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The purpose of this thesis is to investigate the characteristics 

of the forces and displacements associated with the statical stiffness 

matrix analysis of orthogonal and nonorthogonal portal frames. The 

frames are subject to the effects of axial force as well as transverse 

static forces. 

A variety of problems are analyzed using matrix analysis tech

niques. Problems of orthogonal frames with different transverse lo~d 

conditions, including or excluding axial force are considered initially 

for analytical -purposes, Next, problems of nonorthogonal frames with 

different loading conditions, both axial and transverse, are considered. 

The effect of member slope on the matrix analysis techniques is inves

tigated and calculated, 

Finally, a symmetric nonorthogonal frame with both members 

inclined is considered using an approximate method as well as exact 

method. The nonlinear load-deflection characteristics of the frame are 

determined. 

In general, it is found that the inclusion of axial stiffness 

for orthogonal frames is not necessary for solving the analytical 

WILi If l ~- MAr r· 
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problem. It must, however, be present in the stiffness matrix definition 

for nonorthogonal frames if reasonable numerical results are desired. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Since the introduction of the digital computer in early 1950, 

matrix methods of structural analysis have been widely utili zed . 

Matrix structural methods include: the flexibility method, where 

forces are unknowns, and the stiffness method, where displacements 

are chosen as unknowns. 

1 

In the flexibility method, equilibrium conditions are sufficient 

to obtain the solution for problems in determinate structural systems. 

For indeterminate cases, the compatibility conditions are necessary 

to develop the additional equations to solve the problem. The coefficients 

in the flexibility method are much more complicated than in the stiffness 

method, especially when the number of degrees of freedom increases. 

In the stiffness method, the compatibility conditions between 

node displacements and member deformations are initially established, .. 
The unknown node displacements are computed by the solution of a system 

of linear or non-linear equations obtained through the application of 

the equilibrium conditions between internal and external forces at the 

node, Since one-to-one correspondence exists between joint displacements 

and equilibrium conditions, the stiffness method can equally be applied 

to determinate and indeterminate structural analysis problems. The 

stiffness method is used in finite element analysis. Experience(l)* has 

·11·Number in p:i.renthesis refers to 1i tera ture cited in the 
Bibliography. 
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shown that the stiffness method is more desirable since its formulation 

is simpler for the majority of structural analysis problems. Therefore, 

the analysis in this thesis utilizes stiffness method. 

1.2 Definitions 

The sign convention used throughout this work is first defined. 

The direction of displacement (force) and rotation (moment) as applied 

is shown on a general beam element (see Fig. 1-1) in the positive 

directions. ~ .0, M1 , 0z 

('F-- U1 ;,.-
Uz 

t t 
F,. v, ·Fz,Vz 

Fig. 1-1 General Beam Element 

The relationships between joint forces and joint displacements of finite 

element stiffness equation are linear algebraic equtions in the form: 

fF} = [kJf 6} 
The matrix [k] is the element stiffness matrix, and{F} and {6} are 

element force and displacement vectors. The symbol [] is used to 

designate a square matrix. 

1.3 Formulation of the Exact Stiffness Matrix 

1.3.1 Exact stiffness matrix of an axial force element 

To illustrate the procedure of formulating the stiffness matrix, 

we choose two simple elements: an axial member and a beam element. 

Consider first the axial member (see Fig. 1-2). 

r-;;(' (;,( , !/.) 
Fig. 1-2 Axial Member 



J 

By a polynomial representation, the one-dimensional variation of u , 

the arbi tra.ry axial displacement at point ( x, _1/o ) is ta.ken as: 

u(;t,Y.> = a,+a.1.;( 

= {I',(!{~} 
or 

[6}=f P({a} 
Applying the boundary conditions 

(1) 

(2) 

0 

L 

yields the matrix equation: 

or in matrix symbolic fonn 

Thus, 

or 

u = u., 

It follows from Equation (1-lb) and (1-Jb) that 

u =[Pf{a}=[Pf[e]{6} 

where 

U = [N] [ 6] 

[NJ+.~ d-~ :J 
[N] =~1-½>,1z] 
[N] = ~ /- f >, J] 

( 1-la) 

( 1-lb) 

( l-2a) 

(1-2b) 

(1-Ja) 

(1-Jb) 

(l-4a) 

(l-4b) 
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and 

The element stiffness matrix [K] (2) is given as 

(1-.5) 

where { b} represents a matrix of the exact strain due to unit displace

ment, [~]is a square matrix of constant terms relat~g stress, and 

strain components expressed in terms of Young's modulus E and 

Poisson's Ratio V . 

The displacement u along the longitudinal axis . of the member 

is given by Equation (1-4a) as 

or 
(1-6) 

Noting that the longitudinal strain component 

from Equation (1-6) that 

IZ,rx = ~x , it f ollows 

(1-7) 

In this case the-· strain distribution given by Equation (1-7) is not only 

compatible but also exact, hence, 

{ b J = { [ I '-I l (1-8) 

Since the bar in Fig. 1-2 is a one-dimensional element for which 

(1-9) 

the stiffness matrix [K) , determined from Equation (1-.5), becomes 

[ K] = 1£ /_~ { ~' l [ EJ [-1, I} A d t 

[ K] = ~E [-: -:1 (1-10) 
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where A represents the cross-section area of the bar which is assumed 

to be constant . · . 

1.J.2 Exact stiffness matrix of beam-column elements 

In nonlinear analysis the equation of motion of the beam-column 

element as given by 

Assuming 

where 

it follows that, 

,, z z 
:f ( ;() = - .A A, cos~;{ - ~ :42 Sin~ J(, 

,,, L. .3 4A /. ✓ !I ( X:)= '1f: A, Sl'r>~;(-1 z C05l'(A. 

(1-11) 

(1-12a) 

(1-12b) 

(l-12c) 

(l-12d) 

The boundary conditions on 1/ and y' (see Fig. 1-Ja) are as follow: 
C 'f) 

M ) M '?°' ___ ~ z. 0: 
( C ~) --c;(J 

t t . 
~, V, 

Fig. 1-Ja 

'.f(O) = V, 

!f<L) = Vz 

Vz , Vz 

Beam Element 

y'co)=-e, 



Substituting the latter equations into Equation '(1-12a) and (1-12b) 

gives: 

I 0 0 I A , v; 

0 -J. -/ 0 0, 

6 

A2 
(1-lJa.) 

coskL , s,n-kL L I A.3 -~ 

llsin~l -4cosll -/ 0 A4, e2 
, . 

or 

[s]{a}={u} (1-13b) 

It f ollows that: 

(lco.s~L- Ii), (sl,,,fL-NLcos-,lf ) , ( ~ - ,f cos~L ), ( ,fL - sln,U) 

-I 

[e] I 

21?cMh-24+,tLs,.,,nL(- -i"s,,,tkL), (~-icos'-4L). (~ 2 sin.4L),(~-~cost(t,) 

(
.+"Z s,nn,L -~) 
+~ cos iL ,<- .s/n*L+4L GoJ~L),(-4r,fc,s-'iL),(--1'L + s/~~L) 

The additional boundary conditions from Fig. 1-Ja. and 1-)b on end moments 

and shears are: 

V 

Fig. 1-)b 

M< 0 J = M, V<OJ=-10 · } 

VCLJ= V2 

(l-14a) 

EJ'/'c:t> = M ( ;(J } 

EI y'" < ;t. J + P </ < x. J = - V r ~ ) (1-14b) 



7 

Substituting Equations (l-14a) and (1-14b) into Equations(l-12b,c,d) 

yields 

0 0 il 0 1/, _,z 
0 CJ 0 - / 0, =£1 [ B] 

0 0 -I/ 0 Vz 

~cos1'L, ii1'n~L, 0 0 ez. 
that is, 

V, ~( 1-C~~L) 

M, E] -,t(Cl1fRL -,). /((sin~L-Nfo,sld), -li /-Cof~l), -n(c11sfrL -/) (1, 
---------1 
2Cof,L-2 + ~LsiniL I. l . LL L:,. /_ , z 

1'(S1']7'( ,T<{CPSr<L-t),-~Sl'>~L, -/(I-Co5~) ll,_ 

lu-c,s~L) , ·hs,n,L - ~L);/((c,5'-L - I) AriLc.,1/tL-Si"'I) 0z 

or 

where [ K] is the exact stiffness matrix. 
ex 

(1-1.5a) 

(l-15b) 

The components of the above exact stiffness matrix contain terms 

which are trigon9metric functions. This form is too complicated f or 

solving actual problem using digital computer techniques. An approximate 

stiffness matrix is formulated in the next section to simplify matters 

from a computation standpoint. 

1.4 Approximate Stiffness Matrix of Beam~olumn Elements 

Ii dV ·v dX 

(a) (b) 

Fig. 1-4 Beam Element Displacement Geometry 

ARY 
l NIVFR. T 
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Considering the beam-column element in Fig. 1-Ja, the strain 

field varies within the element. Consistent with the theor.y of flexure 

which disregards transverse shear deformation, we have to define both 

transverse displacements ( v; and v; ) at the end points and angular 

displacements ( e, and 0z). The latter are equal to the re.gative of the 

slope of the neutral axis since a positive (clockwise) rotation induces 

a negative end slope for 1/ positive upward, or 

e=-~ dV-1 
I d-;(, ;l.=o 

'I'hus, 
T 

{ 6} = [ v; , e, , 1'z , 0z ) (1-16) 

Four degrees of freedom are present in this case, so that a cubic 

polynomial is chosen in order to produce four arbitrary constants in 

the form 

V(i.) = J l /.. Q,J(_ +(? 2 ;( + al + 04 (1-l?a) 

or a, 

V = [ ;l, 
l 1] 

al (1-l?b) 
7(_ I 

;(. 

a, 

7 a4 
and {v}=[P]{a} (1-l?c) 

also, 

/ 2 (1-18) VO;.)= 3a,t.. + zal.:i. + aJ 

The boundary conditions are 

1/(0) = 11, v(L)= i/2 

} (1-19) 

v 'ro) = -0, V
1

(L) =-02. 
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Substituting Equation (1-19) into Equations (1-18) and (1-17), gives 

the matrix form 

0 0 0 I a, Vi 

0 0 -I 0 al 0, ( 1-20) 
L1 L l L I aJ Vi 

-3Ll -ZL 
l -I 0 a4 0z 

.for which the inverse form becomes 

a, ½_J -x Ll 
-y 

LJ -); Lz 1'1 

az. -* ½. ½z. ½ . 0, 
Lz L -- (1-21a) 

a1 0 -/ 0 0 Vz 

a4 I 0 0 0 0l 

or 

(1-2lb) 

Combining Equations (l-17b) and (1-2lb) yields 

(1-22) 

where 

T 

[ N] = [ N , , Nz . N3 , N4 ] 

and 
z 2 

N, = 2· f - 3 !{i + I I + z -f -3 f 
J t.' J z 

N2= - ~1 + 2 ?f' - t. = L (- f + 21 - f) 
J ,. J l 

N3 = - 2 .f.1 + 3 1{z = - 2 1 + .3 1 (l-2J) 

N4= - }[z + J{ = L ( (- J 1 ) 



with 
1 = 5[ 

The horizontal displacement u , due to flexure (see Figs. 

