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ABSTRACT 

A STUDY OF MINORITY CARRIER RESPONSE 

IN A METAL-INSULATOR-SEMICONDUCTOR STRUCTURE 

Fariborz Ghoorkhanian 

Master of Science 

Youngstown State University, 1980 

i 

The minority carrier effect on capacitance-voltage characteristics 

of MIS structures with examples for Si02-Si and Ai 2o3-Ge is studied. 

C-V curves for intrinsic Ge are presented. 

The small-signal state equations for the semiconductor neglecting 

recombinat ion are obtained and put into a set of first-order linear 

differential equations, y = Ay, which comprise a boundary value problem. 

This set of equations is solved numerically. First, the static equation 

in the semiconductor is solved to obtain the matrix, A. Then the general 

method of complementary functions using the orthonormalization process 

is employed. The semiconductor impedance is found and the capacitance­

voltage characteristics of the MIS structure are obtained. The effect 

of the semiconductor ohmic contact is also considered by proper changes 

to the boundary conditions. The charge analysis approach is also used 

and its results are compared to the numerical solution of state equations 

in different cases. 

The results of this study show considerable amount of minority 

ca rier response for Germanium-based devices even above l MHz. It is 

also found that this response depends strongly both on frequency and 

level of impurity. 
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CHAPTER I 

INTRODUCTION 

The MIS (Metal-Insulator-Semiconductor) varactor is one of the 

most used devices in semiconductor industry. C-V (Capacitance-Voltage) 

characteristics of MIS have been used extensively seeking i nfor 1 on 

about this structure, s;uch as, interface surface states, fixed and 

mo bile charges in the insulator. One of the most used devices for this 

purpose is Si•2-Si. Si02 can be grown thermally on Silicon. The use 

of other semiconductors like Germanium and other kinds of insulators 

like Ax. 2•3 havealso been studied by others.[ 1, 2,3] 

Physical Structure 

The MIS-C is a two terminal device composed of a thin layer of 

insulator sandwiched between a semiconductor substrate and a metalic 

fiel d plate, Figure 1. A second metalic layer along the back side of the 

semi conductor serves as an ohmic contact between the semiconductor and 

the external circuit . This terminal is used as the reference for the 

appli ed voltage. The terminal connected to the field plate is referred 

t o as the gate. The basic parameters of the MIS-C structure are the 

insulator thickness, xI' the gate area, A, and the doping concentration in 

the semiconductor substrate NA or ND. Some typical values for a Silicon­

based device are as follows:[ 4] 

0 

XI = 1000 to 2000 A 

A = (4 to 45) x ,o-4 cm2 

ND N = 1014 to 5 x 1016 -3 or A cm 



Metal 
Insulator 

Semi conr' :1 c t..>r 

Ohmic contact 

FIGURE l. Cross-Sectional View of MIS Structure 
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FIGURE 2. Idealized Flat-Band Energy Diagram 
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Idealized MIS Structure 

The idealized MIS structure is to be characterized as follows:[ 4] 

1) The active area of the structure is to be confined to that 

portion of the insulator and semiconductor directly under 

the metal gate. End effects are to be neglected; 

2) All variables in the active area are assumed to be independ­

ent of the coordinates parallel to the insulator-semi on­

ductor interface; 

3) The insulator is perfect. This means that zero leakage 

current flows through it under all static bias conditions; 

4) The metal-semiconductor work-function difference,~ , is ms 
assumed to be zero, Figure 2. 

Bi as Regions and Band Diagrams 

The voltage applied to the gate of the MIS will be dropped 

pa rtly across the insulator and partly across the semiconductor. A 

vo ltage drop in the semiconductor is reflected in the energy band 

structure as band bending. 

Figure 3 shows MIS energy band and charge distribution diagrams 

for a p-type semiconductor. There are three bias regions. For an 

appli ed gate voltage less then zero the majority carrier concentration 

at the insulator-semiconductor interface is greater than in the bulk. 

This bias region is known as 11 Accumulation 11
• A gate voltage slightly 

greater than zero causes the depletion of majority carriers for a dis­

tance into the semiconductor. This bias region is called 11 Depletion 11
• 

As gate voltage increases, there is a point at which the concentration 

of minority carriers is greater than the concentration of majority 

carri ers at t he insulator-semiconductor interface. This bias region is 
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called "Inversion". The bias point at which there is no band bending 

in the semiconductor is called "Flat-band" condition. This occurs at 

5 

VG = 0 assuming the metal-semiconductor work function difference to be zero. 

C-V Characteristics 

A large portion of knowledge about MIS systems has been gathered 

by comparing and analyzing the difference between the experimentally 

observed small-signal capacitance-voltage characteristics and t he capaci~ 

tance-voltage characteristics predicted on a theoretical basis assuming 

an idealized device_[l,S] For example, interface surface states cause 

shifts of the C-V curves from their theoretical basis. 

Two limiting theoretical cases for analyzing the MIS structures 

exi st. One is based on the assumption that the carrier concentrations 

inside the semiconductor follow the applied a.c. gate voltage quasista­

tically. The second is based on the assumption that the majority carrier 

concentration follows the a.c. gate voltage quasistatically, while the 

minority carrier concentration remains fixed at its d.c. value . These 

cases result in "low-frequency" and." high-frequency" C-V curves, respec­

tive ly . 

For Silicon-based devices, the usual impurity concentration is 

high enough that at high frequencies the minority carrier response can 

be neglected. In other words, the high-frequency charge analysis can be 

applied to these devices.[4] For other semiconductors like Germanium 

which have larger intrinsic carrier concentrations and higher mobilities, 

a significant amount of minority carrier response has been observed in 

some cases even at high frequencies.[l] The same thing can happen for 

a li ghtly doped Silicon but at a lower frequency. 
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In this work a more complete way for analyzing the MIS structure 

is developed. This method includes the effect of both majority and 

minority carriers and their frequency response. In Chapter II a charge 

analysis approach to the problem is discussed. Low- and high-frequency 

behavior of the MIS is fonnulated and the semiconductor capacitance in 

both cases is found . In Chapter III the semiconductor behavior in 

small-signal excitation, which includes the effect of both carriers, is 

found. The obtained equations are then simplified and put into a form 

called "small-signal state equations 11
_[

4J In Chapter IV a numerical 

method for solving the equations obtained in Chapter III is suggested. 

The resul ts of using this method for MIS capacitors are discussed in 

Chapter V. Chapter VI summarizes the results of this work and presents 

suggestion s for further work. 
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CHAPTER II 

CHARGES ANALYSIS 

Charge analysis is the name of an approach for establishing the 

low- and high-frequency C-V characteristics which requires the exact 

formulation of the d.c. state. In this approach, charge disturbances, 

resulting from the a.c. bias, and the associated capacitance are described 

directly in terms of the fundamental charge and voltage variables. Most 

of the work in this chapter follows the work of Pierret.[4] 

Carrier Concentrations 

The electron and hole concentrations inside the semiconductor 

can be described as[6] 

n = n. 
l 

Exp(-UF) 

p = n. Exp(UF) 
l 

( 1) 

where n. is the intrinsic carrier concentration. 
l 

UF is a measure of 

doping level and is equal to (E.-EF)/KT, where E. is the intrinsic 
l l 

Fermi-level energy and EF is the Fermi-level energy. 

