TRANSPUTER BASED REAL-TIME PROCESS CONTROL

by

Sasidhar V. Challa

Submitted in Partial Fulfillment of the Requirements
for the degree of
Master of Science in Engineering
in the Electrical Engineering

Program

S/, R\ R S/1/972

Adviser Date

Lol . WL Aol 2,193

Dean of the Graduate School Date

YOUNGSTOWN STATE UNIVERSITY

August, 1992

ii

ABSTRACT

TRANSPUTER BASED REAL-TIME PROCESS CONTROL

Sasidhar V. Challa
Master of Science in Engineering

Youngstown State University, 1992

A transputer based real-time process control system is
designed and its performance is studied. The emphasis is
placed on the hardware and software aspects of the transputer,
i.e., installation, networking and interfacing to the test
control system. The process control system consists of a
stirred tank heater containing water. The temperature of the
water is measured using a thermocouple and controlled using
a proportional control algorithm. The control algorithm is
implemented on a transputer network using OCCAM, which is the
parallel processing language for the transputer. Software
development, implementation and user interface are achieved
through an IBM Personal Computer (PC/AT clone). Data
acquisition and control are achieved through a Data
Acquisition/Control Unit that is interfaced to the transputer

network and hence to the user via the IBM PC.

iii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to
Dr. Salvatore R. Pansino and Dr. Dilip K. Singh for
their advice and assistance during the course of this work.

I am especially grateful to the Department of
Chemical Engineering for providing the neccessary hardware
which made this thesis possible.

I thank Prof. Robert H. Foulkes and Prof. Samuel J.
Skarote for their advice and valuable comments during the
documentation of my thesis.

I thank Ms. Anna Mae Serrecchio for her cooperation
in formatting the thesis and last but not least I thank my
fellow students Hung Ta and Tariq Alvi for their helpful

hints and suggestions.

ABSTRACT

iv

TABLE OF CONTENTS

PAGE

® © © © 5 00 9 © 9 9 OO O OV O G O G OO L OO OV S S 00O O N OO0 00 0000 s ii

ACKNOWLEDGEMENTS ® 0 0 0 5 0 8 0 0 8PP S P SO S O S S S P e e e e " 00 e e e e o iii

TABLE OF CONTENTS ® & o ® ® o ® 0 0 0 0 0 ® ® 8 & 0 0 0 00 0 0 8 e 0 60 e e e e e o iv

LIST OF SYMBOLS ® @ 8 0 0 00 00 0 000 00 000000 E 0000000000 e e e 0o Vi

LIST OF FIGURES ..cccccccccccscse 555 3 SRR w5 s v ene e WEIL

LIST OF TABLES ceccocsescccccsscccscscscsssessossnsscssvecscecce X

CHAPTER

CHAPTER

CHAPTER

I- INTRODUCTTION. « <'s « s slaleliyiets 4o s8-8 5 %5 84%sss 1
I.1 Real-time systems and process control... 1
L:2 TranBpaters. . .cvos-tbhssssssnsnssussas 2
I.3 Objective and outline of the thesis..... 3
ITI DESCRIPTION OF THE TRANSPUTER HARDWARE AND
SOFTWARE. . ssss cshs s aslalaldicsovscsbssnssse D
II.1 Overview of the transputer family...... 5
II.2 The OCCAM software model.......cccceee. 17
IT.3 The OCCAM2 toolset for the IBM PC...... 23
ITII DESCRIPTION OF THE TRANSPUTER MODULES AND
MOTHERBOARDS . c c e cscscevsscssssccscseses 32
III.1 Transputer modules (TRAMS)....ccc0000.. 32
ITTI.2 IMS B403 TRAM. . cscecnnscnsnsesosansnime b
II1.3 IMS B421 (GPIB) TRAM.::ceeesceosocseos 40
III.4 Transputer motherboards...... cesvsseece 48

IIT.5 IMS B0O08 Motherboard ..c.cccceccececes. 49

PAGE

III.6 Support software for the B0OO8.......... 58

III.7 IMS B01l2 Eurocard....ccceoesccccese o oinimia 65
III.8 INMOS Transputer Evaluation Module

(IPEM)ccsseense Bl = s » = v = &8s » silils 7B

CHAPTER IV DESCRIPTION OF THE PROCESS CONTROL

SYSTEM 5uic et s ateiels RSN A SISIMIENELL & o oisis o v ain s o w0e B0
IV.1 Test system description........... e
IV.2 Process characterization......c.ceeeee.. 82
IV.3 Dynamic test and system model........... 85

IV.4 Proportional controller implementation
aspects...... o w.islero RN e R RN e bR eR e e e = sl o5 alia s 90
IV.S5 Software outling. « SO SNe S h « oo 4 s » .ot 93

IV.6 Network configuration and software

implementation. ;iR . o ccoonveccness 94

CHAPTER V SUMMARY..:c6s600sccnals 5 O O GO OO R oo lw e T
V.1 Flndings......«s el D OGO 0D Ol 97

