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ABSTRACT

APPROXIMATING SOLUTIONS TO NONLINEAR

SYSTEMS OF EQUATIONS

Terence J. Blevins
Master of Science

Youngstown State University

In this paper I will discuss methods used to
approximate solutions to nonlinear systems of equations.
I do not intend this to be an exhaustive report on the
problem but rather to touch methods which I have found
most interesting and most productive.

Chapter I introduces the reader to the general
problem and gives ideas of the many methods available for
solving this problem. The next chapter deals with the
development of the methods that I use for this problem
along with a brief discussion of alternate methods.
Chapters III and IV contain problems that are used to test
the methods and results of those tests respectively.. The
final chaptef contains conclusions based on the test

results.
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CHAPTER I

INTRODUCTION

The General Problem

In many practical instances the simultaneous

solutions to the following set of equations is sought.

fl(xl’ ; Xn) =0
fz(xlr r X ) =0
fn(xl' R T xn) =0
where fi: R" > R and xi e Rfor 1 = 1; « « %'

The frequent occurence of problems similar to the
above has lead to the following notational simplification.

Consider the following equation which is identical to the

above,

F(x) =0 (1)
where F = (fl’ fz, s & By fn): R® > R" and x is the vector
(€5 o = vp %) with # e REok i =13, « o 2pn. Tt will

be assumed that at least onevof the n functions will be non-
linear hence equation (1) represents a nonlinear system of
n equations in n unknowns.

The classical approach to solving equation (1) has
been to apply Newton's Method which takes an initial approxi-

mation to the solution and iteratively improves it. Newton's



Method guarantees that, under suitable conditions on F,
quadratically convergence to the solution will be obtained.
The above guarantee also assumes that the initial approxima-
tion is within some neighborhood of the solution. This local
convergence property has a restrictive effect.

Some of the physical problems that require solving
equation (1) do not yield initial approximations that are
good enough to result in convergence by Newton's Method.
Confronting this problem is the first goal of this paper,
that is, to find a method that will yield convergence to the
solufion given any initial approximation. A method of this

type is said to have the property of convergence.

The Problem of a Poor Initial Approximation

One approach to the problem of having a poor initial
approximation to the solution of equation (1) dates back to
1944. Here K. Levenberg discussed the problem relative to
nonlinear least squares analysis.1 In 1952 M. Hestenes and
E. Stiefel published a well-known paper which introduced the
conjugate gradient method that confronts this problem relative

to linear systems.2

1K. Levenberg, "A Method for the Solution of Certain
Nonlinear Problems in Least Squares," Quarterly Journal of
Applied Mathematics, 2 (1944) :164.

2Magnus R. Hestenes and Edward Stiefel, "Methods of
Conjugate Gradients for Solving Linear Systems," Journal of
Research of the National Bureau of Standards, 49 (December
1952) :409,




There is also a method described by Davidenko in a
1953 paper.3 Finally in 1963 D. Marquardt published what
has come to be known as the Levenberg-Marquardt Method.4
The method that I chose to implement is based on the

Levenberg-Marquardt Method. Reasons for this choice are

described in Chapter II.

The Problem of Computational Efficiency

Another consideration that arises when solving
equation (1) is that of computational efficiency. Do there
exist methods to solve equation (1) which are more efficient
than Newton's Method?

In Chapter II it will be seen that Newton's Method
requires certain computations that can be quite costly.
These computations in some instances are completely elimi-
nated by considering a new approach and in other instances

the computations are approximated based on prior approxima-

tions.

Brown's Method, Brent's Method5 and Kizner's Method6

are examples of methods which are new approaches. These

3D. Davidenko, "On the Approximate Solution of a

System of Nonlinear Equations," Ukran. Mat. 5 (1953):196.

4Donald D. Marquardt, "An algorithm for Least-Squares
Estimation of Nonlinear Parameters," SIAM Journal of Applied
Mathematics 11 (June 1963) :431.

5Michel Y. Cosnard and Jorge J. More', "Numerical
Solution of Nonlinear Equations," Transaction on Mathematical

Software 5 (March 1979) :64.

6W. Kizner, "A Numerical Method for Finding Solutions
of Nonlinear Equations," SIAM Journal of Applied Mathematics
12 (1964) :424.




methods have had poor initial success due to problems of
implementation, but Brown's Method and Brent's Method have
recently been revised and generalized so that programming
is possible.7

Methods which eliminate certain computations by
successive approximations are called quasi-newton methods.
Some quasi-newton methods are; Powell's Method,8 Broyden's

1

A Method and Broyden's A Method.9 A survey article of

these methods and others can be found in a paper by Dennis
and More'.10 I have chosen to study Broyden's A-1 Method

and compare its efficiency to that of Newton's Method.

7D. M. Gay, "Implementing Brown's Method," Report
CNA-109 (Austin:Center of Numerical Analysis, 1975), p. 1.

8Leon'Cooper and David I. Steinberg, Introduction
to Methods of Optimization (Philadelphia: W. B. Saunders
Company, 1970), p. 162.

9C. G. Broyden, "A Class of Methods for Solving
Nonlinear Simultaneous Equations," Mathematics of Compu-
tation 19 (1965):577.

10J. E. Dennis and Jorge J. More', "Quasi-Newton
Methods, Motivation and Theory," SIAM Review 19 (January
1977):46.




CHAPTER II

METHODS

Newton's Method

Before deriving Newton's Method for a nonlinear
systém of equations I would like to look at Newton's Method
for a single nonlinear equation in one unknown. Consider
the following equation,

f(x) =0 (2)
where f: R - R and f is nonlinear and x € R. The following
is a derivation for Newton's Method for a single nonlinear

equation.11
Let £ be twice continously differentiable on [a, Db].
Also let x* € R be an initial approximation to x such that
|x - x*| is small, i.e., we have a good initial approximation.
Finally, let f'(x) # 0. Then we can approximate f(x) by
Eix) = E(x*) + £'[x*){x ~ x¥*) & £V [Eix) )1z = X*)%é (3)
using Taylor's expansion, where §(x) lies between x and x*.
But since |x - x*| is small, (x - x*)2 is smaller yet. Hence
if f(x) = 0, we have

f(x). = 0 = £(x*) + £'(x*) (x - x*). (4)

1Richard L. Burden, J. Douglas Faires, and Albert C.
Reynolds, Numerical Analysis (Boston: Prindle, Weber and
Schmidt, 1978), p. 39.




Equation (4) implies

x = x* - f(x*)/f'(x*). (5)

This approximation provides the basis for Newton's
Method for a single nonlinear equation in one unknown. The
approximation described by equation (5) defines an iterative
procedure where each successive iteration produces a value
closer to the actual solution, x, i.e.,

Xi 4,7 = X~ f(xi)/f‘(xi). (6)
Equation (6) defines the sequence {xi}ijlo .

The following theorem shows that under suitable con-
ditiéns the sequence defined by (6) converges to the actual
solution, x.

Theorem 1.12 Let f be twice continuously differ-

on [a, b]. If x e [a, b] is such
that f(x) = 0 and f'(x) # 0, then
there exists a § > 0 such that -
Newton's Method generates {x.}.

; 11 =1
where X >+ x as i-+ «, when

xoe [x-6, x + 6].

The interval, [x - §, x + 8], is called the interval
of convergence. One should note here that the interval of
convergence could be very small. This is the first exposure
of the need for a good initial approximation.

The above procedure for developing Newton's Method
for equation (2) provides the basis for developing Newton's
Method for equation (1). Recall equation (1),

F(x) =0

L rpid., p. 43.



where F: R" » Rn, x € R'. The following equation is an

n-dimensional analogue to equation (6):

a . -1
X:01= %Xy J(xi) F(xi) (7)
where X, € R, for i =0, . . ., and J(xi)— is the inverse
of the Jacobian Matrix evaluated at X, - The Jacobian Matrix

is the n-dimensional analogue of the derivative of f and

multiplying by J(xi)— is analogous to dividing by f'(xi).

The derivation of equation (7) is similar to, but much more
complicated than, the above derivation for Newton's Method
for a single equation.

Equation (7) defines a sequence which converges to
the solution, x, under suitable conditions. The following
theorem states those conditions.13

Theorem 2. Let F be twice Frechet differentiable

on a convex set D. If x € D. 1If
X € D is such that F(x) = 0 and F'(x) =0,
then there exists an open neighborhood

So D such that Newton's Method described
by equation (7) generates a sequence.

In this n-dimensional case, SO is the ball of convergence
where X must be in order to obtain quardratic convergence
to the solution, x. As in the one-dimensional case the ball

of convergence can be very small.

13A detailed discussion of Newton's method along with
a related theorem can be found in J. M. Ortega and W. C. Rhein-
bolt, Iterative Solutions of Nonlinear Equations in Several
Variables (New York and London: Acedemic Press, 1970), p. 1.

WILLIAM F. MAAG LIBRARY
YOUNGSTOWN STATE UNIVERSITY.



Levenberg-Marquardt Method

The need for the initial approximation to the solu-
tion to be within some ball of convergence can greatly hinder
solving equation (l1). 1In many instances where the solution to
equation (1) is sought there does not exist physical or analy-
tic evidence to provide an initial approximation which is in
the ball of convergence. Hence Newton's Method will not
guarantee convergence to the solution.

