
TRANSPUTER BASED REAL-TIME PROCESS CONTROL

by

Sasidhar V. Challa

Submitted in Partial Fulfillment of the Requirements

for the degree of

Master of Science in Engineering

in the Electrical Engineering

Program

S,R.'P~
Adviser

C.> L Dean of the Graduate School

YOUNGSTOWN STATE UNIVERSITY

August, 1992

C, /I /5"2.
Date

Date

ABSTRACT

TRANSPUTER BASED REAL-TIME PROCESS CONTROL

Sasidhar V. Challa

Master of Science in Engineering

Youngstown State University, 1992

ii

A transputer based real-time process control system is

designed and its performance is studied. The emphasis is

placed on the hardware and software aspects of the transputer,

i.e., installation, networking and interfacing to the test

control system. The process control system consists of a

stirred tank heater containing water. The temperature of the

water is measured using a thermocouple and controlled using

a proportional control algorithm. The control algorithm is

implemented on a transputer network using OCCAM, which is the

parallel processing language for the transputer. Software

development, implementation and user interface are achieved

through an IBM Personal Computer (PC/AT clone). Data

acquisition and control are achieved through a Data

Acquisition/Control Unit that is interfaced to the transputer

network and hence to the user via the IBM PC.

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to

Dr. Salvatore R. Pansino and Dr. Dilip K. Singh for

iii

their advice and assistance during the course of this work.

I am especially grateful to the Department of

Chemical Engineering for providing the neccessary hardware

which made this thesis possible.

I thank Prof. Robert H. Foulkes and Prof. Samuel J.

Skarote for their advice and valuable comments during the

documentation of my thesis.

I thank Ms. Anna Mae Serrecchio for her cooperation

in formatting the thesis and last but not least I thank my

fellow students Hung Ta and Tariq Alvi for their helpful

hints and suggestions.

iv

TABLE OF CONTENTS

PAGE

ABSTRACT • . • 11.

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS • . . . • . • . . • • • . . • • • iv

LIST OF SYMBOLS • • • • • • . • • . . • • • . . • . . • • • . . • • • • • . . . • V1

LIST OF FIGURES . viii

LIST OF TABLES • . . • . . • • • . . • • • • • . • • • • . • • • . • • . x

CHAPTER

CHAPTER

CHAPTER

I INTRODUCTION. 1

I.1 Real-time systems and process control ••• 1

I. 2 Transputers. 2

I.3 Objective and outline of the thesis .•..• 3

II DESCRIPTION OF THE TRANSPUTER HARDWARE AND

SOFTWARE. • 5

II.1 Overview of the transputer family •••••• 5

II.2 The OCCAM software model •••••••••.••••• 17

II.3 The OCCAM2 toolset for the IBM PC ••••.• 23

III DESCRIPTION OF THE TRANSPUTER MODULES AND

MOTHERBOARDS • • • • • • • • • • • • . • • • • • • • • • • • • • • 3 2

III.1 Transputer modules (TRAMs) •••••••••••. 32

I I I . 2 IMS B4 0 3 TRAM • • • • • • • • • • • . • • • • • • • • • • • • • 3 4

III.3 IMS B421 (GPIB) TRAM ••••••.••••••••••• 40

III.4 Transputer motherboards ••.•••••••••••• 48

III.5 IMS BOOB Motherboard ••••••••••••••••• 49

CHAPTER

CHAPTER

APPENDIX A

APPENDIX B

J..PPENDIX C

PAGE

III.6 Support software for the B008 •••••••••• 58

III.7 IMS B012 Eurocard ..••••.•••••••.••••.•• 65

III.a INMOS Transputer Evaluation Module

(ITEM). 78

IV DESCRIPTION OF THE PROCESS CONTROL

SYSTEM • 8 0

IV.1 Test system description .••...•••....•... 81

IV.2 Process characterization ••......••..••.. 82

IV.3 Dynamic test and system model •..•...•... 85

IV.4 Proportional controller implementation

aspects. 90

IV.5 Software outline .•..•.•.•..•..•..•.•..•. 93

IV.6 Network configuration and software

implementation. . • • • . . • • . 94

V SU'MMARY. • . • 97

V .1 Findings. 97

V.2 Conclusions ..•......••••..•..•.•....•.... 98

V.3 Recommendations•.....•....•...... 99

Software listing . 101

Process reaction curve 114

3 4 CJ 7 A com.TUands •••••••••••••••••••••••••••

BIBLIOGRAPHY

119

121

V

SYMBOL

ANSI

CMOS

CPU

DACU

DMA

DOS

DRAM

EEROM

EMI

EPROM

FLOP

FOPDT

FPU

G

GPIB

IC

IEEE

vi

LIST OF SYMBOLS/ABBREVIATIONS

DEFINITION

American National standards
Institute

UNITS OR REFERENCE

Complimentary Metal oxide
Semiconductor

Central Processing Unit

Data Acquisition and Control
Unit

Delta

Direct Memory Access

Disk Operating System

Dynamic Random Access Memory

Electrically Erasable Read
Only Memory

External Memory Interface

Erasable Programmable Read
Only Memory

Floating Point Operation

First Order Plus Dead Time

Floating Point Unit

Giga . 1 x 10 9

General Purpose Interface Bus

Integrated circuit

Institute of Electrical
and Electronic Engineers

SYMBOL

ITEM

K

LED

M

MIPS

MMS

PAL

RAM

ROM

SRAM

TDS

TRAM

TTL

DEFINITION

INMOS Transputer Evaluation
Module

vii

UNITS OR REFERENCE

Ki lo . 1 x 10 3

Controller Gain

Light Emitting Diode

Mega . . • . • . . . • • • . • • • • • . . . 1 x 106

Million Instructions Per
Second

Module Motherboard Software

Programmable Array Logic

Random Access Memory

Read Only Memory

Static Random Access Memory

Process time constant .•••..•••....••• Seconds

Transputer Development
System

Transputer Module

Transistor to Transistor
Logic

FIGURE

II.1

LIST OF FIGURES

IMS T800 architecture .

viii

PAGE

7

II.2 T800 registers .•.....••.••..••..•••.....••••.••• 10

II.3 Link data acknowledgement•.••.•.••••....•... 15

II.4a Single transputer ••••••...•••.••••.••••.•...••. 19

II.4b Transputer network .•..•.•....•.......•..•..••..• 19

III .1 Size 1 TRAM footprint.. . . • • • • • • • . . • • . . • • • . . • . • . . • 33

III.2 IMS B403 TRAM schematic ..•.•..••••..••••••...•... 35

III.3

III.4

III.5

III.6

III.7

IMS B403 subsystem register memory map .•.•.••••.• 39

IMS B403 schematic ..••.•..•.•...•...••••..•....•. 39

IMS B421 architecture .•....••.••...•••••••.•.•••• 41

Jl - IEEE 488 connector .•.••••..••••••••.••...•.• 43

J2 auxiliary connector •...•••••••.•..••••.•....•• 43

III.a IMS B421 memory map ••••••••.•••••.•••..•.•...•.•. 47

III. 9 IMS B421 footprint............ . . • • • . . . • • • 48

III.10 IMS B008 functional block diagram .•..••••.•••.••• 50

III.11 PC bus interface functional diagram .••.•••...•..• 57

III .12 IMS B012 schematic. . . • • • • • . • . • • • • • • • • . • • 67

III.13 Pipeline connection for B012 slots ••••••••••.•••• 67

III.14 IMS C004 to slot connections•••......•.... 69

III.15 Pipeline links and links on P2 and Kl 70

III.16 Pl pin assignment •..••.....•••.•....••••...•••.•. 71

III.17 P2 pin connections••.•....•••.•.•••••.•••.••• 72

ix

FIGURE PAGE

III.18 B012 multiple board daisy chain •..••.......••.... 73

III.19 B012 config links organization••...•.•....•.. 73

III.20 B012 system services organization ••..•••.....•... 75

IV.1 System block diagram ..•.••..•.•.•••.•..•.•••..••• 80

IV.2 A typical feedback control system ••.••...•••••••• 83

IV.3 Reduced block diagram for the system model •.•..•• 84

IV.4

IV.5

V.1

Block diagram for the dynamic test ...•••......•.• 86

Transpuer network schematic ••••..•••.••.....••..• 94

A typical transputer based multi-sensor network. 100

TABLE

II.1

II.2

II.3

III.1

III.2

III.3

III.4

III.5

III.6

III.7

III.8

LIST OF TABLES

IMS T800 pin designations •.•.•..•.....••••.•.....

Floating point operating times••.•.•...•..••

ProcSpeedSelect0-2 pin selections ••..•..........•

External SRAM address

External DRAM address . •....•.......•.............

Subsystem register addresses ...•.•••••••..•......

Jl signal assignment

J2 pin (IEEE 488 status) assignment .•••.•.•.....•

B421 base address jumper pin assignment .••.•..•••

B421 device capability jumper pin assignment ...•.

BOOS register addresses .••...••••••.....•.••.••..

X

PAGE

8

11

13

37

37

38

44

44

45

46

58

1

CHAPTER I

INTRODUCTION

While spectacular progress in VLSI technology has

been realized over the last 15 years to increase component

density, less dramatic improvements in clock speed have been

forthcoming. These realities suggest that control engineers

might profitably investigate parallel processing solutions

to meet increasingly demanding requirements. This interest

has been further stimulated by the availability of the Inmos

transputer which provides a flexible element for the support

of parallel processing for real-time applications.

I.1 Real-ti• e Systems and process control

One of the fastest expanding areas of computer

exploitation is that involving applications, whose prime

function is not that of information processing, but which

nevertheless require information processing in order to

carry out their prime function. A microprocessor-controlled

washing machine is a good example of such a system. Here

the prime function is to wash clothes; however, depending on

the type of clothes to be washed, different 'wash programs'

must be executed. These types of computer applications are

generically called real-ti• e or e:abedded. The Oxford

2

Dictionary of Computing gives the following definition of

real-time system:

Any system in which the ti• e at which the output is

produced is significant. This is usually the case

because the input corresponds to so• e lllOVe• ent in the

physical world, and the output has to relate to that

saJBe lllOVe• ent. The lag fro• input ti• e to output ti• e

• ust be sufficiently sJ1all for acceptable ti• eliness.

Automatic process control is concerned with

maintaining process variables: temperatures (as in the

present study), pressures, flows, compositions at some

desired operating value. Processes are dynamic in nature

since changes are always occurring. Hence if actions are

not taken on time, the important process variables-those

related to safety, product quality, and production rates­

will not achieve design values. Thus real-time systems find

extensive application in process control.

I.2 Transputers

The INMOS transputer family is a range of system

components each of which combines processing, memory and

interconnect in a single VLSI chip. A concurrent system can

be constructed from a collection of transputers which

operate concurrently and communicate through serial

communication links. Such systems can be designed and

programmed in OCCAM, a language based on communicating

3

processes. In addition each transputer product contains

special circuitry and interfaces adapting it to a particular

use. For example, a peripheral control transputer, such as

a General Purpose Interface Bus (GPIB) controller, has

interfaces tailored to the requirements of the IEEE-488 test

and instrumentation system bus signals.

The software required for the present study is

written in OCCAM, which is the true parallel processing

language for the transputer. Nevertheless, transputers may

also be programmed using parallel FORTRAN and parallel c.

I.3 Objective and outline of the thesis

For the present study, a transputer based real-time

experimental process control set up is considered. The

emphasis is placed on the hardware aspects of the

transputer, i.e., the links and interface to the

input/output (I/O). Communication with the control system

is achieved via the DACU by using command codes [3]. The

GPIB OCCAM [8] software is used to perform the command and

data I/O operations on the DACU.

The objective of the present study is to design and

build a transputer based hardware/software system and

implement it in controlling a simple process. The system

consists of a stirred tank heater whose temperature is

measured and controlled using a proportional control

algorithm. The control is achieved using a hardware system

consisting of a transputer network which is programmed in

the OCCAM language. The thesis problem is reduced into the

following steps:

(1) Install the transputer hardware involving an

IBM PC/AT clone and the transputer motherboards.

(2) Install the software including the OCCAM

toolset [10], DOS device driver and modules to run

the transputer motherboards, in the PC.

(3) Interface the process control test system to the

transputer network (via the IBM PC/AT and the

DACU).

(4) Estimate the process control parameters for

the test system and formulate the control

equations for a proportional control algorithm.

(5) Implement the algorithm in the system using OCCAM

software.

4

5

CHAPTER II

DESCRIPTION OF THE TRANSPUTER HARDWARE AND SOFTWARE

11.1 overview of the transputer falllily

The transputers encountered during the course of the

present study are the IMS T414, M212, C004, C012, T222 and

TSOO. Their features are described briefly.

The IMS T414 is a 32 bit CMOS microcomputer with

2 Kbytes of on-chip RAM for high speed processing, a

configurable memory interface and four INMOS communication

links. The instruction set achieves efficient

implementation of high-level languages and provides direct

support for the OCCAM model of concurrency when used either

as a single transputer or a network. Although the T414

provides high-performance arithmetic and microcode support,

it lacks a floating point unit (FPU) on the chip and its

efficiency in terms of speed is thus restricted [11].

The IMS M212 is a 16 bit peripheral processor

configured for connection to soft sectored winchester and

floppy disk drives. Two byte-wide programmable

bidirectional ports are provided to control and monitor disk

functions such as head position, drive selection and disk

status. The M212 is programmed as a normal transputer,

permitting peripheral control facilities to be built into

6

the device and thus reducing the load on the traditional

central processor of a computer [11].

The IMS C012 link adaptor is a communications device

enabling the INMOS serial communication link to be connected

to parallel data ports and microprocessor buses. The IMS

C004 is a programmable link switch and it provides a full

cross bar switch between 32 link inputs and 32 link outputs.

The C012 and C004 features are described in more detail on

pages 52 through 55.

The IMS T222 and T800 transputers (modules) were

used extensively in designing the hardware network for the

present study and hence their features are described below.

The IMS T800 transputer

For convenience of description, the IMS T800

operation is split into the basic blocks shown in Fig. II.1.

The various blocks in Fig. II.1 are described below.

32 bit CPU

The 32 bit CPU contains instruction processing

logic, instruction and work pointers, and an operand

register. It directly accesses the high speed 4 Kbyte

on-chip memory, which can store data or program. Where

larger amounts of memory or programs in ROM are required,

the processor has access to 4 Gbytes of memory via the

external memory interface (EMI).

vcc
GND

CapPlus
CapMinus

Reset
Analyse
Errorln

Error
BootFrllROM

Clockln
ProcSpeed
Select0-2

-
-
-
-
-
--
-
-
-
-

-
,-

ProcClkOUt

notMellS0-4

notMe•WrB0-3

notMellRd

notMeaRf

Me• Wait
Memconfig

MellReq
MellGranted

-
-
-
--
-

FLOATING

SYSTEM
SERVICES

TIMERS

4 KBYTES
OF

ON-CHIP
RAM

EXTERNAL

MEMORY

INTERFACE
(EMI)

POINT UNIT (FPU)
4 ~

32

32

32 .

32 .

32

,. 32

I

, 32

32 BIT
CPU

LINK - LinkSpecial
LinkOSpecial
Link123Special SERVICES -

LINK
INTERFACE

LINK
INTERFACE

LINK
INTERFACE

LINK
INTERFACE

EVENT

,--

,--

,--

,--

F

Linkln 0

Li nkOUt 0

Linkln 1

LinkOUt 1

Linkln 2

LinkOUt 2

Linkln 3

LinkOUt 3

EventReq
EventAck

~ 32 ._ Me lllAD2-31
• notRfDl
• notWrDO

. , Me
Me

Fig. II. 1 IMS TSOO architecture

WILLIAM F. MAAG L BRARY
YOUNGSTOWN STATE UNIVERSI

7

Table II.1 IMS T800 pin designations

System Services

Pin

VCC, GND
CapPlus, CapMinus

Clockin
ProcSpeedSelect 0-2
Reset
Error
Errorin
Analyse
BootFro:mR.om

HoldToGND
DoNotWrite

In/out

in
in
in
out
in
in
in

Function

Power supply and return
External capacitor for
internal clock power supply
Input clock
Processor speed selectors
System reset
Error indicator
Error daisychain input
Error analysis
Boot from external ROM or
from link
Must be connected to GND
Must not be wired

External Memory Interface

ProcClockOUt out Processor Clock
MemnotWRDO in/out Multiplexed data bit 0 and

write cycle warning
MemnotRfDl in/out Multiplexed data bit 1 and

refresh warning
MemAD2-31 in/out Multiplexed data and

address bus
notMemRd out Read strobe
notMe•WRB0-3 out Four byte-addressing write

strobes
notMe.S0-4 out Five general purpose strobes
notMe:mR.f out Dynamic memory refresh

indicator
MeaWait in Memory cycle extender
MellReq in Direct memory access request
MeaGranted out Direct memory access granted
Meaconfig in Memory configuration data

input

8

EventReq in
EventAck out
Linkin0-3 in
LinkOut0-3 out

LinkSpecial in

LinkOSpecial in
Linkl23Special in

Event/Link

Event request
Event request acknowledge
Four Serial data input channels
Four serial data output
channels
Select non-standard speed as 5
or 20 Mbits/sec
Select special Speed for link O
Select special speed for links
1,2,3

9

The design of the transputer processor exploits the

availability of fast on-chip memory by having only six

registers (Fig. II.2), which are used in the execution of a

sequential process. The small number of registers, together

with the simplicity of the instruction set, enables the

processor to have relatively simple (and fast) data-paths

and control logic. The six registers are:

(1) The workspace pointer which points to an area of

store where local variables are kept.

(2) The instruction pointer which points to the next

instruction to be executed.

(3) The operand register which is used in the

formation of instruction operands.

(4) The A, Band C registers which form an evaluation

stack.

A, Band Care sources and destinations for most

arithmetic and logical operations; loading a value into the

stack pushes B into c, and A into B. storing a value from

-
10

A, pops B into A and C into B. The use of a stack removes

the need for instructions to respecify the location of

their operands. Statistics gathered from a large number of

programs show that three registers provide an effective

balance between code compactness and implementation

complexity. Further register details are given in (11].

Registers Locals Program

A

B

C

Workspace >>

Next inst >>

Operand

Fig. II.2 T800 registers

64 bit FPU

The 64 bit FPU provides single and double length

arithmetic to floating point standard (ANSI-IEEE 754-1985).

It is able to perform floating point arithmetic concurrently

with the CPU, sustaining in excess of 2.25 Mflops on a

30MHz device. All data communication between memory and the

FPU occurs under control of the CPU.

The FPU includes a three-register floating-point

evaluation stack which contains the FA, FB and FC registers.

11

Each of the registers can hold either 32 bit or 64 bit data.

When a floating point value is loaded into any of the

registers an associated flag indicates the size of the

loaded value. The FPU has been designed to operate on both

single length {32 bit) and double length {64 bit) floating

point numbers, and returns results which conform to the

ANSI-IEEE 754-1985 floating point arithmetic standard.

