STABILITY TESTS FOR TWO-DIMENSIONAL RECURSIVE FILTERS by

Teera Achariyapaopan

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering
in the
Electrical Engineering
Program

YOUNGSTOWN STATE UNIVERSITY

Abstract

\section*{STABILITY TESTS FOR TWO-DIMENSIONAL RECURSIVE FILTERS}

> Teera Achariyapaopan
> Master of Science in Engineering

Youngstown State University, 1979

The main objective of this work is to review the algebraic stability tests of two-dimensional recursive filters. Both frequency-domain methods and the data-domain method are presented. For the frequency-domain method, various existing algebraic methods are discussed. These include the Shanks, Huang, Maria-Fahmy, and Anderson-Jury methods. For the data-domain method, the extension of the Lyapunov theorem is presented including an approximate algebraic test. Both frequency-domain and data-domain proof are given for the approximate test. Some properties of a two-dimensional system which are different from a one-dimensional system are included. Several filters are evaluated by both methods and the agreement of the results is indicated.

ACKNOWLEDGEMENTS

I would like to dedicate this thesis to my parents. I wish to thank Dr. Henry Sendaula for his advice and discussion and for reading this thesis. I wish to thank Dr. C. K. Alexander, Jr. and Dr. R. H. Foulkes, Jr., of the graduate committee, for their valuable time in reading and appraising this thesis.

TABLE OF CONTENTS

PAGE
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF SYMBOLS vi
LIST OF FIGURES viii
CHAPTER
I. INTRODUCTION 1
II. AN INTRODUCTION TO THE THEORY OF TWO-DIMENSIONAL SIGNAL PROCESSING 3
2-1 Introduction 3
2-2 2-D Sequences 3
2-3 2-D Linear Shift-Invariant System (2-D LSI System) 4
2-4 2-D Z-Transform 6
III. STABILITY TESTS FOR 2-D RECURSIVE FILTERS: FREQUENCY DOMAIN METHOD 10
3-1 Introduction 10
3-2 Shanks' Method 10
3-3 Huang's Method 12
3-4 Z-Plane Method 18
IV. STABILITY TEST FOR 2-D RECURSIVE FILTERS: DATA-DOMAIN METHOD 21
4-1 Introduction 21
4-2 State-Space Representation of 2-D Filters 21
4-3 Two-Dimensional Lyapunov Lemma 25
4-4 The Approximate Stability Test 31

CHAPTER

$$
\text { 4-5 The Proofs of Theorem 2 } 34
$$

V. CONCLUSION 43
REFERENCES 44

LIST OF SYMBOLS

SYMBOL DEFINITION

A	Capital letter denotes matrix
BIBO	Bounded-input bounded-output
E	Energy
FIR	Finite impulse response
IIR	Infinite impulse response
LSI	Linear shift-invariant
R^{n}	n-dimensional real vector space
T[.]	The transformation operator
A^{T}	The transpose of the matrix A
$\mathrm{Z}[\cdot]$	The z-transform operator
1-D	One-dimensional
$2-D$	Two-dimensional
ϵ	Belongs to
a^{*} or \bar{a}	The complex conjugate of a
A*B	A convolute with B
f^{\prime}	The derivative of function f
$\|A\|$	The determinant of matrix A
三	Equal by definition
$>$	Greater than
\geqslant	Greater than or equal to
$<$	Less than
\leqslant	Less than or equal to
\sum	The summation sign
\oint_{C}	The integration around the closed curve C

$\lambda[A] \quad$ The eigenvalue of the matrix A
$\delta(m, n) \quad 2-D$ unit-sample sequence
[abb] The interval from a to b

LIST OF FIGURES

FIGURE

PAGE

4-1 The plot of impulse response of $z_{0}\left(z_{1}, z_{2}\right)$ and $z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)$ 35

4-2 The representation of $P_{0}^{11}, Q_{01}, Q_{01}^{T}, Q_{10}, Q_{10}^{T}$ Q_{11}, and $Q_{11} \cdot$. 37

4-3 Impulse response of the filter $H\left(z_{1}, z_{2}\right)=$

$$
\begin{equation*}
1 /\left(z_{1} z_{2}-a_{0}-a_{1} z_{1}-a_{2} z_{2}\right) \cdot \cdot \cdot \cdot \cdot \tag{39}
\end{equation*}
$$

CHAPTER I

INTRODUCTION

Recently, two-dimensional signal processing has found a wide application in many fields. Many techniques have been employed in implementation. However, the recursive technique is one of the most important classes since it is shown to be the most efficient method. In designing the two-dimensional recursive filter, the designer is faced with two major problems, synthesis and stability. In this paper, only the latter problem will be discussed. The main goal of this work is to review the algebraic stability tests, including both frequency-domain and data-domain methods. The fre-quency-domain method is quite established [1-6]. However, the data-domain method is not successfully extended even in the scalar case. Recently, the extension of the Lyapunov theorem and an associate approximate test is given by Sendaula [7]. Since the stability of any type of recursive filter can be determined from the stability of the firstquadrant filter (or quarter-plane filter) by a suitable mapping of the original filter, only the stability test of the first-quadrant filter will be presented.

This paper is divided into five chapters. In Chapter II, the general theory of two-dimension signal and processing is presented. Most of the material is a straightfor-
ward extension of the one-dimensional case. Some special properties of the two-dimensional system are also indicated. A review of the existing algebraic stability test is presented in Chapter III. All the methods in this chapter employ the frequency domain technique. The data-domain technique is presented in Chapter IV. In this chapter, the state-space representation of the two-dimensional system is included. Next, the extension of the Lyapunov theorem of the two-dimensional system is introduced. Then the translation of the stability theorem to an approximate stability test is given. The proofs of the approximate test are given, both frequencydomain and data-domain proof. It is shown that this method yields the same result as the other methods in Chapter III. The conclusion is in the final chapter.

CHAPTER II

AN INTRODUCTION TO THE THEORY OF
 TWO-DIMENSIONAL SIGNAL PROCESSING

2-1 Introduction

There are many signals that are two-dimensional signals in nature, for example photographic data, for which two-dimensional signal processing techniques are required. Since the one-dimensional system is a special case of the two-dimensional system or multi-dimensional system, some properties of the two-dimensional system are just a straightforward extension of the one-dimensional system. Some are unique properties of the two-dimensional system which are not similar to the one-dimensional system. In this chapter, the fundamental theorem of the two-dimensional signal and system is summarized with the emphasis placed on the linear shift-invariant system (LSI). For more details see [8-10].

2-2 2-D Sequences

A two-dimensional (2-D) sequence is a function of two integer variables. As in the one-dimensional (1-D) case, it is useful to define the unit-sample and unit-step. The 2-D unit-sample sequence $\delta(m, n)$, usually referred to as discrete time impulse or simply impulse, is defined as

$$
\delta(m, n)= \begin{cases}1, & m=n=0 \tag{2-1}\\ 0, & \text { otherwise }\end{cases}
$$

The 2-D unit-step sequence $u(m, n)$ is defined as:

$$
u(m, n)= \begin{cases}1, & m \geqslant 0, n \geqslant 0 \tag{2-2}\\ 0, & \text { otherwise }\end{cases}
$$

A $2-D$ sequence is called a separable sequence if it can be expressed as a product of 1-D sequence in the form:

$$
\begin{equation*}
x(m, n)=x_{1}(m) x_{2}(n) \tag{2-3}
\end{equation*}
$$

It is sometimes useful to refer to the energy in a sequence. The energy E in a sequence $x(m, n)$ is defined as:

$$
\begin{equation*}
E=\sum_{m} \sum_{n}|x(m, n)|^{2} \tag{2-4}
\end{equation*}
$$

2-3 2-D Linear Shift-Invariant Systems (2-D LSI Systems)

A system is defined as a transformation or operator that maps an input sequence $x(m, n)$ into output $y(m, n)$. This is denoted as:

$$
\begin{equation*}
y(m, n)=T[x(m, n)] \tag{2-5}
\end{equation*}
$$

A system is said to be linear if $y_{1}(m, n)$ and $y_{2}(m, n)$ are the response of the system when the input, $x_{1}(m, n)$ and $x_{2}(m, n)$, respectively satisfy the relation

$$
\begin{aligned}
& T\left[a x_{1}(m, n)+b x_{2}(m, n)\right]=a T\left[x_{1}(m, n)\right]+b T\left[x_{2}(m, n)\right] \\
& =a y_{1}(m, n)+b y_{2}(m, n)(2-6)
\end{aligned}
$$

for any arbitrary constant a, b.
A system is said to be shift-invariant if and only if it satisfies

$$
\begin{equation*}
y\left(m-m_{0}, n-n_{0}\right)=T\left[x\left(m-m_{0}, n-n_{0}\right)\right] \tag{2-7}
\end{equation*}
$$

for all x and arbitrary integer m_{0}, n_{0} where $y(m, n)$ is the output of the system when the input is $x(m, n)$.

A causal system is one for which the output for any $m=m_{0}, n=n_{0}$ depends on the input for $m \leqslant m_{0}, n \leqslant n_{0}$ only. From now on if a system is mentioned, it means a causal system if not stated otherwise.