1-4e. and 1-4b) is given in terms of the vertical displacement as 

It follows 

di/ 
U.=- dl( ·J 

from Equation (l-2J) that 

T 
rN,1 -[N' , , '] ~ J - , , ~ ,¾ . A/4 

and 

with 1 =Jr L -r=x , L 

(1-24) 

(l-2_5a) 

(l-25b) 

(l-25c) 

10 

Combining the horizontal and vertical displacements ( u and 7/ ) into a 

single matrix equation gives 

(1-26a) 

where 

l Z _; Z -f l 1 _, _ t;-fJ, 6(1-1 )'l,(l-4 f-+Jf )l'1, > ,M-f+1 Jil,(-l +jf)-L'f 
[N] - 2 , z , • J • , 

0 ,r1-3f+Zf),{-f+l-f-fJ·L, o,of-lf ),lf-1 ) ,L 

(1-26b) 

with 

1=~ z 1= !k L 



and 

where 

l-5 

11 

c..l, 

V, 

{ u } = ! : l = [ N ]' :: 
Vz 

(l-26c) 

0 • 

u.,,Vi, 
. . . . . . element displacements shown in Fig. 

e, 

t 
1'✓ 

L 

t z 

Fig. l-5 Positive Direction of Displacements 
on a Beam Element 

In calculating the strain energy U , we neglect the contribu

tions from the shearing strains, and include only the normal strains 

Ex~ • This strain for large deflections of a beam in bending is given 

as 

(1-27a) 

where Y is the vertical distance of an element from the neutral axis 

of the beam. The parameter Uo denotes the displacement u at y = o 

U=; Iv E:-x: d;(. 

U = :J ( ;,tJ. - ;/\, 1+ ..l..[~)ZJ dV 
V ,n( ,1l(_z z .,~ 

u = ;j'=L ( r( ;~· /+r;;) !I+ ).r ,11)4-l i}"· ;;'tJ .'j _.1 .. v (~)"u+ ~"·c~t'ld;t ·dA 
;( = o li ll ,1,._ iiJ;( i:JX.' ~,<' ~7( ;; ;,;(_ ;n(. J 

(l-27b) 
Neglecting the higher-order term j{ i:JI)4 

, and. noting all integrals 
~ ;; 

of the form h z: j'dA , fl= an odd number, must vanish, one obtains 
z 

(1-28) 



where I denotes the moment of inertia of the cross section with 

respect to the neutral axis. From Equation l-26b, we have 

12 

(1-29) 

Substituting of Equation 1-29 into Equation 1-28 and integrating yields 

U _ EA ( 2 z) 2EJ 2 .1. .1. z. ,, 2 
- 2 L q, - 2 u, U.4--+ ll4 + 7J{31./1. +Lu., +.3t.l, +L u,+:3L t.{._lf3 - 6l(zl{s-+3L u._u, -JL qJ C-(_s 

Lz L ) £/./ 3 "- I 1. 1 z :& + t.(JU.1,-3 Us-1-(6 +-L,,(U4--£<,)(,:::-Uz+-:-;:L l.(Z+J..L,{s" +-L u.,+.....!..Ll.( ,~ 
.., 1,., 3 s /S /o z ...,_ 3 

As in the case of pin-jointed bar, it follows that 

p = . ~A ( u 4 - u, ) == const. 

(1-JO) 

Applying Castigliano's theorem (part I) to the strain energy 

expression Equation 1-JO results in the following element force

displacement equations: 

u, AE u, 0 u, T 
Vi O tl 

Symmetric 
1f, 0 ' Symmetric 

,---zt • SI. . v-, 

M, 0 d ~ 0, 0 -I ZL 
L., • L. . 7o. /S B, 

=El -P 
Uz :AL • 0' o A '-lz o,O 0 0 

Uz L , L . (1-Jla) 

Vz 0 -/Z 6 IZ. v .. -6 I 
() ' •--z!".Ll, 0 -z, 0 SL, ID S'L 71, . • 

lvfz ..:i :z o, 6 4- I -L I ZL 
0, L .. , 7, L" •T 0z 0, to, To, O, /0 • ;s 0z 

which is written symbolically as 

(1-Jlb) 



where 

[ K]E is the elastic stiffness matrix 

and 

[kt is the geometrical stiffness matrix 

1.5 Transformation to Global Coordinates 

13 

The stiffness matrix is based on an ;t - 'f coordinate system 

in which the x-axis is the direction along the member. The transfer

ma tion of the stiffness matrix to a global X-Y system of accomplished 

as follows: 

Fig. 1-6 Coordinate Transformation 

The relation between [ P} , the applied force vector due in the 

global X-Y coordinates, and { P ! , the applied force vector in the .;t- 'f 

coordinates is written a.s (see Fig. 1-6) 

-- 0 0 0 , 0 U, coso< '-sin°' , 
' u, 

" s /n(J(,cos~ , o 0, 0 V, V, ' 
0 , 

M, 0 0 I 0 0 , 0 M , 
~ 

Uz 0 0 , 0 , coso<, -s,,.,.i.,o Uz 
(l-32a) 

'\ 
0 0 0 0 Vz .s1no1, C,Dfr,( Vz 

I 

Mz. 0 0 0 0 0 M, 

or 

{ p } = [ R,] I p } (l-32b) 
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The displacement vectors { Df and { II J are related in a similar 

fonn as: 

(1-33) 

where 

[ R,] is an orthogonal matrix 

Combining Equation l-32b, l-32b and 1-33 into a single matrix equation 

gives: 

that 

[ K] =El 
E 

or 

[ p} = [ R,J f p 1 
T 

f '° 1 = [ R,] [ k] [A,] { u j 
[ k J = [ R, n x H R, r 

(1-34a) 

(1-J4b) 

In the . case of the ])la trix [ k] , it follows from Equation 1-J4b 
E 

coso<,, -st'n"', 0, 0 0 0 A 
0 0 

-A 
0 0 C (15o(, f'N}tl(, n Ti: 0 0 0 0 

$//Jc{ , C.P{ o( 0 0 0 0 
,z. -6 -12 -f. - , i11ol. , c,Jol. , 0 0 0 0 7J ~ 0 F 7 0 

0 0 0 0 0 0 
-l, 4 0 

6 z 
L' T -z;: T 0 0 I 0 0 I> 

Cd)d , -s,n,1 o -A A 
UJ,( , j/l')/1( 0 0 0 0 0 77 () 0 0 0 0 0 TT 

s /r}« I C#', .:,{ () 0 
-IZ b 

0 
/Z 6 0 0 o -sin«, Cllt< 0 0 0 0 ? ~ .. ? L' 

I 
_, 

2 6 4 0 0 0 0 0 0 0 L.' L. 0 ? 0 0 0 0 
L 

• .. J 

(/JS.~ .!E.) (~ - /ZCS) (~) (-Ac - /lS) (.=,9,£Jr tlC5_) ( .ti.) 
IL L. J , IL. L. J , L. , .EL L j , / L. L JI , L. L 

(,1g_1µs)(4s'+1zc·) (-'c) (-Acs+1lc5)(-4.sL_ ,z.c:a.) c-L';) 
IL L. J , IL L' ' L. z • .lL. L. 1 , IL LJ 

[ Kt_=EJ 
6S 6c 4 65 6c z 

(1-35) ? - ? T -? L' T 

(Ac'_ ns') (-,4Sc f 12.CS) (-'5) (Ac'+,zsj {ACS _IZ.CS) -,s 
7L LJ .IL. L' L 1 

. .IL L. 1 I .?L L. 1 ? . .. rK) ( Acs _ ,z.cs)(As'+ 1l c') 6c -Ase + tlcs)(::A.£ _ 1Zc) 
( fL. L. 1 ZL L 1 L' IL L 1 .lL. L J ? 

6S -6c :z -,s ~ 4 
? -L. l. L L. z L' L.. 



where s = .Si'7 r;,( C = Ce>.S o< 

In nonlinear analysis, [ K J = [ K JE- P [ Kt , using the same 

procedure, one obtains [ K] matrix 

Symmetric 

15 

(1-36) 

For the exact stiffness matrix [KL)(, one obtains 

(Acz_l': ~-) (ACS 1.f-~ _,- ,;-J('J c-1)(-,qcZ 1.4~;-)(-Acs 4- .) ,_ 
IL s s ' .TL + ~ , n S( ) , 7T +!LX§' -L ~/. 1,fcc-1) •5' 

1> .[) D 1) .f D 'l' .D ~ 

where 

c;t- ,ts c' >, r-,'c (C - I)), t1Lsc -if~ . ., .j") r--AS~ Lf--~ ;;-) {-,fc( c~ - I), 
I> ]) , ]) • /L ~• .z, / 

Symmetric 

-s = sin-tlL 

(-1/rs-~LcJ),(-/4s(c-n),(~ 1c(c-l)) ,{~1cs-~LJ) E 
I> D Z) J) I 

( f)S_L 4- z) (Acs 4_ l -
.IL -fl:_£, 7Z +,£..r -.s·c) (-Js(c-!J) 

.1J :t> ' Z> 

• 4 J 
(AS -tf ·S ·czJ(,lc(c-/J) 

.IL z, , r:, 

C = cos-4L 

-J'( S-~Lc) 
l) 

(1-37) 
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1.6 List Of Problems 

In order to illustrate the basic differences in analysis be tween 

orthogonal and nonorthogonal frames, the following geometric frame s 

with constant E I, as listed in Fig. 1-7 are a nalyzed in this work: 

ip tp . P tp 
Q --L 

[ k] = [ k]- P[ k] 
E G-

L L A[ Excluded 

(a) Problem No. 1 

2P 

L L [ k] = [ k]E 
AE -;:- Excluded 

(c) Problem No. 3 

L 

p 

½ 

A£ 
'- Included 

(e) Problem No. 5 

+ __ a 
L 

[ R] = [ k]- P[ k] 
'l' G 

L L 
A £ 

L Excluded 

(b) Problem No. 2 

2p 

1/z 

L L 
P<] = [ k] - p [ K] 

b 4-
B£ 

L Excluded 

(d) Problem No. 4 

L [ k] = [ kL 

(f) Problem No. 6 
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p Q 

L 

l [k] = [ kL, L [ k] = [ k]-P[ k] 
£ i;-

At A E 
L Excluded ---Z:- Included 

(g) Problem No, 7 (h) Problem No, 8 

Q Q 

[k] = [k]-P[k) 
E ti 

[!-<] = [K] 
vcad 

L L 
A£ 

T Included L L 
A£ 

---C- Included 

e 

(i) Problem No, 9 (j) Problem No. 10 

Fig. 1-7 List of Thesis Problems 



18 

CHAPTER II 

DEVELOPMENT OF THE THEORY OF STIFFNESS MATRIX METHOD 

2.1 Basic Matrix Equations 

a) (2-1) 

This equation relates the member-end forces {R}, to member deformation 

f U J by the member stiffness matrix [ K] . The matrix [ K] is a function 

of the elastic properties and the dimensional configurations of the 

structural system. The elements -'"t of matrix [ K] , are member-end 

forces due to a unit applied deformation, all other deformations 

remaining zero. 

b) (2-2) 

The member-end forces {P} are expressed as the summation of two values: 

{ P.}, member-end forces due to actual external loads when all displace

ments at the nocfes are held at zero, and { P,} , member-end forces due 

to the joint displacements. 

c) (2-J) 

The member deformations { U} are related to node displacements { D} by 

a displacement-deformation [A] , which is a function of the geometry 

of the structure. 

d) (2-4) 
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This equation defines the relation between the node-load matrix f Q} , 
and member forces matrix { P} . The vector { Q} contains known components. 

The form of Equation (2-4) is determined using the principle of virtual 

work. Equating the virtual work of the node forces to that of the member 

forces gives 

where { &D} is an arbitrary virtual displacement. 

{ & U } is the corresponding virtual deformation of the ends of 

members. 

letting then, 

{ P 1-, [ H] 7 
{ SD} 

or noting Equation (2-3) 

from which it follows that, 

2.2 The Kinematically Determinate System 

The four basic matrix equations which are relevant to the 

analysis are Equations (2-1),(2-2),(2-3), and (2-4). They are rewritten 

to illustrate the substitution to the Equations (2-_5a), and (2-_5b). 



{ P} = [ K] { U} 

f P} =f P.} +{R} 

{P} = [K] ( u} +{P.} 

{ Q] = [Ar f P} 

{ Q 1 = [A J T [ K J r u} + [Ari p} 

{u}=[A]{a} 

{ o} = [Ar[ K] [A] {a1 + [Af{P.j 

[sJ = [A]'[K] [A] 

The matrix [ 5] is called the structure stiffness matrix. 

