MATRIX METHODS IN STRUCTURAL DYNAMICS

by

Charan Phimphilai

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

computer is provide of in the links with problems

Civil Engineering

Program

elm

Graduate School Dean of the

YOUNGSTOWN STATE UNIVERSITY

January, 1978

ABSTRACT

MATRIX METHODS IN STRUCTURAL DYNAMICS.

Charan Phimphilai Master of Science Youngstown State University

The purpose of this thesis is to formulate a usable set of computer programs written in FORTRAN IV computer language which are associated with problems that arise in the field of matrix operations in structural dynamics. Each program is accompanied by a review of the matrix theory, a complete flow chart, a print out of the actual computer program, and a sample example to illustrate the results.

This work is divided into two distinct parts. The first section includes a series of programs which analyse the determinant problem, the matrix inversion problem, the characteristic value problem, the characteristic vector problem, the normalization $(1)^{*}$ problem and the Cholesky Triangularization method. In the second section a computer program using finite

number in parenthesis refers to literature cited in the bibliography difference techniques is written to determine the dynamic response of a lumped-mass structural system subject to external time-varying loading conditions.

The advantage of the latter method of analysis is that it completely eliminates the classical approach to the solution of the problem which includes both the necessity of computing the natural frequencies and modal shapes of the free vibration problem, and the utilization of a series-type integral solution for the problem.

ACKNOWLEDGEMENTS

The author wishes to acknowledge his deep appreciation and gratitude to Dr. Paul X. Bellini, his thesis advisor, whose guidance, efforts, time and encouragement directly contributed in the completion of this thesis.

The author also wishes to thank his review committee, Dr. Michael K. Householder and Professor John F. Ritter for giving their valuable time toward the completion of the requirements of his work.

Great appreciation is given to my parents Mr. & Mrs. C. Phimphilai for supporting my studies.

TABLE OF CONTENTS

. LIST OF STREOLS

			F	AGE
ABSTR	ACT.		•	ii
ACKNO	WLEDGEM	ENTS	•	iv
TABLE	OF CON	TENTS		v
LIST	of symb	OLS		vi
LIST	OF FIGU	RES		viii
CHAPT	ER			
I.	INTROD	UCTION		1
II.	GENERA	L PROGRAMS		5
31	2.1	FORTRAN Program for Determinant		
		Evaluation		5
	2.2	FORTRAN Program for the Inverse Matri	x	
		Evaluation		12
	2.3	FORTRAN Program for the Characteristi	c	
		Equation problem		18
	2.4	FORTRAN Program for Evaluation of		
		Characteristic Value and Characterist	ic	
		Vector		32
	2.5	FORTRAN Program for the Method of		
		Cholesky Transformation		42.
III	FINITE	DIFFERENCE ANALYSIS OF THE RESPONSE		
	OF POR	TAL FRAME		
	3.1	FORTRAN Program for Linear Equation o	f	
		Motion of Multi - Degree System		50
IV	DISCUS	SION AND CONCLUSION		73
BIBLY	GRAPHY			79

LIST OF SYMBOLS

SYMBOLS	DEFINITION
[A]	Symmetric matrix
[F]	Force matrix
[1]	Identity matrix
[K]	Elastic bending stiffness matrix
[1]	Lower triangular matrix
[M]	Mass matrix
[U]	Upper triangular matrix
{s}	Associated displacement vector
{u}	Eigen Vector
{x}	Displacement Vector
{ x }	Velocity Vector
{ x }	Acceleration Vector
{x} ⁽⁰⁾	Initial displacement vector
{x}``	Initial velocity vector
{x}	Initial acceleration vector
{y}	Associated displacement vector
A	Cross - sectional area of member
E	Young's modulus of elasticity
L	Length of member
P	Axial force
V	Shear force
W	Weight of the tributary wall areas

a sam in A

f	natural frequency of vibration
t	time
Δt	time interval
5	natural period

Shuposkarletis Woolds proframe......

LIST OF FIGURES

FIGURE.		PAGE	
1	Flow chart of Determinant program	8	
2	Flow chart of Inversion program	14	
3	Flow chart of Characteristic Equation program	25	
4	Flow chart of Characteristic Value and Characteristic Vector program	37	
5	Flow chart of Cholesky Triangulation program	46	
3.1	Multi - Story Portal Frame	55	
3.2	Two - Story Portal Frame	56	
3.3	Time variation of the dynamic force	58	
3.4	Flow chart of linear equations of motion.	60	
3.5	Dynamic responses of X ₁	71	
3.6	Dynamic responses of X ₂	72	
4.1	Comparible graph of maximum displacement of X_1	75	
4.2	Comparible graph of maximum displacement of X ₂	76	

* number in parchibidia, raises to literature sized

viii

CHAPTER I

1

INTRODUCTION

The introduction of the high speed electronic computer to field of numerical computation has revolutionized the approach to the analytical solution of many complicated problems. It has become particularly valuable to the field of engineering where specially prepared computer programs have been developed to aid in the solution of problems in structural analysis, stress analysis, surveying, fluid mechanics, machine design, vibrations and structural dynamics.

In most of the latter computer programs, the fundamental mathematical operations present are those related to matrix operations, including both matrix algebra and matrix calculus. From an engineering standpoint, one of the first basic text books related to the matrix methods is that written by Pipes $(1)^*$. This text book covers the basic forms of matrix operation with applications to elasticity, dynamics, vibrations, and structural analysis. A second book by Pipes (2) published in 1969 presents a series of actual computer programs which may be utilized to efficiently solve many of the usual problems associated with

* number in parenthesis refers to literature cited in the bibliography important matrix operations.

The purpose of this thesis is to develop a series of programs for suitable use on IBM 360-70 which is available at Youngstown State University which contain the matrix operation applicable to the solution of a typical engineering problem.

For each program formulated, a flow chart, a complete computer program in FORTRAN IV, and a sample of example illustrating the problem is presented for clarity and ease of interpretation.

The following list of computer programs are formulated:

- 1) Determinant Evaluation of a Matrix
- 2) Inversion Evaluation of a Matrix
- 3) Characteristic Equation Evaluation of a Matrix
- 4) Characteristic Value and Characteristic Vector Evaluation of a Matrix

5) Cholesky Transformation Evaluation for a Matrix. The first four programs are standard problems in matrix operations which are essential to all matrix analysis procedures. The last program is a more recently developed technique in which a matrix is replaced by the product of an upper triangular and a lower triangular matrix. This technique is summarized by Westlake⁽³⁾ and is specialized for the case of a symmetric matrix. Application of this technique to real engineering problems has been summarized by Parsons⁽⁴⁾ in a master thesis at Youngstown State University.

The second section of this thesis presents a computer program solution for the analysis of a typical problem in Structural Dynamics. This solution consists of determining the dynamic response of a single-bay, multi-story, planar frame subjected to time varying forces. The method combines the use of finite difference techniques as reviewed by Rogers⁽⁵⁾ simultaneously with matrix operations. The problem includes the modeling of the structural frame into a lumped-mass and spring mechanical system which generates a set of linear, coupled, total differential equation. The solution of these equations using classical scalar manual techniques is summarized by Fertis⁽⁶⁾.

The computer solution developed in this work offers an efficient and economical means of determining the response of the structure for a variety of dynamic

loading conditions and at the same time minimizes the time required to obtain these solutions.

This between the Eveloption program is based on the stream of this^{(1)*}. The loca of this without is to feature the order of the determinant from higher order to lower order until a (1 x 1) determinant is obtained which gives the untual value of the original determinant. This method is illustrated using the following (4 x 4) determinant.

So reduce the order of the determinant from a (4,x 4) to a (3 x 3), any element of the determinant, say element (1,1), is made squal to unity by dividing the

A husbar in paranthesis refers to literature dited in the bibliography

CHAPTER II

GENERAL PROGRAMS

2.1 FORTRAN Program for Determinant Evaluation

This Determinant Evaluation program is based on the method of $\text{Chio}^{(2)*}$. The idea of this method is to reduce the order of the determinant from higher order to lower order until a (1 x 1) determinant is obtained which gives the actual value of the original determinant. This method is illustrated using the following (4 x 4) determinant.

To reduce the order of the determinant from a (4×4) to a (3×3) , any element of the determinant, say element (1,1), is made equal to unity by dividing the

D =

* number in parenthesis refers to literature cited in the bibliography

first row through by Q11, yielding

$$D = a_{11} \qquad \begin{array}{c} 1 & \underline{a}_{12} & \underline{a}_{13} & \underline{a}_{14} \\ a_{11} & \underline{a}_{11} & \underline{a}_{11} & \underline{a}_{11} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{array}$$

(2.1.2)

Setting $a'_{12} = a'_{12}/a_{11}$ $a'_{13} = a'_{13}/a_{11}$ $\alpha'_{14} = \alpha_{14} / \alpha_{11}$

multiplying the first row by $\boldsymbol{\mathcal{Q}}_{\boldsymbol{2}i}$ and subtracting from the second row, then multiplying the first row by a_{31} and subtracting from the third row and, finally multiplying the first row by \mathcal{O}_{41} and subtracting from the fourth row, gives

$$D' = a_{11} \qquad 0 \qquad a_{22} a_{21} a_{12} \qquad a_{13} a_{14} a_{14}$$

$$D' = a_{11} \qquad 0 \qquad a_{22} a_{21} a_{12} \qquad a_{23} a_{21} a_{13} a_{24} a_{21} a_{14} a_{14}$$

$$0 \qquad a_{32} a_{31} a_{12} a_{33} a_{31} a_{13} a_{34} a_{31} a_{14} a_{14}$$

$$0 \qquad a_{42} a_{41} a_{12} a_{43} a_{41} a_{13} a_{44} a_{44} a_{14}$$

6

(2.1.3)

The value of this determinant now becomes

$$D'' = a_{11} (-1)^{1+1} \begin{vmatrix} a_{11}'' & a_{12}'' & a_{13}'' \\ a_{21}'' & a_{22}'' & a_{23}'' \\ a_{31}'' & a_{32}'' & a_{33}'' \end{vmatrix} (2.1.4)$$

where $(-1)^{1+1}$ is the sign of element $(1_{y}1)$, and $a_{11}'' = a_{22}^{-} a_{21} a_{12}' \qquad a_{12}'' = a_{23}^{-} a_{21} a_{13}' \qquad a_{13}'' = a_{24}^{-} a_{21} a_{14}'$ $a_{21}'' = a_{3\overline{2}} a_{31} a_{12}' \qquad a_{22}'' = a_{3\overline{3}} a_{31} a_{13}' \qquad a_{23}'' = a_{34}^{-} a_{31} a_{14}'$ $a_{31}'' = a_{42}^{-} a_{41} a_{12}' \qquad a_{32}'' = a_{4\overline{3}} a_{41} a_{13}' \qquad a_{33}'' = a_{44}^{-} a_{41} a_{14}'$ Thus, Equation (2.1.4) is a determinant of order (3 x 3). By repeating this operation, the determinant is reduced to a (2 x 2) and finally a (1 x 1) with the multipliers $a_{11} a_{11}'' a_{11}''' \dots$, from which the value of the original (4 x 4) determinant is obtained.

The basic flow chart of this program is shown in Figure 1.

7

Figure 1 Flow chart of Determinant program

		99
	C	NAME DE THE PROGRAM-DETER
	C	TO DETERMINE THE DETERMINANT OF THE MATRIX NON
		DIMENSION S(100,100)
	1.	READ(5,2)N
	2	FORMAT(II)
		DD 90I=1,N
	1. 1. 1.	READ(5,10)(S(I,J),J=1,N)
Carle de	90	CONTINUE
	1 120	$\frac{1001001=1,N}{1001=1,N}$
	100	WRITE(O, LU)(S(I, J), J=I, N)
	10	K-2
		I = 1
		XM 1 = 1
	11	XM = S(L,L)
		DD 20J=L,N
		S(L,J)=S(L,J)/XM
	20	CONTINUE
	195000	DO 30I=K,N
		X=S(I,L)
	1.	D7 30J=L+N
	2.0	S(I,J) = S(I,J) - S(L,J) * X
	30	
		I = A = A = A = A = A = A = A = A = A =
	40	$XM1 = XM1 * S(N \cdot N)$
	10	WRITE(6.50) XM1
	50	FORMAT(22H VALUE OF DETERMINANT= E10.3)
		STOP
		END
x		
-		
		and a second
	• /	

