U . )} fonns y, 

an open cover of' Y. By the compactness of Y, there exists a finite sub-

cover composed of the sets [r(u
11 

), f(Uy2), ... , Hence the 

corresponding v11 , ... , Vyn form a fi~ite subcover of &x1 s for x. Xis 

compact• 
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ut100 11c.i r1iuuU. ouno urn i nc truno f uruno~ o!' u t. o})olo~i ool ~ruµ orty 

from t he im1:1ge sp ace t o t lle domai n spa ce of an i dentificC:1tion funct i on is 

now p r t 1..w nted~ 

Thuor 1:,rn 15 

If f: X• Y is an i dentificat i on funct i on where Y is connected and 

:r- 1 (y) i s conne cted f or all y€. Y t he n X is conne cted • 

. Proof 

Suppose that Xis not connected. Then there exists 0£ X suca 

that C is both op en and clo s ed in X and C f X or C I <P. Cons ider, now_. 

:x:fC. Then r -1r(x)nc; fcp. Fur t hermore r-lr(x)()C~ f- 1f(x). If C is 

an inverse se t with f- 1(y)CC fo r all f- 1(y)() c#~ (~'-Y), then the 

conne ctedness of Y would be contradicted. If C is not an inverse s et 

t h ere exists an x
1

'- X such tha t r · 1 (f(x1)f'\c;(t and f·lf(x1 )f c .. This 

implies t hat r- 1 r(:x:1)(\ C is a subse t of r· 1 f(x1) t hat is both open and 

clo s ed in t he subspace topology. 
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Ml.NIWu. J\ND t.l.A.X.lM;~ 'l'OPOLOUIK:J 

ON THE DOMAIN SPACE OF Jul IDENTIFICATION 

FU C'I' ION 

Thus far in the discussion the only elements of the identification 

function t hat have been in question were the i~entification fwiction it­

self and the topology on the image spuce of a function. Now in this chap­

ter a new concern comes into play - that of the topology on the domain 

space of an identification function. 

In order to motivate the dis cussion of maximal and minimal topol­

ogies it is first necessary to illustrate the fact that given a continuous 

surjection and a topology on the image space of that surjection that there 

exists at least one topology on the domain space of the function tha~ 

makes it an identification. There may be several as the next exalllple 

illus trates. 

Example !_ 

If f:X-tY is a mapping from X: onto Y where X is the set of the 

r eals and Y = [o, 11 then the cofinite as well as the usual topology make 

f an identification function where the topology on Y is the indiscrete 

t opoloey with f(x)::. o, xE. q, and f ( x ).:: 1, -xcR\ Q. 

The se t consisting of al l topologies that make f:X-,,Y an iden­

r. 
tification function \·1here ~ y i s t he topology on Y will be referred to 

as Q.(f,Jy). 



'1'110 quouU0 11 uow uukud lu, "11:1 thuro u l.llll ll l leut mornlrnr ut 

Q,(f, ~)?" The answ er to this que s tion is ye s. 

referred t o as the mini mc1l to1 io logy. 

This element will be 

Tho 1.linimal Topod.ogy 

Lemma 1 

If f:X~Y is a surjection with5ythe top ology on Y and 

l f-l (U) tu E;-J'yj then rt7y is the smallest element of Q,(f, ~). 

The easy proof is omitted. 

Definition 1 

f -I (J ~ y 

44 

If f:x:-,y is a sur jection with Cr the topology on y then r-1j"y is 

called the minimal topology. 

It might be asked whether or not the above is the only element of 

a particular Q,(f,'Jy)• The next theorem yields results in this area. 

Theorem 1 

Proof 

If f:X• Y is a surjective mappill8 with Oythe topology on Y, then 

is the only topology in Q,(f' Gr) if and only_ if f is one to one. . .'. 

If it is assumed that f is one to one and that f is an identifi­

cution function then it must also be true that f is an open surjection 

since !'1 f(U) ~ U for all U t- SX. Hence the minimal topology is the 

Only possible topology on X in Q(f,1'). 
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Cunversely, i1' !'(x
0
J = f( x t) with XO\. 1, x.B, thon{'),[.x~tX)'I/ t·~ 

is in Q.( r, Jy) 0 However, this is in contradiction of the fact that r 

is the only el001ent in Q,(f, G'y). Therefore f is one to one. 

