QUOTTENLS OF TOIPOLOGICAL 3SPACES

by

Barbara A. Bilas

Submitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in the
Mathenatics

Prograi

(e ‘/%Zf@, 2.4 8./977

st g
Adviser Date
éf.z /@ 2 2
"Dean of the Graduate School Date

YOUNGSTOWN STATL UNIVEIRSLITY

Larch, 1977



i3

‘\LBS.LIH.&C‘H

QUOTTENLS OF TOFOLOGICAL SPACLS

Barbara S. Bilas
llaster of Science

Youngstown State University, 1977

The purpose of this thesis is to examine the concept of quotient
gpaces by means of the identification map and the identification“topology.
The transference of basic topological properties from the domain of an
identification function to its range (or vice versa) is explored. In
addition a search for maximal and minimal topologies on the domain space
of a function that insure an identification mapping provides some original

results and thoughts on the topic of quotients of topological spaces.
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LIS OF SYMBOLS

SYMBOL DEFINITION
=Y (U) The inverse image of the set U under the function,f.
R The get of real numbers (unless otherwise

distinguished).

Z*‘ The set of positive integers.

o

Greck letter designating the phrase,
ti"ig an element of".

43 The empty set.
f‘,

\Jg The topology for or depending on B.

Note: All other symbols used are standard mathematical notation or will

be defined within the context of their usage.




Chuptor I
INTRODUCTLON

The discussion of thie identification function presented in this
thesis is not a new area of mathematical investigation. It apparently
first began with a theorem of R. L. Moorel in the 1920's, although he
was probably not the originator of this idea. his approach was that of
decomposition spaces which sought to decompose the plane into curves.
Next in the 1930's came George T. Whyburn whose basic interest was in
the area of Complex Analysis, where all non-constant analytic functions
are open naps. With this added emphasis, Whyburn developed the quasi-
campact map which, as will be seen, is merely a special case of the
identification.® Bringing these two ideas together in the 1940's was
the Bourbaki Committee with the concept of the quotient set. Of under-
lying interest throughout all these investigations is the transference
of topological properties. K. A, Michaels deals with this question for
more advanced topological properties in his publication,

: S 4 ; 2 > ol 3
"Quintuple Quotient Questions" published in 1972 .

lR. L. lMoore, "Foundations of Point Set Theory," A. L. S.
Colloquium Publication, XIII, (1932). i

2G.T. Whyburn, "Open and Closed Mappings," Duke lath Journal,
17 (1950) 69-74,

3, 4. Michaels, "Quintuple Quotient Questions, ™ General Topology
and its Applications,2 (1972) 91-138.




But, It may be uskoed, what proelsely 1y the slgulflcunce ol tho
identirication function? Initiully it may bo obusourved that ull open and
closed surjections are identification functions. and, as has already
been montioned, Complex Vuriubles holds that all analytic functions uwgide
from constant functions ure open mups. LAlso wny continuous function from
a compact space to a Hausdorf space is an identification. Secondly, it
will be seen that the property of a function being an identification is
slightly stronger than continuity. Thus the identification function is
a generalization which includes several significant and commonly encoun-
tered types of maps.

In the next three chapters, it will be endeavored to present a
clear and concige discussion of the identification function. 1In
Chapter II, an initial discussion of the identification function will be
presented. Definitions and theorens concerhiug the identification func-
tion as well as decomposition spaces, Quasi-compact functions and the
quotient set will be presented and related. The intriguing question of
the transference of basic topological properties will be discussed in
Chapter III. Finally in Chapter 1V the questions about minimal and
maximal topologies on the domain space of the identification functioné%

i
i

are investigated with some interesting results.




Chapter II

GLENERAL FiuCuwsS CONCERNILG

1HE IDENTIFICATION TOPOLOGY AND QUOTIENT SPACES

Equivalence kelations and Partitions

This section of definitions clears the way for the exploration
of the identification mapping and identification topology. The dis-

cussion begins with a definition.
Definition 1

Let X be any set. If R is a relation from X to X (i.e. a subset
of X x X) then R is an equivalence relation if and only if the following
conditions hold:

(L) (x,x) € R for all x € X (Reflexive Property)
(2) If (x,y) € R then (y,x) € R (Symmetric Property)

(3) 1If (x,y) e R and (y,z) e R, then (x,z) € R (Transitive Property).

0f special importance with reference to an equivalence relation

is the concept of an equivalence class.
Definition 2

Let X be a set. If R is an equivalence relation on X and x € X,
then K (x) = [y’é Xt x,y) € 12} is called the equivalence class in X

determined by x with respect to R.
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As a mutter of notutlon R(A) will be used Lo reproscul the set
consisting of all y € X such that (x,y)é R for «ll x in A.

Now the rirst result can be stated.
Theorem 1

Let R be an equivalence relation on a set £. Suppose also that
EADL: xeA} is an indexed family of subsets of X. Then the following
two results hold:
1) R A = UR(a
(1) R(Ya,) = Yray)
(2) R (40hp) S RagINVR(AY), 6 6€A

Proof

Proof for (1),

First it must be shown that R(D(&_:)A AcL) g.}e)AR (“o()' Let
y€ R { UAA%). Then there exists x € X such that (x,y) € R and

" 4% | ,
% GJEJA Ay X must be in at least one Ay Jed. Therefore, yéR(a(T )o
. ot U R & .

How it must be shown that U K(a « € R(.(éUAA e Iy 60<LejA R(4)

then there exists an x such that (Xx,y) ¢ R and x € Ag for some & €A,
« R(Ag) IS xelU 4 implies ye R(U A

y ( &’ ] LEA oA b 4 SQEA ’20

Proof for (2).

If y € R(Asl\ f*,j): then there exists an x such that (x,y)e R
and x € As(\ Ape So for x€ A, ¥y € R(AB); and similarly if x€ Aoy

y € R(Aﬂ). lence y © R(AS) ( lt(ha)c

It should be noted that the proof of theorem 1 did not actually
make use of the first hypothesis - that R is un equivalence relation.

The result holds, in fact, even if R is just a relation (ise. a subset




o

of X x X). Tho proof of this fuct follows fdenticully to thuat of theorem 1.

It is now appropriate to turn to the second of the two previously

mentioned introductory topies, the partition.

pufinition é

If X is a nonempty set, then Zh“~: x.e%?ex forms a paurtition of
X if and only if the following three conditions hold:

(1) A&#ftf for each «L€A
(2) U At,(;' X

wel
” 4 5 & [ =@
(3) For X, D¢ either AR Ap or Ap(t\ Ag ‘-t .

The precise relationship between the partition and equivalence

relations presents itself in tlie next result which is stated without

proof.

Theorem 2

If R is an equivalence relation on X with x, y &€ X then either
R(x) = R(y) or R(x) (} R(y)=q .

A corollary to this result spells out the arorementioned relation-

ship.

Corollurz &

If R is an equivalence relation on the set X, then the equivalence

classes of R form a partition on X.




Proof
What nmust be done is to show that ZR(X): xcxg forms a parti-
tion of X.

Since x € R(x) by the reflexive property of an equivalence re-
\
lation, R(x)F¢ for all x<X and x%}‘( R(x) = X.
Finully the fact that either R(x) = R(y) or R(x)/ ) R(y)=<# for

any two partition elements follows immediately from theorem 2.

It is also possible to reverse the process and show that any parti-
tion of a set determines an equivalence relation. However, first it is

necessary to define the relation determined by a partition.
Definition 4

If P is a partition of the set X, the relation determined by the
partition is defined as follows: For x,y € X, (x,y)ecR if and only

if x and y are in the saime partition element.
Utilizing this definition the following can now be proved.
Theoremn 3

If P is a partition of a set X then the relation determined by

P is an equivalence relation.
Proof

Let P-=ZA¢‘“§€ZXE + Since each x € X belongs to 4y Tfor some

A€4 by partition specification (2), it follows that (x,x) € R. Hence

R is reflexive.




Also if (x,y) € R then x und y belong to the same purtition
element. Therefore (y,x) € R. R ig symmetric.

Finally, if x and y are in the same partition element, A s
and y and z gre in the swie partition element, A3 then x and z are in
the same purtition element. This result follows from partition speci-

fication (3): If y€ Ay and yc¢€ hp then 4 = A-ﬁ .
W

It is clear that an equivalence relation determines a partition
which in turn determines an equivalence relation identical to the original.
Analogously, a partition determines an equivalence relation which determines
a partition identical to the original.