VS LOADER

10

OPTIONS USED - PRINT, MAP, LET, CALL, NORES, NOTERM, SIZE=102400, NAME=**GO

ΝΑΜΕ	TYPE	ADDR	N	AME	TYPE	ADDR	NAME	TYPE	ADDR
	·	160010	TUNE	COMUN		1 54 00 0	TOCOM#	* 10	151054
	50	150810	IFINE			150076	TUNECVT	* LK	150540
	50	150094	ECV7	OUTD :		150166	ECVIOUT	D* 10	150505
INTASWCH*	IR	150450	THNE	FINS	s SD	150400	FIOCS#	* IR	15 CADO
THNEENTH*	S D	155080	ARIT	H# 3		155 080	AD.ISWTC	H* IR	15F410
ERRMON *	18	15E930	IHNE	RRF \$	C IR	15E948	THNECON	0* SD	15FF30
FOCONT# #	IR	15E3D8	THNU	ATRI 4	< SD	15E6C.0	THNETRC	H* SD	15F948
IHNFTEN *	SD	15FBF0	FTEN	# *	LR	15FBF0	Interne	11. 50	131 310
Contact and							the state of the		
TOTAL LEN	IGTH	F57	8						
ENTRY ADD	IKE22	15081	0				and the second se		
15.0000	1.0	0000	2.0000	-3.	0000				
5.0000	6.0	0000	4.0000	4.	0000				
-10.0000	-3.0	0000	2.0000	1.	0000				
-5.0000	3.0	0000	4.0000	0.	0				
VALUE OF DE	TERM	INANT = -(0.182E+0	4					
					2				•
	12					Y			
									1
					· · · · ·				
									1.0
	1								
							· · · · · · · · ·	1.	
								/	
								1.1.1.1.1.1.1.1	

VS LOADER

11 OPTIONS USED - PRINT, MAP, LET, CALL, NORES, NOTERM, STZE=102400, NAME=**GD

NAME T	YPE	ADDR	NAME	TYPE	ADDR	NAME	TYPE	ADDR
MATH	50.1	0 1 0 1 0	TUMECOM	* 60	1 91 99 9	Tac on A	* 10	104251
THNCOMH2*	SO I	88848	SECONSO	* 50	1 886 76	I BC UM#	* LK	188540
	181	36094	FCV70UTP	* 18	18CIE6	ECVIOITE	* 18	18059F
INT65WCH*	JIR 1	80450	THNEFIDS	* 50	18CAD0	FINCS#	* I R	186400
IHNEENTH*	SD 1	8F080	AR ITH#	* 1R	18E 080	ADJSWTCH	* 18	18 F41C
ERRMON *	LR 1	3E930	IHNERRE	* LR	18E948	IHNECONO	* SD	18EF30
FQCONI# *	LR 1	8F3D8	IHN UAT BL	* SD	1 8F6C 0	IHNETRCH	* SD	18F948
THNETEN *	SD 1	8F8E0	ETEN#	* IR	185850	simultaneou	6	
TOTAL LENG	TH ESS	F578 180810	thed into	lves .	the use	of a unit .		
1.0006	2.00	00 3.	0000	1de 9	the or	1elnel		
3.0000	4.00	00 6.	.0000					
2.0000	1.00	30 1.	.0000					
VALUE OF DET	FRMIN	$\Delta N T = 0$	L00F+01	he for	m of Ro	untien (2.2		
			nesteineb /	é			11. S.	
				ol a lui		iz. The		

mdret, TX	PL THE	ILOTA 14	. 1110 Eus	11140	La e . D'A PL	18		
								-
	(1. B.a.	- Chine and	And Row Break	11.11	G	* - (0) · · · · · ·		
				0.1				
	1. 1.12							
10	6	19.0	1 1 1 1 2 M	0.0	1.1			
							1	
	Sec.		1. 18	1000		and a second	1	an an an an Ara
	~	-						

2.2 Program for the Inverse Matrix Evaluation

This matrix inversion program is formulated using the augmented matrix technique which is based on the Gauss-Jordan⁽²⁾ method of solving simultaneous equations. This method involves the use of a unit matrix of the same order as the original matrix attached to the right hand side of the original matrix producing an (n x 2n) matrix. This new matrix is the augmented matrix in the form of Equation (2.2.1). Then, performing the proper matrix row operations, the original matrix is reduced to a unit matrix. The same row operations when applied to the attached unit matrix transform it into the inverse matrix

(2.2.1)

The general procedure includes dividing the first row by the leading coefficient, multiplying the first row by the leading coefficient of the second row, and then subtracting it from the second row. This procedure repeated for the third row through the nth row yields

$$\begin{bmatrix} 1 & 0 & 0 & . & . & 0 & b_{11} & b_{12} & b_{13} & . & . & b_{1n} \\ 0 & 1 & 0 & . & . & 0 & b_{21} & b_{22} & b_{23} & . & . & b_{2n} \\ 0 & 0 & 1 & . & . & 0 & b_{31} & b_{32} & b_{33} & . & . & b_{3n} \\ . & . & . & . & . & . & . & . \\ 0 & 0 & 0 & . & 1 & b_{m1} & b_{m2} & b_{m3} & . & . & b_{mn} \\ \end{bmatrix}$$

$$(2.2.2)$$

The square matrix [B] in the right hand side of the Equation (2.2.2) is the inverse of the matrix [A]. The basic flow chart for the inversion matrix program is shown in Figure 2.

.

Figure 2 Flow chart of Inversion program

		15
×c	MATRIX INVERSION BY AUGMENTED MATRIX METHO	D
	DIMENSION S(50,50)	
	READ(5,2)N	
2	FORMAT(II)	
	N X = N + 1	
	NY=2*N	
	D0 5I=1,N	
	DO = 5J = 1, NY ,	
5	S(I,J)=0	
	DO 10 $I=1,N$	Arrent Contra
	READ(5,100)(S(I,J),J=1,N)	
10	CONTINUE	
The ball of the	DO 20 I=1,N	
20	WRITE(6,100)(S(I,J),J=1,N)	
	WRITE(6,21) .	
21	FORMAT(' ')	· · · · ·
100	FORMAT(2F10.4)	
 	DD 30I=1,N	
	NXX=N+I	
	J=NXX	
30	S(I,J) = 1	
	DU 11 I=1,N	
11	WR I TE(6,100)(S(I,J), J=1,NY)	
	L=1	Contraction (1993)
	K=2	i onen i i
31	XM = S(L,L)	
	DO 40J=L,NY	
	S(L,J)=S(L,J)/XM	Constant Presson 11
40	CONTINUE	
	DO 50I=K,N	
1 14	X=S(I,L)	
	DU 50J=L,NY	
	S(I, J) = S(I, J) - S(L, J) * X	
50	CONTINUE	
	L=L+1	
	K = K + 1	
	IF(L-N)31,31,51	
51	L = N	
52		
	D0 60K=1,LZ	
	I=L-K	
	Y = S(I,L)	
	DO 60J=L,NY	
	S(I, J) = S(I, J) - S(L, J) * Y	
60	CONTINUE	
	L=L-1	
	IF(L-1)61,61,52	
61	WRITE(6,200)((S(I,J),J=NX,NY),I=1,N)	
	WRITE(6,21)	
200	FORMAT(15H INVERSE MATRIX/(3X1P4E20.3))	and a discontain of the second
	STOP	

VS LOADER

16 OPTIONS USED - PRINT, MAP, LET, CALL, NORES, NOTERM, SIZE=102400, NAME=**GD

NAME	TYPE	ADDR	NA	AME	TYPE	ADDR	NAME	TYPE	ADDR
MATN	50	150010	TUNE	- IT MLL -	50	154900	* ****		16 400
THNCOMH2*	50	158820	SEOD		18	158E4E	IBCOM# *	LK	150330
FCVLOUTP*	18	150372	EC V70		IR	15C4CE	FCVIOUTP*	18	150230
INT6SWCH*	LR	150028	THNEF	=105*	SD	150048	FINCS# *	IP	15004
IHNEFNTH*	SD	15E358	ARITH	1# *	LR	15E358	ADJSWTCH*	IR	15E6E4
ERRMON *	LR	15EC 08	IHNER	RE *	LR	15EC20	IHNFCONO*	SD	15F208
FQCONI# *	LR	15F6B0	IHNU	ATBL*	SD	15F998	IHNETRCH*	SD	15 FC 20
IHNFTEN *	SD	15FEC8	FTEN	¥ *	LR	15FEC8			
TOTAL LENG	GTH RESS	F850 150810	0						
1 5.0000	1.1	0000							
2.0000	1.0	000	1.0000						
1.0000	3.0	000	1.0000						
1.0000	1.0	000	4.0000						
2.0000	1.0	000	1.0000	1.	0000	0.0	0.0		
1.0000	3.0	000	1.0000	0.	0	1.0000	0.0		
1.0000	1.0	000	4.0000	ď.	0	0.0	1.0000		Charles in the
INVERSE MATE	RIX	0000		Į.					11000
	6.4	71E-01		-1.	765E-	- 01	-1.176E-	-01	
	-1.7	65E-01		4.	118E-	- 01	-5.882E-	-02	
	-1.1	76E-01		-5.	882E-	- 02	2.941E-	-01	
		9456-01			1010	· · · · · · · · · · · · · · · · · · ·	1.00%	-	
							**		1. 4
· · · · · · · · · · · · · · · · · · ·									
					1				
									-
	362								
					-				
· · · · ·									

VS LOADER

17 OPTIONS USED - PRINT, MAP, LET, CALL, NORES, NOTERM, SIZE=102400, NAME=**GO

NAME	TYPE	ADDR	1	NAME	TYPE	ADDR	NAME	TYPE	ADD
MATH	sn	150910	THN	FCOMU	0.2	154890	TRCOMH +	. 10	1540
THNCOMUSE	50	150010	I HAI		50	150575	IUNE CUTUS		15AD
ECVI OUTO*	10	150272	ECV	ZOLITO		150405	ECVIOUTD	- <u>50</u>	1500
TNT4SUCH*		150029	TUNI	ESTAS		1500402	FLOCCH +		1500
TUNEENTU	c n	165259	ADT			155369	AD ISUTCUS		1550
	50	1550.09				155020	AUJSWICH	CO LR	1552
ERRMUN *	LR	15ECU8	THN	ERRE "	LK	LSEC20	INNECONUS	50	1572
FULUNIA #	LK	155680	THN	UAIBL	50	155998	IHNEIRCH	* 50	15+6.
INVELEN *		TOFECO	F [[[<u>v#</u>		19600			
TOTAL LEN ENTRY ADD	GTH	F850	0						
	a	an a		. a.					
15.0000	1.0	000	2.0000	- 3.	0000				
5.0000	6.0	000	4.0000	4	0000		and the state of the state of the		3-0 × /
-10,0000	-3.0	000	2.0000	1.	0000				
-5.0000	3.0	000	4.0000	0.	0			1	
		1960		1 S					
15.0000	1.0	000	2.0000	-3.	0000	1.0000	0.0	(0.0
5.0000	6.0	000	4.0000	4.	0000	0.0	1.0000) (0.0
-10.0000	-3.0	000	2.0000	1.	0000	0.0	0.0		1.000
-5.0000	3.0	000	4.0000	0.	0	0.0	. 0.0	(0.0
NVERSE MAT	RIX	terinti	a aquat	100.1	a. 2.0.8	lred, to;	a satur		
	4.6	15E-02		3.	077E-	-02	1.5388	-02	
	-8.7	91E-02		-1.	099E-	- 02	-2.1988	E-01	
	1.2	36E-01		4.	670E-	- 02	1.8418	-01	
	-4.9	45E-02		1.	813E-	-01	1.2648	-01	
	Per 1	5, B.		P	P.				
		0 0			10				
Des 7	0								
	-	1. 1. 1.	der de						
							•)	11-1-11	
- Call									
						233/222			

2.3 FORTRAN Program for the Characteristic

Equation Problem

(2)[.] The method of Danilevsky for obtaining the characteristic equation is based on the reduction of matrix ,

$$[A] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$
(2.3.1)

whose characteristic equation is desired, to matrix [P] of the form

 $[P] = \begin{pmatrix} P_1 & P_2 & P_3 & \cdots & P_{n-1} & P_n \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$ (2.3.2)

The elements p_1 , p_2 , p_3 , ..., p_m represent the coefficients of the characteristic equation of matrix [P]. The process is accomplished by a series of similarity transformations. Since the characteristic equations of similar matrices are identical, the characteristic equations of matrices [A] and [P]are the same. Coefficients of the characteristic polynomial of matrix [P] is given by the determinant

$$D(\lambda) = [P] - \lambda[I] = \begin{bmatrix} p_1 - \lambda & p_2 & p_3 \cdots & p_n \\ 1 & -\lambda & 0 \cdots & 0 \\ 0 & 1 & -\lambda & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & 0 & -\lambda \end{bmatrix}$$
(2.3.3)

which expanded in terms of the elements of the first row, gives

$$D(\lambda) = (-1)^{n} (\lambda^{n} - p_{1} \lambda^{n-1} - p_{2} \lambda^{n-2} \dots - p_{n}) = 0$$

where $D(\lambda)$ is the desired characteristic polynomial of both matrix [A] and [P] and n is the order of the square matrix [A].