Denormalized numbers are supported in the hardware. All

rounding methods, defined by the standard, are implemented;

the default is roundoff to nearest digit. Basic addition,

subtraction, multiplication and division are performed by

single instructions. Typical floating point operation times

for the IMS T800 transputer are listed in Table II.2 below.

The FPU has its own error flag FP_Error. This

reflects the state of the evaluation within the FPU and is

set in circumstances where invalid operations, division by

zero or overflow exceptions would be flagged.

Table II.2 Floating point operation times

Single Length Double Length

Operation TS00-20 TS00-30 TS00-20 T800-30

add 350 ns 233 ns 350 ns 233 ns
subtract 350 ns 233 ns 350 ns 233 ns
• ultiply 550 ns 367 ns 1000 ns 667 ns
divide 850 ns 567 ns 1600 ns 1067 ns

Further details on the operation of the FPU can be

found [11 J.

12

system services

System services include all the necessary logic to

initialize and sustain operation of the device. They also

include error handling and analysis facilities. Some of the

pin functions that are specific to the transputer

architecture are described below:

CapPlus, CapMinus are connected externally by a low

leakage, low inductance 1 uF capacitor for the internally

derived power supply for the internal clocks.

Reset is assertive high and the falling edge

initializes the transputer, triggers the memory

configuration sequence and starts the bootstrap routine.

Analyze will halt the transputer at the nest

descheduling point if it is taken high while the transputer

is running.

Errorln, Error together indicate that an error was

detected. An internal error can be caused by arithmetic

overflow, divide by zero, array bounds violation or software

setting the flag directly. The error pin carries the OR'ed

output of the internal error flag and the errorin input.

BootFromROM allows the transputer to be externally

bootstrapped when connected to high (e.g. to VCC).

Clockln is the standard clock input supplied by the

user. High frequency internal clocks are derived from

Clockin and it must be derived from a crystal oscillator

since stability is important.

13

ProcSpeedSelect0-2 pins are used to vary the

processor speed in discrete steps as shown in the Table 11.3

below.

Table II.3 ProcSpeedSelect0-2 pin selections

Proc Proc Proc Processor Processor Notes
Speed Speed Speed Clock cycle
Select2 Selectl Selecto Speed MHz Time ns

0 0 0 20.0 50.0
0 0 1 22.5 44.4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
1 0 1 Invalid
1 1 0 17.5 57.1
1 1 1 Invalid

Memory

The IMS T800 has 4 Kbytes of On-chip RAM (static

memory) for high rates of data throughput. Each internal

memory access takes one processor cycle ProcClockOut. The

transputer can also access 4 Gbytes of external memory

space. Internal and external memory are part of the same

linear address space.

Internal memory starts at the most negative address

#80000000 and extends to #80000FFF. User memory begins

at #80000070; this location is given the name Memstart.

External memory space starts at #80001000 and extends up

through #00000000 to #7FFFFFFF.

14

External Me110ry Interface

The external memory interface (EMI) allows access to

a 32 bit address space, supporting dynamic and static RAM as

well as ROM and EPROM. The associated pin functions are

defined in [11].

Event

EventReq and EventAck provide an asynchronous

handshake interface between an external event and an

internal process. When an external event takes EventReq

high the external event channel (additional to the external

link channels) is made ready to communicate with a process.

When both the event channel and the process are ready the

processor takes EventAck high and the process, if waiting,

is scheduled. EventAck is removed after EventReq goes low.

Link Interface(s)

Four INMOS bi-directional serial links provide

synchronized communication between processors and with the

outside world. Each link consists of an input channel and

output channel. A link between two transputers is

implemented by connecting a link interface on one transputer

to a link interface on the other transputer. Every byte of

data sent on a link is acknowledged on the input of the same

link, thus each signal line carries both data and control

information.

-
15

The quiescent state of a link output is low. Each

data byte is transmitted as a high start bit followed by a

one bit followed by eight data bits followed by a low stop

bit. The least significant bit of data is transmitted

first. After transmitting a data byte the sender waits for

the acknowledge, which consists of a high start bit followed

by a zero bit. The acknowledge signifies both that a

process was able to receive the acknowledged data byte and

that the receiving link is able to receive another byte.

The sending link reschedules the sending process only after

the acknowledge for the final byte of the message has been

received. The IMS TSOO link data and acknowledge packets

appear in Fig. II.3 below.

H 0 1 2 3 4 5 6

Data

Fig. II.3 Link data and acknowledge

7 L ~L,

I ~

Link speeds can be set by LinkSpecial, LinkOSpecial

and Linkl23Special. The link o speed can be set

independently. Table 10.0 shows uni-directional and bi­

directional data rates in Kbytes/second for each link speed;

LinknSpecial is to be read as LinkOSpecial when selecting

link O speed and as Link123Special for the others. Data

rates are quoted for a transputer using internal memory, and

-

will be affected by a factor depending on the number of

external memory accesses and the length of the external

memory cycle.

Timers

16

The transputer has two 32 bit timer clocks which

'tick' periodically. The timers provide accurate process

timing, allowing processes to deschedule themselves until a

specific time.

One timer is accessible only to high priority

processes and is incremented every microsecond, cycling

completely in approximately 4295 milliseconds. The other is

accessible only to low priority processes and is incremented

every 64 microseconds, giving exactly 15625 ticks in one

second. It has a full period of approximately 76 hours.

The IMS T222 transputer

The IMS T222 transputer has a simlar architecture

compared to a TB00 transputer with the following significant

differences:

(1) The On-chip RAM is limited to 2K bytes.

(2) Absence of a Floating Point Unit.

(3) Data bus and processor size is limited to 16 bits.

(4) External Me110ry Interface is limited to a 16 bit

address and data bus.

17

11.2 The OCCAM software :model

Concurrency

The world which we inhabit is inherently concurrent.

Events happen in both space and time. It is possible for

events to occur in the same place one after the other in

time (i.e., sequentially), and equally possible for events

to occur in different places at the same time (i.e., in

parallel or concurrently). The terms concurrent and

parallel have similar but distinct meanings and it is

important that they are not confused. Two entities are said

to be executing in parallel if at some instant in time both

are actually executing. Entities are described as

concurrent if they have the potential for executing in

parallel. A concurrent programming language will therefore

have more than one distinct thread of control.

OCCAM overview

The programming model for transputers is defined by

OCCAM. In OCCAM processes are connected to form concurrent

systems. Each process can be regarded as a black box with

internal state, which can communicate with other processes

using point to point communication channels. Processes can

be used to represent the behavior of many things: a logic

gate, a microprocessor, a machine tool or as in the present

thesis, a stirred tank heater.

The processes themselves are finite. Each process

starts, performs a number of actions and then terminates.

18

An action may be a set of sequential processes performed one

after one another. Since a process is itself composed of

processes, some of which may be executed in parallel, a

process may contain any amount of internal concurrency, and

this may change with time as processes start and terminate.

A pair of concurrent processes communicate using a one- way

channel connecting the two processes. One process outputs a

message to the channel and the other process inputs the

message from the channel.

The key concept is that communication is

synchronized and unbuffered. If a channel is used for input

in one process, and output in another, communication takes

place when both processes are ready. The value to be output

is copied from the outputting process to the inputting

process; the inputting and outputting processes then

proceed. Thus communication between processes is like the

handshake method of communication used in hardware systems.

Since a process may have internal concurrency, it may have

many input channels and output channels performing

communication at the same time. The property of unbuffered

communication between processes can be exploited

specifically in real-time applications since time losses are

minimized.

OCCAM can be used to program an individual

19

transputer; the transputer shares its time between the

concurrent processes and channel communication is

implemented by moving data within the memory (Fig. II.4a).

(The numbers indicate the transputer link numbers and P, Q,

R indicate the individual processes). When OCCAM is used to

program a network of transputers, each transputer executes

the process allocated to it (Fig. II.4b). Communication

between OCCAM processes on different transputers is

implemented directly by transputer links. Thus the same

OCCAM program can be implemented on a variety of transputer

configurations, with one configuration optimized for cost,

another for performance, and another for an appropriate

balance of cost and performance.

I

[:] - [:]
-4 2--

.___ [:] ---
'-------3-------'

I
Fig II.4a Single transputer Fig. II.4b Transputer

network

20

· Process

The definition of a process is the same as that of a

program in an ordinary sequential language; in OCCAM

more than one process may be executing at the same time,

and processes can send messages to one another. All OCCAM

programs are built from combinations of three kinds of

primitive processes. They are assignment, input and output.

Channels

Communication between processes is achieved by means

of channels. OCCAM communication is point-to-point,

synchronized and unbuffered. As a result, a channel needs

no process queue, no message queue and no message buffer.

A channel between two processes executing on the

same transputer is implemented by a single word in memory:

a channel between processes executing on different

transputers is implemented by point-to-point links.

Assigruaent

An assignment process changes the value of a

variable, just as it would in most conventional languages.

The symbol for assignment in OCCAM is H •-II -- . The process

".!red:= 2" makes the value in the variable .!red two.

Input

An input process inputs a value from a channel into

a variable. The symbol for input in OCCAM is"?". The

input process "chan3? fred" takes a value from a channel

called chan3 and puts it into variable fred.

An input process cannot proceed until a

corresponding output process on the same channel is ready.

output

21

An output process outputs a value to a channel. The

symbol f o·r output in OCCAM is "!". The output process

"chan3 ! 2" outputs the value 2 to a channel called chan3.

An output process cannot proceed until a corresponding input

process on the same channel is ready.

co-unication

Communication over a channel only occurs when

both input and output processes are ready. If during the

execution of a program an input process is reached before

its corresponding output process is reached, the input will

wait until the output becomes ready. If the output is

reached first, it will wait for its input; the communication

is synchronized.

SKIP and STOP

SKIP represents a process that starts, does nothing

and then finishes. It might be used in a partly completed

Program in place of a process which will be written later.

STOP process starts but never proceeds and never

finishes. It might be used, like SKIP, to stand in for a

process which has yet to be written.

Combining processes

22

Several primitive processes can be combined into a

larger process by specifying that they should be performed

one after the other, or all at the same time. This larger

process is called a construction and it begins with an OCCAM

keyword which states how the component processes are to be

combined.

SEQ Construct

SEQ is short for 'sequence' which explains the

way in which the processes within this construct are

to be executed, i.e., one after another.

Ex: SEQ

chan3? fred

jim fred + 1

chan4 ! jim

Notice the way that the processes which make up this

SEQ process are indented by two characters from the word

SEQ, so that they line up under the Q. This is not merely

to make the program look prettier, but is the way that OCCAM

knows which processes are part of the SEQ.

PAR construct

PAR is short for 'parallel' and hence all the

component processes of a PAR start to execute

simultaneously.

Ex: PAR

SEQ

chan3? fred

fred := fred + 1

SEQ

chan4? jim

jim := jim + 1

23

The first two-character indent tells OCCAM that the PAR

process consists of two SEQ processes. The second level of

indentation shows that each SEQ is composed of two primitive

processes. In a PAR, the written order of the component

processes is irrelevant as they are all performed at the

same time. All the component processes in a PAR start at

the same time, and the PAR itself terminates when all its

component processes have terminated. Several other

constructs and the OCCAM syntax are well illustrated in [1]

and [13].

II.3 The OCCAM2 toolset for the IBM PC

The OCCAM2 toolset is a set of software tools for

developing transputer programs on host systems. Used with

the OCCAM libraies, it provides a complete environment for

24

developing programs on transputers and transputer networks.

This toolset allows OCCAM programs to be written using any

convenient text editor. Programs are then compiled and

linked using programs that are resident on the host or

running on the transputer board. Self-booting code for

single transputers and multitransputer networks is produced

using separate tools, and loaded from the host system down

the transputer link.

The OCCAM2 toolset is intended for developing

programs on transputers and transputer boards that are

loaded from the host via a transputer link. The tools that

are used in compiling, linking and downloading the OCCAM2

software onto the designed system are listed:

The

the

(1) ICHECK

(2) OCCAM

(3) ILINK

(4) ICONF

(5) ISER.VER

file extensions that have been frequently encountered in

present software design are listed:

(1) .btl - Output file from ICONF tool. Loadable code

file extension for boot from link boards.

(2) .cxy - Linked code output file from ILINK tool.

{3) .inc - Input file to the OCCAM tool consisting of

predefined constants and channel protocols.

(4) .lib - Output library file from the ILIBR tool.

Consists of compiled code.

(5) .aap - Output file from the ICONF tool. Consists

of the configuration map in the ASCII format.

(6) .occ - Input file to the OCCAM tool consists of

the OCCAM source code.

(7) .pglll - Input file to the ICONF tool consists of

the configuration description source file.

(8) .txy - Output file to the OCCAM tool consists of

the compiled code.

The second and third characters x and y are listed:

X Class y Mode

2 T212, T222, M212 h Halt
4 T414 s Stop
5 T425 u Undefined
8 T800 X Universal
a TSOO, T425, T414
b T425, T414
C TSOO, T425

ICHECK

25

The OCCAM 2 checker icheck performs a syntax check

of the full OCCAM 2 product language but produces no object

code. The syntax checking performed by the checker is

similar to that of the compiler but it generates more data

and displays more information about the errors. By taking

advantage of the regular structure of the OCCAM programs

icheck can recover from errors that cause the compiler to

abort, and thereby perform a more comprehensive check. The

26

.checker recognizes the compiler directives #INCLUDE, #USE,

#IMPORT, #SC, #OPTION, and #COMMENT. Directives are

described in more detail in [10].

To invoke the checker the following command line is

used:

icheck filename {options}

where: filename is the name of the file containing the

source code. If a file extension is not

specified, the extension .occ is assumed. If

the filename is omitted a brief "help"

information is displayed.

options is a list, in any order, of one or more

of the options available [10].

The options that have been frequently used for

checking the software for the present system are:

(1) TS - Check for a TS00 processor (the process

resident on the TS00 based 'ROOT TRAM' in the

system).

(2) T2 - Check for a T222 processor (the process

resident on the T222 based 'GPIB TRAM' in the

system).

(3) B - Displays error messages in brief (single line)

format.

Details regarding usage, other options and error

messages can be obtained from (10].

27

.OCCAM

The toolset compiler implements the .OCCAM 2 language

targeting to IMS T222, T800 and several other transputers

(11]. Each compilation of a program must be targeted at a

specific transputer or transputer class and in one of four

execution error modes. All components of a program that are

to be run on the same transputer must be compiled with the

same target processor and error mode.

Six directives, extensions to standard OCCAM are

recognized by the OCCAM 2 compiler. These are #USE,

#INCLUDE, #IMPORT, #OPl'ION, #COMIIEN'I' and #SC. Compiler

directives are described in (10]. The operation of the

compiler in terms of the file extensions is described below .

• txy .inc

.occ > .OCCAM ---> .txy

.cxy .lib

To invoke the compiler the following command line is

used:

occaJ1 filename {options}

where: filename is the name of the file containing the

source code. If a file extension is not

specified, the extension .occ is assumed. If

the filename is omitted brief help information

is displayed.

ILINK

options is a list, in any order, of one or more

options available [10].

28

The linker links compiled code into a single object

file, resolving all external references. Code files can be

separately compiled program units or library files.

The operation of the linker in terms of file

extensions is shown below .

• lib .lxx
>.:axx

.txx --> _.._____>.cxx

.cxx

To invoke the linker the following command line is

used:

ilink {filename} {options}

where: filename is a list of files generated by the

OCCAM 2 compiler, by INMOS compatible

compilers, by the librarian, or by the

linker. If the 'o' option is not specified

the name of the first file in the list is

used to generate the output file.

options is a list of any of the available

options [10].

29

ICONF

The configurer takes a configuration description and

produces either an object code file ready for loading into a

network of transputers, or a configuration map describing

the allocation of code and placement of the channels. A

configuration description describes how code is to be run on

a network of transputers. Code to be run on separate

processors is declared as separately compiled units, or

included as OCCAM source.

The operation of the configurer tool in terms of

toolset file extensions is illustrated below •

. txx .inc

• PCJll~~1 ~ I•
.cxx .occ

..----'',• • :map

.___--c. btr

.btl

To run the configurer the following command line is used:

iconf filename {options}

where: filename is the file containing the

configuration code. If no file extension is

given .pga is assumed.

ISERVER

options is a list of options available from

[10].

The host file server iserver provides two functions:

(1) Loading programs and controlling transputer

networks.

(2) Runtime access to host services for application

programs.

To run the host file server the following line is used:

iserver {options}

where: options is a list of one or more options listed

in [10).

The options that have been used for the present design are

(1) SB - boots the program contained in the named

file.

(2) SS - serves the link, that is, provides host

system support to programs communicating on the

host link.

(3) SC - Copies the named file to the root transputer

link.

A more detailed description of the iserver an other tools

and their implementation aspects are given in [10).

The OCCAM Libraries

30

A comprehensive set of libraries and 'include' files

are provided with the toolset. Some form part of the

standard support for the OCCAM language (the compiler

libraries), others are user-level libraries to support

standard programming tasks such as terminal i/o and file

access.

31

Compiler libraries

The compiler libraries are used internally by code

generated by the compiler. With a number of exceptions (10]

they are not intended for direct use by the programmer. The

compiler references them automatically by searching the

directories specified by the ISEARCH host environment

variable (11].

Maths libraries

The maths libraries provide trigonometric and

logarithmic functions for all transputer types supported by

the toolset.

1/0 libraries

Two libraries containing routines to assist with i/o

are provided with the toolset. They are Hostio and Streamio

libraries.

The Hostio library is used for file handling, Host

access and Terminal i/o. The Streaai.o library is used for

general character-based i/o using stream protocols (11], and

for controlling the screen display.

Details of these and other libraries are detailed in

[11].

CHAPTER III

DESCRIPTION OF THE TRANSPUTER MODULES
AND MOTHERBOARDS

III.1 Transputer lllOd.ules (TRAMs)

TRAMs are small, cost-effective sub-assemblies of

transputers and other circuitry (often RAM) with a simple

but efficient 16 signal interface standard profiled in

modular sizes. The interface accommodates 4 serial

transputer links for interprocessor communication, power

supply and system signals.

This standard allows the TRAMs to be mounted onto

a variety of motherboards which provide specific host

interface hardware. Each motherboard can connect to a

number of TRAMs and provides facilities for configuring

a network of TRAMs for the user specified topology under

software control. A software package is provided for

motherboards which allows this task to be undertaken with

minimum effort [4].

32

All TRAMs are based upon a single module profile

with a defined pin layout. This single format is known as

"size 1". The schematic picture of the size 1 TRAM is shown

below in Fig. III.1.

33

0 Link2out Link3in 0
0 Link2in Link3out 0
0 vcc GND 0
0 Linklout LinkOin 0
0 Linklin LinkOout 0
0 LinkSpeedA notError 0
0 LinkSpeedB Reset 0
0 Clockin(SMHz) Analyze 0

Fig. III.1 Size 1 TRAM footprint

Larger TRAMs are simply a multiple of the size 1

footprint. Thus, a "size 2 11 TRAM occupies two of the

sockets into which a size 1 TRAM will plug. In order to

avoid confusion, discussions about motherboards always refer

to "slots". A slot is one position into which a size 1 TRAM

may be plugged. So, a motherboard which has ten slots may

have ten size 1 TRAMs or five size 2 or two size 4 and two

size 1 or one size 8 or even six size 1 and one size 4.

