
A Study of the Feasibility of Ada as a Simulation Language

by

DAVID L. KWEDER

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Mathematics Program

YOUNGSTOWN STATE UNIVERSITY

March, 1992

Abstract

A STUDY OF THE FEASIBILITY OF ADA AS A SIMULATION LANGUAGE

David L. Kweder

Master of Science in Mathematics

Youngstown State University, 1992

The purpose of this thesis is to develop an Ada tool where capabilities are

similar to those of the GPSS simulation language. The question of whether Ada is

a feasible language for implementing discrete event simulations is then explored.

WILLIAM F. MAAG LIBRARY
ii YOUNGSTOWN STATE UNIVERSITY

Acknowledgement

I would like to thank the following people for their help: Mike Newland, for his assis­

tance in helping me format this text and in the proof reading; Karen DeMatteo, for assisting

me by providing information needed to help write this thesis; Tom Wheeler, for his help and

advice in writing the Ada simulation tool and finally, Professor John J. Buoni for reviewing

this thesis and advising me during its writing.

lll

Table of Contents

ABSTRACT• •..• .•..... •... ii

ACKNOWLEDGEMENTS•.....••.•.......................................• iii

TABLE OF CONTENTS .•••••.............•••••.....••.........................•....... iv

LIST OF EXAMPLES ..•••..••.•.. •••••... •. V

DEDICATION••.. vii

INTRODUCTION .••••••............•.••.....• •... ...•••••.•...•.......•.•.••••......... 1

CHAPTER 1. DISCUSSION OF DISCRETE EVENT SIMULATION AND ADA LANGUAGE ... 2

CHAPTER 2. THE ADA SIMULATION TOOL •.•.. 6

Section I. Development of a Simulation Tool 6

Section II. Creation and Use of the Sim_Ada Tool 10

CHAPTER 3. SIMULATION PROBLEMS AND THEIR SOLUTIONS 14

CHAPTER 4. COMPARISONS, CONTRASTS AND CONCLUSIONS 26

REFERENCES••••••••.. ..••. ...•.••......•........... 30

APPENDIX

I. The GPSS and Ada programs as well as their output for each example 31

II. Listing of Ada packages used to build Sim_Ada Tool. 53

III. List of Ada packages used in the simulation tool. 82

IV

List of Examples

Example 1.1. An example of a package specification

Example 1.2. An example of a package body

Example 2.1. A list of procedures and functions available to the user

Example 2.2. Instantiation of a generic package gen_routines

Example 2.3. Example of a main task

Example 2.4. A package of transaction task types

Example 3.1. A check-out line

Example 3.2. An inventory control problem

Example 3.3. An example of a multiuser computer system simulation

V

Appendix

I. The GPSS and Ada programs as well as their output for each example.

II. Listing of Ada packages used to build Sim_ Ada Tool.

III. List of Ada packages used in the simulation tool.

vi

Dedication

to Vail

Vll

Introduction

Is Ada a feasible language for implementing discrete event simulations and how does

it compare to a standard simulation language, for example GPSS? In [2], Payne develops a

simulation programming system for discrete event models in PL/1. Shore in [3] seems to be

the first to discuss the concepts necessary to allow a programmer to construct a discrete­

event simulation in Ada. The purpose of this thesis is to develop a tool written in Ada

capable of performing discrete event simulations.

Chapter one is divided into two sections. The first section is a brief review of GPSS

including a history of the language, features of the language, and some syntax of the lan­

guage. The second half of chapter one is a brief overview of Ada, including the history

of Ada, the package feature of Ada used in developing the Simulation System in Ada, the

Sim_ Ada tool.

Chapter two is a discussion of the Sim_Ada tool. This chapter is divided into two

sections. The first section is a discussion of how the Sim_Ada tool was developed and

the special features of Ada that were used in creating the tool. The second section is a

discussion of how the tool is used in creating models and simulations. Appendix II contains

all of the packages and Ada code used to create the Sim_ Ada tool.

Chapter three is a discussion of the three examples, a grocery check-out line, an inven­

tory control model, and a multiuser computer system. Each one of these three examples

includes a discussion of the problem, results of the outcome in both GPSS and Ada, and

concluding remarks. Appendix I contains the GPSS and Ada programs as well as the

program output for each example.

Chapter four, the final chapter, contains a comparison and contrast of the GPSS lan­

guage with the Sim_Ada tool, and some final conclusions.

1

Chapter 1

Discussion of Discrete Event Simulations and the Ada Language

A model is an attempt to create or recreate a real life situation or system inside a

computer. We would like to make use of these models in order to make decisions about our

real life system, such as improving our system, troubleshooting our system before a problem

occurs, and testing different ways of implementing our system. It would seem reasonable to

try these different situations in a model of our system before actually changing the system

itself. Changing the model can tell us what changes to make in the real system. A model

is not a perfect representation of our real system but should be a valid approximation.

A simulation is a program or procedure that tries to model a particular event or system,

such as a grocery store checkout line, a barber shop, an assembly line, a computer system

or even a guided missile. A discrete event simulation is a simulation which models a system

and executes a finite number of steps and operations before reaching a logical conclusion.

There are several simulation languages available such as Simula, PAWS, and GPSS.

The language we would like to examine is GPSS (General Purpose Simulation System).

GPSS was designed in the 1960's to aid in building models of general queuing systems. The

simulations written in GPSS model real life systems, e.g., a grocery store. The modeler has

available all of the facilities needed to create the events involved in a simulation of a grocery

store such as entering the store, picking out items, entering a check-out line, being checked

out, and leaving the store. A transaction, in this case a customer in the store, is an object

that is generated at certain times in the model and then is moved through the model. The

actions in the simulation are carried out on the transaction. In the case of the grocery store

the transaction is the customer, and his or her actions include entering the store, shopping,

entering a line, checking out, and leaving the store. In the simulation, we are only concerned

with the notions that are important to modeling the grocery store itself and not the notions

that would not have an influence on the results of the simulation, such as the sex of the

customer. These actions are represented in GPSS by generating a transaction (customer

enters the store), advancing the clock (time spent selecting items), entering a queue (entering

a check-out line), seizing a facility and advancing the cl?ck (checking out items), and finally

departing the queue and terminating the transaction (leaving the store). GPSS is a language

2

made up of a series of procedural calls written in FORTRAN. A procedural call in GPSS

is called a block and a GPSS program consists of a sequence of blocks. These procedures

enable the modeler to create and use queues, facilities, and resources. The modeler also has

the ability to test and assign values, simulate the passage of time, and do many other things

necessary to build a model of some system. The modeler makes use of these procedures by

generating one or more transactions. Some examples of transactions are a customer in a

line, an automobile on an assembly line, or a process in a computer system that enters one

or more blocks of the program. During the simulation, statistics are gathered about the

model, such as the number of transactions generated, the number of transactions entering

a queue and statistics on resources; then the simulation is terminated either by a timer or

a count on the number of transactions generated during the simulation. A listing of all the

statistics is printed, giving all the information about the simulation, including information

about the runtime and other system considerations. It is up to the modeler to interpret

these statistics and draw conclusions about the simulation based on the model. Relating

statistics about things such as queues and resources to the real life entities which are being

simulated, and then drawing a logical conclusion about them, is one of the hardest parts of

modeling a system.

Ada was a language developed in the late 1970's and early 1980's for the Department of

Defense. Many of its features make Ada a good design and software engineering language.

Ada allows Modular Design, the grouping of similar items together in what are called

packages. Packages are divided into two parts, the package spec and the package body.

The package spec includes the procedure and function specifications, task and task type

specifications (task and task types will be discussed in the next section), record declarations,

and other type and object declarations. Here is an example of a package spec:

Example 1.1. An example of a package specification.

package tesLroutines is

type relational_ operator is (e,ne,l,le,g,ge,min,max);

type logic_operator is (ls,lr,u,nu,i,ni,se,sne,sf,snf);

function test (operator:in relational_ operator;p 1,p2:in

float; transaction_name:in integer) return boolean;,

task internal_ test is

3

entry check-integer (operator:in relational_ operator;

pl,p2:in integer; check_ok:in out boolean);

entry check-float (operator:in relationaL operator;

pl,p2:in float; check_ok:in out boolean);

entry check_ boolean (operator:in relational_ operator;

pl,p2:in boolean; check_ok:in out boolean);

entry shutoff;

end internal_ test;

end tesLroutines;

The package body includes all of the procedure and function bodies that coincide with

their specs listed in the package specification. Also included in the package body are the

task bodies for the task and task types listed in the specification. Here is an example of the

package body that goes with the package spec listed in Example 1.1:

Example 1.2. An example of a package body.

package body tesLroutines is

function test (operator:in relational_operator;pl, p2:in float;

transaction_name:in integer) return boolean is

begin

"
"
"

end test;

task body internal_ test is

begin

main:loop

select

accept check_float (operator:in relational_ operator;

pl,p2:in float; check_ok:in out boolean) do

"

"

4

"
end check-float;

or

accept check-integer (operator:in relational_ operator;

pl,p2:in integer;

check_ok:in out boolean) do

"
"

"
end check-integer;

or

accept check_ boolean (operator:in relational_ operator;

pl ,p2:in boolean; check_ok:in out boolean) do

"
"

"
end check_ boolean;

or

accept shutoff;

exit main;

or

terminate;

end select;

end loop main;

end internal_ test;

end test-routines;

These specifications along with their bodies are separate compilable units and combin­

ing packages aids in creating a modular software system.

5

Chapter 2

The Ada Simulation Tool

SECTION I. DEVELOPMENT OF A SIMULATION TOOL.

This tool is not an attempt to write a GPSS compiler in Ada but to write a tool in Ada,

to be used in conjunction with Ada for creating discrete event simulations. GPSS is used as

a basis for creating this tool. Our aim is not to describe the way to write simulations in Ada

but to write GPSS style simulations in Ada. A comparison is then made in chapter four

to see which language was more effective in such areas as ease of creating a model, flow of

control, run-time and flexibility of the language. This simulation tool known as Simulation

Ada (Sim_Ada) is meant to be used with the Ada language for creating simulations. These

procedures and functions are similar to those in GPSS in both name and operation, but the

technique and style in which these operations were written in Sim_ Ada are quite different

from those written in GPSS.

The strategy for using this tool is quite different from that of GPSS. The differences

will be explained in the next section, but first it would be better to explain the use and

results of the procedures and functions contained in the Sim_Ada tool. Below is a list of

the procedures and functions available to the user which follow the same naming scheme as

GPSS.

Example 2.1. A list of procedures and functions available to the user follows. The complete

specifications appear in Appendix III.

1. PROCEDURE priority (class, transaction_name:IN INTEGER);

This procedure allows a transaction to be assigned an integer value given by "class";

initially the transaction's priority is zero. Assigning a transaction a higher priority

gives that transaction certain advantages over a transaction of lower priority. Other

advantages will be explained in the descriptions of the other procedures and functions.

2. PROCEDURE start (transaction_name: OUT IN1'EGER);

This procedure gives each transaction task (transaction task will be explained in the

6

next section) its name and allows that transaction to begin the simulation. Each

transaction task must start with this procedure call before invoking another Sim_Ada

procedure or function call.

3. PROCEDURE terminate_ transaction (transaction_name:IN INTEGER);

This procedure is used at the end of each transaction task and takes the transaction

named by "transaction_name" out of the simulation, and recycles it by resetting all of

its parameters and replacing it on the list of available transactions.

4. PROCEDURE advance (median,width,transaction_name:IN INTEGER);

This procedure simulates the passage of time. The time is calculated by taking the

current clock time and then randomly generating a time. The transaction, in the

advance procedure, cannot move further in the simulation until this calculated time

matches the current clock time. This procedure allows the passage of time for events

such as checking-out items in a grocery store, or a barber cutting a customer's hair.

5. FUNCTION running RETURN BOOLEAN;

This function is used in the main task, which will be explained in the next section, to

keep track of the time and to exit the main loop at the end of the simulation. This

function does not have a counterpart in the GPSS language, but is necessary when

using the Sim_ Ada tool.

6. PROCEDURE queue (queue_name,transaction_name: IN INTEGER);

This procedure allows a transaction to enter a queue given by "queue_name". The type

of queue used is a priority queue with FIFO, i.e., "first in first out" in each priority

class. For example, if a transaction with a priority class of zero is already in the queue,

and a transaction with a priority class of one or higher enters the same queue, then

this transaction will leave this queue, before the transaction with priority, class of zero.

The reason for this is that transactions with the same priority class depart the queue

in a FIFO manner.

7. PROCEDURE depart (queue_name,transaction_name:IN INTEGER);

This procedure allows a transaction given by "transaction_name" to leave the queue

given by "queue_name". A transaction that enters a queue must eventually leave that

queue, so the queue and depart procedures must be used as a pair.

8. PROCEDURE seize (facility_name,transaction_name:IN INTEGER);

The procedure seize allows a transaction given by_ "fransaction_name" to capture or

hold a facility or resource. Some examples of resources are a barber in a barber shop,

7 ILLIAM F. MAAG LIBRARY
OUNGSTOWN STATE UNIVERSI

a clerk in a check-out line, a teller in a bank, and a C.P.U. in a computer system. A

facility given by "facility _name" is anything that a transaction can capture and hold

for some specific amount of time.

9. PROCEDURE release (facility_name,transaction_name:IN INTEGER);

Procedure release allows a transaction given by "transaction_name" the ability to re­

lease or uncapture a facility given by "facility_name". As in the queue and depart

procedures, the seize and release procedures must be used in pairs.

10. PROCEDURE enter (storage_name, storage_count, transaction_name:IN INTEGER);

11. PROCEDURE leave (storage_name, storage_count, transaction_name:IN INTEGER);

12. PROCEDURE generate (median, width, no_of_ trans:IN INTEGER;

time:IN OUT INTEGER;pa:IN OUT p);

Procedure generate allows a transaction to enter the model at a time given by "time"

and then sets up the next time a transaction will enter the model by randomly gener­

ating a time equal to time plus a number between median minus the width and median

plus the width. The number of transactions entering the model at one time is given by

"no_of_ trans," and "pa" is the name of the transaction task type.

13.a. function test (operator:IN relat~onal_operator;pl, p2: IN FLOAT;

transaction_name:IN INTEGER) RETURN BOOLEAN;

13.b. function test (operator:IN relational_operator;pl, p2:IN INTEGER;

transaction_name:IN INTEGER) RETURN BOOLEAN;

13.c. function test (operator:IN relational-operator; pl, p2:IN BOOLEAN;

transaction_name:IN INTEGER) RETURN BOOLEAN;

Function test in all three instances allows the two variables given by "pl" and "p2" to

be tested against one another and returns a value of true if the test is true, and false

otherwise. The relationships being tested in 13.a and 13.b are equal, not equal, less

than, less than or equal, greater than and greater than or equal. The order is given

by, for example, is pl equal to p2 or is pl less than p2? In 13.c., the only relationships

tested are equal and not equal.

14. FUNCTION selecLone (operator:IN relationaLoperator;parameter, lower,

upper:IN INTEGER;pl:IN p;p2:IN p_array;

transaction_name:IN INTEGER) RETURN BOOLEAN;

Function selecLone gives a transaction given by :'transaction_name," the ability to

test a relationship in a range of entities bounded by "lower" and "upper". The first

8

entity in the array "p2" that satisfies the relationship with "pl," its index in the array

is put into the variable "parameter," which is a transaction parameter. An example

should help clarify what this means. If one wanted to check to see which queue was

empty in a range of queues and put the number of the first queue which satisfies this

condition into parameter one we would have the following call to

select-one(e,l,1,8,0,q,transaction_name).

Here "e" is the relational operator for equals, the range of queues is one to eight and

the relationship is read as "is p2 equal to pl," which is opposite of the function test.

If a true relationship is found in the range, then a value of TRUE is returned in the

function; otherwise, a value of FALSE is returned.

15. PROCEDURE starLsimulation (sim_clock:IN INTEGER);

Procedure starLsimulation is used at the beginning of a simulation and is used to do

general housekeeping of tasks such as initializing entities and etc. The total time the

model is to run is given by "sim_clock" and is assigned to the relative and absolute

clocks. Procedure starLsimulation must be used at the beginning of each simulation

and is used in conjunction with procedure end_simulation which is used at the end of

a simulation.

16. PROCEDURE end-simulation;

Procedure end_ simulation is used at the end of each simulation. This procedure does

general housekeeping associated with the end of a simulation, such as printing out

statistics, shutting off other tasks, etc. Like the queue and depart procedures, procedure

end-simulation must be used along with procedure starLsimulation.