The transformation from matrix [A] to matrix [P] is performed on the following (4×4) matrix

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$
(2.3.4)

Matrix [M] is first formed from the elements of the fourth row of matrix [A] as

$$[M] = \begin{cases} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{\alpha_{41}}{\alpha_{43}} & -\frac{\alpha_{42}}{\alpha_{43}} & -\frac{1}{\alpha_{43}} & \frac{\alpha_{44}}{\alpha_{43}} \\ 0 & 0 & 1 & 0 \end{cases}$$
(2.3.5)

and antan 1 the

The product of [A] and [M] become

$$[A][M] = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{a_{41} - a_{42} & 1}{a_{43} & a_{43} & a_{43}} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

or

$$[A][M] = \begin{pmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$$
(2.3.6)

where

$$b_{11} = a_{11} - \frac{a_{13}a_{14}}{a_{43}} \qquad b_{12} = a_{12} - \frac{a_{13}a_{42}}{a_{43}} \qquad b_{41} = 0$$

$$b_{13} = a_{23}/a_{43} \qquad b_{14} = -a_{13}a_{44}/a_{43} \qquad b_{42} = 0$$

$$b_{21} = a_{21} - \frac{a_{23}a_{41}}{a_{43}} \qquad b_{22} = a_{22} - \frac{a_{23}a_{42}}{a_{43}} \qquad b_{43} = 1$$

$$b_{33} = a_{23}/a_{43} \qquad b_{24} = a_{24} - \frac{a_{23}a_{44}}{a_{49}} \qquad b_{44} = 0$$

$$b_{31} = a_{31} - \frac{a_{33}a_{41}}{a_{43}} \qquad b_{32} = a_{32} - \frac{a_{33}a_{42}}{a_{43}}$$

$$b_{33}^{2} = a_{33}/a_{34} \qquad b_{34} = a_{34} - \frac{a_{33}a_{44}}{a_{43}}$$

The matrix of Equation (2.3.6) is not yet similar to matrix [A]. It is made similar to [A] by premultiplying Equation (2.3.6) by the inverse of matrix [M] which is obtained from Equation (2.3.5) as

$$\left[M\right]^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(2.3.7)

Thus, the similarity transformation of [A] takes the form

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} M \end{bmatrix}^{-1} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} M \end{bmatrix}$$
(2.3.8 a)
$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a_{41} & a_{42} & a_{43} & a_{44} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -a_{41} & a_{42} & 1 & -a_{44} \\ a_{43} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -a_{41} & a_{42} & 1 & -a_{44} \\ a_{43} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -a_{41} & a_{42} & 1 & -a_{44} \\ a_{43} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -a_{41} & a_{42} & 1 & -a_{44} \\ a_{43} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -a_{41} & a_{42} & 1 & -a_{44} \\ a_{43} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -a_{41} & a_{42} & 1 & -a_{44} \\ -a_{43} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -a_{43} & a_{43} & a_{43} & a_{43} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{33} & C_{34} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(2.3.8 b)

The process is continued in reducing the matrix of Equation (2.4.8b) to the form

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ C_{51} & C_{22} & C_{33} & C_{34} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} \\ C_{21} & C_{22} & C_{23} & C_{24} \\ C_{31} & C_{32} & C_{32} & C_{32} & C_{32} \\ C_{32} & C_{32} & C_{32} & C_{32} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -\frac{C_{31}}{C_{32}} & \frac{1}{C_{32}} & -\frac{C_{33}}{C_{32}} & -\frac{C_{34}}{C_{32}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$[D] = \begin{bmatrix} d_{11} & d_{12} & d_{13} & d_{14} \\ d_{21} & d_{22} & d_{23} & d_{24} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(2.3.9)

The process is repeated a step further which reduces the (4×4) matrix of Equation (2.3.4) to the form of Equation (2.3.2) which simplifies to

$$\begin{bmatrix} P \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(2.3.10)

where the p's represent the coefficients of the characteristic polynomial of Equation (2.3.4). Then, the characteristic polynomial equation is written as

 $\mathbb{D}(\lambda) = (-1)^{n} (\lambda^{n} - p_{1} \lambda^{n-1} - p_{2} \lambda^{n-2} - p_{3} \lambda^{n-3} - p_{4}) = 0$

The flow chart of the computer program for the characteristic equation is shown in Figure 3.

Figury 3 Flow phast of characteristic Equilipa

Figure 3 Flow chart of Characteristic Equation

_ 25

с	THIS PROGRAM USE TO COMPUTE THE CHARACTERISTIC EQUATION
C	BY USING A. M. DANILEVSKY METHOD
	DIMENSION A(10,10), CM(10,10), CI(10,10), P(10,10)
	DIMENSION SS(10,10), S(10,10), R(10,10)
	READ(5,*)N
	DO 10I=1,N
	READ(6,100)(A(I,J),J=1,N)
10	CONTINUE
100	FORMAT(8F10.5)
	WR ITE(6,110)
110	FORMAT(1X,9H MATRIX A)
	DO 201=1,N
	WRITE(6,100)(A(I,J), J=1,N)
20	CONTINUE
	L X = 1
	LX=N-LX
997	DO 3011=1,N
	DO 301J=1,N
301	CM(I,J)=0
	WRITE(6,310)
310	FORMAT(1X,15H ZERO MATRIX CM)
	D0 3021=1,N
302	WRITE(6,100)(CM(I,J),J=1,N) ,
	DO 300 I=1,N
	J=I
300	CM(1,J)=1
	WR ITE(6,320)
	DO 303 I=1,N
320	FORMAT(1X,19H DIAGONAL MATRIX CM,/)
303	WRITE(6,100)(CM(I,J),J=1,N)
	DO 400I=1,N
	DO 400J=1,N
400	CI(I,J)=0
	WRITE(6,410)
410	FORMAT(1X,15H ZERO MATRIX CI)
	D0 401 1=1,N
401	WRITE(6,100)(CI(I,J),J=1,N)
A CONTRACTOR OF CONTRACTOR	DU 403 I=1,N
	DD 403 J=1,N
. 403	P(I,J)=0
	WRITE(6,420)
420	FORMAT(1X,14H ZERO MATRIX P)
	DO 402 I=1,N
402	WRITE(6,100)($P(I,J), J=1, N$) .
	DO 500 J=1,N
and the second se	IF(J-LX)520,530,520
520	CM(LX,J) = -A(LX+1,J) / A(LX+1,LX)
	GD TO 500
530	CM(LX,J)=1/A(LX+1,LX)
500	CONTINUE
	WRITE(6,510)
510	FORMAT(1X,14H NEW MATRIX CM)
	DD 600I=1,N
600	WRITE(6,100)(CM(1,J),J=1,N)
	DD 700 I=1.N

	DO 710 J=1.N	27
	S(I,J) = CM(I,J)	
710	CONTINUE	
700	CONTINUE	
	WRITE(6,540)	
540	FURMAT(1X,13H NEW MATRIX S)	,
	DO 720 I=1,N	
720	WRITE(6,100)(S(I,J),J=1,N)	
	NX=N+1	
	NY=2*N	
E	$\begin{array}{c} U \\ S \\ J \\ = L \\ N \end{array}$	
	D = 321 = 1.N	
	D1 321=NX-NY	
32	S(1,J)=0	
	DJ 6 I=1.N.	
	DO 7 J=1,N	
	S(I,J)=CM(I,J)	
7	CONTINUE	
6	CONTINUE	
	WRITE(6,540)	
	DU 301=1,N	
30	S(1, 1) = 1	
50	$D_{1} = 1 \cdot N$	
11	WRITE(0,100)(S(I,J),J=1,NY)	
	L=1	
	K=2	
31	XM = S(L,L)	
	DO 4CJ=L,NY	
10	S(L,J)=S(L,J)/XM	
40		
	X = S(1,1)	a second s
	$DD = 50J=L \cdot NY$	
	S(I,J) = S(I,J) - S(L,J) *X	
50	CONTINUE	
*	L=L+1	
	K = K + 1	
	IF(L-N)31,31,51	
51	L=N	
52		
	Y = S(T, L)	
	DD 60J=L NY	
	S(I,J) = S(I,J) - S(L,J) *Y	
60	CUNTINUE	
	L=L-1	
-	IF(L-1)01,61,52	
61	WRITE(6,200)((S(I,J),J=NX,NY),I=1,N)	
200	PURMAT(15H INVERSE MAIRIX/(3X1P4E20.6))	
	00 555 1=1,N	

	28	
EEE	DJ 555J=L,N	
222	P(1, j) = 0	
	D) 707-1. N	·
	DD = POR - 1 N	
80	P(M, L) = A(M, K) * CM(K, L) + P(M, L)	
70	CONTINUE	
666	CINTINUE	
	WRITE(6,222)	
222	FURMAT(15H PRODUCT MATRIX)	
	DO 90I=1,N	
0.0	WRITE(6,101)(P(I,J),J=1,N)	
90	CONTINUE	
	DO 55 I=1,N	
	DO 55 J=1,N .	
55	A(I, J) = 0	
0.00	DJ 56 M=1,N	
	00 57 I = 1, N	1 States in the
	DJ 58 K=NX,NY	
6.9	J = J + I	
57		
56	CONTINUE	
50	WR I TE(6,222)	
	07 59 I=1.N	
59	WRITE(6,101)(A(I,J), J=1,N)	7
101	FORMAT(3X1P4E20.6)	
	L X=L X-1	
	IF(LX)999,999,998	
998	GD TD 997	
999	STOP	
	END	
4		2. P. 199
	,	7.0
181		
	· · ·	
MATRIX A

-5.50988	1.87009	0.42291	0.00881
0.28786	-11.81170	5.71190	0.05872
0.04910	4.30803	-12.07070	0.22933
0.00623	0.26985	1.39737	-17.59621

INVERSE MATRIX

1 0.0			
1.000000E+00	0.0	0.0	0.0
0.0	1.000000E+00	0.0	0.0
6.234996E-03	2.698510E-01	1.397370E+00	-1.759619E-02
0.0	0.0	0.0	1.000000E+00

PRODUCT MATRIX

.

Sint

-5.511766E+00	1.788420E+00	3.026456E-01	5.334228E+04
2.623788E-01	-1.291474E+01	4.087605E+00	7.198506E-04
1.859188E-01	6.046163E+00	-2.946194E+01	-2.084559E-05
3.725290E-09	5.960464E-08	9.9999999E-01	-1.525879E-05

1

0.0

INVERSE MATRIX

1.000000E+00	0.0	0.0	0.0
1.859188E-01	6.046164E+00	-2.946194E+01	-2.082558E+02
0.0	0.0	1.000000E+00	0.0
0.0	0.0	0.0	1.000000E+00

1

1

PRODUCT MATRIX

4

E E66760E.00	0 0570/17 01	0.0173155.00	6 600/0000.01	
2.952511E+00.	-4.232167E+01	-5.625576E+02	-2.244458E+03	
5.960464E-08	9.999998E-01	-1.525879E-05	-9.155273E-05	
1.0924045-09	9.0302308-09	1.0000002400	-1.5205104-05	

0.4096428-10 3.6984945-08 1.0000005+00 -1.1765168-05

INVERSE MATRIX

2.952511E+00	-4.232167E+01	-5.625576E+02	-2.244458E+03
0.0	1.000000E00	0.0	0.0
0.0	0.0	1.000000E+00	0.0
0.0	0.0	0.0	1.000000E+00

PRODUCT MATRIX

-4.788841E+01	-7.972781E+02	-5.349441E+03	-1.229648E+04
9.999999E-01	-1.625879E-05	-2.441406E-04	-2.441406E-04
2.018788E-08	1.000000E+00	-3.901999E-06	-4.624210E-05
6.409642E-10	3.698494E-08	1.000000E+00	-1.176516E-05

2.4 <u>Program for Evaluation of Characteristic Values</u> and Characteristic Vectors

The characteristic-value, characteristic-vector problem is an extremely important one since the dynamic behavior of a linear mechanical systems are directly predictable by its usage.

Consider the vector matrix equation

 $\{y\} = [A] \{\chi\} \qquad (2.4.1)$ where $\{y\}$ and $\{\chi\}$ are column vectors and [A] is a square matrix $(n \times n)$. This equation may be viewed as a transformation of the vector $\{\chi\}$ into the vector $\{y\}$. The dilitation transformation maps the vector $\{\chi\}$ into a constant times itself; it follows that

$$\{y\} = \lambda[I] \{x\}$$
(2.4.2)
$$[[A] - \lambda[I]] \{x\} = \{o\}$$
(2.4.3)

or

where λ is defined as the characteristic value and $\{x\}$ is defined as the associated characteristic vector. The homogeneous Equation (2.4.3) has a solution which exists if and only if, the following determinant

equation holds:

$$det \left[[A] - \lambda [I] \right] = O \qquad (2.4.4)$$
for n = 3.

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{vmatrix} = 0 \quad (2.4.5)$$

This equation of degree 3 (generally of degree n) for λ is called characteristic equation and takes the form

$$\lambda^{3} - I_{1}\lambda^{2} + I_{2}\lambda - I_{3} = 0 \qquad (2.4.6)$$

For each of the roots λ_i , Equation (2.4.3) has a solution $\{x\} \neq 0$ called the characteristic vector of [A]. The characteristic values and characteristic vectors solutions are programed by using an iteration process. The characteristic value and the characteristic vectors are related as follows:

$$\left[\begin{bmatrix} A \end{bmatrix} - \lambda \begin{bmatrix} I \end{bmatrix} \right] \left\{ A \right\} = \left\{ 0 \right\}$$
 (2.4.7)

This matrix equation can be written as

$$\begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} - \lambda & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \\ s_3 \\ \vdots \\ s_4 \\ \vdots \\ s_6 \\ \vdots \\ s$$

where λ is the characteristic value, α_{ij} 's are the elements of matrix [A], and Δ_i 's are the elements of the characteristic vector corresponding to the value λ . The characteristic values and characteristic vectors can be obtained by method of iteration process. Using Equation (2.4.8) form

In the matrix iteration method, an arbitrary set of s_1 (i.e. s_1 , s_2 , s_3 ... s_n) are used to initiate the problem. For convenience in calculations, δ_n is taken equal to unity. Equation (2.4.8) forms a set of homogeneous equations, hence, the absolute values of &'s can not be determined. However, the ratios of &'s may be obtained. The initial set of δ_1 , i = 1,2,3, ... n, are substituted into the left hand side of Equation (2.4.9) performing the indicated matrix multiplication on the left hand side of Equation (2.4.9), the vector on the right hand side is calculated. This vector is factored by defining the new value of \mathscr{E}_n as $\mathscr{E}_n = \lambda(1)$. This value λ is factored from each of the remaining vector components. The value λ is the first approximation to the characteristic value and the factored vector is the first approximation to the characteristic vector. The method proceeds by taking the next approximation for the vector solution as the previous solution. It is necessary to iterate a number of times in order to improve accuracy.