As stated in Chapter I, there do exist alternate
approaches to the problem. The Levenberg-Marquardt Method is
one of those alternatives which is quite successful. The
Levenberg-Marquardt Method is somewhat based on the method of
steepest descent, or conjugate gradient method, which I will
first describe.

The method of steepest descent was applied to linear
systems of equations in a paper by Hestenes and Stiefel.14 1t
is also described in a book by Johnson and Riess.15 The follow-
ing is a brief description nf the concept as presented in
Ralston and Raibinowitz.16

Finding a solution to equation (1) is equivalent to

finding the minimum of the following function,

14Hestenes and Stiefel, "Solution of Nonlinear
Problems," p. 164.

15Lee. W. Johnson and R. Dean Riess, Numerical Analysis,
(Reading: Addision-Wesley Publishing Company, 1977), p. 341.

l6Anthony Ralston and Phillip Rabinowitz, A First

Course in Numerical Analysis (New York: McGraw Hill Book Compan
I978), p. 361. . v




G(x) = FL(X)F(x) = I £, {0 & » <2 B0 (8)
i=1 &

F: R" » R" and X; € R for i =1,.. . ., n. Finding the mini-
mum to equation (8) can be done by searching along the path

in the direction of the negative gradient, since it is well-
known that the negative gradient points to the direction of
steepest descent. Thus moving along the path in the direction
of the negative gradient will be moving towards the minimum.

Noting that the gradient of G(x), denoted V G(x), is

evaluated as follows,

VG(X)= M,___’_QG_(}?L ; (9)
axl 0X
n
]
one can determine V G(x) = ZJT(x)F(x). Hence the method of

steepest descent becomes defined by

- = T r}
%y o407 = %y aiJ (xh_F(xh_ (10)

where X, € R" and a; € R fori = 1, 2
The problem that exists with this method is that a

determination must be made at each step of how far to go along
the path in the direction of steepest descent. In other words,
determining,ai at each step. It is clear that the size of oy
could easily cause overshooting of the minimum if it is too
large. Also, if o, is chosen too small, convergence can greatly
be impaired. This problem can be overcome by minimizing the
following function,

h(a) = F(x -a VG(x)1). (11)

The o which minimizes this is the step size.
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A meﬁhod which incorporates the method of steepest
descent in an-elegant fashion is the Levenberg-Marquardt
Method. This method was developed by D. Marquardt for appli-
cation to nonlinear least squares analysis in a 1963 paper.
An adaptation for solving equation (1) by this method is also
found in that paper. The concept of the method is to use the
following equation as a generator for approximations to the
solution to equation (1),

Xiv1 = %5 T [J(xi)T J(xi) + BiI]_1 J(x,)T F(xi)’ (12)

where X; € Rn, ai & R, for i = 1, 2; .

It is quite obvious that ai=o implies that the above

equation is Newton's Method. It is less obvious however, that

if 31 is chosen sufficiently large, equation (12) 1is the method

of steepest descent. Consider the following theorem.
Theorem 3.18 Let J(x) and J(xi)T be defined, then:
(i) J(x) T J(x;) is positive semidefinite,

oy T -1 .
(ii) (J(xi) J(xi) + BiI) exists: for 3i > 0
and ;s R[%(Bi)—{J RT, where D =
23 L
R E‘r(xi)T J(xiﬂ and D(3,) =

[dl + ai, % Tnrlu dn + ai],

(ii1i) (J(xi)T J(x ) + BiI)_l decreases as Bi

increases.

17Marquardt, "Least-Squares Estimation," p. 164.

18Proof in Appendix D.
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Hence when Bi is chosen sufficiently, equation (12) is the
method of steepest descent defined by equation (10).

What is left to describe in the Levenberg-Marquardt
Method is the method of choice for ai. The Marquardt paper
indicates a method of choice for ai as follows. This is the
method I have adapted.

Let v>1.

Let ai_l denote a previous value of 3.

Let 80 = 10—2 or some value chosen between 1 and 10_2.
Compute w = F[ai_lxi_l], y = F[(ai_l/v) xi_l].
Then if
(i) ||y|b £ I|F(Xi—ﬁlb’ let 34 = Bi_l/v to decrease
as the solution is approached.

(i1) Iyl > I Fexg_pll, and [ wil, < [Fex,_ ),
let ai =93 since decreasing 9.1 doesn't
produce the desired result.

(118)  lylL> 1 FGe_ Il 5 and llw lly > 1L Fexg_p) 1]

increase 31—1 by multiples of v until for some
smallest b, ||F(8i_lvb)(xi_l)|]2 < HF(Xi—l)H2’

then Bi = Bi_lvb. This will put the iteration

in the state of steepest descent.
As will be seen in the results of testing, this method
of choice for ai and the overall Levenberg-Marquardt Method is
quite successful and the procedure produces the desired goal,

global convergence.
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Broyden's Methods

Before developing Broyden's methods I will briefly

discuss the general form of all qﬁasi—newton methods. Recall

equation (7),

_ x -1
X . = X J(xi)

i+l i F(xi)' (7)

It is quite easy to see that at each iteration Newton's
Method requires n functional evaluations for computing
F(xi). Also, inverting a general nxn matrix is known to
take 0(n3) arithmetic operations19 whether done directly or
done by solving a linear system. So, as was stated in the
introduction, Newton's Method can be quite expensive. This
expense has led to the development of the following approaches
which try to eliminate some of the computations or functional
evaluations.

Instead of equation (7) the quasi-newton methods
follow equation (13),

X;,0 = X, - A, T F(x,) (13)
where Ai is an approximation to J(xi) which is updated at
each iteration.

: As an example of quasi-newton methods let us refer
bace to another method of solving equation (2). A discretized

Newton Method for solving eguation (2), sometimes called the

secant method, is as follows,

19Burden, Faires, and Reynolds, Numerical Analysis,

p. 325.
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-1
£i(x } =~ El%.]
! N r i=1 i
S T TR £x;) (e
which implies
f'(xi)(xi_l - xi) = f(xi_l) - f(xi). (15)

For the n-dimensional case, equation (16) is asked to
hold,

1) - F(x). (16)

Ai(x. - Xi) = F(xi_
The so-called secant equation where Ai is the approximation
to the Jacobian matrix.
Here one should note that Ai is not unique hence there
are many quasi-newton methods. As pointed out in a paper by

Dennis and Schnabel,20 the most successful matrix updates are

those which minimize the norm,

H12s = 25 qllg
'

3 2| . Forcing Ai to

| is defined as .
el 3

where | (a;)
1 J

I ~3

minimize the above norm preserves previous information of the
approximation matrix. Hence, in the case of the secant method
described above, if one uses Ao = J(xo), then Al will change
in the least way necessary to satisfy the secant equation.

The information of the actual Jacobian is used to approximate

the new Jacobian.

20J. E. Dennis, and R. B. Schnabel, "Least Change

Secant Updates for Quasi-Newton Methods," SIAM Review 19
(January 1977) :443.
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To derive Broyden's A method the following theorem

) 21
is necessary.

Theorem 4. Let Ai—l E L(Rn); S, Y ¢ R" where s # 0
Let Q(y, s) = {M ¢ L(R")|Ms = y}. Then

the unique solution to min [[A, - Ay qllg
Aie:Q(y, s)
is Ay = A, ; + (y - &;_,8)s? (17)
Ts11,
Thus if s = (x;, - Xi—l) and y = [F(x,) - F(xi_l)], then
A=Ay b IR - FOgg) = Ay kg oxg )00y oxg )0
B R L B (18)

Equation (18) clearly satisfies the secant equation and so it
is a quasi-newton method.

Equation (18) describes Broyden's A Method. This
method approximates the Jacobian at each iteration, eliminating
the n2 functional computations necessary to compute J(xi). One
must note that using Ai, as described by equation (18), in
equation (13) is useful only if the Jacobian is very costly to
evaluate. The sometimes overwhelming price of inversion still
exists.

To deal with this second difficulty, Broyden developed
a method to approximate Ai_l, hence Broyden's A—l Method. This

method not only eliminates computation of the Jacobian, but

2

lipid., p. 445.
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reduces the number of arithemetic operations at each step.

Broyden's A"l Method owes its existence to the following

theorem.22

Theorem 5. Let A ¢ L(Rn) such that A—l exists and
let U, V £ L(R™, R™)

(A + UVT)_l exists if and only if

m e Then

(I + VTA_lU)—l exists. 1In that case
(a + ovD) = at - atur + viaTty Tl L (19)
This formula for computing (A + UVT)-l is called the Sherman-
Morrison-Woodbury Formula. Its validity is readily seen if
T

one multiplies the righthand side of equation (19) by (A + UV").
If in equation (19) we let U and V be vectors x and
Y € R", then equation (19) becomes

-1 -1 T -1
(A + xyT) L = A A XYlA ' (20)

1+ yT A Tx

where yTA_lx # -1.

Broyden used equation (2) to develop the A—l approxima-

tion. Recall equation (17),
(y - Al_ls)sT
A, = . +
¥ i} i-1 ||S || (17)
2
which, implies
-1
T
(y - Ai_ls)s
A. = |A + (21)

22

Adapted from text in Ortega and Rheinbolt, "Iterative
Solutions," p. 212.
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put equation (21) is in the form of the left-hand side of

equation (20) where x - [y - Ai_ls]/|| s||2 and y = s. Hence
-1 -1 a gl R AT S sTa, . “Ly-a, .s) i
A, - = A, S b T A T S T A
1 i-1 1+ :
Il s |1, s 1,

o -1
Xi—l)’ and s Ai—l

Equation (22) allows equation (13) to be implemented

where s = X, = X, 1, Y = F(Xi) - B y # 0.

without actually calculating the inverse, a savings that will

be seen to be greatly justified.