As in the 1-D system, the 2-D LSI system can be completely specified by its impulse response $h(m, n)$. The impulse response is the output of the system when the input is a 2-D unit-sample $\delta(m, n)$ as defined above. Moreover, the output $y(m, n)$ of the 2-D LSI system is the convolution of the input sequence and the impulse response $h(m, n)$, i.e.,

$$
\begin{equation*}
\mathrm{y}(\mathrm{~m}, \mathrm{n})=\sum_{\mathrm{k}} \sum_{l} \mathrm{x}(\mathrm{k}, \mathrm{l}) \mathrm{h}(\mathrm{~m}-\mathrm{k}, \mathrm{n}-\mathrm{l}) \tag{2-8}
\end{equation*}
$$

or

$$
\begin{equation*}
y(m, n)=x(m, n) * h(m, n) \tag{2-9}
\end{equation*}
$$

where * represents a $2-\mathrm{D}$ convolution.
A large class of the LSI system can be described by a linear difference equation:

$$
\begin{equation*}
\sum_{k=1}^{M_{1}} \sum_{1}^{N_{1}} b_{k, 1} y(m-k, n-1)=\sum_{k=1}^{M_{2}} \sum_{2}^{N_{2}} a_{k, 1} x(m-k, n-1) \tag{2-10}
\end{equation*}
$$

Generally, this class of systems need not be causal.
Throughout this paper only this class of systems which are causal will be discussed. For this class of systems, the output $y(m, n)$ can be computed recursively from the input $x(m, n)$ and a set of initial conditions. This can be done by rewriting equation (2-10) as:

$$
\begin{align*}
y(m, n)= & \left(1 / b_{i, j}\right) \sum_{k=1=0}^{M_{2}} \sum_{2}^{N_{2}} a_{k, 1} x(m-k, n-l) \\
& -\left(1 / b_{i, j}\right) \sum_{\substack{k=1=0 \\
k, l \neq 0 \text { simultaneously }}} b_{k, 1} y(m-k, n-1)
\end{align*}
$$

The filter that is in this class is known as the recursive filter or infinite impulse response (IIR filter).

2-4 2-D Z-Transform

The 2-D z-transform $X\left(z_{1}, z_{2}\right)$ of a sequence $x(m, n)$ is defined as:

$$
\begin{equation*}
x\left(z_{1}, z_{2}\right)=\sum_{m} \sum_{n} x(m, n) z_{1}^{-m} z_{2}^{-n} \tag{2-12}
\end{equation*}
$$

where z_{1} and z_{2} are complex variables.
Note that many authors employ a slightly different definition of 2-D z-transform in their literature $[1-3,5,6]$. The 2-D z-transform $X\left(z_{1}, z_{2}\right)$ of $2-D$ sequence $x(m, n)$ is defined as:

$$
\begin{equation*}
x\left(z_{1}, z_{2}\right)=\sum_{m} \sum_{n} x(m, n) z_{1}^{m} z_{2}^{n} \tag{2-13}
\end{equation*}
$$

However, the first definition (2-12) will be employed here.
The inverse 2-D z-transform is given by the contour integral

$$
\begin{equation*}
x(m, n)=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} x\left(z_{1}, z_{2}\right) z_{1}^{m-1} z_{2}^{n-1} d z_{1} d z_{2} \tag{2-14}
\end{equation*}
$$

where the contours C_{1} and C_{2} are closed contours encircling
the origin and are within the region of convergence.
A 2-D z-transform $X\left(z_{1}, z_{2}\right)$ is said to be separable if it can be expressed in the form:

$$
\begin{equation*}
x\left(z_{1}, z_{2}\right)=x_{1}\left(z_{1}\right) x_{2}\left(z_{2}\right) \tag{2-15}
\end{equation*}
$$

$X\left(z_{1}, z_{2}\right)$ will be separable if and only if the sequence $x(m, n)$ is a separable sequence. Generally, $x(m, n)$ and $X\left(z_{1}, z_{2}\right)$ are not separable.

Properties of 2-D Z-Transform

Let

$$
\begin{align*}
& \mathrm{z}[\mathrm{x}(\mathrm{~m}, \mathrm{n})]=\mathrm{X}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \tag{2-16}\\
& \mathrm{z}[\mathrm{y}(\mathrm{~m}, \mathrm{n})]=\mathrm{Y}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) \tag{2-17}
\end{align*}
$$

where $Z[\cdot]$ denotes the z-transform of the sequence inside. Some properties of the 2-D z-transform are summarized as follows:

1. Linearity

$$
\begin{equation*}
z[a x(m, n)+b y(m, n)]=a X\left(z_{1}, z_{2}\right)+b Y\left(z_{1}, z_{2}\right) \tag{2-18}
\end{equation*}
$$

2. Shift of a sequence

$$
\begin{equation*}
z\left[x\left(m+m_{0}, n+n_{0}\right)\right]=z_{1}^{m_{0}} z_{2}^{n_{0}} x\left(z_{1}, z_{2}\right) \tag{2-19}
\end{equation*}
$$

for any integer m_{0}, n_{0}
3. Multiplication by an exponential sequence

$$
\begin{equation*}
z\left[a^{m} b^{n} x(m, n)\right]=x\left(a^{-1} z_{1}, b^{-1} z_{2}\right) \tag{2-20}
\end{equation*}
$$

4. Differentiation of $X\left(z_{1}, z_{2}\right)$

$$
\begin{equation*}
z[m n x(m, n)]=\frac{d^{2} X\left(z_{1}, z_{2}\right)}{d z_{1} d z_{2}} \tag{2-21}
\end{equation*}
$$

5. Conjugation of a complex sequence

$$
\begin{equation*}
z\left[x^{*}(m, n)\right]=x^{*}\left(z_{1}^{*}, z_{2}^{*}\right) \tag{2-22}
\end{equation*}
$$

where * denotes complex conjugate

$$
\begin{equation*}
\text { 6. } \mathrm{z}[\mathrm{x}(-\mathrm{m},-\mathrm{n})]=\mathrm{x}\left(\mathrm{z}_{1}^{-1}, \mathrm{z}_{2}^{-1}\right) \tag{2-23}
\end{equation*}
$$

7. Convolution of sequence

$$
\begin{equation*}
z[x(m, n) * y(m, n)]=X\left(z_{1}, z_{2}\right) Y\left(z_{1}, z_{2}\right) \tag{2-24}
\end{equation*}
$$

8. Parseval's relation

$$
\begin{align*}
& z\left[\sum_{m} \sum_{n} x(m, n) y^{*}(m, n)\right]=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} x\left(v_{1}, v_{2}\right) \\
& Y^{*}\left(v_{1}^{-1}, v_{2}^{-1}\right) v_{1}^{-1} v_{2}^{-1} d v_{1} d v_{2} . \tag{2-25}
\end{align*}
$$

Since the 2-D z-transform of a convolution of two 2-D sequences is the product of their z-transforms, the in-put-output relation for a 2-D LSI system, expressed in terms of the z-transform, corresponds to a multiplication of the z-transforms of the input and the unit-sample response. The z-transform of the unit-sample is referred to as the system function or transfer function.

For a system that can be described by a linear con-stant-coefficient difference equation, the transfer function is a ratio of two variable polynomials, in particular, for the system that satisfies the difference equation

$$
\begin{equation*}
\sum_{k=1}^{M_{1} N_{1}} \sum_{k, 1} y(m-k, n-1)=\sum_{k=1}^{M_{2}} \sum_{2}^{N_{2}} a_{k, 1} x(m-k, n-1) . \tag{2-26}
\end{equation*}
$$

If the 2-D z-transform is applied to both sides of (2-26), it follows

$$
\begin{array}{r}
Y\left(z_{1}, z_{2}\right)\left[\sum_{k=1}^{M_{1}} \sum_{1=0}^{N_{1}} b_{k, 1} z_{1}^{\left.-k_{z}-l\right]}=X\left(z_{1}, z_{2}\right)\left[\sum_{k=1}^{M_{2} N_{2}} \sum_{k, 1}\right.\right. \\
z_{1}^{\left.-k_{z}-1\right]} \tag{2-27}
\end{array}
$$

so that the transfer function $H\left(z_{1}, z_{2}\right)=Y\left(z_{1}, z_{2}\right) / X\left(z_{1}, z_{2}\right)$ is given by:

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{Y\left(z_{1}, z_{2}\right)}{X\left(z_{1}, z_{2}\right)}=\frac{\sum_{k=1}^{M_{2}} \sum_{2}^{N_{2}} a_{k, 1} z_{1}^{-k} z_{2}^{-1}}{\sum_{k=1}^{M_{1}} \sum_{2}^{N_{2}} b_{k, 1} z_{1}^{-k} z_{2}^{-1}} \tag{2-28}
\end{equation*}
$$

In 1-D case, when the transfer function consists of a ratio of polynomials, it could be described in terms of poles and zeroes i.e., the root of denominator and numerator. In contrast, a general two variable polynomial can not be factored into first order polynomials, rather, a two variable polynomial can be factored into irreducible factors which are themselves two variable polynomials which can not be further factored. This problem sometimes is referred to in literature as root clustering in a complex plane which is opposite to the isolate singularity in the 1-D case. This problem makes the stability problem in the $2-D$ case much more difficult than the 1-D case and this is the major difference between the 1-D and 2-D systems.

CHAPTER III

STABILITY TESTS FOR 2-D RECURSIVE FILTERS: FREQUENCY-DOMAIN METHOD

3-1 Introduction

As noted in Chapter II, since the output of the recursive filter is the sum of the portion of the past inputs and outputs, it is possible for the output value become very large independent of the input. Therefore, the stability problem is one of the major problems in the 2-D filter. In this chapter, the existing algebraic methods will be reviewed. All the methods in this chapter employ the frequency-domain method or transform-method.

As in the 1-D case the concept of bounded-input bounded-output (BIBO) stability will be employed. It can be shown that the 2-D LSI system is stable if and only if

$$
\begin{equation*}
S \equiv \sum_{k} \sum_{l}|h(k, 1)|<\infty \tag{3-1}
\end{equation*}
$$

i.e., the summability of the impulse response (see, for example [9]).