Equation (2-.5b) is rewritten as 

or 

Combining Equations (2-3) and (2-?b) yields 

20 

(2-53,) 

(2-.5b) 

· (2-6) 

(2-?a) . 

where { U} is the vector of member displace:ments, { Q / is the vector 

of known node forces, and { P.} is the vector of known fixed-end moments . 
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Noting ·Equations (2-1), (2-2), and (2-8), it follows that 

f p} = [ K] [A] L 5 ]-I { Q} + { P.} - [ K] [ ,4 J [ 5 T'[ A] T { P.} (2-9a) 

or 

(2-9b) 

where { p \ is the vector of member-end forces 

{ P,,} is the vector of member forces due to actual external loads .. 

When all loads are applied only at the nodes, the fix-end forces 

{ P.} are all zero. The Equation (2-9b) becomes 

(2-10) 

2.J Kinematically Indeterminate System 

2.J.l Method I 

The member end deformation {u} is expressed in two parts: 

(2-11) 

The deformations { U0 } resulting from the displacements { d} of 

the load points, are determined by Equation (2-J) as 

The deformations { U1 } resulting from the redundant displacements 

{6} , which are those displacements that are not defined in terms of 

transformation matrix (A] , are written as follows: 



{u,}=[r] {D.} (2-12) 

Accordingly, the element rij is defined as the deformation at 1 

produced by a unit redundant displacement D.i 

From Equation (2-11), the total member end deformations are 

given by 

1 U} =[A] 1 d} + [ r] 1 D.} (2-l;a) 

or 

(2-13b) 

22 

It is seen that if { d l represents the dis placement of all load points, 

{ 6 } must inclule all of the displacements of the unloaded nodes .that 

have an influence upon the desired member deformations. 

From Equations (2-5b) and (2-lJb), and since forces applied on 

the nodes { P.} are all zero, one obtains 

or 

with 

/ O } = [ i] [ K] [ A f r ] [-1-/ 

{ 0} -
[A ]1 K][A ],[Ar[ K] [ r] 

[ r r [ K] [A], [ r] '[ K] [ r] 

1 Q) = [-}! 

(2-14a) 

d 

(2-14b) 

(2-14c) 
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where { 9.} is the load matrix applied in the direction of the displace

ments { d} 
{ i.. } is the virtual load matrix applied in the direction of the 

displacements { 6} 
Equations (2-14b) and (2-14c) are separated into two parts: 

{9} = [A]'[k][A]{dj+[A]'[K][r]{6} (2-15a) 

T T 

{t} =[r] [K][A]{dJ +[r] [K][r]{6} (2-1.5b) 

The definition of the stiffness matrix [ 5 J is given from 

Equation (2-14b) as follows: 

[ s] 
[Ar [ K] [ A j ,[Ar [ K] [ r] 
[ r r[ k] [A],[ r f[ K] [r] 

(2-16) 

The stiffness matrix is square and may be inverted. Then, combining 

Equations (2-14b) and (2-14c), yields 

l-~-l [Srf -!--l (2-17) 

From Equations (2-13b) and (2-17), the member deformations and forces 

are written as follows: 

_, ! '1 l { U ~ = [ A ; r] [ S] -~- (2-18) 

Since 



the member force { p} becomes 

(2-19) 

2.J.2 Method II 

When redundant displacements { .6.} for a structure loaded at 

points other than the nodes are required, the displacements {.6.i are 

solved by setting virtual force {x}=O in Equation (2-15b),thus 

(2-20) 

24 

The form of Equation (2-20) is inefficient since the displacementR {df 

are also unknown. 

When f 'i.} = 0 , the member deformation { U, j do not exist. 

From Equations (2-2) and (2-11) 

{ u/={uo}+tu,J 

[ K]{u}= [ K]{u.}+[ K]{u,} 

{Pl ={R}+{A} 

When { U,} = O , Equation (2-1) yields 

{ 1;} = [ K] [ U,} ={o} 

so, 

From Equation (2-J) and (2-1), one obtains: 



25 

[rr[K][A]{d} = [r]'[K] {u.} 
T 

=[r] {P.} (2-21) 

Substituting in Equation (2-20), yields 

T 

Since [ r] [ K] [ r] is a square matrix which is invertable, one obtains: 

(2-22) 

From Equation (2-2) the final member forces are as follows: 

{P}={P.} +f P,J 

= { P.} + [ K] { U,} 

Where f U,} are the member deformations produced by the redundant 

displacements an~ { P.} are the end forces produced by the given loads 

with all redundant displacements held to zero. By Equation (2-12), 

it follows that 

(2-23) 

Substituting Equation (2-22) into Equation (2-23) yields 

(2-24) 



Equation (2-24) does not contain the displacements and may be used 

to solve for the member forces. 

• 
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CHAPI'ER III 

ANALYSIS OF ORrHOGONAL FRAMES . 

3.1 Problem No. 1 Axial-Loaded Columns, Node Load 

The load analysis of the rigid frame shown in Fig. 3-1 is pre

formed for each member having the common parameters L, E, and I as 

constant. 
p p 

i L ! 
B 2 C 

L El=CONST.L 
I 3 

A D 

(a) (b) 

Fig. 3-1 Problem No .·1- Frame Loads& Node Displacements 

The frame is statica lly indeterminate to the third degree and 

kinematically indeterminate to the third degree, also . The r edun~nt 

displa cements a! e shown in Fig. 3-lb. 

The positive nodal deformations and forces are defined in Fig. 

3-2 as follow 
p p 

rhM~.02 ~.e.J t¼. 84 k6· 0.s 

Vz , 11z 

· ~ r ~. 1-'6 
2 

I 3 

M,,8, ~.½ ~ ,14 4-v,,11, Vs-. 1/.s 

p p 

Fig . 3-2 Problem No. 1-Member Loa ds & Displacements 

27 
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The , displacement matrix { ~} is written as follows: 

Applying the boundary conditions: 

e, = 0 ez = 08C 03= 0sc 

04 = e ca es= 0 01,=0cs 

Vz = 1'8c 1'6 = l'sc 
one obtains : 

'//, 0 0 0 
0, 0 0 0 
v£ I 0 0 
0z 0 I 0 I~, 0J 0 I 0 
01, 0 0 I es, 

(J-1) v;. 0 0 0 
~6 

0r 0 0 0 
v-6 I 0 0 
06 0 0 I 

where [ r] is of order (10 X J). 

The stiffness matrix [ K J for the beam-column problem includes 

elastic bending stiffness matrix [K]E , and the geometric stiffness 

matrix [K]'i , -that is, [ K] = [Rt - P[K]<? .For members 1 and J , 

these are defined as: 

~ L.J -x Lz -J;: L J ½ Ll ;{L /4 /0 % SL ~ /0 

-y /[ ~l ½ "/4 ¾ /4 % 
[ K] = L' 

[ R] = 
1/0 IS 30 

El 
:I: -}:: x.~ 1}; Yt_z ~ -x %o ¼ /2o LJ L3 'SL 

-y, 
Ll ½ ¾ ½ /2 /0 %o 30 %o % 5 
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For member 2, ,there is no axial force applied, there . is no transverse 

displacements ~ and 1/,, , hence the bending stiffness matrix becomes 

[ k] = ¾ ½ El 
£ ½ ½ 

where [ R] = [ o] 
G-

The global stiffness matrix of the frame is: 
('Ul _ ~(:Hri f) (1lf1 t,p)(-6£1 1 }:) 

L' 5L L.' to L' SL L' /O 
0 0 0 0 0 0 

(fil _ ~)f-'/ _ L)f-E1 , pi.) o 
L: 1s L' /o L. so 

0 0 0 0 0 

(t_ll! _ 6P)(t.EI _ ~) O 
LJ SL L ' to 0 0 0 0 0 

(4EL _z,Pt) 0 
t. t S 

0 0 0 0 0 
4,£Z ZlI 0 0 0 0 [R]= T T 

@._ 0 0 0 0 L 

t lFZ ft, -( El + P -\IUI _ 61',) -1,N + ~ j 
( L' SL;( L'- 10! L' .ft. ( L' /0 

Symmetric 

The structural stiffness matrix becomes 

0010000010 

.0 0 0 I I 0 O O 0 0 

00000 I 000I 

-t1E1 +- i;p 6EZ _J>)(t1El _ j,P,~. f) O 
( L 1 SL J ( L' /o t. 1 SL11 L'- /o 

_ -,E-Z +- I' zc:t + Pl ( 6f.I f ,,@ z,oLJ 4lZ zt-,z 
.- l t..• /o)( L .Jo) L.'- /o 1 L /S L ~ 

0 0 0 

'gJ!_ _ !lf:)(6El _ _l_) {I.Et_ L, 
L' SL L' 10 L' /o 1 

= C.{!_ --?-i(1f..!. _ 2pL) ( 2EI ) 
L' lo/ L. IS L 

((.£1 _ _e_ l ( lE I .\ ( 8EI _ Z,P~ 
L' /o/ L I L IS 

0 

0 

~-~~ -~-J'_,lc-1 -,.!:.!....i 
l-L. ts/ L • /o ' L .101 

[x] 

0 

ttz _ g) ,.ffi_ _ ~ 
,::• St, '- t,• ID' 

0 
0 
I 
0 

0 
0 
0 
0 
I 
0 

0 

(H=..,_ ~ 
L /S") 

0 0 
0 0 
0 0 
I 0 

I 0 
0 I 

0 0 
0 0 
0 0 
0 I 

0 

(3-2) 

[ r] 
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For the critical buckling load condition~ the node displacements 

are arbitrary. Hence the following determinant equations hold: 

or 

where 

[rf[K][r] = o 

f/- 383 f)z t 4280 p - 25200 = 0 
3 

- PLZ 
P=-

£1 

(3-3a) 

(3-3b) 

Equation (3-3b) is factored into the following product form: 

,,.. ..,_ z Z48 '"' 
( p - 45) ( P - ---y- P +- S6o ) = o (3-3c) 

The three roots of Equation (3-Jc) become: 
..... 

P, = 7.4 
,,.. 
~=45.0 

A=1s.2 

The lowest critical buckling load corresponds to asid.esway mode pattern, 

shown in Fig. 

l7/T 

Zfec = - I. 7' 8.,c. = Bes = I 

P ell. 

I ½1 = 7.4 

Fig. 3-3 

A"'· z 
P.'11 . 

l 

i 

¾c = 0 0ac= 0ctJ = I 

P. cll.L 
.J Y =752 

/EI . 

Buckling Mode Shapes, Problem No. 1 
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3,2 Problem No. 2 Axial-Loaded Columns and Beam, Node Load 

The load analysis of the rigid frame shown in Fig. J-L~ is performed 

for each member having the common parameters L,E, and I as constant. 

ip L ip 
Q -~----~-- Q 2 

L I 3 L 
El=CONST 

(a) (b) 

Fig. 3-4 Problem No. 2- Frame Loads& Node Displa cements 

The positive nodal deformations and forces are defined in Fig. J-5 

as follows: P rB1z,0, 
--Vz ,v, 

(!- V, , it, 
M,_9✓ P 

~p Vs , 'tis 

Fig. J-5 Problem No. 2- Member Loads& 
Mr 0., 

Displacements 

The frame is statically indeterminate to the third degree a nd 

kinematically indeterminate to third degree, also. The redundant 

displacements are shown in Fig J-4b. 

The displacement matrix {..c:::.} is written as 

Applying the boundary conditions 

e, = o el: 0sc ~=0sc 

e = 4 eCIJ 05 = 0 06 = 0c8 

½= 1fsc v; = 11sc 
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one obtains, 

Vi 0 0 0 

e, 0 0 0 

7/2 I 0 0 
Bz 0 I 0 
83 0 I 0 

0 0 {~} 04 I 
(3-4) 

Vs 0 0 0 eC8 
0s 0 0 0 

i/6 I 0 0 

06 0 0 I 

The stiffness matrix [R] for the beam-column problem includes 

elastic bending stiffness matrix [k]E and the geometric stiffness 

matrix [ k]G , that is, [k]= [kt-P[k](r 

For members 1 & J these are defined as 

½2 ;{ £1 

'}{J ½z 
½_z 7L 

6 /4L -1/ 
//o 

For member 2 , the two matrices reduce to the form 

;f;{ [ k] = L El 

E 3{ ¾. 
[I<] = 

(i, 

~ -'-/ . 
IS /Jo 

:t % 

-6/ 
/SL 

-L/ 
/3o 

with the axial force on member BC set equal to the scalar parameter Q. 

