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ABSTRACT

ANALYSTIS AND STIMULATION

OF MULTIRATE SAMPLIED-DATA SYSTEMS

Anthony Pe. Messuri
Master of Science in IEngineering

Youngstown State University, 1979

This tﬁesis deals with the analysis and simulation
modeling of several multirate sampled-data system config-
urations. The analysis of these systems first requires the
development of the discrete-time system description and finding
the optimal feedback control metrix for such a system. An
observer was included in the system representation to pro-
duce an approximation to the statg vector, which is usually
not available for direct measurement. Specific examples of
multirate systems, having several different configurations
were investipated. Computer simulaticn results are presented

as well as a comparison of the responses of each system.
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CHAPTER I
INTRODUCTION

Sampled-data analysis has been greatly motivated by
the wide~-spread use of digital computers in the implementa-
tion of feedback control systemse The formal study of sampled-
data systems may be traced back to the development of auto-
matic tracking radar systems during VWorld War II. The puls-
ing characteristics of the radar position data led the design-
ers to model the system as a sampled-data system rather than
a continuous system. Interestingly, one of the main appli-
cations of sampled-data systems today is in the use of on-
board microcomputers for guidance and control of aircraft
systems. Since some of these guldance measuroments may be
monitored more slowly then others while étill meeting the
system performance requirements, more than one sampling rate
may be present in the control system. These multirate sampled-
data control systems result in a recduction in the amount of
computer capacity and allow more system flexibility.

In this thesis, examples of multirate sampled-data
systems are investigated. A development of the system egua-
tions describing a sampled-data control system is presented
in detail in Chapter II. Also presented is the solution of
this discrete-time optimization problem.

Chapter III includes a discussion of discrete-time



systems in which the control variables are sampled at more
than one rate. This leads to a simulation model representing
a multirate sampled-data system.

Some specific examples of sampled-data control sys-
tems are considered in Chapter IV. A digital simulation was
performed for each system and the resulting system response

of each model is presented.



CHAPTER TII
THE DISCRUTE-TIME LINSAR QUADRATIC OPTIMIZATION PROBLEM

A. Development of the Discrete-Time System Description

The continuous-time equations describing a linear time-
invariant control system are given by

x(t)=Ax(t)+Bu (%) (2.1)

y(t)=Cx(t) (2.2)
where  x(t) denotes the state vector

u(t) denotes the input vector

y(t) denotes the output vector
and A,B,and C represent time-invariant coefficient matrices.
In addition, the performance criteria for such a control sys-
tem is giv%P by the standard quadratic cost functional:

J=Si?'(t)Qx(t)+u'(t)Hu(t)]dt (2.3)
where Q ;;d R are weighting matrices to be chosen by the
designer (see [1,3—5]).

Matrix @ is selected to be symmetric and at least
positive semidefinite while matrix R is selected to be sym-
metric and positive definite. In most cases, ) and R are
chosen to be diagonal so that each individual component of
the vectors x(t) and u(t) can be weighted separately. It
can be seen from equation (2.3) that the larger the values
of the matrix @ are chosen to be, the more rapidly x(t) will

converge to zero. Similarly, the larger the values of R,



the more rapidly u(t) will converge to zero [6].

The set of equations (2.1), (2.2), and (2.3) is re-
ferred to as a linear quadratic optimization problem. 'The
optimal solutiocn consists of finding the input vector u(t)
which satisfies the system equations (2.1) and (2.2) while
minimizing the quadratic cost functional (2.3).

| If a digital simulation of the sampled-data system
described by equations (2.1) and (2.2) is to be implemented
and tested on a computer, then their equivalent discrete-
time deterministic equations must be obtained. This trans-
formation to an equivalent discrete-~time problem can be
accomplished by integrating the differential equation (2.1)
of the system and also the quadratic cost functional equa-
tion (2.3) over each sampling period [7]-

Rewriting equation (2.1)

x(t)=Ax(t)+Bu(b) | (2.1)
Applying the properties of Laplace Transforms produces

8IX(s)=-X(0)=AX(s)+BU(s)

sIX(s)-AX(s)=X(0)+BU(s)

(sI-A)X(s)=X(0)+BU(s)

X(s)=(sI-A)"'x(0)+(sI-A)" BU(s)

x(t)=eAtx(to)+(f1{(sI—A)_1BU(S% (2.5)
Use of the convolution theorem [ 8]

Lo (s)u(s)} =(g¥n) (v)

Z"{G(S)H(sg=3;(a<)h(t-o<)do< (2.6)
’ t

0
so in this case

i-1 {(sI-A)'1BU(s )} =eAtspu(t)
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2V {(s1-2)""BU(s)} ) AE-%py (&) ak (2.7)
to
Substituting this result into equation (2.5) produces
t —)
x(t)=eAtx(to)+SeA(t Bu(«)d« (2.8)
t