3-2 Shanks' Method

The first stability theorem for 2-D filter was introduced by Shanks [1]. The theorem can be restated as follows:

Theorem 3-1 (Shanks'):
A recursive (IIR) filter,

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{A\left(z_{1}, z_{2}\right)}{B\left(z_{1}, z_{2}\right)}, \tag{3-2}
\end{equation*}
$$

where $A\left(z_{1}, z_{2}\right)$ and $B\left(z_{1}, z_{2}\right)$ are polynomial in z_{1} and z_{2}, is BIBO stable if and only if there are no values of z_{1} and z_{2} such that $B\left(z_{1}, z_{2}\right)=0$ for $\left|z_{1}\right| \geqslant 1$ and $\left|z_{2}\right| \geqslant 1$ simultaneously.

To apply Shanks' theorem is conceptually straightforward but computationally involved. One way to do this is to $\operatorname{map} d_{1} \equiv\left(z_{1} ;\left|z_{1}\right| \geqslant 1\right)$ in z_{1}-plane into z_{2}-plane by the implicit mapping relation $B\left(z_{1}, z_{2}\right)=0$. The filter is stable if and only if the image of d_{1} in the z_{2}-plane completely lies inside the unit circle in the z_{2}-plane. Note that this method is not finite in its number of steps of calculation since the whole plane $d_{1} \equiv\left(z_{1} ;\left|z_{1}\right| \geqslant 1\right)$ is mapped into $z_{2}-$ plane

Remarks

Generally, before applying Shanks' theorem to the system which can be described by (3-2), $A\left(z_{1}, z_{2}\right)$ and $B\left(z_{1}, z_{2}\right)$ are relatively prime i.e., there is no common factor between $A\left(z_{1}, z_{2}\right)$ and $B\left(z_{1}, z_{2}\right)$. However, there are two types of singularity for two variable rational function $H\left(z_{1}, z_{2}\right)$ [11]. The first type is called a pole or a nonessential singularity of the first kind which is a point $\left(z_{1}, z_{2}\right)$ such that $B\left(z_{1}, z_{2}\right)$ $=0$ but $A\left(z_{1}, z_{2}\right) \neq 0$. This type of singularity is similar to the 1-D case. The second type is called a nonessential singularity of the second kind which is a point $\left(z_{1}, z_{2}\right)$ such
that $A\left(z_{1}, z_{2}\right)=B\left(z_{1}, z_{2}\right)=0$. For this kind there is no $1-D$ analog. In this kind, there are no common factors that can be canceled out like in the 1-D case. For example, in

$$
H\left(z_{1}, z_{2}\right)=\frac{\left(1-z_{1}\right)\left(1-z_{2}\right)}{2-z_{1}-z_{2}}(3-3)
$$

there is a nonessential singularity of the second kind at $z_{1}=z_{2}=1$, where $H\left(z_{1}, z_{2}\right)$ is undefined.

It was shown by Goodman [11] that Shanks' theorem is essentially correct except the case may arise where $H\left(z_{1}, z_{2}\right)$ has a nonessential singularity of the second kind on T^{2} where $T^{2}=\left\{\left(z_{1}, z_{2}\right) ;\left|z_{1}\right|=1,\left|z_{2}\right|=1\right\}$. Therefore, Shanks' theorem can be modified as follows:

Theorem 3-2

A recursive filter, which is described by (3-2), is stable if there is no point $\left(z_{1}, z_{2}\right)$ such that $B\left(z_{1}, z_{2}\right)=0$ and $\left|z_{1}\right|$ and $\left|z_{2}\right|$ are greater than or equal to one simultaneously except possibly on $T^{2}=\left\{\left(z_{1}, z_{2}\right) ;\left|z_{1}\right|=1,\left|z_{2}\right|=1\right\}$.

For some examples see Goodman [11].

3-3 Huang's Method

Huang [2] recognized that in mapping $d_{1}=\left(z_{1} ;\left|z_{1}\right| \geqslant 1\right)$ in z_{1}-plane into z_{2} plane by the relation

$$
\begin{equation*}
B\left(z_{1}, z_{2}\right)=0 \tag{3-4}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{2}=f\left(z_{1}\right) \tag{3-5}
\end{equation*}
$$

the extremum values of z_{2} occur at $\partial d_{1}=\left(z_{1} ;\left|z_{1}\right|=1\right)$.

Therefore, it is not necessary to map the whole d_{1} to $z_{2}-$ plane. Huang's theorem can be stated as follows:

Theorem 3-3 (Huang)

A causal recursive (IIR) filter with

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{A\left(z_{1}, z_{2}\right)}{B\left(z_{1}, z_{2}\right)} \tag{3-6}
\end{equation*}
$$

where $A\left(z_{1}, z_{2}\right)$ and $B\left(z_{1}, z_{2}\right)$ are polynomials in z_{1} and z_{2} is stable if and only if
i. the map of $\partial \mathrm{d}_{1}=\left(\mathrm{z}_{1} ;\left|z_{1}\right|=1\right)$ in the z_{2}-plane according to the implicit relation $B\left(z_{1}, z_{2}\right)=0$, lies inside of $d_{2}=\left(z_{2} ;\left|z_{2}\right|<1\right)$, and
ii. no point in $d_{1}=\left(z_{1} ;\left|z_{1}\right| \geqslant 1\right)$ maps into the point $z_{2}=\infty$ by the relation $z_{2}^{-n} B\left(z_{1}, z_{2}\right)=0$, where n is the order of z_{2} in $B\left(z_{1}, z_{2}\right)$.

For the proof see [12-14]. In applying Theorem 3-3, Huang suggested using bilinear transform by substituting

$$
\begin{equation*}
s_{1}=\frac{z_{1}-1}{z_{1}+1} \tag{3-7}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{2}=\frac{z_{2}-1}{z_{2}+1} \tag{3-8}
\end{equation*}
$$

in (3-6) which becomes:

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{C\left(s_{1}, s_{2}\right)}{D\left(s_{1}, s_{2}\right)} \tag{3-9}
\end{equation*}
$$

where C and D are polynomial in s_{1} and s_{2}. Since the bilinear transformation transforms the inside of the unit circle
in the z-plane to the left-half of the s-plane, the outside of the unit circle in the z-plane to the right-half of the s-plane, and the unit circle into the imaginary axis, then Theorem 3-3 can be restated as follows:

Theorem 3-4

A causal recursive filter $H\left(z_{1}, z_{2}\right)$ is stable if and only if
i. for all real finite ω_{1} the complex polynomial in $s_{2}, D\left(j \omega_{1}, s_{2}\right)$ has no zero in the right-half of $s_{2}{ }^{-}$ plane, and
ii. the real polynomial in $s_{1}, D\left(s_{1}, 1\right)$ has no zero in the right-half of s_{1}-plane.

From Theorem 4-4, the second condition can be tested by many well-known criterions such as Hermite, Routh, Hurwitz, etc., since it is a one variable polynomial. For the first condition, $D\left(j \omega_{1}, s_{2}\right)$ can be written as a one variable polynomial with complex coefficients by regarding ω_{1} as a parameter. Then, apply Hermite theorem [15], the first condition can be restated as follows:

Theorem 3-5

The first condition of Theorem 3-4 is equivalent to the following: Let $s_{2}=j \omega_{2}$, express $D\left(j \omega_{1}, j \omega_{2}\right)$ in the forms:

$$
\begin{aligned}
D\left(j \omega_{1}, j \omega_{2}\right)= & b_{0}\left(\omega_{1}\right) \omega_{2}^{n}+b_{1}\left(\omega_{1}\right) \omega_{2}^{n-1}+\ldots+b_{n}\left(\omega_{1}\right) \\
& +j\left[a_{0}\left(\omega_{1}\right) \omega_{2}^{n}+a_{1}\left(\omega_{1}\right) \omega_{2}^{n-1}+\ldots+a_{n}\left(\omega_{1}\right)\right] .
\end{aligned}
$$

Where ω_{1} and ω_{2} are real, $a_{i}\left(\omega_{1}\right)$ and $b_{i}\left(\omega_{1}\right)$ are real polyno-
mial in ω_{1}, and neither $a_{0}\left(\omega_{1}\right)$ nor $b_{0}\left(\omega_{1}\right)$ is zero. Let $H_{r, s}\left(\omega_{1}\right)$ be defined as:

$$
\begin{equation*}
H_{r, s}=a_{r} b_{s}-a_{s} b_{r} \tag{3-11}
\end{equation*}
$$

for $0 \leqslant r, s \leqslant n$. Let $D\left(\omega_{1}\right)$ denotes the $n \times n$ symmetrical polynomial matrix whose element $D_{i, j}\left(\omega_{1}\right),(1 \leqslant i, j \leqslant n)$ is the sum of all those $H_{r, s}\left(\omega_{1}\right),(0 \leqslant r, s \leqslant n)$ for which both

$$
\begin{equation*}
s+r=i+j-1 \tag{3-12}
\end{equation*}
$$

and

$$
\begin{equation*}
s-r>i-j \tag{3-13}
\end{equation*}
$$

are satisfied. Then, the n successive principal minors of $D\left(\omega_{1}\right)$ must be positive for all real ω_{1}.

Note that each minor of $D\left(\omega_{1}\right)$ is polynomial in ω_{1}. Sturm's method can be employed to test whether each minor is positive for all real ω_{1}.