The definition and clarification of the concept of the minimal 

to1,ology now gives rise to a new added hypothei;is that is especiully ui;e­

useful in transferring topological properties in an identification mapping 

from the image space of the function to the domain space. It is indeed 

r, •Ir.' 
readily apparent that under the hypothesis .:J~: t .Jrthe properties of 

first colllltability, second countability, regularity, nomiality, separa­

bility, local compactness, compactness, coruiectivity, and local connec­

tivity are preserved. This is not the case, however, for the separation 

properties. In order to transfer any one of the separation properties 

from the image space of an identification function to its domain space, 

a hOllleomorphism is necessary. The case for TDis illustrated. 

Theorem 2 

It f::X:-tY is an identification function with the respective top-

1 1 r, r·',;y and r:" v d Y o og es ..,X;; .., .., 
1 

on A an with Y, T0 , then :X: is To 11! and only 

if f is one to one. 

Proof 

Assuming first that X with the minimal topology is To, suppose f 

is not one to one. Then there exists x,y t :X: such that f(x) ~ t(y) with 

x f Y• However there can be no open set containing x but not y (or vice 

versa), since all the open sets in X are of the f oI'l\l 



r· 1(v), Vf.Jy, uncl c1:1nnot t3epurute elercnto of Xtl1nt rnup to the oume 

element in Y. 
. r- _, ..., 

Hence, if '1 x= f J y and X is T0 t h en f must be one 

to one. 

Conversely if f is one to one and Y is T0 , it is clear that 

x, y (. X can be separated by T
0 

sp e cifications by merely separating 

f(x) and f(y). Hence Xis T0 • 

Metrizubility because of its link with the T2 property, ala, 

requires a homeomorphism in transference from the i.r.lage space of an 

identification function to the domain space. 

The Maximal Topology 
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Having di s cussed the i dea of a minimal topology the more complex 

analysis of a maximul topology on the domain space of an identification 

topo logy remains. As can be ascertained by referring to example one of 

this chapte r, wha t must be sought is a maximal topology, not a largest 

topology. This can be seen through t he rea lization that f 4i ,&.J, n 5 E 

Q.( f, ~yl f or all }Cc~. Therefore a l argest topology would have to be 

discrete. The discrete topology is not an element of Q,(f', [i~). The 

quest i s then to come up· with some formulation t hat will describe a 

maximal topology ou the domain spac e of an ident ification fWlction. 

Neverth ele ss some identif ication functions lend t hemselves to h aving 

a l arges t topology. The next def initions and theorem g ive r esults in 

area . 



Dc,J'lr lLlo n ;~ 

11' f : X->Y l u w1 i1lw1ti1'l c~uil o1 function tllfJn 

Kr=[x \ f" 1f(x):: [xJ, x EX is the kernel off. Lt~ f [Kt] , 

In addition ~o this definition this next concept wil l prove 

uueful in the titttdy of th~ m11xi1:1ul toJ,ology. 

Definition 3 

Suppose :Jr/... and S"fJ are two topologies on a se t X. Let 

I. ,. 
J,t.. or :Ji, • 

r., ,. 
;Jot and ~CJ 

Theorem 3 

Thus B is the collection of all sets either op en in 

The topolog y generated by B is call ed the irnpremernum of 

r,' r:' 
, written :.JQJ..'I J~ . 

If f:X~Y is an identification function, then Q,(f, 'J'y) 

contains u larg es t element if and only if for all y '=. Y \Lr [y jt r y 
,..., r 

where .Jy is the topology on Y and Lr t Jr . 
Proof 

If it is first assumed that there exists .a largent element in 

Q(f, 5y), namely~:\., then for yE Y~i and x e f -
1 

(y), r 1 .5y V 

[~, £x\, X.3fQ.(f, ~Y ). Therefor e for all x E f" 1 (y), fx}c.J1,. which 
r-' 

implies f" 1 (y)tJL. Hence [y]E:.Jy. 

4? 



Continuing with tli o a s::1wnptioll, one i s uhlo t o vic.:k 

x1 , x2 -c. r- 1 
( y) wit l x1 ( y) j x2 ( y ) and define s

1 
= [ x1 ( Y) \ y E. Y \ L-93 

and s 2 =-[x2 (y) \ yf... Y\J~r1 • It mu s t now be shown that 

f -1 n,'y V [r¼I • Kr u ..-:~i ' ( r. l .>• 'f ~ , X ~ E Q f, Jy f or i " 1 , 2 . Fir s t it should be 

noted t hat the basic open sets in tbe described topology ure of two 

types: U (\ X ~ U where U E. r-l.5y or U (\ (Kt· U Si ) where U f f _, 5'y • 

Both types of open sets are clooed under unions . 'rherefore a typical 

open set is of the form u1 L) (u
2 

(\ (~ tJ Si) ) where u1 , u2 E. r-
1

5y• 

If u1 U (U
2 

(1 (~L)s
1 

) ) is an invers e set then u1 U {Ui) (KfU Si ) ::. 

u
1 

U U 
2

• The oet inclusions U I U (U/ 1 (Kf L) Si ) ) S Ul U u2 is indeed 

obvious. The reverse inclusion merits investigation. If xc. u1U u
2 

4tl 

then x(u
1 

r1h ich yields the result or xE. u2 and y:a. f(x); then xc ~ 

implies x €. u2 ti (}Cr U s
1 

).. Otherwise, xi ( y )t: U 
2 

ti S /::. U1 U (U2(){KfU Si ) ) . 