With all the results amassed thus far, it is now possible to con-
sider not only our original set, X, but also the set of equivalence classes
on X with respect to an equivalence relation, R, This set will be referred

to as the quotient set.
Definition 5

Given a set, X, und an equivalence relation R on X, X/R denotes
the quotient set of X relative to R. Its elements are the equivalence

classes of X under R.

The Identification Map and Topology

Lerma 1

Ir f:X——>Y , where X and Y are sets, and X has the topology 0} "

then U{;:Z;V: £ (V) 65)(?9! forms u topology on Y.
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Proot

Clourly, Y und @ are olumentu of !Jg . 3iuce 17! (unv) -
7 u)ne Tt (V) wkere £7N(U) and £ (V)¢ Ty . Hence £V (Uav) € Uy

r/
which implies UQV ¢ J.\‘ . Finully, the case for urbitrury unions of

- . 7 diad
opun sets must be considered. Yor U‘oh {Jg g L \( UFUa) =4] £ \(UH) € Jﬁo
§< Yen

| N
Therefore, U Uy € Joo
yel £

Definiticn 6

Let (X, Jx ) and Y be a topological space and a set, Trespec-
tively. If f is a mapping from X onto Y, then the topology "J?g, asg

described in the immediately preceding lemma, forms the identification

e
topology on Y with respect to f and Jyx.

It should be mentioned at this time that requiring the function,
f, to be onto does not weaken the definition of the identification to-
pology. If f:X-»Y is not onto, then f£(X) is both open and closed in
5}; and for all y & f(X), Zy}éji It is clear that the omission of the

onto requirement is not advantageous.

In a manner analogous to what has already appeared, the defini-

tion of an identification function can now be presented.

Definition 7

If the sets X and Y together with their respective topologies
form topological spaces and if f:X~»Y is a surjection then f is an iden-
tification function if and only if the topology on Y is the identification

topology.




An immediate consequence, thereforo, of this dofinition is thut
whenever Y has the identification topology, f:X—»Y is continuous.

The following points out two lmportunt classes of identification
functlons: the open continuous surjoctions and the closed continuous sur-

jections.
Theorem 4

1f (X,~5; ) and (Y, 5} ) are topological spaces and f;X.»Y is a

continuous open surjection, then f is an identification function.
Proof

It must be shown that the topology on ¥ is identical to the de-
sired identification tcpology.

For Ue Jp, £7'(U) € Iy . Also since £ is a surjection £(f “*(U) )=U.
Furthermore since f is open, U is open in Y. Hence U€ 5}. Ijow for
IIEQY , £7Y(U) is open in X since f is continuous. Therefore by the
definition of the identification topology, U € SL « Hence the conclusion

T ~
JY“ \J,\, holds.

Specifications for an open se¥ in the identification topology
are given by the definition. The following lemma delineates exactly

what can be classified as a closed set in the topology.
Lemma _2_

If £ is an identification function from X to ¥ and if Fc¢Y, then

F is closed relative to 3{ if and only if £~ Y(F) is closed relative to
‘JX.
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rroof

I 1" 1y closed relutive to .'11", thon —|(h') 13 cloved rolative
to 5; by the continuity of f,.

Conversely, if £ ™' (F) is closed relative to Jy, thLen
x\£ ' (¥) € Ux. However X\£ ™V (F) = £ '(Y\F). Hence Y\F is open

relative to-jk and, therefore, F is closed relative to Sb.

4 parallel result to that of Theorem 4 can be achieved through

the use of Lemma 2., It is stated without proof as the following theorem.

Theorem _5__

Ir (X, 5} ) and (Y, 5}) are topological sgpaces and f:X—Y is a

continuous closed surjection, then f is an identification function.

Corollary 2

If £;X-»Y is a continuous surjection from a compact space, X,

to a Hausdorff space, Y, it is an identification function,
Proof

If F is a closed subset of X then F is campact. f(F) is also
compact. But a compact subset of a T2 space must be closed. Hence
f(F) is closed which implies that the mapping, f, is closed. The con-

clusion follows immediately through an application of theorem 5.

In the next result, a special case of function composition aids

in isolating the identification function.




Ll

Theorem Q

If £:X-2Y is a continuous function and there exists a contin-

uous function, g, such that g maps Y into X with fg the identity map

then f is an identification function.

Proof

In proving f to be an identification function it is necessary

to show two things: First, that £ is a surjection and second that the

image space of f has the identification topology.

If y ¢ Y, then g(y) = x, x € X. By hypothesis, £(x) = y.
Therefore f is a surjection.

How it remains to show that Y has the identification topoloegy.
If U € 5;, f "(U) is open by the continuity of f. This implies that

. TR o =l o W < ; :

U€.Jy . IfUSJg thenf (U) € Jy + Since g is coutinuous,
gl (e~ (u) ) é-g}. 1t should be noted that by bypothesis. fg is a

sur jection, Therefore, the following holds:

-

g el u) )= tele (e (V) ) = felreT (U) )= uely,

In theorem 7 function composition again comes into playe.

Theorem 7

Ir (X,G}), (Y,G}) and (Z,S}) are topological spaces with
f mapping X to Y and g mapping Y to Z identification functions, then

the composition gf:X-»Z is an identification function.




Proof

Cloarly gf 1s a continuous gurjectlion, How itV remains to show
that Z holds the identification topology. Ir U€ Tz, (gf)™ (U) ¢ T,
by the continuity of gf. Thererore, U €.ﬁé¥ . It Ue 53; then

(gr)”Y (U)= £ V(g ' (V) ) 6'&. Since f is an identificution function

g"(U)C\QY. Also because g is an identificatiom function, Ue 4.

In the last three theorems, it was necessary to prove that a
particular topology was contained in the identification topology, and
in each case the proof was identical, This fact leads to a result. for-

malized in the next theorems

Theorem 8

1t (X, Jy) and (Y,5) are topological spuces with f:X->Y an
identification function, then 5} is the largest topology on Y which
makes f continuous,
Proof

If U is an open set in any topology that makes f continuous,
£ (v) €~5;. Hence U is an element of the identification topology.

Continuity is again of major concern in the next result.

Theorem 2

It (X, x), (Y,ffY) and (Z,Ciz) are topological spaces with
T:X->Y an identification function and g any funetion mapping Y to Z, then

€ 1s continuous if and only if gf is continuous.




rroof

If 1t is asswaed Tirst that g is continuous, then the result
follows directly since g and f are both continuous.

Conversely, if it is assumed that gf is continuous, then for
lJ&sz af -'UJ)zf -\(g~I(U) )6:;. Since f is an identification

function, g~ (V) &5}1 which yields the result.

Now the discussion is turned to the identification topology for
subspaces. If £ is an identification mapping from X to ¥ and S=Y then
S can have two topologies:

r , .

(1) J, , the subspace tcpology.

(2) CES , the topology determined by the surjection fif ' (S)-»S.
Since f:f (S)»S is continuous when S carries Js , it follows that
o I
“ﬁqi'JQS' However, tle reverse set coataimment does not always hold
as is illustrated by the following example.

Let S be the set of irrationals in [p, l], Y:{}SLJS, and Y
has the identification topology determined by f:I-»Y where f(x)=x if
X€ S and T(x)= 1 otherwise; the only nonempty open sets in Y containing
1 are those of the form f£(W) where WS I is open and contains I\S. Thus

,N
the set s(V(0,1/2)§ Us; however, S\(0, 1/2) éd&-s .
The next theorem gives several sufficient conditions for

equality.
Theorem 10

If £:X=Y is an identification function and S€Y and if either
(L) S is open (or closed) inY or
(2) f is an open (or closed) map,

~
then JgZ g .
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Proof '

- —

By previous commonts, C[-&»Jg

4
-
) %®

Utilizing assumption (1) (where S is opemn), if U:.Qig then
£ ~1(U) is open in the open £°'(8). Therefore U< f.. when S is closed
the proof rollows similuarly.

If £ is an open map, then U< Jgq implies that £7'(U) is open in
£ (s) so that £~ (U)= £ ' (S)V where V is open in X, Therefore,
U= S\ t(V) and since f is an open map, U is open in G;. The proof for
f, a closed map, again follows similarly.

Quotient and Decomposition Space Approaches
to the Identification Topology

If (X,.S; ) is a topological space and R an equivalence relation
on X, there is a surjective projection function p:X-*X/R given by
p(x) = R(x) for each x € X. This projection function is the device by

which X/R is topologized.
Definition 8

It (X,C&) is a space, R an equivalence relation on X, and
p:X-*X/R, the projection function, then the quotient topology on X/R is

the identification topology induced by p and GR.