17. PROCEDURE assign (parameter,value,transaction_name:IN INTEGER);

Procedure assign gives a transaction's, given by "transaction_name," parameter, given

by "parameter," an integer value, given by "value". A transaction's parameters range

from 1 to 127. All of a transaction's parameters are initialized to zero and to obtain a

parameter's value one must reference it in the following manner:

p(parameter) = value, where parameter has a range from 1 to 127.

In all of these procedures and functions, either constants or variables may be used for

the parameters. This allows more flexibility in the use of Sim_Ada because one can

embed Ada code such as assignment statements, loops; and decision blocks, right along

with the Sim_Ada procedure and function calls.

9

SECTION II. CREATION AND USE OF THE SIM-ADA TOOL.

To create a model in Ada using Sim_Ada, one must have a thorough understanding of

Ada's tasking facility. There are two parts to creating a model using Sim_ Ada, the main

task and the transaction task types. Both parts are explained below.

The main task is the simpler part of the model. It includes the beginning and ending

procedures: starLsimulation and end_simulation. It usually contains a main loop, which

is controlled by using the running function, exiting the loop when the given time is up, and

calls to a generate transactions which routes transactions to their appropriate transaction

tasks.

For each transaction task type, there is a corresponding generate in the main task.

These generate procedures are instantiated from the generic package gen_routines and have

the following instantiation:

Example 2.2. Instantiation of the generic package gen_routines.

package my _generate is new gen_routines (transaction_ task_ type,

transaction_ task_ type_ pointer, transaction_ task_ type_ pointer_ array);

In this instantiation, transaction_ task_ type is of type task type, transaction_ task_ type_

pointer is type access to transaction_ task_ type and transaction_ task_ type_ pointer_ array

is an array of pointers to transaction_ task_ type.

This instantiation must be used for each different transaction task type. An example

of how a main task should appear follows.

Example 2.3. Example of a main task.

with gen_routines;

package generate_ 1 is new gen_routines (pl,p2,p3);

with gen_routines;

package generate_2 is new gen_routines (ql,q2,q3);

" "
" "

10

with gen_routines;

package generate_N is new gen_routines (rl,r2,r3);main_task is

- - any declarations needed.

begin

- starLsimulation (time);

while (running) loop

end loop;

generate_ l.generate (m_ 1,w_l,n_o_ L 1,Ll,Ln_ 1,p3);

generate_2.generate (m-2,w_2,n_o_ L2,L2,Ln_2,q3);

" "

" "
generate_N .generate (m_N ,w _N ,n_o_ t_ N ,t_N ,t_n_ N ,r3);

- - m = median, w= width, n_o_ t = no_of_ trans, t = time

- - Ln = transaction_name and p3,q3,r3 are all of type

- - transaction_ task_ type_ pointer_ array

end_ simulation;

main_task;

The transaction task types have a corresponding transaction task which contain the

actions of the transaction. All of the different transaction task types and transaction tasks

are grouped together and placed into one package. The transaction task is where the

Sim_ Ada tool is mainly used, since it is here that the transactions carry out their actions,

such as entering queues , and capturing facilities.

Each transaction task is dynamically created via a call to the appropriate generate

procedure. When a call is made to one of these generate procedures a transaction is taken

from a pool of transactions , not currently being used, and is sent to an inactive transaction

task. If transaction tasks are unavailable, then one is created dynamically. Once the

transaction has carried out its actions in the simulation, then both the transaction and the

transaction task are recycled and used again. An example of how a package of transaction

task types should appear follows:

11

Example 2.4. A package of transaction task types.

package transaction_ tasks is

task type transaction_ task_ 1;

type transaction_ task_ pointer_ l is access transaction_ task_ 1;

type transaction_ task_ pointer_ array_ l is array(1 .. 100) of transaction_ task_ pointer_ l;

task type transaction_ task-2;

type transaction_ task_ pointer_ 2 is access transaction_ task_ 2;

type transaction_ task_ pointer_ array_ 2 is array(1..100) of

" "
" "
task type transaction_ task_ N;

type transaction_ task_ pointer_ N is access transaction_ task_ N;

type transaction_ task_ pointer_ array _N is array(l .. 100) of transaction_ task_ pointer_ N;

end transaction_ tasks;

package body transaction_ tasks is

task body transaction_ task_ 1 is

name:integer;

begin

loop

start (name);

- - other Sim_Ada procedure and function calls needed to create a simulation

terminate_ transaction (name);

if (ended) then

exit;

end loop;

end transaction_ task_ 1;

task body transaction_ task-2 is

name:integer;

begin

loop

start (name);

- - other Sim_Ada procedure and function calls needed to create a simulation

12

terminate_ transaction (name);

if (ended) then

exit;

end loop;

end transaction_ task_ 2;

" "
" "
task body transaction_ task_N is

name:integer;

begin

loop

start (name);

- - other Sim_Ada procedure and function calls needed to create a simulation

terminate_ transaction (name);

if (ended) then

exit;

end loop;

end transaction_ task_ N;

end transaction_ tasks;

In the main task with the starLsimulation and end_simulation procedures, the start

and terminate procedures must be used at the beginning and ending of each transaction task.

The start procedure is linked to a corresponding generate procedure and passes a transaction

to its proper transaction task, giving the task its name. The terminate procedure takes the

transaction out of the transaction task, and recycles them to be used again when needed.

The function ended is used to exit the loop and shut down the task at the end of simulation.

13

Chapter 3

Simulation Problems and their Solutions

All three simulations are written in two manners, one using GPSS and the other using

the Sim_Ada tool. A listing of each is given in Appendix I. The three simulations are:

1. A check-out line.

2. A inventory control problem.

3. A multiuser computer system.

Example 3.1. A check-out line.

Consider the check-out procedure in a super market. After customers have selected

their purchases, they then proceed to the check-out counter. Except for the busiest part

of the day, not all of these counters are staffed. There are always just enough check-out

counters such that a customer must wait in line before receiving service. The reason is a

store policy which states that if a checker has no one to serve, the counter is closed and the

checker leaves the area. When the waiting lines reach a certain size, the checker returns

and opens a counter. From the customers' point of view, this policy is an annoyance since

it means that they must wait in line before checking-out. From the point of view of the

store management it is a desirable policy, because if a customer does not wait to check out,

then for some period of time before that customer arrived at the counter the checker was

not active. The management wants to make effective use of the checkers' time, either at

the counter, or at some other activity.

Assume that a manager of a store which operates with this policy wishes to consider

a change. The manager would like to reduce the customer's waiting and needs to know

how much it would cost in terms of increased checkers' time at the counters. This manager

believes that reducing customer waiting time will ultimately result in more customers. The

manager also fears that any improvements in service for a short trial period may increase

costs and forces a return to the old policy. The manager wishes to determine the effect of

the change in the policy without changing the actual operation.

A program to be developed is to simulate the activit_ies ·of the checkers, i.e., checking out

cust0mers, opening and closing counters, and is to compute the time checkers spend away

14

from the counters. The program will first be developed to reflect the simulation with the

observed operation. The computer model can be verified with accuracy, then the program

will be changed to reflect the change of policy in the checkers. The effect of this change, on

customer service and checker's time, can then be determined.

The specific method used in this program is only one of several approaches that could

be used. It is an example of a discrete event scheduling method in which the program

executes the actions that occur when a particular event alters the status of the system

takes place.

In the problem the schedule of events are:

1. customer arrives,

2. customer finishes check-out,

3. counter opens,

4. counter closes.

There are other events which occur in the process; but they occur as a result of, or at

the same time, as the scheduled events. Counters are to be opened when the size of the

already opened lines exceeds some specified value, and the opening occurs after some time

delay. Similarly counter closings are scheduled when a line becomes empty, but the closing

occurs after a time delay. If a customer arrives at the counter before the end of this time

delay, the customer receives service, and the scheduled closing is canceled. At the end of

the simulation, statistics regarding the checkers are printed and are listed below.

A grocery store check-out model with a five second delay before closing was run for ten

hours, in one second increments and results were tabulated every hour.

A. Hour one for grocery store model using GPSS.

1. Checker one:

a. Time spent checking customers: 2801 seconds.

b. Total number of customers: 56.

c. Total number of customers not having to wait for checker: 56.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 50 seconds.

f. Total number of times checker closed the line: 0.

g. Total time checker spent away from check_~mt" line: 0 seconds.

2. Checker two:

15

a. Time spent checking customers: 2798 seconds.

b. Total number of customers: 56.

c. Total number of customers not having to wait for checker: 56.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 49.96.

f. Total number of times checker closed the line: 0.

g. Total time checker spent away from check_out line:O seconds.

3. Checker three:

a. Time spent checking customers: 2783 seconds.

b. Total number of customers: 56.

c. Total number of customers not having to wait for checker: 56.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 49.769.

f. Total number of times checker closed the line:O.

g. Total time checker spent away from check_out line: 0 seconds.

4. Checker four:

a. Time spent checking customers: 2765 seconds.

b. Total number of customers: 56.

c. Total number of customers not having to wait for checker: 56.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 49.393 seconds.

f. Total number of times checker closed the line:O.

g. Total time checker spent away from check_out line: 0 seconds.

5. Checker five:

a. Time spent checking customers: 0 seconds.

b. Total number of customers: 0.

c. Total number of customers not having to wait for checker: 0.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 0 seconds.

f. Total number of times checker closed the line: 1.

g. Total time checker spent away from check_out line: 1750 seconds.

16

6. Checker six:

a. Time spent checking customers: 0 seconds.

b. Total number of customers: 0.

c. Total number of customers not having to wait for checker: 0.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 0 seconds.

f. Total number of times checker closed the line: 0.

g. Total time checker spent away from check_out line: 0 seconds.

7. Checker seven:

a. Time spent checking customers: 0 seconds.

b. Total number of customers: 0.

c. Total number of customers not having to wait for checker: 0.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 0 seconds.

f. Total number of times checker closed the line: 1.

g. Total time checker spent away from check_out line: 3600 seconds.

8. Checker eight:

a. Time spent checking customers: 0 seconds.

b. Total number of customers: 0.

c. Total number of customers not having to wait for checker: 0.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 0 seconds.

f. Total number of times checker closed the line: 1.

g. Total time checker spent away from check_out line: 3600 seconds.

B. Grocery store model hour one using Sim_Ada.

1. Checker one:

a. Time spent checking customers: 2801 seconds.

b. Total number of customers: 57.

c. Total number of customers not having to wait for checker: 57.

d. Total number of customers left in line: 1.

e. Average time customer waited in line: 49 s~conds.

f. Total number of times checker closed the line: 0.

17

g. Total time checker spent away from check_out line: 0 seconds.

2. Checker two:

a. Time spent checking customers: 2800 seconds.

b. Total number of customers: 56.

c. Total number of customers not having to wait for checker: 56.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 50 seconds.

f. Total number of times checker closed the line: 0.

g. Total time checker spent away from check_out line: 0.

3. Checker three:

a. Time spent checking customers: 2750 seconds.

b. Total number of customers: 56.

c. Total number of customers not having to wait for checker: 56.

d. Total number of customers left in line: 1.

e. Average time customer waited in line: 49 seconds.

f. Total number of times checker closed the line:O.

g. Total time checker spent away from check-out line: 0 seconds.

4. Checker four:

a. Time spent checking customers: 2750 seconds.

b. Total number of customers: 56.

c. Total number of customers not having to wait for checker: 56.

d. Total number of customers left in line:1.

e. Average time customer waited in line: 49 seconds.

f. Total number of times checker closed the line: 0.

g. Total time checker spent away from check-out line: 0 seconds.

5. Checker five:

a. Time spent checking customers:0 seconds.

b. Total number of customers: 0.

c. Total number of customers not having to wait for checker: 0.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 0 seconds.

f. Total number of times checker closed the line: "i.

g. Total time checker spent away from check-out line: 3600 seconds.

18

6. Checker six:

q. Time spent checking customers: 0 seconds.

b. Total number of customers: 0.

c. Total number of customers not having to wait for checker: 0.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 0 seconds.

f. Total number of times checker closed the line: 1.

g. Total time checker spent away from check_out line: 3600 seconds.

7. Checker seven:

a. Time spent checking customers: 0 seconds.

b. Total number of customers: 0.

c. Total number of customers not having to wait for checker: 0.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 0 seconds.

f. Total number of times checker closed the line: 1.

g. Total time checker spent away from check_out line: 3600 seconds.

8. Checker eight:

a. Time spent checking customers: 0 seconds.

b. Total number of customers: 0.

c. Total number of customers not having to wait for checker: 0.

d. Total number of customers left in line: 0.

e. Average time customer waited in line: 0 seconds.

f. Total number of times checker closed the line:1.

g. Total time checker spent away from check_out line: 3600 seconds.

Since our intention was not to solve the grocery store check-out problem using two

different methods, but to compare the Sim_Ada solution to that of a standard like GPSS,

it was not necessary to run the models for the full ten hours of simulated time.

Upon comparing the two above charts, it is easy to see that the two models are matched

quite evenly. Some minor differences like the total number of customers generated, which

differs by one, can be attributed to such things as bo"?-ndary conditions. For example, is

a transaction generated at time zero or is the first transaction generated at the first inter-

19

arrival time? Another system consideration that can vary the outcome of the model is the

algorithm used to construct the random number generator.

Example 3.2. An Inventory Control Problem

An inventory is a stock of items being used for future use or sale. In a typical operation

items are removed at a rate which is a constant variant. Periodically the size of the inventory

is counted and if the amount present is less than some reorder point, then an order is placed

for enough items to bring the inventory up to some stock control level. There are costs

associated with having items in an inventory, with placing an order, and failing to have an

item in stock.

The objective for studying an inventory system is to determine the best operating rules

that minimize these costs. For the system, these rules would be set to a time period for

counting the inventory, the reorder point, and the stock control level.

Inventory control is a significant problem in most production and distribution opera­

tions . The models used in various situations differ in many details but are similar to our

simplified model.

The operation to be simulated is a retail store which sells units of a single product from

an inventory and obtains replacements from a wholesale supplier.

Assumed costs for operations.

1. Taking an inventory: $50.00.

2. Receipt of an order: $15.00.

3. Loss of a sale due to lack of inventory: $10.00.

4. Cost to carry each item: $0.03 per item per day.

5. Profit per item: $20.00.

This simulation was run for an eight hour day and the time unit used was minutes.

1. Results from inventory model run in GPSS.

a. Total number of customers: 31.

b. Total number of sales: 27.

c. Total profit from sales: $540.00.

d. Total lost sales: 4.

e. Total lost profit from lost sales: $40.00.

f. Total number of inventories taken: 4.

20

g. Total cost to take all inventories: $200.00.

h. Total number of reorders: 1.

i. Total cost to handle all reorders: $15.00.

j. Total cost for holding inventory: $00.39.

k. Total profit: $284.61.

2. Results of inventory model run in Ada.

a. Total number of customers: 33.

b. Total number of sales: 27.

c. Total profit from sales: $540.00.

d. Total lost sales: 6.

e. Total lost profit from lost sales: $60.00.

f. Total number of inventories taken: 4.

g. Total cost to take all inventories: $200.00.

h. Total number of reorders: 1.

i. Total cost to handle all reorders: $15.00.

j. Total cost for holding inventory: $0.39.

k. Total profit: $264.61.

Upon comparison of the two models, one can see that they are identical except for

number of lost sales and total customers. In the GPSS model, total customers were 31

and lost sales were 4, while in the Ada model, total customers were 33 and total lost sales

were 6. This difference can be attributed to a difference in the way the random number

generators were designed.

Example 3.3. An example of a multiuser computer system simulation.

Consider an on-line system that provides service to two terminals that are in an inter­

active mode; e.g., the terminal operators sends a command, waits for a response from the

computer, and after a time delay sends the next command.

The terminal operation characteristics are as follows: the length of the input command

from each terminal is a random number with a uniform distribution from five to eighty

characters long. After a response is received from the cp.m'puter, the time delay before the

next input is exponentially distributed. In eighty percent of the cases, the time it takes

21

to execute a command is five seconds, while in twenty percent of the cases it takes thirty

seconds to execute a command.

A computer operation consists of two phases, polling and execution. At one-second

intervals the computer checks each individual terminal to see if there is any input waiting

to be entered. If there is, the computer reads the command at a rate of three hundred

characters per second. In addition to the transmission time, polling of each terminal requires

one-tenth of a second.