> Sturm's Method

The polynomial $p(x)$,

$$
\begin{equation*}
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \tag{3-14}
\end{equation*}
$$

is positive for all x in the interval $[a, b]$ if and only if $p(x)$ does not have zero of odd multiplicity in that interval. The number of zeroes in any interval can be determined as follows: Let

$$
\begin{align*}
& f_{0}=p(x) \tag{3-15}\\
& f_{1}=f_{0}^{\prime} \tag{3-16}\\
& f_{0}=q_{1} f_{1}+f_{2} \\
& f_{1}=q_{2} f_{2}+f_{3}
\end{align*}
$$

$$
f_{2}=q_{3} f_{3}+f_{4}
$$

where the ' denotes derivative. The sequence $f_{1}, f_{2}, f_{3}, \ldots$, f_{n} is called the Sturm sequence. The number of zeroes in the interval a, b is equal to $v_{a}-v_{b}$ where v_{a} and v_{b} are the numbers of sign variation in the Sturm sequence when x is equaled to a and b respectively. In constructing Sturm sequence, if the process is terminated early at $f_{i}(i<n)$, f_{i} is the common factor of f_{1} and f_{0}. If f_{i} is simple, the multiplicity of zero of f_{i} can be investigated. If f_{i} is too complicated, Sturm's method can be applied to it separately [16].

Example

Consider the filter

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{1}{z_{1} z_{2}+a_{0}+a_{1} z_{1}+a_{2} z_{2}} \tag{3-18}
\end{equation*}
$$

Applying Theorem 3-3

$$
\begin{equation*}
z_{1} z_{2}+a_{0}+a_{1} z_{1}+a_{2} z_{2}=0 \tag{3-19}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{2}=\frac{a_{0}+a_{1} z_{1}}{z_{1}+a_{2}} \tag{3-20}
\end{equation*}
$$

equation (3-20) is the bilinear transformation which maps circle into circle. The image of the unit circle $\partial \mathrm{d}_{1}=\left(\mathrm{z}_{1}\right.$: $\left|z_{1}\right|=1$) in the z_{2}-plane is then a circle. From (3-20), the center of this image circle is on real axis, and it intersects the real axis at

$$
\begin{equation*}
z_{2}=-\frac{a_{0}+a_{1}}{1+a_{2}} \tag{3-21}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{2}=-\frac{a_{0}+a_{1}}{-1+a_{2}}=-\frac{a_{1}-a_{0}}{1-a_{2}} \tag{3-22}
\end{equation*}
$$

Then, the first condition of Theorem 3-3 is satisfied if and only if

$$
\begin{align*}
& \left|\frac{a_{0}+a_{1}}{1+a_{2}}\right|<1 \tag{3-23}\\
& \left|\frac{a_{1}-a_{0}}{1-a_{2}}\right|<1
\end{align*}
$$

The second condition,

$$
\begin{align*}
z_{2}^{-1} B\left(z_{1}, z_{2}\right) & =z_{1}+a_{0} z_{2}^{-1}+a_{1} z_{1} z_{2}^{-1}+a_{2} \\
& =0 \tag{3-25}\\
\lim _{z_{2} \rightarrow \infty} z_{2}^{-1} B\left(z_{1}, z_{2}\right) & =z_{1}+a_{2}=0 \tag{3-26}\\
z_{1} & =-a_{2}
\end{align*}
$$

is satisfied if

$$
\begin{equation*}
\left|a_{2}\right|<1 \tag{3-27}
\end{equation*}
$$

Therefore, the filter (3-18) is stable if the inequalities (3-23), (3-24), and (3-27) are satisfied.

Huang's theorem (Theorem 3-3) can be generalized as follows [5]:

Theorem 3-6 (Strintzis)
The filter $H\left(z_{1}, z_{2}\right)$ where

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{A\left(z_{1}, z_{2}\right)}{B\left(z_{1}, z_{2}\right)} \tag{3-28}
\end{equation*}
$$

is BIBO stable if and only if
i. for some $a,|a| \geqslant 1, B\left(a, z_{2}\right) \neq 0$ when $\left|z_{2}\right| \geqslant 1$
ii. $B\left(z_{1}, z_{2}\right) \neq 0$, when $\left|z_{1}\right| \geqslant 1$ and $\left|z_{2}\right|=1$
or under the following conditions:
i. for some $a,|a| \geqslant 1, B\left(a, z_{2}\right) \neq 0$, when $\left|z_{2}\right| \geqslant 1$
ii. for some $b,|b|=1, B\left(z_{1}, b\right) \neq 0$, when $\left|z_{1}\right| \geqslant 1$
iii. $B\left(z_{1}, z_{2}\right) \neq 0$, when $\left|z_{1}\right|=\left|z_{2}\right|=1$

3-4 Z-Plane Method

Anderson-Jury [3] and Maria-Fahmy [4] used Huang's theorem in testing stability. Instead of using bilinear transform, either Schur-Cohn matrix or Jury Table was employed. In [4], the procedure was based on the following theorem:

Theorem 3-7 (modified Jury Table)
Let $F(z)$ be the $n^{\text {th }}$ degree polynomial given by

$$
\begin{equation*}
F(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n} \tag{3-34}
\end{equation*}
$$

where the coefficeints a_{i}, $i=0,1,2, \ldots, n$ are complex numbers. The roots of $F(z)$ are inside the unit circle if and
only if

$$
b_{0}<0, c_{0}>0, d_{0}>0, \ldots, g_{0}>0, \ldots, t_{0}>0
$$

where $b_{0}, c_{0}, d_{0}, \ldots, t_{0}$ are obtained as follows:

$$
\begin{array}{llllll}
z^{0} & z^{1} & z^{2} & \ldots & z^{n-2} & z^{n-1} \\
a_{0} & a_{1} & a_{2} & z^{n} \\
\bar{a}_{n} & \bar{a}_{n-1} & \bar{a}_{n-2} & \bar{a}_{2} & \bar{a}_{1} & \bar{a}_{0} \\
b_{0} & b_{1} & b_{2} & b_{n-1} & a_{n} & b_{n-1} \\
\bar{b}_{n-1} & \bar{b}_{n-2} & \bar{b}_{n-3} & \bar{b}_{1} & \bar{b}_{0} & \\
c_{0} & c_{1} & c_{2} & c_{n-2} & & \\
\bar{c}_{n-2} & \bar{c}_{n-3} & \bar{c}_{n-4} & \bar{c}_{0} & & \\
a_{0} & & & & & \\
\cdot & & & & & \\
\cdot & & & & & \\
\cdot & & & & & \\
r_{0} & r_{1} & & & & \\
\bar{r}_{1} & \bar{r}_{0} & & & & \\
t_{0} & & & & &
\end{array}
$$

where

$$
b_{k}=\left|\begin{array}{ll}
a_{0} & a_{n-k} \\
\bar{a}_{n} & \bar{a}_{k}
\end{array}\right|, \quad c_{k}=\left|\begin{array}{ll}
b_{0} & b_{n-1-k} \\
\bar{b}_{n-1} & \bar{b}_{k}
\end{array}\right|, \ldots,
$$

and \bar{a}_{k} is the complex conjugate of a_{k}.
To check the first condition in Huang's theorem (Theorem 3-3), $B\left(z_{1}, z_{2}\right)$ is viewed as a one variable polynomial of z_{2} by regarding z_{1} as a parameter. Then, construct a modified Jury Table. The first condition is reduced to checking the following:

$$
\begin{gather*}
b_{0}(x)<0 \tag{3-35}\\
c_{0}(x)>0, d_{0}(x)>0, \ldots, t_{0}(x)>0 \tag{3-36}
\end{gather*}
$$

in the interval $-1 \leqslant x \leqslant 1$, where $z_{1}=x+j y$ and $\left|z_{1}\right|=1$. Note that these conditions can be checked by Sturm's method.

The second condition can be checked by finding

$$
\lim _{z_{2} \rightarrow \infty} z_{2}^{-n} B\left(z_{1}, z_{2}\right)=0
$$

which becomes a one variable polynomial, and applying the Jury Table to see whether z_{1} has zeroes greater than one.

The method that was proposed in [3] used similar techniques but the Schur-Cohn matrix was employed instead of the modified Jury Table.

CHAPTER IV

STABILITY TEST FOR 2-D RECURSIVE FILTERS: DATA-DOMAIN METHOD

4-1 Introduction

As already shown in Chapter II, the 2-D LSI system can be completely specified by its impulse response. In this chapter, the 2-D LSI system will be described by means of state-space equation. This technique will give more information on the internal structure of the system. After the state-space description is given, the extension of Lyapunov lemma to the $2-D$ system is introduced. Then, the approximate stability test based on the theorem is presented.

4-2 State-Space Representation of 2-D Filters

Recently, the state-space descriptions have been given by many authors [17-19]. However, only the model given by Fornasini and Marchesini [19] will be employed here. They consider the following equations:

$$
\begin{align*}
x_{i+1, j+1}= & A_{0} x_{i, j}+A_{1} x_{i+1, j}+A_{2} x_{i, j+1} \\
& +B u_{i, j} \tag{4-1}\\
y_{i, j}= & C x_{i, j} \tag{4-2}
\end{align*}
$$

where i,j are positive integers denoting the vertical and horizontal coordinates, respectively. $\{x\} \in R^{n}$, is the state
of the system. The inputs and outputs of the system are $\{u\}$ ϵR^{m} and $\{y\} \in R^{p}$. The matrices A_{0}, A_{1}, A_{2}, B, and C are of the appropriate dimensions.