_The set X/R, together with the quotient topology is called a

Quotient space,

Therefore, with the quotient topology on X/R, p is an identifi-

Cation function so that the results of the previous section are now ap-

Plicable,
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Theorem 11

1r (X,lr) is a space and R is an equivalence relation on X with
X/R the respective quotient space, then p: X->X/R is open (closed) if and
only if for each open (closed) Ug X, R(U)=¥%h. R (x) is open (closed) in
X.

Proof

If it is assumed that U is open in X then p~' (p (U) )¢ 7. How-

ever, the inverse image of elements in X/R yields not only the set U, but
R (U), i.e. U R(x). Hence, R(U)& /S,
Xeu
Conversely, since p:X-+X/R is an identification function and

p? (p(U)) = R(U) which is open in X, then p(U) is open in X/R.

If £:X»>Y is a surjective function, a relation can be defined on
X as follows: For any two points X1y Xp € X, (xl’ xz)é_ R if aund omly if
f(xl)= f(xa). It can easily be shown that R is an equivalence relation
and since it is induced by the function, f, it is denoted by R (f). Now
the quotient set% can be formed; and since f is a surjection, a bijective
function h: Y»>X/R (f) may be defined in the following manner., For each

y< Y, h(y) = R(a) if and only if f(a)= y. This leads to the following

result,

Theorem léi

If £:X—~Y is a continuous surjection, then h:Y*X/R (f) is a

homeomorphism if and only if f is an identification function.
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Proof

From the preceding remarks, it is clear that p = hf.
aAssuning initially that h is a homeomorphism, it should bhe noted
that £ = h™' p and that both p and h™' are identification functions.
Theorem 7 now yields the result.
Conversely, if f is an identification function, then by Theorem 9
the nep b is eontinuous since p is continuous and f is an identification
function, For similar reasons, h™ is continuous. Thereforse, h is a

homeomorphisme

Thus far in the discussion, two approaches have been taken to
quotient spaces. These two approaches are those of the identification
function and the equivalence relation. Given an identification function,
f: XY, a quotient space can be defined on the image space of f through
Gk_and R(f). However, it is also possible to begin with an equivalence
relation, R, yielding the corresponding quotient set, X/R. This quotient
set may now be given an identification topology corresponding to the
projection function, p:X—)X/R. As can be seen the relation between the
two approaches is very close and is delineated in the last theorem.

In contrast to the equivalence relation and the identification
function, the partition has beeu seen mainly as a result of the given
equivalence relation. The next definitious and results cast a new light
On the usefulness of the partition and its relationship to previously
Mentioned results concerning open and closed mappings. The following

definition and theorem present generalities about partitions and the

topology that can be induced on them.
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Definition 9

Let (X,(TI) be a topological space and PP a partition of X. R is
the equivalence relation defined by P. P together with the quotient topol-
ogy for X/R=P is called the decomposition gpace of X determined by P, or

simply, the decomposition space P.

It should be noted that the natural projection p:X-P (X/R) is an

identification.
Theorcm 13

If (X,7 ) is a topologicul spuce and P is a partition of X with
S€P, then S is open (closed) in the decomposition space P if and only if

UZAlAé S} is open (closed) in X.
Proof

Let p:X—+P be the natural projection. Clearly,
p"t (8) :UZAI A€SS. The result now follows from lemma 1 and definition

6 (open) and from lemna 2 (closed).

The following definitions single out important special types of

decomposition spaces.
Definition 10

P is called an upper senicontinuous decomposition of (X,9) pro-

vided that for each closed subset, I', in X the union of the collection of

all elements of r that intersect F is closed in X, i.e. for all ¥ closed

UEA614 ANF f¢§ is closed in X.
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Exumple 1

Let (X,4J') be a topologicul space with Iy u closed subset of X.
Let P = i FU‘SU“LU(-S\ )Lc‘X\FOE . Then clearly ¥ is an upper semicontinuous
decomposition space. P 1is sometimes called the decomposition space ob-

talned by identifying the closed set H‘O to a point,
Definition 11

P i3 called a lower semicontinuous decomposition of (X,’,T) pro=-
vided that for each open se¥ U in X the union of the collection of all
elements in P that intersect U is open in X, i.e. for all U open

UiA <Pl Aanu #\P} is open in X,

Examnple 2

1

If (X,7) is a topological space and U,S X is open, then

P:iU&S J fo}| x & X\U&%J‘s 8 lower semicontinuous deccmposition.
Theorem 14

If (X,7) is a topological space and P is a decomposition space
of X then P is an uppei' semicontinuous deeomposition space if and only

if the natural projection is closed.
Proof

Let p: X-P be the natural projection for S<X, p(S)= .Zﬂﬁp\ﬂ(\sﬁ;}

From this the result is clear.




]

The next theorem, which will be preasented without proof', offurs

a result parallel to thut of the last theorem concerning the lower seni-

continuous decomposition.

Theoren _l_tl

If X is a topological space and P 1s a decomposition space of ¥

then P 1is a lower semicontinuous decomposition space if and only if the
natural projection is open.

The next two results link upper semicontinuous decomposition and

lower semicontinuous decomposition to cpen and closed sets respectively.

Theorem lﬁ

it (X,'J) is a topological space and P is a decomposition of X

then P is an upper semicontinuous decomposition if and only if for all

Uég, U i:’d A€ P and AcUS is open.

Proof

Clearly for UET, A0 (X\U)X4 or 46U for all AeP. There-

fore, (U A | 4eP and an(X\U)#¢3) U WAl AeP and 4cT}) =X,

From this both results follow immediately,

Theorem 17

it (X,QJ) is a topological space and P is a decamposition of X

then P is a lower semicontinuous decomposition if and only if for all F
Y

elosed in (X,[ g * f_M ACP and AcF 7 is closed.
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The proof of this last theorem follows in very much the same
way as did its counterparts For thig rewson, no proof will be presented
here,

A very important means ror connecting the three approaches to

quotient spaces is the idea of point inverses.
Definition 12

If £:X—Y is a surjective mapping then P= i Y (y)t erS is a

decomposition of X where f"(y) are called point inverses.

Theoren 18

f:X—Y is an open continuous surjection with P:Z‘f"(y)tye Y} R

if and only if P is a lower semicontim;ous decomposition of X.

Proof

If £ is an open continuous mapping, with U an open subset of X,
then £ ' £ (U] is equal to the union of the collection of all elenents of
P that intersect U, Since U is open, f [U'l is open because f is an open
mapping. Also since f is continuous f-'f LU] is open in X. Hence P is
a lower semicontinuous decomposition of X.

Conversely if P forms a lower semicontinuous decomposition then
for U open in X0} £~ (y)\ yé€ f(U)ziix& <er't( U)§ 1is open in X.

£(U ) is, therefore, open in Y by the results of defimition 6.

Once again a parallel result can be stated with reference to an

UPper semicontinuous decomposition of X.




Theoroeu 19

£f:X-*Y is closed continuous surjection with P:if"'(y) ‘ ye Y}
if and only if P is an upper semicontinuous decomposition of X.
The proof of this theorem tollows in much the same way ag does

its counterpart aud, hence, will not be preseunted lLere,

The last definition and the last theorem lead to the T'ollowing

definition.

Definition lg

If f£:X-Y, then A € X such that A=f"'(C) where gcf [ Xx]

is an inverse set,

Corresponding to the eoncept of an inverse set is the mapping

which uses this idea, the qQuasi-compact mapping.
Definition iﬁ

If £:X~Y is a surjection such that for ¥, a closed inverse set,
f(F) is closed; and for U, an open inverse set, f(U) is open, then f is

said to be a quasi-compact mapping.

The following theorem links the idea of a quasi-compact mapping

and the identification function.
Theorem 20

{v
If f:X-Y is a surjection with the respective topologies Jx and
’-i
JY on X and Y , then Uy is the identification topology for Y determined

by f and U} if end only if £ is continuous and quasi-eompact.




Proof

First 1t will be wssumed that ff 18 an ldentification function.
If U is un open inverse set then f~'(f (U) )= U~t3;. S0 since 3} is
the identification topology T (U)é(ﬁ(, the same construction will work
for F, a closed inverse get in X. Hence, f is quasi-compact.