Assuming complete ionization of impurity sites, the relation 

between UF and concentration of dopants can be found by. writing the 

neutrality equation in the semiconductor. 

(2) 

where NA and N0 are the acceptor and donor concentrations, respectively. 

Thus far, it is assumed that the piece of semiconductor is all at 

t he same potential. An electric field inside the semiconductor causes 

t he energy bands to shift_[4,5J At equilbrium, the electron and hole 

concentrations are 

n' = n Exp(qV/KT) 

p' = p Exp(-qV/KT) WILLI~.~-~ F. 1~.> ' LIBRA 
VO TO N STATE UNlVERSlD 

(3) 
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where Vis the electrostatic potential. Introducing a new variable called 

U such that, U = qV/KT, the above relations will be 

n' = n Exp ( U) 

p' = p Exp(-U) 

Substituting from (1) for n and p, into the above equations gives 

n = ni Exp(U-UF) 

p = ni Exp(UF-U) 

Poisson's Equation 

(4) 

( 5) 

Wi t h the carrier concentrations expressed in terms of electro-

static potential, Poisson's equation can be applied to find the electric 

f ield insi de the semiconductor. 

M I s 

0 X "' 00 X 

FIGURE 4. One -Dimensional MIS Structure . 

Writing the Poisson's equation in a one-dimensional form 

iv P = (6) 
dx2 - KsEO 

where, Ks is the semiconductor's relative dielectric constant. Defining 

t he i ntrinsic Debye length, L0, and the normalized distance, E, , 

i nto the semiconductor as 

(7) 



and 

~= t
0 

(8) 

the following form of Poisson's equation can be obtained 

ct2u l - 2 = 2(Exp(U-UF)-Exp(UF-U)+Exp(UF)-Exp(-UF)) 
d~ 

where U is a function of normalized distance, ~-

( 9) 

9 

The boundary conditions which are required to solve thi s electo­

static problem are taken as 

U(O) = Us 

dU (co ) = 0 
d~ 

Integrating both sides of (9) 

where 

( l O) 

( 11) 

F(U,UF)=(Exp(UF)(Exp(-U)+U-l)+Exp(-UF)(Exp(U)-U-1)) 1/ 2 (12) 
+ 

t he electric field, e , and distance, ~. are given from (11) as 

and 

where Us is the sign of Us. 

Low Frequency 

( 13) 

( 14) 

In the low frequency assumption, all the carriers in the semi­

conductor follow the applied a.c. signal. Considering this, the 

corresponding semiconductor capacitance, Cs, can be formulated as 

A K E0 Exp(UF)(l-Exp(-U ) + Exp(-UF)(Exp(U )-1) c = U _s_ s s 
s s 2L0 F(Us,UF) . 

[4] 

( 15) 
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High Frequency 

In high frequency the normal assumption is that the frequency is 

high enough that the minority carriers can not follow the applied a.c. 

signal. Therefore, their concentration is fi~ed at the d. c. level. On 

the other hand, the frequency is low enough so that the majority carriers 

can follow the applied signal completely. 

Starting with Poisson's equation, as the low-frequency case, and 

assuming a p-type bulk~ the semi conductor capacitance can be obtained as[4J 

+ 

Gate Voltage 

1/2 
2(Exp(UF)(Exp( - UF)+ UF-1) 

( 16) 

(17) 

The static solution of MIS can be completed by finding the gate 

voltage in terms of normalized surface potential, Us. Using relation 

(13 ) the gate voltage c~n be obtained as 

KT " KsXI 
V = - (U + Us -L K F(U,UF)) (18) 
G q s D I 

where XI and KI are the thickness and relative dielectric constant of 

the i nsulator, respectively. 

Charge analysis is used in this work to have a basis for compar­

sion with the method of state-equations that is found in Chapter III. 

Equation (18) is used to find gate voltage for a particular Us. Equation 

(11) is used to produce subintervals needed for the solution of state 



equations. Low- and high-frequency charge analysis computer programs 

are given in Appendix B. 

11 



CHAPTER Ill 

SMALL-SIGNAL STATE EQUATIONS 
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At an intermediate frequency, minority carriers follow the applied 

a.c. signal partially and their effect can not be neglected. So, the 

charge analysis method, which either includes or neglects the effect of 

minority carriers on the semiconductor capacitance, can not be used. 

Because of this, another line of approach to the problem which i ncludes 

the effect of both carriers is needed. This method is obtained[4,6] by 

formulating the conduction mechanism of electrons and holes while impos­

ing the continuity and Poisson's equations in the semiconductor. These 

equations in their entire form are very complex and can not be solved 

easily. In the case of MIS-C system some assumptions apply that lead 

us to a simpler set of relation. These assumptions are as follows: 

1) The MIS system is at quasi equilbrium. This means that 

electron and hole average currents are zero; 

2) The system is excited by a small sinusoidal signal; 

3) The recombination-generation rate of the disturbed carriers 

is negligible; 

4) The gate area of MIS-C system is large enough, compared to its 

length, that the equations can be expressed in a one-dimen­

sional form. 

After applying the above assumptions, the form of the small-signal 

state equations, which are also called small-signal transport equations[?] 

will be 
dV 

J = n n - 0 n crx-

~ 0 p dx 
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dV. 
J. = -iwK E 1 

1 s 0 dx 

dJ 
iwc ( V -V.) +-n = 0 n n 1 dx 

( 19) 

dJ 
iwc (V -V.) + __Qdx = 0 p p 1 

dJ. 
-

1 
= iwc (V -V.) + iwc (V -V.) dx n n 1 p p 1 

where Jn and JP are the electron and hole conduction currents and Ji is 

the displacement current. Vn and VP are the quasi Fermi potentials for 

electrons and holes. V. is the electrostatic potential. µ andµ are 
1 p n 

the carrier mobilities in the bulk. KsEO is the permitivity of the semi-

conductor and w is the angular frequency of the applied signal and i 

designates the complex number, (0,1). The factors an' ap' cp and en are 

defined as 

a = qµp p and an= qµnN p 

cp = lP/KT and c = q2N/KT (20) n 
where N and Pare the static electron and hole concentrations. 

Matrix Form of Equations 

Small-signal state equations (19) are a set of six simultaneous 

first-order linear differential equations in the complex space. These 

equations can be put into a matrix form as 

VP 0 0 0 
-1 

0 0 VP a p -1 V 
vn 0 0 0 0 an 0 n 

v. 0 0 0 0 0 
-1 v. d 1 = iwKsEo 1 ( 21 ) dx 

JP -iwc 0 iwcp 0 0 0 JP p 
J 0 -iwc iwcn 0 0 0 Jn n n 
J. iwc iwc -iwc 

0 0 0 J. p 
1 p n -iwc 1 

n 



A complete small-signal equivalent circuit of the semiconductor 

region derived from these state equations has been presented.[?] 