The global stiffness matrix of the frame is: 



[ K] = 

('Zfl 'P -,El P -tl{I {,/' -ttz . p 
t' -;:z} (-Z, t ;o} (-Z, •}zj tT• + 7o7 0 0 0 0 0 0 

4-!I _ll'L 6EI _ .P_ lcl PL 
0 l t. ;s/ ( L' lo I ( L r Jo/ D 0 0 0 0 

(lEI_ 6j(6EI _ P 
LJ ft L' 7'oJ 0 0 0 0 0 0 

(4E1 Zf'L 
T- 1s1 0 0 0 0 0 0 

~ _ 26l~ .l!..!_ QL 
(L I.> L tJO 0 0 0 0 

(-J:L-~ L I.S 0 0 0 0 

Symmetric 

(
ll[1 _ 6,:'1 (·U'J. + ~(-/Ut+ ~)J,il_I-+ ~ 
LJ ,NI L' IOI L 1 .sz \ C lo/ 

t!!3. _ zf'L)( 6£1 _ ..1:..:,, (l.EI PL) 
l L IS. L' 10/ L + 3o 

( ,u1 _ u..
1 

(6Ez _ L 
L' $'L Lz l o/ 

(4-cI _ Z,"~I 
L /SI 
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(3-5) 
The structural stiffness matrix becomes: 

0 0 

[rf[R][r]= 0 0 

0 0 

or 

T 

[r] [k ][r] 

I 0 0 0 0 0 I 0 

0 I I 0 0 0 0 0 [ R] 
0 0 0 I 0 0 0 I 

(
Z4EI _ Ill' (6[1 _ _t'.,.\ (bcl _ P_\ 
L' iu L' lo/ t.• lo/ 

(,_m_ _ ~ ( BEI _ZL(Qto/1.lfl ~ 
L' lo J L IS \ t. + Jo) 

,E1 _ _L) (2U t- QL)(9Ez _,1L{Gltl')) 
L~ lo L. Jo L IS" 

0 0 0 
0 0 0 
I 0 0 
0 I 0 

0 I 0 
0 0 I 

0 0 0 

0 0 0 

I 0 0 
0 0 I 

For arbitrary solutions of the node displacements it follows that 

/fr]'[k]frJI = o 
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Hence, we have 

I ~J -.z .... ..-.. .-..2 I ...,.2 ~.,., ...,z 
- 1s 00 (6op+123p Q+6oPQ )+ 

75
(383P+442P0+3oQ) 

-;(856P+2!2Q)+I008 0 (3-6) 

where 
~ l 

p = PL/ 
/£/ Q = QYr" 

EI 

Wheri the horizontal force Q= O, we get the same equation as 

Equation 3-3b, where P,=7 .4, R =45,0, and />.; = 75,2, and when the 

vertical force P=O, we have: 

then 

Q, = 36,3 ct= 69. 1 

The relation of P and Q shows in Fig. 3-6 as follows: 

p p 
.... 

J £ i p 

' a-n-· ' 70 ' ' L L 

' ' '-
60 ' ' ' ' ' 50 ' ' ' ' ' '-4o ' ' ' ' '\ ' ' 30 '\ ', '\ ' '\ 

....._ 

' '\ ' ....... 20 \ ...... ....... 
'\ ----

/0 
\ 

\ ---------- ....... ..... 
0 10 20 ao 40 so 60 70 Bo 

Fig. 3-6 Axial Load Analysis, 
P & Q Relationship for Problem No. 2 
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The presence of the additional horizontal axial force Q reduces 

the critical buckling load below the classical value given in Problem 

No. 1. In addition, Fig. 3-6 also shows that both nonsymmetric sidesway 

mode as well as the first symmetric nonsidesway mode control the reduced 

value of the critical buckling load. More details about the relationship 

between critical budcling load P and Q are given in Appendix 1. 

3,3 Problem No. J Member-Loaded Frame, Axial Loads Excluded 

The load analysis of the rigid frame shown in Fig. 3-6 is 

performed for each member having the common µ3.rameters L,E, and I 

constant. 2P 

½ ½ 
e 2 C 

L I t .I 
=CONST 

L3 

A D 

(a) (b) 

Fig. 3-7 Problem No. 3 - Frame Load & Node Displacements 

The positive nodal deformations and forces are defined in Fig. 3-8. 

~-G-v,,v, 
0, 

2P 

?-eJ ~f -~'~ 
V. ,v, t ,. 

Fig. 3-8 Problem No, 3 - Member Loads & Displacements 

Fixed end moments on member 2 are: 



36 
The displacement matrix { f::::..} is written as follows: 

r~1 { f::::..} = 08c 

~8 

Applying boundary conditions: 

e, = o V, 0 0 0 

' v, = 0 
e, 0 0 0 

8z = 0ac V:t. = 'll.,e, v-.. I 0 0 

0, 0 I 0 

f V.,I 
03= 0ac . VJ= 0 

9J 0 I 0 

9.¢= 0cs V4= 0 04 0 0 I e8C (3-7) 
' 0 0 0 'lls-

0s= 0 Vs= 0 0s 0 0 0 
0ce 

' 

06= ¼ I 0 0 
eC8 'Vi,= ?lac e, 0 0 I 

In the bending beam theory, we only consider the bending stiffness 

matrix [k] . For member 1 and 3 , the stiffness matrix is defined · 
£ 

as follows: 

:}-:; Lj ~ L :ft L, %z L 

[ R] = 
J,,; ;;{z ¾ EI 

~ Xi E 
LJ 

Symmetric j,[ 

For member 2 the stiffness matrix reduces to: 

[If]= 
€ 

7fL £/ 

pt 

The global stiffness matrix of the frame is: 



'!,,{, -;,{z -'}{, -x Lz 0 0 0 0 

¼ ½' ½ 0 0 0 0 

l½_1 ½z 0 0 0 0 

½ 0 0 0 0 

3/, ½ 0 0 
[ R] = 

L 

4,-{ 0 0 

'7:.1 -x L• 

Symmetric 

The structural s,tiffness matrix becomes: 

0010000010 ., 
[r][k][r]= oo o 1 1 o o ooo 

00000 10001 

Then 

~1 J{, ½z 
=El,½ fl{ 7L 
~ y; ¾ 

The nodal forces matrix is: 

0 0 I 0 0 0 

{Q}= 0 0 0 I I 0 

0 0 0 0 0 I 

0 0 I 0 

0 0 00 

00 0 I 

¾ 

0 
0 
0 
0 

Pf; 
-P¼ 

0 
0 
0 
0 
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0 0 

0 0 

0 0 

0 0 

0 0 
El 

0 0 (3-8) 
-;}:' 

L" -½ L' 

;:{z ½ 
1½, ½z 

u 

0 0 0 

0 0 0 

I 0 0 
0 I 0 

0 I 0 

0 0 I 

0 0 0 

0 0 0 

I 0 0 
0 0 I 

0 

P,¾ 

-~ 



The nodal displacements { t::.} are computed as: 
J8 

The values of the member forces { P} are obtained by Equation (2-2J) 

[P}={R}+[R] [r]{t::.} 

0 0 0 0 
0 

0 0 0 
0 I 0 0 
0 0 I 0 

0 

[P} = % +[k] 0 I 0 % -I --24 £[ 
-~ 0 0 I PZ 

0 0 0 2.4 
0 

0 0 0 
0 I 0 0 0 
0 0 o · I 

0 -,¼ ¼ 
0 P,!;-r; 

I 2. -!% 12 

0 ¼ -u 
0 ~ -!>[ 

{ P} ~ P};;; I¾ 12 

-!!r -!;fr; -}%' 
12 

0 ¼ -,¾ 

0 -% e½ 
0 ¼ ¼ 
0 -~ % 



The forces on each member are shown below: 

p 

pL ,.-L 
7il F--- % 

L 

p 

L 

Fig . 3-9 Calculated Member Forces for Problem No. 3 

- P' L/6 -+ p.1y6 p Ll / + /t. /t.. - 2 . /2 /"3 = 0 

~=P ¾= p 

The final free body diagram of the frame is shown in Fig. 3-9: 
2p 

L L 

t '% 
% 

p 

Fig. 3-10 Free Diagram for Problem No. 3 

The equilibrium conditions of the frame are checked as follows: 

(/J '£.~=O 

(2) 'E,Fy = 0 

(3) E.M"=O 

% - % = 0 

zp-p-p =O 

P½'2_ + PL - 2P ½ -P}f2 = 0 

3.4 Problem No. 4 Member-Loaded F.rame, Axial Loads Included 

0 . K . 
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The rigid frame shown in Fig. 3-11 (a) is loaded on member 2 

only. The fle.xural properties L, E, and I are the same for all members. 



2P 

½ 1/z 
8 L . Z ' 

I 
L 

EI 

L 3 

A =CONST./) 

4o 

Fig. J-11 Problem No. 4 - Member Loads & Displacements 

The frame is statically indetermiante to the third degree and 

kinematically indeterminate to the third degree. The nodal displacemants 

are shown in Fig. J-11 (b). 

The posit1ve nodal deformations and forces are the same as Problem 

No. 1. 

The fixed-end moments on member 2 are calculated as follows: 

PL 
/v!J = 4 

M4 
-PL 

The displacement matrix f .6} is 

Applying the boundary conditions: 

e, = 05' = o 

ez.= Bee 

0J= 0sc 

0,,.= 0c8 

V1 =Z4=D 

Vz = Vsc. 

1h = 0 

14,= 0 

01,= 0~s ~ = llac 

The stiffness matrix [ K] for the 

bending stiffness matrix [ I( l, and 

which is [ k] = [ k] - P [ k] 
t (r 

4 

0 0 0 
Vi 
0, 0 0 0 

Vz. I O 0 
e.. D I O 
0, 0 I o 

. 04, O O I 

Vs- 0 0 0 
0> 0 0 0 
11

6 
I O 0 

0" o o I 
beam-column problem includes elastic 

the geometric stiffness matrix [k], 
~ 



For member 1 and 3 , these are defined as: 

'½., -¼ L' -I½_ LJ /L Ll ¼L /2 0 -¼ 'SL /4 lo 

-¼ ¼ :;{z ¼ -y; 2~ /4 730 
[kt= 

Ll lo IS 
£1 [x] = -151. ;{z '¼..1 ½~ -¼ %o ¼ /2o LJ G- .SL 

-Yt_ Ll ¼ ½_z ¼ /4 /0 X 30 ½o 2}{_, 

For member 2 , only the bending stiffness matrix [k] E is present 

due to the condition of no axial force, hence 

¾ ¼ [!<] = L El 

I: ~ ¼ 
The global stiffness matrix of the frame is: 

[ k] 
1 

! [ o] i [ o] 
[ k] = -- - - - ·; T{r-t ~ r 

---------- --+------
' I 

I I [ x-]J Symmetric 1 
I I 

The structural stiffness matrix becomes: 

-r 

[r] [k][r]=EI 
~ %1 
½z ¾ 
½'z½ 

The nodal forces matrix is obtained as follows: 
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where 

V, 

M' 

llz 

Mz 

{P}= MJ 

fr4 
Vs 

Ms 

Vt. 

;V/t, 

B 

p 

~M, 
-vz 

L 

H,T Vt 

p 

ISP( P-6%B 
PL ( p + boJ/ 

./';68 

-ISP( P-60)/ 
/808 

-~: ~f_-_3~t} -
Ptx,+1s748 ) 

-Pf¼+ 1¾B) 
--/;P{ fi --t¾

0
-~ . 