Alternate Methods

There exists many other quasi-newton methods. Each
of these methods has its special application and has its deri-
vation based on special properties of the Jacobian Matrix.
For example, there are special methods which handle symmetric
Jacobians, e.g., Powell's Method. Another example is the
Schubert-Broyden Method applied to problems where many entries
of the Jacobian are zero, i.e., the Jacobian is sparse. When

minimization techniques are used on systems of nonlinear

equations the solution to equation (1) is sought, but special
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properties of the Hessian matrix lead to the use of variable
; 23
metric methods.

Approaches to solving equation (1) have gone beyond
the classical iterative Newton Method. Of these, Kizner's
Method uses integration techniques to yield new approximations
to the solution. Another approach is the use of systems of

.24 More signifi-

differential equations to solve equation (1)
cant are the methods of Brown and Brent. Different from
gquasi-newton methods, Brown's and Brent's methods retain the
property of quadratic convergence while ﬁsing about half the
functional evaluations of Newton's Method. These last two
methods, in particular, both succumb to the problem of local
convergence.

The methods of Brown and Brent are quite similar and
are both quite complicated to implement. As stated in Chapter
I, D. Gay simélified this problem. The concept behind Brent's
Method, therefore similarily Brown's Method, is to linearize |
the system F(x) = 0 by expansion about an approximation. This
gives an approximation to the Jacobian Matrix that is reduced
tb lower triangular form by a procedure similar to the proce-
dure used by the Q. R. algorithm in solving eigenvalue

problems.25 By this I mean that the lower triangular form is

y _ 23Each of these methods can be seen in Dennis and More',
Quasi-Newton Methods," p. 46.

2 . 2, ok :

4S. Incerti, V. Parisi, and F. Z2irilli, "A New Method
for Sleing Nonlinear Simultaneous Equations," ‘SIAM Journal of
Numerical Analysis 16 (October 1979): 779.

25

Burden, Faires, and Reynolds, Numerical Analysis,
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obtained by nultiplying the approximate Jacobian by a
sequence of Given or Householder rotations. Then the follow-
ing equation is solved for the new value of the solution,

T

F(x. ) + A (xi - X

o = U, (23)

i1t
where AT is the approximation to the Jacobian. The savings
occurs because only n2/2 + 3n/2 functional evaluations are
computed.

As was mentioned in Chapter I, I intend to test
Newton's Method against Broyden's A—l Method. Each of these
methods will have the benefit of the Levenberg-Marquardt
Method for starting approximations. It is expected that
Newton's Method will convefge faster than Broyden's A_l
Method relative to the number of iterations. This is expected
since quasi-newton methods give up the property of guadratic
convergence. However, it was seen that the number of func-
tional evaluations in Newton's Method is n2 + n at each iter-
ation, while in Broyden's "L the number is only n. Also, in
BroYden's A_l method there is the need for O(nz) arithemetic

3) arithemetic

operations in computing Ai-lF(x), while 0(n
operafion are required to compute J(xi)-lF(xi) in Newton's
Method. These two points seem to indicate that Broyden's

Method might be faster in terms of time.
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CHAPTER III
TEST PROBLEMS.

The following problems have been selected as test
problems. These test problems come from two sources.26 These
problems will test Newton's Method versus Broyden's A—l Method
and the Leveﬁberg—Marquardt Method versus an approximate
Levenberg-Marquardt Method, where the Jacobian is approximated
by Broyden's A Method. The problems are listed with the
solution, x*, and reasons for choosing the problem.

Problem 1. £, (x

Il
o

fz(xl, x2) = (xl - 2) -+ (x2 + .5) -1

x* = (1.0673460858067, 0.1392276668869)T.
This was chosen sihce it is a system of two polynomials in
two unknowns, a relatively simple looking problem with a
complicated solution.

. 4 B
Problem 2. fl(xl, x2) = 10 XX, - 1 =0

-X, X

= T =
f2(xl, X2) e + e Jie Q@01 0

x* = (.000010981593297, 9.1061467398)T.
This was chosen since one equation has an extremely large

" coefficient, 104, while thé other equation has terms which

could be very small.

_ 26The two sources are (i) Burden, Faires and Reynolds,
gEE%££g§l Analysis, p. 446-449 and (ii) Gay, "Brown's Method,"
B 15,
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‘Prrﬂalenl i fl(xl’ x2) = -13 + X, + [(5 - xz)x2 - 2]x2 =0
f2(xl, x2) = -29 + X1 + [(x2 + l)x2 - l4]x2 =0
x* = (5, 4)F

This problem was chosen since it is a system of two third

degree polynomials which has a simple solution.

Problem 4. fl(xl, Xy x3) = 3xl - Ccos (x2x3) -.5=0

_ o 2 ' 2 : _
fZ(Xl’ Y X3) =¥ 81(x2 + 1) + sin Xq + 1.06 =0

- = o X1X% - =
f3 = (xl, Xy x3) e + 20x3 + (10w - 3)/3 =0
x* = (.5, 0, -F/G)T

This was chosen since it contains exponential, trigonometric,

and polynomial terms.

' n
Problem 5. fibﬁf o o xUﬁ = ll4-2xi-+j£l>% = 0;
j#1
i=1, r 9
10
=14+ I x. =0

This was chosen since it is an almost linear 10 x 10 system.

sin (x.,,) - sin (x.)
Problem 6. fibﬁf o & ,XZ& = AL I = 0
v 12.88
o o] 4P ., 19
20
f20(xl, o e i x20) = _2 jEl tan (xj) -2=0

x* = (.14, .20, .24, .28, .31, .35, .38, .41,
A3, 46, .48, 51, .53, .55, .57, .60,
62, 64, .66, B8}
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This was chosen to test Broyden's A_l versus Newton's Method
only at initial approximation (1, . . . , l)T. Chosen since
it 1is a large system of nonlinear equations.

I Broyden's A_l Method, Newton's Method and the
Levenberg-Marquardt Method were each discussed in the previous
chapters. Here I will discuss the approximate Levenberg-Marquardt
Method. Recall equation.(lZ) and equation (17),

= L3 L acth T (12)
Xi01 < Xy J(xi) (xi) i J(Xi) F(xi),

'Ai =.Ai_l + [(y - Ai_ls)sT]/llsllz. (1.7
The Levenbérg—Marquarat Method requires that J(xi) be computed
at each iteration. The approximate Levenberg—Marquardt Method
will use Broyden's Ai approximation to J(Xi)’ described by
equation (17), in equation (12). This alleviates the work of
computing J(Xi)’ yielding,

Y s T -1 T
Xip1 = %5 (Ai Ai + aiI) Ai F(xi). (24)

Testing the approximate Levenberg-Marquardt Method
against the Levenberg-Marquardt Method will provide insight

to the savihgs, if any, of Broyden's A Method.
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CHAPTER IV
RESULTS

Problems 1 through 5 iisted in Chapter III were
solved by: (i) the Levenberg-Marquardt Method, L-M, to
generate good initiai approximations; (ii) the approximate
Levenberg-Marquardt Method, A-L-M; (iii) Newton's Method with
a good initial approximation, N-W; (iv) Neﬁton's Method
without a good initial approximation, N; (v) Broyden's A_l
Methodlwith a good initial approximation, B-W, and; (vi) Broyden's
A-l Method without a good initial approximation, B. Problem 6
was solved by B and by N, with initial approximation
R - o 13T

The L-M Method and the A-L-M Method were considered
successful as starting procedures when there was no change in
the approximate solutions in the first decimal place; i.e.

| | % .01.

i - *xally 2

The methods of Broyden and Newton were considered
successful as terminal procedures when there was no change in
the approximate solutions in the tenth decimal place, i.e.
-11

lei il Xi—l||2 L]

10

Since the results must be correct to ten decimal
places, double precision arithmetic in FORTRAN was used on
an AMDAHL 470 V/5 computer to program the problems. There

are sample programs for the L-M, N and B methods in the

appendices.
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The following two tables sum the results of the

. Table I indicates the number of interations that

the given method required to coverage to the above described

toleran

each method required’to coverage.

ces.

Table II indicates the time in seconds that

Methods that did not

coverage for a certain problem are marked "Failed".

" TABLE I

ITERATIONS REQUIRED

PROBLEM L-M A-L-M N B N-W B-W
1 g ) 26 15 4 4
2 83 15 14 28 4 4
3 19 19 44 Failed 2 2
4 4 4 6 7 3 4
5 2 2 Failed|Failed 5 7
6 Not Not & 21 Not Not
Tested Tested Tested |Tested

coverages, usually, in fewer iterations.