Boundary Values 

The required boundary conditions for solving the above set of 

differential equations can be found by examining the boundaries at x=O 

and x=t . 

M I s 
~ 

x=O x=t X 

Zs 
FIGURE 5. One Dimensional MIS Structure, showing Semiconductor 

Impedance and Boundaries. 
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At x=O, assumption of a perfect insulator and zero surface recom­

bination dictates that J (0) = J (0) = 0_[4,BJ These are the only 
n P 

boundary conditions that should be satisfied at the insulator-semiconduc-

tor interface. Looking at the other boundary, two situations are con­

sidered. First, assuming an ideal ohmic contact, which requires the 

electrostatic and Fermi potentials to be zero,[4] 

Vi ( t ) = V p ( t) = V n ( t) = 0 ( 22) 

A non-ideal ohmic contact has also been modelei7J and can be 

formulated as 

and 

=~ 
RP Jp( ,Q, ) 

V ( i ) 

Rn = J~(,ff (23) 



where RP and Rn are ohmic contact resistances for holes and electrons, 

respectively. 

The sixth boundary condition is arbitrary and for this problem 

it is taken as 

(unit of current density) 

Finally, the semiconductor impedance Zs, capacitance Cs, and resistance 

Rs can be expressed in terms of boundary values as 

Electrostatic ~otential at x=O V. (0) 
Zs = = l 

Total current at x=O Ji(O) 
(24) 

and 

we = -1 
s !magi nary part of (Z) s 

(25) 

Rs = Real part of (Zs) (26) 

15 
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CHAPTER IV 

NUMERICAL SOLUTION OF SMALL-SIGNAL STATE EQUATIONS 

General Solution 

A general homogenous linear boundary value problem may be expressed 

in the form [9] 

dy 
-= = A(x)y dx - -

where .8. is an n by n matrix and y_ is a vector of length n with the 

boundary conditions 

(27) 

!ty( t ) = D (28) 

~,Y(O) = E (29) 

_§__ isann-r by nmatrix of rank n-r. C is a rbyn matrix of rank r. 

_Q_ and I are vectors of length n-r and r, respectively, containing the 

boundary values at x=O and x=t . For the above linear homogenous problem 

the solution may be written in the form [8,9] 
l 2 r 

_r(x) = f(x) + s1r (x) + B2t (x) + ··· 8~ (x) (30) 
k where y are linearly independent solutions and Bk are the corresponding 

combining constants. Furthermore, expressing these solution as columns 

of matrix f(x) and the constants as a vector 8, (30) may be written as 

_r(x) = f(x) + Y(x)t (31) 

Y having rank rand 8 being of length r. The solution ~(x) 

satisfies the homogenous equation and represents the particular solution 

that should satisfy the boundary condition at x=t .[8] At x=t , I( t ) is 

chosen so that it satisfies 

~~( £) = Q (32) 

forcing .Y_( t ) necessarily to satisfy 
(33) 



Applying the boundary relation (29), at x=O, one obtains 

C[Z(O) + Y(O) • 8] = E -- - - -

The variables I( £), .Y_( £) and~ then are detennined by (32-34). 

Numerical Procedure 

A scheme of solution can be classified as follows:[B] 

(34) 

1) A vector 1_( £) is chosen so that is satisfies (32); then the 

homogenous equation is intergrated for Z from x= £ to x=O, 

with 1_( £) as the initial vector, to obtain Z(O); 

2) r vectors of length n which are linearly independent are 

chosen (they shall be the r columnsof.Y_( £))which satisfy 

17 

~ .Y_( £)=0. This insures that (33) is satisfied for non-zero~; 

3) Each column of Y is integrated backward from x=£ to x=O to 

obtain .Y_(O); 

4) Relation (34) is applied at x=O with the solutions obtained 

in steps (1) - (3) and l is solved from (34) as 

~ = [f .Y_(O)J-1 ·[I-f 1_(0)] (35) 

The constants 8 thus obtained will hold for O < x < t and the solution 

y(x) for any x in this region may be found by using .Y_(x), I(x) and f in 

(31). This method essentially solves the boundary value problem as if it 

were an initial value problem.[B,9] 

Reconditioning 

From the theory of linear ordinary differential equation, it is 

known that if one begins integration with a set of independent boundary 

value vectors, the solution vectors will then remain linearly independent 

through the course of integration.[lO] This insures that at x=O, fl will 

have an inverse and 8 may be found unambiguously. 



Numerical implementation of this procedure to the problems being 

considered causes two kinds of difficulties. First, the assurance of 

continued linear independence of solution vectors can be made only if 

the integration is performed with infinite precision. Since machines 

have finite precision, even in a stable numerical method of integ ration 

18 

the accumulation of round-off errors may cause the solution vectors to 

become linearly dependent _[ll] Even if linear independence is not lost, 

but the vectors in !(0) come sufficiently close together such tha t f !(0) 

has a high condition number, great difficulty may be expected in accurately 

f inding its inverse and s.[12J Secondly, even if s is accurate to the 

number of .figures obtained, there is still another difficulty, because 

equation (30) will have combining numbers which are large compared to the 

desired solution. Hence, significance will be lost through subtraction.[9] 

This error can not be avoided by a more accurate integration procedure 

unless at the same time extra precision is carried in all computations. 

Another method[l 3J for avoiding loss of significance which does not 

require multiprecision arithmetic proposes that the matrix !(x) of base 

solutions be kept orthogonal at each step of the integration. Another 

technique[ 9J suggests that at each step of integration the base solutions 

and the particular solution be examined and when the base solutions 

exceed certain nonorthogonality criteria, the base and the particular 

solutions be orthonormalized. This method is used for the solution of 

small-signal state equations. 

Applications to MIS Problem 

Comparing (20-23) to the general boundary value problem given by 

(27-29), it can be seen that 
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n = 6 r = 2 and 1 = 

(36) 

The relation, J (O)=J (O)=O, which describes the boundary relation 
n p 

at x=O can be put in the 

ro O O l O ci) 
f = Lo o o o 1 oJ 

form suggested by 

and I= [~] 

(29), where 

(37) 

Then assuming an ideal ohmic contact the boundary values at x=t can be 

described in the general form (28) where 

l O O O O 0 0 

0 l O O O 0 0 
B = and D = 

0 0 l O O 0 0 

0 0 0 0 0 l l (38) 

A non-ideal ohmic contact can also be described as above, where 

l 0 0 -R p 0 0 0 

0 l 0 0 -R 0 0 
B = n and D = 

0 0 l 0 0 0 0 

0 0 0 0 0 l l (39) 

In it i al Vectors 

According to previous discussions,three initial vectors should be 

designated, l_( t ), l'.1(t ) and 12(i ), such that ~~( t )=Q and t .Y_( t )=O. 