Since this is an inverse set xcr· 1 {y) su1 L) (U
2
f\(Y'fUs

1
) ). Thus any 

open inverse set is already open in f- 15y und t -,s~ y [4, KrW Si • 

X5 f Q.( f, 1y). Therefore, Kf L} s2 and Kr u s1 ar·e both in the largest 

topology and oo is (Kr U s1). (\ ( lCi, U s2 ) .,. Kr• Since Kr is an open inverse 

set by definition, f lKi,1: Lr t. Jy. 
r. [ ' l er' \ r 1 t Converse ly if Lr c: Ji and y J J ~ for y '- Y 't'f a 11rgas 

topology exists. Let {J,.. be defined by j~" f -l~y V [u \ U "'X or 

U <; X\Kr J. 'l'wo things must now be shown: first, th11t ~ E. Q.(f, 1y) 
r: r) r.c,--and second that Lt :J €. Q.(f, Jy then J - JL. Returning to the first 

r:-
i tern to be proved, it is clear that JL. on X allows f to preserve its 

,­
property of being a continuous surjection. Now suppose r- 1(s) E.J1.. 

wr7ere S S Y. It now rema ins to show that S E-.iy. One may now consider 

XE: Kr(\ f~ 1(S),.. There exists a U:xE.f- 1 .Jy and U2E-l_u\ U=X or U':X\Kri 

such that x,u:xnu2 s-f" 1(S). By definition u2 must be X. Hence 
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x,ux~ r '(s) 1:1ndU(u x \ x ~ r·1(s)(\K.fJ:v€ r·12y. Therefore 

S :: f(V) U ( U Y.J) ·1hC;re Y"' Y\Lr b.Ild S pre s erveti the vrop erties of 1:111 
~~r "" ~ ~ 

id en t i!' i cbt i on functi on . 

Re t urning now to t h e sucond consider a tion mentioned one must con-

r.- I":' r- r: r.-
sider any .;J £ Q.(f ,-.;y) and show J~~- suppose fir s t that OE J and consider 

xt: U. I1' x c\ K:r then by hypothe s is [ x~t ~, [ xJ~u and U i s a~ neighbor­

hood of x. If xe Kr then xE Krfl U which is an op en inverse set. Hence 

f(Krf\U)E-D'y. But Krf\U= r·1r(Krf\U)c{J'-. so x~Krf1U~U and u is a~ 

neighborhood of x. However since U is a neighborhood for x 1; K:r and 

x~Kr it can be concluded that U is an open set in¼_. Hence Jc;~ and 

the proof is complete. 

Vii th these results it is novi _p ossible to embark: on a s earch for 

maximal topologies. 

First before the actual pinpointing of a max:iJnal topology can 

be made, an analysis concerning Zorn's lemma now seems applicable. The 

que;:;tion is, do all chains of identification topologies have a max::iJnal 

element? In order for this ques tion to be answered, a lemma must now 

be presented. 

Lemma 1 

If (X,!J) is a topological space with XO~ X then 

1v[~, l,x0~, xJ~Ju l_u O!:x0,I u f;J]. 

Proof 

Cleurly by the definition of the auprenum of two topologies 

.G'u[u u lxo, \ uc5J is conta ined in JVf.f, lxo~ ,xJ. 'l'o show the reverse one 

ll us t cons i der Vt:.JY t ~ , l,.x0J ,xJ. It must be shown that v\[.x03 t.J. 



If' xu ~ V, V\l o!. V; l (juc0 V\(x0~~J. If x0 e. v, v:: 

(V'\l:.Xo '3 ) U [ xoJ 1·1h ich s ays that V \(coJ is ind eed un olemont of :J. 