Table I indicates as expected that Newton's Method

Also the A-L-M

Method coverages similar to the A-L Method.
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TABLE II

TIME REQUIRED

PROBLEM L-M A-L-M N - B N-W B-W
g 0.030119 0.044097 | 0.060533 |0.029836 | 0.014483| 0.013057
2 0.348452 0.364732 | 0.039304 |0.053389 | 0.016311| 0.013617
3 0.080099 0.109480 | 0.090887 |Failed | 0.010268| 0.009911
4 0.032079 0.045856 | 0.046504 |0.028814 | 0.025721| 0.236429
5 0.383725 0.392817 | Failed |Failed | 0.453926| 0.236429
6 Not Not 4.531082 |2.280336 | Not Not
Tested Tested Tested Tested

the majority of the time Broyden's A—l

in terms of time to obtain convergence.

Table II indicates,

again as expected, that in
Method is quicker

There is only one

instance when Newton's Method is quicker than Broyden's A

Method.

The table also indicates that the A-L-M Method

requires more time than the L-M Method.

Each of the terminal methods, N, B, N-W, B-W,

yield results which are correct to the actual solution to

at least 10 decimal places.
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CHAPTER V
CONCLUSION

The purpose of this.paper was to determine and
implement a procedure that would allow the solution to
equation (1) tb be obtained given any initial approxima-
tion. Also it was desired to compare Newton's Method
with a popular alternative. Broyden's A—l‘Method was
decided upon after a general search of methods to solve
equétion (1) was carried out.

The Levenberg-Marquardt Method has satisfied
the first requirement. Test results have shown that
this procedure works and works well. An attempt was
made to improve the efficiency of the Levenberg-
Marquardt Method, but this attempt did not reduce the
use of time due to the fact that the matrix'(AiTAi +
aiI) must still be inverted.

The comparison of Newton's and Broyden's
methods can be done in two ways. One way is to compare
the methods given any initial approximation and another
way is to compare the methods given an initial
approximation from the Levenberg-Marquardt Method.

The tables show that, whenever convergence is
Comparable, Broyden's Method is more efficient in every
Case except one. This is what was expected from the

theory. Also, convergence can be obtained in Broyden's
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Method in more interations than Newton's Method, but
remain more efficient in terms of time. This
demonstrates Broyden's superiority.

' The one case where Broyden's Method was less
efficient than Newton's Method brings up a drawback of
any of the quasi-newton methods. This drawback is that
the quasi-newton methods are not self corrective, as is
Newton's Method. This is the most probable reason for
Broyden's slower convergence in that one case.

One should not get disturbed by fhe fact that
Broyden's Method failed in two cases; Those cases each
had poor initial approximations. Note that the problem
is cleared when an initial approximation is used from
the Levenberg-Marquardt Method.

In conclusion I would suggest when solving
equation (1) to apply the Levenberg-Marquardt Method
then, once convergence is evident, apply Broyden's A 1

Method.
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oAb o ok ook 43 ok b b Ok ROk R ek b AR o % ok ok K OR Ok R ok K ROk K K ok K K ok K K sk Rk OK o K R ok ok ok K

(‘f‘(lﬁ(’(‘.(‘(‘(‘(‘.(ﬁ(‘(‘(‘ﬁﬁ(frf‘r‘r((‘F(‘(‘(‘("(‘(‘-(‘(‘P(‘(‘(‘."C(‘(‘("(‘{‘(f(‘(‘(‘(‘ﬁr‘(‘r

THLIS PROGRAM SCLVES THE FOLLOWING NON=-LINEAR

SYCIEM BY MHEWUTON'S METHOD.
THE FROCLDURT 1S CONS1UERED COMPLETE WHEN

THE FUCLIDEAN NURM OF THE OLD AND NEW VALUES

185 LESS THAN O,00U0GO00UGODL.
(HOTE THAT THIS VALUE CAN BE MADE AS LARGE
GROAS SMALL AS THE USER WISHES.)

FUL)==1142aX14X24X34.444X10
FUI)==1142%XI+SUMIXy) w=l TO 10 WHFRE wn=1

FALIG)==14PRODEY L) I=1 70 10

THE FOLLOWING 18 A LIST OF THEC SUBROUTINES?

NAME PURPOSL

kN EVAIL UATES VECTOR FUNCTIQON F(X)
AT FPRESENT VALUE X '

oxn COMPUTLS THE PRORUCT OF MATICES

Ay COMPUTES THE NEW VALUE QF- ThL
SOLUTION

XIN INVERTS A MATRIX

b JN FVALUATES THE JACOBIAN MATRLIX

NEWION®'S METHOL WUORKS AS FOLLOWS:

LET XU PE AN INITLIAL AFPPROXIMATION 10U THE
SOLUTION OF THE SYSTEM,

THEN GENERATE XN bty THE FOLLOWING MEWTUN
EGUATTIONS

NHEY Gm (¥ =1)*F (X0) (1)
¢ 1S THE UALCBIAN MATKIX,
FOX(I)) 1S THE VALUE OF THE VECTOR
FUNCTION.
AN UWECUMES THE MEW VALUE OF THE SOLUTIUN.
THIS PROCEDURE CONTINUES AS PRESCRIBED BY
THE FCLIOWING ALGURITHM UNTIL THE VALUES
O THE SOLUTION CHANGE VERY LITTLE.

STEP L1ILET XO BE AN INITIAL VALUE.

CSTER 2:COMPUTE XNa

STEP 3:1F 1IXMN=X0V1<10%x*x=11 GU TO STLP 9S.
STEP 4:X0=xNy COMPUTE XN BY MNEWTON EQUATION,

LR B R IR R N R R I R O N N R N R I R R B R N R R R B R R R B R B N A
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¢ GO TO SIkP 3, *
& STEP S:THE PROCLULURE 15 COMPLETE AND XN *
C IS THE APPROXIMATE SOLUTION TU 1HE *
L SYSTEM, : ’ *
£ *
C *

kK ok K R ok o R KOk ok ok sk K ok b ok b R kOK 3 i ok K Ok sk K K Ok Kk kK K Ok ok K K K % i K K ok ok K K K ok K

IMPLICIT REAL%B(A=<tioU=2)

DIMENSLICN XUC10) 9 AUCLI0+10) o XNCL1O) wFO(10) oFNN(LIO) «

SARE20900) e XXxC10)eFT1CL10)eF2010)4YO(10)aY(20)

EXTERNAL XMoFRNoXINoALyFJUN
L*******‘ﬁ*t**'t*t*&#(n**#*****1\#t#-*t******t****#**tt********t
C cALL TIMEZ 18 A PROCLDURE USEL TO *
o FTLD VIRTUAL CePeUs TIME, *
o %k A4 o b Ak kb SOk Koo % &k sk ok b R R R KOK b ok o 1 sk o K K ok ok ok ok kO ok ok F o ok o sk K ok ok ok K K ok F %

CrpLkL TINER :

(L o b ok KA ok SOK R b & ok kK kb ok R b ok KO ok b ok ok S ok K ok ok K ok ok ok kR ok ol K ok ok K K ok ok ok ok
¢ STEF 1 IN ALGORITHM, *
(C ok ok i Ok A gk SO8 OR O Kk ok ok R ok gk ok K KR K b o ok ok R ok K K o ok K ok ok ok ok ok ok R Ok i ok ok Ok Ok K ok ok K
DO 91 1=1410
91 X0(J1)=.5

Nz=10
(o & kb ok K K ok A ok ROk o s K Op oot ok ok KR KO K ok Kk i ok A K kK K ROK A ok ok K K RO SR K ok K ok X K K Ok ok ok
C STER 2 1N ALCOK1ITHM, : *

(% o %K ok A 30K ob b Ak Kb ok R R R OR R K o ) OR K OK K K R KK R oK K K K K o K K Ok ok R OK K kK OK
CALL FuN(x0+AD)
CALL AJ(IXU«sNOZNeXNsFO)
DO % I=1.200

Sum=0.0
Lok KK A gk KOk F SRk SOk % AR ¥R b AR K oK KK R K K A KK K K oK K K K K K R K K K K R KKK ok K
(8 STEP 3 I ALGORITHM, *

C % o Aok o K A b ok AR sk K SR R OF ok o AR ok Ak ok K R K O Ok K R ok A K Ok K e K OK o ok K ok ok ok K kK K K K
DO 6 J=1 40
6 SUM=SUMADABSIXN(J) =XU(J) ) *%2
S8S=USGRT (SUM)
IF (SS+LT7,0.U000000UQUDL)GO TO 99
0 ook ok ok ok & A Ko ok b ok b A b 3R Ok ook ok b ok ok ok 3 ok ok ok ok ok ok ok ok ok ok K i kOK kK o K K Ok k ok K
C STERP 4 IN ALGORATHEM, *
(o 5 ok o ok o ok kKK A 0 ok ok o kb KK KK A ko b KR N ok oK x kK ok ok ol n ok K K o K K KKk K K ok ok kK
DO Y J=1.N
9 XU =XNM(J)
CALL FUN(XCWAD)
CALL AL(XOsAONaXNsFQ)
5 CONTTIRUE
4 o ok Ko Ak ok M % Ny ke op o Rk ko A kR Kk ok Kk K ok R ok K b i ok ok ok ok Rk ok K sk ok Kk ok ok K K ok ok ok %
C THE PRUCEDURE 15 COMPLETE. *
U 5 KOk o ok e ok ok ok b o K A o kb b Aok b o Bk ok ok b ok ok b ok ok o ok ok K ok o ok ¥ ROK ok K K ok ok ok % Ok ok ok ok K
99 CALL FEN(XN+FHNeM)
WKITE(bySY) ]
WEITE(byOn) (XN(J) sd=1N)
CWRTITE(6 57 ) (FNN(J) vJd=10N)
95 FURMAT(/+15X+ *THE NUMBCR OF ITERATIONS
~IN NEWION'S METHOD 18'.1Y%)
E& FORMAT (/41X +20(1XeF8a3))
7 FURMAT(/41Xs10(1XeF843))
CALL TIMEZ
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S0P