First, assuming an ideal ohmic contact, these vectors can be found as 

Z( Q, ) = 

0 

0 

0 

0 

0 

l 

0 

0 

0 

l 

0 

0 

For a non-ideal ohmic contact these vector are: 

l_( ,Q, ) = 

0 

0 

0 

0 

0 

l 

Numerical Methods Used 

R 

0 

0 

l 

0 

0 

p 

and y2( Q, ) = 

0 

0 

0 

0 

l 

0 

0 

Rn 

0 

0 

l 

0 

(40) 

(41) 
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As can be seen from (20) the elements of matrix A are all depend­

ent on P and N. P and N are the static, spatial, concentration of elec­

trons and holes, respectively. Unfortunately P and N can not be expressed 

in a closed form as a function of distance. But they can be expressed in 

terms of electrostatic potential which is given by (5). The relation 

between the electrostatic potential and distance is given in an integral 

form (14). 

The region between x=0 and x=,Q, is divided in terms of the normal­

ized potential, U, Figure 6. Then the corresponding subintervals are 

translated in terms of variable,X, by relation (8 and 14). ·It is clear that 

this method will not produce equal length subintervals, which in this case 
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is an advantage, because it gives intervals that become smaller as one 

moves toward the surface of the semiconductor. The region between x=O 

and x=t is divided into two sections called surface region and the bulk. 

The transition between the surface and the bulk is chosen to be where the 

electrostatic potential reaches 1/300 of its surface value. 

U(x) 

- surface -+~ bulk ---.x=i X 

FIGURE 6. U Versus x showing Surface and Bulk Regions 

The surface regfon is divided into equal increments of normalized electro­

static potential, U. The bulk is divided into equal increments of distance, 

x. The ratio of the number of subintervals in the surface region to the 

number of subintervals in the bulk is chosen to be 5/2. 

Method of Integration 

Whereas any reasonable scheme of integration which exhibits 

stability over the region of computation may be used, a simple predictor­

corrector method[ll] is used here. Considering integration over any two 

grid points I and I+l with solutions 1_(!), _1(I+l) and grid length Dx(I), 

and remembering that the integration is performed backward, the prediction 

step will be 

..z'p = _i'.( I) - Dx( I)[~( I)_l( I)] (42) 



where y is the intermediate solution vector. The correction step is 
-P 

J(I+l) = l(I) - Dx(I)[~(I)1(I) + ~(I+l)Jp]/2 (43) 

Method of Orthonormalization 
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To check for the need of orthonormalization the criteria explained 

by [9] is used. This method states simply that when the magnitude of any 

vector in .Y.(x) exceeds a preassigned constant an orthonormalization must 

be performed. A constant of 107 is chosen for this problem. Th e ortho­

normalization itself is performed using the Gram-Schmidt method.[l 4] 

This method is as follows: 

1) The first column of .Y.(x), y1, is nonnalized with respect 

to its magnitude and is calledJ'.'. 1*; 

2) The component of 1.2 (the second column of .Y.(x)) which lies in 

the yl* direction is removed from it; 

3) To obtain y2*, the vector obtained above is nonnalized with 

respect to its magnitude; 

4) The same process is repeated for 1_3. The components of 1'.3 
* 2* 3 in the yl and y. directions are removed from it and then 1.. i~ 

nonnal i zed. 
l* 2* 3* The vectors y , 1. and 1'. are orthogona 1 and of unit magnitude. 

In the case of small-signal state equations, these vectors have complex 

components. The scaler product for these vectors is carried out the 

same way as vectors in the real space. 



CHAPTER V 

RESULTS 
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A computer program based on the discussion of the previous chapter 

for solving the small-signal state equations was prepared. This program 

is composed mainly of two parts (see Appendix A). In the first part, the 

static solution given by (11) is found. In the second part the state 

equations are treated like a boundary value problem and solved. The 

semiconductor impedance, Zs, is found and the whole MIS structure is 

modeled by the circuit shown in Figure 7(c). 

where 

I 

s 

I 
a 

C 

C G 

b C 

FIGURE 7. Equivalent Circuit of the MIS 
Structure 

C = t 
1+ 2c 2R 2 

w t s 

Real(Z) s 

(44) 
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Numerical values for C/CI for different insulator thicknesses, 

frequencies and doping levels is found and C-V curves are obtained. An 

ideal ohmic contact is assumed for these cases. A non-ideal ohmic contact 

is also modeled and C-V characteristics for different ohmic contacts are 

obtained. The insulator thickness, xI, and doping level, UF, used in 

these examples are chosen from typical values for MIS structures .[l,4] 

Convergence of the Method 

Even though the orthonormalization process is used to prevent the 

need of multiprecision arithmetic, the precision comes to be an important 

factor in the course of integration. The program was started with seven 

subintervals (N=7), five for the surface region and two for the bulk. 

Then, the number of subintervals was doubled to fourteen, four for the 

bulk and ten for the surface. Good convergence was observed. Doubling 

the number of subintervals to twenty-eight produces results which are 

incorrect. It is understood in the literature[B,9,lS] that more precision 

for the integration routine is needed in these situations. Using double 

precision (16 decimal digits in Fortran) and the available IBM 370 system, 

it was not possible to go further than fourteen subintervals. Of course 

some changes to the location and number of reconditioning points may 

improve the results. The results for (N=l4) are given in Figure 8. In 

this figure the charge-analysis approach is compared to the results of 

the numerical solution of small-signal state equations for Si02-Si. In 

this example using 8.15 n-cm Si, the minority carrier response for lOOkHz 

is low enough that the difference between charge analysis and the solution 

of state equations can be considered to be due to the convergence of 

the method that is used and the computer limitations. As can be seen 

the results of state equations compare very well in accumulation and 



1.0 

p = 8.15St-cm 
0 

x1 = 2000.A 

UF = 12. 0.7 
X = Charge Analysis 

• = State-Equation Analysis 0.6 

-2. -1. 

0. 

0.4 

0 

VG(V0LTS) 

C 

½ 

f= .001 Hz 

f=l00kHz 

1. 2. 3. 4. 

FIGURE 8. Charge Analysis versus State-Equation Approach for Si02-Si, N=l4. 

5. 

N 
u, 



26 

depletion, but there is about 2.5% difference in the inversion region for 

the high-frequency curve . 

C-V Characteristics for A12Q3-Ge 

Because of its special characteristics, Germanium is one of the 

semiconductors that may be favorable over other semiconductors for some 

device applications, so its interface characteristics with other insulators 

has been the subject of some investigations.Cl •2] Germanium can not 

provide a satisfactory insulator that can be grown on its surface. 

Aluminum oxide is one of the possible materials that can be deposited on 

the Germanium and has shown favorable characteristics. 