When an output message is completed, characters are sent to the terminal at a rate

of three hundred characters per second. Distribution of the output message is given in the

following manner: distribution of the reply message is assumed to be ten, twenty, thirty,

one hundred and one hundred fifty characters in length, with each length having a twenty

percent probability of occurring.

The simulation was run twice, once in 3600 time units and once in 18,000 time units,

time units being one-tenth of a second. The results are as follows:

Results for simulation run in GPSS for 3600 time units.

1. Terminal one:

a. Number of times polled: 24.

b. Average polling time: 11 time units.

c. Number of request commands: 24.

d. Average time to process request message: 0.958 time units.

e. Number of requests executed: 24.

f. Average execution time: 136.375 time units.

g. Number of reply messages sent: 23.

h. Average time to process reply message: 1. 739 time units.

2. Terminal two:

a. Number of times polled: 24.

b. Average polling time: 11.458 time units.

c. Number of request commands: 24.

d. Average time to process request message: 1.125 time units.

e. Number of requests executed: 24.

f. Average execution time: 136.375 time units.

22

g. Number of reply messages sent: 23.

h. Average time to process reply message: 1.089 time units.

Results of simulation run in GPSS for 18,000 time units.

1. Terminal one:

a. Number of times polled: 90.

b. Average polling time: 11 time units.

c. Number of request commands: 90.

d. Average time to process request message: 0.978 time units.

e. Number of requests executed: 90.

f. Average execution time: 186.211 time units.

g. Number of reply messages sent: 89.

h. Average time to process reply message: 1.831 time units.

2. Terminal two:

a. Number of times polled: 90.

b. Average polling time: 11.122 time units.

c. Number of request commands: 90.

d. Average time to process request message: 1.0 time units.

e. Number of requests executed: 90.

f. Average execution time: 186.378 time units.

g. Number of reply messages sent: 89.

h. Average time to process reply message: 1.517 time units.

Results for simulation run in Ada for 3600 time units.

1. Terminal one:

a. Number of times polled: 12.

b. Average polling time: 11.0 time units.

c. Number of request commands: 12.

d. Average time to process request message: 1.0 time units.

e. Number of requests executed: 12.

f. Average execution time: 285.0 time units.

g. Number of reply messages sent: 11.

h. Average time to process reply message: 2.0 time units.

23

2. Terminal two:

a.. Number of times polled: 11.

b. Average polling time: 12 time units.

c. Number of request commands: 11.

d. A vera.ge time to process request message: 1.0 time units.

e. Number of requests executed: 11.

f. A vera.ge execution time: 283.0 time units.

g. Number of reply messages sent: 10.

h. Average time to process reply message: 2.0 time units.

Results of simulation run in Ada. for 18,000 time units.

1. Terminal one:

a.. Number of times polled: 53.

b. Average polling time: 11 time units.

c. Number of request commands: 53.

d. Average time to process request message: 1.0 time units.

e. Number of requests executed: 53.

f. Average execution time: 325.0 time units.

g. Number of reply messages sent: 52.

h. Average time to process reply message: 3.0 time units.

2. Terminal two:

a.. Number of times polled: 52.

b. Average polling time: 11.0 time units.

c. Number of request commands: 52.

c. A vera.ge time to process request message: 1.0 time units.

e. Number of requests executed: 52.

f. Average execution time: 325.0 time units.

g. Number of reply messages sent: 51.

h. Average time to process reply message: 3.0 time units.

Of the three examples, the computer system si~ulation appears to vary the most

between the GPSS a.nd the Ada. version. This difference is due to the difference in random

24

number generators. Since the selection of the times for the request, execution and reply

times were more random, then in any of the other examples, this would lead to a greater

difference in the output of the two models. For this reason the GPSS and Ada versions

were run twice, once for 3600 time units and once for for 18,000 time units. For the first

run of 3600 time units the average number of times a transaction entered a queue was 24

for the GPSS model and 12 for the Ada model, for the second run of 18,000 time units 90

and 58 times a transaction entered a queue respectively. This seems to indicate that as the

routine of the respective models gets larger the outcomes of the models get closer.

25

Chapter 4

Comparisons, Contrasts and Conclusions

The topics we would like to compare and contrast in this chapter include ease of the

design of simulations, readability of code, use of a rigidly structured language like GPSS

versus a more flexible language like Ada, and comparison of how Ada achieves parallelism

versus how GPSS achieves it.

When discussing ease of design, we need to talk about two different areas. The first is

the ease of design of a simulation from scratch and the second is the ease of transferring a

simulation already written in GPSS to one written in Ada using Sim_Ada .

Designing a simulation in GPSS is quite different from designing a simulation in Ada

with Sim_Ada. When designing a simulation in GPSS, one breaks the problem into sec­

tions according to how transactions are generated and the role they play in the simulation.

However, GPSS does not allow the use of procedures, functions, or sub-routines, forcing

the designer of a simulation to write a simulation as one large procedure. This presents

two problems. The first is readability, which will be addressed later. The second problem

is modularity and reuse of procedures, functions and modules. Since simulations in GPSS

are written as one large ptogram, it is very difficult to pick out the particular sections a

designer may want to reuse in another simulation, or to examine some section of code to

make some minor changes without reading through the entire program.

In the case where Ada is used to design a simulation from scratch, the designer is still

faced with the same problem of splitting the simulation into manageable parts, according

to how transactions are generated, and the role they play in the simulation. In this instance

we can create procedures, functions, tasks, and packages in order to group common entities

and routines together. This eliminates creating one large program, and breaks the problem

into smaller and more manageable problems. These more manageable modules are readily

reusable; for example, when creating the three examples in chapter three, we used the same

main routines for all three and simply changed the instantiation of the generate routines,

and changed some of the parameters of some of the procedure in the Sim_ Ada tool. This
strongly indicates that Ada, along with some simulation tool like Sim_Ada, is much better
than GPSS, as far as ease of design is concerned.

26

One can transfer a GPSS program into a system of procedures, functions, tasks, and

packages without great difficulty. In fact, all three examples in chapter three were first

written in GPSS, and then transferred into Ada using the Sim_Ada. The designer of a

simulation in Ada need only study the GPSS code and assess how and where transactions

are generated, and what actions are carried out. All of the generated procedures are grouped

together in the main procedure and called at the appropriate times. The actions they carry

out are placed into separate tasks, and these tasks can be bound together by being located in

the same package, along with any procedures and functions needed for the simulation. This

makes transferring a GPSS program into a system using Ada and a tool such as Sim_Ada

very systematic. The same is true for transferring a simulation written in Ada, along with

a simulation tool like Sim_Ada, into a GPSS program.

When discussing readability of code, one must look at the structure of the simulation,

as well as the structure of the code. Now GPSS does not allow separate procedures or

functions and the designer is forced to write a simulation as one large program. This is

fine for simulations of fewer than one hundred lines, but as simulations become quite large,

it becomes quite cumbersome. GPSS uses what is termed "spaghetti code" constructs;

for example, transfer blocks and transfer locations. A transfer block is very similar to

FORTRAN's GOTO statement. A transfer location is available in such GPSS statements

as the SELECT and the TEST where if these statements prove to be false, an alternative

location is given for the transaction to execute. This makes the flow of control of a program

very confusing and the program difficult to read.

Ada is a language designed to be readable. Its modular design, e.g., packages, allows

one to write short procedures, functions, and tasks, that can be grouped into packages. Since

the procedures, functions, and tasks can be written in a manner that keeps the amount of

code in a smaller and more understandable size, it makes the code more readable.

GPSS is a rigidly structured language. To write a program in GPSS, the designer must

adhere to a strict formatting rules, such as the name of a function must start in column

eight, and the parameters must start in column twenty-one. Other formatting rules include

where a comment may start, and the use of white spaces between parameters or function

specifications. Other rules include variable, function or label name length and the use of

capital words for all its functions and variables names.

27

Ada is a much more flexible language when it comes to formatting rules. There are no

rules for where a line of code can start or end, whether certain words must be capitalized;

indeed, Ada is not case sensitive. Ada allows the use of very long declarations. With such

a capability as this, the designer can create very descriptive entities which in turn makes

the code more understandable and readable.

In GPSS, the designer of a simulation is restricted to making calls to pre-defined func­

tions available in GPSS, limited to creating functions that only return an integer value,

and creating variables that are integer, real or boolean. On the other hand, a designer

using Ada, a.long with some simulation tool, can create a simulation using the procedures,

functions, or tasks included in the tool, and embed these procedure, function and task calls

into an Ada program. The designer can also create procedures, functions, and tasks that

return values and objects of the designer's choice.

In GPSS, parallelism is achieved through the use of current and future event cha.ins.

A transaction is placed on one of these cha.ins a.long with the block name on which that

transaction is currently residing. All of the transactions on the current event chain become

active, when they can execute the block in which they are residing. In this manner, at any

one time interval, a pseudo-parallelism is achieved.

Ada achieves parallelism in a much more natural manner through the use of tasks.

Since each task is running independently of the others, and also concurrently with the

others, all the actions of one transaction can be bundled into one task. This task can run

with other tasks that contain the actions of other transactions, thus achieving parallelism.

In this manner, there is no need to use current and future event cha.ins, and the mechanics

of building these cha.ins is eliminated.

Other considerations when building a simulation system are areas such as compile time

and run time. The advantage of Ada over GPSS when considering compile time is that

a GPSS program must be recompiled every time the program is run. This becomes time

consuming when it is necessary to frequently recompile the program. One of the advantages

of Ada is that once a module (package) is running correctly and the designer wants to use

that package in a simulation, there is no need to recompile that package. The only time

one has to recompile a package is when there is a change to the package or to the entire

program.

When considering run-time, GPSS clearly out-performed Ada using the Sim_Ada tool.

Severa.I factors can account for this. First, GPSS has , existed since the sixties and much

28

optimizing has been done to the GPSS compiler in order to improve the run-time efficiency.

Also GPSS was written in FORTRAN which is one of the most optimized languages written.

On the other hand, the Sim_ Ada tool, which was written in Ada, was only intended of

be a prototype, to prove Ada can be a good simulation language. Since extensive optimizing

of this tool has not been done, any simulation written in Ada using Sim_Ada did not run

as fast as the same simulation written in GPSS. Another consideration is that Ada is still

a relatively new language developed in the early eighties. A language this new is not likely

to be optimized as much as a language that has been around as long as FORTRAN.

In conclusion, I have shown that Ada can be used to create discrete event simulations

without a great amount of difficulty provided the features of Ada are used to their fullest.

The best approach to writing these simulations is the approach we choose. That is to create

a tool to be used along with Ada that can create simulations and models without much

difficulty and embed this tool inside a system written in Ada.

29

References

[1] American National Standards, "Reference Manual for the Ada Programming Lan­

guage," 1983.

[2] Payne, James, "Introduction to Simulation: Programming Techniques and Methods of

Analysis," McGraw-Hill, New York, 1982.

[3] Shore, R. W., Discrete-Event Simulation in Ada: Concepts, Ada Letters, Vol. 7, no.

5, pp. 105-112, October, 1987.

30

Appendix I

Appendix of programs/output listings for exa""les in chapter 3.

Exa""le 3.1 a grocery store check-out line GPSS Program

* a simulation to model a grocery store check-out line
SIMULATE

ARIVE FUNCTION RN1 ,D16
* FUNCTION ARIVE, FUNCTION FOR INTERARRIVAL TIME FOR CUSTOMERS TO CHECK-OUT

COT FUNCTION RN1,D8
0,20/.2,30/.3,50/.4,60/.6,70/.8,80/.95,90/1,100
* FUNCTION COT (CHECK OUT TIME)

INITIAL XH1,0/XH2,0/XH3,0/XH4,0/XH5,0/XH6,0/XH7,100/XH8,100
*XH VALUES REPRESENT COUNT ON EACH LINE, INITIALY COUNTERS 1-6 ARE OPEN
* A COUNTER IS CONSIDERED CLOSED IF IT'S XH VALUE IS 100, SO COUNTERS 7 AND 8
* ARE INITIALLY CLOSED.

*
*

GENERATE
PRIORITY

16 CUSTOMERS ENTER CHECK-OUT AREA
3

* CUSTOMER SELECTS SHORTEST LINE
SELECT MIN 2,1,8,,XH
SAVEVALUE P2+,1,XH
ASSIGN 3,P2
ASSIGN 3+,8

* QUEUES 9-16 CORRESPOND TO QUEUES 1-8 BUT ARE USED FOR STATS GATHERED ABOUT A
* CUSTOMER IN LINE BEFORE CHECKING-OUT

QUEUE P2 customer enters selected line
QUEUE P3
SEIZE P2 customer begins checking-out
DEPART P3
ADVANCE 50 TIME CHECKER USES TO CHECK ITEMS
RELEASE P2 checker is done checking items
DEPART P2 CUSTOMER LEAVES THE LINE
SAVEVALUE P2-,1,XH
TERMINATE

... ***
* CHECK_OUT CLERK EVENTS

CLOSE
* LINE,
DELAY

GENERATE ,,,1
SEIZE 7
SEIZE 8
SEIZE 15
SEIZE 16
PRIORITY 2
SELECT E 1,1,8,0,XH,OPEN FIND A CHECKER THAT IS !DEL AND CLOSE THAT

IF ALL LINES ARE BUSY THEN GO TO OPEN
ADVANCE 5 CHECKER WAITS FIVE SECONDS BEFORE STARTING TO CLOSE
ASSIGN 2,QC(P1)

* ADVANCE 180 CHECKER WAITS THREE MINUTES TO CLOSE, IF NO CUSTOMER
IIIOws THEN CHECKER CLOSES LINE AND GOES ON TO DO SOMETHING ELSE

TEST E QC(P1),P2,0PEN
SAVEVALUE P1,100,XH LINE IS NOW CLOSED, A CLOSED LINE HAS A XH

31

* VALUE OF ONE HUNDRED
ASSIGN 3,P1
ASSIGN 3+,8

* FACILITIES 9-16 MAP TO FACILITIES 1-8 AND ARE USED TO GATHER STATS ABOUT
* CHECKERS 1-8 WHEN THEY ARE CLOSED AND DOING SOMETHING ELSE

SEIZE P1 THIS CHECKER IS NOW BUSY DOING SOMETHING ELSE
SEIZE P3
TRANSFER ,CLOSE

OPEN SELECT MIN 1,1,8,,XH CHECK TO SEE IF ALL CHECKERS ARE BUSY OR
* CLOSED, IF THIS TRUE THEN GO TO WORK ELSE GO TO CLOSE

TEST L XH(P1),3,WORK
TEST NE XH(P1),0,CLOSE

XH(P1),1
XH(P1),2
,CLOSE

WORK

TEST NE
TEST NE
TRANSFER
SELECT E 1,1,8,100,XH,ALL3 IF ALL LINES ARE BUSY THEN GO BACK

* TO CLOSE
ADVANCE 120 CHECKER TAKES TWO MINUTES TO OPEN

ALL3

*

SAVEVALUE P1,0,XH
ASSIGN 3,P1
ASSIGN 3+,8
RELEASE P3
RELEASE P1 LINE IS NOW OPENE
TEST NE XH(P1),0
TRANSFER ,CLOSE
SELECT E
TEST NE
TRANSFER

1,1,8,3,XH
XH(P1) ,3
,CLOSE

*TIMER, SET IN IN SECONDS FOR TEN HOURS

*
* HOOR ONE

GENERATE 3600
TERMINATE
START
END

32

GPSS Listing

simulation begins.