Transfer function matrix can be obtained by taking 2-D z-transform of (4-1) and (4-2), which become

$$
\begin{align*}
z_{1} z_{2} X\left(z_{1}, z_{2}\right)= & A_{0} X\left(z_{1}, z_{2}\right)+A_{1} z_{1} X\left(z_{1}, z_{2}\right) \\
& +A_{2} z_{2} X\left(z_{1}, z_{2}\right)+B U\left(z_{1}, z_{2}\right) \tag{4-3}
\end{align*}
$$

and

$$
\begin{equation*}
Y\left(z_{1}, z_{2}\right)=C X\left(z_{1}, z_{2}\right) \tag{4-4}
\end{equation*}
$$

Zero initial conditions have been assumed, since the transfer function matrix relate the input $U\left(z_{1}, z_{2}\right)$ and the output $Y\left(z_{1}, z_{2}\right)$ only. Straightforward manipulation yield:

$$
\begin{gather*}
x\left(z_{1}, z_{2}\right)=\left(z_{1} z_{2} I_{n}-A_{0}-A_{1} z_{1}-A_{2} z_{2}\right)^{-1} \\
\operatorname{BU}\left(z_{1}, z_{2}\right) \tag{4-5}
\end{gather*}
$$

and

$$
\begin{align*}
Y\left(z_{1}, z_{2}\right)=C\left(z_{1} z_{2} I_{n}-A_{0}-A_{1} z_{1}-A_{2} z_{2}\right)^{-1} \\
\operatorname{BU}\left(z_{1}, z_{2}\right) \tag{4-6}
\end{align*}
$$

From (4-6), it is clear that the transfer function is

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=C\left(z_{1} z_{2} I_{n}-A_{0}-A_{1} z_{1}-A_{2} z_{2}\right)^{-1} B \tag{4-7}
\end{equation*}
$$

Comparing ($4-7$) and $(2-28)$ of Chapter 2 , which is repeated here for convenience,

$$
\begin{align*}
H\left(z_{1}, z_{2}\right) & =\frac{Y\left(z_{1}, z_{2}\right)}{U\left(z_{1}, z_{2}\right)}=\frac{\sum_{k=1=0}^{M_{2}} \sum_{k, 1}^{N_{2}} z_{1}^{-k} z_{2}^{-1}}{\sum_{k=1}^{M_{1}} \sum_{1=0}^{N_{1}} b_{k, 1} z_{1}^{-k} z_{2}^{-1}} \\
& =\frac{A\left(z_{1}, z_{2}\right)}{B\left(z_{1}, z_{2}\right)} \tag{4-8}
\end{align*}
$$

yield

$$
\begin{equation*}
B\left(z_{1}, z_{2}\right)=\left|\left(z_{1} z_{2} I_{n}-A_{0}-A_{1} z_{1}-A_{2} z_{2}\right)\right| \tag{4-9}
\end{equation*}
$$

Therefore, if state-space description is known, the transfer function can be obtained by equation (4-7). In contrast, if the transfer function is known, the state-space equation (4-1) and (4-2) can be obtained by the following relation:

(4-11)

$$
\left.\left.\begin{array}{rl}
B^{T} & =[\ldots \ldots \ldots \ldots \ldots 0.0 .0 .01
\end{array}\right] \quad \begin{array}{lllll}
C & =\left[\ldots a_{33} a_{23} a_{32} a_{13} a_{31} a_{22} a_{12} a_{21}\right. & a_{11}
\end{array}\right]
$$

where $a_{i, j}$ and $b_{i, j}$ are the coefficient of transfer function in (4-8). The matrices A_{0}, A_{1}, and A_{2} are of dimension $n^{2} \times n^{2}, B$ is of dimension $n^{2} \times 1$, and C is of dimension $1 \mathrm{x} \mathrm{n}^{2}$. Note that this realization is not necessarily minimaI.

4-3 Two-Dimensional Lyapunov Lemma

Lyapunov lemma recently has been extended for the 2-D system by Sendaula [7] by using the notation that the system is stable if and only if the system is passive (dissipative) or contains finite energy. The theorem can be restated as follows:

Theorem 4-1

The two-dimensional system which can be described by (4-1) and (4-2) is stable if and only if P_{0}^{11} is positive defincite, where

$$
\begin{align*}
& P_{0}^{11}= \frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \\
& \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \tag{4-14}\\
& z_{0}\left(z_{1}, z_{2}\right)=\left(z_{1} z_{2} I_{n}-A_{1} z_{1}-A_{2} z_{2}-A_{0}\right)^{-1} \tag{4-15}\\
& z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)=\left(z_{1}^{-1} z_{2}^{-1} I_{n}-A_{1}^{T} z_{1}^{-1}-A_{2}^{T} z_{2}^{-1}-A_{0}^{T}\right)^{-1} \tag{4-16}
\end{align*}
$$

and.${ }^{T}$ denotes the transposition.

Remarks

It is clear that the above theorem gives the condition for the square summability of the impulse response. Recently, it was shown by Goodman [11] that the square summability does not imply BIBO stability and he stated the sufficient condition for square summability: that for the system described by $H\left(z_{1}, z_{2}\right)=A\left(z_{1}, z_{2}\right) / B\left(z_{1}, z_{2}\right)$ is square summable if $H\left(z_{1}, z_{2}\right)$ is bounded in U^{2} where $U^{2} \equiv\left\{\left(z_{1}, z_{2}\right):\left|z_{1}\right|>1\right.$, $\left.\left|z_{2}\right|>1\right\}$. Unfortunately, the sufficient condition for the square summable which was given is not true. Consider the following examples:

Example 4-1

Let

$$
\begin{equation*}
H_{1}\left(z_{1}, z_{2}\right)=\frac{1}{2 z_{1} z_{2}-z_{1}-z_{2}} \tag{4-17}
\end{equation*}
$$

Consider

$$
\begin{align*}
B\left(z_{1}, z_{2}\right) & =2 z_{1} z_{2}-z_{1}-z_{2}=0 \\
z_{1} & =\frac{z_{2}}{2 z_{2}-1} . \tag{4-18}
\end{align*}
$$

From ($4, \pi 18$), it is clear that $H\left(z_{1}, z_{2}\right)$ is analytic in U^{2}. It was shown in [11] that $H_{1}\left(z_{1}, z_{2}\right)$ is bounded and converge but not square summable. This contradicts the theorem. Note that the analyticity in U^{2} does not imply the bound of impulse response but the bound of impulse response does imply the analyticity in U^{2} [11].

Example 4-2

$$
\begin{align*}
H_{2}\left(z_{1}, z_{2}\right) & =\frac{1}{z_{1} z_{2}-1} \tag{4-19}\\
B\left(z_{1}, z_{2}\right) & =z_{1} z_{2}-1=0 \tag{4-20}\\
z_{1} & =\frac{1}{z_{2}} \tag{4-21}
\end{align*}
$$

From (4-21), it is obvious that $H_{2}\left(z_{1}, z_{2}\right)$ is analytic in U^{2}. The impulse response of $\mathrm{H}_{2}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ is given by

$$
h_{i, j}= \begin{cases}1, & \text { if } i=j \tag{4-22}\\ 0, & \text { otherwise }\end{cases}
$$

which is bounded in U^{2}. However, $\mathrm{H}_{2}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ is not square summable.

Example 4-3

Consider

$$
\begin{equation*}
H_{3}\left(z_{1}, z_{2}\right)=\frac{\left(z_{1}-1\right)\left(z_{2}-1\right)}{2 z_{1} z_{2}-z_{1}-z_{2}} \tag{4-23}
\end{equation*}
$$

It was shown [11] also that $H_{3}\left(z_{1}, z_{2}\right)$ is square summable but not summable. Notice that $H_{1}\left(z_{1}, z_{2}\right)$ and $H_{3}\left(z_{1}, z_{2}\right)$ have the same denominator, but are different in numerator. In $H_{3}\left(z_{1}, z_{2}\right)$, there is a nonessential singularity of the second kind at $z_{1}=z_{2}=1$ (see the definition in the remarks of Chapter III). Therefore, it is likely that the square summability, but not summability, will occur only when there is nonessential singularity of the second kind on the biunit disk and $H\left(z_{1}, z_{2}\right)$ is bounded in U^{2}.

From Theorem 4-1 presented above, only the denominator
of the transfer function is considered, which is the same as the other algebraic methods in Chapter III and the theorem by Shanks. Therefore, it will yield the same result as the other (which consider only denominator) do.

Theorem 4-1 can be applied by direct integration of (4-14), and the stability criterion will be obtained. Example 4-4

Consider the filter

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{1}{z_{1} z_{2}-a_{0}-a_{1} z_{1}-a_{2} z_{2}} \tag{4-24}
\end{equation*}
$$

which will be the same as the example in Chapter III if a_{0}, a_{1}, and a_{2} is substituted by $-a_{0},-a_{1}$, and $-a_{2}$. From (4-9), (4-10), and (4-11)

$$
A_{0}=a_{0}, A_{1}=a_{1}, A_{2}=a_{2}
$$

Then

$$
\begin{align*}
& z_{0}\left(z_{1}, z_{2}\right)=\frac{1}{\left(z_{1} z_{2}-a_{0}-a_{1} z_{1}-a_{2} z_{2}\right)} \tag{4-25}\\
& z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)=\frac{1}{\left(z_{1}^{-1} z_{2}^{-1}-a_{0}-a_{1} z_{1}^{-1}-a_{2} z_{2}^{-1}\right)} \tag{4-26}
\end{align*}
$$