Conversely, if it is assumed that f is continuous and quasi-
compact, then it must be shown that j} is actually the identification
topology, G@ . By theoren B,S}Cjkthe reverse set containment will now
e shown. If W &7y, then £7'(W) €y and £7'(W) is an inverse set far
which ££ LWl = W . Since f is quasi-compact W éﬁ%. Thereforﬁ‘tha

two topologies are equal.




CHAI'WR 1.1

TRANS LG O 10POLOG LCAL PROP EICLLIS

' . BY THE IDENTIFLICALLON MAPPING

In this chiwpter various tcpological properties are tested on
identification maps to check whether or not the image space of the func-
tion has a certain property when the domain space has the property. The
case of checking the reverse, that is whether or not the domain space
possesses a certain topological property when the image space does, turned
out much the same in every instance -~ it was proved false by a simple
counterexample,

Then in the second section added hypotheses are investigated to
aid in the transference of the topological properties when the identifi-
cation mapping alone proved insut'ficient.

The topological properties to be considered are the following;

first countable, second countable, T, , T, , S T3 A 1%, regular, normal,
completely regular, connected, locally connected, campact, locally compact,

separable, and metrizable.

Trangference E{ the Identification mapping
with no Additional Hypotheses

First Countable

It the domain space of an identification function is first count-

able, the image space need not be. This is illustrated by the following

8Xample,
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hxwnple _J;4

Let X bo the space of real nuwiabers with the usual topology, Y the
sat counslsting of 0 and all x&¢ R that are not integors, and def'ine ;X »Y
as follows: f£(X)= x for all xeK that are not integers; r(x)s O for all
x such that x is an integer. Irom this information the identification

topology can eusily be deduced. What must be shown is that the space Y is

not first countable for each y€ Y., The element in Y that is the exception
will be shown to be O, The proof is as follows.

Let LUS be a countable basis of ¥ at O. It can be shown that an
open set can be constructed so that no basis element is a subset of that
open set., LetB: ,lol:)oSa be an open set in X such that 8,- (-00, %),

8- (1-g,2+g0g1(u), B,=(2-g,, 2ve) g (U2), oo,
©n= (n-&,, n+ 8“_)gi f’\(Un) where 0 < €,< i for all 4. Because

8 is an open inverse set f[@} is an open set in Y and, for all i,

Uy g f[@] by the choice of the €, 's. Therefore the conclusion ou the
Also note

transference of the rirst countable property is substantiated.

that one can obtain the point inverse decomposition space by identifying

the closed set of integers to a point. Therefore, f is closed.
Second Countable

Again using example 1 it is clear that for f:X-Y, in identification
Napping, the preperty of second countability is not necessarily transferred

from tLe domain space to the image space.

e

Jolin L. Kelley, General Topology (Princeton, New Jersey: D. Van
Nostrang Company, Inc., 1955), p.104. ’
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IrU

It is clear from a simple cxample that tne fact that the domain
of an identification function is Tg does not necessarily imply that the

lmage has the same property. The following provides the desired exumple,

Bxample 2

Let X be R, with the usual topology and Y==ZQ, 13 then the topol-

ogy on Y induged by the map f£:X-2Y defined by f(x)z 0, x¢ R\\Q (Q, the

set of rational numbers), f(x)<1l, x€Q is not Tg. The identification

topology would be simply the indiscrete topology on ZO,l} .
Ty
Utilizing the results of example 2, it can be concluded that the

transference of the T, property cannot always be guaranteed by an iden-

tification mapping.
Ty

Again with the results of example 2, the non-transference of the
Ty property by an identification mapping is shown.

Regular

Upon the examination of the next example it will be shown that

if the domain space of an identification function is regular then the

image space need not be.
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Kxamnple &

Lot X be [“;ﬂ with the usual topology and Y= {U,l} , Lthen the
functvion £:X»Y mapping f(x)=1 for xé[(’),%) and f(x)=z O for x¢ ‘5,1]
gives rise to an identification topology on Y that ig not regular de-

gplite the fuct that X is. This topology is 2{1;, {0, li i (V_S}.
Ty

The topological property, T3z, is not necessarily transferred by

an identification funetion, This fact is proved by example 3.
Normal

Once again it is Tound that another topological property is not
transferred by an identification function, Normality is definitely not

preserved in the following example,

Example 4

Let X be [0, 1] with the usual topology and Y:{a,b,c§ then the
function f:X?Y mapping f(x)= a, for XEB),%;] ; f(x)=b, for xe(%,5); and
f(x)=c, for M[{;,l} induces an identificestion topology such that Y with
this topology is not normal. The identification topology on Y is f{a,bf .

ib} » Zb,cg ) Zu,b,c& y Qg Hence the closed sets [a5 and 1c§ cannot be
S8eparated.
Ty

Since the domain space of the identification function described
in example 4 is also T, it follows, by example 4, that the T4 property is

B0t preserved by an identification mapping.
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Completely Regular

In reviewing the example cited to show that the property of being
regular is not transferred by an identification function (example 3), it
" becomes clear that the example is slso sufficient for illustrating the
non-transference of the completely regular property. It follows again by
example 3 that if the domain space of an identification mapping is Tsk

the image space need not be.
Separable

In contrast to all cases considered thus far, an identification
funetion transfers separability. This does not come as any surprise,
however, since it is known that the transference holds for any continuoug
surjection. Properties unique to the identification mapping were not
made use of here. A short proof illustrates this fact.

Let f:X-9Y be a continuous surjections If D is a countable dense
set in X, then D= X which implies f(ﬁ) =Y, However, ITI?)CY but f(ﬁ)cfﬁ)

by continuity. Hence Y- f(D) and Y is separable.
Connected

It is clear, once again, that the transference of this topological
Property holds, not due to the fact that an identification function is
used but that the function in question is a continuous surjection. The

Proof of thias fact is standard and will be omitted heres.
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Locally Connected

In the case for local connectivity transference can be showne

The proof is as follows.
Theorem 1

ir (X,lfx), and (Y}-g}) are topological spaces, then the iden-
tification function f: X—-»Y with X locally connected insures the fact

that Y is locally connected.
Proof

In this proof it must be shown that components of an arbitrary
open set in the image space of an identification function are themselves
open.

Let f: X-?Y be an identification function with X locally connected.
If Q is a component of any set U<Y then $oh (Q) is the union of a col=-
lection of components of £-'(U); for if R is a component of f-'(U) that
intersects £~ (Q) then £f(R) € Q since f(R) is connected, lies in U, and

intersects Q. Hence Ref ' f£(R) < f -Y(q).

If Q is a component of any open set, U, in Y, then f“(Q) is open
in X since f"(Q) is the union of a collection of comporents of the open
set £\ (U) where each component is open by the local connectedness of
_the space X. Therefore the fact that £7'(Q) is open in X implies that

Q is open in Y relative to the identification topology. Hence Y is

locally connacteds




Compact

Using only the criteria specified by a continuous surjection,
compactness of the domain space of an identification function is trans-
ferred to the image gpace. The proof is, again, standard and will not

be presented heree.
Locally Compact

The topological property, locally compact, is not transferred
by the identiricatién mapping. An instance of this non-transference
can be found in example l. Clearly the domain space of the cited function
is locally compact. However the image space Y is not. A short justi=
fication of this claim is now appropriate.

Suppose Y is locally compact, then for any@eﬁkthero exigsts a
compact neighborhood of O contained in 9., Call it 8,. By the structure
of the mapping there exists an £ for all i in the set of integers such
that [i-2i,4&l € £-'[S] where 0<%i< % for all i . For n, an integer,
Zf(xn-a;,,l )3: 2n+£.«3 form a sequence in 9, . By the compactness of 9, there
~exists a cluster point, x, in G%' Clearly x#0 since the image of
U{l?_‘(ie-elii, i +£§/,_)t i is an 1nteger} would not contain any points of the
sequence. Now it remains to pick a £50 sueh that (x~‘, x+3) in X contains
no integers. This is an open inverse set which contains at most finitely

many terms of the sequence. Hence Y is not locally compacte
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Metrizable

Example 3 serves to illustrate the fact that a metrizable
domain space in an identification function does not necessarily insure
a metrizable image space.