The charge analysis and state-equation approaches are given for 

A12o3-Ge, Figures 9 and 10 . . As can be seen there is a significant differ­

ence between high-frequency charge analysis and the state-equation analysis 

for inversion bias. This difference is due to the minority carrier 

response. In Germanium the intrinsic carrier concentration is about 

1800 times that in Silicon at room temperature and also the mobilities 

are three times those in silicon. So far a lightly doped Germanium sub­

strate, in which the minority and majority carrier concentrations are 

comparable, a significant amount of minority carrier response even at 

high frequencies would be expected. (The same thing would be expected for 

lightly doped Silicon, but at much lower frequencies, because intrinsic 

silicon has a resistivity about 5000 times that of Germanium.) Figure 10 

shows about 50% drop of accumulation capacitance for the 500 MHz curve. 

The model used for the MIS structure which is shown in Figure 7 suggests 

that this drop is due to the series resistance, Rs. From equation (44) 

it can be concluded that the total capacitance, C, decreases as frequency 

increases. This analysis assumes that Rs and Ct are not frequency dependent. 
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The results of the state-equation approach are also compared to 

some experimental measurements. Experimental measurements show higher 

inversion capacitance than predicted by the state-equation approach. 

There is about 8.7% difference for a p-type 16 -~-cm Germanium-based device 

at 5 MHz~l] This difference decreases for higher frequencies. The experi­

mental measurements also do not show the minimum-capacitance valley which 

is predicted theoretically in some cases. These differences are believed 

to be mostly due to neglected generation-recombination processes and sur­

face-state response. Both of these factors cause the equivalent capaci­

tance to increase. Recombination-generation processes produce and facil- . 

itate the movement of minority carriers to the surface. Surface states also 

provide some extra states at the insulator-semiconductor interface for 

more charges which consequently increases the effective capacitance of the 

MIS structure. Although recombination-generation rate is a characteristic 

of the quality of the semiconductor, and depends strongly on temperature~ 16] 

it is a factor that could be included in the state equations. 

Figures 11 and 12 show C-V characteristics for Ai2o3-Ge, p and 

n type, respectively. There are two factors involved here for the inver­

sion capacitance. First, neglecting minority carrier response and 

considering only the majority carriers, it has been shown,[4] and can 

also be seen from equation (17), that the semiconductor capacitance, Cs, 

will increase as doping level, UF, increases. The reason is that, as 

doping level increases, the width of the depletion region decreases which 

results in the increase of the semiconductor inversion capacitance and, 

consequently, the total capacitance of the MIS. On the other hand, as UF 

increases, the minority carrier concentration decreases. So the semicon­

ductor capacitance associated with the minority carriers decreases. 



-4. 

0 

x.1 = 1000. A 

f = 1MHz 

UF p 

2. 23.0 n-cm 

3. 8.75 

4. 3.23 

5. 1.19 

-3. -2. -1. 

1.0 

0.9 

0.8 

11 h HI• 

0.5 

0.4 

0.3 vc===· 
0.2 

0. 1 

0 

VG(VOLTS) 
1. 

UF = 2. 

' : :t 
4. 

2. 3. 

FIGURE 11. C-V Characteristics, showing Effect of Doping Level for Ai2o3-Ge, p-type 

4. 

w 
0 



C 
1.0 s-

0 

XI = 1000 .A 

f = 1MHz 

UF = -2.e • • • -
UF 

p 

-2. 11 .5 St -cm 

-3. 4.27 

-4. 1.57 
-5. 
-3. -5. 0.57 

-4. 

0.2 

O. l 

-3. -2. -1. 0 1. 2. 3. 4. 

VG(V0LTS) 

FIGURE 12. C-V Characteristics, showing Effect of Doping Level for At 2o3-Ge 1 n-type. 
w _, 



32 

This results in the reduction of the equivalent capacitance of the MIS. 

These two factors which work opposite to each other affect the inversion 

capacitance as shown in Figures 11 and 12. The difference in the SY1T1111etry 

between Figures 11 and 12 is caused by the difference which exists 

between the mobilities of electrons and holes in the semiconductor. 

Figure 13 shows C-V characteristics for intrinsic Germanium. The 

curves are not syrrnnetric with respect to the vertical axis. For positive 

voltages the surface of the semiconductor is accumulated with electrons 

and the current in the semiconductor is mostly electron current. For a 

negative bias the surface is accumulated with holes and so the current is 

mainly hole current through the semiconductor. The bulk of the semicon­

ductor shows less resistivity to electron current than hole current, 

about the ratio l to 2. This, as was mentioned earlier, is due to the 

difference in mobilities. So, considering the effect of series resistance 

it is reasonable to expect more sensitivity to frequency for a negative 

than a positive bias. 

Effect of Ohmic Contact 

Figures 14 and 15 show the effect of different values of ohmic 

contact resistances on C-V characteristics. Increasing the resistance of 

the ohmic contact will drop the total capacitance in the inversion region 

as well as for the accumulation region. This happens because the ohmic 

contact resistance will add to the existing series resistance, Rs, of the 

bulk and this as it was discussed before causes the reduction of the 

MIS capacitance. It should be noted, that the value of 2R-cm2 used here 

for the ohmic contact resistance is much larger than the actual resistance 

of an ohmic contact and it is used here to exaggerate the extreme case 

of an ohmic contact effect. Figure 16 shows the variation of C/C1 for a 

fixed ohmic contact versus frequency for a point in inversion region. 



f = l00kHz 
f = 500kHz f = 1MHz 

0 

XI= 2000.A 

UF = 0.0 

-4. -3. -2. 

FIGURE 13. 

1.0 

. 8 

Ol\7 

0.6 

0.5 

0.4 

0.3 

0.2 

0. 1 

-1. 0 

VG(V0LTS) 

C 
CI 

1. 2. 

f = l00kHz 

f = 500kHz 

f = 1 MHz 

3. 4. 

C-V Characteristics for Ai 2o3-Ge (Intrinsic) 
w 
w 



0. 0 , . 02 

.2 

2. 

0 

XI = 1000 .A 

UF = 2. 
f = 1 MHz 
p = 23. 

-2. -1. 

0.4 

0.3 

0.2 

0. 1 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0 

VG(VOLTS) 

C s-

•Rp=R = 0. 0, • 02S"2 -cm2 
• • • n -::::: • • • •.2 

1. 2. 3. 4. 

2 2. Q -cm 

5. 

FIGURE 14. C-V Characteristics, showing Effect of Ohmic Contact for . At 2o3-Ge, p-type, UF=2 . 
w 
.J:>, 



0. 0, . 02 

.2 -----....._ ~ 

2. 

0 

XI = 1000.A 

UF = 3. 
f = l MHz 

p = 8. 75 n -cm 

-3 . -2. - l. 

1 l.O 

I 
0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

•• 
0.3 

0.2 

0. l 

0 

VG(VOLTS) 

C 

s-

l. 