LD
C o ok Kok o K ok ok koK O kol b ok A & KOk b kK sk K ik kK R o kORI R K R OK Kb Ok KOOk oK ok K R K R ok k ko
& XM COMPUTES A*B=C *x

oKk ok oK kO KK kb K R ok ok % o8 sk ok R ok sk K OK K K KO ok K 0K K ok ok Ok KK K K oK ok K
SURROUTTHNE XM(AsBaNaC)
IMPLICIT REALXB (A=t ,0=2)
DIMENSION A(10e1N) e2010410)C(210410)
DO 1 J=1N
DO 1 T=1ep
ClyeTI=0a0
DO 3T K=1 ey
1 CUJaTI=C U 1) #N(JeiC)*B (K1)

KETUR

END
o Aok Ak Rk ko Kk R % ok bk kR Rk RO o b bk h Ok K K KK AR kK k0K K R K K K kK sk OK K K K Ok
C FN COMPHTES THE VECTOR FUNCTION F AT A x

CoF Ak ok K K ok K ROk b b K A R K R R R OR Ok b b KOk ROK ROk K K K o o K K Ok R K K R K K
SURKROUITINE FN(AsF «N)
IVPLICIT REAL#8(A=-H.0~2)
DIMENSION F(10)+A(10)

S=p.0
P:I-O
DO X I=1+10
P=p*N(])

1 S=s+A(])
NN=Y

DU & J=1s+NN
2 F(U)==11.42.4+A(J)+5~-A(Y)
F(10)==1,.,+4P

RETURN

END )
o ok 3k ok o 20 ¥ K ok Ok sk Ik R KKK Ok KOk K Ok 8k ok ok ok ok ok R OK kK K ok ok %k ok ok K K K K K K
L XIN COVPUTES A**x~-1=C *

o Aok ok R ok g Ak ok ok ok & % ok o Kok R KOk ok R ROk R R OK & R OK ok Ak K ok K K ok K ok ok R ok ok kK

SUBROUTINE XTN(AWCalN)
IMPLLICIT REAL*B(A=H0=2)
DIMENSLION A(I0«10)982010220)+C(10+20)
DO 1 J=1aN '
DO 1 151N

I BOJsId=n0Je1)
N1=N+1 :
Ne=Nxg
RO 2 J=14N
DO 2 T=pt N2

2 BlJeaI)=0.0
DO 3 J=1.N

3 B(UsJ4N)=1,0
DU & J=1414
AN=3(Jded)
DO 5 I=1wn2

O BUUrII=R(JVI) /AN
DO 6 K=1.N
IF(K.EQW.J)GO TC 6
AR=B(Ky)
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el

L
C

S

DU 7 L=1ie
BIKaL)T=1 4 ALxB(JsL)+B (KoL)
CUNTTNUE

COMNTTINUE

DO 9 J=1N

DU 9 I=1wN

Clge)=p(JI1N)

KE TURN

END
(Lo o oo ok ok ok OK b okob koK sk ko kb KOk Sk ok o K KK ok K R b K ok Kk ok ok Ok ok Ok K K K K ok ok K ok 3k K ok K
AT COMPUTES Jx%x=1 AND THE-MEwW SOLUTION *>
BY THE FOLLOWING EQUATION: ! *
XMN=XO= (Ut *k=1)*F (XxU) *

C

U ko ok sk o kK ko b ook b okob o KOK ROk R ko KK KOk b ok ok ok ok ok KOk ok K K K K K K ok K oK ok Ok K

SUBROUTTINE AI(XYsA«NeXNFO)
IVPLICLIT REAL*8(A-HU=-2)
DIMENSION ACLO220) «HNC10+10) «eXI(10)9XN10)FO(10)
CALL FNOXLeFOLM)

CALL XINCAGHMN)

DO S J=1aN

XN(w)=U,0

DU & 1=1N

XN =an ()4 (e T +F0(1)
DO 4 T=1i
XN(CL)=X101)=-21(1)

RETURN

Erp

% S ok ok K ok ok b K KOR Skob ok sk on kKb R RO R sk ok O Sk okOF R ok ok 3ok ok ok ok ok S ok K K o oK K ok o ok K K ok ok ok K

C

FJi cGrpuUIeEs THE JACCBIAN MATRILX *

(L% ok KOR K bk K K OE % b 20f kR R A b R CKOK R b ok R K KOR K  k ok R OK K O ok B KOK Ok Ok Kok bk K K %Ok

ne

4

SUBROUTTINL FJN(NABE?

IMPLICIT REAL*B(NA~HU~/)
UDIMENSLICN ACI0)«BC1010)
P=1a.0

DO 1 I=1.9

DG 1 J=1410

Blija«sd)=1.0

DO 2 J=1+%

BlJevJ)ZEoa U0

DO O JT71 10

P=p¥A(dJ)

DO 4 Jd=3e«10
BO10«J)=P/ACY)

RETUR

LhnD
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APPENDIX B
»JOU
ok 2ok ok kb ok B K K Rk R b koK K K sk R OK K K ok Ok K R Kk KK OF R K K R R Sk KOK 0Kk K ok K ok K K K ok ok K
L THIS PROGRAM SOLVES THE FOLLOWIMG NON=-LINEAR

SYSTEM BY THE LEVENBERG-MARQUARDT METHOUD.
THE PROCEDURE IS CONSIOERED COMPLETE WhREN
THE [UZLIDEAN WORM OF THE OLO AND NEwW VALUES
IS LESS THAN 0401

(NOTE THAT THIS VALUE CAN BE MADE AS LARGE
OR AS SMALL AS THE USEK WISHES,)

FUl)=-1142%X1+X2+X3+.,4+X10
FOI)z=211t2xXT4+5UMIXY) J=1 TO 10 WHERE wun=1I

FO1U)==1+4PRODIXT) I=1 70 10

THEL FOLLOWING IS A LLIST OF THE SUBROUTINES:

NAME pURPUSE
k1 EVALUATES VECTOR FUNCTION F(X)
AT PRESENT VALUE X
XM coMPUTES THLZ PROLUCT OF MATICES
AT COMPUTLS THY NEW VALUE OF THE
- SOLUTIUN
XITN INVERIS A MATRIX
FJN EVALUATES THEL JACOBIAN MATRIX

THE LEVENBERG=-MARWUARDT PROCEDURE WORKS AS

FOLLOWS S

LET xO BE AN INITIAL APPROXIMATION TU THE
SOLUTION OF THE SYSTEM,

THEN GENERATE XN BY THE FOLLOWIMG L-M
CEQUATIONT(DOME IN SUBRCUTINE AL

XNZXO= ( (T 4 J+RLAMKIM) *%=1) % JT*F (X0)

oT . IS IHE JACOBEAN MATRIY, TRANSPUSE
J 1S THE UACOBEAN MATRIX,

IM 1S THE JTUENTITY MATRLIX.

RLAM IS A VALUL CHOSEN BY A

PROCESS UESCRIBED BELOW.

F(x0) IS THL VALUE OF THE VECTOR
FUNCTION, :

XN BELCOMES THE HEW VALJE OF THE SOLUTLION.
IHIS PROCEDURE CONTINULS AS PRESCRIBRD RY

THE FOLLGWING ALGORTITHM UMNIIL THE
SOLUTTOM CHANGES VERY LITTLL,

(‘.(‘.(“ﬁ(‘(‘ﬁ_(‘(‘("("?‘r(‘(‘ﬁ(‘f‘(‘r'r(‘f‘(“(‘(‘(‘(‘(‘(‘(‘(‘.(‘.("f“r‘(’("(‘F(‘(‘.(“(‘(‘,rr.ﬁ(‘,(‘f‘(
LR N S N R R I R B R R S R R R I I B R R N R R R R R
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STEP 1:LETl X0 BE AN INITIAL VALUE .
[ET RLAM BE A NUMBER BETWEEN .001
AND 100' AMD LET V=1.25.

STEP 2:CUMPUTE XN

STEP A:1F J1IXN=XC11<0,0G1 GO TO STEP 6.

STEP 43:X0=XNse COMPUTE NEW RLAM,

STEF S: COMPUTE YN AY L-M EQUATTON,
GO 10 SIEY 3,

STCP 6:THE PROCLDURE IS COMPLETE AND XN
IS THE APPROXIMATE SOLUTION TO IHE
SYSTEWN.