RELATIVE CLOCK: 3600.0000 ABSOLUTE CLOCK: 3600.0000

FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRENT PERCENT SEIZING PREEMPTING
TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT

0.778 56 50.000 AVAIL
2 0.777 56 49.964 AVAIL 224
3 o.m 56 49.679 AVAIL 225
4 0.768 56 49.393 AVAIL 226
5 0.486 1750.000 AVAIL 2
7 1.000 3600.000 AVAIL 2
8 1.000 3600.000 AVAIL 2

13 0.486 1750.000 AVAIL 2
15 1.000 3600.000 AVAIL 2
16 1.000 3600.000 AVAIL 2

QUEUE MAXIMUM AVERAGE TOTAL ZERO PERCENT AVERAGE $AVERAGE QTABLE CURRENT
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER CONTENTS

1 0.778 56 0 50.000 50.000 1
2 0.777 56 0 49.964 49.964
3 o.m 56 0 49.679 49.679
4 0.768 56 0 49.393 49.393 1
9 0.000 56 56 100.0 0.000 0.000 0

10 0.000 56 56 100.0 0.000 0.000 0
11 0.000 56 56 100.0 0.000 0.000 0
12 0.000 56 56 100.0 0.000 0.000 0

NON·ZERO HALFWORD SAVEVALUES: (NAME : VALUE)

2:
3:
4:
5: 100
7: 100
8: 100

33

Sim_Ada Program

-- an exarrple of a grocery store check-out line
WITH transaction_routines,shopper_routines,gen_routines;
USE transaction_routines,shopper_routines;
PACKAGE customers IS NEW gen_routines(customer,customer_pointer,
customer_pointer_array);
WITH transaction_routines,shopper_routines,gen_routines;
USE transaction_routines,shopper_routines;
PACKAGE checkers IS NEW gen_routines(checker,checker_pointer,
checker_pointer_array);
WITH customers,transaction_routines,gpss_routines,
shopper_routines,c1_routines,sna_routines,checkers;
USE customers,transaction_routines,gpss_routines,
shopper_routines,c1_routines,sna_routines,checkers;
PROCEDURE grocery IS

name,no_of_transactions: INTEGER:= 1;

BEGIN
start_simulation(36OO);

timer in seconds for one hour
timer:= -1;
checkers.generate(O,O, 1,timer,checker_tasks);
timer:= O;
WHILE(running) LOOP

customers.generate(16,O,no_of_transactions,timer,
customer_tasks);

END LOOP;
end_simulation;

END grocery;

WITH transaction_routines;
USE transaction_routines;
PACKAGE shopper_routines IS

TASK TYPE customer;
TYPE customer_pointer IS ACCESS customer;
TYPE customer_pointer_array IS ARRAY(index_type) OF customer_pointer;
customer_tasks: customer_pointer_array;
TASK TYPE checker;
TYPE checker_pointer IS ACCESS checker;
TYPE checker_pointer_array IS ARRAY(index_type) OF checker_pointer;
checker_tasks: checker_pointer_array;
TASK initialize_xh;
FUNCTION arrive RETURN INTEGER;
FUNCTION cot RETURN INTEGER;

EIII shopper routines·
- I

34

WITH sna_routines,select_routines;
USE sna_routines;
PACKAGE shop_select IS NEW select_routines(INTEGER,integer_stats_array);
WITH sna_routines,utility_routines,transaction_routines,que_routines,
facility_routines,test_routines,c1_routines,shop_select;
USE sna_routines,utility_routines,transaction_routines,que_routines,
facility_routines,test_routines,c1_routines,shop_select;
PACKAGE BODY shopper_routines IS

TASK BODY customer IS
name: INTEGER;

BEGIN
transaction_routines.start(name);
WHILE(NOT ended) LOOP

priority(3,name);
t(name).p(1) := cot;
IF(shop_select.select_one(min,2,1,8,0,sna.xh,name)) THEN

-- customer picks shortest line
t(name).p(3) := t(name).p(2) + 8;
queue(t(name).p(2),name);

customer enters line
queue(t(name).p(3),name);

queue for gathering stats about entering line
sna.xh(t(name).p(2)):= sna.xh(t(name).p(2))+1;
seize(t(name).p(2),name);

-- customer captures clerk and begins checking-out
depart(t(name).p(3),name);
advance(SO,O,name);

-- time it takes to check-out
release(t(name).p(2),name);
depart(t(name).p(2),name);

-- customer leaves the line
sna.xh(t(name).p(2)):= sna.xh(t(name).p(2))-1;

END IF;
terminate_transaction(name);

END LOOP;
END customer;

TASK BODY checker IS
name: INTEGER;

BEGIN

transaction_routines.start(name);
sei ze(7,name);
seize(8,name);
seize(15 ,name);
seize(16,name);

lines 7 and 8 are initially closed and facilities 15 and 16 are used for
•• llllthering stats about facilities 7 and 8

WHILE(NOT ended) LOOP
IF(shop select.select one(e,1,1,8,0,sna.xh,name)) THEN

.. lelec - - -
t the line that has no customers and begin closing the line

advance(S,0,name);

35

-- wait 5 seconds before starting to close
t(name).p(2) := sna.xh(t(name).p(1));
advance(180,0,name);

it takes 3 minutes to close the line
IF(test(e,t(name).p(2),sna.xh(t(name) . p(1)),name)) THEN

if no customers have entered the line to check-out then after the 3 minutes
the line is closed

sna.xh(t(name).p(1)) := 100;
t(name).p(3) := t(name).p(1) + 8;
seize(t(name).p(1),name);

-- checker leaves registar and attends to something else
seize(t(name).p(3),name);

END IF;
END IF;
IF(shop_select.select_one(min,1,1,8,0,sna.xh,name)) THEN

IF(test(ge,sna.xh(t(name).p(1)),3,name)) THEN
if the minimum of all the open lines is greater than or equal to 3 then
one of the closed lines must be opened

IF(shop_select.select_one(e,1,1,8,100,sna.xh,name)
select one of the closed lines to be opened

advance(120,0,name);
it takes 2 minutes to open a line

-- line is now open

sna.xh(t(name).p(1)) := 0;
t(name).p(3) := t(name).p(1) + 8;
release(t(name).p(1),name);
release(t(name).p(3),name);

END IF;
END IF;

END IF;
IF(test(ne,sna.xh(t(name).p(1)),0,name)) THEN

WHILE(test(e,sna.xh(t(name).p(1)),1,name)) LOOP
DELAY(0.1);

END LOOP;
WHILE(test(e,sna.xh(t(name).p(1)),2,name)) LOOP

DELAY(0.1);
END LOOP;

END IF;
END LOOP;

END checker;

TASK BOOY initialize_xh IS
BEGIN

FOR i IN 1 . . 6 LOOP
sna.xh(i) := 0;

END LOOP;
sna.xh(7) := 100;
sna.xh(8) := 100·

ENO initialize xh· '
•• flh:t" - ,

ion for interarrival times for customers
FUNCTION arrive RETURN INTEGER IS

i,j:INTEGER;

36

BEGIN
i:= Cmy_random_integer MOO 101);
IF(i >= 0) AND(i<18) THEN

j:=2;
ELSIF(i>=18) AND Ci< 33) THEN

j:= 4;
ELSIF(i >=33)AND(i < 45) THEN

j:=6;
ELSIF(i>=45) AND(i<56)THEN

j :=8;
ELSIF(i>=56) AND(i<64) THEN

j:=10;
ELSIF(i>=64) AND(i<71) THEN

j:=12;
ELSIF(i>=71)AND(i<77) THEN

j:=14;
ELSIF(i>=77)AND(i<82) THEN

j:=16;
ELSIF(i>=82)AND(i<86)THEN

j :=18;
ELSIF(i>=86)AND(i<89)THEN

j :=20;
ELSIF(i>=89)AND(i<92) THEN

j :=22;
ELSIF(i>=92)AND(i<94) THEN

j:=24;
ELSIF(i>=94)AND(i<96) THEN

j:=26;
ELSIF(i>=96)AND(i<98) THEN

j:=28;
ELSIF(i>=98)AND(i<99) THEN

j:=30;
ELSIF(i>=99)AND(i<=100) THEN

j:=32;
END IF;
RETURN j;

END arrive;
-- function for determining check-out timefunction cot return integer is

i:INTEGER;
BEGIN

i := 10*((my_random_integer MOO 9)+2);
RETURN i;

END cot;
Ell> shopper_routines;

37

Sim_Ada Listing

OUTPUT LI ST! NG

Clock Statistics
Absolute Clock 3601
Relative clock 3601

Transaction Statistics
Total Current
227 5

Queue Statistics
Name Total Current Max Zero total Average average

time residence zero

57 1 0 2800 49.000 49.000

2 56 0 0 2800 50.000 50.000

3 56 0 2750 49.000 49.000

4 56 1 0 2750 49.000 49.000

9 57 0 57 0 0.000 0.000

10 56 0 56 0 0.000 0.000

11 56 0 56 0 0.000 0.000

12 56 0 56 0 0.000 0.000

Facility Statistics

Name Captured Total utilize total
time

TRUE 57 0.000 2800
2 FALSE 56 0.000 2800
3 TRUE 56 0.000 2750
4 TRUE 56 0.000 2750
5 TRUE 0.000 0
6 TRUE 0.000 0
7 TRUE 0.000 0
8 TRUE 0.000 0

13 TRUE 0.000 0
14 TRUE 0.000 0
15 TRUE 0.000 0
16 TRUE 0.000 0

non zero halfword savevalue
name value

1

3

4
5 100
6 100
7 100

38

Exaq>le 3.2 An inventory control problem.

GPSS Program

* A MOOEL OF AN INVENTORY CONTROL SYSTEM FOR A RETAIL STORE.
SIMULATE
INITIAL

*
* MOOEL 1

GENERATE
QUEUE
TEST NE
QUEUE
SAVEVALUE
DEPART
DEPART
TERMINATE

LOST QUEUE

XH1,20 STOCK LEVEL AT BEGINNING OF THE DAY

15 CUSTOMERS ARRIVE
1 QUEUE TO COUNT TOTAL NUMBER OF CUSTOMERS.
XH1,0,LOST IF STOCK IS DEPLETED THEN GO TO LOST ELSE CONTINUE.
2 QUEUE TO COUNT TOTAL SALES.
1- ,1,XH REDUCE INVENTORY BY ONE.
2

3 QUEUE TO COUNT TOTAL LOST SALES.
ADVANCE 0

*

DEPART 3
DEPART
TERMINATE

* MODEL 2
GENERATE ,,,1 GENERATE ONE CONTROLLER TO HANGLE TAKING INVENTORIES

* AND MAKING REORDERS.
BACK QUEUE 4 QUEUE TO COUNT HO\,/ MANY INVENTORIES WERE TAKEN.

*

ADVANCE 120
DEPART
TEST E
QUEUE
ADVANCE
SAVEVALUE
DEPART

4

XH1,0,BACK
5 QUEUE TO COUNT HO\,/ MANY REORDERS WERE TAKEN
10 TIME IT TAKES FOR WAREHOUSE TO MAKE DELIVERY
1,20,XH INVENTORY IS NO\,/ UP TO STOCK LEVEL.
5

TRANSFER ,BACK

* MODEL 3

* TIMER SET FOR EIGHT HOURS IN MINUTES
GENERATE 480
TERMINATE 1
START
END

39

GPSS Listing

simulation begins.

RELATIVE CLOCK: 480.0000 ABSOLUTE CLOCK: 480.0000

QUEUE MAXIMUM AVERAGE TOTAL ZERO PERCENT AVERAGE $AVERAGE QTABLE CURRENT
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER CONTENTS

1 1 0.000 31 31 100.0 0.000 0.000 0
2 0.000 27 27 100.0 0.000 0.000 0
3 0.000 4 4 100.0 0.000 0.000 0
4 0.979 4 0 117 .500 117.500 1
5 0.021 0 10.000 10.000 0

NON-ZERO HALFWORD SAVEVALUES: (NAME VALUE)

1: 13

40

Sim_Ada Program

-- a si111Jlation of an inventory control system
WITH text_io;
USE text_io;
PACKAGE stock_io IS NEW integer_io(INTEGER);
WITH transaction_routines,inventory_routines , gen_routines;
USE transaction_routines,inventory_routines;
PACKAGE customers IS NEW gen_routines(customer,customer_pointer,
customer_pointer_array);
WITH transaction_routines,inventory_routines,gen_routines;
USE transaction_routines,inventory_routines;
PACKAGE controllers IS NEW gen_routines(controller,controller_pointer,
controller_pointer_array);
WITH customers,transaction_routines,gpss_routines,text_io,stock_io,
inventory_routines,c1_routines,sna_routines,controllers;
USE customers,transaction_routines,gpss_routines,text_io,stock_io,
inventory_routines,c1_routines,sna_routines,controllers;
PROCEDURE stock IS

name,no_of_transactions: INTEGER:=1;

BEGIN
start_silllJlation(481);

silll.llation was run for eight hours in time units of minutes
timer:= -1;
controllers.generate(0,0,1,timer,controller_tasks);
timer:= O;
WHILE(running) LOOP

customers.generate(15,0,no_of_transactions,timer,
customer_tasks);

END LOOP;
end_silll.llation;

END stock;

41

WITH transaction_routines;
USE transaction_routines;
PACKAGE inventory_routines IS

TASK TYPE customer;
TYPE customer_pointer IS ACCESS customer;
TYPE customer_pointer_array IS ARRAY(index_type) OF customer_pointer;
customer_tasks: customer_pointer_array;
TASK TYPE controller;
TYPE controller_pointer IS ACCESS controller;
TYPE controller_pointer_array IS ARRAY(index_type) OF controller_pointer;
controller_tasks: controller_pointer_array;
TASK initialize_xh;

END inventory_routines;
with sna_routines,utility_routines,transaction_routines,que_routines,
facility_routines,test_routines,c1_routines;
use sna_routines,utility_routines,transaction_routines,que_routines,
facility_routines,test_routines,c1_routines;
package body inventory_routines is

task body customer is

begin
name: integer;

transaction_routines.start(name);
while(not ended) loop

if(test(ne,sna.xh(1),0,name)) then
if inventory is not depleted then customer enters check-out line and makes
purchase

queue(2,name);
customer enters line

sna.xh(1):= sna.xh(1)-1;
-- inventory is decreased by one

depart(2,name);
else

-- lost sale due to lack of inventory
queue(3,name);
advance(O,O,name);
depart (3, name);

end if;
terminate_transaction(name);

end loop;
end customer;

task body controller is
name: integer;

begin

sna.xh(1):= 20 ·
initial stock level '

transaction_routines . start(name);
whi le(not ended) loop

queue(4,name);

42

queue for keeping stats about ni.mber of times inventory is taken
advance(120,0,name);

-- time between inventories
depart(4,name);
if(test(e,sna.xh(1),0,name)) then

-- if inventory is depleted then a reorder is made
queue(5,name);

queue for gathering stats ab out how many reorders were made
advance(10,0,name);

time it takes to make a reorder from local warehouse
sna.xh(1 > := 20;

stock is now up to inventory level
depart(5,name);

end if;
end loop;

end controller;

task body initialize_xh is
begin

sna.xh(1):= 20;
end initialize_xh;

end inventory_routines;

43

Sim_Ada Listing

OUTPUT LISTING

Clock Statistics
Absolute Clock 481
Relative clock 481

Transaction Statistics
Total Current
34 2

Queue Statistics
Name Total Current Max Zero total Average average

time residence zero
2 27 0 27 0 0.000 0.000
3 6 0 6 0 0.000 0.000
4 4 0 360 90.000 90.000
5 0 0 10 10.000 10.000

Facility Statistics
Name Captured Total utilize total

time

non zero halfword savevalue
name value

13

44

Exarrple 3.3 A rulti·user COll1)Uter system.

GPSS Program

* A SIMULATION TO MODEL A MULTI-USER COMPUTER SYSTEM
SIMULATE

CMD1 FUNCTION RN1 ,C2
0,5/1,80
* FUNCTION CMD1 IS A CONTINOUS FUNCTION THAT SELECTS THE LENGTH OF THE
* INPUT COMMAND FROM 5 TO 8D CHARACTERS

*
EXEC FUNCTION RN1,D2

* FUNCTION EXEC GIVES THE TIME REQUIRED TO EXECUTE THE COMMAND, 20% OF THE
* TIME IT TAKES 30 SECONDS AND 80% OF THE TIME IT TAKES 5 SECONDS.

CMD2 FUNCTION RN1,D5
* FUNCTION CMD2 SELECTS THE LENGTH OF THE REPLY

*
REPLY VARIABLE FN$CMD2/30

* REPLY SELECTS THE LENGTH OF THE REPLY AND THEN READS 300 CHARACTERS PER SECOND
* KEEPING IN MIND THE TIME UNITS ARE IN 1/10 OF A SECOND.