- PLC p +t,°½68 

.B-45 

2P 

MJ 1/ J L 
(?2 1/z~~ 

t 
L 

t 
M.&-

L 

r,-M p 

Fig. J-12 _ Member Forces for Problem No. 4 

v6 

Vs 

A comparision of the nodal displacement {I:::.} between Problem 

No. J, with axial loads excluded, is summarized as follows: 

42 



The nodal displacements f b.} take the form 

- I 

{6) =-[[rf [K] [r]] f o) 

where 

or 

0 

..... ....... z _., 
{ 6 } = 25 

( p-45)( p~ 2
;~ p +56o) 

42 P- 62P +J¼o 
...., ,....z. """ 

-42P + 62P..:... 3fl:;0 

0 
" ;Sp 

8 < P-4S) 
-1sp 
8( p-45) 

The member-ended forces are: 

0 (_tlEZ + 6 Pj (i,EZ t ..E_) 
LJ L , L,. lo 0 

0 (6EI_£)(UJ+ PL) 
L' / o L .30 0 

0 
1Ul t,p t,£:J. ? 
17 - sL) ("27 - 10) 0 

0 ( {,EI _ -/!J (4EZ _ Z/JL) 
L'- 10. L JS 0 

~ 0 
4El Ul 

{ p} = + T T { 6} 
-~ 0 

2EI 4EI 
L L 

0 
-;lEI+ l,p 

l---Z, SL ) 0 (-1,u+ L) 
LL (0 

6U P 
0 1~-7;) 0 (2€1 + PL) 

L .Jo 

0 (ZEI _ ~) 
L' fL 

0 ("ti - ...t:....) 
L,. / o 

0 (/,[I --0 
Lz to 0 (4El _ ~) 

l IS 

43 



and 

44 

0 
,... 

( -p I 
1 6 } • 24 ( I - ¾s ) 

'Pro. :;t " 

-P( I ) 
24 I- %s 

The results are plotted for the parameter 0c8 in Fig. J-lJ. 
ZP 

Axial Force Present 
L L 

3 

Problem No. 4 

2 

I 

0 /0 20 .30 40 4S 
~ 2 

P _ PL/ 
- /EJ 

Fig. J-13_. Load-Rotation Relationship for Problem No. J &No. 4 

In Problem No. J, the relationship between P and 0c8 is linear. 

In problem No. 4, 

linear relationship. 

0, - p( I ) 
CB - 24 I - P/45 which is clearly a non-

In addition, 

( 4op-/8oo)-(7S)- 7P ·(4o) 

(40,o-1800/ 



" and for P=O 

d0cs 
dp 

-I 

24 

Thus, the tangent of the curve of Problem No. 4 is the equation of the 

line of problem No. J, which means the addition axial loads produces a 

nonlinear solution to the load-rotation analysis, If the axial load is 

neglected, the problem solution becomes linear as shown in Fig. J-lJ. 

The force v1 in Problem No. 3 becomes 

or 

where " PLZ p = Yc,., 
and in Problem No. 4 

1s,P(,o-60J 
ao c /l-45J or 

~ 

Vt EI = P ( I - f½o ) 
L.1. 4 I - e,;4s 

The results are plotted for the parameter in Fig. 3-14. 

V,tl 
Lz 2P 

Jo 
L 

L L 
Problem No. 4 

--Vt 
20 

/0 ------_..- .,.,- Problem No. 3 
. ---

-:::--=------ -----
~ 

0 /0 20 30 40 45 

Fig. J-14 Shear Force-Load Relationship for Problems No. J & No.4 



Fig. 3-14 possesses similar linear and nonlinear characteristics as 

Fig. 3-13. 

The moment M 1 on the Problem No. 3 obtains: 

where P=P';/EI 
and in Problem No. 4 

PL r P -f 6oJ 
;11t = 

/6 (p-45) 

or 

or 

Fig. 3-1.5 shows the -M, L "' --p 
£1 

relationship: 

2p 
-M,L 
£I 

L 

lo L t. 

M, 

B Problem No. 4 

6 

4 ----
2 -------- Problem No. 3 

---:.---
0 /0 20 30 40 4S .., Lz 

P= p7£I 

Fig. J-1.5 Moment-Load Relationship for Problem No.3 & No. 4 

Fig. J-1.5 possesses similar linear and nonlinear characteristic as 

Fig . 3-lJ. 
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CHAPTER IV 

ANALYSIS OF NONORTHOGONAL FRAMES 

WITH HORIZONTAL MEMBERS 

4.1 Problem No. 5: Nonorthogonal Member-Loaded Frame, Axial Defor

mation Included 

both 

The rigid· frame is shown in Fig. 4-1 has the same EI and Lon 

members. 

I L 

' A 

p 

1/z 
U& 

8 

EI= 
Co/'./ST 

,;v, 
Fig. 4-1 Problem No. 5· Frame Load 

& Node Displacements 

( 
~ 

The positive nodal deformations and forces are defined as 

follows: Uz , <-li. 

Mzr¾_.t"- l/2 , J, 

~ ~ v-. V. ~ , .. 
M. z , V'~ 

.,., 
U, , J, 

u, If', v,_ V, 

u, Vi, 1" 
Fig. L1--2 Member Loads & Displacements 

Considering the axial effect on both members, the displacement matrix 

{~} is written as follows: 
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The boundary conditions are specified as 

which take the matrix form 
- 0 0 0 
t.A., 

0 0 0 
1/, 

0 0 0 
0, 

I 0 0 
I,(,_ 

0 I 0 

{ ~I ~ 

v,. 0 0 I 
0 .. -

I 0 0 

U.3 0 I 0 
"IIJ 0 0 I 
03 

0 0 0 
~ 

0 0 0 V4 

e4 0 0 0 

For the h..>rizonta.l member, considering the axial effect, the 

stiffness matrix for the member is: 

AS.. 1z.e-• -t.c. -Ac~ ,zcs -Ai" ,zca. 
( IL --;;-1 l?) ( lL -t j_j){ 1L - LJ) 

[ i] . 
E. 

( f J ( -~ ~ J c ~c~ ) 

Symmetric 

The stiffness matrix for the inclined member 2 is 

A 
0 0 

-A 
0 0 IL IL 

/1. -G -IZ :L 
L' ? 0 ? L z 

4 6 ;z. 

[ k] = 
T 0 L• T 

A £1 
E TF 0 0 

IZ. 6 

Symmetric L3 ? 
...£. 

L. 



49 
Combining the latter two matrices together, the global stiffness matrix 

of the frame becomes 

/kl= 
[k] [o] 

I, 

[o] [k] 
, z 

The structural stiffness matrix in turn is obtained as 

0 0 0 0 0 I 0 0 0 0 0 

[rf[k][r]= 0 0 0 0 I 0 0 I o 0 OD [ 
0 0 0 0 0 I 0 o I 0 0 0 

or 

¢(cz+1)+12.s .. , csc¢-IZ) 

[ rf [ 1<][r] = :~ csc¢-12-J 
-,. ~ ) { ¢s +IZC +IZ 

- t.s L t.L Cc - I) 

The inverse of above equation is: 

where 

--K 

0 
0 
0 

I 

] 
0 

0 

I 

0 

0 

0 
0 

0 

-{,SL 

tLCC-1) 

BL z. 

0 0 

0 0 

0 0 

0 0 

I 0 

0 I 
0 0 

I 0 

0 I 
0 0 

0 0 

0 0 



The fixed-end moments and shears on the member 2 are: 

PL 
B 
-pl 
8 

and ~ 1 = 1-: 
v; -p 
4 2 

The nodal forces matrix becomes: 

oo I oo 100000 

ooO IO O IDOOO 

0000 100/000 

0 

0 

0 
0 

0 
0 
0 

-% 
p~ 

0 

-~ 
p~ 

0 

The nodal displacement matrix { 6.} is computed as follows: 

or 

.. 
S</>(l3C+3)p 

4 
JSC7c+JJP 

L_4 
(Elk4 

/.C -P?t/Jc1-+6cttJ} 
4 - 21 S

2

P 
.D 

6¢c.p ;5'p/ pij,s .. 
-L- - -L- +~ 

The total member-end force is: 
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where 

{ P} = 

(JS¢ ( 7C+3)P- r/>S (/3 C+3)P ·i J 
B 

[ -3 ¢ ( ?c ,_ + be f l)p - !J..¢'.s·p] 
B 

z. %- .2. l. ] ( I.S ¢ PL ( 3 C + !Be f 3) - ; gps L - o.25P ¢ 5L 
B 

.,_ I 
( -3s¢>( zc -r .. nP + ¢, s 03c dJP ·4 J 

B 

( 3¢ ( 7cz.+6c+7>f + ¾r/> 1

s";P J 
B 

z. ~ a,. .&,.J ( /. 5¢PU :Jc +1oc+3) +18,osL. - o.sp¢L·S 
8 

( 3S(7c+3)¢P - o .2sr/>;l.S(/3c+:;Jp] 
B 

- : +[ 3P¢(13C .. +l8c+l.3) f O.JS'N¢.f/44-si]fr 

( ,. • -~· .1.1 PL +3¢f'L u3c +uct/3J f -s4pu - P~s L·L 
8 B 

( -J1>.5f C7C-f3) f¢,Lj>S( l 3C+3)f] 
8 

_ ..f!.. + (-3(//JC l~c•°f·IBC +t3) -/,#sf'-t>,7S/sp] 
2 d 

L I L 1.., 1 
_PL+ [- ;. ~¢,po ,c"'+14cf1:JJ -Joj7SL - ~1'¢~L..J 

8 8 

,-~l,, .. 
8 = 85 iv -+ 24(Sc -t6c+5) ¢,+z8BS .. 
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If the effects of axial displacement are neglected, this implies 

that the axial stiffness coeffieient 
AE T approaches infinity. This is 

accomplished mathematically by requiring ¢ -- o0 , The resulting 

problem solution is abtained from the results of Problem No. 5 by 

factoring the parameter ¢ from the numerator and denominator of'. each 

term, and taking the limit as ¢-- oa in the remaining quotient. 

Preforming these operations, the nodal displacement matrix 

becomes 

<n/ 
? 
D 

¢( sn;_c +JJ _ 3ps¢c-r!>)) 

¢(-P(l3c;6c+l3J_ .u~e ) 
¢( p;• _ 6;C _ /8~() 



The total member-end force matrix reduces to the form 

[
-psmc+~) 3Sf'cjc-tJ)1 .JL' 

4 7 ¢ J 8 

{-/3$/> _ :J,f<z+zc'H, c>P] r1,• 
-;r- <j>• B 

l- Ps~L + JfLuBc+J+h•/ _ /1;,s1.J_L 
4 z rj, rj," 8 

[+ 'SfUJc.f3) _ Hft/03)1 ~• 
4 ¢ 8 

[ /)S? + .J( 7+7C~6,t.)fj 1-L 
4- ¢ e, 

(
- Pz.L/ + J flU•cth+:J) + 1/pst.J ¢>• 

z ¢, ¢,,_, 6 

(
- fS UJc.+3} + HC 7c·HJP} ±~ 

4- ¢ 1.3 

_..f. +[ L~: 3;>c1~c+111;c+131 /¢4s~,o1 ¢,L 
.1. 4 ¢ +- ¢'-1 a 

PL t{- Pit. _ 3fLUJc+zu+131 _ S-4fSLJ£ 
8 z z ¢, ¢• 8 

( 
fSUJc+3) _ iSf(?c+3)J L 

4 ¢, B 

_ ..f.. +-[- Hf' _ lfCIJc +lic:-113) _ l#Sf'] L 
z 4 <j ¢• B 

- PL +[-- Ps•L _ Jf'{I JGf/4CftJ){ :,'o,OS2jfL 
8 4 z <j> ¢,• B 

4.2 Problem No. 6: Nonorthogonal Member-Loaded Frame, No Axial 

Deformations 

The rigid frame, the same as Problem No. 5, is shown in Fig. 

4-1, with the same EI and Lon both member. 