CUMFW{TATI(HJ OGF NLEW RLAM,

LET KLAM BE GIVEN INTITIALLY AND LET V=1.25,
LFT KLAMO DENOTE THE PKREVIOUS RLAM,
COMPLTE F(RLAMUXXU) =W
FO(RLANO/ZV) A XU)ZY
FOX0)=Ze
THEN (1) IfF teYHRI<=1121) ThEN
RLAM=RLAMOQ/V,.
(2) TF LIYRID201Z30 AND JIWMIC= 11Z1) THEN
RLAM=KLAMO,
(Z) 1F $0YRA200250 AND B1Wlhl >DE1Z1 1 THEN
INCREASE EILANO BY SUCCESSIVE
MULTIPLES OF V¥ UNTIL
LIF(CRLANOA (Y % %A) ) AXC) 1 IC=1iZi]
THEN LET RLAMZRLAMO* (V**A) .
o A ok v ok ob Ok o s ok ok ok O ok b R ok ol K R P o 20 A Kook o ok A ok ok kb Rk b of ok ok R kol Kk ko ok K ok ok Xk
IMPLICLIT WEAL¥B(A=H 0=
DIMEMSION XO(10)sA0C10420) «XNCLO) W FO(IU) oFNNC10)
“AN(10¢1C) oXX(10)sF1(10)sF2(10)4YO(1G)4Y(10)
EXTERNAL XMoFNaXINsALoF JN
C o %k ok ko ke op kR A o o ok ok ko ok ko ok R R Kk ok b R ook ob b ok kb kok kb bbb R kR ok ok ko kR ¥ Kk
L ; CALL TIME2 IS A PROCEDURE USED TO *
¢ FIND VIRTUAL C.P.U. TIME, *
(0 K ko ok o oK ok o ok ok Kk ok ok ok K ok ok b ok Kb 3Ok sk ok b ko ok & K o ok o ok ok K ok K K ok A K K ok KOk ok K %
CALL TIMEZ
(% o 3k ok ok ok ok o K K ok K sk K ok b ok Ok sk Ok K KOk KOk S okt ok sk R ok ok ok K ok ok kK R K K koK K ok ok o K ok K ok ok ok
¢ STEF 1 IN ALGORITHM, ‘ *
% ok b ok Ak ok o ok ok ok ok ok ok ok ok ok A ok ok ok ok ok Rk B ok ok ok ok ok sk b K ok ok A ok ok ok ok ok K ok ok K sk ok ok ok ofe K ok ok ok o K
DO 91 I=1,20
Y1 X0(I1)=e5
RLAM= 4500

aOOCcOcoaoaocaao OO Cc OO OGO oo oo
F O OF X H F O O ¥ O OF X F OFH ¥ OF F FH K OF OF K F H F ¥ F ¥ X

V=1,.23

N=10
Coh 5ok ok A b s ook K ok ok ok b Kok kKO CE KOk b kK ok Ok K Kk Ok K KK R OK K K K K OK KK kK
L STEP 2 TN ALGORITHM, *

Uk ook ok ok e ok kb Aok Wk b o ok R OK K K Kk KOk ok ok oK K K K O K ok kK R R K Ok K K K o K K KOk Ok
CALL FUM{X0O+AOD)
CALL AL(XOsAD RLAMINXNsFU)
DO 5 I=1.200
SUM=0.0
ok 40K o b ok oo kb b b oK ok b K KR K K Kk oK ok K K K A ok koK ok K OK sk ok K ok K sk ok ok ok kK
L STEP 3 IN ALGORITHM, *
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o % b ok ok K KOk 4ok ok K K A KKk K KK KK ok K kK Kk K ok ok ok kK K oK K OK KK K K K KOk Ok
DO b J=14N
6 SumM= bUM#UAWS(XN(J)‘KU(d))f*Z
SS=DSEGRT(SUIM)
IF (SSel.T.0401)60 TO 99
(2 K ok ok Ok ROk o KK KOK ke Ak b kK ok b ok ik K kK 56k ok K O sk kK K Ok kA Ok K Ok Ok K K K OK R s K K ok KOk K K ok ok kK
C STEP 4 IN ALGORITHI, *
L***************'****k***k*’l‘x‘*«!‘**********k****‘*‘**********
DU 9 Jd=1 1y
XO(J)=XN{J)
XN(JI=XClu) *RL_AM
9 XX (J)=XCOJ)*RLAM/Y
CALL EN(XNe«F140)
CALL FN(XXsF24N)

/\=000

B:OOO

C=0.0

DO 18 J=1,N
A=pAFNN(J)
B=R+FL0J)

18 C=C+F2(J)
IF(CJLE.A)GRD TO 24
IF(BsLE.A)GO TU 29
21 RLAM=RLAMXYVY
DO 19 J=1,4N
19 XN(J)TXN(J)ARLAM
CALLL FN(XNaF14N)
B=0.0
DO 20 J=1.N
20 B=p+F1(y)
IF(b.LE.A)GO TO 29
GO 10 21
24 RLavz=RLAM/zV
CokkAh kb o b Ad Kb h ok b kb KOk 40K F K Kok ok Rk kA K ROk K Aok ok K Ok ok ok kK sk ok Kk R ok K K K Kok K
C . OSTEP 5 1IN ALGORITHM, *
oK ok ok ok e b Ok K b Ak Kok K ok R R OR Ok Kok Kok K Ok K K kR ok K ok K K K OF K OF K ok K K ok ok ok ok
29 CALL FJNIXN2AD)
CALL AT (XUsNOGRLAMeNIXNAFO)

5 CONTINUE
L****t***i**t0**tt#*********#*******#*t*********#***********
L THE FROCCDURE IS COMPLETE. *
%O b ok ok b ok ok ok ok ok ok K ok % kb K K R OK K sk sk K ok ok R oK ok b K ok ok ok ok sk K R K R kb K ok ok ok % ok ok ok ok K

99 CALL FNOXNaFNNN)
WRITE(6,55)1
WETTE(E.56) (XN(J) ed=LeN)
WRTTIFE(6E,S7) (FnNED) d=14N)
9% FORMAT(/ 415Xy 9 THE HUMBER OF ITERATIONS
=IN L=M IS*,19)
96 FURMAT(/41X210(1X+F843))
97 FORMAT(/41Xe10(1X9F8e3))
CALL TI1VvE?2
STnk
Ehn
L********t***1y*tr#t4*+***&*******w:*»******4**t************
c AM COMPUTES A*E=C *



-
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LAk kA b ook kb o b A b Ak ok ok ok R Rk ok b R ook R OB K K K ok R ok ok ok kR k& K K K sk KK o ok

SURROUITTINE XM(AsPoNeC)

IMPLICIT REALXxB8(A=H40=2)

UDIMENSION A(10+410)¢8010420),C(104+10)
DO 1 J=1N '

b0 1 I=141

C(ysI)=0a.0

DO 1 K=+l
CJUeID)=C (e ) +N(JIKIXB(K1)
RETURI

LMD

o % sk ok b b skok ok ok K o Ak kR ok b F b K KRR K A OK b O K b A kR K K R OKOR K K K K ok K K ok ok ok K

C

FN COMPUTES THE VECTOK FUMZTION F. AT A *

(L Aok oK ob Kok o 4Ok oK K ok b ok b K g koR R R A K ok R R ROk ROk KK xR OR K KK K ok KOk ok ok K K K ok KO K ok K

n

SUBKQUTINE FM(AFN)
INPLICLIT REALXO(A=H«U=2)
DIMEMNSICN FO10)aAC10)

S=p.0

P-‘-].O

DO 1 I=1.10
P=pxA(1)
S=s+A(1)
NN=Y

DO 2 J=1.+N\N
FOU)==11e42 A (J)+E-N(H)

FQ10)==1 4P

RETURN
END

O AOkOk KOk ok o o ok K ¥ ok ok ok Ak ok K K A OR ROK K sk K K ok ko8 Rk b K ok ok K ok K K ok ok K sk ok K ik ok ok K ok ok k K

C

XIN COMPUTES A*«-=1=(C *

(% ¥ ok koK ok ook R o kR Kok K ok o b Ok Rk K Rk kR KK b ok KOb Ok K K K K Ok K K K ok K ok K ok ok K

SURHKOUTINE XINCA+CeN)
IMPLICLIT REAL*8(A=H0-2)
DIMENSION A(20¢10)BC2L020)+C(20+20)
DO 1 J=1e¢iN

DO 1 I=1.0\
BlJsT)=ALUs1)

Nl=N+1

N2 =iv%2

DO 2 J=1N

DO 2 I=N)aNe

B(JyI)=C,C

DO 3 J=1aN

BlJded+N)=1,0

DO 4 J=14N

ANh=b(Jed)

D0 Y I=1en?