*
REQ VARIABLE FNSCMD1/30

* REQ GIVES THE TIME IT TAKES TO MAKE AN INPUT COMMAND DEPENDANT ON THE LENGTH
* OF THE COMMAND. EACH COMMAND IS READ IN 300 CHARACTERS PER SECOND

*
* TERMINAL ONE

GENERATE
TERM1 QUEUE

SEIZE
ADVANCE
RELEASE
DEPART
QUEUE

* TERMINAL 1
SEIZE
ADVANCE
RELEASE
DEPART
QUEUE
SEIZE
ADVANCE
RELEASE
DEPART
QUEUE
SEIZE
ADVANCE
RELEASE
DEPART
TRANSFER

I I I 1
QUEUE USED FOR GATHERING STATS ABOUT POLING TERMINAL 1
FACILITY FOR POLING ALL THE TERMINALS ONE AT A TIME

11 TIME IT TAKES TO POLE ONE TERMINAL IN 1/10 OF A SEC.

3 QUEUE FOR GATHERING STATS ABOUT REQUEST COMMAND FOR

2 1/0 CHANNEL FOR INPUT COMMAND
VSREQ TIME IT TAKES TO INPUT COMMAND
2
3

5 QUEUE FOR GATHERING STATS ABOUT EXECUTION TIME
3 CAPTURE THE C.P.U.
FNSEXEC
3

5

TIME IT TAKES TO EXECUTE COMMAND.

7 QUEUE FOR GATHERING STATS ABOUT OUTPUT TO TERMINAL
4 1/0 CHANNEL BACK TO TERMINALS.
VSREPLY
4

7

,TERM1

TIME IT TAKES TO SEND REPLY BACK TO USER

45

*
* TERMINAL TWO

GENERATE
TERM2 QUEUE

SEIZE
ADVANCE
RELEASE
DEPART
QUEUE

* TERMINAL 2
SEIZE
ADVANCE
RELEASE
DEPART
QUEUE
SEIZE
ADVANCE
RELEASE
DEPART
QUEUE
SEIZE
ADVANCE
RELEASE
DEPART

I I I 1
2 QUEUE USED FOR GATHERING STATS ABOUT POLING TERMINAL 2

FACILITY FOR POLING ALL THE TERMINALS ONE AT A TIME
11 TIME IT TAKES TO POLE ONE TERMINAL IN 1/10 OF A SEC.

2

4 QUEUE FOR GATHERING STATS ABOUT REQUEST COMMAND FOR

2 1/0 CHANNEL FOR INPUT COMMAND
VSREQ TIME IT TAKES TO INPUT COMMAND
2

4

6 QUEUE FOR GATHERING STATS ABOUT EXECUTION TIME
3 CAPTURE THE C.P.U.
FNSEXEC
3

6

TIME IT TAKES TO EXECUTE COMMAND.

8 QUEUE FOR GATHERING STATS ABOUT OUTPUT TO TERMINAL 2
4 1/0 CHANNEL BACK TO TERMINALS.
VSREPLY TIME IT TAKES TO SEND REPLY BACK TO USER
4
8

TRANSFER ,TERM2
* TIMER IN 1/10 OF A SECOND FOR ONE-HALF HOUR

GENERATE 18000
TERMINATE
START
END

46

--
GPSS Listing for 3600 time units

s irulation begins
RELATIVE CLOCK: 3600.0000 ABSOLUTE CLOCK: 3600.0000

FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRENT PERCENT SEIZING PREEMPTING
TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT

0.147 48 11.000 AVAIL
2 0.014 48 1.042 AVAIL
3 0.997 47 76.362 AVAIL
4 0.018 46 1.413 AVAIL

QUEUE MAXIMUM AVERAGE TOTAL ZERO PERCENT AVERAGE $AVERAGE QTABLE CURRENT
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER CONTENTS

1 0.073 24 0 11.000 11.000 0
2 0.076 24 0 11.458 11.458 0
3 0.006 24 8 33.3 0.958 1.437 0
4 0.008 24 6 25.0 1.125 1.500 0
5 0.909 24 0 136.375 136.375
6 0.909 24 0 136.375 136.375 1
7 0.011 23 9 39.1 1.739 2.857 0
8 0.007 23 12 52.2 1.087 2.273 0

GPSS Listing for 18,000 time units

sill'l.llation begins
RELATIVE CLOCK : 18000.0000 ABSOLUTE CLOCK: 18000.0000

FACILITY TOTAL AVAIL UNAVL ENTRIES AVERAGE CURRENT PERCENT SEIZING PREEMPTING
TIME TIME TIME TIME/XACT STATUS AVAIL XACT XACT

0.110 180 11.000 AVAIL
2 0.010 180 0.989 AVAIL
3 0.999 179 100.497 AVAIL
4 0.017 178 1.674 AVAIL

QUEUE MAXIMUM AVERAGE TOTAL ZERO PERCENT AVERAGE $AVERAGE QTABLE CURRENT
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS TIME/UNIT TIME/UNIT NUMBER CONTENTS

1 1 0.055 90 0 11.000 11.000 0
2 0.056 90 0 11.122 11. 122 0
3 0.005 90 29 32.2 0.978 1.443 0
4 0.005 90 23 25.6 1.000 1.343 0
5 0.931 90 0 186.211 186.211
6 0.932 90 0 186.378 186.378
7 0.009 89 36 40.4 1.831 3.075 0
8 0.008 89 36 40.4 1.517 2.547 0

47

-
Sim_Ada Program

-- a sirulation of a rultiuser COff1:)Uter system.
WITH text_io;
USE text_io;
PACKAGE COff1:)Uter_io IS NEW integer_io(INTEGER);
WITH transaction_routines,terminal_routines,gen_routines;
USE transaction_routines,terminal_routines;
PACKAGE terminals IS NEW gen_routines(term,term_pointer,term_pointer_array);
WITH terminals,transaction_routines,gpss_routines,text_io,c0ff1:>Uter_io,
terminal_routines,c1_routines,sna_routines;
USE terminals,transaction_routines,gpss_routines,text_io,c0ff1:>Uter_io,
terminal_routines,c1_routines,sna_routines;
PROCEDURE COff1:)Uter IS

name,no_of_transactions: INTEGER:= 1;
BEGIN

start_sirulation(3600);
sirulation was run in time units of one temth of a second

timer:= -1;
terminals.generate(0,0,2,timer,term_tasks);
timer:= O;
WHILE(running) LOOP

DELAY 0.1;
END LOOP;
end_sirulation;

END c0ff1:)Uter;

WITH transaction_routines;
USE transaction_routines;
PACKAGE terminal_routines IS

TASK TYPE term;
TYPE term_pointer IS ACCESS term;
TYPE term_pointer_array IS ARRAY(index_type) OF term_pointer;
term_tasks: term_pointer_array;
FUNCTION request RETURN INTEGER;
FUNCTION reply RETURN INTEGER;
FUNCTION execute RETURN INTEGER;

END terminal_routines;

48

-
WITH sna_routines,utility_routines,transaction_routines,que_routines,
facility_routines,c1_routines;
USE sna_routines,utility_routines,transaction_routines,que_routines,
facility_routines,c1_routines;
PACKAGE BODY terminal_routines IS

TASK BODY term IS
name: INTEGER;

BEGIN
transaction_routines.start(name);
WHILE(NOT ended) LOOP

queue(name,name);
queue for keeping stats about poling the terminals

seize(1,name);
resource for poling terminals

advance(11,0,name);
it takes one and one temth of a second to pole a terminal

release(1,name);
depart(name,name);
queue(name + 2,name);

queue for keeping stats about requests
seize(2,name);

i/o channel for handling requests
advance(request,O,name);

time it takes to send request message
release(2,name);
depart(name + 2,name);
queue(name + 4,name);

queue for gathering stats about executing requests
seize(3,name);

c.p.u.
advance(execute,0,name);

-- time it takes to execute requests
release(3,name);
depart(name + 4,name);
queue(name + 6,name);

•· queue for gathering stats about replys
seize(4,name);

i/o channel for handling replys
advance(reply,0,name);

•• time it takes to handle replys
release(4,name);
depart(name + 6,name);

END LOOP;
END term;

49

function to determine how long it takes to make a request
FUNCTION request RETURN INTEGER IS

BEGIN
i: INTEGER;

I:= my_random_integer MOO 76;
i:= i + 5;
i:= INTEGER(i / 30);
RETURN I;

END request;

function to determine how long it takes to make a reply
FUNCTION reply RETURN INTEGER IS

BEGIN

; I j: INTEGER;

i:= my_random_integer MOO 5;
IF(i = 0) THEN

j:= 10;
END IF;
IF(i = 1) THEN

j := 20;
END IF;
IF(i = 2) THEN

j := 30;
END IF;
IF(i = 3) THEN

j := 100;
END IF;
IF(i = 4) THEN

j:= 150;
END IF;
j:= INTEGER(j/30);
RETURN j;

END reply;

function to determin execution time of request
FUNCTION execute RETURN INTEGER IS

BEGIN
i, j: INTEGER;

i:= my_random_integer MOO 101;
IF(i >= 0) AND Ci <= 20) THEN

j:= 300;
ELSE

j:= 50;
END IF;
RETURN j;

END execute;

EID terminal routines·
- I

50

Sim_Ada Listing for 3600 time units

OUTPUT LI ST! NG

Clock Statistics
Absolute Clock 3600
Relative clock 3600

Transaction Statistics
Total Current

2 2

Queue Statistics
Name Total Current Max Zero total Average average

time residence zero
1 12 0 0 132 11.000 11.000
2 11 0 0 132 12.000 12.000
3 12 0 7 8 0.000 1.000
4 11 0 8 5 0.000 1.000
5 12 0 3423 285.000 285.000
6 11 0 3122 283.000 283.000
7 11 0 5 16 1.000 2.000
8 10 0 4 14 1.000 2.000

Facility Statistics
Name Captured Total utilize total

time
FALSE 23 0.000 253

2 FALSE 23 0.000 13

3 TRUE 22 0.000 3550
4 FALSE 21 0.000 30

non zero halfword savevalue
name value

Sim_Ada Listing for 18,00 time units

51

OUTPUT LI ST! NG

Clock Statistics
Absolute Clock 18000
Relative clock 18000

Name Total

1 53
2 52
3 53
4 52
5 53
6 52
7 52
8 51

Name Captured

FALSE
2 FALSE
3 TRUE
4 FALSE

Transaction Statistics
Total Current

2 2

Queue Statistics
Current Max Zero

0 0
0 0
0 34
0 32

0
0

0 25
0 21

Facility Statistics
Total utilize total

time
105 0.000 1155
105 0.000 53
104 0. 000 17900
103 0.000 171

non zero halfword savevalue
name value

total Average average
time residence zero
583 11.000 11.000
583 11.000 11.000
27 0.000 1.000
26 0.000 1.000

17231 325.000 325.000
16923 325.000 325.000

81 1.000 3.000
90 1.000 3.000

52

-

Appendix II
Listing of Ada Packages Used to Build Sim_Ada Tool.

WITH text_io;
USE text_io;
PACKAGE sna_routines IS

subtype stats_range IS INTEGER RANGE 1 •• 100;

TYPE integer_stats_array IS ARRAY(stats_range) OF INTEGER;

TYPE float_stats_array IS ARRAY(stats_range) OF FLOAT;

TYPE boolean_stats_array IS ARRAY(stats_range) OF BOOLEAN;

TYPE sna_record IS RECORD
-- clock sna•s
c1: INTEGER; -- relative_clock
ac: INTEGER; -- absolute clock

-- facility sna•s
fe: boolean_stats_array; --list to indicate if facility exists
f: boolean_stats_array; -- facility status
--busy= true and not busy= false
fc: integer_stats_array; -- facility capture count
ftt: integer_stats_array; --total time facility was in use
fr: float_stats_array; --facility utilization
ft: float_stats_array; --facility average holding time

-- queue sna's
qe: boolean_stats_array; --list to indicate if queue exists
q: integer_stats_array; -- current queue count
qa: float_stats_array; -- average queue content
qc: integer_stats_array; -- total queue count
qm: integer_stats_array; --max queue count
qtt: integer_stats_array; -- total time queue is used
qt: float_stats_array;
qx: float_stats_array; -­
- -based on qz

average queue residence time
average queue residence time

qz: integer_stats_array; --total zero entry count

·---

·----- ..

-- storage sna•s
se: boolean_stats_array; --list to indicate if storage exists
r: integer_stats_array; --remaining capacity in storage
s: integer_stats_array; --current capacity of storage
sa: float_stats_array; --average storage capacity
sc: integer_stats_array; -- total storage count
sr: float_stats_array; -- utilization of storage
sm: integer_stats_array; --max storage
st: float_stats_array; -- average holding time per unit

53

-- transaction sna•s
te: boolean_stats_array;
pr: integer_stats_array;

list to indicate if transaction exists
transaction priority level

m1: integer_stats_array; transaction residence time in model
ttc: INTEGER; --total transaction count
etc: INTEGER; -- current transaction count
xh: integer_stats_array; - - xh values

END RECORD;

sna: sna_record;

output: FILE_TYPE;

PROCEDURE stats;

PROCEDURE initialize_stats;

END sna_routines;

111TH text_io;
USE text_io;
PACKAGE sna_integer_io IS NEIi integer_io(INTEGER);

111TH text_ i o;
USE text_io;
PACKAGE sna_float_io IS NEIi float_io(FLOAT);
111TH text_io,sna_integer_io,sna_float_io;
USE text_io,sna_integer_io,sna_float_io;
PACKAGE BODY sna_routines IS

PROCEDURE initialize_stats IS
BEGIN

sna.c1:= -1;
sna.ac:= O;
sna.ttc:= O;
sna.ctc:= O;
FOR i IN stats_range LOOP

sna.fe(i):= FALSE;
sna.ftt(i):= O;
sna.se(i):= FALSE;
sna.te(i):= FALSE;
sna.f(i):= FALSE;
sna.fc(i):= O;
sna.fr(i):= 0.0;
sna.ft(i):= 0.0;
sna.qe(i):= FALSE;
sna.q(i):= O;
sna.qtt(i) := O;
sna.qa(i) := 0.0;
sna.qc(i):= 0· I

sna.qm(i) := 0· I

sna.qt(i) := 0.0;
sna .qx(i) := 0.0;
sna.qz(i):= 0· I

54

-
sna.r(i):= O;
sna.s(i):= 0;

sna.sa(i) := 0.0;
sna.sc(i) := O;

sna.sr(i):= 0.0;
sna.sm(i):= 0;

sna.st(i):= 0.0;
sna.pr(i):= O;
sna.m1(i):= 0;

sna.xh(i):= O;
END LOOP;

END initialize_stats;

PROCEDURE stats IS
BEGIN

PUT(output,"
NEW_LINE(output);
PUT(output, 1111);

NEW_LINE(output);
PUT(output,"
NEW_LINE(output);
PUT(output," Absolute Clock :");
PUT(output,sna.ac);
NEW_LINE(output);
PUT(output," Relative clock :");
PUT(output,sna.c1);
NEW_LINE(output);
PUT(output," ");
NEW_LINE(output);

OUTPUT LISTI NG");

Clock Statistics");

PUT(output,"
NEW_LINE(output);

Transaction Statistics");

PUT(output, 11

NEW_LINE(output);
PUT(output,sna.ttc,35);
PUT(output,sna.ctc,10);
NEW_LINE(output);
PUT(output," ");
NEW_LINE(output);
PUT(output, 11

NEW_LINE(output);

Total Current");

Queue Statistics");

PUT(output, 11 Name
Total

Total
Average

Current
Average");

Max Zero");
PUT(output, 11

NEW_LINE(output);
PUT(output,"
PUT(output, "time residence
NEW_LINE(output);
FOR i IN stats_range LOOP

IF(sna.qe(i)) THEN
IF(sna.c1 /= 0) THEN

zero");

sna.qa(i):= FLOAT(sna.qc(i) / sna.c1);
END IF;
IF(sna.qc(i) /= 0) THEN

sna.qt(i):= FLOAT(sna.qtt(i) / sna.qc(i));

55

II);

-
END IF;
IF(sna.qc(i) - sna.qz(i) /= 0) THEN

sna.qx(i):= FLOAT(sna.qtt(i) / (sna.qc(i) -
sna.qz(i)));

END IF;
PUT(output,i,10);
PUT(output,sna.qc(i),10);
PUT(output,sna.q(i),10);
PUT(output,sna.Cfll(i),10);
PUT(output,sna.qz(i),10);
PUT(output,sna.qtt(i),10);
PUT(output,sna.qt(i),fore=>6,aft=>3,exp=>O);
PUT(output,sna.qx(i),fore=>6,aft=>3,exp=>O);
NEW_LINE(output);

END IF;
END LOOP;
PUT(output," ");
NEW_LINE(output);
PUT(output,"
NEW_LINE(output);

Facility Statistics");