The displacement matrix {.6.} is written as follows: 
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By the same procedure as Problem No. 5, we have the nodal force matrix 

as 

{ Q J 

0 

-p 
z 
~ 

8 

The nodal displacement matrix is 

¢( SP{~c.+3) J,0.5~C+3) 

{ .6} = !' ¢(-p(134~+6Cf-lJ). 2~.,p) 

¢'-( /JSL _ ..P.f!..!:. _ /2PS ... ) 
8 ¢ ¢'-

And, the total member-end force matrix is 

'{ p} = 

where 8 = a.s'"<t/!.-t 24( sc .. -t-{,c -t5) -t 288sz. 

( 4-la) 

(4-lb) 



Taking the limit as ¢ approaches infinity yields 

( .6} = f i I£; (4-2) 

and 

0 -{ 13 Cf3)Uz_ s I -(l3C~ 
z5 

0 -11e-:;2 -I~ 
Jl 

0 -px 3Z. -~ 3Z 

0 uJc+;;tt {tJC~ :JZ5 JZ5 

0 13.f};z °,~; ',JZ 

{ p} 0 -~ -;:Jr;, /{, 16 (4-3) 
0 -(/JC~ -(Ile+~ ".il5 Jl5 

-f:1_ 3f½z -I~ 31 
P}/4 -P}1/'_ lb P;ft 

0 (/JC-0¾_ 
3ZS ( IJC-i'=lj?i is 

-::1 -3_hz -l?J; 3Z 

-~ -~ .3Z -% :Jl. 

A plot of the relationship between rotation (BB), moment (M1), 

and applied force (P) as given by F.quations (4-la),(4-lb),(4-2) and (4-3) 

for the angle B=45°, with //=lo'\ and s6=oois ahown in Fig. 4-J. 

/.O 2 

o.S I 

0 /0 

Fig. 4-3 

20 30 40 .50 60 p 

[ 
88 -P}Relationship for Problems No.5 & No.6 

-M,-P 



The final free body diagram is shown in Fig. 4-4. 

8 

L 

8=45" 

o.4/p 

p 

~ci~ y o.s4p 

O,S9p 

Fig, 4-4 Free Body Diagram for Problem No, 6 

The equilibrium conditions of the frame are checked as follows: 

(I) E,F:,{ = 0 

<2) LFy = o 

c3> '£Mc= o 

0.S4P -0.S4P = o 

0. 4 IP -+ 0. S 9 P -p = o 

I. 
O.l6PL-+O. o3PL-P· 1/z-O.S4P ·(t1.71LJ +0.4/P•{l,7/L)= O 

O.k. 

4.3 Problem No. 7 Nonorthogonal Member-Loaded Frame, Axial Force 

Excluded 
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The rigid frame shown in Fig. 4-1, has the same E,I, and Lon 

each member. 

The displacement matrix is written as follow: 

The boundary conditions are the same as Problem No, 5, 
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In bending theory, we neglect the axial force effect, [ 1< ]tr= [ o] 
so [k] = [kt the stiffness matrix on the member 1 becomes: 

z. ... 

'% -I~ ~ -~ IZ¼ ~z. LJ L' • LJ ,J 
,z9t:, -% L' '% L.J 

L -,~ -x L. z. 

[ K ],= l ;/4 -% 6¼- ¼ L. z. Lz. 

'~J -l%J -% L. .. 

/l½J % 
Symmetric ¼ 

The stiffness matrix on the member 2 is obtained as: 

0 0 0 0 0 0 

~ ~ (. 2, 0 -:½. L' ½ L., 

[t<]= El 
½ 0 j(a x 

z 0 0 0 

'}:. L. 1 ½· 
Symmetric ½ 

The global stiffness matrix of the frame yields: 

[ k] 
[k] [o] 

I 

[o] [k] 
z 

This same result is obtained from Problem 5 by setting the value of the 

iarameter . ¢ = o • 

The structural stiffness matrix becomes: 



0 0 0 I 0 0 I 
0 0 0 0 0 I 7 

10000 [1<] [r][i][r]= 0 0 O 0 I 0 0 

0 0 0 0 o I 0 0 I o o o 

or 
.. 

/~~ -1z,57; J 

[r]'[k][r]=El -/~J ,z,c;;J: J 

-I,;,: Lz. 6CC~z 

The inverse of the above equation is: 

I ,. 
-I ? ( 6cc +7zc+6o) 

[[rf[ kl[ r~ = , 0:;.£1 · 
( 6o~;3tS) ( 

605 ... 

L4 

Symmetric 

The nodal forces -matrix is: 

0 

0 

0 

0 

0 
0 0 0 I 0 0 /00 000 0 

{ Q} = 
0 

0 0 0 O I 0 0 I 0 0 00 -~ 
0 0 0 0 0 I o o I 0 0 0 P7e 

0 

-1/z 
PYe 

0 0 

0 0 

0 0 

I 0 

0 I 

0 0 

I 0 

0 I 
() 0 

0 0 

0 0 

0 0 

-~ L. .. 

6CC~ L. z 

1/L 

12 cs+1zs) 
Ls 

ll5 .. 
L_S° 

1445
6 

L"' 

0 

-7z 

3/a 

57 

0 

0 

0 

0 

0 

I 

0 
0 

I 
0 
0 

0 



The nodal displacement matrix becomes: 

pr1c+j)L~ 
965 EI 

7p,t.S 

The total member end forces yields: 

~ 

Fig. 4-5 shows P-0.s relationship: 

2 

I 

/ 
/'. 

/4 
,6 

# 

0 /0 

Problem No, 7 / 
/ 

/ 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

2() :30 

/ 

/ 
/ 

/ 

0 

0 

-PY;b 
0 

0 

p7J6 

0 
0 

-f}f6 
0 

-p 

-?~6 

No. 5 

0 = 45• 

¢ = /04 

40 

(4-4) 

(4-5) 

Fig. 4-5 Load-Rotation Relationship for Problems No. 5 & No, 7 



Fig. 4-6 shows M1-P relationship: 

-M 

z 

0 

/ 

/ 
/ 

/ 

/ 

/0 

/ 

/ 
/ 

/ 
Problem No -J _,,, 

/ 
/ 

/ 
/ 

20 

/ 
/ 

.30 40 

e = 45• 

¢ = /04 

PL. 

Fig, 4-6 M1-P Relationship for Problem No. 5 & No. 7 

The final free body diagram of the frame is shown in Fig. 4-7, 
p 

~_>i__,_Y-_z -f o 

p 

Fig. 4-7 Free body Diagram for Problem No, 7 

Observation of the resulting load-rotation ( P-B8 )(Fig. 4-5) 

59 

and moment- load ( M,-P)(Fig. 4-6) plots show that a neglect of 

axial stiffness produces the higher value of P and M with the same value 

of rotation 08 compared with the value which includes the axial 

stiffness. In addition, the free body diagram of the resulting structures 

shows that the vertical component of reaction at A is zero. The total 

force Pis transfered as shear to point C. Theses results show that if 

axial stiffness is neglected the problem is purely an academic exercise 

having no realistic design value. 



4.4 Problem No. 8 Nonorthogonal Node-Loaded Frame, Axial Forces 

Included 

60 

The rigid frame shown in Fig. 4-B(a) with the load at the node 

has the same E,I, and L on each member. 

Q 
Va 

Bs 

8 L C , - 1/, "s 
L El= 

CONST. 

(a) (b) 

Fig. 4-8 Frame Load & Node Displacements for Problem No. 8 

The frame is statically indeterminate and kinematically indeterminate 

to the third degree. The node displacements are shown in Fig. 4-5(b). 

The displacement matrix {..6.} is: 

{ 6) = { ;;/ 

The positive displacement and the rotation on each member are shown 

in Fig. 4-1. 

Applying the boundary conditions: 

U,=U~=O V; = l/4 =O 0 , =04=0 

. Uz= U 3 =O Vi =°V3=0 0z = 0, = 0 

gives 
~ 0 0 0 
t,( , 

0 0 0 
v, 

0 0 0 
0, 

I 0 0 -u~ 0 I 0 

f 

Ua 
v~ 0 0 I 
0, I 0 0 Vs 
u, 0 I 0 0s v, 0 0 I 
e, 0 0 0 
t.,<4-

V4 
0 0 0 

04- 0 0 0 
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Taking into account the axial force effect, the stiffness 

matrix [ k] for member: 1 is the combined elastic stiffness matrix 

and the geometric stiffness matrix as given by Equation 1-36, where 

the axial force is defined as the iarameter. 

The stiffness matrix [k] for member 2 is equal to [..t<];R[k]~ 
The axial force R in the member 2 is different than the axial force 

Pin the member 1, hence 

[ k] = 
z 

AE 
-L- 0 0 

( 1u1 _ 61?) (-,u +- _!i_} 
L 1 S-L t.' '" 

( 
4E-1 _ UL) 

L IS 

Symmetric 

0 

0 

.AL 
L 

0 0 

-1u1 +- 6R) -t.EZ + .fi_) 
( L' Sl ( L'- fr, 

( 
6EI _ -8_) (ZtI +M 
L' /o L Jo 

0 0 

( 
/lcl _ 6R)( 6EI _ ___!L\ 

L' S"L L. • lo J 

( 
4EI _ zL~I 

L /$ J 

The global stiffness matrix of the frame is obtained as: 

[ 0] 
[x] 

[ 0 ] [ k] 
2 
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The structural stiffness matrix is: 

0 0 0 

0 0 0 

0 0 0 

I 0 0 

0 o o I 0 0 I 0 0 
0 0 OJ 0 I 0 

[r]'[x][r]= 0 0 0 0 I 0 0 I 0 ooo [k] 0 0 I 

I 0 0 
0 0 0 0 0 I o 0 I 0 0 0 

0 I 0 

0 0 I 

0 0 0 

0 0 0 

0 0 0 

or upon multiplication gives 

[r] [k][r]= (4-6) 

Symmetric [ 8:I _ Zl::t/?1 

From the free body diagram of node B shown as follows: 

Q 

re-----~R 

e 

Fig. 4-9 Free Body Diagram of Node B, Problem No. 8 

Satisfaction of force equilibrium at node B requires that 

Q = P S/17 0 R= P · cos e 



Thus, 

Q P=--
s1110 

R= CoSB · Q 
.S/iJ0 

Substituting Equation 4-7a & 4-7b into Equation 4-6 yields 

~(C~l)+S(IZ-j.f )],[cs¢- cs (/2 ·_#) j , [ 5 (- t +its) ] 
, 

[ r] [ R] [ r] = 

Symmetric 

For convenience, the following algebraic equations are defined: 

:z. 6 z. Q Qc) 
C2.=IZ+(l+C J- s<c 5 + 5 

b,= cs 

b - -c5{ 1z- {,Q) 
l- $"S d

3
= s - .?.. c ..£ + E..E.) 

IS .s 5 

b - C ( ' - b + ___g_ ) ~- v /0·5 

Equation 4-8 becomes: 

a,/>+a.z. b, ¢ + bz b.3 

[r] [k][r] b, ¢ + bz , C,q> f Cz C3 

b3 C3 d.3 
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(4-7a) 

(4-7b) 

(4-8) 

The inverse of the latter matrix is formulated using the following 

cofactor definitions: 



0 3 = ¢( b,Ci -bJC1 +¥ - b:2-) 

Cu= ¢ ( a, d, + a L d> - ---El_ ) 
¢ ¢, 

cl.j= ¢ < - ct c3 + 6, 6J - a¢c, + b11
) 

C ,,,., 1. ( L 1. ) + a, c 1. t a. c, - 2 i,, b.. + 
JJ= 'f" Cl, Ct - f.}1 ¢' 

The determinant of the matrix is: 

hence, 

-/ c,, Ca c/J 

[[r] [ k] [r J] = ~ ell c .. C,.J 

C,3 cl-} CH 

The nodal forces matrix becomes 

0 

0 

0 

0 

-Q 1000/00100 000 0 

{o}= ooo o 10010 ooo 0 

000001001 000 0 

0 
0 

0 

0 

z. 
a .. c,, - 6z. 

¢z. 