0
Since the functions involved in equation (2.8) are constant
over definite intervals and sampling occurs only at the
sampling instant tk, the interval of integration may be

changed from [t,,t] to [t,,

__A(t
teug 158

Assuming that u(t) is constant over the sampling

K+1] Vleldlng

x(t k+1'tk)X(tk)+S"éA(tk+1 “)Bu(«)d& (2.9)

period tk’ as mentioned above; also means that

u(t)=u(tk) for [tk’tk+1] (2.10)
and equation (2.9) can be rewritten as
A(t ) AL, . =)
x(t, 1 )=el (Ve kx(tk)+[3 k1™ ax]Bu(t,) (2.11)
which can be put in the forT
where k—x(t ) *
uk=u(tK)

Bty 0ty )= Florr ")
Further simplification of equation (2.12) yields

Xy q =0x) +TUy (2413)
where #= ﬂ(tk+1,tk)~eA(t

e

T=T(tk+1,tk)t ¢(tk+1,s)dsB
K

k+1'tk)

The discrete-time equivalent of eauation (2.2) may be found
directly from the continuous-time equation

y(t)=Cx(t)
Since the output measurement vector is sampled at discrete

points in time, the discrete-time. equivalent equation can



be written as

y(t,)=Cx(t,) (2.1))
or eguivalently, since

¥y (ty) and  x. =x(t,)
then equation (2.1l)) may be rewritten as

¥ 7Cxy, (2415)
In order to find a discrete-time equivalent of the guadratic
cost functional equation (2.3), it must be rewritten as a
sum of N integrals in much the same fashion as was done to
form equation (2.12) of the discrete-time linear differential
equation (2.l1)s The discrete-time cost functional equation
then becomes [7]

JNﬂggi(x'kﬂa,xkﬂ+ax'l3’>1uk+u'k§uk)} (2.16)
where Q= t"}3'(t,tk)Qﬁ(t,tk)dt

%iSTﬁ'(t,tk)QT(t,tk)dt

R=t§ Te+1’ (£,t,)Q0(t, 5, )] dt

In summary, the linear quadratic optimization problem
for the discrete-time case is given by the following set of

equations:

Xy =By TRy » (2.17)
yk;ka (2:18)
N 1 A t A 1A
<k
JN“E{ZS" k+1(’1xk+1 +2% k1\@1,1k+ukRu]‘{)} (2.19)

Be Solution of the Discrete-Time Linear Quadratic
Optimization Problem

The solution of the system described by equations
(2¢17), (2¢18), and (2.19) depends on determining the optimum

value of the control input . which will minimize the quadratic



cost functional JN' One approach to the solutlion of this
problem involves applying the principle of optimality to the
quadratic cost function‘[9]-

Beginning with the last term of the summation in

equation (2.19)

ot A 1/: 1 A
JN—Q(X N+1QXN+1+2x NMuN+u NRuN) (2.20)
Substituting for the terms X pq 88 given by equation (2.17)
yields
J ﬁ%[(¢ +Tu )'%(ﬁ +Tu )+2x' ﬁu " ﬁu ] (2627)
N RLVPER TNy RUPRy Ty NN TN TN .

Applying the following properties of matrices
(A+B) '=a"+B' and (AB) '=p'A’ (2.22)
equation (2.21) can be rewritten
=y 1 tA ' A L 1 tA
Ty=s[x g8 Wyt B Qlugtu T Qdxyru T QTuy
1 /\r 1 A :l
2x NI-luN+u NRuN (2.23)
A
Since Q is symmetric
1 1A 1 rM ” t 1A
b d Nﬂ QTuN+u nT QﬁxN-Zx N¢ QTuy
Also, by factorization,

A
M

> t 523':\"‘11 +2 ! =2 1 (95‘?’1’*—{\-")
XN QT nHex N-2E N QI+ )uy,

N

1 1A t_/\ - tA A
u NT QTuN+u NRuN—u N(T Q,'I'+R)uN

Then equation (2.23) becomes
= t 1A 1 tA ? . 1A A

JN-z[(X Nfé chN)+(2x N(ﬂ QT+Il)uN)4u N(T QT+R)uIa(2.2L|.)