The common pins that are available from the TRAMs are listed

below.

STANDARD TRAM PINS

Transputers and therefore TRAMs require three

signals to be connected to them to allow them to initialize,

and debug so that they can signal an error. These signals

are Reset for resetting, Analyze to allow debugging, and

NotError to signal an error on a transputer or TRAM (Fig.

III.l). These three signals are collectively known as

system services. The system services for a TRAM are treated

34

as a single signal conceptually although they are actually

three signals. These three signals are described along with

the other pins in the description of the transputer

architecture above.

The following two TRAMs are used in realizing the

network for the process control system.

(1) IMS B403 (T800 based TRAM)

(2) IMS B421 (T222 based TRAM)

III.2 IMS B403 TRAN

The IMS B403 is a very compact compute module which

provides a full 2Mbytes of memory and still maximizes

performance capability. This is achieved by extending the

principle of fast on the chip RAM to include 32Kbytes of

static RAM which cycles as fast as possible. Any technique

which puts most frequently accessed memory locations near

the bottom of memory will speed up the processing. This

TRAM is the most popular board for running INMOS TDS or

Toolset packages.

The IMS B403 packs 11 sq. cm of silicon onto a board

the size of a credit card. Four IMS B404s fit onto the IMS

B008 in a single slot of the IBM PC. Fifty IMS B403s fit

into an ITEM [6], to give 100 Mbytes, 625 MIPS, 250

MWhetstones, with space to spare for other modules. The

schematic of the IMS B403 appears in Fig. III.2.

--

Reset
Analyze

Not Error,;;;;..,, __

Link

Link 1

Link

Link

Terminated
links

TSOO

Subsystem

PAL

Fig. III.2 IMS B403 TRAM schematic

2 Mbytes
DRAM

32 Kbytes

SRAM

ss Reset
ss Analyze
notSSError

All the pins except the Subsystem PAL (Programmed

Array Logic) pins are described in the transputer hardware

section.

Subsystea Signals

35

The IMS B403 has a subsystem port in addition to the

usual TRAM signals. This enables the TRAM to reset or

analyze a subsystem of other TRAMs and/or motherboards. The

polarity of these signals is the same as that of Reset,

Analyze and notError standard TRAM signals. Therefore the

IMS B403 subsystem can drive other TRAMs on the same

motherboard with no intermediate logic. However,

SubSystellReset and SubSystemAnalyze must go through

inverting buffers if they are to drive a subsystem off the

motherboard. These subsystem signals are accessed by

writing or reading to control registers in the transputer

memory space.

Me:aory configuration

The IMS B403 is able to access 2 Mbytes of memory.

36

There is 4 Kbytes of internal transputer memory, 28 Kbytes

of external SRAM and 2016 Kbytes of external DRAM. There

are 32 Kbytes of SRAM components and 2 Mbytes of DRAM

components on the board, but the address spaces of each type

of memory are superimposed. The total memory available is

limited to 2 Mbytes. This is sufficient to enable the

Transputer Development system (TDS) to be run on a single

IMS B403 TRAM.

Location of external ae:aory

Table III.1 shows the start address of the external

SRAM and Table III.2 shows the start address of the external

DRAM on the IMS B403 (the# sign indicates a hexadecimal

number). The internal RAM on the IMS TSOO occupies the

first 4 Kbytes of address space. Since the internal memory

on the IMS T800 is 1 cycle, the external SRAM is 3 cycle and

the DRAM is 4 (or 5) cycle, a memory speed hierarchy is

established. This architecture allows the programmers to

37

Table III.l External SRAM addresses

Hardware byte address

From: #80001000
To: #80007FFF

Table III.2 External DRAM addresses

Hardware byte address

From: #80008000
To: #801FFFFF

structure their code for optimum performance, and will

become of greater significance when the next faster version

of the transputer becomes available.

Subsystea register locations

The subsystem register addresses start at hardware

address #00000000 in all TRAMS that utilize a 32-bit

processor, allowing software compatibility between TRAMs.

These registers are located as shown in Table III.3.

Setting bit o in either the reset or the analyze registers

asserts the corresponding signal. Similarly, clearing bit 0

deasserts the signal. When an error occurs in the

subsystem, bit o of the error location becomes set. Byte

locations #00000008 and #0000000C are unused. The subsystem

registers are repeated at every sixteenth byte location in

the positive address space. See Fig. III.3.

38

Table III.3 Subsystem register addresses

Register Hardware
Byte
Address

SubSystemReset (write only) #00000000

SubSystemAnalyze (write only) #00000004

notSubsystemError (read only) #00000000

Fig. III.4 shows the schematic picture of the IMS

B403 TRAM. Since the IMS B403 contains CMOS components, all

normal precautions to prevent static damage should be taken.

The IMS B403 is supplied with spacer pin strips

attached to the TRAM pins on the underside of the board.

These spacers perform two functions. Firstly, they help to

protect the TRAM pins during transit. Secondly, they can be

used to space the TRAMs off the motherboard. If there are

no components mounted on the motherboard TRAM slot, then the

spacer strips are removed before the TRAM is inserted.

If the subsystem pins are required, a 3-way header

strip is plugged into the solder-side sockets on the IMS

B403.

The IMS B403 is plugged into the motherboard with

the silk screened triangle marking pin 1 on the TRAM aligned

with the silk screened triangle that appears in the corner

of the appropriate TRAM slot.

Fig. III.3

HARDWARE
BYTE
ADDRESS

#7FFFFFFC

#00000004
#00000000

#801FFFFF

#80007FFF

#80001000

#80000000

Repeated
Subsystem
Registers

Subsystem
Registers

2016 Kbytes
External DRAM

(4 or 5 cycle)

28 Kbytes
External
SRAM(3 cycle)

Internal RAM

IMS B403 subsystem register memory map

Mechanical details and Installation

0 0 a Link2out/notSubSystemError •• Link3in o
0 0 b Link2in/SubSystemReset Link3out 0
0 0 C VCC/SubSystemAnalyze GND 0

- 0 Linklout Link0in 0
0 Linklin Link0out 0
0 LinkSpeedA notError 0
0 LinkSpeedB Reset 0
0 Clockin(5MHz) Analyze 0
0 NC NC 0
0 NC NC 0
0 NC NC 0
0 NC NC 0
0 NC NC 0
0 GND vcc 0
0 NC NC 0
0 NC NC 0

Fig. III.4 IMS B403 schematic

39

40

111.3 IMS B421 (GPIB) TRAM

The GPIB (General Purpose Interface Bus) TRAM allows

IEEE-488 test and instrumentation systems to be directly

connected to network of transputers. The parallel interface

permits high speed communication of control and measurement

information, and the power of the transputer can provide

sophisticated data analysis facilities. The user can define

the characteristics of the GPIB interface in terms of

address, etc., for maximum flexibility in system

configuration. The schematic description of the TRAM

appears in Fig. III.5.

onboard Transputer Syste•

The IMS B421 TRAM has an IMS T222-20 transputer with

4K bytes of fast internal RAM. This is supplemented by 48K

bytes of external static RAM, which runs without wait

states. The TRAM is thus provided with considerable

processing power in comparison with many existing IEEE-488

interface products, allowing it to provide a compact

solution in embedded applications which might otherwise

require separate interface and processing modules.

IEEE-488 Interface (GPIB)

This is provided by a Texas Instruments TMS9914A

GPIB controller, in conjunction with SN75160B and SN75162A

buffers. These devices allow the IMS B421 to act as a

Reset-------~
Analyze,--~

NotError·~---1

Link 0 IMS T222
Link 1 ~--"?I

48K
SRAM

SK
EEROM

Configuration
switches

41

Link 2 E-.--~

Link 3 GPIB
interface
controller _____ _.
~~. IEEE-488

BUS

Fig. III.5 IMS B421 architecture

system Controller, non-system Controller, Talker or

Listener, and ensure full electrical compliance with the

IEEE-488 standard.

Electrically Erasable Read Only Me110ry (EBRON)

The IMS B421 TRAM contains an EEROM device of 8

Kbyte capacity. This is provided essentially to assist in

implementing the requirements of IEEE-488.2, which calls for

compliant devices to accept, retain and return various

identifying information upon demand. The content of these

messages cannot be determined in advance by INMOS, so the

EEROM is provided as a non-volatile means of retaining the

necessary character strings, which may be conveniently

stored in the device by IMS F00l [8] commands. The device

capacity is more than enough to store the information

required for compliance with the standard, so the remainder

may be allocated to any purpose defined by the user, and is

easily accessed via additional IMS F00l commands [8].

43

26-way dual-row 0.1 in.IDC socket at one end, and an IEEE-

488 compatible IDC connector at the other. It is stressed

that such a connection minimizes performance as well as

cost, so cable length must be kept as short as possible. It

is only suitable for making a temporary connection to a

system during development.

2 4 6 8 24 26

1 3 5 7 • 23 25

*

Fig. III.6 Jl - IEEE 488 connector

Table III.4 below shows the Jl signal assignments.

Further details of the IEEE-488 standard appear in [3].

Auxiliary connector J2

The IMS B421 also has a similar connector, J2, (Fig.

III.7) with four pins arranged in a single row on 0.1

inch pitch.

Fig. III.7

I • • • *

1

J2 auxiliary connector

Pin 1 of J2 is marked with a yellow dot; pin numbering

proceeds along the row of contacts. Connection to J2 may be

made with an IDC connector and ribbon cable, as described

for Jl above; the termination at the far end of the cable is

44

at the user's discretion.

Table III.4 Jl Signal assignment

IMS 8421 IEEE-488 IEEE-488 coapatible
J1 signal nclllle connector pin nUlllber

1 DIOl 1
2 DIO5 13
3 DIO2 2
4 DIO6 14
5 DIO3 3
6 DIO7 15
7 DIO4 4
8 DIO8 16
9 EOI 5
10 REN 17
11 DAV 6
12 Gnd 18
13 NRFD 7
14 Gnd 19
15 NDAC 8
16 Gnd 20
17 IFC 9
18 Gnd 21
19 SRQ 10
20 Gnd 22
21 ATN 11

22,23,24 Gnd 23
25, 26 Gnd not used

Table III.5 J2 pin (IEEE 488 status) assignment

IMS 8421
J2 Pin signal nmae

1 IEEE-488 SRQ line status
2 IEEE-488 IFC line status
3 IEEE-488 REN line status
4 TRIG

The status of the three IEEE-488 lines is provided

(Table III.5) so that the hardware in which the IMS B421 is

45

embedded may directly receive Service Request messages,

Interface Clear messages, and Remote/local status. Note

that the J2 pins have the same logic polarity as the IEEE-

488 lines, i.e. TTL logic o level indicates TRUE.

The TRIG signal is produced by the IMS B421 when it

receives a Group Execute Trigger message [8]. The pin goes

to TTL logic 1 level to indicate this event, and may be used

to trigger other embedded functions such as some form of

data acquisition hardware.

Bus address jlllllpers, JPl to JPS

The intended address value is indicated as a binary

number on these jumpers {Table III.6). The encoding

considers bit significance to begin at JPl and increase in

numeric sequence to JPS; presence of a jumper forces a bit's

contribution to zero, whereas absence allows it to

contribute its weighted value. For example, for the present

project, the address 2810 is encoded as follows:

Table III.6 B421 base address jumper pin assignment

Jumper Status Bit Significance contribution

JPl Present 1 (none)
JP2 Present 2 {none)
JP3 Absent 4 4
JP4 Absent 8 8
JPS Absent 16 16

Address 16+8+4 = 28

46

Device capability ju:apers, JP6 and 7

The IEEE-488 capability of the device is selected

via these jumpers to be a controller, talk & listen as shown

in Table III.7:

Table III.7 B421 device capability jumper pin assignment

JP7 JP6 Capability

Absent Absent Controller, talk & listen

Further details of the jumper selection appear in [7].

Bus drive selection ju:aper, JPS

When this jumper is present the IMS F00l software

will configure the IMS B421 for open-collector drive of

IEEE-488 data signals. When the jumper is absent, as in the

case of configuration for the present project, the tri-state

drive is selected.

Data protect ju:aper, JP9

The IMS F00l software takes the presence of this

jumper to indicate that EEROM contents are NOT protected;

IMS F00l commands which involve modification of EEROM

contents will be accepted and obeyed. Conversely, absence

of this jumper is taken to mean that EEROM contents should

not be altered. Any IMS F00l command which seeks to perform

such an alteration will be rejected.

47
·,

Melll<>ry configuration

Fig. III.a shows a memory map for the system.

Subsystea register locations

The subsystem registers are not implemented in the

standard way on the IMS B421, but are part of the I/O ports.

Fig. III.8

Hardware
addresses

#7FFF

#6000

#5FFF

#5800

#57FF

#5000

#4FFF

#9000

#8FFF

#8000 I

EEROM SK

GPIB control 2K

I/O ports 2K

RAM 48K

Internal RAM 4K

IMS B421 memory map

OCCAM
addresses

#7FFE

#7000

#6FFE

#6C00

#6BFE

#6800

#67FE

#0800

#07FE

#0000

The IMS B421, whose schematic is shown in Fig.

III.9, is also composed of CMOS components and hence all

normal precautions to prevent static damage should be taken.

Similar to the IMS B403, the IMS B421 is also supplied with

spacer pin strips and the 3-way header strip (for subsystem

signals). Further details appear in [7].

Mechanical details and Installation

0 0 Link2out/SubsystemnotError Link3in 0
0 0 Link2in/SubsystemReset Link3out 0
0 0 VCC/SubsystemAnalyze GND 0
0 Linklout LinkOin 0
0 Linklin LinkOout 0
0 LinkSpeedA notError 0
0 LinkSpeedB Reset 0

0 Clockin(5MHz) Analyze 0

0 NC NC 0
0 NC NC 0

0 NC NC 0
0 NC NC 0

0 NC NC 0
0 GND vcc 0

0 NC NC 0
0 NC NC 0

0 NC NC 0

0 NC NC 0
0 vcc GND 0

0 NC NC 0

0 NC NC 0

0 NC NC 0

0 NC NC 0

0 NC NC 0

0 NC NC 0

0 NC NC 0

0 NC NC 0

0 NC NC 0

0 NC NC 0

0 GND vcc 0

0 NC NC 0

0 NC NC 0

Fig. III.9 IMS B421 footprint

III.4 Transputer J10tberboards

A TRAM motherboard has a number of slots into

Which TRAMs can be plugged. Each of these slots contains

the necessary connections to power, clock, reset signals

48

49

and the transputer links. The motherboard provides a

method of connecting TRAMs together and may also include

special circuitry to interface to something other than a

transputer system. The following two motherboards are used

in the project:

(1) 'PC/AT TRAM IMS 8008 Motherboard

(2) IMS 8012 Eurocard

III.5 IMS 8008 Motherboard

The PC/AT TRAM MOTHERBOARD (Part# IMS 8008), is

designed to plug into a PC or PC/AT bus. The board has ten

TRAM slots, an interface to the PC bus and a programmable

link switch (Part# IMS C004) to allow a network of TRAMs to

be setup under software control. Fig. III.10 provides a

functional block diagram of the IMS B008.

The interface to the PC provides a single transputer

link and a system services port (Reset, Analyze and Error).

This allows software running on the PC to reset, analyze,

communicate with, and monitor the error flag of a transputer

network connected to or on the IMS BOOS. Data can be

transferred to and from the link interface using programmed

I/O or a OMA transfer mechanism allowing data transfer to go

on without processor intervention. Interrupts can be

generated on link events; on error being asserted, or at the

end of a OMA transfer, freeing the processor from polling

the IMS B008 to detect these events.

PC bus
interface

I Host system services
0 Controlled by SWl:3 Down system services

<>
Subsystem services

r------+--~----------<::::>
<>--0

Up system
services

System
services
into slot

Fig. III.10

Subsystem
port

Slot 0

0
I Controlled by SWl:4
0

O System services to I slots 1 to 9

Slot 1 Slot 9

IMS BOOS functional block diagram

50

The system services are generated by the system

services port of the IMS BOOS PC bus interface, or by a

subsystem port on a TRAM. TRAMs with a subsystem port have

three extra connections which are made via a row of three

sockets on the underside of the TRAM. The IMS BOOS has a

corresponding row of three sockets underneath the slot o

position only. To connect the subsystem port on the TRAM to

the IMS BOOS a strip of three double-ended pins is inserted

in the sockets in the TRAM and the IMS BOOS. The specific

details of installation may be obtained from [4].

System services for a TRAM plugged into slot O on

51

the IMS BOOS and come from one of two sources: Up system

services fed from another motherboard, or the Host system

services which are controlled by the system services port of

the PC bus interface. The system services fed to slot Oare

known as down system services and are buffered and connected

to pins of P2, the 37 way D-type connector at the back of

the IMS BOOS. These Down system services can be fed to the

Up system services of another motherboard. The sources,

destinations, and switching of system services

on the IMS BOOS are illustrated in the functional diagram

(Fig. III.10).

The TRAM slots on the IMS B008 are connected into

a pipeline using two of the four links from each slot.

The remaining two links from slots 1 to 9 and link 3 from

slot o are connected to the programmable link switch

which allows these links to be connected together via

software. Control and configuration (programming) of the

link switch is performed by a 16-bit transputer (IMS

T222).

The IMS B008 performance is monitored by the

following prominent devices whose operation is briefly

described:

(1) Programmable Link Switch (IMS C004)

(2) Network Configuration Processor (IMS T222)

(3) Link Interface Adaptor (IMS C012)

(4) PC BUS Interface

52

Programmable Link Switch (IMS C004)

The IMS C004 is a programmable link switch designed

to provide a full crossbar switch between 32 link inputs and

32 link outputs. The IMS C004 is internally organized as a

set of thirty 32-to-l multiplexers. Each multiplexer has

associated with it a six bit latch, five bits of which

select one input as the source of data for the corresponding

output. The sixth bit is used to connect and disconnect the

output. These latches can be read and written by messages

sent on the configuration link via ConfigLink.In and Config

Link.out.

The output of each multiplexer is synchronized with

an internal high speed clock and regenerated at the output

p~d. This synchronization introduces, on an average, a 1.75

bit time delay on the signal. Since the signal is not

electrically degraded in passing through the switch, it is

possible to form links through an arbitrary number of link

switches. It is also possible to use a single IMS C004 as

a component of a larger link switch.

Inputs and outputs of the IMS C004 are individually

identified by numbers in the range Oto 31. A configuration

message consisting of one, two or three bytes is transmitted

on the configuration link. The IMS C004 must be hard reset

after power up by pulsing the Reset pin high for the minimum

time specified.

The link bandwidth may be lower than for a simple

53

transputer-to-transputer connection, depending upon the

type of transputers on the TRAMs at both ends of the link

which passes through an IMS C004. For instance, two IMS

TB00 transputers connected together will give uni­

directional link bandwidth of 1.7 Mbytes/s. However,

with one IMS C004 switching the link, the link bandwidth

is 1.3 Mbytes/s. With two IMS C004s switching the link,

as is the case with some board-to-board links using IMS

B008s, the link bandwidth will be 800 Kbytes/s.