Continuing this process, the iteration converges, resulting in the characteristic value λ and the

corresponding characteristic vector. The rate of convergence of this iteration process depends on the numerical seperation of the characteristic value of matrix [A]. It can also be shown that the characteristic value obtained by this method is the largest characteristic value or equivalently the largest root of the characteristic equation. For the special of a symmetric matrix [A], the characteristic values are always real, and the characteristic vectors are always orthogonal.

The basic flow chart for the program of obtaining characteristic value and characteristic vector by iteration process is shown in Figure 4.

Figure 4 Flog charf of Characteristic value

a 5,4 am 1 a d 1,6 a

Figure 4 Flow chart of Characteristic value and Characteristic vector

12.1

c	PROCRAM TO EVALUATE ELCENVALUE & ELCENVECTOR
0	DIMENSION S(100.1001.P(100).7(100)
	READ(5,2)N
2	FORMAT(11)
	DD 10 I=1,N
-	READ(5,100)(S(I,J),J=1,N)
. 10	CONTINUE
100	FORMAT(8F10.4)
	$\frac{1}{2} \frac{1}{2} \frac{1}$
. 20	CONTINUE
	DO = 20 $I = 1 - N$
20	WBITE(6.100)(S(1.1).1=1.N)
	DO 40 J=1.N
40	WRITE(6,100)(P(J))
	K=0
41	K = K + 1
	DD 50I=1,N
	2(1)=0.
	DU = DU = 1 + N $7(T) - S(T = 1) \pm P(T) + 7(T)$
50	
	DD = 60I = 1.N
	P(I) = Z(I)
60	CONTINUE
	WRITE(6,200)K
200	FORMAT(20H IRETATION NUMBER= 16)
200	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
500	$\frac{10.611 = 1.0}{10.611 = 1.0}$
	P(I) = P(I)/P(N)
. 61	CONTINUE
	WR ITE(6,400)(P(I),I=1,3)
400	FURMAT(23H CHARACTERISTIC VECTOR /(6XE15.5))
7.0	IF(K-20)41,70,70
70	STOP
· · · · · · · · · · · · · · · · · · ·	END
	TTTO IN LITTLE FROM STATES AND
`	PACTER STIC STORE
	<u>A -0. 275 [+0</u>
· .	

	2. -1.	-1. 2.	0. -1.	
		SEE -91		
	1.			
	1.			
	2.0000	-1.0000	0.0	
	-1.0000	2.0000	-1.0000	
	0.0	-1.0000	1.0000	002.537.5
	1.0000			
	-1.0000		and west party	
	IRETATION	NUMBER=	1 when the total	
	CHARACTERI	STIC VALUE=	0.200E+01	
	CHARACTERI	STIC VECTOR	- it comments	
	0.15	0 2 +01		
	0.10	0E+01		
	IRETATION	NUMBER=	2	
	CHARACTERI	STIC VALUE=	0.300E+01	
	CHARACTERI 0.16	TE +01		
	-0.21	7E+01		
	0.10	0E+01		and the second
1	CHARACTERI	NUMBER=	3 0.317E+01	
	CHARACTERI	STIC VECTOR	0.01/2.01	
	9.17	4E+01		
	-0.22	1E+01		
	IRETATION	NUMBER=	4	
	CHARACTERI	STIC VALUE=	0.321E+01	
	CHARACTERI	STIC VECTOR		
	0.1/	7E+01		
	0.10	0E+01		
	IRETATION	NUMBER=	5	
	CHARACTER	STIC VALUE=	0.323E+01	
	0.17	92+01		
	-0.22	4E+01		
	0.10	NUMP FOR	6	
	CHARACTER I	STIC VALUE=	0.324E+01	
	CHARACTERI	STIC VECTOR	ALCONTRACT.	
	0.17	9E+01		
	-0.22	0E+01		
	IRETATION	NUMBER=	7	
	CHARACTERI	STIC VALUE=	0.324E+01	
	CHARACTERI	STIC VECTOR		
	0.18	0 2 701		

0.1802+01 -0.225E+01 0.100E+01 RETATION NUMBER= 9 CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225E+01 0.100E+01 IRETATION NUMBER= 10 CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225E+01 0.100E+01 IRETATION NUMBER= 11 CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225E+01 0.100E+01 IRETATION NUMBER= 12 CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225 E+01 0.100E+01 IRETATION NUMBER= 13 CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225 E+01 0.100E+01 14 IRETATION NUMBER= CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225E+01 0.100E+01 RETATION NUMBER= 15 / CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225E+01 0.100E+01 IRETATION NUMBER= 16 CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225 E+01 0.100E+01 RETATION NUMBER= 17 CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225E+01 0.100E+01 18 RETATION NUMBER= CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01

UFARAUI TOTIC VEUIDA 0.180E+01 -0.225 E+01 0.100E+01 RETATION NUMBER= 20 CHARACTERISTIC VALUE= 0.325E+01 CHARACTERISTIC VECTOR 0.180E+01 -0.225 E+01 ad of Cholesky Trensfordation 0.100E+01

R;

problems of structural dynamics (6) . This scheme for the solution of a system of linear equations related to

The Cholesky process is particularly quasful in

41

Let [A] be a non symmetric square matrix, [U] an matrix, such that they are colated by the following-

If the square matrix [A] is a (4 x 4) matrix, then

	010		

2.5 Program for the Method of Cholesky Transformation

The Cholesky process is particularly useful in problems of structural dynamics⁽⁴⁾. This scheme for the solution of a system of linear equations related to structural analysis is very desirable. Theoretically, Cholesky's method is based on the fact that any square matrix may be expressed as the product of an upper-triangular matrix.

Let [A] be a non symmetric square matrix, [U] an upper triangular matrix, and [L] a lower triangular matrix, such that they are related by the following general matrix equation⁽³⁾:

[A] = [L][U] (2.5.1)

If the square matrix [A] is a (4×4) matrix, then

a.,	anz	ans	a,4		٢١	0	0	0]	[u.,	U12	4,3	U14]
azi	a22	a23	0 ₂₄	_	l21	1.	0	0	0	u_{22}	Uz 3	U24
a31	Q32	a33	a.34	14. v	131	132	I.	0	0	0	U33	U34
a41	a42	a43	a44		l 41	l42	L43	1	0	0	0	U44
-		•	-		-			1	L			-

(2.5.2)

The expansion of the above equation yields a set of sixteen equations from which the values of the elements of matrices [L] and [U] are obtained as functions of the elements of the matrix [A]. To illustrate the procedure, consider the following partial set of equation:

$$\begin{aligned} & \Omega_{11} = U_{11} \\ & \alpha_{21} = \int_{21} U_{11} ; & \int_{21} = \frac{a_{21}}{u_{11}} = \frac{a_{21}}{a_{11}} \\ & \alpha_{31} = \int_{31} U_{11} ; & \int_{31} = \frac{a_{31}}{u_{11}} = \frac{a_{31}}{a_{11}} \\ & \alpha_{31} = \int_{41} U_{11} ; & \int_{31} = \frac{a_{41}}{u_{11}} = \frac{a_{41}}{a_{11}} \\ & \alpha_{12} = U_{12} \\ & \alpha_{22} = \int_{21} U_{12} + U_{22} ; & U_{22} = a_{22} - \int_{21} U_{12} \\ & \alpha_{32} = \int_{31} U_{12} + \int_{32} U_{22} ; & \int_{32} = \frac{(a_{32} - \int_{21} U_{12})}{u_{22}} \\ & \alpha_{32} = \int_{31} U_{12} + \int_{32} U_{22} ; & \int_{32} = \frac{(a_{32} - \int_{21} U_{12})}{u_{22}} \\ & \alpha_{42} = \int_{41} U_{12} + \int_{42} U_{22} ; & \int_{42} = \frac{(a_{42} - \int_{41} U_{12})}{u_{22}} \end{aligned}$$

The remaining eight values of the l's and the μ 's are obtained from the additional remaining equations.

Cholesky's method offers additional advantages for matrices which are symmetric. A symmetric matrix [A] may be written as the product of two triangular matrices, one of them being the transpose of the other in the form

(2.5.3a)

which is expanded to

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{12} & a_{22} & a_{23} & a_{24} \\ a_{13} & a_{23} & a_{33} & a_{34} \\ a_{14} & a_{24} & a_{34} & a_{44} \end{bmatrix} = \begin{bmatrix} u_{11} & 0 & 0 & 0 \\ u_{12} & u_{22} & 0 & 0 \\ u_{15} & u_{23} & u_{33} & 0 \\ u_{14} & u_{24} & u_{34} & u_{44} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ 0 & u_{22} & u_{23} & u_{24} \\ 0 & 0 & u_{93} & u_{34} \\ 0 & 0 & 0 & u_{44} \end{bmatrix}$$

$$(2.5, 3b)$$

For the (4×4) sysmetrix matrix shown, the ten elements of the matrix [U] are obtained by the multiplication of the matrices of Equation (2.5.3b) and in part become

$$\begin{aligned} a_{11} &= u_{11}^{2}; \qquad u_{11} = (a_{11})^{\frac{1}{2}} \\ a_{12} &= u_{11}u_{12}; \qquad u_{12} = a_{12} \cdot \frac{1}{u_{11}} = \frac{a_{12}}{(a_{11})^{\frac{1}{2}}} \\ a_{13} &= u_{11}u_{13}; \qquad u_{13} = a_{13} \cdot \frac{1}{u_{11}} = \frac{a_{13}}{(a_{11})^{\frac{1}{2}}} \\ a_{22} &= u_{12}^{2} + u_{22}^{2}; \qquad u_{22} = (a_{22} - u_{12})^{\frac{1}{2}} = \begin{bmatrix} a_{22} - a_{12}^{2} \\ a_{11} \end{bmatrix}^{\frac{1}{2}} \\ (2.5.3c) \end{aligned}$$

These operations are generalized for an $(n \times n)$ matrix by the mathematical expression

$$\begin{aligned} u_{ij} &= \frac{a_{ij} - \sum_{k=1}^{i-1} u_{ki} u_{kj}}{u_{ii}} \quad \text{for } i = i+1, \dots, n \quad (2.5.4) \\ u_{ij} &= \frac{a_{ij}}{u_{ii}} \quad \text{for } i = 1 \\ j = 2, \dots, n \quad (2.5.6) \\ u_{ii} &= (a_{ii})^{N_2} \quad \text{for } i = 1 \quad (2.5.7) \end{aligned}$$

$$u_{ii} = (a_{ii} - \sum_{k=1}^{i-1} u_{ki}^2)^{1/2} \quad for \quad i = 2, ..., n \quad (2.5.8)$$

The flow chart of the computer program for Cholesky triangulation is shown in Figure 5.