PUT(output," Name Captured
NEW_LINE(output);
PUT(output,"
NEW_LINE(output);
FOR i IN stats_range LOOP

IF(sna.fe(i)) THEN
IF(sna.c1 /= 0) THEN

Total Utilize

sna.fr(i):= FLOAT(sna.ftt(i) / sna.c1);
END IF;
IF(sna.fc(i) /= 0) THEN

sna.ft(i):= FLOAT(sna.ftt(i) / sna.c1);
END IF;
PUT(output,i, 10);
IF(sna.f(i)) THEN

PUT(output," TRUE");
ELSE

PUT(output," FALSE");
END IF;
PUT(output,sna.fc(i),10);
PUT(output,sna.fr(i),fore=>6,aft=>3,exp=>O);
PUT(output,sna.ftt(i), 10);
NEW_LINE(output);

END IF;
END LOOP;
PUT(output, 11 11);

Total");

Time");

NEW_LINE(output);
PUT(output, 11

NEW_LINE(output);
PUT(output,"
NEW_LINE(output);

non zero halfword savevalue");

name value");

FOR i IN stats_range LOOP
IF(sna.xh(i) /= 0) THEN

56

PUT(output,i,35);
PUT(output,sna.xh(i),10);
NEW_LINE(output);

END IF;
END LOOP;

END stats;
END sna_routines;

PACKAGE utility_routines IS

FUNCTION get_time(median,width: IN INTEGER) RETURN INTEGER;

FUNCTION equal_times(time,relative_clock: IN INTEGER) RETURN BOOLEAN;

TASK start IS
ENTRY put(name: IN INTEGER);
ENTRY get(transaction_name: OUT INTEGER);
ENTRY shutoff;

END start;

TASK count IS
ENTRY increment(count: IN OUT INTEGER);
ENTRY decrement(count: IN OUT INTEGER);
ENTRY shutoff;

END count;

FUNCTION my_random_integer RETURN INTEGER;
seed: INTEGER:= 13;
nult: INTEGER:= 57;

END utility_routines;

PACKAGE BODY utility_routines IS

FUNCTION get_time(median,width: IN INTEGER) RETURN INTEGER IS
distance: INTEGER;

BEGIN
time : INTEGER;

distance:= 2 *width+ 1;
time:= my_random_integer;
time:= time MOD distance;
time :=time +median-width;
RETURN time;

END get_time;

FUNCTION equal_times(time,relative_clock:IN INTEGER) RETURN BOOLEAN IS
equal:BOOLEAN;

BEGIN

IF(relative_clock = time) THEN
equal:= TRUE;

ELSE

equal:= FALSE;
END IF;
RETURN equa I;

57

END equal_times;

TASK BODY start IS
BEGIN

main: LOOP
SELECT

ACCEPT PUT(name:IN INTEGER) DO
ACCEPT GET(transaction_name:OUT INTEGER) DO

transaction_name:= name;
END GET;

END PUT;
OR

ACCEPT shutoff;
EXIT main;

OR
TERMINATE;

END SELECT;
END LOOP main;

END start;

TASK BODY count IS
BEGIN

main: LOOP
SELECT

ACCEPT increment(count: IN OUT INTEGER) DO
count := count+1;

END increment;
OR

ACCEPT decrement(count: IN OUT INTEGER) DO
count:= count-1;

END decrement;
OR

ACCEPT shutoff;
EXIT main;

OR
TERMINATE;

END SELECT;
END LOOP main;

END count;

FUNCTION my_random_integer RETURN INTEGER IS
nunber,min: INTEGER;

BEGIN
nunber:= seed"'mult;
seed:= mul t;
min:= nunber/100;
mult:= nunber MOD 100;
RETURN min;

END my_ranctom_integer;

Ell> Utility routines·
- I

PAC!CAGE transaction_routines IS

58

transaction_limit : CONSTANT INTEGER:= 100;
limit on the nl.lli)er of transactions
running at one time.

SUBTYPE index_type IS INTEGER RANGE 1 •• transaction_limit;
TYPE parameter_array IS ARRAY(0 •• 127) OF INTEGER;

--list of parameters for each transaction.
TYPE transaction_record IS RECORD

p: parameter_array;
name,relative_clock: INTEGER;
in_use: BOOLEAN:= FALSE;

indicates if transaction is active in model
END RECORD;
TYPE points_to_transaction IS ACCESS transaction_record;
TYPE next_transaction IS ARRAY (index_type) OF points_to_transaction;
t: next_transaction;-- array of pointers to transaction records
advance_time: INTEGER:= 1;
timer,start_count,simulation_time,transaction_name,
transaction_count: INTEGER:= O;
ended: BOOLEAN:= FALSE;

PROCEDURE priority(class,transaction_name: IN INTEGER);
procedure priority changes priority level of transaction
parameter1 changes level(higher nl.lli)er equals higher priority)
parameter two assigns priority level to transaction given by transaction name

PROCEDURE start(transaction_name: OUT INTEGER);
procedure start is used at beginning of each transaction task
to give each transaction it's proper name

PROCEDURE terminate_transaction(transaction_name: IN INTEGER);
procedure terminate_transaction makes transaction available again
after it has COfll)leted its assignment in the simulation

PROCEDURE assign(parameter,value,transaction_name: IN INTEGER);
FUNCTION transaction_ok(tn:IN points_to_transaction) RETURN BOOLEAN;
PROCEDURE reset(tn: IN OUT points_to_transaction);

END transaction_routines;

59

-
WITH utility_routines,sna_routines;
USE utility_routines,sna_routines;
PACKAGE BODY transaction_routines IS

PROCEDURE priority(class,transaction_name: IN INTEGER) IS
BEGIN

IF(transaction_ok(t(transaction_name))) THEN
t(transaction_name).p(O):= class;

ELSE
ended:=TRUE;

END IF;
END priority;

PROCEDURE start(transaction_name: OUT INTEGER) IS
BEGIN

IF(sna.c1 < sill'Ulation_time) THEN
start_count:= start_count+1;
utility_routines.start.GET(transaction_name);
start_count:= start_count-1;

ELSE
ended:= TRUE;

END IF;
END start;

PROCEDURE terminate_transaction(transaction_name: IN INTEGER) IS
BEGIN

IF(transaction_ok(t(transaction_name))) THEN
utility_routines.count.decrement(transaction_count);
sna.ctc := sna.ctc-1;
reset(t(transaction_name));

END IF;
WHILE(NOT t(transaction_name).in_use) LOOP

DELAY 0.1;
END LOOP;

END terminate_transaction;

PROCEDURE assign(parmeter,value,transaction_name: IN INTEGER) IS
BEGIN

t(transaction_name).p(parmeter):= value;
END assign;

FUNCTION transaction_ok(tn: IN points_to_transaction)RETURN BOOLEAN IS
ok: BOOLEAN;

BEGIN

ok:= FALSE;
IF(tn.in_use)AND(sna.c1 < si1TUlation_time) THEN

ok:= TRUE;
END IF;
RETURN ok;

END transaction_ok;

60

PROCEDURE reset(tn: IN OUT points_to_transaction) IS
BEGIN

tn.in_use:= FALSE;
FOR i IN O .. 127 LOOP

tn.pCi):= O;
END LOOP;

END reset;

END transaction_routines;

WITH transaction_routines;
USE transaction_routines;

package clock_routines contains all procedures,functions and tasks
needed to operate the clock used for each sirrulation
clocks are referenced by sna.c1 is the relative_clock
and sna.ac is the absolute clock

PACKAGE c1_routines IS

PROCEDURE advance(median,width,transaction_name: IN INTEGER);
procedure advance allows the passage of time to occur
transactions referenced by transaction_name are held in
the advance block for a time of median+ or· the width
times units

FUNCTION running RETURN BOOLEAN;
function running usually used in main routine to indicate

·· if sirrulation is completed

FUNCTION advance_running RETURN BOOLEAN;

TASK TYPE advance_task IS
ENTRY set_advance;
ENTRY sync_time;
ENTRY shutoff;

END advance_task;

TASK time_task IS
ENTRY inc_clock;
ENTRY check_advance(in_advance: IN OUT BOOLEAN);
ENTRY get_advance(median,width: IN INTEGER;
advance_name: OUT INTEGER);
ENTRY get_clock(transaction_clock: IN OUT INTEGER);
ENTRY shutoff;

END time_task;

TYPE advance_record IS RECORD
advance_time: INTEGER;
in_use: BOOLEAN;
advance transaction: advance_task;

END RECORD· -
I

61

TYPE advance_pointer IS ACCESS advance_record;
TYPE advance_array IS ARRAY(index_type) OF advance_pointer;
a: advance_array;

END c1_routines;

WITH utility_routines,transaction_routines,sna_routines;
USE utility_routines,transaction_routines,sna_routines;
PACKAGE BODY c1_routines IS

TASK BODY advance_task IS
BEGIN

main: LOOP
SELECT

OR

OR

ACCEPT set_advance DO
ACCEPT sync_tirne;

END set_advance;

ACCEPT shutoff;
EXIT main;

TERMINATE;
END SELECT;

END LOOP main;
END advance_task;

PROCEDURE advance(rnedian,width,transaction_narne:IN INTEGER) IS
advance_narne:INTEGER;

BEGIN
IF(transaction_ok(t(transaction_narne))) THEN

IF(a(transaction_narne) = NULL) THEN

ELSE

a(transaction_narne):= NEW advance_record;
END IF;
a(transaction_narne).in_use:= TRUE;
a(transaction_narne).advance_tirne:= sna.c1 +

get_tirne(rnedian,width);
a(transaction_narne).advance_transaction.set_advance;

ended:=TRUE;
END IF;

END advance;

FUNCTION running RETURN BOOLEAN IS
sync:BOOLEAN:=FALSE;

BEGIN

IF(sna.c1 < sinulation_tirne) THEN
IF(transaction_count = 0) THEN

tirne_task.inc_clock;
ELSIF(advance_running) THEN

DELAY 0.1;
ELSE

DELAY 0.1;

62

time_task.inc_clock;
END IF;
sync:= TRUE;

END IF;
RETURN sync;

END running;

FUNCTION advance_running RETURN BOOLEAN IS
is_running: BOOLEAN:= FALSE;

BEGIN
time_task.check_advance(is_running);
RETURN is_running;

END advance_running;

TASK BODY time_task IS
found: BOOLEAN;

BEGIN
main: LOOP

SELECT

OR

ACCEPT inc_clock DO
sna.c1:= sna.c1 + 1;

END inc_clock;

ACCEPT check_advance(in_advance: IN OUT BOOLEAN) DO
in_advance:= FALSE;
found:= FALSE;
FOR i IN index_type LOOP

IF(a(i) /= NULL) THEN
IF(a(i).in_use) THEN

in_advance:= TRUE;
IF(a(i).advance_time <= sna.c1) THEN

found:= TRUE;
a(i).advance_transaction.sync_time;
a(i).in_use:= FALSE;

END IF;
END IF;

END IF;
END LOOP;
IF(NOT found) AND (in_advance) THEN

sna.c1:= sna.c1 + 1;
END IF;

END check_advance;
OR

OR

OR

ACCEPT get_clock(transaction_clock: IN OUT INTEGER) DO
transaction_clock:= sna.c1;

END get_clock;

ACCEPT shutoff;
EXIT main;

TERMINATE;
END SELECT;

END LOOP main;
END time task•

E - ,
11D c1_routines;

63

WITH transaction_routines;
USE transaction_routines;
-- package for operations on queues
-- queues are priority queues with fifo on each priority level
PACKAGE que_routines IS

TASK TYPE queue_task IS
ENTRY hold(queue_name,in_transaction_name: IN INTEGER);
ENTRY shutoff;

END queue_task;

TASK TYPE depart_task IS
ENTRY empty(queue_name: IN INTEGER);
ENTRY release(1 .. 10)(out_transaction_name: IN INTEGER);
ENTRY front(queue_name,transaction_name: IN INTEGER);
ENTRY shutoff;

END depart_task;

TYPE queue_task_array IS ARRAYC1 .. 10) OF queue_task;
TYPE count_array IS ARRAYC1 •• 10) OF INTEGER;

TYPE queue_info IS RECORD
que: next_transaction;
ptr_to_que: INTEGER:= 1;
priority_queue: queue_task_array;
priority_depart: depart_task;
queue_count: count_array;
total_count,current_count,total_time: INTEGER:= O;
name: INTEGER;

END RECORD;

TYPE points_to_queue IS ACCESS queue_info;
TYPE queue_array IS ARRAY(index_type) OF points_to_queue;
q: queue_array;

PROCEDURE queue(queue_name,transaction_name: IN INTEGER);
procedure queue places transaction referenced by transaction_name

-- into priority queue referenced by queue_name

PROCEDURE depart(queue_name,transaction_name: IN INTEGER);
procedure depart takes transaction referenced by transaction_name

-- out of priority queue referenced by queue_name

PROCEDURE initialize_queue(qn: IN OUT points_to_queue;
queue_name:IN INTEGER);

TASK a_que IS
ENTRY put_in_queue(queue_name,transaction_name:IN INTEGER);
ENTRY delete(queue_name,transaction_name: IN INTEGER);
ENTRY shutoff;

END a_que;
END que_routines;

64

WITH transaction_routines,utility_routines,sna_routines;
USE transaction_routines,utility_routines,sna_routines;
PACKAGE BOOY que_routines IS

TASK BOOY queue_task IS
priority_out: INTEGER;

BEGIN
main: LOOP

SELECT
ACCEPT hold(queue_name,in_transaction_name: IN INTEGER) DO

priority_out:= t(in_transaction_name).p(O);
q(queue_name).priority_depart.release(priority_out)
(in_transaction_name);

END hold;
OR

OR

ACCEPT shutoff;
EXIT main;

TERMINATE;
END SELECT;

END LOOP main;
END queue_task;

TASK BOOY depart_task IS
eq:,ty_queue,released_transaction,priority: INTEGER;
queued: BOOLEAN;

BEGIN
ACCEPT eq:,ty(queue_name: IN INTEGER) DO

eq:,ty_queue:= queue_name;
END eq:,ty;

main: LOOP
queued:= FALSE;
FOR i IN REVERSE 1 •• 10 LOOP

IF(q(eq:,ty_queue).queue_count(i) > 0) THEN
queued:= TRUE;
priority:=i;
EXIT;

END IF;

END LOOP;
SELECT

WHEN(queued) =>
ACCEPT release(priority)

(out_transaction_name: IN INTEGER) DO
released_transaction:= out_transaction_name;

END release;
ACCEPT front(queue_name,transaction_name: IN INTEGER);

OR
ACCEPT eq:,ty(queue_name: IN INTEGER);

OR

OR

ACCEPT shutoff;
EXIT main;

TERMINATE;

65

END SELECT;
END LOOP main;

END depart_task;

PROCEDURE queue(queue_name,transaction_name: IN INTEGER) IS
priority: INTEGER;

BEGIN
IF(q(queue_name) = NULL) THEN

q(queue_name):= NEW queue_info;
initialize_queue(q(queue_name),queue_name);
sna.qe(queue_name):= TRUE;

END IF;
a_que.put_in_queue(queue_name,transaction_name);
priority:= t(transaction_name).p(O);
q(queue_name).priority_queue(priority).hold
(queue_name,transaction_name);

END queue;

PROCEDURE depart(queue_name,transaction_name: IN INTEGER) IS
BEGIN

a_que.delete(queue_name,transaction_name);
q(queue_name).priority_depart.front(queue_name,transaction_name);

END depart;

PROCEDURE initialize_queue(qn: IN OUT points_to_queue;
queue_name: IN INTEGER) IS

BEGIN

FOR j IN 1 . . 10 LOOP
qn.queue_count(j):= O;

END LOOP;
qn.ptr_to_que:= 1;
qn.total_count:= O;
qn.current_count:= O;
qn.total_time:= O;
qn.name:= queue_name;

END initialize_queue;

TASK BODY a_que IS
priority:INTEGER;

BEGIN
main: LOOP

SELECT
ACCEPT put_in_queue
(queue_name,transaction_name: IN INTEGER) DO

q(queue_name).que(q(queue_name).ptr_to_que):=
t(transaction_name);
q(queue_name).que(q(queue_name).ptr_to_que).
relative_clock:=
sna.c1;
q(queue_name).ptr_to_que:=
q(queue_name).ptr_to_que+1;
priority:= t(transaction_name).p(O);