R =R = 0.0, .02, 
p n 2 

• • • • 2n-cm 

2. n -cm
2 

2. 3. 4. 

FIGURE 15. C-V Characteristics, showing Effect of Ohmic Contact for At 2o3-Ge, p-type, UF=3. w 
c.n 



0.5 .. 

0.4 

0.3 

0.2 

0. l 

C 0 

Cr XI = 1000.A 

10 20 30 40 50 60 

UF = 3. 

VG= 3. Volts 

us= 13. 

p = 8. 75 n - cm 

70 80 

FREQUENCY (MHz) 

90 100 

FIGURE 16. Effect of Ohmic Contact on Inversin~ Capacitance fo r 
R = R = .02n-cm p n 

w 

°' 



37 

CHAPTER VI 

SUMMARY, CONCLUSION AND SUGGESTIONS FOR FURTHER WORK 

In this work a more complete way for analyzing MIS structures and 

a study of minority carrier response in these structures were presented. 

The behavior of charge carriers in the semiconductor for small excitation, 

which is given by small-signal state equations, was put into a set of first­

order linear differential equations. The boundary conditions req uired for 

this problem were found by examining the semiconductor boundaries. Zero 

leakage current and zero surface recombination were assumed at insulator­

semiconductor interface. Both ideal and non-ideal ohmic contacts were 

considered for the back side contact. To solve the state eq~ations the 

theory of ordinary linear differential equations was used. Some diffi­

culties arise when these theories are adapted for numerical calculations, 

mainly because of the finite precision used for arithmetic operations 

in computers. The orthonormalization method was used to reduce this 

deficiency. Semiconductor impedance and then the MIS capacitance were 

found this way. C-V curves obtained show significant amount of minority 

carrier response which is neglected entirely in the charge analysis 

approach. This response is frequency dependent and for Germanium extends 

to high frequencies. Series resistance, Rs, was found to be the reason 

for the drop of the capacitance in the accumulation region at very high 

frequencies. These characteristics also show a minimum-capacitance valley 

for lightly doped materials that levels off for more heavily doped 

materials. It was also found that the doping level coupled with the 

minority carrier response are the important factors in the determination 

of the inversion capacitance. Similar curves for n and p type materials 
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were obtained. These curves were not symmetric and this is due to the 

difference in carrier mobilities. C-V curves for intrinsic Germanium for 

different frequencies were also obtained . Finally , the effect of back 

ohmic contact was studied. A non-ideal ohmic contact reduces the capaci­

tance both in accumulation and inversion biases. Increasing the ohmic 

contact resistance will increase this effect. It was also found that 

increasing the frequency will reduce the MIS capacitance for a fixed back 

ohmic contact . 

Suggestions for Further Work 

l) In small-signal state equations presented in Chapter III, 

the generation-recombination process was neglected, but it 

has been shown in [2] that it can be included in those equa­

tions and after some manipulation it can be put into a matrix 

form similar to (20). 

2) Other methods for checking the need for orthonormalization, 

like monitoring the angle between vectors, which is discussed 

in [9] or even a periodical type of orthonormalization, could 

be studied. 

3) The trap capacitance, ct,[7] at the ohmic contact could be 

included by changing the boundary conditions at the ohmic 

contact properly. 

4) In this work the thickness of the semiconductor substrate 

was fixed. Further work could also include a study of the 

effect of this factor. 

5) A study to maximize the convergence of the method by changing 

the number of subintervals in the surface and bulk region 

could be done. 
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6) Finally, in order to get better results, the computer program 

given for the numerical solution of state equations could 

be run by machines that provide more than 16 decimal digits 

for arithmetic operations to check the convergence of the 

method. 
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APPENDIX A 

STATE-EQUATION PROGRAM 

This program is composed of three parts. The first part gives 

42 

the required constants and generates the parameters which are needed for 

this problem. Part two, solves the static equation given by relation (14) 

and does the job of partitioning the range of x. The integration required 

in (14) is performed by subprogram AI using Simpson's rule. Part three 

solves the small-signal state equations given by (27). The procedure 

outlined in Chapter IV is used. Matrix A is produced by the subroutine 

FILL. The integrations needed in this procedure are performed using a 

predictor-corrector method by subroutine PC. Subroutine ORTHN takes care 

of the orthonormalization whenever it is needed. 



C 

REAL Nl,K,KO,KS,HP,MN1L01KTQ,KSXOLO 
REAL•e ox,14>,x,xs,u,1s,,us,sus 
COMPLEX Al(6,6),A2(6,6J,J,JW,JWC,J~CK•CMPLX 
COMPLEX•l6 ZC6),Y1(6J,Y2(6)1VI•Jl,ZS,OE.T,Bl,B2 
COMMON EUF /LISTl/ LO /LlST2/ Qp,QN,JWCK,JWC 

C PHYSICAL CONSTANTS AND TEMPERATURE 
C 

C 

Q=l.60219(-19 
K=l.:58062£-23 
£D=8.85'+2E-l'+ 

_C __ _.D~l;..:_:MENSIONS OF THE OEV~CE 
C 

C 

x=12.1ot-3 
XO=l.E:-5 

C StMICONOUCTOR AND INSULATOR CONSTANTS 
C 

C 
C 
C 

C 
C 
C 

Nl=l.8~95E13 
MP=l900. 
MN=3900. 
KS=H,. 
K0=8• 

DOPING LEVEL ANO OPERATING POINT 

UF :3 • 
us=-~. 
FRQ=lOO.E.4 

G[NERATJNG REQUIRtD PARAMETERS 

J=CMPLX(O.O,le) 
w=2.•5.l'+*FRQ 
JW:J*W 
QP=-1.IIQ•NP•NI) 
QN=-1.l(Q*MN•NI) 
JWCK=-1.l(JW•KS•EO) 
JWC:(JW•(Q••2J•Nl)/(K•T> 
CO=KO•EO/XO 
E.UF:EXP(UF) 
KTQ=K•T/0 
[D=SQRT((ks•tD•k•f>7(2 •• co••2>•NI)) 
KSXOLD=CKS•XO)/(KO•LDJ 
RES=l./(Q*Nl*lMP*EUF+MN/EUF)) 
N=11f 
M=2•Nl7 
Ml=M+1 
M2=M+2 
WRilt<6,11) FRQ,UF,RES 

11 FORMATllHl///tl5X,'FREQUENCY(HZ):•,~p£8.0,' 
i• , RESISIIVIIY<OHM-cM>=',DPFlb.6777720X,' 
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C/CO 



2 VG') 
C 
C STARTING PROGRAM CALCULATIONS 

13 CONTINUE 
SUS:US/OABS(US) 
VG-SNGI O<IQ• ( IIS+SJISd£S X OI C•f ( ltS) J J 

C 
C GENERATING U(l) 