0 

-Q 

0 
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The nodal displacement {6} is computed as follow: 

-/ 

{ 6 } = -[ [t-f [ k] [ r l] { a } 
or 

c" C,z C,3 0 

{6}= -/ 
1) C,z C z.z. Cz.3 -Q 

C,3 Cz.3 C 13 0 
which simplifies to 

The total member-end forces { P J becomes 

and in component form 

•r¢c':.; Z /) + f .s<aj-%-Q + [-¢cs f- IZ cs - G~ ~1 c_;tG.-f{(,5L -G¾,) c;a. 

(-¢c5+1zc5- tcQji!.!_0. +[-.5¢,-nc•+ ocL~J c ... Q+(-{,cL +Y-) c .. 3Q 
s 1;, S-s " s -z:;, 

(-65L- QLJE:!!_0. +(-bcl+..c.._g_] CuGI +[zl•+ Qf ] Cz.!>& 
10 J) 5 -p Jo •.5 X> 

+[ q, ¢ +.a.] c; a + C b, '/> + b .. ] c,.~Q + ( b J ] c~j/· 

- Q +(b1rf+bz.] c;~+[C1$b+c ... J c,~Q + [ CJ) c;Q 

h1 c; a + C1 c~Q + d 3 Ci,Q 

<j, c,, 61 
7) ' 

( Ill-~) C .. t& + c-,L + ....5=..!E...) C,.sQ 
SS 7) /o 5 "I) 

( -6l + _£_£_) ~ + C 4L,. - 2Q) c,.~61 
/ 0 ·5 7) IS :z> 

- C, c,, <:Il 
7) 

- { tZl - li.Q.) C,.tQ - (- bl +..£.Q_) Cz.3Q 
s-s 7) 105 7) 

C-t.L + ~) C,iG -(2L1.+L.1.J. ) C2.jQ 
/05 7) 5 ~ 
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From Equation 4-10, the shear force v1 becomes 

V, = {<- ¢cs+l2CS- 6:t?)(</JC,c/., + Cz.d3 -C3 )+[{-fS~-12c')+ ;~•Q1(~a,d1+ 

a z d 1 - b; ) +- < - 6 c L + c/) ( - ¢ q, c 3 + 6, o; - a .. c 3 + b .. f> j>} ~ 

or 

- ¢ .. { C, dJ C S + C( 
1 
clj $,.) + fl ( I Z c 5 c, cl$ -c. c/2 CS + · · · · · -) + { I Z C 5 c. aj + · · · · ·) 

.. .2 

fP ( Cl,CrdJ -b, I>~)+ ¢(a,cz.c'3+ •. · • · ·) + ( 2 b~ b5C3 + · · · · ·) 

,,.. 
Ta.king /r'm Vr , one obtains: 

sis---

..., [c,dJC5+Q,d3 s,.]Q 
V, = --"--------

a, c, dj - 6/°63 

or A .2 ~ ~ 

( I -
(c'+c5+1-c s+c +c) ·Q 

)Q -" cs~~ c .. + I 60( C 5 • + C,-+ I ) 
V, = 

c' + I (1-tc+c'-tc:1 ) · Q (4-11) 
/-

61>:; (CS•+ C •+ I) 

~ 

A plot of the V 1-Q· relationship is shown in Fig. 4-11. 

Q 

4 

3 

2 

I 

0 I 2 3 Q 
..,, 

Fig. 4-10 v1-Q Relationship for Problem No. 8 
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It is clear from Fig. 4-11 that the relationship beeween the 

shear force v1 and applied force Q is non-linear. The tangent line to 

the initial point on the curve varies with different value of angle 0 

The relationship between the nodal vertical displacement ~ and 

the nodal force Q is shown in Equation 4-9 as 

which upon substitution becomes: 

From the above equation it can be seen that the limiting condition 

¢-- o and ¢--- O<) are not defined mathematically for a practical 

situation ( i.e.¢---, ~= o , and ¢- o, ~ is undefined). This 

condition requires a substitution of a reasonable numerical value for 

¢ in the calculations and -hence extremely complicates the algebraic 

calculation of the solution. Thus, a practical solution must be obtained 

numerically by use of a computer. 



CHAPI'ER V 

ANALYSIS OF THE SYMMErRIC NONORTHOGONAL FRAMES 

WITH BOTH MEMBERS INCLINED 
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5.1 Problem No. 9: Node Loaded Frame, Axial Deformations and Axial 

Forces Included 

The rigid frame with a load at the node shown in Fig . .5-1 is 

analysed for both members having common parameter L,E, and I constant. 
Q 

2 
L 

Fig. 5-1 ProblemNo.9 Frame Load & Node Displacements 

The frame is statically indeterminate to the third degree, 

and kinematically indeterminate to the third degree, The redundant 

displacements ar~ shown in Fig.· .5-1 (b). 

The positive nodal deformations and forces are defined in Fig. 

5-2 as follow: 

u,. a.,, U4, IA4 

A 2 
~,114 L. 

M,, 8J Vi , V3 
.., ., 

{jJ , u, 

u,, u, 
A 

11,,11, 

:F'ig. 5-2 Member Loads & Displacements far Pro blcm No. 9 



The displacement matrix f ~} is written as follows: 

/6)={::J 
Applying the boundary condition: 

0, = 03= 0 

one obtains: 

u., 0 0 0 

0 0 0 

0 0 0 

I 0 0 

0 I 0 

I 
Us 

0 0 I 
0 0 0 

1/8 (5-1) 
0 0 0 013 
0 0 0 

I 0 0 

0 I 0 

() 0 I 

'Ille stiffness matrix [ f<] includes elastic bending stiffness 

matrix [ k] and the geometric stiffness matrix 
f: 

[k] = [k] - P[k] 
E 6r 

[ i<] , which is 
~ 

For the member / [k] is shown as follows: 

~A.£... + 1z s•)EI _ Gsp] 
~IL. LJ SL Symmetric 

((Acs _ 1zc~,,.I-+ 6c~p] y.As' + tlc~)El _ 6c?J 
l1 IL ,_fl·· SL J JLL L 1 SL 

_ [ 6sEI _ PS] r-{,c[J + Cl'] [ 4 El _ !fl. ] 
[ k ]= L'- /[) , L' / 0 , L /5) 

I ~(-Ac' - IZS}EJ+ ts•] ~-,t/sc+ 1zc.s_l~T- 6cse1 l-,stJ+ sp_J r~+~ll - 6Si,] 
~ IL L' SL ,f IL L 3 r SL , .C 10],l11L L3) SL 

(,(--Ats ~ c.l _ 6cS,P1 f'cAf_'-_ 1z c-)' rl -1- 6c';o] r-1.cfI_ cpl(~ _1zcs)Elf ~1 (~~- /lC)~rr- 6c> 1 
l' J./.. + (_J)L- SL ,rzz: LI C• SL), e · /0 ,l1 IL LJ J"L),l(IL L' Q .,-LJ 

(6st'.1_sr1 [-wz+YJ fP+fi:1 (-fsEI+YJ ~131 [4EZ-PJ l Lz. lo , L'- /o , L Jo), l C /0 ,[7,- / r, , L 15 
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where s = sin 0 c = cose 

For the member 2 , [ /{] is defined as: 

[l4f- + /~S .. )ll- 6:t]. 
(,~ _ /lc.!,)E + 6c.5p1 ~ il-c•) rl _ 6c7'] 
llJ.I. L ' I SL ,i[T[+ {_ J c . SL , 

Symmetric 

[ 6s[.J _ f:!....] [-6<-E-Z-+ Cf'] [4E-l _ 2Pl] . [ K ]= L • /{) ' {. z. /0 , /__ IS- , 

z (('4/ _ tl.5>;)fL + ~J y ·AcS + 1<c.J_lf _ ~, r-{,ff]+ ~1 (~\ IZS .. )EJ _ 6Sf'] 
l' zL L' n. , ir IL . L'I 1 sL J, L.. lb ,!:IL o SL 

((-,q,s 1-IZCS_)f! - &C!,p'j rpil. ..._ l lC .. )fl + filj r--6cE1_ Cl'] ~- /Z.CS)H+ ~, k&·_ IZC-) .. lfl- ,{cl".7 
[I L/. LJI SL ,(1IL L' .>L , t.• /o .~LL L' SL ) , f"il L 1 YL j 

[,s~z -~1 [-,e,f~ '-I'] (!_!!_-+ Pl] {-t5EI -I ~1 [tm _ ...5.!...J [4€1. - 2f'l] 
L.. /{) , L'- /0 , C [ 30 , L'- / C , L 1 lo , L IS 

where s = s /n c T£ - e > c = cos c n - e > 

The global stiffness matrix of the frame is: 

[ k] 

The structural stiffness matrix becomes: 0 0 0 

0 D 0 

0 D 0 

0 0 0 I 0 0 o 0 o I 00 I D 0 

-r 
[ R] 

0 I 0 

[rJ [kl[r] = 
0 0 0 0 I 0 0 0 0 0 I 0 0 0 I 

0 0 0 0 0 I 0 0 0 0 0 I 0 0 0 

0 0 0 

0 0 0 

I 0 0 

0 I 0 
0 0 I 



where ¢= 

ps 
(-r,s+ -) ·L l o D 

.,.., PL'-
P = -El 
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For the critical buckling load condition, the node displacements 

are arbitrary, hence the following determinate equations holds: 

or 

0 

where 

¢= 
,'\ 

P= 

Equation 5-2a is factored into the following product form: 

( ¢s .. t1zcL- ~LP){ 2~ l 2

-
78~~z¢,cL p + ( 1z sz.-+- 4¢cLJ] = O 

The three roots of Equation 5-2b become: 

..... 

A= 
5(¢5,.+IZC') 

(, C z. 

4-[<:1'/S"+c'"¢> f)111t,s4-s7c,,_s .. ¢,+¢'Lc4 J 
9Sz 

4 (c ~r:/ + cl,.¢) - J /116 5 9 -.5? CSL(/>+ rPc4 J 
9SL 

(5-2a) 

(5-2b) 
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"" Numerically it may be shown that ~ corresponds to the lowest critical 

buckling mode. 

The critical buckling load corresponds to a mode pattern, shown 

in Fig. 5-3. 

l{ 8 = 08 = o 1113=-/ 

Fig. 5-3 Problem No. 9 Buckling Mode Shape 

The inverse of the structural stiffness matrix is: 

where 

m = 4E 1· [ 4C p ':... 2 ( s\zS +49c•) p'"' -+ 4 ( 52,.¢ + I z CZ)] 
I/ L_4 zs / S 

'l1l. = 4 ~Y"[~" p" z _ zu7s,.+ ¢_c,.) p"' + 4 { 3 .5~ + ,-1.. ~)] 
n L.,,, zo i s 'f'c 

lfl.33 = 4
~} •[ 3f;s" p 1-_ ~ { ~ { C

4-r S~)+24cst.j ,.0 + ~CS ... +1Z¢' [ C "'+ 5j+ /44 csz] 



The nodal forces matrix is obtained as: 
0 

I O O O I O 
DO O 0 I 00 

{o}= 0000 I 0 DO O 0 I o 
0 0 0 0 6 I o o 0 0 o I 

The nodal displacement f 6} are computed: 

0 

Q 
2 (¢5 .. + I ZC~- 6:_. p) 

0 

0 
0 

0 

-9f 
0 

0 
0 
0 

0 

-~ 
0 

0 

-Q 

0 

The value of the member forces {PJ are shown as follows: 

t.cL - cpL 
/ 0 

" ¢cs -1Z c5 + ocs P 
.s 

2 6 ,..., 
¢s +;zc•- ~ 

s 

6ct. - cpl 
/ 0 

¢cs -IZ C5 + ~ s 

- ¢s ... -/Zc 2 + 6cp 
s 

-bCl + E:.li 
/ 0 

- ¢c5f/l.C5- 6cs p 
s 

¢S,.rlZ.C.._ - 6c'-j, 
s 

- tel + cpl 
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(5-J) 

(5-4) 



or 

where 

- r~t/,-I-IZ cs -/.lCsp),,, 
. /B 

% 
( t cl .... CP¼½ 

(¢ c5-/l cs 1-/.z c¾ 
-¾ 

(+tc.t:. - cpL)/ { p] = 10 7 B 

( r/lc5-IZC5 +;.zcs½ 

~ 
(-6cL - c.faJ:: ).,.