Theoretically it is possible to change the

configuration of the IMS C004s while a program is

executing on the TRAM array. This may be useful, for

example, in a system which needs a particular network

during a data gathering phase but a completely different

network during a data processing phase. The basic idea

is that providing there is no traffic on a link, the path

it takes through an IMS C004 can be switched. After

switching, processing can proceed using the new network.

Obviously this requires careful synchronization between

all the programs in all the TRAMs; this is usually achieved

via the links which are being switched.

Network Configuration Processor (DIS T222)

The network configuration processor, a 16 bit

transputer (the IMS T222), is used to route configuration

data on the IMS B008. Network configuration data is

54

received on link 1, known as ConfigUp of the IMS T222 (

referred to as the T2 for brevity) either from a TRAM in

slot O (root TRAM) or from another board's network

configuration processor if the board is in a pipeline of

boards. This pipeline of network configuration processors

is made in a similar way as that of a pipeline of TRAMS on

multiple boards. The link ConfigDown on the first board in

the configuration pipeline connects to ConfigUp on the next

board and so on down the pipeline.

Software running on the T2 examines the

configuration data for connections to be made by the

IMS C004 to which the T2 has a link connection. This

connection data is extracted from the configuration

data and the connections are made by sending a set of

messages to the IMS C004 via link 3 of the T2.

Configuration data for the boards further down the

configuration pipeline is then sent out on link 2

(ConfigDown). This pipeline arrangement of T2 processors is

used on all transputer motherboards that have IMS C004 link

switches on them. Thus arbitrary large networks of mixed

transputer motherboards can be configured by sending

configuration data down a single link, ConfigUp, at the

head of the configuration pipeline.

Link Interface Adaptor (IMS C012)

The IMS C012 provides for full duplex transputer

55

link communication with standard microprocessor and sub­

system architectures, by converting bi-directional serial

link data into parallel data streams. Status and data

registers for both input and output ports can be accessed

across the byte-wide bi-directional interface. Two

interrupt outputs are provided: one to indicate input data

available and one for output buffer empty.

The IMS C012 link runs at either the standard speed

of 10 Mbit/s or at the higher speed of 20 Mbit/s. Data

reception is asynchronous, allowing communication to be

independent of clock phase. The various link adaptor

registers and their memory addresses are listed in table

III.3. The link adaptor input and output processes are

described below.

LINK ADAPTOR INPUT PROCESS

A data byte received on the C012 link is transferred

into the input data register and the data present flag set

in the input status register. If interrupts are enabled,

a link data input interrupt is generated. A processor

controlling the PC bus will, either in response to the

interrupt or in a polling loop, examine the input status

register. The data present flag will be set to signify that

valid data is in the input data register. The processor

then reads the data byte.

If a OMA transfer from the IMS BOOS to the PC memory

has been set up then the OMA logic in the PC and the control

56

logic on the board will transfer the data byte from the

input data register. The process then reads the data byte.

A new data byte can now be received and the process repeats.

LINK ADAPTOR OUTPUT PROCESS

The output ready flag will be set in the output

status register. If interrupts are enabled for this event,

an interrupt will be generated. The processor, either after

receiving an interrupt or in a polling loop, reads the

output status register. It will determine from the output

ready flag that a byte may be written to the output data

register. It then writes the byte to the output data

register. The byte is transmitted on the C012 link output.

When the link adaptor is ready to transmit another byte the

output ready flag will be set. The DMA logic in the PC and

the control logic on the board will transfer the data byte

from PC memory to the output data register without

intervention from the processor if a DMA transfer from PC

memory to the IMS B008 has been set up.

PC BUS Interface

The IMS B008 has been designed to · work when plugged

into either a PC/AT bus slot or a PC bus slot. The bus

interface on the IMS B008 has four functions to perform:

(1) Convert the 8 bit parallel transfers on the PC bus

to serial link transfers, and vice versa.

(2) Provide a system services port.

(3) Control OMA transfers.

(4) Generate interrupts on link interface events,

on the assertion of transputer error, or on OMA

transfer end.

PC Bus - PC Bus

interface

• -
•

Interrupt
logic r-

,..,__

I

OMA
logic

OS a yz H tAn 1 e

Host
HostRese t

System

Services notHostErro r

outputint &
Inputint

C012
C012 Lin k

Fig. III.11 PC bus interface functional diagram

The block diagram of the PC bus interface is given

in Fig. III.11. The PC the PC bus interface has a

57

number of registers which are mapped into the I/0 address

space of the PC bus, separate from the memory address space.

They are located on a thirty-two byte long block of I/0

addresses decoded by the IMS BOOS. This thirty-two byte

block can have a base address of #150, #200, or #300 set by

option switches. A memory map of the registers is given in

table 3.3. Only nine of the thirty-two locations have

58

registers mapped into them; writing to the remainder of the

I/O locations will have no effect and reading these

locations will result in un-defined data being returned.

The IMS BOOS is however still driving the bus when

these addresses are read, this means that other boards on

the PC bus must be configured so that the I/O addresses they

respond to do not overlap this block of thirty two

addresses. Details of how these functions are performed and

how they are controlled from these registers are given in

[4] •

Table III.8 BOOS register addresses

Address Register

Board address+ #00
Board address+ #01
Board address+ #02
Board address+ #03
Board address+ #10
Board address+ #11
Board address+ #12
Board address+ #13
Board address+ #14

Link adaptor input data
Link adaptor output data
Link adaptor input status
Link adaptor output status
Reset/Error
Analyze
OMA request
Interrupt enable
OMA and interrupt channel select

III.6 Support software for the BOOS

The S708 software supports the use of an IMS BOOS

board in an IBM PC/AT. The S708 is a software package

consisting of the following tools which are used for loading

transputers via a server.

(1) MS-DOS device driver (S708DRIV.SYS)

(2) INMOS server (!SERVER.EXE)

59

(3) Module Motherboard Software (MNS2.B4)

The DOS device driver is provided to interface the

IMS BOOS to the DOS operating system. The INMOS server

enables programs to be run on the BOOS. It also loads

programs to transputer networks and provides file and

terminal services to the executing program. The module

motherboard software (MMS) is used to set the programmable

switches on the BOOS motherboard and any other transputer

boards connected to the BOOS. These switches determine the

topology of the transputers hosted on the B008 and

associated boards. The MMS also contains a network mapper

(worm) program which is used to explore the inter­

-connections of these transputers and provide a means of

checking the topology.

MS-DOS device driver

A DOS device driver {S708DRIV.SYS) is used to

interface the IMS BOOS to the DOS operating system. Having

physically installed both the hardware and the software

components in the PC it is necessary to tell the DOS to

recognize the new device. This is done by adding the

following line describing the device driver to the

CONFIG.SYS file in the root directory of the boot disk.

DEVICE= pathname [/A address] [/D chan IN] [/N name] [/I

int_num]

Pathname is the full DOS pathname of the

device driver file.

Address is the I/O address of the B008 card,

as set by the hardware switches on

installation.

Chan is the OMA channel number (O, 1, J, or

N). If 'N' is specified then the driver

will not attempt to use the OMA facilities

of the BOOS.

Name is the DOS device name which the device

will assume. If INMOS software products are

to be used then the default name to be used

is 'LINKl'. The name cannot be more than

the DOS limit of eight characters.

Int_num is the interrupt request line used

by BOOS, which should be set to the correct

value for the board. The default is IrqJ.

60

The following line is used in CONFIG.SYS to describe

the device driver for the present project.

DEVICE= c:\S708\S708DRIV.SYS /A 150 /LINKl /D 1

Driver file name= S708DRIV.SYS

Pathname= c:\S708\S708DRIV.SYS

Address= 150 (HEX)

Name= LINKl

Channel (DMA) = 1

NOTE: The default interrupt request line IRQJ is used.

61

INMOS Server

Programs are run on the BOOS by using the server

program provided. The server loads programs to transputer

networks and provides file and terminal services to the

executing program. Both the module motherboard software and

the WORM are executed this way. - All the sources for the

!SERVER are found in the ISERVER directory and ISERVER.EXE

is the executable copy of the ISERVER.

A detailed explanation of the !SERVER tool appears

in [10].

Module Motherboard Software

The range of INMOS Module Motherboards and Modules

allows many different configurations of modules and the

connections between them to be specified without making

physical ·changes to the boards. The configuration is

performed by sending configuration data to the IMS C004 link

switch(es) on the board(s). The MMS is designed to make it

easy to generate data needed to configure a system of

motherboards. The MMS presents a menu-driven interface and

provides interactive control of a motherboard or a system of

motherboards.

A terminal description file called PCMMS.ITM is used

by the MMS and hence a line is included in the autoexec.bat

file as follows:

set ITERM = PCMMS.ITM

62

Running the MMS

To run the MMS, the following command line is

entered at the DOS prompt:

iserver /sb :mas2.b4 softwire hardwire

replacing softwire and hardwire by files containing the

softwire description and hardwire description respectively.

The MMS will display the following menu options and prompt

key comaand. At this point selection is made for the

command codes listed on the menu.

H - Help

Q - Quit

S - Set C004 links

C - Check source files

T - Toggle diagnostics

N - Network mapper

M - Manual command entry

L - Change link numbers

V - View source files

R - Reset subsystem

I - Initialize C004s

B - Create a bootable file

o - Create an OCCAM table

In order to be able to configure the links

connecting the IMS C004s on the motherboards the MMS reads

files, known as the 'softwire' and 'hardwire' files.

63

Hardwire definition

This section describes how to define the hardware

configuration of a motherboard system. The MMS needs to

know how the slots, IMS C004s and edges are connected

together on the board in order to be able to determine

whether a particular set of softwire connections is possible

or not. The hardwire file contains a description of the

hardware configuration of the boards being used. Once this

description has been set up no changes will have to be made

unless physical changes are made to the motherboard system.

The following sections will describe what is required in

each section of a board definition, including some examples.

Given below is a sample 'hardwire' file for two IMS B008

motherboards connected in a chain.

DEF B008ONE -- FIRST BOOB IN THE CHAIN IS NAMED BOOBONE

-- DESCRIPTION OF THE COMPONENTS ON THE BOOB

SIZES
T2 1
C4 1
SLOT 10
EDGE 10

END

SPECIFY THE LINK NUMBER (CONFIG LINK) IN THE T2
TO C4 CONNECTION

T2CHAIN
T2 0, LINK 3 C4 0

END

-- DESCRIPTION OF THE ACTUAL WIRE CONNECTIONS ON THE BOARD

HARDWIRE

-- DESCRIPTION OF THE SLOT TO SLOP CONNECTIONS

64

SLOT o, LINK 2 TO SLOT 1, LINK 1
SLOT 1, LINK 2 TO SLOT 2, LINK 1

SLOT 8, LINK 2 TO SLOT 9, LINK 1

DESCRIPTION OF THE C4 LINK ~ITCH TO SLOT CONNECTIONS

C4 o, LINK 10 TO SLOT 0, LINK 3
C4 o, LINK 1 TO SLOT 1, LINK 0

END
DEF B008TWO -- SECOND BOOB IN THE CHAIN IS NAMED BOOB'l'WO

-- DESCRIPTION OF THE COMPONENTS ON THE BOOB

SIZES
T2 1
C4 1
SLOT 10
EDGE 10

END

-- SPECIFY THE LINK NUMBER (CONFIG LINK) IN THE T2
-- TO C4 CONNECTION

T2CHAIN
T2 0, LINK 3 C4 0

END

-- DESCRIPTION OF THE ACTUAL WIRE CONNECTIONS ON THE BOARD

HARDWIRE

-- DESCRIPTION OF THE SLOT TO SLOT CONNECTIONS

SLOT O, LINK 2 TO SLOT 1, LINK 1
SLOT 1, LINK 2 TO SLOT 2, LINK 1

SLOT 8, LINK 2 TO SLOT 9, LINK 1

DESCRIPTION OF THE C4 LINK SWITCH TO SLOT CONNECTIONS

C4 0, LINK 10 TO SLOT 0, LINK 3
C4 0, LINK 1 TO SLOT 1, LINK 0

END

-- END THE HARIMIRE DESCRIPTION

65

PIPE B008ONE, B008TWO END

Softwire Definition

The softwire connections allow links on modules on a

motherboard to be connected to other modules and edges,

without requiring a direct hardwired route between the two.

Instead the MMS routes the channels via the IMS C004s on the

motherboard. The connections that can be made depends on

how the IMS C004s and the module slots are physically

connected to each other.

A softwire description corresponding to the hardwire

example above has the following basic structure:

SOFTWIRE

PIPE B008ONE -- CONNECTIONS FOR THE FIRST BOARD
SLOT 1, LINKO to SLOT 3, LINK 0

PIPE B008TWO -- CONNECTIONS FOR THE SECOND BOARD
SLOT 2, LINK 3 TO EDGE 3

END

Further details regarding softwire, hardwire and

multiple board connections appear in [4].

III.7 IMS B012 Eurocard

IMS B012 is a eurocard TRAM motherboard which is

designed to fit into standard card cages such as the INMOS

ITEM or used for stand-alone operation. It has slots for up

to 16 TRAMs - the smallest that can be accommodated being of

'size 1'. Each module site, or 'slot', has connections for

66

four INMOS links which are designated link o, link 1, link 2

and link 3. TRAMs which are larger than size 1 can be

mounted on the B012. A larger module occupies more than one

slot and need not use all if the available link connections

provided by the slots which it occupies.

The B012 has two IMS C004 link switch ICs. These

devices are able to connect together links from the slots

and 32 links which are available on an edge connector. The

connections can be changed by control data passed to the

board down a configuration link, which may come from some

master system or from one of the TRAMs on the B012 itself.

Hardware Description

The 16 module sites or slots provided by the IMS

B012 are 16-pin sockets in accordance with the TRAM

Specification [12]. The slots are numbered as shown on the

board silk screen and in Fig. III.12. The IMS B012 has two

DIN41612 96-way edge connectors, Pl and P2. These carry

almost all signals and power to/from the board and are

easily identified from the board silk screen printing and

from Fig. III.12. P2 carries power, pipeline and

configuration links and system control signals (reset and

analyze and error).

Full details of the connections to every pin on Pl

and P2 are to be found in [5].

67

LEDs -
0 LDl Slot 1 Slot 2
0 LD2
0 LD3 Slot 5 Slot 6

Pl
Kl Slot 9 Slot 10
- -

Slot 13 Slot 14 • switch
Slot 0 Slot 3 SWl

-
Slot 4 Slot 7

~

- Slot 8 Slot 11 P2

Slot 12 Slot 15
.__

User power connector P3

Fig. III.12 IMS B012 schematic

Link Connections

Two links from each slot (links 1 and 2) are used to

connect the 16 slots as a 16-stage pipeline (in a pipeline,

multiple processors are connected end-to-end as in Fig.

III.13.)

PipeHead

Fig. III.13

SLOT0
Linkl

Link2

SLOTl
Linkl

Link2

SLOT15
Linkl

Link2
PipeTail

Pipeline connection for B012 slots

The pipeline is actually broken by jumper block by

jumper block Kl [5]. Kl will usually be jumpered in the

standard way to give a 16-stage pipeline but can allow other

68

combinations. When modules larger than size 1 are used, the

pipeline will be broken at the slots which are underneath

large modules. Pipe-jumpers [5] are provided to plug into

the unused slot and connect the sig~als for links 1 and 2

together, thus connecting the pipeline through to the next

TRAM in the chain.

Link 1 on slot O is wired to an edge connector (P2)

and is called pipehead. Link 2 on slot 15 is also taken to

P2 and is called pipetail. By connecting the pipe heads and

tails from multiple boards together, a large, multi-board

pipeline is created. The other two links (links o and 3) of

each slot are, in general, connected to two IMS COO4

programmable link switches (For detailed information on the

IMS COO4 see IMS COO4 link switch data sheet).

The link output signals from all the link Os on all

the slots (16 signals) are connected to 16 inputs of one IMS

COO4 (IC2). The link input signals from all the link Js on

all the slots (16 signals) are connected to 16 outputs of

the same IMS COO4. The remaining 16 inputs and 16 outputs

of that IMS COO4 are connected to an edge connector (Pl).

The other IMS COO4 (ICJ) is connected similarly,

except that 16 of its inputs are connected to the outputs of

all link Js on all the slots, and 16 of its outputs are

connected to the inputs of all link Os on all the slots.

The remaining inputs and outputs are connected to Pl. The

schematic appears in the Fig. III.14 below.

Pipe

Pl Edge Connector Links

,--------,__ _____ I I
I I

IMS C004 (IC2)
,__ _____ """T""" ____ ---,._1 I

I I
LinkOut3

Linkin3
___ I I

I I

LinkOut3

--

I I
I

Linkin3
Pipe

Head Slot 0 Slot 15 Tail

Linkin0

ic::---,--1 I
I I

Linkouto ,....._ _____ _______ ! I
I I

IMS C004 (IC3)
t------""T"'"" _______ I I

I I

Linkin0

I I

Fig. III.14

Pl edge connector links

IMS C004 to slot connections

~

'

LinkOut0

I

69

--

By hardwiring two of the edge connector links together off

the board, any of the slot link Os can be routed to another

slot link o, via the two connected edge links. Slot o link

0 (shown to be connected directly to the appropriate C004s

in the diagram) is actually connected to edge connector P2,

along with the respective pins from the IMS C004s. A link

jumper connector which is supplied with the board is used to

make the connection between the slot 0 link 0 and the IMS

C004s. Slot 0 link o is taken to P2 in order to provide two

links (links o and 1) which are directly connected to module

0 on an edge connector. The IMS C004s can be conveniently

bypassed in this way, should the application demand it.

Similarly slot 0 link 3 is connected to pins . on

70

jumper block Kl. Usually Kl will be configured to connect

slot O link 3 to the appropriate pins on the two IMS C004s.

Fig. III.15 shows the organization of the pipeline links and

the links which are available on P2 and Kl.

P2 < to C004s > Kl
< >

I o~--1 Hslot ~Slot 3 P2 -1 Slot3~Slot 1 2 > Kl

I

q > Kl

Slot 4
H

Slot 5 Hslot 6 Hslot 7 > Kl

q > Kl

Slot 8
H

Slot 9 Hslot 10Hs1ot 11 ~> Kl

y > Kl

Slot 12
H

Slot 13 Hslot 14HSlot 15

P2 <

<--------------------------->
P2 < > Kl

Fig. III.15

Pl Links

Pipeline links and links on P2 and Kl

Connector Pl has three rows of 32 pins. All the

pins in column "a" are connected to ground. All the pins in

column "b" are link inputs and all the pins in column "c"

are link outputs. At each of the 32 positions along Pl, the

three pins from rows a, band c together carry one link.

These signals may be connected to devices with link ports in

any way the user desires, especially in a stand-alone

application for the Eurocard. Fig. III.16 shows the Pl pin

assignment.