00 2 I=l,M 
u,1,=0.0 

2 CDNTINIIE 
U(M+l)=US/300. 
UlM+2>=US/(N•M) 
00 5 1=111.i!el\l 
U(l+l):U(l)+U(M+2) 

'3 CONTINUE 

C GENERATING OX(I) 
C 

00 4 l=Ml•N 
OX(J):Al(U(l+l),U(l)) 
XS-l<StOXSI) 

'+ CONTINUE. 
OX(M):tX•XS)/M 
•a 5 1 = 1 , M 
OX(l)=OX(M) 

5 CONTINUE 

33 DO 22 I=l,15 
22 U(l):Q.O 

C ASSIGNING INITIAL VALUES TO VEtTORS z,Y1,Y2 
C 

C 
C 
C 

'4'i DO l 1:1,6 
Z(l)=C~PLX(O.o,o.o, 
Yl(I)=CMPLX(Oe-OtOeO) 
Y2(J):CMPLX(O.o,o,o, 

l CONTINUE. 
2(6):CMPLX(l.,o.o) 
Yll4l=CMPLX«1,,C,D> 
Y2(5)=CMPLX(l.,0.0) 

1NIEGBAJING Z•Yl,Y2 EBPM PQINI l TON 

CALL FILL(Al,U(l),1) 
DO Ei l=l,N 
CALL FILL(A2,U(l+1),2) 
CALL PCIZ,AltA2,OX(l)) 
CALL pc,y1,A1,42,ax,1>1 
CALL PCtY2,Al,A2,0X(l)J 
00 7 L=l,6 
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QO 7 Ml"7=1,6 
~llL,MMl=A2(L,MM) 

7 CONTIN\J( 

C CHECKING FOR 0RTHONORMALIZATION 
C 

C 
c 
C 

C 
C 
C 

Tl=lO.E7 
T2=REALtZ<3>>*•2+AlMAGtZt5))•*2 
T3=REALlY1(3>>••2+AIMAG(Yll3))• *2 
T4=REALlY2(3>>••2+AIMAG(Y2l5)J*•2 Yi) 
IFlT2,GE,JJ ,OR,J3,GE,J1,0R,J4•GE,Tl> CALL ORT~N(ZtYl, 

6 CONTINUE 

FINDING B1,B2 

OET=Yll4>•Y2t~)-Yl(S)•Y2t4> 
Bl=lY2<4>•z«51-Y2t5>•Z(4lJ/DET 

FlNDING Vl,JI,zs,cpco 

VI=Zt3)+Bl•Yll3)+B2•Y2C3) 
Jl=Zt6>+Bl•JlC6>+B2•J2C6J 
ZS=VI/Jl 
CPCO=REALCl.lCle+JW•CO*ZSJ) 

---~W~B-I~I-El6,17> CPco,us,VG 
17 F0RMATClHD,20X,F9.7,8XtF4.0t8XtFl0,6J 

US=US+l. 
lFCus.cg,o,O> GO TO 33 
lFlUS.L~.15.J GO TO 13 
STOP 
ENO 
REAL FUNCTION F*8(U) 
RE"AL•6 lJ 
COMMON fl!F 
F=OSQRT(EUF•CDEXP(•U)+U•l,J+(OEXP(UJ•U•1,J/EUF) 
RETURN 

REAL FUNCTION Al•8CU2,U1J 
REAL•8 AI0,U2,Ul,OU 

A 
COM~ON EUF /LlSTl/ LD 
Al0=1./F(Ul)•l.lFCU2) 
pu=«u2-u1>14o 
U=Ul ' 
OU 1 1=1,20 

AIO=AIO+~./F(U) 
u=u+ou 
AIQ:AI0+2,tEIV> 

1 CONTINUE 
Al=OABSCLD•CAIO•DU/3.)J 
RETURN 
ENO 
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SUBROUTINE FlLL(A,U,K) 
COMPLEX A(6,6),JWCK,J~C,CMPLX 
COMMON flfE ti [S121 QP1QN,.,J,tCK 1 JWC 
P=EUF/EXP(U) 1 

00 5 I=l,6 

All,J>=CMPLXCO.O,O.O) 
5 CONTINUE 

All,Y 1-CNPLXIAPIP,O.Ol 
AC2,5):CMPLXCQN•P,O.O) 
Al?l,6)=.JWCK 
A ( 4 e l I :-.1 WC* P 
All+,5)=•ACct,l> 
A(5,2>=•JWC/P 
,'15,3!=-AIS,2 1 
Al6,l -)=A(4,3) 
A<6,2)=A(5,3) 
ACb,31;ACY,l )tAC5,2) 
RE.TURN 
ENO 
SUBROUTINE PCCY,A1,A2,DX) 
REAL•8 OX 
COMPLEX Al<6,6),A2f6,6> 
COMPLEX*l6 YCb),AlY(6)tA2YP(6>•YPC6> 
DO 1 I=l,6 
AlYII)=CMPl x,o,o,p,o) 
00 1 -.J=l,6 
AlYCI>=AlY(I)+AlCJ,J>•Y(J) 

1 CONTINUE 
DO 2 I=l,6 
YPCI>=YCI>-DX•AlYCI> 

2 CONJINUE 
DO .3 I=l,6 
A2YPll>=CMPLXCO,O,Oa0) 
po 3 J=l,6 
A2YP(I)=A2YP(l)+A2CI,J>•YPCJ) 

'3 CONTINUE 
DO 't 1=1,6 
Y<I>=Y<I>-OX*C(AlYlI)+A2YP(l))/2,> 

4 CONTINUE 
Rt TURN _______________________ _ 
END 
SUBROUTINE ORTHNCZ,Yl,Y2J 
COMPLEX•l6 Z(6),Y1(6>,Y2C6) 
c0Me1 Ex•JEi x12,x22,z2,r1x2,zx1,zx2,cv1,cy2,cz 
Yl2=CMPLXCo.o,o.o, 
DO l l=l,6 
YJ2;Yl2+YJ (IUY 1 CJ) 

l CONTINUE. 
CY1=COSQRT(Yl2) 

Yl(I>=Y1Cl)/CY1 
2 CONTINUE. 