In order to minimize Iy equation (2.2l3) will be
differentiated with respect to Uye It should be noted that
Xy depends only on uy , and is not affected by uy; thereforc
é%i = 0. -Applying the following properties, where B is
symmetric

J 1 Jd t

A BA |[=2|BA and BA|=B

WILLIAM ..F, M! Frrne
YOUNGSTOWN ~rate
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Recalling that the matricies Q end R are symmetric, the deriv-

ative of JN with respect to Uy is

o o {folelex'y 0 o] ot Sy
o=s[2(s " dr+1) ' J+[2(2 " QU +R)uy ]
o:ﬂT'§¢+ﬁ')xﬁh[(T'&T+ﬁ)uN]

Solving for Uy

A A _1 1A At
uN=-(T QT+R) (T Q@+M )xN (2.25)
Equation (2.25) can be rowritten in the form
Uy=-Hy Xy L (2.26)
N N - A
where HN=(T’QT+R) Tr'Ggan') (2.27)

iquation (2.26) represents the optimum value of the control

input Uy which will minimize the Nth terni of the cost func-

tional JN’ bvaluating the cost functional equation (2.2L) by

substituting the value of U, as given by equation (2.26) yields
1 1 A 1 IN A y
Iyel (x 'y Qfxyg) +(2x (87 QT (~Hyx ) +
v, 1A_ A
(-(Hy)x) ' (T QT+R) (~Hyxy )]
sy [0 +20g " Brett) (-my) + (- ) (2" 0eB) () ] )
N7 N N N - N N
Substituting the value of HN found in equation (2.27) produces
J -ﬂ{x Nﬂﬁ Qﬂ -2(g 4T+M)H +(T Qﬁkh ) «T QT+R) )
(7" Qr+R) (Hy) ] 2}
) ' " i }
1y=efx' [(409)- (0" Grety I,y (2.28)
BEquation (2.28) now represents the minimum value of the Nth
term of the cost functional.
Using a similar approach, the-(N—1)th term has the form
T L=a(x 0 +2x M L 4u' )+J
N-1T 2% §O&y -1y N’l g
, t A 1 A 1
Tpoq=a(x yQxy +2x gy Muy_,+u goq g
! 1A 1A A
s{x' [(8'00) - (8" Gt g 1 )



JN—1£%CK'N{6+[(¢'a¢)“(¢'6T+ﬁ)HN]}xN+2X'N-1ﬁuN—1+

1 A

u N-1RuN-1) (2.29)
. N 1A A A
Lotting Py_,=w+[(# Q2)- (¢ Qi) ] (2.30)
allows equation (2.29)to be rewritten as
I .=s(x P +2x' ﬁu ! ﬁu ) (2.31)
N-1 2" N N-1%y | . O Bl 2 ey G '

Using equation (2.27) as the definition of the HN term in
equation (2.30), the matrix PN-1 is seen to be symmetric.
Then equation (2.31) is equivalent to equation (2.20) with

AY
the index N replaced by N-1 and with P defined to be Q.

N
Therefore the optimum value of the control input Uy which
will minimize the (N-1)"® term of the cost functional Iyaq 1is
U1 = By ¥y (2:32)

where HN_1=(T'PN_1T+§)-1(T|a¢+ﬁ')
Note that equation (2.32) is equivalent to equation (2.26)
with the index N replaced by N-1. According to Dorato and
Levis ﬁ(ﬂ, if the system is stable and controllable then the
sequence P is bounded, and the discrete Riccati equation
%af@{m”%m“MH%T&”&] , By
has a limiting solution P that satisfies
=0+ [(#' 26) - (' pr420) (' pR) 7T (2" Bt )]

Therefore the optimum control input equation is

uy=-Hxy (2433)
where H=(T‘PT+§)-1(T'P¢+ﬁ') (2.31)
and  p=ha[(¢'7g)- (2" PTaI)E ]

The matrix H described by equation (2.3l;) represents the
optimal feedback control matrix for the system given by equa-

tions (2.17), (2.18), and (2.19). The configuration of this
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system may be represented in block diagram form as shown in

Figure 1.
T
; sn;:;z Ko YK
X = EE—.
ELEME NY

Figure 1. System Representation /ith Optimal
Feedback Control Matrix.

C. Approximation of the State Vector

The system represented in Figure 1 requires that the
entire state vector x(t) be directly available for use by the

feedback controller. In an actual system, the entire state
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vector is usually not available for direct measurement. 1his
requires the development of an approximate state vector which
can tnen be substituted into the control law of equation
(2¢33)s The system which produces an approximation of the
state vector, using the inputs Uy and outputs b g of the sys-
tem, is referred to as an observer. In the deterministic

case, this observer system is called a Luenberger observer[11].

SRR

Figure 2. - A Simple Observer System.