Figure 5 Flow chart of Cholesky Triangulation

	47	
C	THIS PROGRAM WILL COMPUTE U & U TRANSPOSE TRANSPOSED-MATR	IX
C	THE GIVEN MATRIX	
	DIMENSION A(10,10), U(10,10), C(10,10)	
	READ(5,*)N	
	DO 10I=1.N	123
1. A. 14	READ(5,100)(A(I,J),J=1,N)	
1.0	CONTINUE	-
	WRITE(6,101)	
101	FURMAT(1X,9H MATRIX A)	
20	DJ = 201 = 1, N	
100	EDEMAT/REID E)	
100	DD 201-1 1	
	$\frac{0.05}{0.01} \frac{0.01}{1} 0.01$	
	1E(J-1)50.50.51	
50	U([, J) = (A([, J))) **.5	
	WRITE(6,103)(1,J,U(I,J))	
	GO TO 40	
51	U(I,J) = A(I,J) / U(I,I)	
	WRITE(6,103)(I,J,U(I,J))	
40	CONTINUE	
30	CONTINUE	
103	FURMAT(1(2X, 'U(',12,',',12,')=',F10.5))	-
	NN = N - 1	
	SUM=0	
	Li=1000000000000000000000000000000000000	
	IX = I + 1	
	JX=J+1	
	DJ 70 K=1,1	
70	SUM=U(K, [X) **2+SUM	
	U(IX,JX) = (A(IX,JX) - SUM) ** .5	
	WRITE(6,103)(1X,JX,U(1X,JX))	
	JXX = JX + 1 $IC(JXY = N) 71 - 71 - 01$	
71	CONTINUE	
	DD 75M=JXX.N	
	SUM=0	
	DO 80L=1, I 2 000 00	
80	SUM = U(L, JX) * U(L, M) + SUM	
A	U(JX,M) = (A(IX,M) - SUM) / U(IX,JX)	
75	WRITE(6,103)(JX,M,U(JX,M))	
60	CONTINUE	1
91	CUNTINUE	
1.07	WRITE(6,104)	
104	DO DOI-1. N	
00	$\frac{1}{100} \frac{901-1}{100} \frac{1}{1100} \frac{1}{1000} \frac{1}{11000} \frac{1}{10000000000000000000000000000000000$	
10	STOP	
	END	
1		
122		

VS LOADER 48

OPTIONS USED - PRINT, MAP, LET, CALL, NORES, NOTERM, SIZE=102400, NAME=**G

NAME	TYPE ADDR	N	AME T	PE	ADDR	NAME	TYPE	AD
ΜΛΤΝ	50 15081		сомн*	sn	151360	IRCOM#	* 10	151
THNCOMH2*	SD 15228	o seor	* 02.40	IR	152716	THNLDEIG	* 50	152
IHNERYPR*	SD 15380	8 FPYP	DR# *	IR	153868	THNECVTH	* 50	153
ECVI OUTP*	18 15366	A ECVI		IR	153666	FOVIOUTO	* 10	154
TNTASWCH	18 15494	O THNE	FINS*	SD	154800	FINCS#	* 10	154
THNEENTH	SD 1555		<u>ГН# *</u>	10	155F70	ADISUTCH	* 10	154
	10 15673			ID	156738	THNUATRI	* 50	156
	LR 156FC		CEXD *	SO	157180	EYD	* 10	157
THNECONT	SD 15770	B FOCO		10	157708	THNETOCH	* 50	157
THNFTEN *	SD 15706	A FIEN	1# *	IR	157068	Innericar	. 30	151
TOTAL LENGTH	50 15.00							No.
TOTAL LEN	GTH 76	FO						
ENTRY ADD	RESS 1500	\$10						
MATRIX A	anni a.	00000			3.00.000			
MATRIX A		-						
1.00000	2.00000	3.00000	2.000	000	1.00000	and the second		
2.00000	5.00000	8.00000	7.000	000	6.00000		121 34	
3.00000	8.00000	17.00000	14.000	000	15.00000			
2.00000	7.00000	14.00000	23.000	000	28.00000			
1.00000	6.00000	15.00000	28.00	000	62.00000			
U(1, 1)=	1.00000							
<u> </u>	2.00000							
U(1, 3)=	3.00000	4						
U(1, 4)=	2.00000							
U(1, 5) =	1.00000							1.1
U(2,2)=	1.00000							
U(2,3)=	2.00000							
U(2, 4)=	3.00000							
U(2, 5)=	4.00000		1					
U(3, 3)=	2.00000							
U(3, 4)=	1.00000							
U(3,5)=	2.00000							
U(4, 4)=	3.00000							100
U(4, 5)=	4.00000							
U(5, 5)=	5.00000					- T -		
MATRIX U		00000				1. 1. 1. 1. 1. 1.		
1.00000	2.00000	3.00000	2.00	000	1.00000			
0.0	1.00000	2.00000	3.00	000	4.00000			
0.0	0.0	2.00000	1.000	000	2.00000			
0.0	0.0	0.0	3.00	000	4.00000			
0.0	0.0	0.0	0.0		5.00000		1	

VS LOADER

49

OPTIONS USED - PRINT, MAP, LET, CALL, NORES, NOTERM, SIZE=102400; NAME=**GO

		1.							
	NAME	TYPE ADDR	1	NAME T	YPE	ADDR	NAME	TYPE	ADDR
		6D 1600	0 71111		-	1512/0	10000	* 10	151205
	MAIN:	50 15081			59	151360	IBCUM#	* LK	151380
	THNCOMHZE	50 15220		DASU *		152715	THNECVT	U* 50	152408
	ECVI OUTO#	10 15350	A CON	TO UTD #	10	153556	ECVIOUT	D# 10	15/200
	TNTASUCHA	10 15494			SD	154800	FIOCS	* 10	154200
	THNEENTHS	SD 15551			18	155570	ADISHTC	HX ID	156200
	EUDMON #	IR 15673			IR	156738	THNUATE		1560200
		19 15650	O THAT	CEYD #	SD	157180	FYP	* 10	157190
	THNECONIX	SD 15770		NI# *	IR	157708	THNETRO	H* SD	157400
1.4	IHMFTEN *	SD 15704	58 FTEN	1# *	LR	1.570.68	marino		1)TACC
	TOTAL LEN	CTU . 7	50						
	ENTRY ADD	DESS 1500			08.1	ne respo	nne en e	1.00	
	ENTRY ADD	RE33 1900	finedam		109				
		6. A 1 21	ter ret	5141					1.1.1.2.4
	MATRIXA					2	(3.1)	1.1.1.1.1.1.1	The second
	1.00000	2.00000	3.00000	2.00	000	3.0000	0		
	2.00000	8.00000	8.00000	8.00	000	8.0000	0		
	3.00000	8.00000	14.00000	12.00	000	12.0000	0.		
	2.00000	8.00000	12.00000	21.00	000	16.0000	0		
	3.00000	1.00000	12.00000	10.00	000	10.0000	0		
	U(1, 1) = U(1, 1)	2 20000	lacement	vactor	at 1				
	11/ 1, 31-	3 00000	2.3.6.47.1.87.6.7.47.1.97.9.7.4.4.97.9.7.4.97.9.7.97.97.97.97.97.97.97.97.97.97.97		•				
	11/ 1. 41-	2 00000	ng Torde		artic	With t	ine.		Ser The
	U(1, 5) =	3.00000							
	(1(2, 2)) =	2.0000	100 techn	idne in	0.01	11260 00	0.01.07.01.0		
	11(2, 3) =	1.00000	Sec. 1	1 : 1				12. 100	*
	11(2, 4) =	2.00000	aron Crea				sy a comp		
	U(2. 5)=	1.00000	On the most		-				
	U(3, 3) = .	2:00000			1				1 2 2 3
	U(3, 4) =	2.00000			2				
	U(3, 5)=	1.00000	,						
•	U(4, 4)=	3.00000		e nele		· · · · · · · · ·	•		
	U(4, 5)=	2.00000	44097-	DATE	2133		- Andrews		
	U(5, 5)=	1.00000	- L			•	12462		1. 1. 1. 1. T. 1.
1.1	MATRIX U							11	
	1.00000	2.00000	3.00000	2.00	000	3.0000	0 .	<u>.</u>	-
	0.0	2.00000	1.00000	2.00	000	1.0000	0	•	
	0.0	0.0	2.00000	2.00	000	1.0000	0		1.5.1.1.4
	0.0	0.0	0.0	3.00	000	2.0000	00		-
• .	0.0	0.0	0.0	0.0		1.0000	0		
	fa		(ng-x) f'(Mr. Carl	140,11		
		01							
						-1.			
	A CRUME IN CONTRACTOR OF CONTRACTOR OF CONTRACTOR								

-

CHAPTER III

FINITE DIFFERENCE ANALYSIS OF THE RESPONSE OF PORTAL FRAME

3.1 <u>Program for Linear Equations of Motion</u> of Multi-degree System

The basic equation governing the response on a multi-degree of freedom structure is

$$[M] \{ \vec{x} \} + [K] \{ x \} = \{ f(t) \}$$
(3.1)

where [M] is the mass matrix, [K] is the stiffness matrix, $\{\ddot{x}\}$ is the acceleration vector at any time t, $\{x\}$ is the displacement vector at time t and $\{f(t)\}$ is the disturbing force which varies with time. A vector iteration technique is utilized to determine the response vector $\{x(t)\}$ for the dynamic system. The first step is to rewrite Equation (3.1) in the new matrix form

$$\left\{ \ddot{x} \right\} = \left[M \right]^{-1} \left\{ f(t) \right\} - \left[M \right]^{-1} \left[K \right] \left\{ \chi \right\}$$
where $\left[M \right]^{-1}$ is assumed to exist. (3.2)

Recalling the Taylor series expansions of a function in one variable, it follows that

$$f(x) = \frac{f(x_0)}{0!} + \frac{(x_1 - x_0)f'(x_0)}{1!} + \frac{(x - x_0)^2 f''(x_0)}{2!} + \dots$$
(3.3)

Using a direct analogy the Tailor series expansion for a time-varying vector becomes

$$\{\chi_{(1)}\}^{(n+1)} = \{\chi_{(1)}\}^{n} + \Delta \{\dot{\chi}_{(2)}\}^{n} + \underline{\Delta}^{2} \{\ddot{\chi}_{(1)}\}^{n} + \underline{\Delta}^{3} \{\ddot{\chi}_{(2)}\}^{n} + \dots (3.4)$$

Differentiating Equation (3.4) with respect to time gives

$$\left\{ \ddot{x} \right\}^{(n+1)} = \left\{ \ddot{x} \right\}^{(n)} + \Delta \left\{ \ddot{x} \right\}^{(n)} + \frac{\Delta^2}{2} \left\{ \ddot{x} \right\}^{n} + \dots$$

$$\left\{ \ddot{x} \right\}^{(n+1)} = \left\{ \ddot{x} \right\}^{n} + \Delta \left\{ \ddot{x} \right\}^{n} + \dots$$

$$(3.5b)$$

where $\Delta = t^{(n+1)} t^{n}$

The number of terms in this expansion may at first be arbitrarily chosen. The fewer the number of terms taken, the less accurate the result. The simplest solution may be found by considering no terms on the right hand sides of the expansions which contain derivatives higher than the second. Writing these in reverse order, gives

$$\{\ddot{x}\}^{m+1} = \{\ddot{x}\}^{m}$$

$$\{\ddot{x}\}^{m+1} = \{\ddot{x}\}^{m}$$

$$\{\chi\}^{m} = \{\chi\}^{m} + \Delta\{\ddot{x}\}^{m} + \Delta^{2}\{\ddot{x}\}^{m}$$

$$(3.6b)$$

$$(3.6c)$$

For a given value of $\{x\}^m$, $\{x\}^m$ and $\{x\}^{m+1}$,

 ${\{\ddot{x}\}}^{\infty}$ is found directly by use of Equation (3.6a); ${\{\dot{x}\}}^{n+1}$ is obtained from Equation (3.6b); ${\{\gamma\}}^{n+1}$ is calculated from Equation (3.6c). Noting in Equation (3.6a) that the acceleration at the end of the interval is exactly the same as the acceleration at the beginning of the interval, one defines this procedure as the "constant acceleration method" of iteration (i.e. no derivatives beyond the second is retained). Fermutting the value of n to (n - 1) in Equation (3.6a), (3.6b) and (3.6c) yields

$$\{x\}^{m} = \{x\}^{(m-1)} + \Delta \{\dot{x}\}^{(m-1)} + \underline{\Delta}^{2} \{\dot{x}\}^{(m-1)}$$
(3.7a)

$${\dot{x}}^{n} = {\dot{x}}^{(m-1)} + \Delta {\ddot{x}}^{(m-1)}$$
 (3.7b)

$$\left\{\dot{x}^{(n-1)}\right\} = \frac{1}{\Delta} \left\{\dot{x}^{n}\right\}^{n} - \frac{1}{\Delta} \left\{\dot{x}^{n-1}\right\}$$
(3.7c)

By substituting $\{x^{n-1}\}$ in Equation (3.7c) into (3.7a) gives

$$\left\{ x \right\}^{m} = \left\{ x \right\}^{m-1} + \Delta \left\{ \dot{x} \right\}^{(m-1)} + \Delta \left\{ \dot{x} \right\}^{(m-1)} + \Delta \left\{ \dot{x} \right\}^{(m-1)} + \Delta \left\{ \dot{x} \right\}^{(m-1)}$$

or

$$\left\{x\right\}^{m} = \left\{x\right\}^{(m-1)} + \frac{\Delta}{2} \left\{\dot{x}\right\}^{(m-1)} + \frac{\Delta}{2} \left\{\dot{x}\right\}^{m}$$

or

$$\left\{ \chi \right\}^{m} - \left\{ \chi \right\}^{(m-1)} - \underline{A} \left[\left\{ \chi \right\}^{(m-1)} + \left\{ \chi \right\}^{m} \right] = 0$$
 (3.8)

Permutting the value of n to (n + 1) Equation (3.8), one obtains

$$\left\{x\right\}^{(m+1)} - \left\{x\right\}^{m} - \frac{\Delta}{2}\left[\left\{\dot{x}\right\}^{m} + \left\{\dot{x}\right\}^{(m+1)}\right] = 0 \quad (3.9)$$

Subtracting Equation (3.8) from Equation (3.9) gives

$$\{x\}^{(m+i)} - 2\{x\}^{m} + \{x\}^{(m-i)} = \underline{A} \begin{bmatrix} \{x\}^{(m+i)} - \{x\}^{(m-i)} \end{bmatrix}$$
Equation (3.7b) one obtains (3.10)