66

OR

OR

q(queue_name).queue_count(priority):=
q(queue_name).queue_count(priority) +1;
IF(sna.q(queue_name) = 0) THEN

q(queue_name).priority_depart.eirpty(queue_name);
END IF;
sna.qc(queue_name):= sna.qc(queue_name)+1;
sna.q(queue_name):= sna.q(queue_name)+1;

IF(sna.q(queue_name) > sna.qn(queue_name)) THEN
sna.qn(queue_name):= sna.q(queue_name);

END IF;
END put_in_queue;

ACCEPT delete(queue_name,transaction_name: IN INTEGER) DO
FOR i IN 1 •• q(queue_name).ptr_to_que -1 LOOP

IF(q(queue_name).que(i) . name =
t(transaction_name).name) THEN

sna.qtt(queue_name):= sna.qtt(queue_name)+
(sna.c1 -
q(queue_name) •• que(i).relative_clock);
IF(sna . c1-
q(queue_name).que(i).relative_clock) =
0) THEN

sna.qt(queue_name):=
sna.qt(queue_name)+1;

END IF;
END IF;

END LOOP;
priority:= t(transaction_name).p(O);
q(queue_name).queue_count(priority):=
q(queue_name).queue_count(prior ity) -1;
sna.q(queue_name):= sna.q(queue_name) -1;
IF(q(queue_name).que(q(queue_name).ptr_to_que-1).name=
t(transaction_name).name) THEN

q(queue_name).ptr_to_que:=
q(queue_name).ptr_to_que -1;

ELSE
FOR j IN 1 •• q(queue_name).ptr_to_que -2 LOOP

IF(q(queue_name).que(j).name =
t(transaction_name).name) THEN

FOR k IN j+1 •.
q(queue_name).ptr_to_que -1 LOOP

q(queue_name).que(k-1):=
q(queue_name).que(k);

END LOOP;
q(queue_name).ptr_to_que:=
q(queue_name).ptr_to_que -1;

END IF;
END LOOP;

END IF;
END delete;

ACCEPT shutoff;

67

EXIT main;
OR

TERMINATE;
END SELECT;

END LOOP main;
END a_que;

END que_routines;

WITH transaction_routines;
USE transaction_routines;

package facility_routines contains the procedures,functions and tasks
-- needed to capture and release resources ie. check_out counters,banker
-- tellers, barbers and etc.
PACKAGE facility_routines IS

TASK TYPE seize_task IS
ENTRY hold(facility_name,in_transaction_name: IN INTEGER);
ENTRY shutoff;

END seize_task;

TASK TYPE release_task IS
ENTRY release(facility_name,out_transaction_name: IN INTEGER);
ENTRY front(facility_name,transaction_name: IN INTEGER);
ENTRY shutoff;

END release_task;

TYPE facility_info IS RECORD
fac: next_transaction;
ptr_to_facility: INTEGER:= 1;
facility_seize: seize_task;
facility_release: release_task;
total_count,current_count,total_time: INTEGER:= O;
name: INTEGER;

END RECORD;

TYPE points_to_facility IS ACCESS facility_info;

TYPE facility_array IS ARRAY(index_type) OF points_to_facility;

f: facility_array;

PROCEDURE seize(facility_name,transaction_name: IN INTEGER);
procedure seize captures a facility referenced by facility_name
and is captured by transaction referenced by transaction_name
one transaction can capture a facility(resource) at a time

PROCEDURE release(facility_name,transaction_name: IN INTEGER);
procedure release allows a facility referenced by facility_name to be
released by a transaction referenced by transaction_name normally
the transaction that captures the facility will release the facility
releasing a facility makes it possible for another transaction to
capture that facility

68

-
PROCEDURE initialize_facility(fn: IN OUT points_to_facility;

facility_name: IN INTEGER);

TASK a_facility IS
ENTRY put_in_facility(facility_name,transaction_name: IN INTEGER);
ENTRY delete(facility_name,transaction_name: IN INTEGER);
ENTRY shutoff;

END a_facil ity;

END facility_routines;
WITH transaction_routines,utility_routines,c1_routines,sna_routines;
USE transaction_routines,utility_routines,c1_routines,sna_routines;
PACKAGE BODY facility_routines IS

TASK BODY seize_task IS
priority_out: INTEGER;

BEGIN
main: LOOP

SELECT

OR

OR

ACCEPT hold(facility_name,in_transaction_name: IN INTEGER)
DO

f(facility_name).facility_release.release
Cfacility_name,in_transaction_name);

END hold;

ACCEPT shutoff;
EXIT main;

TERMINATE;
END SELECT;

END LOOP main;
END seize_task;

TASK BODY release_task IS
released_transaction: INTEGER;

BEGIN
main: LOOP

SELECT
ACCEPT release
Cfacility_name,out_transaction_name: IN INTEGER) DO

released_transaction:= out_transaction_name;
f(facility_name).total_time:= sna.c1;
sna.f(facility_name):= TRUE;
sna.fc(facility_name):= sna.fc(facility_name)+1;

END release;
ACCEPT front(facility_name,transaction_name: IN INTEGER) DO

sna.ftt(facility_name):= sna.ftt(facility_name)+
(sna.c1-f(facility_name).total_time);
sna.f(facility_name):= FALSE;

END front;
OR

ACCEPT shutoff;

69

EXIT main;
OR

TERMINATE;
END SELECT;

END LOOP main;
END release_task;

PROCEDURE seize(facility_name,transaction_name: IN INTEGER) IS
BEGIN

IF(f(facility_name)=null) THEN
f(facility_name):= NEW facility_info;
sna.fe(facility_name):= TRUE;
initialize_facility(f(facility_name),facility_name);

END IF;
a_facility.put_in_facility(facility_name,transaction_name);
f(facility_name).facility_seize.hold
(facility_name,transaction_name);

END seize;

PROCEDURE release(facility_name,transaction_name: IN INTEGER) IS
BEGIN

a_facility.delete(facility_name,transaction_name);
f(facility_name).facility_release.front(facility_name,
transaction_name);

END release;

PROCEDURE initialize_facility(fn:IN OUT points_to_facility;
facility_name: IN INTEGER) IS

BEGIN
fn.ptr_to_facility:= 1;
fn.name:= facility_name;
fn.total_count:= O;
fn.current_count:= O;
fn.total_time:= O;

END initialize_facility;

TASK BODY a_facility IS
BEGIN

main: LOOP
SELECT

ACCEPT put_in_facility
(facility_name,transaction_name: IN INTEGER) DO

f(facility_name).fac(f(facility_name).ptr_to_facility):=
t(transaction_name);
f(facility_name).ptr_to_facility:=
f(facility_name).ptr_to_facility+1;

END put_in_facility;
OR

ACCEPT delete(facility_name,transaction_name: IN INTEGER)
DO

IF

70

(f(facility_name).fac(f(facility_name).ptr_to_facility
-1).name=t(transaction_name).name) THEN

f(facility_name).ptr_to_facility:=
f(facility_name).ptr_to_facility-1;

ELSE
FOR j IN 1 •• f(facility_name).ptr_to_facility-2
LOOP

LOOP

IF(f(facility_name).fac(j).name =
t(transaction_name).name) THEN

FOR k IN j+1 •.
f(facility_name).ptr_to_facility -1

f(facility_name).fac(k-1):=
f(facility_name).fac(k);
END LOOP;
f(facility_name).ptr_to_facility:=
f(facility_name).ptr_to_facility-1;

END IF;
END LOOP;

END IF;

OR

OR

END delete;

ACCEPT shutoff;
EXIT main;

TERMINATE;
END SELECT;

END LOOP main;
END a_facil ity;

END facility_routines;
~ITH transaction_routines;
USE transaction_routines;
GENERIC
TYPE a IS LIMITED PRIVATE;
TYPE b IS ACCESS a;
TYPE p IS ARRAY(index_type) OF b;

package gen_routines is a generic package for generating
·· different types of transactions ie. customers in a check_out line,
-- customers in a bank and etc
PACKAGE gen_routines IS

PROCEDURE generate(median,width,no_of_trans: IN INTEGER;
time: IN OUT INTEGER;
pa: IN OUT p);

procedure generate generates one or more transactions given by
no_of_transactions at time referenced by time then generates the next
transaction(s) at time time+ median+ or - width, then sends this
transaction(s) to its task referenced by pa

TASK generate_transaction IS
ENTRY GET(transaction_name: OUT INTEGER;pa: IN OUT p);
ENTRY shutoff;

END generate_transaction;

71

PROCEDURE get_transaction(name: IN OUT INTEGER; pa: IN OUT p);

PROCEDURE initialize_transaction(tn: IN OUT points_to_transaction);

END gen_routines;

WITH transaction_routines , utility_routines,c1_routines,sna_routines;
USE transaction_routines,utility_routines,c1_routines,sna_routines;
PACKAGE BODY gen_routines IS

PROCEDURE generate(rnedian,width,no_of_trans: IN INTEGER;
time :IN OUT INTEGER;
pa: IN OUT p) IS

BEGIN

name,old_time: INTEGER;
ended_in: BOOLEAN:=FALSE;

IF(time<=sna.c1) THEN
old_time:= time;
time:= get_time(rnedian,width);
time:= time+old_time;
FOR i IN 1 .• no_of_trans LOOP

utility_routines.count.increment(transaction_count);
sna.ttc:= sna.ttc+1;
sna.ctc:= sna.ctc+1;
generate_transaction.GET(name,pa);

END LOOP;
END IF;

END generate;

TASK BODY generate_transaction IS
name: INTEGER;

BEGIN
main: LOOP

SELECT
ACCEPT GET(transaction_name: OUT INTEGER;pa: IN OUT p) DO

get_transaction(name,pa);

OR

OR

transaction_name:= name;
END GET;

ACCEPT shutoff;
EXIT main;

TERMINATE;
END SELECT;

END LOOP main;
END generate_transaction;

PROCEDURE get_transaction(name: IN OUT INTEGER;pa: IN OUT p) IS
t~_name: INTEGER;
found: BOOLEAN:=FALSE;

72

BEGIN
WHILE(NOT found) LOOP

FOR i IN REVERSE 1 •• 50 LOOP
IF(t(i)/=null) THEN

IF(NOT t(i).in_use) THEN
name:= i;
initialize_transaction(t(name));
t(name).relative_clock:= sna.c1;
found:= TRUE;

END IF;
END IF;

END LOOP;
IF(NOT found) THEN

FOR i IN 1 •• 50 LOOP
IF(t(i)= null) THEN

pa(i):= NEW a;

t(i):= NEW transaction_record;
name:= i;
t(name).name:=name;
initialize_transaction(t(name));
t(name).relative_clock:= sna.c1;
utility_routines.start.PUT(name);
found:= TRUE;
EXIT;

END IF;
END LOOP;

END IF;
IF(NOT found) THEN

DELAY 0.1;
END IF;

END LOOP;
END get_transaction;

PROCEDURE initialize_transaction(tn: IN OUT points_to_transaction)IS
BEGIN

tn.relative_clock:= sna.c1;
tn.in_use:= TRUE;
tn.p(O):= 1;
FOR i IN 1 •• 127 LOOP

tn.p(i):= O;
END LOOP;

END initialize_transaction;

END gen_routines;

·- package tes_routines is a generic package containing the procedures,
•· functions and tasks neded to test standard numerical attributes
~ITH transaction routines·
USE transaction ;outines.'
PACKAGE test_ro:tines 1s

1

TYPE relational_operator IS (e,ne,l,le,g,ge,min,max);

73

TYPE logic_operator IS (ls,lr,u,nu,i,ni,se,sne,sf,snf);

FUNCTION test(operator: IN relational_operator;p1,p2: IN FLOAT;
transaction_name: IN INTEGER) RETURN BOOLEAN;

FUNCTION test(operator: IN relational_operator;p1,p2: IN INTEGER;
transaction_name: IN INTEGER) RETURN BOOLEAN;

FUNCTION test(operator: IN relational_operator;p1,p2: IN BOOLEAN;
transaction_name: IN INTEGER) RETURN BOOLEAN;

TASK internal_test IS
ENTRY check_integer(operator: IN relational_operator;
p1,p2: IN INTEGER; check_ok: IN OUT BOOLEAN);
ENTRY check_float(operator: IN relational_operator;
p1,p2: IN FLOAT; check_ok: IN OUT BOOLEAN);
ENTRY check_boolean(operator: IN relational_operator;
p1,p2: IN BOOLEAN; check_ok: IN OUT BOOLEAN);
ENTRY shutoff;

END internal_test;

END test_routines;
WITH transaction_routines;
USE transaction_routines;
PACKAGE BODY test_routines IS

FUNCTION test(operator: IN relational_operator;p1,p2: IN FLOAT;
transaction_name: IN INTEGER) RETURN BOOLEAN IS

test_ok: BOOLEAN:= FALSE;
BEGIN

IF(transaction_ok(t(transaction_name))) THEN
internal_test.check_float(operator,p1,p2,test_ok);

END IF;

RETURN test_ok;
END test;

FUNCTION test(operator: IN relational_operator;p1,p2: IN INTEGER;
transaction_name: IN INTEGER) RETURN BOOLEAN IS

BEGIN
test_ok: BOOLEAN:= FALSE;

IF(transaction_ok(t(transaction_name))) THEN
internal_test.check_integer(operator,p1,p2,test_ok);

END IF;
RETURN test_ok;

END test;

FUNCTION test(operator: IN relational_operator;p1,p2: IN BOOLEAN;
transaction_name: IN INTEGER) RETURN BOOLEAN IS

test_ok:BOOLEAN:= FALSE;
IF(transaction_ok(t(transaction_name))) THEN

internal_test.check_boolean(operator,p1,p2,test_ok);

74

END IF;
RETURN test_ok;

END test;

TASK BODY internal_test IS
BEGIN

main: LOOP
SELECT

ACCEPT check_float(operator: IN relational_operator;
p1,p2: IN FLOAT; check_ok:IN OUT BOOLEAN) DO

CASE operator IS
WHEN l =>

I F(p1<p2)THEN
check_ok:= TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN le =>

I F(p1<=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN g =>

I F(p1>p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN ge =>

I F(p1>=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN e =>

I F(p1=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN ne =>

IF(p1/=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN others=>
null;

END CASE;
END check_float;

75

OR

OR

ACCEPT check_integer(operator: IN relational_operator;
p1,p2: IN INTEGER; check_ok: IN OUT BOOLEAN) DO

CASE operator IS
WHEN l =>

IF(p1<p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN le=>

I F(p1<=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN g =>

I F(p1>p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN ge =>

I F(p1>=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN e =>

IF(p1=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN ne =>

I F(p1/=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;
WHEN others=>

null;
END CASE;

END check_integer;

ACCEPT check_boolean(operator: IN relational_operator;
p1,p2: IN BOOLEAN; check_ok: IN OUT BOOLEAN) DO

CASE operator IS
WHEN e =>

IF(p1=p2)THEN
check_ok:=TRUE;

ELSE
check_ok:=FALSE;

END IF;

76

WHEN ne =>
I F(p1/=p2)THEN

check_ok:=TRUE;
ELSE

check_ok:=FALSE;
END IF;

WHEN others=>
null;

END CASE;
END check_boolean;

OR

OR

ACCEPT shutoff;
EXIT main;

TERMINATE;
END SELECT;

END LOOP main;
END internal_test;

END test_routines;

package select_routines is a generic package containing the procedures,
functions
and tasks neded to test standard nunerical attributes

WITH transaction_routines,test_routines,sna_routines;
USE transaction_routines,test_routines,sna_routines;
GENERIC
TYPE p IS (<>);

TYPE p_array IS ARRAY (stats_range) OF p;
PACKAGE select_routines IS

FUNCTION select_one(operator: IN relational_operator;parmeter,lower,
upper: IN INTEGER;p1: IN p;p2: IN p_array;
transaction_name: IN INTEGER) RETURN BOOLEAN;

END select_routines;

WITH transaction_routines,test_routines;
USE transaction_routines,test_routines;
PACKAGE BODY select_routines IS

FUNCTION select_one(operator: IN relational_operator;parmeter,lower,
upper: IN INTEGER;p1: IN p;p2: IN p_array;
transaction_name: IN INTEGER) RETURN BOOLEAN IS

select_ok: BOOLEAN:=FALSE;

BEGIN
least,greatest: p;

IF(transaction_ok(t(transaction_name))) THEN
CASE operator IS

WHEN min=>

77

t(transaction_name).p(parmeter):= lower;
least := p2(lower);
select_ok:= TRUE;
FOR i IN lower +1 .• upper LOOP