Substitute $\mathrm{Z}_{0}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ and $\mathrm{Z}_{0}^{\mathrm{T}}\left(\mathrm{z}_{1}^{-1}, \mathrm{z}_{2}^{-1}\right)$ in $(4-14)$, and it becomes:

$$
\begin{aligned}
P_{0}^{11}= & \frac{1}{(2 \pi j)^{2}} \oint_{C_{2}} \oint_{C_{1}} \frac{1}{\left(z_{1} z_{2}-a_{0}-a_{1} z_{1}-a_{2} z_{2}\right)} \\
& \frac{1}{\left(z_{1}^{-1} z_{2}^{-1}-a_{0}-a_{1} z_{1}^{-1}-a_{2} z_{2}^{-1}\right)} \frac{d z_{1} d z_{2}}{z_{1} z_{2}}
\end{aligned}
$$

$$
\begin{align*}
& P_{0}^{11}= \frac{1}{(2 \pi j)^{2}} \oint_{C_{2}} \oint_{C_{1}} \frac{1}{\left(z_{1} z_{2}-a_{0}-a_{1} z_{1}-a_{2} z_{2}\right)} \\
&= \frac{1}{\left(1-a_{0} z_{1} z_{2}-a_{1} z_{2}-a_{2} z_{1}\right)} d z_{1} d z_{2} \\
& \frac{1}{(2 \pi j)^{2}} \oint_{C_{2}} \oint_{C_{1}} \frac{1}{\left(z_{2}-a_{1}\right)\left\{z_{1}-\frac{a_{0}+a_{2} z_{2}}{z_{2}-a_{1}}\right\}} \\
&\left(1-a_{1} z_{2}\right)\left\{1-\frac{a_{0} z_{2}+a_{2}}{1-a_{1} z_{2}} z_{1}\right\}
\end{align*}
$$

There are two poles in $(4-26)$, one at $\left(a_{0}+a_{2} z_{2}\right) /\left(z_{2}-a_{1}\right)$ and the other at $\left(1-a_{1} z_{2}\right) /\left(a_{0} z_{2}+a_{2}\right)$

The residue due to $\frac{a_{0}+a_{2} z_{2}}{z_{2}-a_{1}}=1 /\left[\left(z_{2}-a_{1}\right)\right.$

$$
\begin{equation*}
\left.\left(1-a_{1} z_{2}\right)-\left(a_{0} z_{2}+a_{2}\right)\left(a_{0}+a_{2} z_{2}\right)\right] \tag{4-27}
\end{equation*}
$$

The residue due to $\frac{1-a_{1} z_{2}}{a_{0} z_{2}+a_{2}}=-1 /\left[\left(z_{2}-a_{1}\right)\right.$

$$
\begin{equation*}
\left.\left(1-a_{1} z_{2}\right)-\left(a_{0} z_{2}+a_{2}\right)\left(a_{0}+a_{2} z_{2}\right)\right] \tag{4-28}
\end{equation*}
$$

From (4-27) and (4-28), it is clear that only one pole can be inside the unit circle in order that $P_{0}^{11} \neq 0$. Assume $\left(a_{0}+a_{2} z_{2}\right) /\left(z_{2}-a_{1}\right)$ is inside the unit circle. Therefore P_{0}^{11} becomes:

$$
\begin{array}{r}
P_{0}^{11}=\frac{1}{2 \pi j} \oint_{C_{2}} \frac{d z_{2}}{\left(z_{2}-a_{1}\right)\left(1-a_{1} z_{2}\right)-\left(a_{0} z_{2}+a_{2}\right)} \\
\left(a_{0}+a_{2} z_{2}\right)
\end{array}
$$

$$
\begin{align*}
P_{0}^{11}= & \frac{1}{2 \pi j} \oint_{C_{2}} \frac{d z_{2}}{\left(z_{2}-a_{1} z_{2}^{2}-a_{1}+a_{1}^{2} z_{2}\right)-\left(a_{0}^{2} z_{2}+a_{0} a_{2}\right.} \\
& \left.+a_{0} a_{2} z_{2}^{2}+a_{2}^{2} z_{2}\right)
\end{align*} \quad \begin{array}{r}
d z_{2} \\
=
\end{array} \begin{array}{r}
\frac{1}{2 \pi j} \oint_{C_{2}} \frac{d z_{2}}{\left.-\left(a_{1}+a_{0} a_{2}\right) z_{2}^{2}+\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right) z_{2} a_{2}\right)} \\
=
\end{array}
$$

where

$$
\begin{aligned}
& A=\frac{\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right)}{2\left(a_{1}+a_{0} a_{2}\right)} \\
& B=\sqrt{\frac{\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right)}{\left(a_{1}+a_{0} a_{2}\right)^{2}}-4} \\
&=\sqrt{\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right)^{2}-4\left(a_{1}+a_{0} a_{2}\right)^{2}} \\
& 2\left(a_{1}+a_{0} a_{2}\right)
\end{aligned} .
$$

The residue due to $A+B=-\frac{1}{\left(a_{1}+a_{0} a_{2}\right) 2 B}$.
The residue due to $A-B=\frac{1}{\left(a_{1}+a_{0} a_{2}\right) 2 B}$.
From (4-30) and (4-31) it is obvious that either $(A+B)$ or $(A-B)$ can be inside the unit circle in order that P_{0}^{11} is not equal to zero. Assuming $A-B$ is inside the unit circle. Then

$$
\begin{equation*}
P_{0}^{11}=\frac{1}{\sqrt{\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right)^{2}-4\left(a_{1}+a_{0} a_{2}\right)^{2}}} \tag{4-32}
\end{equation*}
$$

From (4-32), P_{0}^{11} will be less than infinity, greater than one, and a real number when:

$$
\begin{align*}
& \text { i. }\left|\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right)\right|>2\left|\left(a_{1}+a_{0} a_{2}\right)\right| \tag{4-33}\\
& \text { ii. }\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{0}\right|<1 \tag{4-34}
\end{align*}
$$

If a_{0}, a_{1}, and a_{2} are replaced by $-a_{0},-a_{1}$, and $-a_{2}$, it is easy to show that $(4-33)$, and (4-34) are equivalent to the conditions in equations (3-23), (3-24), and (3-27) in the example of Chapter III.

4-4 The Approximate Stability Test

If the following identities:

$$
\begin{align*}
& z_{0}\left(z_{1}, z_{2}\right)= {\left[z_{1} z_{2} I_{n}-A_{0}-A_{1} z_{1}-A_{2} z_{2}\right]^{-1} } \\
&=\left(z_{1} z_{2}\right)^{-1}\left[I_{n}+\right. \\
& z_{0}\left(z_{1}, z_{2}\right)\left(A_{0}+A_{1} z_{1}\right. \tag{4-35}\\
&\left.\left.+A_{2} z_{2}\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)= & {\left[z_{1}^{-1} z_{2}^{-1} I_{n}-A_{0}^{T}-A_{1}^{T} z_{1}^{-1}-A_{2}^{T} z_{2}^{-1}\right]^{-1} } \\
=\quad & \left(z_{1} z_{2}\right)\left[I_{n}+\left(A_{0}^{T}+A_{1}^{T} z_{1}^{-1}+A_{2}^{T} z_{2}^{-1}\right)\right. \\
& \left.z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)\right] \tag{4-36}
\end{align*}
$$

are applied to Theorem 4-1, the following result is obtained: Theorem 4-2

The approximate value of P_{0}^{11}, which is symmetric matrix, is the solution of

$$
\begin{align*}
& P_{0}^{11}= A_{0}^{T} P_{0}^{11} A_{0}+A_{1}^{T} P_{0}^{11} A_{1}+A_{2}^{T} P_{0}^{11} A_{2}+I_{n} \\
&+A_{0}^{T} Q_{01} A_{1}+A_{1}^{T} Q_{01} A_{0}+A_{0}^{T} Q_{10} A_{2} \\
&+A_{2}^{T} Q_{10} A_{0}+A_{1}^{T} Q_{11} A_{2}+A_{2}^{T} Q_{11} A_{1} \tag{4-37}\\
&=Q_{10}^{T} A_{0}+Q_{11} A_{1}+P_{0}^{11} A_{2} \tag{4-38}\\
& Q_{01}= Q_{01}^{T} A_{0}+P_{0}^{11} A_{1}+Q_{11} A_{2} \tag{4-39}\\
& Q_{10}= P_{0}^{11} A_{0}+Q_{01} A_{1}+Q_{10} A_{2} \tag{4-40}\\
& Q_{11}=
\end{align*}
$$

where

$$
\begin{array}{r}
Q_{01}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{1} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \\
Q_{10}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{2} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \\
(4-42)
\end{array} Q^{Q_{11}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{1}^{-1} z_{2} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right)} \begin{gathered}
\frac{d z_{1} d z_{2}}{z_{1} z_{2}} .
\end{gathered}
$$

The proof of this theorem will be postponed to the next section.

For the scalar case, $A_{0}=a_{0}, A_{1}=a_{1}$, and $A_{2}=a_{2}$, (4-37) - (4-39) become:

$$
\left[\begin{array}{cccc}
a_{0}^{2}+a_{1}^{2}+a_{2}^{2}-1 & 2 a_{0} a_{1} & 2 a_{0} a_{2} & 2 a_{1} a_{2} \\
a_{2} & -1 & a_{0} & a_{1} \\
a_{1} & a_{0} & -1 & a_{2} \\
a_{0} & a_{1} & a_{2} & -1
\end{array}\right]\left[\begin{array}{c}
P_{0}^{11} \\
Q_{01} \\
Q_{10} \\
Q_{11}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

(4-44)
which is a set of fourth order simultaneous equations. By straightforward manipulation (4-44) yields:

$$
\begin{equation*}
P_{0}^{11}=\frac{\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right)-2 a_{1}\left(a_{1}+a_{0} a_{2}\right)}{\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right)-4\left(a_{1}+a_{0} a_{2}\right)} \tag{4-45}
\end{equation*}
$$

From (4-45), P_{0}^{11} will be greater than one if

$$
\begin{equation*}
\text { i. }\left|\left(a_{1}^{2}-a_{0}^{2}-a_{2}^{2}+1\right)\right|>2\left|\left(a_{1}+a_{0} a_{2}\right)\right| \tag{4-46}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { ii. }\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{0}\right|<1 \tag{4-47}
\end{equation*}
$$

It is clear that equations (4-46) and (4-47) are the same as (4-33) and (4-34) in Example 4-4. If (4-45) or (4-37) -$(4-40)$ are used to calculate P_{0}^{11}, it is possible that $0<P_{0}^{11}<1$ but the filter is unstable. This is so because equations (4-37) - (4-40) are only approximations. Therefore, the filter will be stable if P_{0}^{11} is not only positive but also greater than 1.