First, consider a system of the form of Figure 2,
which shows a free system S,l with no input and an observer
82 whose inputs are the outputs of S1. The equation describ-

ing system S1 is

Xy =0x, ¥, =C%y (2.35)
and the equation describing the observer Sy is

Ry 1 =FR Ly, (2.36)
The design of a Luenberger observer depends upon the exist-
ence of a transformation matrix V which satisfies the equation

VO-FV=LC (2.37)
For convenience, the transformation matrix V may be chosen
to be an identity transformation. When this is done V=I and
equation (2.37) becomes

$-F=LC (2.38)
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Solving equation (2.38) for F yields
Substituting equation (2.39) into equation (2.36)
A

Xyepq = (0-1C) X +Lxy, (24140)

BExtending this principle to the forced system shown in Fig-

ure 3 will lead to an observer that can be described by an

equation

A —T 2

.}xk*_,l —ka+Lyk+VTuk Ce Ll.“ )
Since V10X and maintaining the identity transformation V=I

A A

Xy =FX +LOK +Tuy (2.142)
Noting that equation (2.39) remains valid

A A

xk+1—(25-LC)xk+Lka+Tuk (2e143)

Any matrix L may be chosen for the observer; however
the response of the observer system is determined by the
eigenvalues of the matrix (¢-IC). It should be noted that
the response of the system decays exponentially for eigen-
values within the unit circle in the z-plane. The eigen-
values of the observer are chosen to be within the unit cir-
cle to insure system stability and that the state of the
observer will converge to the state of the observed system.
In practice, the eigenvalues of the observer are chosen to
be slightly closer to the origin than the system eigenvalues
to insure that the response of the observer will decay faster
than the system response. Two different methods which were

used to obtain observer matrices are presented in Appendix B.
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‘OBSERVER *

| S T, ..AJ L K } ! vl
¥ l“%=-44xkr; | sysTeEM ISTees

&

Figure 3. General Representation of a Feedback
Control System With an Observer.
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CHAPTER III

MODELING OF A MULTIRATE SAMPLED-DATA SYSTEM

A. Sampler Operation

The control system discussed thus far is referred to
as a sampled-data system, since the system variables are only
measured at discrete instants of time. Therefore samples of
the state and the output of the system occur at periodic
intervals rather than continuously.

In order to convert continuous signals into discrete
signals, a sample-and-hold element is required. The sample-
and~-hold element samples the value of a continuous signal at
the sampling instants tk, and maintains the sampled value

until the next sampling instant t That is,

k+1°
o V4
w(t)—w(tk) for tk—t<tk+

.
where w(t) is the output of the sample-and-hold element.

This description allows information to be converted from a
continuous signal to a discrete signal and, likewise, from
discrete to continuous. This operation is necessary in any
design involving a digital compﬁter since the computer can-
not work with continuous signals directly. Instead, a dig-
ital computer performs its operations on distinct numbers |

available only at specific instants of time. In some appli-

cations, sample-and-hold elements are used because the sampling
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action may improve the overall performance of the system.

Be IMultirate Sampling

Sampled-data systems may contain more than one sample-
and-hold element. Most control systems are designed with the
samplers operating in synchronism with the same sampling
rate, and are thus referred to as single-rate sampled-data
systems. However there exists a class of control systems in
which two or more samplers operate with different sampling
rates; these systems are referred to as rmltirate sampled-
‘data systems. The analysis and design of multirate systems
may be traced directly to problems concerned with single-
rate sampled-data sysﬁems. That is, the designer may wish
to convert a single-rate sampled system into a multirate
system in order to analyze the system mathematically. Fur-
thermore, the introduction of multirate sampling may be used
to improve system response.

On the other hand, multirate sampling may arise from
the modeling of an actual physical system. For instance, an
onboard digital computer used in an aircraft flight control
system may operate at a different rate than that of the var-

ious sensor inputs, such as the system radar (see [2,12-1&]).

C. Representation of a Multirate System

The principle of multirate sempling can be applied
to the discrete-time system described by the previously

derived system equations
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I ﬁx@jnukm
e T =T
Yy KT 5= KD KT 54T,
A
uk;—kaf,I lgI‘?_ M
— (A A <
x%¢1—(ﬁ LC)XK:LykTTukM, kT £ KT, <kT, +T,

which are represented by the system block diagram of Fig-
ure li containing two samplers. The two samplers shown oper-
ate at different sampling rates although both are assumed to

close simultaneously at time t=0. The sampling rates T, and

]
T2 are assumed not to be integer multiples of each other.
Therefore the smallest periodic interval for the entire

multirate system is given by the least common multiple of

T, and T,, which will be denoted as Ty.

De Sampling and Updating of System Variables

From Figure l, it can be seen that ul mast be avail-

able at the sampling instants T?. For this reason, the feed-

back control gain matrix H is calculated at T2. Also, since

x(t) and ﬁk must be available at both T1 and T2, these terms
M

will be updated at the multiple time TM'
Since Vi is only updated at T1, the observer only
receives new inputs at time T1. Keeping this fact in mind,

equation (2.43)

/\

k+1 =(g- LC)xl+LCx +Tuk

4

can be rewritten as

A

Xy =($-10)% +Lyk+i‘u

k,

&
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A —ﬂA . L A
Xk31— szluk: (yk:kal (3¢1)
In order to update % at the rultiple time T,

mator can be used to calculate %k at times other than T1.