/1/8 

(-¢cs f1Zcs·-1zc-¾ 

-½ 

"' B = __ __:Q::o__ ___ _ 

2 ( ¢S .. +/2C "-1. zc 'p) 

The forces on each members are shown below: 

Fig. 5-4 

-~~/It,. U,=u, j -
v.,.:11,. 

_ ~ )M, =M4 

U,=U, t 
~: v, 

Free Body Diagram for Each Member 
in Pro.blem No. 9 
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(5-5) 

The relationship between the member axial force P and applied 

node force Q shown 

Fig. 5-5 Free Body Diagram at the Node B 
in Problem No. 9 
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Force equilibrium requires the condition 

2 p sine= Q 

or 

p- Q 
- 2 -s/n0 (5-6) 

Substituting Equation 5-6 into Equations 5-4 and 5-5, one obtains: 

0 

and 

" Q 
2(¢s,.+12cz- ~) ss 

0 

(-¢c>uzcs-o.t CQ~ 

½ 
( 6 CL. - C ¾o-5 YB 

{/es-;zc.5 +o.t,c~ 

-!½ 

[P] = 
(r,cl-C¾.s}"B 

( ¢c5-1ics +P.te??)/8 

½ 
(-tel -c.9{, ,fi Zl>,S B 

(-;ks f!ZC5-o.tC&7)/4 

-½ 
( - 6 CL - C(j,zl> ·SU 

(5-'1) 

(.5-8) 



0= 5° 

3 

2 

I 

0 Q./ 17. l 4,S o.6 o. 7 o.8 o,q 

Fig. 5-6 1/..8 
- Q Rel.a tionship with Different ¢ 

Fig. 5-6 Shows the vertical node displacement plotted versus 

" the applied node load Q for 0=5° with the parameter ¢ a 

variable, The larger the value of ¢ is, the more stiff the member is, 

hence, the higher maximum load can be taken, A plot of the maximum 

value of Q 

Fig. 5-7, 

from Fig. 5-6 versus the parameter ¢ is shown in 
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9 

6 

3 

0 I 2 3 ¢ _ _!_ -~ L 

(~)- ;a4( r) 
Fig. 5-7 Qma;:- t4 Relationship for Problem No. 9 

~ 

A plot of the relationship between critical buckling load Q 

and vertical displacement Vs as given by F.qua tion 5-7 for the different 

angles 0 , with ¢ = 10
4 

, is shown in Fig. 5-8. 

"' Q .. 4 

¢ = /0 ( 
5 i 

l 11a l 

4 
0=.50 ------

3 

2 

I 

0 I 2 3 4 s 6 7 8 9 /O 
( _!_. 11s 

10• T) 

Fig. 5-8 Load-Displacement Relationship for Problem No. 9 
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A plot of the maximum condition of Fig. 5-8 is shown in Fig. 5-9. 

2 
z.oo 

I 

0 1· z• 

L L 
/00 

EI, Co111s7 

0 s· 10· 15" 20• 0 

Fig. 5-9 Q - e Relationship in Problem No. 9 
111a,r 



5.2 Problem No. 10 Axial-Loaded Frame, Exact Solution 

The rigid frame with load on the node is the same as Fig. 5-1, 

with the same L,E, and I para.meters, 

The positive nodal deformations and forces are defined in 

Fig. 5-2, and the displacement matrix f .6\ is 

By the same boundary condition as Equation 5-1, we have: 

a, 0 0 0 

v, 0 0 0 

6 , 0 0 0 

th I 0 0 

VL 0 I 0 

f ::) 
0. CJ 0 I 

- 0 0 0 
U3 

1/J 
0 0 0 

03 
0 0 0 

- I 0 0 Uq 

i7~ 0 I 0 

04 0 0 I 

. • 

LI< J • From Equation 1-37, we have the exact stiffness matrix 
ex. 

combined two members the global stiffness matrix obtains: 

[1< t. [ 191 [ 0 
] 

[ 0 ] [ !i~J 
z 

The structural stiffness matrix becomes: 
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0 

~ ... 

[ 
-h · s<c-l) ·L ] 

l(~-i-1)+j5/l'J~ , 
0 

[ 

- 'I 2 

-~U-~ ·C) •L 

Z( c..nl - I) -t .; s/nj 

where 

For the arbitrary solution of the node displacements 

j [ r] '[ k] [ r] I = o 
hence, 

where T = 2 < eosl -I)+ -k st'n~ 

The inverse of the structural stiffness matrix is: 

where 

[[r f [kl( rf 
m,, 0 mo 

I -
D 0 lnzz 0 

ll113 0 mn 

- .2. .... .., 2 -tp.5 .. ~(S-~C) ·L 

T 
+ 

+ _l. ,,.. ~ * 5 · C ·(S-~c) ·L 
Tz 

J ~ L 

,.,., -¢5 ~ {C-() · l 
F✓ <13 = -~------

T + 
- S' - _,. 
~ ·.5 · S C (C-l) ·l , .. 

mzz. = 
- r/, Z .. j C S - i c) · L._ 

T 

l? ~
4
[sr s-~c J+ s ( c-d] 

_J -'I- -3 
m ,l.,zc_ .. 5_ .. _ ¢1<s( c + 5 > 
//( J3 = 'f' 

T 

Tz 

6 .. - -A S ·S · C 

Tz. 
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The nodal forces matrix is the same as Equation 5-3 

The nodal displacement matrix f 6. } is computed as: 

0 

Q 

Z ~I• [ 9)5:._ ~':/-L] 
0 

The values of the member forces obtain: 

5-9, as 

[P}- Q 
- z[¢s':.. :4 1;.c'] 

... ✓J-\. _ ¢ $ + t{ C · 5 
T 

1§~L · C C c-1) 

' J - -¢c·s t -,E S · S C ...,. 

/4 ~ L /J ~"" 'f'S -"!Y_SC 
7 

~ ... L ·c-{c-1) 

7 
:I - -(Jc.s· + n S · S C 

T 

J -· _ ¢S._ + ~ S • C 

T 

_ -A,L ·c--{c-1) 
T 

-

~
1S·c .5 
T .. es c .. 
T 

The sea lar relation between Q and 

(5-9) 

is given by Equation 

(5-10) 

Fig. 5-10 shows the Q -(~) relationship of Equation 5-10 

for different values of the slope angle 0 with 4 ¢> equal to 10 . 
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ComP3,rison of the vertical nodal displacement ( -v½) for Problem 

No. 9 (the approximate method) and Problem No. 10 (the exact method) is 

shown in Fig. 5-11. Equation 5-7 represents the approximate solution and 

Equation 5-10 defines the exact solution. These results are plotted 

for the geometric case with e = 5°. 

f 
f 

0= 5° 
EXACT APPROX. DIFFERENCE. 

( Pro , ll;o) ( .Oro. # g l ¼ 

-'"' 

Q 11?tlX . 3.53 3 .49 I. I% 

½ 0.0415 0 .040 3.6 % 

Table 1. ComP3,rarison of the Load and Displacement 
for Problem No. 9 & No. 10 

-----1/ --.....__ 
1/ "'-

1/1/ "" 

Exact Method 
(Problem No. 10) 

~ "'-
~ . '\ I/ Approximate Method ~ 

I/ (Problem No. 9) ~ 

f ~ 
f \ 

o.o/S O.PJ o.o4S 0.06 p.07.f 0.09 

Fig. 5-11 Q -(v~) Relationship for Problem No, 9 & No. 10 
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Fig. 5-12 Q,.,0 ~- 0 Relationship for Problem No. 9 & No. 10 
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-
A comparison plot of Qmax. from Fig. 5-9, and Fig. 5-10 is 

shown in Fig. 5-12. It may be seen that Q~a~. given by Problem No. 10 

(the exact stiffness method) is larger than given by Problem No. 9 

(the approximate method) with the same angle 0 • 
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CHAPI'ER VI 

DISCUSSION AND CONCWSION 

6.1 Discussion 

In analysis of the orthogonal planar frame, if the stiffness 

matrix [ K] is taken as the elastic stiffness matrix [ K ]£ only, this 

leads to the linear solutions relating forces and displacements. If both 

the elastic stiffness matrix [Kt and the geometrical stiffness [ K] 
G-

are utilized, that is, the effect of axial force on bending is included, 

this leads to a non-linear solutions relating forces and displacements. 

If the effect of axial stiffness- ( Af) is excluded from the analysis, 

the solution of the bending problem is not effected. For the static 

buckling problem, the number of critical buckling loads and associated 

mode shapes is equal to the order of the condensed stiffness matrix. In 

the biaxial. critical load condition, the value of the critical buckling 

load is determined by geometrical interaction between both axial forces 

which produces.a condition of the lowest critical buckling load being 

associated with a higher order mode shape. From Fig. J-6, the left 

section of the solid line shown represents the lowest critical buckling 

load defined for the first mode shape. The right section represents 

the lowest critical buckling load in the second mode shape; the 

intersection of two curves is approximately at f ~ : 3t6} which is 

obtained numerically in Appendix I. It can be seen that the critical 

buckling load is lower when biaxial forces are applied. 

In the symmetric orthogonal frame, the geometrical stiffness 
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matrix is included in the column members only when the load is applied 

vertically on the node. In horizontal members the geometrical stiffness 

matrix may be excluded. For the case where the geometrical stiffness 

is included, the effect is that nonlinear force-displacement conditions 

result as shown in Fig. 3-14 & Fig. 3-15, All values of shear forces, 

moments and displacements versus the same applied load show nonlinear 

characteristics with values higher than those given by the linear a.nalysis. 

This shows these solutions are more accurate than linear solutions which 

are only first approximations to the actual solutions. 

For the nonorthogonal frame, neglecting the axial stiffness 

term ( i.e. At+o ), the solution rrathematically satisfies the equili

brium but physically leads to an unacceptable solution. The axial stiff

ness in nonorthogonal frames causes coupling which effects the bending 

situation, so, it must be included in the stiffness matrix [K]E . For 

orthogonal frames, this coupling does not occur and hence AE the 1 term 

may be neglected in the analysis reducing the stiffness matrix from a 

( 6x6) matrix to a ( 4X4) matrix. The 

for the nonorthogonal frames exists only 

displacement-load relationship 

AE when 1 has a reason.able 

numerical value. Axial displacements become zero as ¢ approaches infin

ity and 1' is indefinite as ¢ approaches zero. 

For the symmetrical nonorthogonal node-loaded frames, the 

larger the inclination angle 0 with the horizon ta 1, the greater the 

applied load that is supported for a given displacement. Fig. 5-7 

shows that frames with greater axial stiffness support higher loads. 

For the same problem, the answer obtained by use of the exact stiffness 

matrix always yields higher values of load carrying capacity than that 

obtained by the approximate stiffness method. 



6.2 Conclusion 

The total stiffness matrix [ K] contains not only elastic 

stiffness [ I( ]E and geometrical stiffness [ R]<i-but also must 
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bending 

include 
AE the axial stiffness components 1 . The exact theory yields 

a stiffness matrix with trigonometric elements which may be expanded in 

infinite series in the form: 

For convenience, this two term form is used as the approximate stiff

ness matrix which sho~close correlation to that given by the exact 

form (see Fig. 5-11). 
AE For symmetrically loaded orthogonal frames the 1 terms may 

be excluded from the analysis with no resulting complications in the 

solutions. F'or symmetrically loaded nonorthogonal frames, the axial 

AE stiffness component 1 must be included in order to produce reasonable 

numerical results. Mathematical analysis of nonorthogonal frames is 

much more complicated and a reliance on matrix techniques is an 

absolute necessity. 



APPENDIX I 

Equation 3-6 shows: 
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The relationship between P and Q is plotted as follows: 
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