IF(p2(i) < least) THEN
least:= p2(i);
t(transaction_name).p(parmeter) := i;

END IF;
END LOOP;

WHEN max=>
t(transaction_name).p(parmeter):=lower;
greatest := p2(lower);
select_ok:= TRUE;
FOR i IN lower +1 •• upper LOOP
IF(p2(i) > greatest)THEN

greatest:= p2(i);
t(transaction_name).p(parmeter) := i;

END IF;
END LOOP;
WHEN l =>

FOR IN lower •. upper LOOP
IF(p1 < p2(i)) THEN

t(transaction_name).p(parmeter):=i;
select_ok:= TRUE;
RETURN select_ok;
EXIT;

END IF;
END LOOP;

WHEN le=>
FOR i IN lower •• upper LOOP

IF(p1 <= p2(i)) THEN
t(transaction_name).p(parmeter):=i;
select_ok:= TRUE;
RETURN select_ok;
EXIT;

END IF;
END LOOP;

WHEN g =>
FOR i IN lower upper LOOP

IF(p1 > p2(i)) THEN
t(transaction_name).p(parmeter):=i;
select_ok:= TRUE;
RETURN select_ok;
EXIT;

END IF;
END LOOP;

WHEN ge =>
FOR i IN lower upper LOOP

IF(p1 >= p2(i)) THEN
t(transaction_name).p(parmeter):=i;
select_ok:= TRUE;
RETURN select_ok;
EXIT;

78

END CASE;
END IF;

END IF;
END LOOP;

WHEN e =>

FOR i IN lower upper LOOP
IF(p1 = p2(i)) THEN

t(transaction_name).p(parmeter):=i;
select_ok:= TRUE;
RETURN select_ok;
EXIT;

END IF;
END LOOP;

WHEN ne =>

FOR i IN lower •• upper LOOP
IF(p1 /= p2(i)) THEN

t(transaction_name).p(parmeter):=i;
select_ok:= TRUE;
RETURN select_ok;
EXIT;

END IF;
END LOOP;

RETURN select_ok;
END select_one;

END select_routines;

79

WITH transaction_routines,que_routines;
USE transaction_routines,que_routines;

package GPSS_routines contains the procedures,functions and tasks
needed to set up a sirulation such as initialize queues,transactions,
facilities and etc also routines to finish or reset sirulations such as
clear queues free facilities and etc

PACKAGE GPSS_routines IS

PROCEDURE start_sirulation(sim_clock: IN INTEGER);
procedure start_sirulation initializes entities needed for a sirulation
ie queues, facilities, clocks, transactions and etc also the sirulation
time is given by sim_clock

PROCEDURE end_sirulation;
procedure end_sirulation prints out the statistics
of a sirulation and clears the entities such as queues, facilities,
clock and etc

PROCEDURE reset;
procedure reset reinitializes the relative clock and prints the
present state of the sirulation, such as queue and facility statistics
and continues with the sirulation

END GPSS_routines;

WITH transaction_routines, new_t;
USE transaction_routines;
PACKAGE new_transaction IS NEW new_t(transaction_record,points_to_transaction,
next_transaction);
WITH transaction_routines,c1_routines,new_t;
USE transaction_routines,c1_routines;
PACKAGE new_advance IS NEW new_t(advance_record,advance_pointer,
advance_array);
WITH transaction_routines,facility_routines,new_t;
USE transaction_routines,facility_routines;
PACKAGE new_facility IS NEW new_t(facility_info,points_to_facility,
facility_array);
WITH transaction_routines,que_routines,new_t;
USE transaction_routines,que_routines;
PACKAGE new_queue IS NEW new_t(queue_info,points_to_queue,queue_array);
WITH text_io,new_transaction,transaction_routines,facility_routines,
utility_routines,que_routines,c1_routines,new_advance,new_queue,
new_facility,sna_routines,test_routines;
USE text_io,new_transaction,transaction_routines,facility_routines,
utility_routines,que_routines,c1_routines,new_advance,new_queue,
new_facility,sna_routines,test_routines;
PACKAGE BODY GPSS_routines IS

PROCEDURE start_sirulation(sim_clock: IN INTEGER) IS
BEGIN

sirulation_time:= sim_clock;
OPEN(output,out_file, 11output.f 11);

80

initialize_stats;
new_transaction.initialize(t);
new_advance.initialize(a);
new_queue.initialize(q);
new_facility.initialize(f);

END start_sirulation;

PROCEDURE end_sirulation IS
BEGIN

sna.ac:= sna.ac+sna.c1;
stats;
ended:=TRUE;
DELAY 3.0;
WHILE(advance_running)LOOP

DELAY(0.1);
END LOOP;
DELAY(2.0);
FOR i IN index_type LOOP

IF(q(i) /= null) THEN
FOR j IN 1 • • 10 LOOP

q(i).priority_queue(j).shutoff;
END LOOP;
q(i).priority_depart.shutoff;

END IF;
END LOOP;
FOR i IN 1 •. start_count LOOP

utility_routines.start.PUT(i);
DELAY 1.0;

END LOOP;
FOR i IN 1 .. transaction_limit LOOP

IF(t(i) /= null) THEN
t(i).in_use := TRUE;
DELAY 1.0;

END IF;
END LOOP;
CLOSE(output);

END end_sirulation;

PROCEDURE reset IS
BEGIN

sna.ac := sna.ac + sna.c1;
stats;
sna.c1 := -1;
timer := O· ,

END reset;

END GPSS_routines;

81

Appendix I II

A list of Ada packages used in the sirulation tool package utility_routines is

function get_time(median,width : in integer) return integer;
function equal_times(time,relative_clock: in integer) return
boolean;

task start is
entry put(name:in integer;ended_in:in boolean);
entry get(transaction_name:out integer;ended_out:out
boolean);
entry shutoff;
end start;

task count is
entry increment(count :in out integer);entry
decrement(count : in out integer);
entry shutoff;
end count;

function my_random_integer return integer;
seed:integer:=13;
rult:integer:=57;

end utility_routines;

package transaction_routines is
transaction_limit :constant integer:=100;
--limit on the nunber of transactions
-- running at one time.

subtype index_type is integer range 1 .. transaction_limit;
type parameter_array is array(0 .• 127) of integer;
--list of parameters for each transaction.

type transaction_record is record
p:parameter_array;
name,relative_clock:integer;
in_use:boolean:=false;
-- indicates if transaction is active in model

end record;

type points_to_transaction is access transaction_record;
type next_transaction is array Cindex_type) of
points_to_transaction;
t:next_transaction;
-- array of pointers to transaction records

advance_time:integer:=1;
start_count, sirulation_time, transaction_name,
transaction_count: integer:=O;

82

ended:boolean:=false;
procedure priority(class,transaction_name:in integer);

procedure priority changes priority level of transaction
-- parameter1 changes level (higher nl.lllber equals higher priority)
-- parameter two assigns priority level to transaction given by transaction name

procedure start(transaction_name: out integer);
-- procedure start is used at beginning of each transaction
-- task to give each transaction it's proper name
procedure terminate_transaction(transaction_name:in integer);

procedure terminate_transaction is used to make transaction
-- available again after it has completed its assignment
-- in the simulation
procedure assign(parameter, value, transaction_name:in integer);
function transaction_ok(tn:in points_to_transaction) return boolean;
procedure reset(tn:in out points_to_transaction);

end transaction_routines;

with transaction_routines;
use transaction_routines;

package clock_routines contains all procedures,functions and
tasks needed to operate the clock used for each simulation
clocks are referenced by sna.c1 is the relative_clock
and sna.ac is the absolute clock

package clock_routines is
type advance_task is limited private;
type advance_array is private;
a:advance_array;
procedure advance(median, width, transaction_name:in integer);

procedure advance allows the passage of time to occur
transactions referenced by transaction_name are held in
the advance block for a time of median+ or - the width
times units

function running return boolean;
-- function running usually used in main routine to indicate
-- if the simulation is completed

function advance_running return boolean;
private
type advance_record is record advance_time:integer;

in_use:boolean;
advance_transaction:advance_task;

end record;

type advance_pointer is access advance_record;
type advance_array is array(index_type) of advance_pointer;

entry set_advance;
entry sync_time;
entry shutoff;

end advance_task;

task time_task is
entry inc_clock;

83

entry check_advance(in_advance:in out boolean);
entry get_advance(median,width:in integer;
advance_name:out integer
entry get_clock(transaction_clock:in out integer);
entry shutoff;

end time_task;
end clock_routines;

with transaction_routines;
use transaction_routines;

-- package for operations on queues
-- queues are priority queues with fifo on each priority level

package que_routines is
task type queue_task is

entry hold(queue_name, in_transaction_name:in integer);
entry shutoff;

end queue_task;

task type depart_task is
entry eq:>ty(queue_name:in integer);
entry release(1 •• 10)(out_transaction_name:in integer);
entry front(queue_name,transaction_name:in integer);
entry shutoff;

end depart_task;

type queue_task_array is array(1 •• 10) of queue_task;
type count_array is array(1 .. 10) of integer;
type queue_info is record

que:next_transaction;
ptr_to_que:integer:=1;
priority_queue: queue_task_array;
priority_depart:depart_task;
queue_count: count_array;
total_count,current_count,total_time:integer:=O;
name:integer;

end record;

type points_to_queue is access queue_info;
type queue_array is array(index_type) of points_to_queue;
q:queue_array;
procedure queue(queue_name, transaction_name:in integer);
-- procedure queue places transaction referenced by transaction_name
-- into priority queue referenced by queue_name
procedure depart(queue_name,transaction_name:in integer);
-- procedure depart takes transaction referenced by transaction_name
-- out of priority queue referenced by queue_name
procedure initialize_queue(qn:in out points_to_queue;
queue_name:in integer);
task a_que is

entry put_in_queue(queue_name, transaction_name:in
integer);

84

entry delete(queue_name,transaction_name:in integer);
entry shutoff;

end a_que;

end que_routines;

with transaction_routines;
use transaction_routines;

package facility_routines contains the procedures, functions
-- and tasks needed to capture and release resources ie .
-- check_out counters, bank tellers, barbers and etc.

package facility_routines is
task type seize_task is

entry hold(facility_name,in_transaction_name:in integer);
entry shutoff;
end seize_task;

task type release_task is
entry release(facility_name, out_transaction_name:in
integer);
entry front(facility_name,transaction_name:in integer);
entry shutoff;

end release_task;
type facility_info is record

fac:next_transaction;
ptr_to_facility:integer:=1;
facility_seize:seize_task;
facility_release:release_task;
total_count,current_count,total_time:integer:=O;
name:integer;

end record;
type points_to_facility is access facility_info;
type facility_array is array(index_type) of
points_to_facility;
f:facility_array;
procedure seize(facility_name,transaction_name:in integer);

procedure seize captures a facility referenced by facility_name
-- and is captured by transaction referenced by transaction_name
-- one transaction can capture a facility(resource) at a time

procedure release(facility_name, transaction_name:in integer);
procedure release allows a facility referenced by
facility_name to be released by a transaction referenced
by transaction_name normally the transaction that
captures the facility will release the facility
releasing a facility makes it possible for another
transaction to capture that facility

procedure initialize_facility(fn:in out points_to_facility;
facility_name:in integer);
task a_facility is

entry put_in_facility(facility_name, transaction_name:in integer);
entry delete(facility_name, transaction_name:in integer) ~

85

entry shutoff;
end a_facility;

end facility_routines;
with transaction_routines;
use transaction_routines;
generic
type a is limited private;
type bis access a;
type pis array(index_type) of b;

package gen_routines is a generic package for generating
-- different types of transactions ie. customers in a check_out
-- line, customers in line at banks and etc

package gen_routines is
procedure generate(median, width, no_of_trans:in integer;
time:in out integer;pa:in out p);

procedure generate generates one or more transactions
given by no_of_transactions at time referenced by time
then generates the next transaction(s) at time time+
median+ or - width, then sends this transaction(s) to
its task referenced by pa

task generate_transaction is
entry get(transaction_name: out integer;pa:in out p);
entry shutoff;

end generate_transaction;
procedure get_transaction(name:in out integer; pa:in out p);
procedure initialize_transaction(tn:in out points_to_transaction);

end gen_routines;

with transaction_routines, que_routines;
use transaction_routines, que_routines;

package GPSS_routines contains the procedures,functions and
tasks needed to set up a simulation such as initialize
queues, transactions, facilities and etc also routines to
finish or reset simulations such as clear queues free facilities and etc

package GPSS_routines is
procedure start_simulation(sim_clock:in integer);

procedure start_simulation initializes entities needed
for a simulation ie queues, facilities, clocks, transactions
and etc also the simulation time is given by
sim_clock

procedure end_simulation;
procedure end_simulation prints out the statistics

-- of a simulation and clears the entities such as
-- queues, facilities, clock and etc

end GPSS_routines;

package select_routines is a generic package containing the
procedures, functions and tasks needed to test standard
numerical attributes with transaction_routines,
test_routines, sna_routines

use transaction_routines, test_routines, sna_routines;

86

generic
type pis(<>);
type p_array is array (stats_range) of p;
package select_routines is

function select_one(operator:in relational_operator;
parameter, lower, upper:in integer;p1:in p;p2:in p_array;
transaction_name:in integer) return boolean;

end select_routines;

package tes_routines is a generic package containing the
procedures, functions and tasks needed to test standard numerical attributes

with transaction_routines;
use transaction_routines;
package test_routines is

type relational_operator is (e, ne, l, le, g, ge, min, max);
type logic_operator is (ls, Lr, u, nu, i, ni, se, sne, sf, snf);
function test(operator:in relational_operator;p1, p2:in
float;transaction_name:in integer) return boolean;
function test(operator:in relational_operator;p1, p2:in
integer; transaction_name:in integer) return boolean;
function test(operator:in relational_operator;p1, p2:in
boolean; transaction_name:in integer) return boolean;
task internal_test is

entry check_integer(operator:in relational_operator;
p1, p2:in integer; check_ok:in out boolean);
entry check_float(operator:in relational_operator; p1,
p2:in float; check_ok:in out boolean);
entry check_boolean(operator:in relational_operator;
p1, p2:in boolean; check_ok:in out boolean);

entry shutoff;
end internal_test;

end test_routines;

package sna_routines is
subtype stats_range is integer range 1 •. 1000;
type integer_stats_array is array(stats_range)of integer;
type float_stats_array is array(stats_range) of float;
type boolean_stats_array is array(stats_range)of boolean;
type sna_record is record

clock sna•s c1:integer;
relative_clock ac:integer;
absolute clock
facility sna•s

fe:boolean_stats_array;
--list to indicate if facility exists

f:boolean_stats_array;
-- facility status
-- busy= true and not busy= false

fc:integer_stats_array;
-- facility capture count

ftt:integer_stats_array;
-- total time facility was in use

87

fr:float_stats_array;
-- facility utilization

ft:float_stats_array;
-- facility average holding time
-- queue sna•s

qe:boolean_stats_array;
-- list to indicate if queue exists

q:integer_stats_array;
-- current queue count

qa:float_stats_array;
-- average queue content

qc:integer_stats_array;
-- total queue count

c:,n:integer_stats_array;
-- max queue count

qtt:integer_stats_array;
-- total time queue is used

t:float_stats_array;
-- average queue residence time

qx:float_stats_array;
-- average queue residence time
-- based on qz

qz:integer_stats_array;
-- total zero entry count
-- storage sna•s

se:boolean_stats_array;
-- list to indicate if storage exists

r:integer_stats_array;
-- remaining capacity in storage

s:integer_stats_array;
-- current capacity of storage

sa:float_stats_array;
-- average storage capacity

sc:integer_stats_array;
-- total storage count

sr:float_stats_array;
-- utilization of storage

sm:integer_stats_array;
-- max storage

st:float_stats_array;
-- average holding time per unit
-- transaction sna's

te:boolean_stats_array;
-- list to indicate if transaction exists

pr:integer_stats_array;
-- transaction priority level

m1:integer_stats_array;
-- transaction residence time in model

ttc:integer;
-- total transaction count

ctc:integer;
-- current transaction count

end record;

88

sna:sna_record;
procedure stats;
procedure initialize_stats;

end sna_routines;

with transaction_routines;use transaction_routines;
generic
type tis limited private;
type pis access t;
type pa is array(index_type) of p;
package new_t is

procedure new_task(a:in out p;exists:in out boolean);
procedure initialize(a:in out pa);

end new_t;

89