M

a linear esti-

According to Rhodes[jS], the best linear estimator may be
obtained by setting the observer term L equal to zero at all
the times other than T1. This approach results in the fol-

lowing observer description:

A

™Y =% e ey "

- L(Yk-cxkx at kTy=KkT,
where 2= ! N
m (0 at all other times (3.2)
The above discussion concerning the updating of the
system input and output is illustrated in Pigure 5. As can

be seen, the input, Uy is updated at KT while the output, Vs
2 ) [

is updated at k?1.
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Figure 5. Sampling and Updating of System Variables
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CHAPTER IV
LXAMPLES OF SPECIFIC MULTIRATE SYSTEMS

In order to demonstrate the implementation of a
sampled-data system based on the system equations of the
previous section, two types of system models were considered:
(1) a two-sampler system having a single input variable and a
single output variable; and (2) a three-sampler system having
a single input variable but having two outpout variables.

Both of these models were chosen to be third-order systems.

A computer simulation of each system model was done in order
to determine the response of the system. Generally, the sys-
tems discussed were based on the system block diagram shown in

Figure l.

A. Systems With Two Samplers

Consider the continuous-time system described by the

following equations:

0 %, (6)] 2.0]
20| |x,(8) |+ 3.0 [u(t)]
0

0
Lx3(t)— 160 2.0 O. 53(1‘:)_‘ L‘I.O—‘

-;1(t)- 0.5 O 0.

iz(t) =|w2.0 ~0.8

L
[, (8]
[?(t)] = [1.0 T 2.0] x,(t)
x3(t)
L2




Ho 0 0.0 0 o— gc (t)—
T L ] L L ] 1
JO=8 l:x1(t) x,(t) x3(tﬂ 0.0 10,0 0.0 |z, (%)

t
°

[u(s)] [2.0] [u(tﬂ\)» at

where the A matrix was formed as shown in Appendix A. As
discﬁssed previously, the weighting matricies Q (t) and R (t)
were chosen to be diagonal, and the values of these matricies
were chosen by experimentation.

The particular two-sampler system chosen was one with
a configuration as shown in Figure L, sampler one operates at
a rate of I samples per second while the rate of sampler two
is 5 samples per second. In a multirate system, the smallest
periodic interval, TM’ is given by the least common multiple
of the two sampling intervals. Therefore for this particular
system, the multiple sampling rate is 20 samples per second.

As discussed previously, the matricies @ and T were
computed at the multiple sampling rate while the gain matrix
H was computed at the rate of sampler twoe. The discrete-time

equations

%*1—Qx +Tur L:—H "
- —C 1.
%T1 =% k+Tu +L(j1 CA ) Vi~ f*n

become x1(k¢1) 0.97L1 0.0ZMM 0.0 1(%) 0.1006

x,(k#1) |=|=0.0975 0.97L 040 ||x,(ig) | +[ 01132 [u(kﬂ

x3(g¢1) 0.0l Oe1 %0 x3(g) 0.0598

x1(kQ-
[y(k')]zljl.o 4O 2.O:|x2(k')
xB(K)




LY

Bz1 (k)|
[u(%ﬂ = -[7.0271 -2.4795 -1.3092} %, (k)
_:,\{3(1{”2_
-9;1(]&”1-1; [ 04971 0.02); 0.0 -ft,‘(kM; (0.1006]
%2(g¢1)=‘-o.o975 0.9741 0.0 £2(¥2+ 0.1432 @(gj+
_%3(%¢1Z N 0.0l 0.1000 1.0 -%3(4% _0.059%
Lyq %, ()]
Loy (k)] = [1:0 4o 2.0]|%,(k)
F31 | |%5(5)]

The observer matrix L wes calculated using the £
matrix found at the multiple sampling rate. The values of
the observer matrix were obtained by using each of the two
independent methods described in Appendix B. The solution by
the algebraic method of equating coefficients yielded

L11 -1.0520
L21 =|=1.0200

L31 3.0000

e -

while the solution of the Kalman one-step predictor equations

resulted in
' Ly, -0.0945
L31 0.0950

For comparison purposes, a simulation was performed
for a single-rate two-sampler system having the same config-
uration of Figure lj. With the sampling rate of both samplers

equal to 5 samples per second, the discrete-time system
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equations were :
Px,l(kjr‘l) 0.8868  0.0899  0.07[x,(KJ] [0.14062]
xp(Kr1)| =[=0.3595  0.8868 0.0 |x, (k)| 0.1927|[u (k)]
x3(k;1) 0.114L5 0.3875 1.0 x3(%) 0.3161

i
x, (k)
[y)] =[1.0 1o 2.0 |x,(k)
XB(%)
' « %, () |
[u(lg)] = -[7.0271 -2.14,796 -1.3092] 5\;2(}{3)
X (k)
[