Transference of Topological Properties
Utilizing Added Hypotheses

In showing the tranaference of topological properties from the
domain to the image space of an identification function one finds that
the added hypotheses of upper semicontinuous and/or lower semicontinuous
decompositions on the domain spaces induced by point inverses to be of
great assistance. It is interesting to note that for an identification
function, f, to say that f induces an upper semicontinuous decomposition
on its domain space is equivalent to saying f is a closed map. In a
parallel result, for f again an identification mapping, to say that f
induces lower semicontinuous decompogition on its domain space is equiv-
alent to saying f is an open map. These facts follow directly from the
results in Chapter II.

I In the first theorem presented in this section an upper semi-
continuous decomposition of the domain space of an identification fune-

tion is introduced as an added hypothesis and yields some desirous re-

sults with reference to normality.
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Theorem 2

If f:X-Y is an identification function with X normal and if
point inverses with respect to f induce an upper semicontinuous decome

position of X, then Y is normal.”
Proof

If F) and F, are closed sets in Y then £-' (Fy) and £°'(F,)
are closed in X. By normality of X, there exigts & and &L open in X
such that £ ' (F))c ‘b,, and f "\(F,) € 85 where &,(\G-,_ﬂb. Also by
theorem 15 of Chapter I, UL (y)| £ (y) &S @, , and
LJZf“(y)\ f"(y)@éi&@%are open in X and are inverse sets. Hence
18] , r18) are open in ¥ with F, e 1[8] , Foc £[6]) and B N[04
Therefore Y is normal.

Next assuming a lower semicontinuous decomposition on the domain
gpace of an identification function, the property of first countability

is transferred.
Theorem 3

If f: X9Y is an identification function with X first countable
and if the point inverses with respect to f induce a lower semicontinuous

decomposition on X, then Y is first countable.6

Proof

r\l
Consider y€ Y, x& £l (y), and Be Jl{ such that yé& » then

R C S ——

SRobert 1. Ki
2 f« Kasriel, Undergraduate Topology (Philadelphin:
U B. Saunders Company, 19717, p. 237. e

bKnariel s Do 237,




V() € ffx « Since X 18 first countable there exists a countuble local
basisZUnS at x then Ui‘.& 1‘"(&) for some i. A4lso since the point inverses
imnduce a lower semicontinuous decomposition on X, Cu Ue r-! (z) \ 2¢€ Y und
£ (z)N Unsf CLS is an open inverse set in X which implies £(C, ) is

open in Y for all n, The only thing that remains to be proved is that

£(Cy)a &, Stnee U, & £ (&), r(ul) crtr(6):& . However r(u)=

i
f(Ci) by construction. Hence f(Cy)< & and the Zr(cn)s 's form a eountable

local basis for yo Y is first countable.

A lower semicontinueus decomposition again comes into play as an
added hypothesis to aid in the transference of second countability from

the donain space to the image space of identirication function.

Theorem 4

If £:X—+Y is an identification function with X second countable
and if the point inverses with respect to f induce a lower semicontinuous

decomposition on X, then Y is second countable.7
Proof

If ZU'\E forms a countable basis of X then C;= U - I (z)] z€Y end
B (2 )(\U:.WS is an open inverse set in X. Therefore f[ C;] is an open

8et in Y. It remains to be shown that the Zf [Cﬂ} 's form a basis for Y,

7
Kasriel, p. 237.
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Consider QeJr with yég and x€ £~ (y) then xg £~ (8)65;(- By the
gecond countability of X there exists Uie 1‘"(@) such that %€ Ui ”
Hence by consgtruction, as in theorem 3 of this chapter, yef [.Ci]é&.

This gives the desired result Y is second countable.

The added hypothesis of a lower semicontinuous decomposition of
the domain space of an identification mapping aids in the transference

of the locally compact property.
Theoren 5

If £f; XY is an identification mapping with X locally cofnpact
and if £ induces a lower semicontinuous decomposition on X, then Y is

locally compact.8
Proof

LetO be an open set in Y and let yﬁg. It must be shown that S
contains a compact neighborhood of y. Since x€ f£™' (&) is open in X and
X is locally compact, £ (0) contains a K and U such that xe Uéfl; and K
is a compact subset of X with Use K. By lower semicontinuity, f(U)éﬁ-Y

r

y=f(x)&r(U)eJ, and f(K) is compact and f£(U)S 1‘(1(.)9&. Hence Y is
Y .

locally compact.

Further results concerning the separation properties may be ob-

tained with upper and lower semicontinuous decomposition induced on the

BKasriel, p. 237.




domain spuce by the identification function. However, boefore the
separation properties are considered one result must be prescuted to

facllitate the discussion.
Theorem ©

If 1'; X-Y is an identification functioun then Y is Tl it and

only if £-'(y) is closed for all y Y.
Proof

If it is first assumed that ¥ is T; then it follows thuti:xj is
closed for all y€Y, Since Y holds the identification tcpology, i,y} isg
closed in Y if and only if £V (y) is closed for all y< Y.

Next if it is assumed that £ ~'(y) is closed for all y€Y then it
follows immediately that Zy} is closed in Y since Y has the identifica-

tion topology. Hence Y is Tl.
This leads to the next result for Tl'
Theoremlz

If f: X-»Y is un identification function with X, Ty, and if £

induces an upper semicontinuous decomposition on X then Y is Ty

Proof

It should be noted that it is sufficient to show that £-'(y) is
closed for all y €Y.

For x, y€Y and for ;cef"(x) and ;ré ) (y), {23 and {?5 are closed
Séts in X. Hence by the upper semicontinuity of X,UZ%"(Z)\ z€Y and
t.I(Z)ﬂS’J\c} #‘#i:f" (x) undugf" (z)l z¢Y and £ (z) A Zl}ji(P}: f'\(y)

are closed. Hence {x} and {yi are closed in Y. Y is, therefore, Tp.




With the results now availuble, it is possible to present u re-

sult of theorems 1 and 6.

Corollurz 1

It f: X-»Y is an identificution mupping and if f induces an

upper semicontinuous decomposition on X with £,T4, then Y is Tz.
Proof

If x,y€Y where x # y, then £~} (x) and £ "'(y) are closed in X
by theorem 6, Hence Lx}§ and £13 are closed in Y and by the normality
gives as a result in Theorem 1, there exist open sets @& and BY 10 Y

such that X€ Sx and y€ Syuitn SMA =6,
Lt

A result for Ty can be found with relation to upper semiconti-

nuity of a decomposition on X induced by an identification mapping f

CorollarX.g

If f;: X-Y is an identification mapping and if f induces an

upper semicontinuous decomposition on X with X,T4, then Y is Tye
Proof
The proof is a direct result of theorems 1 and 6.

In proceeding with the discussion of the transference of these
topological properties, it now becomes apparent that the singular added
bypothesis of an upper or a lower semicontinuous decomposition is no
longer surficient in obtaining further results. Hence another concept

1s introduced - that of the perfect map.




36

Definition 1

If £f: X—Y is a closed continuous surjection such that f % (y)

is compact for all ye€Y then f is called a perfect map.

As 1s obvious, this possible hypothesis is stronger than upper
gsemicontinuity when an identification map is considered. If f is an
identification map, f, perfect, implies f induces an upper semicontin-—
uous decomposition on X.

However, before results are introduced on topological properties
not yet mentioned, another result using the hypothesis of a perfect map

and a topological property already considered will be presented.

Theorem 8

Ir f: X->Y is an identification mapping with X, Tg, and f

perfect, then Y is Tye

Proof

For x, yeY with x#Y, f£°'(x) and f "'(y) are compact, disjoint
closed sets in X. Hence there exists &. and&?_ open sets in X such that
"L (x) QSl and £ 7' (y) g@z_ . Further by the upper semicontinuous decom=-
Position induced by f, the sets C; and CE can be defined such that
Ul £ (2))zeY and £ (2063 and C,-08t " (2)] zeY and
e~ (z) QG‘E with C; and Cp open inverse sets, Therefore xé€ f[clland

yéf[czl with f(Cl:m r[03]=¢ . Hence Y is T,.

Again making use of definition 1 of this chapter the following

- Tésult can be obtained for the topological property of regularity.
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Theorem 9

If f: XY is a perfect mupping with X regular then Y is regular.
Proof

If yeY and FEY where F is closed in Y, then £ ' (F) is closed in
X. Let x€ £™'(y) such that £(x)= y. Since X is regular, there exists an
& and U sucn that x €€, , £V (F)e U} with 6,0U;=¢ . This works in a
similar way for all xef"(y). Hence thezsd s form an open cover for
£ "'(y) and the corresponding il&kg's form an open cover for £ ™' (F). Now
since f"(y) is compact there exists a finite subcover composed of.él'.'s
for £ ~'(y) with f"(y)elptgﬁg open in X, Corz:aspondim;ly,,‘h__l U’.=U. is
open in X and contains (¥). Clearly,—é'(\U“l’. By the upper semicon-
tinuity of the function, sets C; and Cp may be defined Pa D and X paw
spectively as in theorem 7. The result is of course disjoint open in-

verse sets containing f ' (y) and £-'(¥). Hence Y is regular.