In applying $(4-37)-(4-40), P_{0}^{11}, Q_{01}, Q_{10}$, and Q_{11} can be assumed to be symmetric. Then P_{0}^{11} can be solved explicitly. $\lambda\left[\mathrm{P}_{0}^{11}\right]>1$ can be checked by finding $\left[\mathrm{P}_{0}^{11}-I_{n}\right]$, then using Sylvester's theorem which states that the symmetric matrix is positive definite if and only if the leading
principle minors are all positive. In case the equation are linearly dependent or $\left[\mathrm{P}_{0}^{11}\right]<1$, the filter is unstable.

In calculation, the roundoff noise may cause error especially when $\lambda\left[\mathrm{P}_{0}^{11}\right]$ is approximately 1 . However, the stabile filter will have $\lambda\left[\mathrm{P}_{0}^{11}\right]$ nearly equal to one only if the filter is very stable i.e., the impulse response decreases very fast. Therefore, in a case that is difficult to decide, the impulse response of the filter should be found for a few values.

4-5 The Proofs of Theorem 2

$$
\text { 4-5-1 The Interpretation of } Q_{01}, Q_{10}, Q_{11}
$$

Before proving the theorem, let us interpret the meaning of Q_{01}, Q_{10}, and Q_{11}. Consider

$$
P_{0}^{11}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}}
$$

$z_{0}\left(z_{1}, z_{2}\right)$ and $z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)$ can be represented by the following series:

$$
\begin{align*}
& z_{0}\left(z_{1}, z_{2}\right)=\sum_{i} \sum_{j} h_{i, j} z_{1}^{-i} z_{2}^{-j} \tag{4-48}\\
& z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)=\sum_{i} \sum_{j} h_{-i,-j} z_{1}^{i} z_{2}^{j} \tag{4-49}
\end{align*}
$$

where

$$
h_{-i,-j} \quad=\quad h_{i, j}, \quad \text { for every } i \text { and } j . \quad(4-50)
$$

The plot of $z_{0}\left(z_{1}, z_{2}\right)$ and $z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)$ is shown in Fig. $4-1$. Substitute (4-48) and (4-49) in P_{0}^{11}.

Figure 4-1 The plot of impulse response of $z_{0}\left(z_{1}, z_{2}\right)$ and $z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)$

$$
\begin{align*}
P_{0}^{11}= & \frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}}\left[\sum_{j} \sum_{i} h_{-i,-j} z_{1}^{i} z_{2}^{j}\right] \\
& {\left[\sum_{j} \sum_{i} h_{i, j} z_{1}^{-i} z_{2}^{-j}\right] \frac{d z_{1} d z_{2}}{z_{1} z_{2}} } \tag{4-51}
\end{align*}
$$

But from the complex variable theory

$$
\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} a z_{1}^{i} z_{2}^{j} \frac{d z_{1} d z_{2}}{z_{1} z_{2}}= \begin{cases}a, & \text { if } i=j=0 \\ 0, & \text { otherwise }\end{cases}
$$

therefore,

$$
\begin{equation*}
P_{0}^{11}=\sum_{i} \sum_{j}\left(h_{i, j}\right)^{2} \tag{4-52}
\end{equation*}
$$

Similarly, it can be shown that

$$
\begin{align*}
& Q_{01}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{1} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \\
& =\sum_{i} \sum_{j}\left(h_{i+1, j}\right)\left(h_{i, j}\right) \quad(4-53) \\
& Q_{01}^{T}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{1}^{-1} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \\
& \begin{array}{l}
=\sum_{i} \sum_{j}\left(h_{i, j}\right)\left(h_{i+1, j}\right) \\
=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{2} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}}
\end{array} \\
& =\sum_{i} \sum_{j}\left(h_{i, j+1}\right)\left(h_{i, j}\right) \quad(4-55) \\
& Q_{10}^{T}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{2}^{-1} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \\
& \begin{aligned}
& =\sum_{i} \sum_{j}\left(h_{i, j}\right)\left(h_{i, j+1}\right) \\
Q_{11} & =\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{1}^{-1} z_{2} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right)
\end{aligned} \tag{4-56}\\
& \begin{aligned}
&= \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \\
&=\sum_{i} \sum_{j}\left(h_{i, j+1}\right)\left(h_{i+1}, j\right) \\
& \widetilde{Q}_{11}= \frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{1} z_{2} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}}
\end{aligned} \\
& \begin{aligned}
&= \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \\
&=\sum_{i} \sum_{j}\left(h_{i, j+1}\right)\left(h_{i+1}, j\right) \\
& \widetilde{Q}_{11}= \frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{1} z_{2} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}}
\end{aligned} \\
& =\sum_{i} \sum_{j}\left(h_{i+1, j+1}\right)\left(h_{i, j}\right) . \tag{4-58}
\end{align*}
$$

The representation of $P_{0}^{11}, Q_{01}, Q_{01}^{T}, Q_{10}, Q_{10}^{T}, Q_{11}$, and \widetilde{Q}_{11}

Figure 4-2 The representation of $P_{0}^{11}, Q_{01}, Q_{01}^{T}, Q_{10}$, Q_{10}^{T}, Q_{11}, and \widetilde{Q}_{11}.
is shown in Fig. 4-2. In Fig. 4-2, the solid line, ——, represents the impulse response of $\mathrm{z}_{0}^{T}\left(\mathrm{z}_{1}^{-1}, \mathrm{z}_{2}^{-1}\right)$ and the dotted line,-----, represents the impulse response of $Z_{0}\left(z_{1}, z_{2}\right)$. The value of $P_{0}^{11}, Q_{01}, \ldots$, etc. are the sum of the product of the corresponding point in the figure.

Consider the impulse response of the filter

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)=\frac{1}{\left(z_{1} z_{2}-a_{0}-a_{1} z_{1}-a_{2} z_{2}\right)} \tag{4-59}
\end{equation*}
$$

Take the inverse 2-D z-transform with zero initial condition of (4-59), and it becomes:

$$
h_{i+1, j+1}=a_{0} h_{i, j}+a_{1} h_{i+1, j}+a_{2} h_{i, j+1} \cdot(4-60)
$$

This filter has impulse response as shown in Fig. 4-3. Note from Fig. 4-3 that for the same row each element is equal to the preceeding element plus some constants and multiplied by a_{2}. Similar phenomena happen to the element in the same column but a_{1} plays the roll of a_{2}, with the exception of the element on the diagonal for both cases. For the element on the diagonal, there is one additional a_{0}^{n} term. From (457) and (4-58), Q_{11} is the sum of all the products of the elements at each end of the arrows, \longrightarrow, (see Fig. 4-3). \widetilde{Q}_{11} is the sum of the product of the elements at the end of the arrows,--->,. Therefore, from Fig. 4-3, it is clear that Q_{11} is approximately equal to \tilde{Q}_{11}. Similarly, it can be shown that for any filter Q_{11} and \widetilde{Q}_{11} are nearly equal. Note that the error between Q_{11} and \widetilde{Q}_{11} depends on P_{0}^{11}. If P_{0}^{11} is small, the error will be small and vice versa.

Figure 4-3 Impulse response of the filter $H\left(z_{1}, z_{2}\right)=1 /-$

$$
\left(z_{1} z_{2}-a_{0}-a_{1} z_{1}-a_{2} z_{2}\right)
$$

Therefore for a stable filter which has the finite value of P_{0}^{11}, Q_{11} and \tilde{Q}_{11} will be very close, especially for the fillter that has an impulse response which decreases very quicklv.

4-5-2 The Proof: Frequency-Domain Method

From (4-14)

$$
P_{0}^{11}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}} .
$$

Substitute (4-35) and (4-36) which are

$$
\begin{aligned}
z_{0}\left(z_{1}, z_{2}\right)=\left(z_{1} z_{2}\right)^{-1}\left[I_{n}+\right. & z_{0}\left(z_{1}, z_{2}\right)\left(A_{0}+A_{1} z_{1}\right. \\
& \left.\left.+A_{2} z_{2}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)=\left(z_{1} z_{2}\right)\left[I_{n}+\right. & \left(A_{0}^{T}+A_{1}^{T} z_{1}^{-1}+A_{2}^{T} z_{2}^{-1}\right) \\
& \left.z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)\right]
\end{aligned}
$$

into P_{0}^{11}, and it becomes:

$$
\begin{aligned}
& P_{0}^{11}=\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}}\left[I_{n}+\left(A_{1}^{T} z_{1}^{-1}+A_{2}^{T} z_{2}^{-1}+A_{0}^{T}\right)\right. \\
& \left.z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)\right] z_{1} z_{2} z_{1}^{-1} z_{2}^{-1}\left[I_{n}+z_{0}\left(z_{1}, z_{2}\right)\left(A_{1} z_{1}+A_{2} z_{2}\right.\right. \\
& \left.\left.+A_{0}\right)\right] \frac{\mathrm{dz}_{1} \mathrm{dz}_{2}}{\mathrm{z}_{1} \mathrm{z}_{2}} \\
& =\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}}\left[I_{n}+\left(A_{1}^{T} z_{1}^{-1}+A_{2}^{T} z_{2}^{-1}+A_{0}^{T}\right)\right. \\
& z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)+\left(A_{1} z_{1}+A_{2} z_{2}+A_{0}\right) z_{0}\left(z_{1}, z_{2}\right) \\
& +A_{1}^{T} Z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) Z_{0}\left(z_{1}, z_{2}\right)\left(A_{1}+A_{2} z_{1}^{-1} z_{2}+A_{0} z_{1}^{-1}\right) \\
& +A_{2}^{T} Z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) Z_{0}\left(z_{1}, z_{2}\right)\left(A_{1} z_{1} z_{2}^{-1}+A_{2}+A_{0} z_{2}^{-1}\right) \\
& \left.+A_{0}^{T} Z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) z_{0}\left(z_{1}, z_{2}\right)\left(A_{1} z_{1}+A_{2} z_{2}+A_{0}\right)\right] \frac{d z_{1} d z_{2}}{z_{1} z_{2}}
\end{aligned}
$$