From Equation (3.7b) one obtains

$$\left\{\ddot{x}\right\}^{(m-1)} = \frac{1}{\Delta} \left[\left\{ \ddot{x} \right\}^{m} - \left\{ \ddot{x} \right\}^{(m-1)} \right]$$
(3.11)

Combining Equations (3.10), (3.11) and the permuted form of Equation (3.6a) yields

$$\left\{\ddot{\chi}\right\}^{n} = \frac{1}{\Delta^{2}} \left[\left\{\chi\right\}^{(n+1)} - 2 \left\{\chi\right\}^{n} + \left\{\chi^{(n-1)}\right\} \right]$$
(3.12)

The convenient form of Equation (3.12) for calculation purposes is written as

$$\{x\}^{(n+1)} = 2 \{x\}^{n} - \{x\}^{n-1} + \Delta t^{2} \{\ddot{x}\}^{n}$$
(3.13)

Finally at $t = t_n$, it follows from Equation (3.2) that

$${\ddot{\chi}}^{(n)} = -[M]^{-1}[K]{\chi}^{n} + [M]^{-1}{f(t)}^{n}$$
 (3.14)

From the above equations, the following steps are taken in the iteration procedure:

(1) At t=0, n=0,
$$\{x\}^{(\circ)}=0$$
, $\{\ddot{x}\}^{(\circ)}=[M]^{-1}\{f\}^{(\circ)}$
and by choice $\{x\}^{(\circ)}=\underline{\Delta t^2}[M]^{-1}\{f\}^{(\circ)}$

(2) At
$$t = t_1 = \Delta t_1$$
, $m = 1$
 $\{\ddot{x}\}^{(1)} = -[M]^{-1}[K]\{x\}^{(1)} + [M]^{-1}\{f\}^{(1)}$

and

$$\{x\}^{(2)} = 2\{x\}^{(0)} - \{x\}^{(0)} + \Delta t^2\{x\}^{(0)}$$

(3) At
$$t = t_2 = 2\Delta t$$
, $N = 2$
 $\{\ddot{x}\}^{(2)} = -\mathbb{[M]}^{-1}\mathbb{[K]}\{x\}^{(2)} + \mathbb{[M]}^{-1}\{f\}^{(2)}$
 $\{x\}^{(3)} = 2\{x\}^{(2)} - \{x\}^{(1)} + \Delta t^2\{\ddot{x}\}^{(2)}$

(4) At
$$t=t_i = i(\Delta t)$$
, $m=i$
 $\{\ddot{x}\}^{(i)} = -[m]^{-1}[K]\{x\}^{(i)} + [M]^{-1}\{f\}^{(i)}$
 $\{x\}^{(i+1)} = 2\{x\}^{(i)} - \{x\}^{(i-1)} + \Delta t^2\{\ddot{x}\}^{(i)}$

taken up to the value of n.

Additional steps similar to the latter steps is

The Equation (3.1) may be applied to the solution

Figure 3.7 Multi-Story Forval Frame

for a single-bay multi-story frame shown in Figure 3.1

+) At
$$t=t_i = i(\Delta t), m=i$$

Figure 3.1 Multi-Story Portal Frame

The component form of Equation (3.1) is determined

$$\begin{pmatrix} m_{1} & 0 & \dots & 0 \\ 0 & m_{2} & \dots & 0 \\ \vdots & & \vdots \\ \vdots & & \vdots \\ 0 & 0 & \dots & m_{n} \end{pmatrix} \begin{pmatrix} \ddot{\chi}_{1} \\ \ddot{\chi}_{2} \\ \vdots \\ \ddot{\chi}_{n} \end{pmatrix} + \begin{pmatrix} k_{1} + k_{2} & -k_{2} & \dots & 0 \\ -k_{2} & k_{2} + k_{3} & \dots & 0 \\ \vdots & & \vdots & \vdots \\ \vdots & & \vdots \\ \vdots & & \vdots \\ \vdots & & \vdots \\ \ddots & & \vdots \\ 0 & 0 & \dots & k_{n} \end{pmatrix} \begin{pmatrix} \chi_{1} \\ \chi_{2} \\ \vdots \\ \vdots \\ \vdots \\ \chi_{n} \end{pmatrix} = \begin{pmatrix} F_{1}(t) \\ F_{2}(t) \\ \vdots \\ \vdots \\ F_{n}(t) \end{pmatrix}$$

$$(3.15)$$

In the case of two-story frame building, the planar frame is shown in Figure 3.2 below

Figure 3.2 Two-Story Portal Frame

Equation (3.15) reduce to the form

$$\begin{bmatrix} m_{1} & 0 \\ 0 & m_{2} \end{bmatrix} \begin{cases} \ddot{x}_{1} \\ \ddot{x}_{2} \end{cases} + \begin{bmatrix} k_{1}+k_{2} & -k_{2} \\ -k_{2} & k_{2} \end{bmatrix} \begin{cases} \chi_{1} \\ \chi_{2} \end{cases} = \begin{cases} f_{1}(t) \\ f_{2}(t) \end{cases}$$

The numerical problem is analysed using the computer program with the following numerical input: 1) Weight of the upper and lower floors

$$W_{1} = (90 \#/2t^{2})(40 2t)(20 ft) + (2)(20 \#/2t^{2})(15 2t)(20 2t)$$

$$= 84,000 \text{ lbs}$$

$$= 84.0 \text{ kips.}$$

$$W_2 = (60 \#/42)(40 H)(20 H) + (2)(20 \#/42)(6 H)(20 H)$$

= 52,800 lbs

= 52.8° kips.

2) Stiffness of the upper and lower columns

$$k_{1} = \frac{2(12)(30 \times 10^{6} \text{ #/m^{2}})(133.2 \text{ in 4})}{(18^{3} \text{ g} + 3)(12^{3} \text{ in 3/g} + 3)}$$

$$= 9,530 \text{ lbs/in}$$

$$= 9.53 \text{ kips/in}$$

$$k_{2} = 2(12)(30 \times 10^{6} \text{ # /m^{2}})(133.2 \text{ in 4})$$

$$= 32,100 \text{ lbs/in}$$

$$= 32,100 \text{ lbs/in}$$

3) Mass of the upper and lower floors

$$m_1 = \frac{W_1}{q}$$

$$m_{1} = \frac{84.0 \text{ kips}}{(32.2 \text{ gt/sec}^{2})(12 \text{ in/gt})}$$

= 0.217 kips-sec²/in
$$m_{2} = \frac{52.8 \text{ kips}}{(32.2 \text{ gt/sec}^{2})(12 \text{ in/gt})}$$

= 0.137 kips-sec²/in

4) The natural frequencies and natural periods

$$f_1 = \frac{\omega_1}{2\pi} = 0.812 H_2$$

 $f_2 = \frac{\omega_2}{2\pi} = 3.185 H_2$

then

$$T_1 = \frac{1}{f_1} = \frac{1.232}{f_1}$$
 sec.
 $T_2 = \frac{1}{f_2} = 0.314$ sec.

5) Dynamic load function on the upper and lower floor The time variation of the dynamic force F(t)

is shown in Figure (3.3)

 $f_1 = f(t) = 10t+3.0$ $f_2 = .7f(t) = -7t+2.7$ Equation (3.16) becomes

 $\begin{bmatrix} \cdot 217 & 0 \\ 0 & \cdot 137 \end{bmatrix} \begin{cases} \ddot{\chi}_1 \\ \vdots \\ \chi_2 \end{cases} + \begin{bmatrix} 41.63 & -32.1 \\ -32.1 & 32.1 \end{bmatrix} \begin{cases} \chi_1 \\ \chi_2 \end{cases} = \begin{cases} f_1(t) \\ \cdot 7 f_1(t) \end{cases}$

The flow chart of the computer program for the linear equations of motion of the multi-degree of freedom system is shown in Figure (3.4) and the graph of the dynamic responses x_1 and x_2 are shown in Figure (3.5) and figure (3.6)

Figure 3.4 Flow chart of linear equations of motion.

ALLENSE	2.0	4414	UATE = TBO	105 1	1720714
	DIMENSION	XK(122,2),S(72, XXM(122,2),FM(1	12) 22)	_6	51
	DIMENSION	F0(122), XDD0(12	2),T(122),X1(122),	F(122), PXDD1	(122)
	DIMENSION	PX(122,2),PDDX(122,2),XX(122,2),F	XDD(122,2),P	XD(122,2).
	· DIMENSION	XDD(122,2)			
C	RESULT DE	THE STRUCTURE	ALL THE PROGRAM /	ND GIVE THE	FINAL
C	N=NUMBER C	OF EQUATIONS	a manta a manada manana ana ana ana ana ana ana ana ana		
C	XM=MASS MA	ATRIX		,	
c	DT=DELTA (OF TIME			
· Participation (READ(5,2)	N			
	READ(5,99)				
	RFAD(5,100	0)((S(I,J),J=1,N), I = 1, N)		
	WRITE(6,10	00)((S(I,J),J=1,	<pre>\),I=1,N)</pre>		
100	WRITE(6.10	J = (XK(1,J), J = 1, J)	(N) , I = I , N) (N) , I = I , N)		
2	FOR MAT(12)		,,.		
100	FORMAT(30)	(,2F10.4)			
33	DO 110 I=1	LIN			
	DO 110 J=1	L • N			
110	XXM(1,J) = () • N			
	DO 130 I=1	L, N			
14.0	$\frac{00 140 K=1}{2200 K}$	LON KANYKIK TALY	MAM T }		
130	CONTINUE	DININI TANINI IITA			
120	CONTINUE			•	
200	FURMAT(15)	PRODUCT MATRIX	1		
	WRITE(6,10	=L,(L,I)MXX))(00	L,N},I=L,N}		
300	FORMAT(F19	5) WILL COMPUTE MA	TRIX E AT O		
<u> </u>	T0=0.0	WILL CLAFOIL HA			
	FO(1) = -10	*T0+3.0			
с	THIS PART	WILL COMPUTE X I	DOUBLE DOT OF MATR	IX X AT ZERO	
	DO 180 I=1	L, N			
180	$\frac{XDDC(I)=0}{DO(I)}$. O			
	DO 220K=1,	N			
220	XDDC(1) = S(I,K)*FO(K)+XDDO	(1)		
<u>C</u>	THIS PART	WILL COMPUTE X	MATRIX AT ZERO		
	DO 240 I=1	I, N			
240	XP(I)=0.0 THIS PART	WILL COMPLITE MA	TRIX X AT T=1		
	00 260 1=1	L,N			
260	X1(I)=((0)	[**2.)/2.) *XDDO(4
-	F(1)=-10.*	WILL CUMPUTE X I	JUBLE DUI AI I=1		
	F(2)=-7.0%	DT+2.1		· · · · ·	* *
	DO 270 M=1	I , N			
270	PXD1(M)=0	0	C. C. Walker Street French		A Discharge

RELEASE	2	MAIM	DATE = 78005	13/29/34
	DD 280 1=1,N			62
•	DO 290 K=1,N			
	PXDD1(1) = XXM(1)	1,K)*X1(K)+PXOD1	(1)	
20.0	PXUI(1) = S(1, K)	TAPERT PXUILI		-
290	CONTINUE			
280	DD 201 1-1 M			
	1 = 1			
301	$\frac{1}{XDD(1,1)} = -P XDC$	(1(1)+Px(1)(1))		
0.	THIS PART WILL	COMPUTE MATRIX	X AT T=2	
	M= 2			
1	T(M)=2.*DT			
	00 310 I=1,N	the second data and the second se		
	PX(L,I)=2.*X1((1)		
	PDDX(L,I)=(DT*	**2.)*XDD(L,I)		
	XX(M,I) = PX(L,I)	[)+PDDX(L,I)		
310	CONTINUE			
	L=2			
360.	CONTINUE			
	XX(1,1) = X1(1)			
	XX(1,2) = XI(2)			
	. FF(M,1)=-10.*	1(M)+3.0		and a second
	FF(M,2)==/.*!	M]+2.10		
	DU 313 1-1,N			
315	PXDU(L,1)=0.0			
515	DD 320 1=1.N			
	DO 330 K=1.N			
	$PXDD(L \cdot I) = -XX^{N}$	1(I.K)*XX(M.K)+P	XDD(L.I)	
	PXD(L,I) = S(I,H)	<) *FF(M,I)+PXD(L	,1)	
330	CONTINUE	and the second		
320	CONTINUE			`
	DO 340 I=1,N			
	XDD(L,I) = PXDD(L,I)+PXD(L,I)		
340	CONTINUE			
C	THIS PART WILL	COMPUTE MATRIX	X FUR ANY TIME	
	LX = (.3/01) + 1			
	$LY = 2 \times LX$		and the second	
	1=1+1			
	11=1-1			
	XX(J,I)=2.*XX((L.I)-XX(JJ.I)+D	T**2.*XDD(L.I)	
350	WR I TE (6, 100) XX	((J,I)		
1	M=M+1			
	T(M)=M*DT	and a construction of the second s		•
4	L=L+1			
400	FORMAT(13)			
	IF(L-LX)360,36	50,370		
370	CONTINUE			
	L=LX			
801	CONTINUE			
	DJ 803 I=1,N			
803	PXDD(L,1)=0.0			
	00.800 1=1,N			
	$P \times D D (1 - 1) = - Y \times V$	11.K) *XX(1.K)*D	XDD(L-L)	
810	CONTINUE	ILL INT "AATLINT P		
800	CONTINUE			