&

BOJeI)=R(Usy1) /AN

DO 6 K=1eN

IF(K.EG.J)GO TO 6

ARG (Ke )

DO 7 L=1,.N2
Blpkal)==1,5AN4B(J2L)+B(KsL)
CONT INUE

CONTINUFE
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DO 9 J=1N

DO 9 I=1aN
S Clyeld=ptusidn

RETURN

EIND :
0o o b o o 8k Kb kb KR ok kb OK AR ok KR Sk KO8 K KKK ok K ok ok ok ok ok ok ok K K ok ok K K
» AT COMPUTES ITHE L=M MATRIX AND THE NEW SOLUTION  *
& EY THE FOLLOWING EGUATLIONS J *
C XHZXO=((JTAJHRLAM*IM ) Rk =] )k JT*F (X0) *

L*#f********-i‘ﬁ#ﬁ:tii‘»***#"*’******t***ﬁ****#*****‘**‘***A***#
SURROUTINE AM(X1elheRK1NoeXNeFOQ)
IMPLICLT REAL*x&E(A=HU-2)
DIMENSLUON ATCL1O0«10) «AP(10210) 9AC10410)
~HHN(L0210) 2 ABE1IC+10) o X1 (10) 9 XN(10)«FO(CLI0)
CALL FN(X1+FC4N)
DO 1 Jd=1N
DO X I=1N
Y AT (1oJd) =AU ]
CALL XMOAT AN AR)
DO 2 I=2+M
2 AP (I I)=R+AP(T.1)
CALL XINEAP 9 ABRTI)
CALL  XMNE AT MNHN)
DO 3 J=14N
AN(J)=0,0
DO 3 I=1NN
3 XN(JI=EXNCOU)Y+HNG S 1) *FO0(T)
DO 4 I=1N
U XN(I)=X1(T)=XnCDD)
RETURN
END
(2K ok ok ok Ak s ot R ROK o 3R b K ok b K kKK ok 3R K OR Ok R8sk ok o ok ke ok ok kK K ok K Kk K ok K ok K X K K
£ FAN COMPUTES THL JACCBIAN MATRIX *
(% % ok ok ook Kok OF b st ok sk Ot ot ok ok R kK R sk ok o ok o oK K ok sk oK ok Ak ok ok oK K Kk ok oK ok K s oK K ok ok o K
SURROUTINE FJUIN(AB)
IMPLICIT RFEAL#8(A=Hs0=2)
DIVENSION A(L1p)sB(L010)
P=1.0
DO 1 I=1+9
DO 1 J=1+10-
DO 2 J=1e3
2 B(ywdli=2,0
DO 3 J=1.10
3 PzpxA(J)
DO 4 J=1,410
4 B0« ) =pP/s/aC
RETHRN
I hin
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APPENDIY. C

PJOU
A A o o ok o o ok Kb K o kb bk oF K o KOk Tk ok b b ROk b RO K OKOK K K EOE KOk A A ok dOK K K b K K ok K K

THIS PROGRAM SCLVES Tht FCOLLOWING NON=-LINEAR *
SYSIEM RY BROYDEN'S METHOD.,. *
THE FRGCEDURE 1S CONSIDERED COMPLETE WHEN *
THE FUCLIDEAN NORM OF THE OLD AND NEW VALUFS *
IS LESS THAN 0,000000Q0001, *
(MOTE THAT THIS VALUE CAN BE MADE AS LARGE *
UR AS SMALL AS THE USER WISHES,) *
*

FULl)==11424X1+X2+X3+,,.+X10 *
. *
. *
. *
FOI)=~1142X14SUNIXJ) J=1 TO 10 WHERE Jn=I *
. *
. %k
° *
FO1U0)==14PKOD(X1) I=1 70O 10 *
*

THE FOLLOWING 1S A LIS1T OF THE SUBROUTINES: *
*

NAME PUKFUSE *
_______________________________________________ *
i EVALUAILS VECTOR FUNCTION F(Xx(I1)) *
AT FRESENT VALUE X(I) *

XTN INVERTS A MATRIX *
o EVALUATES THE JACOBTAN MATRIX *
: *

BROYDEN'S METHOD WURKS AS FOLLOWS: *
*

LET X0 BE AN INLTLAL APPROXIMATION TO THE
SOLUTIQN OF 'THE SYSTEM,

THEN GENERATE XxH BY THEL FOLLOWING NEWTUON
FEJUATTIOMNS

ANZXO=(Jx*=1)}*F (X(])) (1)

Aokkckx EQUATION (1) IS USED ONLY ONCE e *#%%x
JoI5 THE JACOBEAN MATRIX,
FOAtIyY) 1S THE VALUE OF THE VECTCR
FUNCTIOM ' '

ATl BRECOMES THE MEW VALUE CF THL SOLUITON,

HEXT AN APPROXIMATION 10 THE JACOBIAMN INVERSE
LS EvALUATED Gy THE FOLLOWING EQUATION

(SS=ATU*Y)*xSST*NA10
AINSAIQ+ =mmwm==== Rttt e (2)
SST*ATO*Y

WHERE S ATN IS The NMEW APPRCXIMATION TO THE
JACOBLAN INVLRSE,

e e e e el e el et el e R a Rl sl o sl e R e S w R ol R e N ol e N sE o s N o N ek ol el cR o sR ol ol sE el o R o sl sl e X o

* ¥ ¥ F ¥ OF O F R F % K F X K ¥ R OF K ¥ ¥k F X ¥



ATO IS THE OLD APPROXIMATION TO 1HE
JACOBLAN TNYERSE

§SS 1S (XN=X0).

Y 1S (FIXN)=F(X0))a

FINALLY NEW VALUES TO THE SOLUTION ARE
UKTAINED 8BY THE FOLLOWING EQUATION.

AMN=XO=ATN*[F (X0) t3)

IHIS PROCEDURE IS CONTINUED AS PRESCKRIBED BY
1HE FOLLOWING ALGOURITHM UNTIL THERE IS
LITILE CHAWNGE 1IN THE SOLUTION.

STEP LILET XO BE AN INITIAL VALUE,
LET AT BE ACTUAL JACOBLAN INVERSE.
STEP 2:COMpUITE XN BY EQUATION 1.
STEP 3:TF 11XAN=-XO11<104%-11 GO TO SILP 6.
STEFP 4:CcOMPUTE AL BRY EQUATION (2).
STEP S5:i¥x0=xMNs GO 10 3 COMPUTE XN BY EQUATION (3).
STEP &8:THE PROCEDURE IS COMPLETE AND XN
1S THE APPEOXTIMATE SOLUTION TC 1THE
SYSTEM.

OO G OO0 GO D QeI & O

ok ok ok kb o O KOF b ok kb ok ok kR o ok K ok R 5 ok o o 1k ok Ok KOk K OF i ok ok ok ok Aok o o ok K koK ok ok K ok ok K
IMPLICIT REAL%xBIA-HsU~2)
DIMENSION XO0(10)2A0CICo10) o XNC10) +SS(20)sENNCL1D)+SN(1
“AL(L0s10)+C(I0020) e FUCLO) oX(10)gYCI0)
EXTERNAL FMeXIN«FJN
(0 o ok Ak ok KK A OK %k ok K s o ok RO ICOK 30k v KOK R A O kK koK K ki A R 80K 0K Kok Ok ok K K K Ok K
C CALL TIMEZ IS A PROCEDURE USEDL TU *
C FIND VIRTUAL C.PeUs TIME, *
(L% A ko Aok ok A0k kK ot K ok Kok b kol K 00 sk ok ko e R Ok b kR Xk ok ok &k ok kR K O R R Kk K ok ok ok K ok ok ok ok
CALL TInEZ2
(kO Ok A ok Kk O A o K EOb b g Rk o K R IR K OK A 8K kR d ok ok Ok ok Ok KoKk K K K i K OK kK ok K Ok KOk %

C STEP 1 TN ALCCRATHM, *
R N T N R P R R
MN=11 o

0O Y91 1=1410
91 X0(1)=1.00¢4
CALL. FUNIXOWNQ)
CALL XINCAOWAT oIu)
(0% o o sk o ok ok ok ok ok K K ok ok sk ok oK ok b ok o K ol R K ok o ok K R WOk ok kK kK ook ok ok K ok ok ok ok ok ok ok ok ok ok
= STER 2 IN ALGORITHM,
C********.rww#» ¥ ok ok K Sk kb R ok Rk R ok ke ok ok K Ok o R ok oK ok K ok K ok e ok ok ok o ook K ok K ok K K K ok K
CALL FN(XO4FO,N)
DO 5 I1=1,400
DO 1 J=1.N.
XN(J)=U.N
DO 1 JJ=1.N
1 XN(J)EXN(UYHAT(JedJ)RXFO(JU)
DO 2 JE1aN
2 XN(J)=XOEG)=XN(d)
SUM=(Q,0
S2=0.0

39
*
*
*
*
*
*
*
*
*
*
*
-
*
x
*
*
*
*
*
*
*
*
*
*
*
0),

*
x*
*
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ATO IS THE OLD APPROXIMATION TQ IHE

siatiakslal iirFatstatelchstalzticiatztstalatalziaks

*

JACOBLIAN INYVERSE o *

SS IS (XN=X0). *

Y IS (FUXN)=F(X0)). *

*x

FINALLY NEW VALUES TO THE SOLUTION ARE *
USTALINED HY THE FOLLOWING EQUATION, *
*

AM=X0=ATN*F (X0) (3) *
x

IHIS PROCENURE IS CONTINUED AS PRESCKIBED BY *
IHE FOLLOWING ALGURITHM UNTIL THERE IS _ *
LITILE CHANGE IN THE SOLUTION,: *
*x

STEP L:1ET XO BE AN INITIAL VALUE, *
LET AT BE ACTUAL JACOBIAN INVERSFE. *

STEP 2:C0MPUIE XN BY CQUATION 1. *
STEP 331F 1IXN=X01i<104%=11 GO TO SILP 6. *
STEF 43COMPUTE AIN RY EQUATION (2). *
STEP 5:¥0=XMe GO 10 3 COMPUTE XN BY EQUATION (3). *
STEP 53THE PROCEDURE IS COMPLETE AND XN *
15 THE APPROXIMATE SOLUTION TC THE *
SYSTEM. »

, ‘ *

ok o kR o R K OR o Ktk ok K Ok K AOR o o K Kk K Kk Kk K K ok ok ok ok O ok K K K K sk K K K K X