2 )] [ 0.8868  0.0899 o] [, ()] [o.Lo62]
x,(k+1)| =| =0.3595  0.8868 0] |2, (k)| 0.h927 [ux]+
A . A
Lx3(¥j1l ] 0e1145 0.3875 'I.O«J xB(%) O.Buéu

20081 (4, ()]

0.2310 | 3y (k)] - [1.0 1.0 2.0] 2, (k)

0.16l. % (1
}45 LXB({’)J

This observer matrix L was developed by the Kalman one-step
predictor method discussed in Appendix B. Appendix C demon-
strates the procedure followed to determine whether the
states of the system are controllable and observable.

The state response of each of these systems is shown
in Figure 6 through 14. In these figures, part (a) repre-
sents the response of each state variable, x. Part (b) of
the figures represents the response of the estimate, Q, of

each state variable. The difference between each state
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vector and its estimate is displayed in part (c) of the fig-

Urese

B. Systems With Three Samvlers

Consider the three-sampler system shown in Figure 15,
which has one input variable but two output variables. First
consider the case where the two output variasbles are each
sampled at a different rate. Such a system may arise in
certain applications when some portions of the output cannot
be sampled at the same rate as other portions due to the
characteristics of the measurement devices.

The particular system design considered was one
where sempler two and sampler three operate at the same rate
— 5 samples per seconde The rate of sampler one is again
chosen to be || samples per second, so the multiple sampling}
rate remains 20 samples per second. Therefore both ukaand
y2k are updated at the faster rate while Ny is updated at

2 |
the slower ratee.

Similar to the two-sampler rmultirate case, § and T
were computed at the multiple sampling rate. The gain matrix
H was computed at the rate of sampler three, which in this
particular system is the same as the rate of sampler two.
Therefore the values of @, T, and H were identical to those
used in the two-sampler multirate case. Although the observer
matrix L still depends on the ¢ matrix found at the multiple
sampling rate, the calculations necessary to determine the

values of L were much more involved since L must now be
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Therefore the observer matrix L was found by

For the three-sampler two-output case, the discrete-

time equations were

-—

-x,l(krj‘-’l )| [ o.97L1 0.02l)1 0.0 Fx,l(l«:m)' [0.0987]
x, (k1) | = =0.0975  0.97L 0.0 || x5 (k)} |04 0049 Ez(km)]
_x3(km+’l )_ - 0.0LL) 041000 1'Oj _x3(kmz _0.00231
y,(k)] [1.0 Lo 2.0 rx,.(km)”
Bre(ka) =[2.0 1.0 3.0 [x,(k)
; x4 (k)
5‘:1(1{,2
[u(lgﬂ = -[2.21;75 ~3.205L —1.6827] %, (k)
%5(k)
"A e - T TA - r— b =
%, (k1) 0.97L1 0.024)  0.0||x, (k) [ 0.0987
;’22(1;;1) =[-0.0975  0.97L1  0.0||&, (k)| ~0.00L9|fu (k)]
% (k1) 0.0LL)i 041000 1.0{|%, (k) | 0.0023
i 3 i | J1 3 i _J
-0.1953  0.2401]( [y, (k)] [1.0 4.0 2.0 &1(132
0.2850  -0.1876|(|y,(k)-|2.0 1.0 3.0||%,(k)
a . A
0.0696  0.210l _xB(kN}_

As a second case, consider the threc-sampler system
of Figure 15 with both output variables being sampled at the
same rate —— || samples per second — while the control input
is sampled at a faster rate — 5 samples per second. The

discrete-time system equations for this case remain as shown
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above; however both output variables are updated at the slower
rate while the control input is still updated at the faster
rate.

As before, a simulation was also performed for a
single-rate three-sampler system for comparison purposes.
With all three samplers in Figure 15 operating at the rate
of 5 samples per second, the discrete-time system equations
were
[x, (k#1)]  [0.8868  0.0899  0.07[x, (k)] [0.14062]
(k)| =[-0.3595  0.8868 0.0 |x, (k) [0.4927|[u(k]]

x3(gf1) 041145 03875 1.0 xB(Kﬁ 0.3161
L = L .