P2 links

71

When the IMS B012 is used in an INMOS ITEM card cage

the P2 connections are easy since a built-in back-to-back

Pl Edge Link To TRAM slot links

> 0 > 3
> 1 > 3
> 2 > 0
> 3 > 0
> 4 > 0
> 5 > 0
> 6 > 3
> 7 > 3
> 8 > 3
> 9 > 3
> 10 > 0
> 11 > 0
> 12 > 3
> 13 > 0
> 14 > 0
> 15 > 3
> 16 > 3
> 17 > 0
> 18 > 0
> 19 > 3
> 20 > 0
> 21 > 0
> 22 > 3
> 23 > 3
> 24 > 3
> 25 > 3
> 26 > 3
> 27 > 3
> 28 > 0
> 29 > 0
> 30 > 0
> 31 > 0

COLUMN
a - Fig. III.16 Pl pin assignments

b -
C

72

connector is provided which allows link and reset cables to

be connected to P2. However, for stand-alone applications

or in a card cage other than ITEM, the back-to-back

connector supplied may be useful. The P2 connections are

schematically represented in Fig. III.17.

Power<

C004 signals
usually connected<
to Slot o, Link 0 • • > PipeTail

PipeHead <

ConfigUp < • • > ConfigDown

D > Subsystem

Link connections<
from Kl

<

• > Down
Up<

Fig. III.17 P2 pin connections

I• pleaentation

Given below in Fig. III.18, is a multiple-board

daisy chain suitable for a installation in a card cage as

Well as for stand-alone operation.

Switch Configuration

The IMS C004 devices are controlled by an IMS T212

73

16-bit transputer. The IMS T212 has four links. Links O

and 3 are connected to the two IMS C004s (link o to IC2 and

link 3 to IC3). Link 1 is available on edge connector P2

and is called ConfigUp. Link 2 is available on P2 and is

called ConfigDown. The organization of these links is shown

in Fig. III.19.

I
Subsystem

~ , Up Down
,.....-i,. .. ___ .. ~ • Up; ,

~ -------,

HOST IMS B012 IMS B012

j

Linkl
j Link2 t -~__ _____ _. PipeTail

PipeHead PipeHead

ConfigUp CofigDown ConfigUp

Fig. III.18 B012 multiple-board daisy chain

config

ConfigUp
(Link 1)

t---~7! Link 0
IC2 Link

IMS C004 Kir----~ Link 3

ConfigDown
(Link 2)

Config

Link

Fig. III.19 B012 config links organization

IC3
IMS C004

74

The switch connections are made according to information

sent to the IMS C004 down its ConfigLink (Fig. III.18). The

two IMS C004s on the IMS B012 allow 64 link connections to

be made under software control using the module motherboard

software (MMS). Further details of the switch connections

can be obtained from (B012 user guide/reference manual).

Configuration data for the IMS C004 is fed into one

of the IMS T212's links (ConfigUp) from the master

configuration system which must be connected to P2. The

configuration system could be one of the TRAMs on the IMS

B012, provided that one of its links may be connected to

ConfigUp. In a multiple motherboard system it is intended

that the ConfigUp and ConfigDowm links from adjacent boards

be connected together to form a configuration daisy-chain

(Fig. III.19). This configuration architecture is fully

compatible with other INMOS TRAM motherboards. For

instance, an IMS B008 fitted to an IBM PC/XT or PC/AT or

compatible, may be part of a system containing multiple IMS

B012 motherboards fitted into a card cage such as the ITEM

[5].

Reset, Analyze and Error

Some TRAMs and most evaluation boards are capable of

generating system services for other TRAMs and transputers.

This is called a 'subsystem control capability'. The IMS

B012 can be connected to another board with subsystem

control and can also accommodate one TRAM with subsystem

75

control. Furthermore, the IMS B012 can generate subsystem

control signals for other boards.

The Reset, Analyze and Error pins of TRAMs (and

transputers) referred to collectively as 'system services'

are available for slot O only. In order to use these pins

it is necessary to have a module with subsystem capability

installed in slot o. The system service signals for slot O

are buffered and output on edge connector P2 as the 'Down'

pins. This allows system services for multiple boards to be

daisy-chained, the 'Down' of one board being connected to

the 'Up' of the next (Fig. III.18). Fig. III.20 below shows

the complete organization of the system services.

'Up' pins on P2 'Down' pins on P2
Buffers

Module in slot O

o Switch 6

Subsystem pins
.-------~'Subsystem'

Buffers
pins on P2

Modules in slots 1 to 15
and ICl (IMS T212)

Fig. III.20 B012 System services organization

76

Power Connections

A four-pin power connector (designated PJ) is

mounted near the front edge of the board as shown in Fig.

III.12 (page 63). PJ is wired to ov, +sv and via a wide PCB

track to 2 pins on P2. This connector is the kind used on

most floppy disk drives and when the appropriate pins on P2

are wired to 12V, PJ may be used to power disk drives or

similar equipment. Users may take other power signals to

PJ, such as ECL power supplies. These power pins can carry

up to 3A of current and pin 1 can have up to S0V with

respect to GND.

There is a pin post fitted in one corner of the board

(marked GND on the silk screen). This is connected directly

to the 0V plane and can be useful for attaching scope probe

ground leads.

Error lights

Three yellow LED indicators are mounted on the edge

of the board, opposite Pl (Fig. III.12). An indicator will

be lit when a module asserts its error pin. One LED, LDl,

monitors error from slot o. The other two LEDs, LD2 and

LDJ, monitor error from the modules on the front row (not

including slot 0), and back row of slots respectively. The

front row is the group of seven slots situated along the

front panel side of the board (not including slot 0). The

back row is the group of eight slots situated along the

opposite edge of the board (Fig. III.12).

77

Cables

INMOS has developed a standard cable set for

evaluation boards. The connectors on all INMOS boards and

modules are designs to be compatible with these cables. The

IMS B012 is provided with a cable set which include many

short link cables (which can be used to link edge links to

each other), some standard and long link cables (which can

be used to connect multiple cables together), a power cable,

some system services cables (reset, analyze and error) and

two DIN 41612 connectors which when plugged into Pl and P2

allow cables to be connected to the board.

OIL switch

Each of the six switches which make up SWl controls

one signal on the board. When a switch is on the signal is

low and when the switch is off the signal is high. Further

information on the switch settings can be obtained from [5].

Eurocard (8012) Stand-Alone I•pleaentation

The B012 is designed not only for installation in

the ITEM (6] but also for stand-alone operation. The

various connections and requirements for stand-alone

operation are described below.

Power connections

Power is supplied to the board via the PJ connector

(Fig. III.12) using an INMOS standard power cable.

Link connections

Links o and 3 of the various slots are available

78

from the Pl edge link connector (Fig. III.16). Links 1 and

2 of each slot are pipelined (Fig. III.13) and link 1

(PipeHead) and link 2 (PipeTail) of slots o and 15

respectively are available on the edge link connector P2

(Fig. II[.17). Further the P3 links (ConfigUp, ConfigDown,

system Services etc) can be accessed by connecting a back­

to-back connector (Fig. III.17, page 68). The purpose of

this connector is to allow multiple small leads (link cables

and reset cables) to be plugged and unplugged at the same

time. In addition the back-to-back connector has keying

pins either removed or sleeved to make it difficult to

orientate standard INMOS link and reset cables incorrectly.

III.6 Im10s Transputer Evaluation Nodule (ITEM)

The ITEM is a modular cabinet that has been designed

to accommodate up to 10 INMOS double extended Eurocard

transputer boards. For example, the B211 will accept boards

such as the IMS B012 (double extended Eurocard) used for the

present project. The ITEM provides a simple means of

connecting transputer boards together with the necessary

power and cooling requirements to provide potential

supercomputing power, The ITEM is consequently suitable as

an evaluation vehicle for large transputer systems or as a

powerful embedded accelerator accessible from a host.

The ITEM is designed to be upgradeable to meet the

user's changing requirements as a project evolves. Further

79

evaluation boards can be easily added to give additional

functionality such as disk storage or graphics. If greater

computing power is required, the multiple ITEMs can be

linked and stacked to build even larger transputer arrays.

An ITEM complete with 10 IMS B012 motherboards has a maximum

processing power of 3200 MIPs/360 MFLOPs sustainable power,

when each one is loaded with 16 T800-G20 Transputer Modules

or TRAMs. The connector panel at the rear of the ITEM

includes:

(1) Four BNC connectors for linking the ITEM to color

monitors.

(2) Two 25-way D connectors for RS232 connection

terminals, computers, and peripherals.

(3) Two 37-way D connectors, each of which can carry

12 transputer links, and three system service

ports. A cable is supplied with the ITEM to

connect to these D connectors.

Further details of ITEM appear in [6].

80

CHAPTER IY

DESCRIPTION OF THE PROCESS CONTROL SYSTEM

The block diagram of the system is shown in Fig. IV.1.

IBM PC
USER
INTERFACE

STIRRER

-1---
Fig. IV .1

link 2 link 3
link 0 out in out in

ROOT T222
TRAM in out B421 in out

TRAM

link 1 link 3

THERMOCOUPLE HP3497A
DACU

-----> HEATING
COIL

System block diagram

f ON/OFF
~ CONTROL

TS00
B403
TRAM

POWER
SUPPLY

The various blocks in the diagram are described below.

IBN PC/AT Clone

The PC is used essentially for user I/O. It also

holds the OCCAM Toolset [10] and the IMS BOOS TRAM

81

motherboard required for compiling and downloading the OCCAM

software on to the transputer network. The IMS B008 also

holds the IMS B403 (root) TRAM.

ITEM

The ITEM rack is used essentially to hold the

Eurocard which in turn holds the GPIB (T222) TRAM. Note

that both the TRAMs used in the system can be mounted on the

IMS B008 motherboard in the IBM PC. The ITEM is implemented

in the designed system purely for qualitative analysis.

HP3497 Data Acquisition/Control Unit (DACU)

The DACU is used to acquire and achieve analog to

digital conversion of the thermocouple voltage. This is

achieved by using HPIB programming using HPIB command codes

(3). The data transfer between the DACU and the GPIB TRAM

is monitored by the OCCAM process residing on the GPIB TRAM.

Test process control syste•

The test process control system comprises of a

stirred tank heater. The liquid (water) in the tank is

heated by turning the heating element ON or OFF at regular

intervals. The system (mathematical) model is determined by

conducting dynamic tests and the necessary control equations

are formulated. A proportional control algorithm is

implemented to control the temperature of the water in the

tank.

IV.1 Test syste• description

The controlled variable in the test control system

82

of the stirred tank heater is the temperature of the liquid

in the tank. The automatic control system is designed to

manipulate the heating element to keep the water temperature

at its desired value or set point in spite of the various

disturbances. Flow rate of the liquid in the tank is

regulated by adjusting the input and output pumps.

The process control is achieved through a

proportional control algorithm. The controlled quantity,

i.e., the teaperature of the heating element, is effected by

the manipulated variable which is the heat supplied to the

liquid. Disturbance (characterised by the deviation in the

desired temperature setting owing to the steady flow of

water) enters the process and tends to drive the controlled

quantity away from its set-point condition. The control

algorithm then maintains the set-point of the controlled

quantity (temperature) by adjusting the manipulated variable

(heat) and hence reduces the effect of the disturbance.

The feedback controller determines changes needed in

the heat to compensate for the disturbance that upset the

process or for changes in set point. The control algorithm

designed for the present system implements proportional

control in which the controller output is algebraically

proportional to the error input signal to the controller.

IV.2 Process Characterization

The typical block diagram of a feedback control loop

is shown below in Fig. IV.2. The various signals and

83

transfer functions (Laplace transforms) are described below.

U{s)----1G~(s)1---~

R(s) +--
t---'!!l,! Gc (s) 1---- Gy {s) GW'l{s) i----~ ~

.___,,........... -+

C{s)
-----------~H(s)i------------'

Fig. IV. 2 A typical feedback control system

M(s) the controller-output signal

C(s) the transmitter-output signal

E(s) the error signal

U(s) the disturbance signal

G0 (s) - the controller transfer function

G,,{s) - the transfer function of the final control

element

G_(s) - the process transfer function between the

controlled and the manipulated variable

G.{s) - the process transfer function between the

controlled variable and the disturbance

H(s) the transfer function of the sensor­

transmitter

Using simple block diagram algebra manipulations and

for the system model under consideration the block diagram

of Fig. IV.2 is further reduced as shown below. In this

84

U(s)---------,

-I
M(s)

G(s)

G(s) = G,,(s) G.(s) H(s) I

Fig. IV.3 Reduced block diagram for the system model

diagram there are only two blocks in the control loop, one

for the controller and the other for the rest of the

components of the loop. The advantage of this simplified

representation is that it highlights the two signals in the

loop that can be usually observed and recorded: the

controller output M(s) (the power output control to the

heating element) and the transmitter signal C(s) (the

thermocouple voltage). Therefore, the lumping of the

transfer functions of the control valve, the process, and

the sensor-transmitter into a single block is not just a

convenience, but a practical necessity. This combination of

the transfer functions is represented by G(s). This

combined transfer function is approximated by low-order

models for the purpose of characterizing the dynamic

response of the process. Thus the characterized "process"

includes the dynamic behavior of the control valve and the

sensor/transmitter. The stirred tank heater system under

study is modeled as a First-order Plus Dead Ti•e (FOPDT)

system.

85

The transfer function G0 (s) for a proportional

controller is a gain K0 • The transfer function G(s), of the

system in the Laplace domain for the FOPDT model is shown

below

Ke-e••
C(s) •

1
..... (1)

'tS+

and the controller gain

Kc = (1 /K} * (t 0 /) • • • • • (2)

This model characterizes the process by three parameters:

system gain K, dead time or transportation lag t 0 , and

system time constant l". The problem of determining the

parameters for this loop is solved by performing a dynamic

flow test as outlined below.

VI.3 Dyn8.lllic test and syste• • odel

The controller is placed in "manual" mode (i.e. the

loop is opened) and the level of water in the tank is kept

steady. Heat is applied to the water at a constant rate and

the temparature values are acquired until a steady state is

reached. A graph with temparature vs time, also known as a

process reaction curve (Appendix B), is ·plotted and is

interpreted to obtain the parameters required for

formulating the system equations.

The procedure for the actual test for the designed

system is

(1) Water is admitted into the tank heater and the

86

output pump is turned on.

(2) The input flow (coming from the tap source) and

the output flow (controlled by the pump) are

adjusted until the level in the tank is

maintained constant.

(3) The data acquisition program data_acq.bas is run

on the PC in the LabWindows [15] environment and

simultaneously power is supplied to the heating

element at the desired percentage (60%), by

adjusting the heater dial manually.

(4) Temparature values are acquired in 5 second

intervals until the system has reached a steady

state (constant temparature) and the graph of

temparature Vs time is obtained.

(5) From the acquired data the required FOPDT model

parameters for the proportional control algorithm

are obtained.

In the absence of the disturbances, and for the conditions

of the test, the block diagram of Fig. IV.3 is redrawn as in

Fig. IV. 4.

R(s) + -~-1------~ M(s')
11 G(s)

C(s)

Open
loop

Fig. IV.4 Block diagram for the dynamic test

87

The response of the transmitter output signal is given

by

C(s) = G(s) M(s)

For a step change in controller output of magnitude Am

and a POPD'l' model, we have

Ke-tos Am
C(s) • l . - .••.. (3)

'tS+ S

Expanding this expression by partial fractions, we obtain

C<5l = K. A"' . c_t.•. ~ - ~ J · . · . . (4-)

Thus Inverting with the help of Laplace transforms and

applying the real translation theorem of Laplace transforms

[16], we get

-<t.-~
C(s)-::.. l<Z. Am. uG:,-t~ . e -r ••••• (5)

Where the unit step function U(t - t.,) indicates that

Ac(t)-Ofort-5t0 ••••• (6)

The term Ac is the change of the transmitter output from its

initial value:

Ac(t)-c(t)-c(O) •.•.. (7)

From the graph obtained from running the dynamic test, the

term~c. is the steady state change in c(t). Thus from

equation 5 we find

AC(s) •lim4C(t) •K. Am (8)

88

From the above result and knowing that the model response

must match the process reaction curve at steady state, the

steady state gain K is calculated, which is one of the model

parameters:

Ac" K- Am (9)

The dead time or transportation lag t 0 and the time constant \

are determined by the following method proposed by Dr.Cecil

L. Smith [14].

The values are obtained from the process reaction

curve by selecting two points in the region of high rate of

change. The two points recommended are

{ to + C 1 / 3 > * T } ••••• C 1 o >

and

{ t 0 + 'i' } • • • • • (11)

To locate these points we make use of equation 5.

C(t
0

+ 1) = K. m. [1-e<-1 >] = 0.632 A c • ••••• (12)

C (t
0

+ (1/3)*) = K. m. [1-e-<113>] = 0.238 .d Cs ••••• (13)

These two points are labeled t 2 and t 1 , respectively, in the

process reaction curve appearing (Appendix B). The values

of t
0

and 1" are then obtained by the simple solution of the

following set of equations:

t 0 + ~ = t 2 • • • • • (14)

t 0 + (1/3) * 'Y = t 1 • • • • • (15)

which reduces to

= (3 /2) * (t2 - t1) • • • • • (16)

t 0 = t 2 - '"t' •••• • (1 7)

where t 1 is the time at which

/l C = o • 2 8 3 Ac,. • • • • • (18)

and t 2 is the time at which

Ac = o.632 !Cs ••••• (19)

The actual values obtained from the process reaction curve

are listed below.

The minimum and maximum values of c(t) are,

C (t.1n) = 17. 24 °c (20)

C(t.axl = 21.32 °c (21)

The steady state value of c(t)

A c. = 21.32 - 11.24 = 4.00 °c c22)

To calculate t 1 and t 2 ,

~ c.1 = o. 283

A c.2 = o. 632

0 c. = 1.16 C

0 c. = 2. 58 C

(23)

(24)

89

C.1 + C (t.1 n) = 1 • 16 + 1 7 • 2 4 = 18 • 4 C • • • • • (2 5)

C.2 + C (t.1n) = 2 • 5 8 + 1 7 • 2 4 = 19 • 8 2 C ••••• (2 6)

From the process reaction curve

t 1 (at A c.1) = 23.0 * 5 = 115 seconds

t 2 (at A c.2) = 40.0 * 5 = 200 seconds

Hence using equation 16

T = 127.5 seconds ••••• (29)

and dead time from equation 17

t 0 = 72.5 seconds .•••. (30)

(27)

(28)

Also the process gain K is evaluated using equation 9

K = (4.08/0.6) = 6.8 ••... (31)

Note that m=0.6 (or 60%) is the value at which the heater

dial is set manually for the duration of the dynamic test.

Thus the controller gain from equation 2 is

Kc= (1/6.8)*(127.5/72.5) = 0.26 •.••. (32)

IV.4 Proportional controller i • pleaentation aspects

90

The proportional controller is the simplest type of

controller, with the exception of on-off controller (14].