From this result and that for Tl it is now possible to state a

corollary that will yield a result for Tg.
Corollary 3
If £f:XY is a perfect map with X, Tz, then Y is also T,

The next property to be investigated is that of complete regular-

ity, Here the added hypothesis of an open perfect map ylelds the results.
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Theorem 10

If £:XY is an open perfect mapping with X campletely regular,

then Y is also completely regular.
Proof

If F is a closed set in Y and y € Y such that y 4 F, then £~/ (F)
is closed in X and f '(y) is a caupect set in Y. Because £V (y) is com-
pact and X is completely regular, it is possible to construct a family of
open sets{bd\ ae D} such that £~V (y)& Go,@; ¢ Sc‘.: X\£~'[F] whenever
s €t and D is dense in (.O, llog Next the following open inverse sets
may be formed through properties of an upper semicontinuous decomposition
Uy4s Jg £'(2)| ¢ (z)QBdi . Hence f(Ud] = Vg which is open in Y,
Clearly y€ Vqa & Y\F for all 4 € Do Now it must be shown that for t< s,
T3 & Vs. Since Uge83€ 84 €8, und since £ induces a lower semicontinuous

decomposition,Uf_f"(z)l f"(z)Eﬁd.S is a closed set containing Uy and

conteined in U.. This implies that Us< U, which yields Vy = f(Ug) =
s d s d d

f(I—fd) = f(US) = V, and therefore the result.

The topic now to. be considered in this section is perhaps the
most complex. It is the topic of metrizability. ¥or convenience the
discussion will be divided into three sections each representing differing
added hypotheses that aid in the transference of metrizability from the

damain to the image space of an identification function.

C
 Kelly, pp. 114,142,
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Theorem 11

If XY is perfect with X a sepureble metric space and f inducing

a lower semicontinuous decomposition on X then ¥ is metrizable.

Proof

The proof of this theorem is as follows. First realize that a sep-
arable metric space is also second countable. Second, since f is perfect,
Y is T3 (corollary 3). Finally the resukt is obtained through an appli-

cation of Urysohn's Metrization Theorem,

In the next variation, the hypotheses are strengthened by ommitting
the separability of X but weakened by requiring that f be perfect. The

following definitions are also needed for the next theorem,

Definition 2
If P is & metric on X, S¢X, and €20, V£(3)=£ x\{(x,s)‘é for s € S}.
Definition 3

Ifhf is a metric on X and K), K2 are closed bounded subsets of X,

H(Ky,K5)= infié. l KlEVe(Kz) and Ko f_(Kl )}. H is the Hausdorff metric deter-
mined by ¢ 10

Theorem _1_2_

If £:X4Y is open and perfect with X metrizable by{x then f(yl,,}é ) =

. . ~r
H(f ‘(yl),f l(yz)) is a metric for Y and \?“JY where H is the Hausdorff metric.

—

0
1 Felix Hausdorff, Set Theory, trans. John R. Aumun, et al.

(Second edition, New York, Chelsea Publishing Company, 1962), pp.166-172.
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Proof

It is true thuty iu a motric on Y winoce f™' (y) is compuct und so
closed and bounded in X.

Secondly it must be shown thut5}=5¢ . Consider yoéUe.fl}f such
that £ 7' (y, )€ r“(U)f,rf,‘. By the Lesbesque Covering Lemma there exists
an €20 such that Vg (£ (yo))= 22\ 2¢X and ‘fx (Xo, # )<& where Yy is
the metric on X"§< 71 (U). Now consider ye B-f[ ¥0,&) « With this

specification it is clear that Y(y, yo)<€ . Therefore H(f™'(y), £ (Yo))"i
‘ e
and so f£-!(y) & Ve (£ (yo))s £V (U). Hence y€ U, thus giving UE Jf.

Next the reverse set inclusion must be shown, If&€ >0 and"yof Y
then Uy=UZe™ (2) | £ (z)e vy, (£ (y )5 with £ y)e U, is
open in X since f induces an upper semicontinuous decomposition on X.
Also, since £~ (yo) 1s compact, there exist Xy, «+ « , X é- (YO)
such that £~ (yo)c U B‘fx(x‘ J &4 ). Let Ui=U L2 (YH £Hy) N
54," (x;,?—/‘t) ;‘QS . Note that since x| € f"(yo) < U} and that because
f is open (i,e., f induces a lower semicontinuous decomposition of X),

1%
U, is an open inverse set in X. Hence (\ U 1is also an open inverse

‘o

set which implies f [C\ Q;\éJ\‘ Now it must be shown that
Yof-*[[\ u;\ ’bf(Yo,i) It is known that £ (y ) & }(\U which implies
Yo€ f\.@%\k\—l . Ifye t\.(\ Uu] then £V (y) & U0 and so £~ (y)‘-’v;,&
(f"(yo)) . If xef"'(y,) there exists an x; such that ‘fx(xi , X)< 24.
f"(y)QU-l , therefore, there exists an xlE £V (y) such that
'fx(x" ,xl)< % . This results in the fact that.-tfx(x, xl)<- 2Zland that
XeVe/, (£71(y) ). Hence £7'(yple Ve, (£74(y) or (v, yo) € $h=gwhich

~ - , P J
vielas yeBo [ yy; €} . muereore B lye i—.\é'JY.

* .
and x & £ (y,)




41

The rinal consideration und reference to metrizability is the

strongest result whose proof can be found in Dugundji, page 236.

Theorem 13

If £:XY is a perfect mapping with X metrizable then Y is also.

Thus far in the discussion the only results being investigated
are those that transfer a topological property from the domain space of
an identification function to the range space. This is the case due %o
the fact that very strong hypotheses are needed to transfer the afore-
mentioned properties in the opposite direction. This discussion will be
pursued in more depth in Chapter IV. As for the hypotheses available at
present, there is little that ean be accomplished. Two results are im-
mediately available; however, the first concerning compactness is pre-

sented in the next theorem,

Theorem i&

If £f: XY is a perfect identification mapping where Y is compact

then X is also compact.
Proof

It 2(5;} forms an open cover of X, for all y€Y only a finite
number of Gi's cover f"(y). Let Vy be the union of the Sx's covering

£7'(y) for a particular y €Y., Then Uy, can be defined asi: .

4
Uif“(yd )\ i (Yj )C.Vng an open inverse set, Hence [f(Uy‘.)} forms
an open cover of Y. By the compactness of Y, there exists a finite sub-

Cover composed of the sets Z_r(uyl Vs r(Uy2)’ S f(Uynj}. Hence the
Corresponding vyl, 5 & Vyn form a figite subcover off9x’s for X. X is

Compact,

s
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A seocond rosult concerning transference of u topologlcul proporty
from the image space L0 the domain space of an identification function is

now presenteds
Theoren 15

If £:X—»Y is an identification function where Y is comnected and

£t} (y) is connected for all y€Y then X is connected.

Proof

Suppose that X is not connected. Then there exists Cg X such
that C is both open and closed in X and C 7 X or C f‘P . Consider, now,
x€C. Then £-£(x)NC #¢. Purthermore £7'£(x)NC € £7'r(x)s If G is
an inverse set with £ '(y)€C for all f"(y) N CJ“P (jG.Y), then the
connectedness of Y would be contradicted, If C is not an inverse se%

; 1 £ . 11
there exists an X" & X guch that f '(f(xl)ﬂc?’4’ and £°1f(x );gc, This

implies that r"r(xl)(\c is a subset of £ f(zl) that is both open and

closed in the subspace topology.
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Chapter LV

MINDMAL AND MAXIMAL TOPOLOGIKS
ON THE DOMAIN SPACE OF Ali IDENTIFICATION

FUNCTION

Thus far in the discussion the only elements of the identification

function that have been in question were the identification function it-
self and the topology on the image space of a function., Now in this chap-
ter a new concern comes into play - that of the topology on the ddmaiﬁ
space of an identification function.