RELEASE	2.0	MAIN	DATE = 73005	13/29/34
	DO 820 I=1,N EE(1,I)=0.0		anter exercised and	63
	J=L+1			
	JJ=L-1			
820	XX(J+1)=2.*XX($L_{1} = XX(JJ_{1} + D)$	1**2.*PXDD(L,1)	
020	L=L+1	LANECOMP.M. SI	120001000000000000000000000000000000000	100 1000839
	IF(L-LY)801,80	1,802	L261 VALUE (HW FOUPPE	12,84.10
802		FC VAD D PA LU		
	Y=0.0			SU 120124
	WRITE(6,500)		ELECTION FRAMES A	- LR 120208
500	FORMAT('1', 7X, 7	H NUMBER, 9X, 5H	TIME,12X,3H F1,8X,3H	X1,8X,3H F2,5X,
	WRITE(6.600) MX	0.Y.E.)(1).XP(1)	.E0(2).XP(2)	
	MX0=1	· · · · · · · · · · · · · · · · · · ·		
TA YOY	Y=D T			Company and the second
600	EDRMAT(9X-13-1	0, Y, F(1), X1(1), OX, E10, 5, 5X, 4E1	(2), (2)	
000	DO 700 I=2,LY	0.1110.010.1111	0.0,	
11020200	Y= I *D T		, t	
6.008	$\frac{11=1}{12=2}$			
700	WRITE(6,600)I.	Y.FF(I.II),XX(I	.I1), FF(I, I2), XX(I, I2	2)
	STOP			
Transact.	END			
	4 -147,9232			
0.023				•
1.625	18			
		•		
	2		-	
	1			2
			· · · · · · · · · · · · · · · · · · ·	
0.19	ie Na			
0.22	N.			
0.75	<u> </u>			
0	18			
1.40	53	States and		
	2			
0.34	March and States	· · · ·		*
		1		

Youngstown State University COMPUTER CENTER

VS	LOADE	2

64 OPTIONS USED - PRINT, MAP, LET, CALL, NORES, NOTERM, SIZE=102400, NAME=**GD

NAME TYPE ADDR	NAME TYPE	ADDR	NAME T	YPE ADDR
MAIN SD 120810	IHNECOMH* SD	129008		LR 129F04
IHNCOMH2* SD 124068	SEODASD * IR	128196	THNE BX PR*	SD 128480
ADCON# + IB 12B608	FC VANUTP* IR	128682	ECVI DUTP*	18 128742
FCVFOUTP* LR 128038	FC VCOUTP * LR	128F82	INT6 SWCH*	LR 12COF8
FIOCSBEP* LR 12C17E	IHNEIOS2* SD	120170	IHNEENTH*	SD 120728
IHNUOPT * SD 12DC70	IHNERRM * SD	120FD8	ERRMON *	LR 12DFD8
ALOG10 * LR 12E5D8	ALOG * LR	12E5F0	IHNSEXP #	SD 12F7B0
FQCONO# * LR 12E960	IHNFCONI* SD	12EE08	FQCONI # *	LR 12 EE08
IHNTRCH * LR 12F378	ERRTRA * LR	12F380	IHNFTEN *	SD 12F620
TOTAL LENGTH EFA8	2.25000	0.07518	1,57530	0,03909
ENTRY ADDRESS 120810				
0.02000		CALL COL	1331212	
4.6082 0.0				
0.0 7.2990	1.473000	0.00000	1-30200	9.01294
41.6300 -32.1000		0.07725	A. 2.2.5.2.5.	NAME TO A LONG
-32.1000 32.1000				
PRODUCT MATRIX	1.00000	16600.00	4+29000	VAD VED 3
191.8394 -147.9232				
-234.2979 234.2979				
0.0232			a stand a stand	CARRENCE STREET
0.0258				
0.0400	1.50000			
0.0444				
0.0603	.1.40000		0.98000	
0.0671				a line and a second
0.0837				
0.1005	1,25000	D.15797		
0.1222				
0.1371				
0.1532				0,20137
0.1658			0.73300	
0.1856		- 0x 1 · 2 × 3 3	CONTRACT.	O. ALTRA
0.1950			0.049.00	9,02607
0.2186			0.5330.2.*	0103438
0.2240				
0.2513				
0.2521		142304L		
0.2832		13 24 BAT		C. 2. 2. 2. 2. 2
0.2788				
0.3134		1. 20 1.21		**************************************
0.3033	0.50000	0.24498	0.1.7.17.0	
0.3411				
0.3252		a. brank		
0.3657				0.101
0.3437				0.00073
0.3865				
0.3583				0.34324 / 00.000
1 4 1 2 0				
own State University COMPUTER CENTER

			1		
NUMBER	TIME	FI	X1	F2	X 2
0	0.0	3.00000	0.0	2.10000	0.0 65
1	0.00500	2.95000	0.00017	2.06500	0.00019
2	0.01000	2,90000	0.00069	2.03000	0.00076
3	0-01500	2.85000	0.00153	1.99500	0.00170
4	0.02000	2.80000	0.00270	1 96000	0.00300
5	0.02500	2 75000	0.00270	1.93500	0.00500
6	0.03000	2.75000	0.00420	1.92000	0.00488
7	0.03500	2.10000	0.00001	1.89000	0.00868
	0.03300	2.65000	0.00812	1.85500	0.00401
8	0.04500	2.80000	0.01054	1.82000	0.01169
10	0.04500	2.55000	0.01324	1.78500	0.01470
10	0.05000	2.50000	0.01623	1.75000	0.01802
11	0.05500	2.45000	0.01950	1.71500	0.02165
12	0.06000	2.40000	0.02304	1.68000	0.02558
13	0.06500	2.35000	0.02684	1.64500	0.02981
14	0.07000	2.30000	0.03089	1.61000	0.03431
15	0.07500	2.25000	0.03518	1.57500	0.03909
16	0.08000	2.20000	0.03971	1.54000	0.04414
17	0.08500	2.15000	0.04446	1.50500	0.04944
18	0.09000	2.10000	0.04944	1.47000	0.05498
19	0.09500	2.05000	0.05462	1.43500	0.06076
20	0.10000	2.00000	0.05999	1.40000	0.06677
21	0.10500	1.95000	0.06556	1.36500	0.07299
22	.0.11000	1.90000	0.07131	1.33000	0.07942
23	0.11500	1.85000	0.07723	1.29500	0.08604
24	0.12000	1.80000	0.08331	1.26000	0.09285
25	0.12500	1.75000	0.08954	1.22500	0.09983
26	0.13000	1.70000	0.09591	1.19000	0.10698
27	0.13500	1.65000	0.10242	1.15500	0.11427
28	0.14000	1.60000	0.10904	1 12000	0 12171
29	0.14500	1 55000	0.11578	1 08500	0 12029
30	0.15000	1.50000	0.12262	1.05000	0 12407
31	0.15500	1.45000	0 12055	1.01500	0.14676
32	0.16000	1.40000	0.13454	0.08000	0 15245
33	0.16500	1.35000	0.14344	0.98000	0.15265
24	0.13000	1.30000	0.14004	0.94500	0.18063
25	0.17500	1.350000	0.15078	0.91000	0.126858
24	0.17300	1.20000	0.15797	0.87500	0.17679
27	0.12500	1.20000	0.10520	0.84000	0.18495
20	0.13500	1.10000	0.17247	0.80500	0.19314
30	0.19000	1 10000	0.17975	0.77000	0.20137
39	0.19500	1.05000	0.18704	0.73500	0.20960
40	0.20000	1.00000	0.19433	0.70000	0.21784
41	0.20500	0.95000	0.20161	0.66500	0.22607
42	0.21000	0.90000	0.20887	0.63000	0.23428
43	0.21500	0.85000	0.21609	0.59500	0.24245
44,	0.22000	0.80000	0.22327	0.56000	0.25058
45	0.22500	0.75000	0.23041	0.52500	0.25864
46	0.23000	0.70000	0.23748	0.49000	0.26664
41	0.23500	0.65000	0.24447	0.45500	0.27456
48	0.24000	0.60000	0.25139	0.42000	0.28239
49	0.24500	0.55000	0.25821	0.38500	0.29011
50	0.25000	0.50000	0.26493	0.35000	0.29771
51	0.25500	0.45000	0.27154	0.31500	0.30518
52	0.26000	0.40000	0.27803	0.28000	0.31252
53	0.26500	0.35000	0.28438	0.24500	0.31970
54	0.27000	0.30000	0.29060	0.21000	0.32672
- 55	0.27500	0.25000	0.29666	0.17500	0.33357
56	0.28000	0.20000	0.30256	0.14000	0.34024

Chi MI	0.31000	0.0	0.33409	0.0	. 0.3/5/6
wn Blate University	COMBUTERCOENTER	0.0	0.33863	0.0	0.38086
64	0.32000	0.0	0.34295	0.0	0.38571 //
65	0.32500	0.0	0.34706	0.0	0.39031
66	0.33000	0.0	0.35094	0.0	0.39466
67	0.33500	0.0	0.35460	0.0	0.39875
68	0.34000	0.0	0.35803	0.0	0.40258
69	0.34500	0.0	0.35124	0.0	0.40616
70	0.35000	0.0	0.36421	0.0	0.40946
71	0.35500	0.0	0-36695	0.0	0-41251
72	0.36000	0.0	0.36946	0.0	0.41528
73	0.36500	0.0	0.37173	0.0	0.41779
74	0.37000	0.0	0-37377	0.0	0.42003
75	0.37500	0.0	0.37556	0.0	0.42200
76	0.38000	0.0-	0.37712	0.0	0.42369
77	0.38500	0.0	0.37843	0.0	0.42511
79	0.39000	0.0	0.37050	0.0	0.42511
70	0.39500	0.0	0.31950	0.0	0.42020
20	0.40000	0.0	0.38032	0.0	0.42714
01	0.40000	0.0	0.38090	0.0	0.42114
01	0.40500	0.0	0.38124	0.0	0.42806
82	0.41000	0.0	0.38133	0.0	0.42812
8.3	0.41500	0.0	0.38117	0.0	0.42789
84	0.42000	0.0	0.38077	0.0	0.42740
85	0.42500	0.0	0.38013	0.0	0.42663
86	0.43000	.0.0	0.37923	0.0	0.42559
87	0.43500	0.0	0.37810	0.0	0.42427
88 .	0.44000	0.0	0.37672	0.0	0.42269
89	0.44500	0.0	0.37509	0.0	0.42084
90	0.45000	. 0.0	0.37322	0.0	0.41872
91	0.45500	0.0	0.37111	0.0	0.41633
92	0.46000	0.0	0.36877	0.0	0.41368
93	0.46500	0.0	0.36618	0.0	0.41076
94	0.47000	0.0	0.36335	0.0	0.40759
95	0.47500	0.0	0.36029	0.0	0.40415
96	0.48000	0.0	0.35700	0.0	. 0.40046
97	0.48500	0.0	0.35347	0.0	0.39651
98	0.49000	0.0	0.34972	0.0	0.39231
99	0.49500	0.0	0.34574	0.0	0.38786
100	0.50000	0.0	0.34153	0.0	0.38317
101	0.50500	0.0	0.33711	0.0	0.37823
102	C.51000	0.0	0.33246	0.0	0.37305
103	0.51500	0.0	0.32760	0.0	0.36763
104	0.52000	0.0	0.32253	0.0	0.36198
105	0.52500	0.0	0.31725	0.0	0.35609
106	0.53000	0.0	0.31177	0.0	0.34998
107	0.53500	0.0	0.30609	0.0	0.34365
108	0.54000	0.0	0.30020	0.0	0.33709
109	0.54500 .	0.0	0.29413	0.0	0-33032
110	0.55000	0.0	0.28787	0.0	0-32334
111	0.55500	0.0	0.28142	0.0	0-31615
112	0.55000	0-0	0.27479	0.0	0-30875
113	0.56500	0.0	0.26798	0.0	0.30116
114	0.57000	0.0	0.26101	0.0	0-29337
115	0.57500	0.0	0.25386	0.0	0.28540
116	0.58000	0.0	0.24656	0.0	0.27723
117	0.58500	0.0	0.23000	0.0	0 24880
118	0.59000	0.0	0 231/2	0.0	0 26039
119	0.59500	0.0	0 22272	0.0	0 25160
120	0.60000	0.0	0 21 5 01	0.0	0 2/ 20/
121	0.60500	0.0	0.21981	0.0	0 22202
122	0.61000	0.0	0 10050	0.0	0.22283
	0.01000	0.0	0.19999	0.0	0.22401