If X :. ( O, 1J and Y • \_O, 11 \[~ \ nEz-t! and f maps X into Y 

by f (x): 0 if' x; ~ for some n(; z+. Wld f(x):: x if x / ¾ !'or nE z+; 

'Jr. . I r.- l'j ;: 
and the topology on Y is co-finite with i):: f .Jy and '-'~-t-1 

5\'\ vttl~\S, XJ the following conclusions can be made. 

bO 

First, it cun be shown that for all n f: (X, IT'~)-t(Y, S'y) is an 

identification function. This can be shown by induct ion. The ini~_ial · 

case n ~o is true by previous work. 
r.:-' 

Now assuming the conclusion for JK , 

suppose r ~, [s 1 c Jwi_~ 1 • 
r. 

It must be shown that S E ;J y • If 

Y\~l ~f · 'ls], f ., (.s]~J" which implies that S '- :ly. If 

f+\ '- r -i [ sJ, r · 1 [s 1 : U U ~'~,j and Ot:S. This implies that 

f ·I l OJ S S. So if S; f [ vJ , U E. ·!J'..., implies U eq_uals the union of 

V and some finite subset of [1, 1/2 , 1/3, ... , 1/1l5 where V ~ r- 1 'Jy ·~ 
~ ~ r. 

Let ;JCJ be the topology with basis U J . J,.... is the smallest 
f'\, "; 0 " -

r-
topology which contains .JI'\ for all n. 

Finally, it can be demonstrated that f:(X, J°" )-.(Y,Jy) is not an . 
\ I 7 r:' . 

identification. This is true since t °i\' l nE Z '') t · JJ» v~hich would make 

f ~t(O) an open set when t oJ is not open in Y. 

Therefore , from the above example it is clear that there exists a 

chain of identification topologies based on a certain fund (i with no 

up~er bound. Hence the Zorn's Lemma argument fails to produce even at 

the very least any evidence of a n aximal element . 
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'£h uru io ut Luuu t onu ill1:1t.uncu for whlcli u HLuxlmul tovolol.)y fo r 

. r-' 
a fun ction f :X"?Y and ..Jy can lle constr cte d. 'rhe construction begins 

with thi, f ollow i ng dtJfinitiou . 

Definition 4 

If f:X• Y with Sy the topology on Y with no topology on X and 

A £ X s uch that fl A is 1-1 and onto then 5'1),~\~ is the topology for X 

with base (x, A! U ([x3 l x ~ A~ and JM = Jpl.S\'i V r'!Iy . 

The next two th eorems yield results that confirm ~ is a maxi­

mal topology. 

Theorem 4 

Let f:X~Y be a surjection with Sy the topology on Y. If X 

r.-has the topology '-'t\, then f is an identification function. 

Proof 

r 
Suppose there oxists a set V ~ vH that destroys the· identif1-

c tion map, i.e. Van inverse set such that f(V) ~ !iy 

XE- V either X £ A or :x'. A. A. If X ~ A then fx} E: a-"'. 
V1-:. f x \ x~ V and x c A J. Then V; Vi U.., 

J(f.t' d 
ic~., 

~ x3 • 

Then for all 

Let 

Also by the con-

struction of A, f(V1) ~ f(V). f(V1 ), however, is not an open set which 

implies thut v1 ~ (i"'ti\. This in turn yields the result thut V \ [JM. 

Also f L, continuous s ince r 15tc J,4,. 

Next there remains the q_uestion of whether or not the topology 

is actually maximal. 



Thoor l!m 5 

Let f:X~Y be un identification fw1ction with !ly, t he topology 

on Y, and D"M the topol ogy on X. Then if there exists J a topology for 

the domuin such t hat f with this topology on X i s an identifica tion und 

5,;~J th en 'J = ~-

Proof 
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Suppose there exists a U c J and U ~ 5/-1 . Then for all x € U, 

either x ~ A ( as described in the definition of 5M ) or x ~ A. Again, 

since ~ £:J, if x ~ A, [xJ ~ J. Let Ui = { x l x t U and x € ·A). 

Then U=U1 ~fhtU.[xJ. Now since A is open inJ An U:: u
1 

wlich is also 

open in 0'. Since U ~ ~'1 it will be assumed that u1 t <p • However, be­

cause U ~ SM there is no memb e r V ~ f _, !iy s uch that V () .A= u
1

. so f (u
1

) 

is not open i n Y. But f ~i f (U ) is open in J . 
l The identification func-

t .. h d d H U b r.:-_r,_ 10n 1st en estroye. ence cannot e an open set. v,, v 

Thus far the main concern in this discussion is to start with the 

minimal topology and construct a topology which hliS been found to be maxi­

mal. There has been no guarantee, however, tha t any J;':. Q(f, Gy) can be 

conta ined in such a maximal topology. The next theorem yields results in 

this area. 