In order to motivate the discussion of maximal and minimal topol-
ogles it is first necessary to illustrate the fact that given a continuous
surjection and a topology on the image space of that surjection that there
exists at least one topology on the domain space of the function that
makes it an identification, There may be several as the next example

illustrates.

If £:X-»Y 1is a mapping from X onto Y where X is the set of the
Treals and Y:'{O, 13 then the cofinite as well as the usual topology make
f an identification function where the topology on Y is the indiscrete

topology with f(x)=0, x€&Q, and f(x)= 1, xR\ Q.

The set consisting of all topologies that make f:X-»Y an iden-
tification function where :iy is the topology on Y will be referred to

as Q(f.ﬂ'y).
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The questlon now auvked lg, "ls thore a muallest membor of
Q(f,ffy)?" The answer to this question is yes. This element will be

referred to as the minimal topology.

The Minimal Topodogy

Lemma 1

If £:X#Y is a surjection with Jr;the topology on Y and £ GY 7

(274 (0)|U €F)f then £ is the smallest element of Q(f, ).

!

The easy proof is omitted.
Definition 1

If £:X9Y is a surjection with (l}z the topology on Y then f""fY is

called the minimal topology.

It might be asked whether or not the above is the only element of

a particular Q(f,ﬁr). The next theorem yields results in this area.
Theorem 1

If f£:X-Y is a surjective mapping with \’/;,the topology on Y, then

f"j} is the only topology in Q(r,ﬁ.r) if and only if f is one to ome..

Proof

If it is assumed that f is one to one and that f is an identifi-
cation function then it must also be true that f is an open surjection
Since £V f(U) = U for all U er. Hence the minimal topology is the

only possible topology on X in Q(f,J,).

/
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Cunversely, if r(x“) o~ f(xb) with x ¢ %4, thenf@,[ x.j, XSV f"J},

is in Q(r,G})o However, this is in contradiction of the ract that f

is the only element in Q(f,G}). Therefore f is one to one.

The definition and clarification of the concept of the minimal
topology now gives rise to a new added hypothesis that is especially use-
useful in transferring topological properties in an identification mapping
from the image space of the function tc the domain space. It 1s indeed
readily apparent that under the hypothesis .q;: r’hg}the properties of
first countability, second countability, regularity, normality, separa-
bility, local compactness, compactness, connectivity, and local cohnec;
tivity are preserved. This is not the case, however, for the separation
properties. In order to transfer any one of the separation properties
from the image space of an identification function to its domain space,

a homeomorphism is necessary. The case for Tpis illustrated. !

Theorem 2

If £:X4 is en identification function with the respective top-

ologies Jy r"o.’l}/ and 5,, on X and Y with Y, Ty, then X is T, if and only

if £ is one to one.

Proof

Assuming first that X with the minimal topology is Tp, suppose f
is not one to one. Then there exists x,y € X such that f(x) = £(y) with
X 75n However there can be no open set containing x but not y (or vice

versa), since all the open sets in X are of the form
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r-Y(v), V’éj}q and cannot separate elements of X that map to the same

= £
element in Y. Hence, if J .3 £'J ¥ and X is To then f must be one

X
to one.
Conversely if f is one to one and Y is TOn it is clear that

x, y€X can be separated by T0 specifications by merely separating

f(x) and f(y). Hence X is TO'

Metrizability because of its link with the T2 property, alse
requires a homeomorphism in transference from the image space of an

identification function to the domain space.

The Maximal Topology

Having discussed the idea of a minimal topology the more complex
analysis of a maximal topology on the domain space of an identification
topology remains, AS can be ascertained by referring to example one of
this chapter, what must be sought is a maximal topology, not a largest
topology. This can be seen through the realization th&tf@,f&}, R §€
Q(f,ﬂ}) for all xe®., Therefore a largest topology would have to be
discrete. The discrete topology is not an element of Q(f,(ﬂ{). The
quest is then to come up with some formulation thqt will describe a
maximal topology on the domain space of an identification function,
Nevertheless some identification functions lend themselves to having
a largest topology. The next definitions and theorem give results in

this area.
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Definition 2

Lt 1 4e»Y Lo un fdontificutvion function then
F -l o - - -
Kp=gx | £7'¢(x) = £x3 , x€X is the kernel of f. Ly=1 (k] -
In addition to this definition this next concept will prove

useful in the study of the maxinal topology.
Definition 3

Suppose 5& and 53 are two topologies on a set X. Let
8 :J—‘s » Thus B is the collection of all sets either open in
o "
Jyor Jg . The topology generated by B is called the supremenun of

,—l
Jy_and @ » vritten Q:LV dﬂ .
Theorem 3

If £:X-»Y is an identification function, then Q(f, (TY )
’-l
contains a largest element if and only if for all y€ Y\Lf zy}éJY

~
where dy is the topology on Y and L E\’J-r .
Proof

If it is first assumed that there exists a largest element in

Q(f, 5\{), namely CJJL, then for yé€ Y\Lr and x€t ' (y), £V 5,V

Y
i¢, Ix% , x3eq(r, Q'Y ). Therefore for all x € f ' (y), {x}cJL which

—
implies f"(y)ej‘_. Hence Zy}eJY &
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Continuing with the assumption, one is uble to pick

Xy, Xp< 27 (y) with x)(y) # x5(y) and define Sy * le (v} ¥€Y\L9}
and Sp =Zx2 (y)\ y & Y\Lf-g . It must now be shown that

f"ﬂ'y vid, kpu sy , x%e Q(r,GY) for 1 = 1,2. Pirst it should be
noted that the basic open sets in the described topology are of two
types: UNX=U where UCe™0y or U () (kp U Sy ) where U€ f"ffy i
Both types of open sets are closed under unions. Therefore a typical

open set is of the form Uy U (U, N (Kp J bl) ) where U}, Uy & fﬂj‘)"

3 i i S, =
Ir y U (U, 0 (Kfubi ) ) is an inverse set then UlU(Ugﬂ (KpU Sy )
U,UU,. The set inclusions UjU (U, (K US; ) 1e UlUv, is indeed
obvious. The reverse inclusion merits investigation. If x€ UlU U,
then x €U, which yields the result or x€U, and y= f(x); then x€ Kp
. . - & 5 ; X U (K u S ) )-
implies xe.Uzﬂ(le Uoi ). Otherwise xi(y)c UzﬂbiEUlU ( 2“ Y Pi
Since this is an inverse set x€f ' (y)cUy U (UZ{'\(Ksti) ). Thus any
open inverse set is already open in f-‘(fY and f"gx{ Y i, Kol Sy o
x§€q(, Jy). Thererore, KU 8, and KpUs) are both in the largest
topology and so is (KpUs)) N (KpUs,) = Kpe Since K, 18 an open inverse
set by definition, £ [K.]= L; e ITY .
Conversely if Lfég\{ and {_y} CGY for y e Y\@f a largest
topology exists, Let J, be defined by J, - f"ﬂ’y vivlu=x or
uc X\ng. Two things must now be shown: firs{:, that 316 Q,(f,TY)
r
and second that if J € Q,(i‘,fJ_Y) then J€ J_ - Returning to the first
item to be proved, it is clear that 5-,_. on X allows f to preserve its
. 3 -l e 5‘
property of being a continuous surjection., Now suppose f ~'(S) L
where SQ Y, It now remains to show that S Gfr One nay now consider
x& Ke(| £7'(S). There exists a U €27 Jy and Up€ {ulU=Xoruex\Ke}

such that xGUI(\UZSi‘"(S). By definition Ug must be X. Hence
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- "‘ g -
x€U €T ‘s) undU{Ux\ x€? (S)nhﬁ V€L ‘5}. Therefore
3=r(V)U (ugf' Ya&) wlere y 6 Y\Lf und.'j;_ preserves the properties of an
identification funection.

Returning now to the sccond consideration mentioned one must con-

Yy

xeU. If xdqKe then by hypothesis {x§e J., E:J€U and U is a 7 neighvor-

o o
sider any J€ f,Vy) and show ng{_. Suppoge first that Uefand consider

hood of x. If x€&Kp then x€ Kgf)U which is an open inverse set. Hence
£(kpNU)E Ty . But KeN\U= £7'2(KeNU)ET,. So x€KpNUSU and U is a G
neighborhood of x. However since U is a neighborhocd for x¢ Kp and

xé‘Kf it can be concluded that U is an open set in a2 5 Hence fcflz and

the proof is complete.

With these results it is now possible to emba;'k on a search for
maximal topologies.