It can be shown that

$$
\begin{align*}
& \frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}} I_{n} \frac{d z_{1} d z_{2}}{z_{1} z_{2}}=I_{n} \tag{4-61}\\
& \frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}}\left(A_{1} z_{1}+A_{2} z_{2}+A_{0}\right) z_{0}\left(z_{1}, z_{2}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}}=0
\end{align*}
$$

$$
\begin{array}{r}
\frac{1}{(2 \pi j)^{2}} \oint_{C_{1}} \oint_{C_{2}}\left(A_{1}^{T} z_{1}^{-1}+A_{2}^{T} z_{2}^{-1}+A_{0}^{T}\right) Z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right) \frac{d z_{1} d z_{2}}{z_{1} z_{2}} \tag{4-62}\\
\\
=0
\end{array}
$$

Substitute (4-61) - (4-63) and, using the notation defined in $(4-41)$ - $(4-43)$, equation (4-60) becomes (4-37).

Similarly, if only $z_{0}\left(z_{1}, z_{2}\right)$ defined in (4-35) (not substituted for $z_{0}^{T}\left(z_{1}^{-1}, z_{2}^{-1}\right)$) is substituted in Q_{01}, Q_{10}, and $\widetilde{Q}_{11},(4-37)-(4-40)$ will be obtained. For the last equatron (4-40), \widetilde{Q}_{11} is equated to Q_{11} since, from the previous subsection, Q_{11} and \widetilde{Q}_{11} are approximately equal.

Note that if \tilde{Q}_{11} is not substituted for Q_{11}, an infonite set of equations will be obtained.
4-5-3 Data-Domain Proof

As defined in section 4-5-1

$$
\begin{align*}
P_{0}^{11} & =\sum_{i} \sum_{j}\left(h_{i, j}\right)\left(h_{i, j}\right) \tag{4-64}\\
Q_{01} & =\sum_{i} \sum_{j}\left(h_{i+1, j}\right)\left(h_{i, j}\right) \tag{4-65}\\
Q_{10} & =\sum_{i} \sum_{j}\left(h_{i, j+1}\right)\left(h_{i, j}\right) \tag{4-66}
\end{align*}
$$

$$
\begin{align*}
& Q_{11}=\sum_{i} \sum_{j}\left(h_{i+1, j}\right)\left(h_{i, j+1}\right) \tag{4-67}\\
& \tilde{Q}_{11}=\sum_{i} \sum_{j}\left(h_{i+1, j+1}\right)\left(h_{i, j}\right) \tag{4-68}
\end{align*}
$$

Rewrite P_{0}^{11} as follows:

$$
\begin{align*}
P_{0}^{11}= & I_{n}+\sum_{i} \sum_{i, j}\left(h_{i, j}\right)^{T}\left(h_{i, j}\right) \\
= & I_{n}+\sum_{i} \sum_{j}\left(h_{i+1, j+1}\right)^{T}\left(h_{i+1, j+1}\right) \\
& +A_{2}^{T} A_{2}\left(I_{n}-A_{2}^{T} A_{2}\right)^{-1}+A_{1}^{T} A_{1}\left(I_{n}-A_{1}^{T} A_{1}\right)^{-1} . \tag{4-69}
\end{align*}
$$

From the relation

$$
\begin{equation*}
h_{i+1, j+1}=A_{0} h_{i, j}+A_{1} h_{i+1, j}+A_{2} h_{i, j+1} \tag{4-70}
\end{equation*}
$$

Substitute (4-70) into (4-69)

$$
\begin{align*}
P_{0}^{11}=I_{n}+\sum_{i} & \sum_{j}\left(h_{i, j}^{T} A_{0}^{T}+h_{i+1, j}^{T} A_{1}^{T}+h_{i, j+1}^{T} A_{2}^{T}\right) \\
& \left(A_{0} h_{i, j}+A_{1} h_{i+1}, j+A_{2} h_{i, j+1}\right) \\
+ & A_{2}^{T} A_{2}\left(I_{n}-A_{2}^{T} A_{2}\right)^{-1} \\
+ & A_{1}^{T} A_{1}\left(I_{n}-A_{1}^{T} A_{1}\right)^{-1} \tag{4-71}
\end{align*}
$$

By noting that

$$
\begin{aligned}
P_{0}^{11} & =h_{i+1, j}^{T} A_{1}^{T} A_{1} h_{i+1, j}+A_{1}^{T} A_{1}\left(I_{n}-A_{1}^{T} A_{1}\right)^{-1} \\
& =h_{i, j+1}^{T} A_{2}^{T} A_{2} h_{i, j+1}+A_{2}^{T} A_{2}\left(I_{n}-A_{2}^{T} A_{2}\right)^{-1}
\end{aligned}
$$

and using the notation from (4-64) - (4-67), (4-37) will be obtained.

By using techniques similar to P_{0}^{11} and from the fre-quency-domain proof, $(4-37)-(4-40)$ can be obtained.

CHAPTER V

CONCLUSION

The algebraic stability tests were given for both frequency- and data-domain methods. Various methods were given for the frequency-domain method. For the data-domain method, based on energy argument, the Lyapunov lemma was extended to the $2-D$ case. Although the given test is only an approximation, it was shown that for the scalar case it yielded the same result as the other methods. This test can be performed by a finite number of algebraic calculations, which can be programmed to the computer easily. Moreover, the calculations need only to solve the simultaneous equation and evaluate the values of the determinant, therefore no advance knowledge is required.

REFERENCES

1. J.L. Shanks, S. Treitel, and J.H. Justice, "Stability and Synthesis of Two-Dimensional Recursive Filters", IEEE Trans. Audio and Electroacoustics, vol. AU-20, pp. 115-128, June 1972.
2. T.S. Huang, "Stability of Two-Dimensional Recursive Filters", IEEE Trans. Audio and Electroacoustics, vol. AU-20, pp. 158-163, June 1972.
3. B.D.O. Anderson and E.I. Jury, "Stability Test for TwoDimensional Recursive Filters", IEEE Trans. Audio and Electroacoustics, vol. AU-21, pp. 366-372, Aug. 1973.
4. G.A. Maria and M.M. Fahmy, "On the Stability of Two-Dimensional Digital Filters", IEEE Trans. Audio Electroacoustics, vol. AU-21, pp. 470-472, Oct. 1973.
5. M.G. Strintzis, "Tests of Stability of Multidimensional Filters", IEEE Trans. Circuits and Syst., vol. CAS24, pp. 432-437, Aug. 1977.
6. E.I. Jury, "Stability of Multidimensional Scalar and Matrix Polynomials", Proc. IEEE, vol. 66, pp. 10181047, Sept. 1976.
7. M. Sendaula, "Lyapunov Stability Criteria for Two-Dimensional Discrete Systems", prepublish.
8. A.V. Oppenheim and R.W. Schafer, Digital Signal Processing. Englewood Cliffs, N.J.: Prentice-Hall, 1975.
9. L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing. Englewood Cliffs, N.J.: Prentice-Hall, 1975.
10. R.M. Mersereau and D.E. Dudgeon, "Two-Dimensional Digital Filtering", Proc. IEEE, vol. $63 \mathrm{pp} .610-623$, Apr. 1975.
11. D. Goodman, "Some Stability Properties of Two-Dimensional Linear Shift-Invariant Digital Filters", IEEE Trans. Circuits and Syst., vol. CAS-24, pp. 201-208, Apr. 1977.
12. D.L. Davis, "A Correct Proof of Huang's Theorem on Stability", IEEE Trans. Acoust., Speech, and Sig. Proc., vol. ASSP-24, pp. 425-426, Oct. 1976.
13. D. Goodman, "An Alternate Proof of Huang's Stability

Theorem", IEEE Trans. Acoust., Speech, and Sig. Proc., vol. ASSP-24, pp. 426-427, Oct. 1976.
14. J. Murray, "Another Proof and Sharpening of Huang's Theorem", IEEE Trans. Acoust., Speech, and Sig. Proc., vol. ASSP-25, pp. 581-582, Dec. 1977.
15. S.H. Lehnigk, Stability Theorems for Linear Motions. Englewood Cliffs, N.J.: Prentice-Hall, 1966.
16. E.A. Guillemin, Synthesis of Passive Networks. New York: John-Wiley \& Sons, 1957 .
17. S. Attasi, "Stochastic State-Space Representation of Images", Lecture Notes in Economics and Mult. Syst., 107 Berlin Germany: Springer-Verlag 1975, pp. 218230.
18. R.P. Roesser, "A Discrete State-Space Model for Linear Image Processing", IEEE Trans. Automat. Contr., vol. AC-20, pp. 1-10, Feb. 1975.
19. E. Fornasini and G. Marchesini, "State-Space Realization Theory of Two-Dimensional Filters", IEEE Trans. Automat. Contr., vol. AC-21, pp. 484-492, Aug. 1976.