The equation which describes its operation is the following:

m(t) = 111t, + Kc * (e(t)) .•••• {33)

where

m(t) = output from the controller

r(t) = set point (or reference temperature)

c(t) = controlled variable (temperature of the liquid in the

tank)

e(t) = error signal. This is the difference between the

reference temperature and the actual temperature of

the liquid in the tank i.e.,

e(t) = r(t) - c(t) ••••. {34)

Kc= controller gain (calculated to be .26 or 26% from

equation 2.

mb = bias value of the controller.

Equations 33 and 34 show that the output of

controller is proportional to the error between the

91

reference temperature and actual temperature read from the

thermocouple sensor. The proportionality is given by the

controller gain Kc. This gain, or controller sensitivity,

determines how much the output from the controller changes

for a given change in error. In reality, for the system

under study, this proportional action is achieved in a

slightly different manner as outlined below.

To achieve proportional control action on the system

the following scheme is implemented on the system.

(1) Temperature is acquired from the thermocouple

in a free running mode.

(2) The error value is evaluated using equation 34.

(3) The controller output m(t) is evaluated using

equation 33.

(4) A control interval time (Interval) is chosen such

that

Interval= [r(t) * Kcl seconds ••••• (35)

(5) The heater is turned ON for a time period of

ON.time= [e(t) * Kc] seconds •...• (36)

and OFF for a time period of

OFF.time= [Interval - ON.time] seconds ..••. (37)

The above scheme is used since the energy supplied

to the heating element installed in the tank is not

controllable continuously using the DACU i.e., the heater

can only be turned ON or OFF. Hence proportional control is

achieved by having the heater-ON and heater-OFF time periods

proportional to the error signal as governed by the

proportional gain value Kc, within the control interval

time.

The procedure is illustrated in the following

example.

Let

r(t) = 50.0 C

c(t) = 25.0 °c

then for a proportional gain value of

Kc= 0.26

the control interval is obtained from equation 35 as,

Interval= 13 seconds

and from equation 34

e(t) = 25.0 °c

thus the ON time period

ON.time= 6.5 seconds

and the OFF time period

OFF.time= 6.5 seconds

92

The proportional control algorithm is implemented on

the transputer network using OCCAM2. Two separate processes

are written to achieve the proportional control and they are

mapped on to the transputer network. The software is listed

and the implementation on the transpu~er network is

illustrated in the following sections.

93

IV.5 Software outline

Two OCCAM processes are written to separately handle

the data and command input/output (I/0) and proportional

control action as described below.

(1) Process PROC_IO (I/0 process): This process

acquires the data (thermocouple voltage) from the

DACU by sending the appropriate HPIB command

codes. The data acquired, which is in ASCII

format, is passed on to the control process

PROC_CON (control process). The acquire

process is mapped onto the GPIB TRAM which

interacts with the DACU via GPIB programming.

(2) Process PROC_CON (control process): This process

converts the ASCII data to a 32-bit floating point

number. The thermocouple voltage is converted to

a temparature value and the necessary proportional

control operation is performed. The ON/OFF

control message is passed on back to the acquire

process which in turn relays the appropriate

command to the DACU. Eventually the DACU turns

the tank heater ON or OFF for the required time

period as determined by the software.

The descriptive listing of the two processes appears

in appendix A.

94

IV.6 Network configuration and software i • pleaentation

The system is set up as outlined for performing the

dynamic test in section IV.3 above. As outlined in section

III.4 the necessary Hardwire and Softwire are created for

the IMS BOOS motherboard. The contents of the Hardwire file

are listed in section III.4. For the present network both

the IMS B403 (T800 based TRAM) and the IMS B421 (T222 based

GPIB TRAM) are installed on the BOOS motherboard. Further

the root TRAM on the BOOS is not used as part of the network

and hence the B403 TRAM is made to interact with the host

(IBM PC) by skipping the link 2 of the root TRAM. This

network is depicted in Fig. IV.5.

IB PC INTERFACE

link
out

ROOT
TRAM

in

Fig IV.5

2 link 3
in out

IMS
B421

out in
link 1

TO DACU AND
TEST SYSTEM

in

out
link

Transputer network schematic

IMS
B403

3

The two OCCAM process are compiled, linked and

downloaded onto the transputer network in the IBM PC (DOS

environment) as outlined below.

95

The process PROC_IO is checked for syntax errors

using the following command line.

ICHECK PROC_IO /T2 /B

The process is then compiled and linked with the

appropriate library modules using the following command

lines.

OCCAM PROC_IO /T2

and

ILINK PROC_IO.t2h hostio.lib convert.lib fOOl.lib fOOlio.lib

fOOlllev.lib

similarly the process PROC_CON is checked, compiled and

linked using the following command lines.

ICHECK /TS /8

OCCAM PROC_CON /TS

ILINK PROC_CON.t8h hostio.lib convert.lib

The output files from the above ILINK tool have extensions

.c2h and .c8h corresponding to the processes PROC_ACQ and

PROC_CON respectively. A network configuration file

PROC_NET.PCJlll is created (whose contents are listed and

described below) the appropria~e network is configured using

the ICONF tool and the following command line.

ICONF PROC_NET

As outlined in section III.4 the necessary Hardwire

and Softwire files are created for the IMS BOOS motherboard.

Note for the present network both the IMS B4O3 (T8OO based

TRAM) and the IMS B421 (T222 based GPIB TRAM) are installed

96

on the BOOS motherboard. Further the root TRAM on the BOOS

is not used as part of the network and hence the B4O3 TRAM

is made to interact with the host (IBM PC) by skipping the

link 2 of the root TRAM and placing the host link on link 1

of the B4O3 TRAM. This network is schematically represented

below.

CHAPTER V

SUMMARY

V.1 Findings

The problem of designing and implementing a

transputer network for a real-time application was

successfully tackled and the overall system performed as

expected. The performance of the individual components of

the system is discussed.

PC TRAM lllOtherboard (B008)

97

The IBM PC served as a good platform for installing

and evaluating both the hardware and software required to

support the B008. The B008 interfaced well with the PC bus

and all its features were well exploited. The module

motherboard software required for the set up and evaluation

of transputer networks performed well. The S708 [4] DOS

device driver supported the B008 without any hitch.

OCCAM2 toolset

All the features of the OCCAM2 toolset performed as

expected. The software for the system performed well

without any major debugging problems.

Eurocard (B012)

The Eurocard B012 performed well in the ITEM [6] but

its performance was not evaluated for stand-alone operation.

98

HP3497A Data Acquisition/Control Unit (DACU)

The DACU responded well to the programming from the

GPIB transputer. It played an important role in converting

analog thermocouple voltage to digital format and subsequent

transfer of data to the PC for analysis and control.

Test syste•

The test system responded well to the control action

and the thermocouple voltage was acquired without any

problem. The input and output pumps performed well in

maintaining the level of water constant in the tank.

Transputer network

The software and hardware aspects of networking the

transputers were dealt with successfully. The required

hardware connections were established with the standard

cables supplied by INMOS. The transputer link connections

were adequately established using the MMS software supplied

by INMOS.

Control Algorithlll

The proportional control algorithm was modified to

accomodate the hardware and software constraints imposed by

the test system. The modified algorithm was successfully

implemented over the network and the expected results were

obtained.

V.2 Conclusions

The transputer proved to be an effective computing

99

tool in implementing the proportional control algorithm for

the designed test system. The OCCAM programming language

provided not only the simplicity and structure of a high­

level language but also the flexibility of an assembly

language [1]. In designing and realizing the entire system,

transputer networking (hardware) and GPIB programming (using

HP3497A command codes [3]) proved to be more time-consuming

compared to the control algorithm design and OCCAM coding.

This happened since the transputer hardware was installed

for the first time. Students interested in further study in

this area are recommended not to delve into the hardware

details (except for removal or addition of transputers to

the network) but to concentrate on the relevant software,

i.e, OCCAM (or PARALLEL C), for programming and the MMS for

linking the custom made networks.

The documentation supplied by INMOS regarding their

products is found to be more descriptive than functional.

It is recommended that only the sections describing the

actual implementation aspects be studued to save time.

V.3 Reco-endations

The proportional control algorithm implemented for

the present study has been modified to suit the available

hardware. It is recommended that an analog amplifier be

designed and interfaced to the heating coil so that the

power supplied to the heating element can be controlled

100

continuously.

Also, the data acquisition and control operations

could be performed by designing an interface compatible with

GPIB programming. This would not only eliminate the need

for the DACU but also speed up the data transfer rate upto

20 Mbits/s, which is the peak rate achievable by the

transputer links. Further the network could be expanded to

monitor several other parameters (i.e., pressure, frequency

etc.) with ease with such an interface as outlined in the

figure v.1.

link x

GPIB
USER
INTERFACE

PRESSURE
SENSOR

'------_.,-> CONTROL
ACTION

link y
ROOTi.e-------------~
TRAM

GPIB
USER
INTERFACE

TEMPERATURE
SENSOR

Fig. V .1

link z --------> CONTROL
ACTION

GPIB
USER
INTERFACE

FREQUENCY
SENSOR

--------> CONTROL
ACTION

A typical transputer based multi-sensor network

101

APPENDIX A

SOFTWARE LISTING

PROCESS PROC_Io.occ

-- PROCESS PROC_IO.OCC ACQUIRES THE TIIBRNOCOUPLE VOLTAGE (IN
-- ASCII FORMAT), INTERACTS WITH THE PROCESS PROC_CON.OCC AND
-- SENDS THE 'ON' OR 'OFP' COIINAIIDS 'l'O THE IIBATBR VIA THE
-- DACU.

-- THE VARIOUS PROTOCOI.S ARB DEFINED IN THE 'INCWDB' FILES
-- LISTED BELOW.

#INCLUDE "hostio.inc"
#INCLUDE "errors.inc"
#INCLUDE "flconst.inc"
#INCLUDE "gpibprot.inc"
#INCLUDE "acqprot.inc"

-- PROCESS DBFFINITIOII

PROC PROC_IO (CHAN OF SP fs, ts, CHAN OF ACQPROT
chn.aski.acq, chn.aski.cnv)

LIBRARY FILES ARB 'USED' BELON.

#USE "hostio.lib"
#USE "fOOl.lib"
#USE "fOOlio.lib"
#USE "convert.lib"

-- THE FOLLOlllNG PROCESS RESIDES ON THE T222 BASED GPIB TRAIi
-- AND COJOroN1:CATBS WITH THE FOOl SOP'l'NARB (APPBNDIX [])
-- VIA THE CBAN1fBLS fro•.FOOl AND to.FOOl

PROC hpibt2 (CHAN OF FOOlPROT from.FOOl, to.FOOl)

-- DECLARATION OF VARIABLES

INT16 source, pri. address, mode, drivers, error, count. mssg:
INT16 tx.period, term, countm, count.control, tk.address:
INT lenl, t, i, iterate:
BYTE result:
[l]INT16 la.list:
REAL32 check.end, check.two, check.three:

102
[l2)BYTE data, data.aski.acq dat .
[12]BYTE scrap, temp, er switch a.aski.conv,
[4 l BYTE mesage: ' , avg. ref:

avg.volt:

[5]BYTE ON.or.OFF, mssg:
[6]BYTE Sread.val:
aOOL error.itn, loop:

-- SET UP ROUTINES FOR THE GPIB TRAM APPEAR BELOW.
-- DETAILS OF THE ROUTINES APPEAR IN THE FOOl MANUAL

SEQ

FOOl.START.SETUP (from.FOOl, to.FOOl, error)

pri.address := 28 (INT16)
source := default
FOOl.SET.GPIB.ADDRESS (from.FOO!, to.FOO!, source,

pri.address, error)

mode:= system.controller

[8] •

FOOl.SET.DEVICE.MODE (from.FOO!, to.FOO!, source, mode,
error)

drivers:= tristate
FOOl.SET.BUS.DRIVERS (from.FOO!, to.FOO!, source, drivers,

error)

tx.period := 500 (INT16) -- ms
FOOl.SET.TIMEOUT (from.FOO!, to.FOO!, tx.period, error)

term:= LP.term
FOOl.SET.TX.TERMINATOR (from.FOO!, to.FOO!, term, error)

FOOl.SET.RX.TERMINATOR (from.FOO!, to.FOO!, term, error)

POOl.END.SETUP (from.FOO!, to.FOO!, error)

FOOl.SEND.IFC (from.FOOl, to.FOO!, error)

FOOl.SET.REN (from.FOO!, to.FOOl, TRUE, error)

mesage := "AR n -- RBSBT THE ANALOG CHAM1fELS IN THE
-- OACU

countm := 4 (INT16)
la.list [OJ := 9 (INT16)
tk.address := 9 (INT16)
FOOl.SENO (from.FOOl, to.FOO!, la.list, countm, mesage,

error)

mesage . .. " ,.
Pooi.sENo (from.roo1,

error)

CLEAR THE DACU COMMAND BUFFER
to.FOO!, la.list, countm, mes age,

- - THE REl"KREMCE INPUT VALUE IS
-- KEYBOARD. TAKEN IN PROH 'l'lffi

so.write.string (fs, ts, "ENTER
R THE REFERENCE INPUT

EQUIREO ")
so.read.echo . line (fs, ts, lenl, 5 so.write.nl (fs, ts) read.val , result)

chn.aski.acq ! medm; Sread.val

-- MUMBBR 01"
-- BELOW.

SAMPLES TO READ (AND AVERAGE) IS IHl?'UT

so.write.strii:ig (fs, ts, "ENTER ITERATION VALUE")
so.re~d.echo.1nt (fs, ts, i ter ate, error.itn)
so.wr1te.nl (fs, ts)

t := iterate
i := t

loop: = TRUE

WHILE loop
SEQ

1 0)

mesage := "AR ff -- RESET THB ANALOG CHAM1fELS IM THE
-- DACU

FOOl . SEND (from.FOO!, to.FOO!, la.list, countm,
mesage, error)

me sage : = " "
FOOl.SEND (from.FOO!, to.FOO!, la.list, countm ,

mesage, error)

mesage :• "All ff INPUT VOLTAGE VALUE FROM ANALOG
-- CHANNEL 1 i . e. , THERMOCOUPLE

PROBE VOLTAGE (T_PROBE) IN
ASCII FORMAT .

FOOl.SEND (from.FOO!, to.FOOl, la.list, count.Jn,
mesage, error)

FOOl.RECEIVE (from.FOO!, to.FOOl, tlt.address, scrap,
error)

WHILE t > 0 (INT)
SEQ

check.two:• 10.0 (REAL32)

-- SEND FLAG (10.0) TO PROC_CON TO INDICATE
-- T_ PROBE ACQUISITION (AND AVERAGING).

chn.aski.acq I float; check.two

104

FOOl.SEND (from.Foo1, to.FOOl, la.list, countm,
mesage, error)

FOOl.RECEIVE (from.FOOl, to.FOOl, tk.address,
data, error)

data.aski.acq := data

-- SEND T_PROBB TO PROC_COII

chn.aski.acq 1 long; data.aski.acq

-- RECEIVE THE T_PROBE AVERAGE VOLTAGE

chn.aski.cnv? CASE long; data.aski.conv

avg.volt:= data.aski.conv
t := t - 1 (INT)

so.write.string (fs, ts, "THE AVERAGE PROBE
VOLTAGE IS [volts]")

so.write.string.nl (fs, ts, avg.volt)

mesage := "AR "
FOOl.SEND (from.FOOl, to.FOOl, la.list, countm,

mesage, error)

mesage :=" "
FOOl.SEND (from.FOOl, to.FOOl, la.list, countm,

mesage, error)

mesage := "AI19" INPO'l' AJIALOG CIIANJtfEL 19
-- i.e., REFERENCE JUHCTION
-- (T_RBF) VOLTAGE VALUE.

FOOl.SEND (from.FOOl, to.FOOl, la.list, countm,
mesage, error)

FOOl.RECEIVE (from.FOOl, to.FOOl, tk.address,
scrap, error)

SEQ
WHILE i > O (INT)

SEQ
check.three:= 20.0 (REAL32)

-- SEND FLAG (20.0) TO PROC_CON TO INDICATE
-- T__RBF ACQUISITION (AND AVERAGING).

chn.aski.acq 1 float; check.three
la.list [O] := 9 (INT16)
tk.address := 9 (INT16)

mesage := "AI19"

105

F00l.SEND (from.F0Ol, to.F00l, la.list,
count•, mesage, error)

F00l.RECEIVE (from.F00l, to.F00l, tk.address,
data, error)

data.aski.acq := data

-- SEND THE REPBRBIICB JUNCTION VOLTAGE
-- (ASCII) VAWB TO PROC_CON FOR AVBRAGilfG.

chn.aski.acq 1 long; data.aski.acq

-- RECEIVE AVERAGE T_RBP VALUE.

chn.aski.cnv? CASE long; data.aski.conv
avg.ref:= data.aski.conv
i := i - 1 (INT)

t := iterate
i := t
so.write.string (fs, ts, "THE AVERAGE REFERENCE

VOLTAGE IS [volts] ")
so.write.string.nl (fs, ts, avg.ref)
check.end:= 30.0 (REAL32)

-- SEND FLAG (30.0) TO PROC_CON TO INDICATE END
-- OF ACQUISITION FRON DACU.

chn.aski.acq ! float: check.end

-- RECEIVE AND DISPLAY TIIERNOCOUPLB TBNPARATURB
-- VALUE FRON PROC_CON.

chn.aski.cnv? CASE long; temp
so.write.string (fs, ts, "MEASURED TEMPARATURE IS

[DEG. C] ")
so.write.string (fs, ts, temp)
chn.aski.cnv? CASE long; temp
so.write.string.nl (fs, ts, temp)

-- RECEIVE 'ON.tiae' VALUE FRON PROC_COM.

chn.aski.cnv? CASE long; switch
so.write.string (fs, ts, "ON.time")
so.write.string.nl (fs, ts, switch)

mssg := "AR "
count.mssg := 5 (INT16)
F00l.SEND (from.F00l, to.F00l, la.list, count.mssg,

mssg, error)

. .

106

mssg :=" "
FOOl.SEND (from.FOO!, to.FOOl, la.list, count.mssg,

mssg, error)

-- RECEIVE OR.or.OFF MESSAGE ARD SEND THE 'OR' ARD
-- 'OFF' COIOIARDS TO THE BEATER VIA THE DACU.

chn.aski.cnv? CASE md.srt; ON.or.OFF
so.write.string.nl (fs, ts, ON.or.OFF)
FOOl.SEND (from.FOO!, to.FOO!, la.list,

count.control, ON.or.OFF, error)

chn.aski.cnv? CASE md.srt; ON.or.OFF
so.write.string.nl (fs, ts, ON.or.OFF)
FOOl.SEND (from.FOO!, to.FOO!, la.list,

count.control, ON.or.OFF,
error)

RECEIVE ARD DISPLAY ERROR VALUE FROM PROC_CON

chn.aski.cnv? CASE long; er
so.write.string.nl (fs, ts, "ERROR
so.write.string (fs, ts, er)

REFERENCE")

mesage := "SI " -- SYSTEM INITIALIZE 'l'IIB DACU.
FOOl.SEND (from.FOOl, to.FOO!, la.list, countm,

mesage, error)

mssg := "AR n
FOOl.SEND (from.FOO!, to.FOOl, la.list, count.mssg,

mssg, error)

FOOl.DEVICE.CLEAR (from.FOOl, to.FOOl, TRUE, la.list,
error)

FOOl.SET.REN (from.FOOl, to.FOOl, FALSE, error)

so.exit (fs, ts, sps.success)

THE F00l (APPENDIX []) ARD bpibt2 (ABOVE) PROCESSES ARE
RUN OR THE 8421 TRAN IR PARALLEL.