~y1(k3) 10 LeO  2.0] |z, (k)

Y2(k3) =| 2.0 160 3.0 Xz(kg)

x4 (k)
2 ()]
[ute)] = -[7.0271 -2.14796 -1.3092] %, (k)
X4 (k)
(2, ()] [0.8868 00899 0.0] [%, ()] [0.L062]
2 (k+1)[=[-0.3595  0.8868 0.0 |, (k)| 01927 fa(k]+
A A
R, 0c+1)| | 041145 0.3875  1.0|[%, (k) |0.3L61
G et 1N
204138 0.1816](fy, ()] [1-0 1.0 240)I%, (k)
0.3102 -0.2315|[ly,(¥)-|2.0 1.0 3.0|%, (k)
0.1202  0.1957 , 2, (k)
] by

In an attempt to improve the system response, the

case where the two output variables were each sampled at a
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different rate was reconsidered. The simulation program for

the system was based on v, being sampled at time T, and Io

1
being sampled at T2. In the previously discussed approach
(Case 1), at those instants when ¥, is not available, its
value is set equal to what it was at the previous sampling
time; similarly for Toe However if neither one of the y com-
ponents is available, the observer term is set equal to zero.
As an alternate approach (Case 2), this simulation program
was revised so that when one of the y components is not avail-
able its corresponding part of the observer term is set equal
to zero, leaving only the part due to the y component that is
present. Siﬁce the system variables are still being updated
at the rates given in Case 1, the discrete-time equations are
identical; the only difference between the two cases is in

the method used to update the output components.

The state response of each of these systems is shown
in Figures 16 through 27. As before, part (a) represents the
state variable, part (b) represents the cstimate of the state
variable, and parti(c) displays the difference between each

state varisble and its estimate.
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CHAPTER V
CONCLUSIONS

The effects of multirate sampling on the response
of a sampled-data system are demonstrated by the simulation
results presented in Chapter IV,

A comparison of the responses of the two-sampler
multirate systems indicates that the system using the observer
values determined by the algebraic method of equating coef-
ficients exhibits the characteristics of a more underdamped
case. This response 1s due to the values chosen for the
eigenvalues of the matrix (#-IC). The response of this sys-
tem can be adjusted by modifying the choice for the eigen-
values of the matrix (ﬁ;LC).

The response of the three-sampler rmultirate system
where both output variables are sampled at the same rate
closely resembles, in shape, the response of the two-sampler
multirate system, where the observer matrices are both found
by the Kalman one-step predictor equations: This similarity
is to be expected since, in both systems, the control input
is sampled at the rate of 5 samples per second and the
entire output vector is sampled at the rate of l. samples
per seconde

However for the three-sampler multirate system with

each of the two output variables sasmpled at a different rate,
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the response does not decay to zero as rapidly as the other
three-sampler systems. Furthermore, the response contains
periodic pulses which, although they decay, account for the
lengthening of the response time interval. The simulation
program for this system model was based on 79 being sampled
at time ’I‘,I and Yo being sampled at time Ta. At the sampling
instants when 74 is not sampled, its value was set equal to
what it was at the previous sampling time; that is, at the
éampling times when 74 is not updated, it was.assumed that

Ty, = Ty
Similarly for Toe In the calculation of the z terms described
by equation (3.2), these values for ¥4 and Tos containing
past information, were used.

However, because this simulation exhibited oscilla-
tions and required a comparatively long time to decay, the
simulation program weas revised so that the particular y com-
ponent which is being updated is the only one that affects
the calculation of the z term at that instant. This approach

results in a simulation using

L(¥1),~C %k) at kT, =kT, AT,

Live, 87 k) at Iy =KT #leT,

%k, L{y1 -cqu+y2 -c,xkg at kT =kT,=KT,
\ o . at all other times

It can be seen that this system model resulted in a response
which converges more rapidly and with less oscillations.
A possibility for further investigation may involve

a more detailed study of this three-sampler multirate system



52

with two outputs sampled at different rates. The analysis
might consider the application of multirate sampling to sys-
tems in which the output can be divided into two subgroups
— one subgroup containing components which vary rapidly
with time while the other subgroup consists of components
which vary more slowly with time. In such a system, the com-
ponents which change more rapidly would be sampled at the
faster rate while the components which change more slowly
would be sampled at the slower rate. This approach would
insure that a minimum amount of change occurs between suc-
cessive sampling instants E16].

Further improvement in system response might be
accomplished by trial-and-error experimentation in the choice
of the weighting matrices Q and R. Although this was done
to some extent, further experimentation may be desirable in
a practical application. It might also prove interesting to
investigate the effects of varying the sampling interval.
This was done for the systems described in this thesis with
the faster rate maintained at 5 samples per second but the
slower rate decreased to 2 samples per second. The system
responses for the various cases at these new sampling rates
were similar to the responses already presented.