Theorem 6 

Let f:X-+Y be an identification fwiction with 5"x, ~ the topol­

r. r-' 
ogies on X and Y respectively. There exists an ASX such that ~XS JM 

if and only if rl A is a homeomorphism from A to Y. The topology on A is 



the rel ative topology based on f1x 

Proof 

If there exists an A ~ X such that {ix S 5,t , then in addition to 

being 1-1 and onto rlA is an id entification function since for all U!Y, 

f -I (U) (\ A is open in the subspace topology it' and only if U c :Jy. 

Now it remains to show thtit f I A is 

set U ~ JR. such that f \ A (U) ~ Gy . 

an open map. Suppose there exists a 

I -I 
Then since f A flA (U)" U, due to 

the property of rl A being 1-1, the identification map would be destroyed. 

Henc e , there exists no such U and f / A is an open map and, therefore, a · 

homeomorphism . from A to Y. 

Conversely, suppose fjA is a homeomorphism from A to Y and A 

has the subspace topology. If U E. ::i X then U :: u1 U U 2 where 

U1:: [x\ x € U and x ~ A~ and u2 =fxl:x: LU and x E. AJ. Clearly 

U1E- 5,-,. In addition u2 :: U (\ 1i. which is open in QM. Hence Uf'.JM ~ 

Despite the results given in the last theorem there a.re in­

stances for which J')( £ Q.(f, Jy) is not contained in a~ as described. 

In other words there will not always exist a. set A~ X such that f\A 

;"ith the relative topology on the domain is a homeomorphism. The fol­

lowing example provides a case in point. 

Exampl e ~ 

Consider f:X • Y where X = [-3, -2, 0, 1, 2, 3J and y ;- [a.,b,c~; 

f(-3):: a, f (-2)::: a, f(O) = b, f(l) = b,f(2)= c, and f(3)-- c. A base for 

5x is f (-3, -2J, [3, 2J, !2,3,0 J, (-2, -3, lJS• CJ"~ = 

lfa3, [c~, l_a, CJ, [a, b, cJ, q,J. 
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Clourly f is un identi:t'icutlon i'unctiou. It is t1.l1:10 u1:11;1ily tlOfJ11 

that for all possible choices for a set A Ci: X t hat sutisfies requirer1 ent:;, 

for the co ns truction of .JM 
,. A._ ,-

prev l ous tl eorem ;JX ~ Jr,,.. 

, f I A i s not a homeomorphism. Hence by the 

1'..'ven more importantly, this example illus-

trates that the describe·d maximal topology is not the only maximal topo­

logy possible for an identification function. This statement can be made 

due to the fact that the identification function of the :previous example 

has a finite domain and range, and therefore, only a finite number of 

topologies in Q.(f, !ly ) . 

Returning for the moment to the described maximal topology it 

s eems nm~ appropriate to discuss the transference of topological proper­

ties from the domain space to the r f:l.nge sp ace of an identification func­

tion and vice-versa when a maximal topology, GM, is the topology of the 

domain space. 

When transference from the domain space to the range space is 

considered, the answers are quite cleur. Sinca the specified set A is 

both open, closed, and homeomorphic to Y; and since all the properties 

discus sed in Chapter III are either hereditary, F-heredi tary, or 

G-hereditary, the transference is automatic. 

Transference fran the range space back tG the domain space is 

not a s all-encompassing. Nevertheless the facts are easily seen and ure 

presented here without proof. Separation properties and, hence, metri­

zabili ty are transferred. Connectivity is not transferred unless A, as 

described with reference to thi s maximal topology, is equal to x. com­

pactness is not trans ferred unl ess X\A is finite. Loca l conne ctivity 

as well as local compactness are both transferred. Second countability 
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und 1!11:lll ul' ub iJ l Ly w.·u t'runul'errutl on tu o contll t i on Lhut X\A lu counLuule. 

1''irs t countab ili ty i s also t r ansferred. 

Villa t now r en a ins in this d i s c uss i on of t h e u1aximal topology are 

s on e u u.nsw r ed quest ions . 'l'hu f i rs t of t he::ie is q,uit e !ilJ.P a r ont from the 

dis cuss i on f ollowing t he lus t exampl e: What if any i s the churact erization 

of t he ot lle r max ir al t opol ogy or toJJolog i es? Also it is presently unknown 

whether or not all topologies on t he domains of identifica tion functions 

are contained in a maximal topology. 'l'heref ore i t can be s a id that what 

has be en foun d is only one of a p oss ibl e many in the cl1:1.ss of maximal 

topolog ies on the domain spa ce of an identifica tion function. An t ,nfinite 

number of circumstan ce s conc er n ing identification functions rern.ain to be 

inve s tigate d. 
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