non State University computer center

					67	
NUMBER	TIME	F1	X1	F2	X2 0	
0	0.0	3.00000	0.0	2.10000	0.0	
1	0.01000	2.90000	0.00059	2.03000	0.00077	
2	0.02000	2.80000	0.00272	1.96000	0.00301	
3	0.03000	2.70000	0.00603	1.89000	0.00668	
4 E	0.04000	2.50000	0.01056	1.82000	0.01172	
2	0.05000	2.50000	0.01627	1.75000	0.01805	
0	0.03000	2.40000	0.02308	1.68000	0.02552	
2	0.07000	2.30000	0.03093	1.61000	0.03436	
0	0.08000	2.20000	0.03978	1.54000	0.04419	
10	0.09000	2.10000	0.01949	1.47000	0.05505	
10	0.10000	2.00000	0.08006	1.40000	0.06684	
12	0.11000	1.90000	0.07138	1.33000	0.07950	
12	0.12000	1.80000	0.08339	1.26000	0.09294	
1.5	0.13000	1.70000	0.09600	1.19000	0.10707	
14	0.14000	1.60000	0.10914	1.12000	0.12182	
15	0.15000	1.50000	0.12272	1.05000	0.13708	
10	0.13000	1.40000	0.13000	0.98000	0.15277	
11	0.17000	1.30000	0.15089	0.91000	0.16881	
10	0.18000	1.20000	0.10533	0.84000	0.18508	
20	0.19000	1.10000	0.17988	0.77000	0.20151	
20	0.20000	1.00000	0.19446	0.70000	0.21799	
22	0.21000	0.90000	0.20900	0.63000	0.23443	
22	0.22000	0.80000	0.22342	0.56000	0.25074	
23	0.26000	0.10000	0.25165	0.49000	0.20681	
24	0.24000	0.50000	0.20104	0.42000	0.28256	
26	0.25000	0.0000	0.27910	0.39000	0.21270	
27	0.27000	0.40000	0.27619	0.28000	0.31270	
28	0.28000	0.20000	0.20078	0.21000	0.36043	
20	0.29000	0.10000	0.31402	0.07000	0.35316	
30	0.30000	. 0.10000	0.32455	0.07000	0.34503	
31	0.31000	0.0	0.33426	0.0	0.37504	
32	0.32000	0.0	0.34312	0.0	0.38500	
33	0.33000	0.0	0.35110	0.0	0 30494	
34	0.34000	0.0	0.35810	0.0	0 40276	
. 35	0.35000	0.0	0 36436	0.0	0 40963	
36	0-36000	0.0	0.35961	0.0	0.41544	
37	0.37000	0.0	0.37391	0.0	0.42018	
38	0.38000	0.0	0.37725	0.0	0.42383	
39	0.39000	0.0	0.37962	0.0	0.42640	
. 40	0.40000	0.0	0.38102	0.0	0.42786	
41	0.41000	0.0	0.38144	0.0	0.42823	
42	0.42000	0.0	0.38087	0.0	0.42750	
43	0.43000	0.0	0.37932	0.0	0.42568	
44	0.44000	0.0	0.37679	0.0	0.42278	
45	0.45000	0.0	0.37329	0.0	0.41879	
46	0.46000	. 0.0	0.35882	0.0	0.41374	
47	0.47000	0.0	0.36340	0.0	0.40764	
48	0.48000	0.0	0.35703	0.0	0.40050	
49	0.49000	0.0	0.34974	0.0	0.39234	
50 5	0.50000	0.0	0.34154	0.0	0.38319	
51	0.51000	0.0	0.33246	0.0	0.37305	
52	0.52000	0.0	0.32252	0.0	0.36197	
53	0.53000	0.0	0.31175	0.0	0.34997	
54	0.54000	0.0	0.30017	0.0	0.33706	
55	0.55000	0.0	0.28782	0.0	0.32330	
56	0.56000	0.0	0.27474	0.0	0.30870	12.2
F 7						

	won	9	late	U	niversity	COMPUTER	CENTER
--	-----	---	------	---	-----------	----------	--------

MILLING CO	TINE	F 1	~ 1		68
NUMBER	1 LME	F1	×1	F2	XZ
,	0.0	3.00000	0.0	2.10000	0.0
	0.02000	2.80000	0.00276	1.96000	0.00307
2	0.04000	2.60000	0.01066	1.82000	0.01183
3	0.08000	2.40000	0.02323	1.68000	0.02579
4	0.08000	2.20000	0.03997	1.54000	0.04442
5	0.10000	2.00000	0.06032	1.40000	0.06713
6	0.12000	1.80000	0.08370	1.26000	0.09328
7	C.140C0	1.60000	0.10950	1.12000	0.12222
8	0.16000	1.40000	0.13708	0.98000	0.15324
9	0.18000	1.20000	0.16578	0.34000	0.185.60
10	<u> </u>	1.00000	0.19496	0.70000	0.21856
11	0.22000	0.80000	0.22395	0.56000	0.25135
12	0.24000	0.60000	0.25210	0.42000	0.28320
13	0.26000	0.40000	0.27878	0.28000	0.31337
14	0.28000	0.20000	0.30333	0.14000	0.34111
15	0.30000	0.00000	0.32517	0.00000	0.36573
16	0.32000	0.0	0.34369	0.0	0.38654
17	0.34000	0.0	0.35871	0.0	0.40333.
18	0.36000	0.0	0.37007	0.0	0.41594
19	0.38000	0.0	0.37764	0.0	0.42426
20	0.40000	0.0	0.38134	0.0	0.42820
21	0.42000	0.0	0.33111	0.0	0.42775
22	0.44000	0.0	0.37694	0.0	0.42293
23	0.46000	0.0	0.36888	0.0	0.41380
24	0.48000	0.0	0.35699	0.0	0.40046
25	0.50000	0.0	0.34141	0.0	0.38305
26	0.52000	0.0	0.32229	0.0	0.36173
27	0.54000	0.0	0.29984	0.0	0.33672
28	0.56000	0.0	0.27431	0.0	0.30825
29	0.58000	0.0	0.24597	0.0	0.27660
30	0.60000	0.0	0.21512	0.0 .	0.24208
31	0.62000	0.0	0.18208	0.0	0.20503
32	0.64000	0.0	0.14721	0.0	0.16583
		an a			
			•		
		an a			
			S		
					1999.00.000
		74.2			

own State University computer center

NUMBER	TIME	EI	XI	E2	x2 69
nonser.	0.0	3 00000	0.0	2.10000	0.0
1	0.03000	2.70000	0.00622	1.89000	0.0000
2 -	0.06000	2.40000	0.02348	1 48000	0.02607
3	0.09000	2 10000	0.05012	1 47000	0.05573
4	0.12000	1 80000	0.08423	1 26000	0.00386
5	0.15000	1.50000	0.12375	1.05000	0 13936
6	0.18000	1 20000	0.14454	0.84000	0.19646
7	0.21000	0.0000	0.21037	0.62000	0.23600
8	0.24000	0.40000	0.25204	0.63000	0.29600
0	0.27000	0.00000	0.20004	0.42000	0.28427
10	0.27000	0.50000	0.29235	0.21000	0.32872
10	0.30000	0.0	0.35355	0.00000	0.30087
11	0.33000	0.0	0.35255	0.0	0.39645
12	0.38000	0.0	0.37083	0.0	0.41677
1.3	0.39000	0.0	0.38056	0.0	0.42740
14	0.42000	0.0	0.38149	0.0	0.42815
15	0.45000	0.0	0.37355	0.0	0.41907
16	0.48000	0.0	0.35691	0.0	0.40038
17	0.51000	0.0	0.33194	0.0	0.37253
18	0.54000	0.0	0.29927	0.0	0.33612
19	C.57000	0.0	0.25967	0.0	0.29194
20	C.600C0	0.0	0.21410	0.0	0.24095
21	0.63000	0.0	0.16365	0.0	0.18430
22	0.66000	0.0	0.10947	0.0	0.12330

			and the second second second		
		the state of the s			the second s
					U
	an a company of the second				
	the state of the second second second				
		· · · · · · · · · · · · · · · · · · ·	·····		
in the second second		(1	
				1	
		in. 282			
Start Start Strategies		Side and the second			

wn State University	COMPUTER CENTER				
NUMBER 0 1 2 3 4 5 6 7 8 9 10 11 12	COMPUTER CENTER T I ME 0.0 0.05000 0.10000 0.15000 0.20000 0.25000 0.30000 0.35000 0.40000 0.45000 0.55000 0.55000 0.60000	F1 3.00000 2.50000 1.50000 1.50000 0.00000 0.00000 0.0 0.0 0.0 0.0 0	X1 0.0 0.01728 0.06216 0.12584 0.19844 0.26970 0.32948 0.36828 0.38351 0.37401 0.34031 0.28465 0.21080	F2 2.10000 1.75000 1.40000 1.05000 0.70000 0.35000 0.00000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	x 2 70 0.0 0.01916 0.06915 0.14060 0.22256 0.30317 0.37056 0.41389 0.43050 0.41959 0.38198 0.31997 0.23727
13 14	0.65000	0.0	0.12360	0.0	0.13906
			0.02054	0.0	0.05180
				8	
	1	5.5		0	
		11		1	
	0.90			10	
	na * 1				
		the state		1	
			4 m	1	
	•				
· · · · · · · · · · · · · · · · · · ·	8	2		-	
	LINF, AC	obler in th	38		
o Figure 5.	5 Cospanible :	raph of di " w	apleonrent	of X	•

Figure 3.5 Comparible graph of displacement of X_1

.

Figure 3.6 Comparible graph of displacement of X2

CHAPTER IV DISCUSSION AND CONCLUSION

4.1 Discussion

The programs in CHAPTER II are intentionally written in FORTRAN IV language for the distinct purpose of illustrating the mathematical operations basic to the matrix formulation of the problem. The procedure allows the reader to follow step by step the mathematical logic involved in the problem solution as well as giving the reader a basic understanding of the formation and interaction of the necessary equations which produce the solution. The matrix calculations for any given program may be performed by hand in a reasonable time interval for matrices of order three or less. If the order of the matrices is greater than three, the computer solutions offer the most efficient processes for problem solutions.

The FORTRAN programs developed in CHAPTER II which include the matrix determinant, matrix inversion, the characteristic equation determination, the evaluation of characteristic value and characteristic vectors, and the method of Cholesky transformation form a complete package of the usual matrix operations common to the field of Structural Dynamics. In most cases, analyses of structures subject to dynamic loading usually involve a large number of degree of freedom which are efficiently processed by matrix techniques. Each of the above programsis specificly written to accommodate an arbitary number of degree of freedom and hence the computer package is useful for the range of problems encounted.

The program in CHAPTER III is also written in FORTRAN IV language. This program illustrates the usefulness of programming techniques to formulate the solution of a family of coupled linear differential equations utilizing finite difference methods. This technique replaces the rather complicated classical functional type solution with a simple numerical iterative method which strictly relies on a vast number of algebric operations for which the computer is extremely efficient in processing. The degree of accuracy using this method is bases upon only the size limitation of computer.

FIBURE 4.1 COMPARIBLE GRAPH OF MAXIMUM DISPLACEMENT OF XI

FIGURE 4.2 COMPARIBLE GRAPH OF MAXIMUM DISPLACEMENT OF X2

4.2 Gonclusion

From Figure (4.1) and Figure (4.2), it is shown that the size of the time interval, Δt , plays a fundamental part in producing acceptable accuracy of the results. As shown in Figure (4.1) and Figure (4.2), the degree of accuracy increases as the time interval decreases. A reasonable value for At is approximately one tenth the lowest natural period. For value of Δt below this range, the accuracy is constrained to within reasonably small limits. This slight variation is due to the fact that the true-maximum usually does occur at the specific time interval. Although a slight change in maximum response occurs as Δt becomes smaller, the variation is in the fourth significant figure and is totally within the range of acceptable engineering standards. The lowest natural period can be calculated by utilizing the facility of the Characteristic Value and Characteristic Vector program in Chapter II

As respected, the response for X_1 is greater than X_2 for all value of the time interval t. For the particular inphase dynamic loading conditions, the maximum response of the upper floor and lower floor occurs at approximately the same time as

shown in Figure (4.1) and Figure (4.2) which is an expected result.

For sample problem chosen, the maximum upper floor displacement is ≈ 0.38144 inch while the maximum lower floor displacement is ≈ 0.42823 inch. These values are within the acceptable elastic range of the material since the column lengths are 18 feet and 12 feet respectively and column size is a 10 WF 25.

Salvatas, 71 Mar. Balanceton 1. Laio-Margi

Fortis, D. St. Withdian and Fibralion

BIBLIOGRAPHY

- 1. Pipes, L. A., "Matrix Mathods for Engineering", Prentice-Hall, Englewood Cliffs, N.J., 1963
- Fipes, L. A. and Hovanessian S. A., <u>"Matrix</u> <u>Computer Method in Engineering</u>", John Wiley & Sons, Inc., New York, 1969
- 3. Westlake, J. R., <u>"A Handbook of Numerical</u> <u>Matrix Inversion and Solution of Linear</u> <u>Equations</u>", Robert E. Krieger Publishing Company, Huntington, 1975
- Parsons, T. J., <u>"Vibration of Lump-Mass</u>
 <u>Dynamical System using the Cholesky Transformation"</u>, Master Thesis, Youngstown State University, 1975
- 5. Rogers, G. L., "Dynamics of Framed Structures", John Wiley and Sons, Inc., New York, 1973
- Fertis, D. G., "Dynamics and Vibration of Structures", John Wiley & Sons, New York, 1973