It should also be noted that the responses of the
single-rate sampled-data systems indicate that their esti-
mated state vector % closely approximates the state vari-
able x. However, it should be realized that the simulation

of a single-rate system assumes that measurements of the
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system variables are available at the faster sampling rate
of 5 samples per second. On the other hand, the multirate
design assumes that certain measurements are only available
at the slower rate of |l samples per second while the control
input U is required at a rate of 5 samples per second. In
some practical dpplications of sampled-data systems, the
measurement variables are not always available at the same
rate as that with which the control input is required. TFur-
thermore, in certain systems, although all the system vari-
ables may be avallable for updating at the same sampling
rate, it may be desirable to update some of the variables
at a slower rate than the others. This is particularly
applicable in systems where certain variables change slower
than others. By sampling these variables at a slower rate
than the rest of the system, it is possible to reduce the
amount of calculations necessary. In such situations, the
designer may find that multirate sampling becomes advan-

tageous.
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APPENDIX A

Determination of the A lMatrix

‘The A matrix was chosen to insure that the continuous-

time system would be stable. This was done by choosing the
open-loop system poles in the left-hand plane. Yor the par-
ticular continuous-time systems discussed in Chapter IV, the
open-loop poles were chosen to be

7y, 0="045 2 31.0

}3=O.O ’
These poles yield a characteristic equation

0=[?-0][> - (=0.5+3)][»~(-0.5-])]

0=2[r2+>+1.25] (A-1)

The desired A matrix is of the form

11 842 B4
829 Bon Boy
a

%9, . S5 B3l
For simplicity, a13 and a23 were chosen to be zero. Therefore
the characteristic equation of A is
|7 1-8]=0=(P-a35) [(P=a;7) (=) 2, po ]
_ 2 . _
0=(P-2,5,)[A"=Na, +ay,)+ag a55m0y 85 )] (4-2)
Lquating the coefficients of like terms in equations (A=-1) and

(A-2) yields

a33=0.0 (A-3)
"(8.11"‘3.22):1-0 (A"LI-)
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8148007819851 =1+25 L3l
Choosing a,, to be -0e5 in equation (A-l;) determines that
241 is -0.5. Substituting these values into equation (A-5)
and selecting a5 to be 0.5 determines that 8oy is -2.0. The

values of a31 and a35 are thus found to be arbitrary and were

selected to have values of 1.0 and 2.0 respectively,
Therefore the matrix A which was chosen to be used

for the continuous-time systems is

[ b8 BB a0}

A =]|-2.0 =05 0.0

1.0 2.0 0.0
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APPENDIX B

Determination of the Observer Matrix L

The observer matrix L must be chosen so that the
eigenvalues of the matrix (f=-1C) are within the unit circle
in the z-plane. As was explained in Section C of Chapter II,
the choice of such eigenvalues insures that the state of the
observer will converge to that of the observed system. For

this reason, the eigenvalues of the matrix (¢-LC) were chosen

to be

7‘1’2=o.8&‘j = 0.79%30.15

» 3 =045
These poles yield a characteristic equation

0=(>=0.8 £11°) (*=0.8 A£11° ) (»=0.5)

0= A3=2.10 22+1IlL > 0432 (B-1)

The unknown observer matrix L can be found by equating
the coefficients of the determinant |7i-(¢-LG) to the cor-
responding coefficients of equation (3-1).

An aslternate method for determining the unknowvm observer
matrix L is through the use of the Kalman one-step predictor ,
which is described by the following set of equations [15]

L, =¢p,c' (cp,c')" (B-2)
where Py y=g[p -p.c'(cr ') o, |0 (B-3)

The observer matrix L can be found through the computer
algorithm which determines the solution of equations (B-2) and

(B-3)e The use of this comvuter alzorithm cnables the designer
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to determine the values of the observer matrix quicker, ecasier,
and more accurately than the previously described algebraic
method of equatihg coefficients. 'he complexity of the
algebraic method increases significantly as the order of the
system increases . Lven for a third-order case, this fact
became apparent as the complexity of the algebraic equations

increased tremendously.
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APPENDIX C

Checking for Controllability and Observability

Before forming the discrete-time system, a check should
be performed on the continuous-time system to insure that it
is both controllable and observable. By definition, a system
is said to be controllable if all of the state variables can
be changed by adjusting the input varisbles. Also, a system
is said to be observablc if every state variable can be found
from measuring values of the output.

A system is controllable if and only if the matrix

3 =[BEABEA2BE...EAn“1B]
has rank n, where n is the order of the matrix A.

A system is observable if and only if the matrix

Q =[C'EA‘C' E(A')zc' E E(A')n'1c']

has rank n, where n is the order of the matrix A [17].
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