YJY2=CMPI x,o.o,a.a, 
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DO 3 I=l,6 
YlY2=Y1T2+Yl(l)•Y2(I> 

3 CONIXNl!f 
00 4 I=l,6 
Y2(I): Y2(I)-Y1Y2•Yl(IJ 

Y CONIIN!IE 
Y22=CMPLX(0.o,o.o, 
00 5 I=l,6 
Y22-X22tX2Cil*Y2CIJ 

!i CONTINUE. 
CY2=CDSQRT(Y22) 
00 6 I=1 ,& 
Y2(IJ=Y2(I)/CY2 

6 CONTINUE 
ZXl=O'IPI XIO,O•OeO) 
ZY2=tMPLX(o.o,o.o, 
00 7 I=l,6 
ZYl;ZYJ+Z«I>*Xl«I> 
ZY2:ZY2+Z(I)*Y2(I) 

7 CONTINUE 
OD 8 I=J,6 
ZCI>=Z<IJ-ZYl•Yl(I>•ZY2•l2(l) 

8 CONTINUE 
22=CHPI X(0.0,0,0) 
DO~ I=l,6 . 
Z 2 = Z2 + Z ( I h Z ( 1 ) 

2 CONTINUE 
CZ=CDSQRT<Z2> 
OD 10 1=1,6 
Zlll=ZtJ)ICZ 

10 CONTINUE 
RETURN 
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APPENDIX B 

CHARGE ANALYSIS PROGRAMS 

The low-frequency charge-analysis program uses equations (14) 

and (17) to produce C-V points. Equations (15) and (16) are used for 

48 

the high-frequency program. The intergration needed in (16) is perfonned 

by subprogram AI using Simpson's rule. These programs can be used for 

an n-type semiconductor by using negative values for UF. 



C 
C 
C 

C 
C 
C 

C 
C 

C 
C 

lHIS fROGRAM GiNtRAl[S LOW FRtRU~NCX r-v POINTS 
GER~ANlUM USING CHARGE ANALYSIS FOR 

------------~----------------------~---~-------------RtAL Nl,K,KO,K&,lQ,MN,MPtKTQ,~S[0l0t~S•o~c 
FlU):SQRTlEUF•<EXPt•U)+U•l,)+ttXPCU)•U•1.)/£UF) 

PHYSICAL CQWSTANTS ANO TlMatRAYU~t 

Q=l.60Z19E:-19 
t<·1.1ao,.a, ~1 
E0=B.8542E.•1~ 
T=29b. 

INSULATOR THICKNESS 

SEMICONDUCTOR AND INSULATOR CONSTANTS 

NI=l.8595El.3 
MP=1900. 
MN-1900. 
KS=16. 
KO=e. 

C DOPING LEVEL AND OPERATING POINT 
C 

C 

' C 

C 

us=-9. 

EUF=EXPCUF) 
l!CTQ-LUI/Q 
LD=SQRTC(KS•EO•K•T)/C2.•lQ**2J*NIJJ 
co=KO•EO/XO 
BES=J elCA•~I•CMP*EIIF+NN/f\JF I) 

KSEOLD=t<S•EO/LO 
KSXOLO=CKS•XOJ/CKO•LO) 
MBIIEC6,Jl) llf,BES 

11 FORMATllH1,///,1.3X,'LOW FREQUENCY • Uf:•,F5.2, 
1' , RESISTIVITYCOHM•CMJ:',Fl0•~////20X,• C/CO 

• 
C STARTING PROGRAM CALCULATIONS 

13 CONTINUE 
EUS=E:XPCUS) 
Jf(US,EQ.a.o, 60 JO l 
sus:uS/ABS(US) 
VG:KTQ•CUS+SUS•KSXOLO•FCUSJ) 
tS:5USfK5f0IO!<EIIE•Cl,•J,lfUSl+(fUS•lel/fUfl/(2,*f(USI 
60 TO 2 

1 CS=KSEOLO•SQRT(CEUF+le/EUFJ/2el 
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VG=O,0 
2 ~PC0=CS/(C0+CS) 

WRITE(6,17) CPC0,US,VG 
]7 FPBMAJllH0,2QX,F9,1,8X1F~-0-ax,F9,6) 

us=us+1. 
lF(US.LE.15.) GO TO 13 
STOP 
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C 
C 
C 

C 
.c 

C 
c 
C 

C 
C 
C 

C 
c 
·c 

C 

THIS PROGRAM 6[NtRATES HlGH FREQUENCY C•V POINTS FOR 
GERMANIUM USING CHARGE ANALYSIS 

-------------- -----------------------RtAL Nl,K,KO,K;:~~:;;:;;,KSEOL0,KSXOL0tKTQ ••••••• 
REAL•e US,UF,CS,CSL 
COM~ON EUF 

PHYSICAL CONSTANTS AND TEMPERATURE 

Q=l.60219£-19 
K=1.380&2E•23 
tb=S.8542£-14 
l=296e 

INSULATOR THICKNESS 

XO=l.£•5 

SEMICONDUCTOR AND INSULATOR CONSTANTS 

NI=i.e595E13 
MP=1900. 
MN=3CJOO. 
Rs=16. 
KO=e. 

DOPING LtVtL AND oPERATXNG POINT 

UF=3. 

C GENERATING REQUIRED PARAMETERS 

EUF=OEXP(UF) 
KTQ:K•TIQ 
LD=SQRlllKSilOiKiTJ/12••cw••21•NIJJ 
KSEOLD=t<S•£0/LO 
KSXOLO=<KS•XO,/(KO•LO) 
CU-KU*CU/XO 
RtS=l./CQ•NI•CMP•EUF+MN/EUF)) 
WRITEC6,11) UF,RES 

ii FORMATCIHl,777,13X,'~l&H FREQUENCY , ~r-•,F~•2• 
1' , R£S15TIVITY(OHM•CM):•,F10,6////2QX,• C/CO 
2 VG') 

C STARTING PROGRAM CALCULATIONS 
C 

13 CON I INUE 
EUS:OEXP(US) 
IFCUS.£Q.O.O) GO TO 3 
SUS-US,DAescus, 
SUF:Uf/OABS(UF') 
yG=SNGLCKTQ•CUS+SUS•KSXOLD•FCUS))) 
IFCUS.LE.UF) GU 10 1 

51 



CSL:2.•FCUF)/(SUF•CEUF•(l.-1.IEUF)+(£uF-1.,1EuF,a 
C$=KSEOLO/(A1CUS,UF)+CSLJ . 

_ __ l _ C~=suS•KSEOLD* C EUF'• ( 1 .-1 e/EUS J + ( EUS•l • I /[UF )/ (2,•F CUSJ 

GO TO 2 
3 CS=KStOLD•SQRT(CEUF+le/EUFJ/2•' 

2 CPCO=SNGLCCS/CCO+CS>> 
WR1T£(6tl7) CPCO,US,VG 

17 FORMArllH0,20X,F9.l,8X,F~.o,8XtF9.6J 
US=US+l. 
IF(US.LE.15.) GO TO 13 

END 
REAL FUNCTION F*BCUJ 
REAL*8 U 
COMMON EUF 
F=OSQRTCEUF•CDEXPC•U)+U-1,J+COEXPCUJ•~•l.J/EUF) 
RETURN 

REAL FUNCTION AI•8CU2,Ul) 
REAL•B Al0,U2,Ul,OU 

NN=N/2 
Al0=1,/FCU1)•1•/F(U2) 
oo::::: l 02•01 JIN 
u=u1 
00 1 1=1,NN 

Al0:A!O+'t./F(U) 
u=u+ou 
Al0-A10+2./FCUJ 

1 CONTINUE 
AI:OASSCAIO•OU/3,) 

£NO 
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