CHAN OF FOOlPROT from.FOOl, to.FOOl:
SEQ

PAR
FOOl (from.FOOl, to.FOOl)
hpibt2 (from.FOOl, to.FOOl)

107

PROCESS PROC_CON.OCC

PROCESS PROC_CON.OCC RECEIVES TBB TBERJIOCOUPLB VOLTAGES
FRON THE PROCESS PROC_Io.occ, EVALUATES THE TIIERIIOCOUPLE
TEMPARA'l'URB, DETERIUNBS THE 'ON.tbae' AND 'OFP.ti:ae' AND

-- SENDS THE APPROPRIATE 'ON' OR 'OPP' COM11AND TO THE PROCESS
-- PROC_Io.occ.

#INCLUDE "acqprot.inc"
PROC PROC.CON(CHAN OF ACQPROT chn.aski.acq, chn.aski.cnv)

#USE "convert.lib"
[S]BYTE ON, OFF:
[6]BYTE Rread.val:
[12]BYTE aski, aske, asi, ase, askt, er.val, switch.val:
[12]BYTE time:
REAL32 read.val, test, size.test:
REAL32 count.probe, real.data.probe, sum.probe, avg.probe:
REAL32 count.ref, real.data.ref, sum.ref, avg.ref,
REAL32 V, Vl, TT, T'l'la, TT2, TT3, TT3.old, T'l'4:
REAL32 step, tac, eror, eror.i, interval, switch.on.point:
REAL32 switch.off.point:
INT len.probe, len.ref, len.temp, len.er, debut:
INT !en.switch, ON.time, OFF.time, timenow, len:
BOOL error, tester, repeat:
TIMER clock:

CONSTANTS ASSOCIATED WITH THE EVALUATION OF THE
-- TEMPARATURB FROM THE THERMOCOUPLE VOLTAGE ARE LISTED
-- BELOW.

VAL RO IS 0.75004344E-6(REAL32):
VAL Rl IS 0.505321995E-4(REAL32):
VAL R2 IS 0.2348050017E-7(REAL32):
VAL PO IS -0.3595568424(REAL32):
VAL Pl IS l9750.87948(REAL32):
VAL P2 IS -175116.5425(REAL32):
VAL P3 IS 18212965.58(REAL32):
VAL P4 IS -2831128435.0(REAL32):
VAL PS IS 271508383300.0{REAL32):
VAL P6 IS -l.38014121E+l3{REAL32):
VAL P7 IS 3.7924384326E+14{REAL32):
VAL PS IS -5.371925517E+15(REAL32):
VAL P9 IS 3.0840255439E+16(REAL32):
VAL CONl IS 100.0(REAL32):

SEQ
-- INITIALIZATION OP VARIABLES

tester:= TRUE
count.probe:= 0.0 (REAL32)
sum.probe:= 0.0 (REAL32)
avg.probe:= o.o (REAL32)
count.ref:= o.o (REAL32)
sum.ref:= o.o (REAL32)
avg.ref:= o.o (REAL32)

-- HPIB COIOIAJIDS FOR IIBATBR 'ON' AIID 'OFF'
ON:= noc4,0"
OFF:= "004,0"

-- RECEIVE REFERENCE TEMPARA'l'URB VALUE

chn.aski.acq? CASE medm: Rread.val

STRINGTOREAL32 (error, read.val, Rread.val)

repeat:= TRUE

WHILE repeat
SEQ

WHILE tester
SEQ

108

chn.aski.acq? CASE float: test -- RECEIVE 'FLAG'
size.test:= test
IF

size.test= 10.0 (REAL32)
SEQ

count.probe:= count.probe+ 1.0 (REAL32)
chn.aski.acq? CASE long: asi
STRINGTOREAL32(error,real.data.probe,asi)
sum.probe:= sum.probe+ real.data.probe

-- CALCULATE AND SEND AVERAGE T_PROBE VALUE

avg.probe:= sum.probe/count.probe
REAL32TOSTRING (len.probe, ase, avg.probe,

2, 6)
chn.aski.cnv 1 long: ase
tester:= TRUE

size.test= 20.0 (REAL32)
SEQ

count.ref:= count.ref+ 1.0 (REAL32)
chn.aski.acq? CASE long; aski
STRINGTOREALJ 2 (error, real. data. ref, aski)
sum.ref:= sum.ref+ real.data.ref

-- CALCULATE ARD SEND AVERAGE T_REF VALUE

avg.ref:= sum.ref/count.ref

,-

TRUE

109

REAL32TOSTRING (len.ref, aske, avg.ref, 2,
6)

chn.aski.cnv 1 long; aske
tester:= TRUE

tester:= FALSE

-- USB T_PROBB AND TJBP VALUES TO CALCULATE TUB
-- 'l'IIBRIIOCOUPLB TENPARA'l'ORB (TT3 = CBN'l'IGRADB AND
-- TT2 = FARBNHBIT)

TT:= avg.ref* 10.0 (REAL32)
Vl :=RO+ (TT*(Rl+(TT*R2)))
V := Vl + avg.probe
'l'Tla :=PO+ (V *(Pl+ (V * (P2 + (V * (P3 + (V * (P4

+ (V *(PS+ (V * (P6 + (V * (P7 + (V *(PS+
(V * P9)))))))))))))))))

TT2 := ((32.0(REAL32)) + ((l.8(REAL32)) * TTla))

TT3 := (((TTla * CONl) + (0.5(REAL32)))) / (CONl)

-- ERROR VAWB IS EVALUATED

eror := read.val - TT3

-- SEND TENPARATURB VALUE TO PROC_IO

REAL32TOSTRING (!en.temp, askt, TT3, 2, 2)
chn.aski.cnv 1 long; askt

REAL32TOSTRING (!en.temp, askt, TT3.old, 2, 2)
chn.aski.cnv ! long; askt

-- EVALUATE 'CONTROL IN'l'ERVAL', 'OB.tiae' AND
-- 'OFP.tiae'.

interval:= read.val* kc

switch.on.point:= eror * kc
switch.off.point:= interval - switch.on.point

REAL32TOSTRING (len.switch, switch.val,
switch.on.point, 2, 4)

chn~aski.cnv ! long; switch.val

ON.time:= INT ROUND (switch.on.point* 15625.0
(REAL32))

OFF.time:= INT TRUNC (switch.off.point* 15625.0
(REAL32))

clock? timenow
INTTOSTRING (len, time, timenow)

110

chn.aski.cnv ! long: time

-- SEND HEATER 'ON' C0NNAND TO PROC_IO

chn.aski.cnv ! short: ON

clock? AFTER timenow PLUS ON.time

-- APTER Olf.tiae TORN IIEA'l'BR 'OPP' PORA DURATION OP
-- 'OPP' TDIB.

chn.aski.cnv ! short: OFF

clock? AFTER timenow PLUS OFF.time

-- SEND ERROR VALUE TO PROC_IO

REAL32TOSTRING (len.er, er.val, eror, 2, 4)
chn.aski.cnv ! long: er.val

tac:= tac+ step
tester:= TRUE
count.probe:= o.o (REAL32)
sum.probe:= o.o (REAL32)
avg.probe:= o.o (REAL32)
count.ref:= o.o (REAL32)
sum.ref:= o.o (REAL32)
avg.ref:= o.o (REAL32)

111

PROCESS PROC_NBT.PGN

PROCESS PROC_IIET.PGN DESCRIBES TUB NETWORK CONFIGURATION
lfITR TBB LINK CONlfBCTIONS BBTIIBBN PROCESSORS EXPLICITLY
SPECIFIED.

#INCLUDE "hostio.inc"
#INCLUDE "linkaddr.inc"
#INCLUDE "acqprot.inc"

-- OUTPUT FILES FRON THE 'II.INK' TOOL ARB USBD

#USE "PROC_IO.c2h"
#USE "PROC_CON.c8h"
CHAN OF SP fs, ts:
CHAN OF ACQPROT chn.aski.acq, chn.aski.cnv:

-- PROCESSES PROC_IO AND PROC_CON ARB PLACED PARALLEL ON THE
-- INDIVIDUAL TRAlfSPUTBRS

PLACED PAR
PROCESSOR O T222

PLACE fs AT link.l.in:
PLACE ts AT linkl.out:
PLACE chn.aski.acq AT linkJ.out:
PLACE chn.aski.cnv AT linkJ.in:
PROC.IO (fs, ts, chn.aski.acq, chn.aski.cnv)

PROCESSOR 1 T800
PLACE chn.aski.acq AT linkJ.in:
PLACE chn.aski.cnv AT linkJ.out:
PROC.CON (chn.aski.acq, chn.aski.cnv)

PROGRAM DATA_ACQ.BAS

REM***
REM* THE FOLLOWING QuickBasic PROGRAM IS RUN IN THE Lab
REM* - Windows ENVIRONMENT TO ACQUIRE THE THERMOCOUPLE
REM* VOLTAGE AND HENCE DETERMINE THE TEMPARATURE, WHILE
REM* CONDUCTING THE 'DYNAMIC TEST'. THE PROCESS REACTION
REM* CURVE SHOWS THE TEMPARATURE Vs TIME PROFILE.
REM***

DIM voltage#{lOOO), refvoltage#{lOOO), temp#{lOOO), Tl#(lOOO)

REM***
REM* THE CONSTANTS ASSOCIATED WITH THE CALCULATION OF THE
REM* TEMPARATURE ARE LISTED BELOW.
REM***

RO = -0.75004344E-6
Rl = .505321995E-4
R2 = .2348050017E-7
PO = -.3595568424
Pl = 19750.87948
P2 = -175116.5425
P3 = 18212965.58
P4 = -2831128E3
P5 = 2715083833E2
P6 = -1.38014121E13
P7 = 3.7924 2 384326E14
P8 = -5.371925517E15
P9 = 3.0840255439E16

CL S

I NPUT " ENTER THE NUMBER OF SAMPLES REQUIRED ";A

REM***
REM* CALL THE INITIALIZING ROUTINE FOR THE HP3497A
REM***

CALL hp3497a.init (9)

REM***
REM* LOOP 'I' TIMES TO ACQUIRE THE THERMOCOUPLE PROBE AND
REM* REFERENCE VOLTAGES AND CALCULATE THE TEMPARATURE VALUE
REM* USING THE CONSTANTS LISTED ABOVE.
REM***

FOR I= 0 TO A-1

,....

CALL hp3497a.init (9)
CALL . hp3497a.Conf.Elapsed.Time (0)
CALL hp3497a.Conf.Elapsed.Time (2)
CALL hp3497a.Read.Elapsed.Time (del%)

REM********************
REM* WAIT FOR 5 SECONDS
REM********************

while del% < 5
CALL hp3497a.Read.Elapsed.Time (del%)
wend
CALL hp3497a.init (9)

"3

REM**
REM* CALL THE ROUTINE TO READ ANALOG CHANNEL 11 {PROBE
REM* VOLTAGE)
REM**

CALL hp3497a.ReadCh (1, volt#)

REM**
REM* CALL THE ROUTINE TO READ ANALOG CHANNEL #19 {REFERENCE
REM* VOLTAGE)
REM**

CALL hp3497a.ReadCh (19, refvolt#)

refvoltage#(I) = refvolt#
voltage#(I) = volt#
T = refvoltage(I) * 10
Vl =RO+ T*(Rl + T * R2}
V = Vl + voltage#(I}
Tl#(I) = PO+V*(Pl+V*(P2+V*(P3+V*(P4+V*(P5+V*(P6+V* (P7+V* (P8+

V*P9)})))))}
T2 = 32+1.8*Tl#(I}
T3 = (Tl#(I)*l00+.5)/100
T4 = (T2*100+.5)/100
PRINT I;voltage#(I);T3;T4

del% = 0

NEXT I

REM***
REM* CALL THE ROUTINES TO RESET AND PLOT THE APPROPRIATE
REM* CURVES
REM***

CALL GrfLReset (0, 0, 1, 1)
CALL GrfYCurv2D (Tl#(), 600)
CALL HardCopy

END

APJ'EHDl~ I

i

-4-,_J ____ _
I

~----- ------~--- -----+------

!
!
i

. ·~

,-~

---··----1,_
i

I

ll4

------- ~ ...

____ .. _____ • ...

' i
------··-- ·-t---J ------·- ~

I

..._ __ _._ ___ ..._ __ ...,... ___ ..._ __ ~--~--..--~ CID

- ~ = ~ ~ N _. _. .-4 _.

TEMPAP-Aru,~ 0c_

·i
~

"' ..I.
~

r
c!

V\

Data_ f_Qf the. _pfocess . r~ct,on C:J!:YVe

INDEX TH~~r.oc_&u=u
VOLlAl'.,E V!JL-T~

oc OF 115
1.0 -0.000393 16.887117 62.392811
2.0 -0.000379 16.966035 62.534863
3.0 -0.00031 16.948571 62.503429
4.0 -o.000376 17.030506 62.65091
5.0 -0.00039 16.760833 62.165499
6.0 -o.000376 17.033526 62.656347
7.0 -0.000316 17.03554 62.659971
a.o -0.000377 17.018077 62.628538
9.0 -0.000369 17.177906 62.91623
10.0 -0.000367 17.216854 62.986336
11.0 -0.0003,1 17.22088 62.993584
12 .,b ~0.000362 17.318244 63.168839
13.0 -0.000357 17.418621 63.349518
14.0 -0.000353 17.499521 63.495138
15.0 -0.000348 17.59781-2 63.672169
16.0 -0.000344 17.678761 63.81777
17.0 -0.000337 17.817036 64.066665
18.0 -0.000334 17.878449 64.177297
19.0 -0.000324 18.076095 64.532971
20.0 -0.000323 18.097569 64.571623
21.0 -0.000317 18.217348 64.787227
22.0 -0.000313 18.298202 64.932763
23.0 -0.000307 18.417964 65.148335
24.0 -0.000304 18.47935 65.25883
25.0 -0.000299 18.578637 65.437547
26.0 -0.000298 18.601108 65.477995
27.0 -0.000287 18.818103 65.868586
28.0 -0.000283 18.898922 I

I 66 .. 014059
29.0 -0.000281 18.940838 ,;' .~ 66 .-0~508
30.0 -0.000281 18.944859 66.096747
31.0 -0.000271 19.141349 66.450429
32.0 -0.000269 19.183258 66.525864
33.0 -0.000265 19.264055 66.671299
34.0 -0.000258 19.403178 66.92172
35.0 -0.000257 19.425636 66.962145
36.0 -0.000254 19.486978 67.07256
37.0 -0.00025 19.568763 67.219773
38.0 -0.000246 19.648533 67.36336
39.0 -0.000238 19.807055 67.6487
40.0 -0.000241 19.752762 67.550971
41.0 -0.000233 19.911272 67.83629
42.0 -0.000234 19.895855 67.80854
43.0 -0.000232 19.936737 67.882126
44.0 -0.000228 20.0195 68.0311
45.0 -0.000221 20.040944 68.069699
46.0 -0.000226 20.063392 68.110105
47.0 -0.000222 20.145143 68.257258
48.0 -0.000218 20.2289 68.408019
49 . 0 -0.000219 20.210472 68.37485
50.0 -0.000214 20.312651 68.558771
51.0 -0.000212 20.354524 68.634144
52.0 -0.000211 20.376967 68.674541
53.0 -0.000201 20.457697 68.819854
54.0 -0.000209 20.422857 68.757143

.
55.0 -0.000206 20.48516 68.869288
56.0 -0.000206 20.489178 68.87652

..
iHEQ.HOLOUP\.£ oe, •f INDEX V[)..., AGE. ~ous)

I (6 58.0 -0.000204 20.535064 68.959115
59.0 -0.000195 20.713916 69.281049
60.0 -0.000198 20.659658 69.183384
61.0 -0.000195 20.722955 69.297318
62.0 -0.000191 20.803664 69.442595
63.0 -0.000202 20.594005 69.06521
64.0 -0.000192 20.793278 69.423901
65.0 -0.000197 20.700173 69.256312
66.0 -0.000191 20.819732 69.471517
67.0 -0.000191 20.823748 69.478747
68.0 -0.000187 20.905456 69.625822
69.0 -0.000189 20.870628 69.563131
7~0 ..-0.000111 20.894068 69.605322
71.0 -0.000184 20.97778 69.756004
72.0 -0.000111 20.923531 69.658357
73.0 -0.000185 20.9671,6 69.737312
74.0 -0.000116 20.951991 69. 709583 .
75.0 -0.000181 20.917164 69.646895
76.0 -0.000186 20.960024 69.724043
77.0 -0.000181 20.946627 69.699929
78.0 -0.000198 20.737994 69 . 324389
79.0 -0.000185 20.993503 69.784306
80.0 -0.000185 20.998524 69.793343
81.0 -0.000191 20.887014 69.592626
82.0 -0.000189 20.93088 69.671584
83.0 -0.000114 21.033007 69.855412
84.0 -0.000189 20.941926 69.691467
85.0 -0.000191 20.905091 69.625163
86.0 -0.000181 21. 105325 69 .,985584
87.0 -0.00017 21.323943 ~ ~ 70.,31~098
88.0 -0.000185 21.036682 69.862027
89.0 -0.000184 21.061123 69.906021
90.0 -0.000183 21.085563 69.950014
91.0 -0.000184 21. 07016 69.922288
92.0 -0.000164 21.464531 70.632155
93.0 -0.000183 . 21.099621 69.975318
94.0 -0.000181 21.14348 70.054265
95.0 -0.000112 21. 130086 70.030155
96.0 -0.000182 21. 134102 70.037384
97.0 -0.000182 21.139123 70.046422
98.0 -0.00018 21. 182981 70.125366
99.0 -0.00011 21.188002 70.134403
100.0 -0.000119 21.21244 70.178393
101.0 -0.000111 21.179628 70.119331
102.0 -0.000184 21.126392 70.023506
103.0 -0.00018 21. 209088 70.172358
104.0 -0.000187 21.080184 69.940331
105.0 -0.000182 21.180292 70.120526
106.0 -0.000181 21.205735 70.166324
107.0 -0.000181 21.212764 70.178975
108.0 -0.000188 21. 082856 69.945142
109.0 -0.000181 21.223809 70.198857
110.0 -0.000183 21. 189994 70.137989
111.0 -0.000112 21.215437 70.183786
112.0 -0.000113 21.200035 70.156064
113.0 -0.00018 21.264314 70.271764

114.0 -0.000181 21.249917 70.24585

115.0 -0.000182 21.237528 70.22355
- - - ·- - -- - - - - --- ---- - - - - - - --

..
-rn~ttoc.oufU. oc OF lNDc'X 'l<i-TAGE ~oll'S')