Pirst before the actual pinpointing of a maximal topology can
be made, an analysis concerning Zorn's lemma now seems applicable. The
question is, do all chains of identification topologies have & maximal

element? In order for this question to be answered, a lemma must now

be presented.

Lenma 1

If (X,J) is a topological space with xp€& X then

TV ES, ix 8, x3=TJu v uixd| v eTf.

Proof
Clearly by the definitiocn of the supremum of two topologies
m :
JU{U VFE%) \Ué.r.l.} is contained in S'VZf’,ixog ,X}. To show the reverse one

lust consider thv {4’ ’ ZXO-S ,X}. It must be shown that V\{xogf.j,



1L "UQ v, V\{XOS; V; hLeuce V\{XOSQG. If e V, Va2

(WNTx0% ) U Z xg§ which says that V\{:(()} is indeed an olement of J .

1r x=[0, 1] and ¥+ Lo, 11\&5 | n€z*§ and £ maps X into Y
by f£(x)s O ir x=-‘;\' tor some ne Z' und f(x)=x if x77‘f for n€ 2% ;
and the topology on Y is co-finite with .’J: = f":J-'Y and ffm; §

-5;\ V&,i'vl\z\g : X-S the following conclusions can be made.

First, it can be shown that for all n f: (X, Ju)-2(Y, ‘_"J"Y ) is an
identification function. This can be shown by induction. The initial -
case n =0 is true by previous work. Now assuming the conclusion for 5;‘ 2
suppose g 1 [_S.l = 5,\,. . It must be shown that S € G-Y . 3T
ksl o [s]ed, which implies that S eCTY ., It
w6 £7'[s], e (8} v UZan§ and 0es. This implies that
t-vfotss. soirg=r[v], UED, implies U equals the union of

 V and some finite subset of §1, 1/2, 1/3, ..., S where Ve £ (TY ¢

Let Jg,be the topology with basis P:o Gp - J, is the smallest
topology which contains 5:1 for all n.

Finally, it can be demonstrated that £:(X, J,, ) (¥, J’Y) is not an
identification, This is true since 2_'!.{ | ne 2'3 6‘5‘; which would nake

r"'(O) an open set whlen zO} is not open in Y.

Therefore, fram the above example it is clear that there exists a
chain of identification topologies based on a certain f and (I- with no

upper bound. Hence the Zorn's Lemma arguuent fails to produce even at

the very least any evidence of a maximal element.
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Thore is ut loast one Ingtance for whlch a maximal topology for
a function f:X-»Y and :),Y can be constructed, The construction begins

with the following definition.

Definition i

If £:X-Y with .’J_Y the topology on Y with no topology on X and
A€ X such that f]A is 1-1 and onto then J‘Dts\ﬂ is the topology for X

with base X, A3U {8x3|x4 af ana Jy = Spe\m ¥ r"._’j'y X

The next two theorems yield results that confirm 5;\ is a maxi-

mal topology.
Theorem 4

Let £:X2Y be a surjection with 5)'( the topology on Y. If X

has tha topology q\, then f is an identification function.

Proof

Suppose there exists a set Ve O—H that destroys the identifi-
cation map, i.e. V an inverse set such that f£(V) 8\ GY . Then for all
x € V either x € 4 or x § A. Ir x& 4 then £x§ € O . Let

Vf—fx\xév and x € A}. Then V=V1,Hv i xS. Also by the con-
A

“

struction of A, £(Vy) = £(V), f£(V}), however, is not an open set which

implies that le G',\. This in turn yields the result that Vé\(fw

- -
Also f is continuous since f ‘\Q;CJH.

Next there remains the question of whether or not the topology

is actually maximal.
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Thoorem 5

Let f£:;X—»Y be an identification function with 5, , the topology
onY, and\’fl.1 the topology on X. Then if there existsJ a topology for
the domain such that f with this topology on X is an identification and

JMC_S- then 7‘5;1

Proof

Suppose there exists a U €J and URJM . Then for all x € U,
either x € A ( as described in the definition of JM ) or x & A. Again,
since 0749:5, if x§ A, {x} € i v 1ok U, = 2x) x€Uandx€if.
Then Uz Uy %“ e fx§. MNow since 4 is open in] 4f) U= U, which is also
open in /j . Since UQG;‘ it will be assumed that U) # qD . However, be-
cause U § Jy there is no member V € f"b‘r such that V() A=U;., so £(U))
is not open in Y, But f ! f(Ul) is open in J . The identification func-

tion is then destroyed. Hence U cannot be an open set. (1;4 L g .

Thus far the main concern in this discussion is to start with the
minimal topology and construct a topology which hus been found to be maxi-
mal. There has been no guarantee, however, that any \'J:‘e Q(f, O"Y) can be
contained in such a maximal topology. The next theorem yields results in

this area.
Theorem 6

-
Let £:X-*Y be an identification function with Jy,Jy the topol-

Lo . T ch
ogies on X and Y respectively, There exists an A S X such that Jy S Jm

if and only if flA is a homeomorphism from A to Y. The topology on 4 is
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the relative topology based on J‘X v

Proof

If there exists an A € X such that Jx € Jy, then in addition to
being 1-1 and onto flA is an identification function since for all USY,
£ (U)[\ 4 18 open in the subspace topology if and only if U ¢ dY .

Now it remains to show that flA is an open map. Suppose there exists a
set U € GR such that HA (U) § GY . Then since fIA" flA (U) = U, due to
the property of flA being 1-1, the identification map would be destroyed.
Hence, there exists no such U and fIA is an open map and, therefore, a
homeomorphism from 4 to Y.

Conversely, suppose fIA is a homeomorphism from A to Y and A
has the subspace topology. If UE SX then U = Uy U U, where
Up:§x| x€U and x § AS and Uzzix[x €U and x € AS . Clearly

" s
Uj€ UM . In addition U2 = U (\ A which is open in JM . Hence UCSM v

Despite the results given in the last theorem there are in-
stances for which Jx € q(f, Jy) is not contained in a 5;4 as described.
In other words there wiJ_._l not always exist a set A € X such that f\A
with the relative topology on the domain is a homéomorphism. ‘i‘he fol-~

lowing example provides a case in point.

Example 3

Consider f:X-»Y where X = §-3, -2, 0, 1, 2, 35 and Y- La,b,c 5 ;

f(-s) z a, 7(-2)=a, £(0)=b, £(1) = b,f(2)=¢c, and £(3)= c. A base for
5)( is ii"s, "2} ) ist 23 ’ Z2)3:0} ) i'zx -3, le’ GY u
i{a}, zcs,ta, c}, {a, b, c}, 473.
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Clearly f is an identification functioun., It is also vasily seen
that for all possible choices for a set A€ X that satisfies requirenents
for the construction oflxq " fIA igs not a homeomorphism. Hence by the
previous theorem O}é\dr” Even more importantly, this example illus-
trates that the described maximal topology is not the only maximal topo-

logy possible for an identification function. This statement can be made

due to the fact that the identification function of the previous example
has a finite domain and range, and therefore, only a finite number of
topologies in Q(f, (Ty s

Returning for the moment to the described maximal topology it

seems now appropriate to discuss the transference of topological proper-

ties from the domain space to the range space of an identification func-
tion and vice-versa when a maximal topology,*ﬁk, is fhe topology of the
domain space.

When transference from the domain space to the range space is
considered, the answers are quite clear. Since the specified set A is
both open, closed, and homeomorphic to ¥Y; and since all the properties
discussed in Chapter III are either hereditary, F-hereditary, or
G-hereditary, the transference is automatiec.

Transference ffom the range space back te the domain space is
not as all-encompassing. Nevertheless the facts are easily seen and are
presented here without proof., Separation properties and, hence, metri-
zability are transferred. Connectivity is not transferred unless A, as
described with reference to this maximal topology, is equal to X. com-
pactness is not transferred unless X\\A is finite. Local connectivity

as well as local compactness are both transferred. Second countability
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und sepurubility are trunsferred on the condition that X\A ly countuble.
First countability is also transferred.

What now remains in this discussion of the maximal topology are
some unanswered questions. The first of these is quite apparent from the
discussion following the last example: What if any is the characterization
of the other maximal topology or topologies? Also it is presently unknown
whether or not all topologies on the domains of identification functions
are contained in a maximal topology. Therefore it can be said that what
has been found is only one of a possible many in the class of maximal
topologies on the domain space of an identification function. An jnfinite
nunber of circumstances concerning identification functions remain to be

investigated.
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