IMPLICIT REAL*xB!NA=HU=2)
DIMENS1ION XO(lO)vAO(chlC)cXN(lO)qSS(lU)cFNN(IO)'SN(log
-1\1(1.0'10)vC(l(]cl(J)!FU(lU)'X(ll)).,Y(IO)
EXTERNAL FMoeXTHFJN
(0 A Aok e kA o ik oK K sk ok o K ok ROk ROk TIOR OR 3K K R kO s koK i K K Ok K A K A0 K kK K koK ok K K K koK
C CALL TIMEZ IS A PROCEDURE USED -TU *
C FIND VIRTUAL CePeUs TIME, *
(oK ok ok ok 40k R b KON 0K oo e RO T sk Sk 3 K kR 8 ok ok K ok koK KR ok 8 kK K ok ok koK K K ok ok
CapLl TIrE2 : g
(o o kb ok Kok A Kb A ok 8Ok f % ko A b koK O K K R 8K kb ok ok ok K ek Ok oK K K K ok K OK K ok ok K ok XK Ok K
(o STEP 1 IN ALGCRLITHM, : *
U b ook b g 3R R R o on Kk ok R ko R RO R K kR K ok o K R R 8 R b b R K KK o OF ok ok ok & R K Kk
~N=19
DO 91 1=1410
91-X0(1)=1.004
CALL FUNIXO«AQ)
CALL XINCAOSAT N
oK o o sk o ok b ok ok o K ok Ok A A OK b ko Kk KO koK K A ok Ok K ok ok K ok kK K K K ok ok Kok ok ok Ok K ok ok ok kK
C STEF 2 TN ALGORITHM., *
C ook Ao ok ok o ok b b bk b Ok kb KOk KR ROk ok ok K K Ok k% o ok ok Ko K kol 3K R OR K Ok K K sk kK K ok K
CALL FN(XQaFO,4iV)
DO 5 I1=1.400
DO 1 J=14N
XN(J)=U.N
DO 1 JJd=1.N
1 XN(Z)=XMOUI AT (Ladd) *FO(JJ)
Do 2 J=T1 N
XN(I)=XO () =XN(Y)
SUM=0,0
S2=0,0

n
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CALL FIN(XNeFNNal)

DU & J=1aN

SS(J)=XMN(J)=-X0(J)

Y(J)=FNNM(J)=-FO(J)

Se=S2+FNN(J)

6 SUM=SUMISS (J)I 4SS ()

SG=USWRY (SUM)
Cobo %ok A 8 ok 4 F Kok b 5 & Aot Kok kok A Kok K 8 ) b b ok ok ok b b R OK R Rk OF b b F o 3k oK ok K b K K ok ok K
C STERP 3 IN ALGORITHM, *
o A o sb o ok o ok ke ok K b o sk skok oK koOR KoKk &R R OR ok Ok ok kb ok ok KOk KOk ook ok ok K ok ok K sk Ok ok K K K ok ok K

IF (S@eLT.0.,00000000U01L)GO TC 99
L*tt*****1k**t****#w*****t*#*t*****ﬁ***#********************
C STER 4 IN ALGORITHM, *
L***k*t#td»##»t*x******i#0**********#***r******#*mk****t*#*t

DO B J=1al

X(J)=0e0

DO 8 JJd=1.M

B X(d)=x CU)+A L (Jdadd) ¥Y (JY)

L0 Y UT1en

9 SW(J)I=SS(J)=X(J)

Q=00
DO 10 JU=1 4N
10 W=Q+X(J)&SS(J)
DO 11 J=1.N
X(J)=0.0
DU 11 Jd=10
11 X(J)=XLUuI+SSCJJ)I*AL (JJyJ)
DO 14 \J'lv[‘]
DO 14 JJ=1a0
14 AO(JaJJ)=SNIJ)*xX(JJ) 70
DU 12 J=1,4M
DG, 12 JdJ=1¢N
12 AT (JeJd)TAT(JaJU)+A0LJeJ)
L#t*l***#****#*t#****t*»*#»******Ai****!***#*****t*t********
L STEF 5 IN ALGORITHM, *
(L %k o ok ok ok K K e Kook K K o ok ok ot ok o ok ok o ke K I e ok kA K sk K K b %Ok ok ok Ok ook o ok R K ke ok K kK ok ok ok ok ok ok kK
DO 13 J=1,N
13 X0 ) XM Y)
CALL FN(XUQsFO4N)

5 CONTTNUE
L**i***i*#****v*#t***i*i************************************
c THE PROCEDURE 18 COMPLETE., *
L#*****t*****#*****ttﬂ***#*tk*Y*#t*****#*****f*************t

95 CALL FNOXNGFNNeN)
WRTTE(6,55)11
WRITE(BaS6) (XNIJ) v d=h i)
WHTTE(B S ) (FMNCJ) o d=1 o)

SS FURMAT(/v15Xs *THE NUMBER UF ITERATIONS IN L=M IS'+15)
56 FURMATI/+1X+¢10(1XeF12,5))
D7 FORMAT(/+1IXv10(1XaF12.9))

CALL TIMFg '

STokP

END

9***************w***t****4**1*************t***********#*****
¢ FN COMPUTES THE VECTOR FUNCTION F AT A *



1

(4 Kok ok o KOk b kb K K KK KR K KR KK A KOK K KOR FOK K R K K K o ok KK ok R K K o

SURRQUITINE FM(A«F «N)
IMPLICIT REAL*8(A=t1,0=-2)
DIMENSLION F(10)s0(10)

S=0.0

P=1.0

DU 1 I=1<10
P=p*N(1)
S=g+A(1)
NP=% ‘

DO 2 J=1 QN
FOJ)==11+2,%A(1)+5=N(1)
F10)==1.4P

RETURN

END

(0o oK b Ao 3k b K K Kk K A K &k ok ¥ o KR K ok ok KK K kKK R K K K kK K K K K sk K 3Kk ok ok ok K o ok K ok

G

XIN COMPUTES Ax%=1=(C

*

C ok 4% 5k ok Aok Kok K o KOk KK K b KRR AOK R KK K K OF ok K K K K ok K K A K R KOK AOK Kok A ok Ok K K

6
Ul

9

SUBROUTINE XIN(A+CeN)
IMPLTCIT REAL#B(NA=H0=7)

DIMENSION A(10010)+5010+20)4C(10+10)

DU 4L J=1N

DO 1 I=1+N
B(JdsTI=AGULT)
Nl=N+1

" NZ=N*2

DU 2 Jd=1sN

DO e I=NM1yanN2
BOJeyI)=0e0

DO & J=1aN
BlJrJtN)=1,0

DO 4 J=1 4N
AN=B(JvJ)

NO S I=1+h2

B TI=ECUI) /AN
DO & K=1sN

JF(K EHLJ)IGO TO 6
AN=B(Ked)

DO 7 L=1«N?

BlKal)==2 . 4AR4«B(JeL)AE (KoL)

CONTINUE
CUNIINUE

DO Y J=1 iy

NDC 9 I=1N
CldeD)=RAJTI4N)
RETURN

END

R A0K0oh kb &k ko b skt ok gk b KOk 3K OK ok ok O oK ok KO ok Ok K o o ok k0K K K K OK Kk ok K K K ok ok ok

&

FJUN COMPUILS THE JACOBIAN

MATRIX

*

Lo b ok ok &R b 8 & ok ok ok o3 & ok ok sk ok K ok ok ok O ok sk R sk 8 OK K ok o o ok oK kK Aok K ok Kok K R R ok ok

SUBROUTINE FJM{AWB)
IMPLTICIT RFEAL+8(A-H40=7)
DIMENSION A(L10) +B(20¢10)
P=1.0

DO 1 I=1.9



DO 1 Jd=1.10

B(Iodl=1.0

DO 2 J=1.9

BlJsdi=2.,0 .
DO 3 J=1+10

5 PpaA(d)

DO % J=1.10
BEC10su) =P/A(Y)
KETURN

END
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APPENDIX D
Proof of Theorem 3

Theorem 3 follows immediately from the more -

general result listed below.

s i z
Theorem - For any real matrix A, A"A is positive

semi definite, (ATA + XI)—l e#ists when A.> 0 and 1im
||(ATA + AI);lATx|| = 0, A>», for each x in R".

Proof - The symmetric matrix ATA is semi positive
definite since (x, AlAx) = |[Ax||2 > 0 for each x.

Consequently, matrix R exists with RTR = I and

RTATAR = D, when D is a diagonal matrix with diagonal

entries dl’ d2, - F - dn’ Thus, for A > .0, (ATA +
A1) = RID(A\)]17'RT, where D(}) is the diagonal matrix
with diagonal entries d1 + A, d2 ol RREE - 1 dn 4 e,
since || (aTa + A1) aTx|| = ||R(DO) 1 TIRTATK] |

< LRI [Ttooo17H |

RTI T ]| |

and [D( )]_1 is the diagonal matrix with diagonal entries
(@, +07Y, @, + 07 Lo @, + 07 Lim
l|[D(A)]_1ll = 0 and %%2 II(ATx + ITﬂéqu(= 0.

The L-M method clearly gives Newton's method when

A = 0, that it approaches the method of steepest descent as

A increases is an immediate consequence of the above result.
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