111 117.0 -0.000111 21.325238 _ . '14..3.81428
118.0 -0.000115 .. 21.196345 70.14942 "' 119.0 -0.000112 21.259619 70.263314
120.0 -0.000167 21.556875 70.798374
121.0 -0.000116 21.193998 70.145196
122.0 -0.00011 21.315523 70.363942
123.0 -0.000179 21.342973 70.413351
124.0 -0.000181 21.308156 70.350681
125.0 -0.000111 21.314181 70.361526
126.0 -0.000179 21.359039 70.44227
127.0 -0.000182 21.306814 70.348265
128.0 -0.00011 21.351672 70.42901
129'.0 ~0.000111 21.337276 70.403097
130.0 -0.000183 21.305472 70.34585
131.0 -0.00018 21.368742 70.459736
132.0 -0.000183 21. 311sa.2 . 70.36754
133.0 -0.000178 21.419623 70.551321
134.0 -0.000185 21.289735 70.317523
135.0 -0.000184 21.315177 70.363318
136.0 -0.000183 21.340618 70.40911.3
137.0 -0.000185 21.307811 70.350059
138.0 -0.000184 21.333252 70.395854
139.0 -0.000181 21.397525 70.511546
140.0 -0.000183 21.364719 70.452494
141.0 -0.000184 21.351328 70.42839
142.0 -0.000185 21.337937 70.404286
143.0 -0.000184 21.365387 70.453696
144.0 -0.000188 21.291738 70.321128
145.0 -0.000185 21.357017

"
70.438631

146.0 -0.000184 21.383462 .., -. 70 .481232
147.0 -0.000185 21.369068 .. 70. 460322
148.0 -0.000178 21.510998 70.715796
149.0 -0.000189 21.303453 70.342215
150.0 -0.000186 21.367728 70.45791
151.0 -0.000112 21.452419 70.610354
152.0 -0.000185 21.400199 70.516357
153.0 -0.000186 21.386808 70.492255
154.0 -0.000184 21.43066 70.571189
155.0 -0.000185 21.420283 70.55251
156.0 -0.000186 21.405889 70.5266
157.0 -0.000189 21.354671 70.434409
158.0 -0.000185 21.438359 70.585047
159.0 --0.000189 21.366723 70.456101
160.0 -0.000184 21.470829 70.643492
161.0 -0.000183 21.496269 70.689284
162.0 -0.000186 21.44405 70.595291
163.0 -0.000193 21.314166 70.361498
164.0 -0.000187 21.438695 70.585651
165.0 -0.000206 21.074785 69.930613
166.0 -0.000189 21.411916 70.537449
167.0 -0.00019 21.398527 70.513348
168.0 -0.00019 21.405557 70.526002
169.0 -0.000193 21.356349 70.437427
170.0 -0.000194 21.34095 70.40971
171.0 ·-o. 000191 21.407232 70.529018
172.0 -0.000194 21.355011 70.43502

173.0 -0.000195 21.342625 70.412726
174.0 -0.000194 21.368068 70.458522

I.NDE.~ °™cRHoc.ov flt.. • oc OF
VoLJ"AC c ('lO.T~ I\S 176.0 -0.000196 21.341288 70.410319

177.0 -0.000197 21.327898 70.386217
~ 178.0 -0.000191 21.316517 70.365731

179.0 -0.000195 21.381797 70.483234
180.0 -0.000194 21.407239 70.52903
111.0 -0.0002 21.297773 70.331991
182.0 -0.000199 21.342633 70.412739
183.0 -0.000134 22.590759 72.659367
184.0 -0.000199 21.336274 70.401294
185.0 -0.00022 20.93550!5 69.679909
186.0 -0.000201 21.196003 70.148806
187.0 -0.000197 21.395195 70.507352
188.0 -0.000201 21.324562 70.380212
11,.0 -.0.000204 21.273343 70.288018
190.0 -0.0002 21.358041 70.440475
191.0 -0.000204 21.287407 70.313332
192.0 -0.000201 21.216768 70.186183
193.0 -0.000197 21.437382 70.583287
194.0 -0.000209 21.21041 70.174738
195.0 -0.000203 21.333946 70.397103
196.0 -0.000205 21.30114 70.338052
197.0 -o.0002os 21.308172 70.350709
198.0 -0.000194 21.528771 70.747788
199.0 -0.000205 21.322236 70.376024
200.0 -0.000201 21.290434 70.318781
201.0 -0.000205 21.335295 70.399531
202.0 -0.000206 21.323915 70.379047
203.0 -0.000208 21.292114 70.321805
204.0 -0.000211 21.239889 70.227801
205.0 -0.000204 21.381834 I 70.483302
206.0 -0.000201 21.330618

,,,
•·':- 70 .39.J.112 "

207.0 -0.000211 21.258978 •-':- 70. 26216
208.0 -0.000214 21.208762 70.171771
209.0 -0.000208 21.332298 70.394137
210.0 -0.000211 21. 28108 70.301945
211.0 -0.000211 21.286104 70.310987
212.0 -0.000212 21.273719 70.288695
213.0 -0.000213 21.262339 70.268211
214.0 -0.000211 21.306197 70.347155
215.0 -0.000213 21.276405 70.293529
216.0 -0.000213 21.282433 70.30438
217.0 -0.000212 21.308883 70.351989
218.0 -0.000214 21. 276077 70.292939
219.0 -0.000224 21.089931 69.957875
220.0 -0.000213 21.310565 70.355017
221.0 -0.000212 21. 33601 70.400817
222.0 -0.000215 21.284792 70.308626
223.0 -0.000214 21. 311242 70.356236
224.0 -0.000216 21.279442 70.298995
225.0 -0.000221 21.189386 70.136895
226.0 -0.000214 21.333346 70.396023
227.0 -0.000216 21.300541 70.336974
228.0 -0.000216 21.307575 70.349634
229.0 -0.000222 21.198103 70.152585
230.0 -0.000213 21.380895 70.48161
231.0 -0.000217 21.310263 70.354473

232.0 -0.000218 21.297879 70.332183

233.0 -0.000211 21.323325 70.377984
-- . - - AA.A-.. ft ., 1 ')0'\S.'\4 70.324362

APPE:NDIX C

I"' CbMA t)wji
ch,o,,aOleffl

"'"'" &O•l
,.fO • .., ,,ci,c,,,,
""' •E•1 NC~ OH
Al2 • FAST ,C"III

~ ... ~~-- ·--j
~•111• :s O •• 19~ - -- -·--- ·-- ·

- --~ v.,._

V&O s .t. _101••"' J H
, A' • .t. .. u;:•'" ON

-- -- - - ·- ·

"". 0 •• ~

0. ·J f:o.
I • 10,..
t.• ,ao.,..
J. , ••

VD""·) 'G ~ ·------
\ • l f/2 1•~ •:S
• • , t/Z Jl .l•I\ ~. ~ ,,1 -:·q-1\

::'IJ~ .I\ ~-1..!tl.. -
: r • " ' c ,
: ~• P.ck-4 ICI
· 1 • 1•1 •Seu C•, ,. •

ANA&.CIGCI.OII. a..•-·---------·
AIIAlOO IXTIIINAI. INC?FSP. .,_ • .._ .. IXT INCII ...,._ • •MT ICM IAUI, __ _,.,,_ii MAIi. - -IXT
INCII----•----

ANALOG INPUT.

a.. n DVM•Ulul• ---

AMAUIOLMTCMAHNIL. ________,.._ _ ---·
VOUWllll AUTOZEIIO. --... ow ____,._
--flfl. 0"'111 _____ --DVM•-•-
VOI.Tlllllll ~ IOUICI MNIII.,_ __ °""' ___ .,_,_1•-.
100,J.•1--

VOi. Tllll1II OIIIUY.
._.. __ -... ---......--·-.......... ., ... __
it JOO......,_ - o,,\. - ,_ .. IO Ml ii 2le
VOi. TWl1II 'OMIAT.
........ __________ __
- - -·ii ... !\'IOI.

_. O .. lt •.-• o...-~ ,, ..
o.., ~•ou, o,o~
0• I0Ul{IDl-O

All

AS

~.v,~~,
i ct,Mt• • O 10 IN

Vllri I\ r1 to!

1 • 0 1V
1 • 1 ov
l • 10 'I/

• • ! OOV

S.9•1.a:~ - -

, Vll"I ,,. I to, ---- - - ·
I• lnr-., ,
; - e.u,,-.. ,
J a s",
,a - ... JI~

AIIAlOO-'·
a,.. ----- - ,..,,. - :MIIA ... _
WI. YTI I/WO, Ya MD. ltlO ... Al.a.

AIIAlOOn.. ,.,_....__...._._ .. _.._. __ ,... ______ ..__.. .. _.... __
·-lil•M.• •111.llil<AL--. •
N>AL-----

AIIA&.Gell9WIDOW91&. 0...-......,._.._..,. ___ _ _ __ ..._._,..,,.,..., . ..-
..... ~ ncasu

VOl.1'W18MNa. _... .. __
.............. --...01111..,.....,_ ---.....,1

VOl.1'W18 ITOMa.
..,.,..eo,-..111A1Ca110,... ••• ,oo
......,..,..aco .. 111s.wii..u.vt-­._..,_,_. __
VOi. TWTIII TIIOOM.
S..w_,-~-.1o-.OV1t- _.._
-.-.---........ ·•-"iNs ...-~•lll1TNCl--0Vlf•-ft,_...,,... ..,r.. - ... --.--DW•~ -.. -. °""'---­... ia. nccww o• .

1 , : 0 ID'"'"" : VOUWTIII WMT.

;::.-.:::: .. -.::.,:----....... i

l ..,.r;, ,a _

o,.,_ ..._.,,.._
Jltt· = o 1• 8'l
Clo\fn•: 0 k II' .

DIGITAi. CLOSI.
,-0.,..,110.._....,. _ __,.IIIO.--•-,,__ ,.o..-, ,,, ___ ·----...... c,__ _ _,...,._.,.,._ _ _

DIGITAi. 91TI- INAIU.

1-H °"""OIO _..., • - ---• H 3'11A -----....... - -....... -....... .._...,.

~
Phi ,. =i DIGIT Al. INTI- ST A TUI.

~-;~OIi • ~--•--"-0-711.,,.()p,w,OIO
~ - ----------------a.­______

DIGIT Al. LOAD.

'• O.-.OIO-.-. --.-I0-1777771 _,_ _.,,, ____ ,.,0.-,110_...,. ___
111.-I0-1777771 .. __ ,, ___ ,.a.-
,1,,..,, ..._ __ IO-J171f/f-f/fl __ ,.,._

·~ "'·· Cl'- O..•
,,,., • o
[ow-•~ -~••s .

lDf 11ot• ~ DIGITAi. .. AD.

;lot-:-~ 0•1t , 011---•0I.-...... . ___ ..::.._. __ ____J... _....,.. ... -......iw..., ... ,.,..,..0 so,

1>5 ~--
. .,._. • :, to •
L"~~ J ,oJ1 7 o, , •• .

l'otl .. 0 lo i9

ow.-011.-..

-- -,
I

MOtl • o to II
.,,.._,,. • ~ to 17,77 7

lacw

..---•,,.._,....,. __ soo .. , ,
____,.,_ __
DIGIT Al. INT~ SI-. ,.,. ---------0-1 , . • ..,., .. a.-,.OIO_...,.,_., _ _, _
........,_, •-Iii - - .

DIGIT Al. VIIWIO a.OT.

~------...... •-----T•a•--· -ov--....... .
OIGITM.Mlft.
'-0.-lte_,. __ IIO•IIC-•-• • .-.. -.-. .. 01,-.11,....., __ _ ___ ,..... .. ___ .. __ _._
- .. -... .. ow-.

12.0

I SYSTIIII I
L SA : IYl11M A&.WI. --------- --- .,.. _ _.._
I SC Is.,.., 00111 ! IYITal CUM. .__ ______ ..., ,_..,_.II.- • IC-•-•-.M .._.....,. .. ec.._ __ .. _.......,.

.,.., ••,...._ec_.,___ --""-WJ•-------
I- I IYITBIWIAY. IDO- -1f .. 1-41111..,. _ OWIN& ..,_ lar ..._ 500•0olt,lay0H ,.... __ IDO. _____ ...,. ___

SOI , o,..,._.()111 ~-
~--------"" --·

n • 0 to 377 •octlll

Sln IS.•tll 01111

,. • 0 to l77 1octat1

l8MCI 11101.UT INAILL ·---"'°----,.., .. -.. ~ --....... ---·
IIJMCI MCIUUT DIAILL ._ .. _,... ____ ,.., .. -.. -....------..-------·

L.
! ____ SI __ __,; IYITUI NtW.111. ••INlll•-----111111 __ ._ __.__

Sl.,,IS-.0...1

SLO • 1Ceyboer41 Enet.••d
SL 1 • Ke-,tloetd o,,_

SYITUI I.OQL
~ .. -......... ._ ... _.._ __ -.,.,..,._ .. __
,._.,.......,_ao111-•-111-•.

SO,. I
1 500 • ~­' so,. o...-,._..
i o,1 co.,troller ,..,..

SO.. ISonll Ootol

MTWOUTNTWl/lf. -IOIIII..,__ ______ _...,_ ...

YIO. k17A-w•••w-1ar-...,.._ --"''•Vil.,.., llotWIIII-••----•

:
J IOI -- k17A • - I ... -.. a:4 . _

SOD• c-- ----------.-•IT.YTI, SOI • Ono _, 1111 ._, TD - CII ..,.a,

SIi -··" _. • 0•N:
11 • O• 1

Sll-•.0 • - ..
SIi -•.0-1 • -
-•10.t- I.it

IVSTIIIIIIIM.
u. - --....... ... _.._._ u. 0 , _'°"'*',

! SIi 15-1 0...1 J ITA_TUI illlaTa
.__ ______ _, ,,.·--··---.... -.......

ITO• WT.-0/lf
ITI • WT_, OIi

----..,_TWT

"' - ,.., .. ,___ .. _ --· ---
1-

,_\l_" ______ I IYST1III vww. -------·-------1¥-". ·""" _____,..,
SW lkMl,,-1e,l ,N11

IIOtl • 0 to II
, ... ,.,, • 0•7

-• • 01el77

IYSTIIII_,._

U.IW•--•-----.___. --•---....----·
I TIMIII

fA 55

Houfl • I) fO 2•
~, .. eO,o SI
s.c- s O 10 ~,

TM A&MM llffl. I Tl I LVtm naa IIIIMII.
... ,..,. _ _ .1110 -....---- .__ ______ _, U.11• ---11---------0MalNI ____,_,_ __,_ - - W l'U - Daa -,_

- ., ---..,_ - - 11ot TA. DOOOCIII -

1,-n_-_...,._ss ___ _,! TM INTIIIYAL U..Tl:l•--..--Tlla--..... --,
-•241w. •SII0•-----7•---­._ _.,...,. __

j Taa a, 0A y IIIIMII. ,~:o ,o tttt 7 U.TOll•--..--Tlla------100 i

,c, .. , ...
I""·•• -= o tv, I" :s O •o l

~
• .. 0 ·"' • '""'" •n•~ ... :,.,.,.JC:, :,,, 4

,u1e"""•"t '"Qn.c•• t
= .,..,.""°' .,.

o •,o•
-------·------~1 . :, "°" " -·------

w,,. a O :o 19
... 0116

O • Cou,u~ S100
1 • COUl\t I.JD ·
2 • Co..,nt Oo•"
l • &we 1000 ... ,ioot ,

....... 100 ...,_ I , ,.._

,...._., _______ .,.. __ _
111111:00:HH:IIIIII:. • ..._,. 00:111111:--:­
ILAl'IID TM tCOlffllOU. U.Tlll•------.... --.u. .. n_1_, ______ _ l'U--

-•O.NN-1111100 ___, __ ,, j
• 100-.---- .. --TO:,- I

l

1 ~0 ,.;"'• 1• 1
COUNTIII INA&I INTIIIIIUl'TS.

•--•-on-... 10 3417A ----~ ____ .,.., Dlllflll--.-· ,,_ ____ _

COUNTIII l'UNCTIOII . .. _., __ .., .. _______ c:T

-IIIUITN--0-•-·'-• • l•I. CT.,•. 1 w2_,..,.... __ c:T_.

>••- --•·••·

: • llall ,. ·· ·-------- - ·
S'L,11 • I) to 19
" .. 1 to l

l Jllrtlld••thovt"'•''
2 "ead .,., .. ., .. ,
) "ead COt\ftf'VOUSl'W'

COUNTIIIMAD. I

-•----,---•·•••--""-_, I -·-·
,_c_s_...,_.,_. ______ ..,1 :-:::"..:'..;..111 '-H'-U,•C:-O.- I;

'"' ' ' .. 0,011 ,_____ __ ,_.,,._"" o......--__ , 010999Ht-. _._ _ _,,.._.....,.._ ·

uo,, • 0 10 ••

" • 1 to•

s-c. _..,....,_., ,..c.- : u,.c-c--.c:r-. ,-J..,_ __ _
• CT .,,,., 2 aM • · :

·I
•

r

121

BIBLIOGRAPHY

Books

1. Burns, Alan. Programming in OCCAM2.

Addison-Wesley, 1988.

2. coughanowr. Process Systems Analysis and control.

McGrawhill, 1991.

3. HEWLETT PACKARD Ltd. HP3497A Data Acg.uisition/Control

unit Operating and service Manual. 1982.

4. INMOS Ltd. BOOS user Guide and Reference Manual. 1988.

5. INMOS Ltd. B012 user Guide and Reference Manual. 1988.

6. INMOS Ltd. B211 ITEM Reference Manual. 1987.

7. INMOS Ltd. B421 Engineering Data. 1990.

8. INMOS Ltd. FQQlA -1 GPIB OCCAM. 1988.

9. INMOS Ltd. OCCAM2 Reference Manual. 1988.

10. INMOS Ltd. QCCAM2 Toolset for IBM/NEC PC. 1989.

11. INMOS Ltd. The Transputer Data Book. 1989.

12. INMOS Ltd. Transpyter DeY:ice§ and i.g, Sy§teu

Data Book. 1989.

13. Pountain, Dick and May, David. A Tutorial Introduction

to OCCAM Programming. McGrawhill, 1987.

14. smith and corripio. Principles and Practice of AUtomatic

Process control. John Wiley and sons, 1985.

15. National Instruments Ltd. Labwindows User Guide and

Reference Manual. 1988.

122

16. Phillips, Charles and Harbor, Royce. Feedback control

Systems. Prentice Hall, 1988.

Articles

17. Colin Whitby-Strevens., "Transputers-Past, Present, and

Future", IEEE Micro, a, 16-27, 1990.

18. Halang w. A., "Education of Real-Time Systems Engineers",

Microprocessing and Microprogramming, -22, 11-16,

1989.

19. Homewood, M., David, s., May, D., and Shepard, Roger.,

"The IMS T800 Transputer", IEEE Micro,

Z, 10-26, 1987.

20. Katab, A., "A Multiprocessor Architecture for Robot-Arm

control", Microprocessing and Microprogramming. li,

673-680, 1988.

	466 Challa Thesis.pdf
	466missing102.pdf
	466missing103.pdf