V.2 CONCIUSIONS . s <o vo o RIEEEREIN. & o oo ¢ o680 s 66 es 98

V.3 Recommendations..... Nlsle s 55 o s TR 5 S ek 99

APPENDIX A Software listing o R 101
APPENDIX B Process reaction CurVeamEC crveveees 114
APPENDIX C 3497A COMMANAS . . oo LI L. . va s wcam s o mnas 119

vi

LIST OF SYMBOLS/ABBREVIATIONS

SYMBOL DEFINITION UNITS OR REFERENCE

ANSI American National Standards
Institute

CMOS Complimentary Metal Oxide
Semiconductor

CPU Central Processing Unit

DACU Data Acquisition and Control
Unit

= Delta

DMA Direct Memory Access

DOS Disk Operating System

DRAM Dynamic Random Access Memory

EEROM Electrically Erasable Read
Only Memory

EMI External Memory Interface

EPROM Erasable Programmable Read
Only Memory

FLOP Floating Point Operation

FOPDT First Order Plus Dead Time

FPU Floating Point Unit

G GLOA .vscsvssssnnscasnipEliRsessecssss 1 X 30°

GPIB General Purpose Interface Bus

IC Integrated circuit

IEEE Institute of Electrical

and Electronic Engineers

SYMBOL

ITEM

LED

MIPS

PAL

ROM

SRAM

TDS

TRAM

TTL

vii

DEFINITION UNITS OR REFERENCE

INMOS Transputer Evaluation
Module

PLIO sssvsssisimpmineninsnyesssnssaness 1 X TP
Controller Gain

Light Emitting Diode

MEGA o« aom s onesoilihe s sl iiamreisine s »y L 0%

Million Instructions Per
Second

Module Motherboard Software

Programmable Array Logic

Random Access Memory

Read Only Memory

Static Random Access Memory

Process time constant «... Seconds

Transputer Development
System

Transputer Module

Transistor to Transistor
Logic

viii

LIST OF FIGURES

FIGURE PAGE
1.1 IMS T800 architecturec.scss R T PR |
I1.2 T800 registers....... s nasanesesednkenaiibtesses 10

11.3 Link data acknowledgement.......cceceeeceeecenes 15
IZ. 48 Sigle tranepPlber ..cccssvisoscsihsconssveseiesann 29
IT.4b Transputer network.........cceeeeeecececsccceseeces 19
I3X.1 Sise 1 TRMM POOLPEINL. iccsnscsesvvesensssasesses BB
I11.2 IMS B403 TRAM schematiC...ccccessccvcccsscnscccce B
IIT.3 1IMS B403 subsystem register memory map........... 39
I1T.4 IMS B403 schematiC.:ceecssssnssssssnsnenssssssssss 39
I1I.5 INMS P42l architectur@..ccccccecvncssccssscescsonss #1
ITII.6 J1l - IEEE 488 connecCtOr...ccecceccsccccccsccascaces 43
IIZ.7 J2 auxiliary CONNECLOrc.cocssssosssssssssnsssesss B3
III.8 IMS B42] MEMOTY MAP:. e e eeeceeccscacnacccnnscasecees 47
IZ1.9 JHNS B42)l fOOEPrint..ccccseassnncnsinsssesnassoscn BB
ITIT.10 IMS B008 functional block diagram.......cceceeea.. 50
ITI.11 PC bus interface functional diagram.......cccec.0. 57
BEE.12 THE D012 STDMMETIC: & « 005305 a e o s nesennsssnsssianiiy
ITI.13 Pipeline connection for B012 slotS.....cccceeeeee 67
ITI.14 IMS C004 to slot connectionS.......ccceeeececeess 69
ITI.15 Pipeline links and links on P2 and Kl...ceeseeas. 70
BEX.16 PL pin assignBeNt....c.ccvcccacsncancansansssccnnsnas 71

17 P2 pin CODRGCCIONE. . cccoviantnsnnbssanesesnesaine T2

ix

FIGURE PAGE
ITT.18 B012 multiple board daisy chainN......ccceceoeee.. 73
IIT.19 B012 config links organization.........ceceeeeeeas 73
IIT.20 B01l2 system services organization........cccecee.. 75
Iv.1 System block diagram.....ccceeeeeccccsccacsscceseas 80
Iv.2 A typical feedback control system................ 83
IV.3 Reduced block diagram for the system model....... 84
IV.4 Block diagram for the dynamic test............... 86
IV.5 Transpuer network schematic.......c.cccceeeeeec.. 94

V.1 A typical transputer based multi-sensor network. 100

TABLE

IT.1

IT.2

II.3

ITI.1

ITI.2

ITII.3

ITI.4

III.5

ITT.6

ITI.7

III.8

LIST OF TABLES

IMS T800 pin designations.......ceeeeeeececcncnns
Floating point operating times......cceeeeeceeescs
ProcSpeedSelect0-2 pin selections........... .t it
External SRAM adAreSS...ccccssascsssesssssassassse
External DRAM addreSS...ccccescsceccsscsssnsscccses
Subsystem register addressesS.....ccecceeecccccccas
J1 signal assignment... i ssrttalits ekttt «ssssess
J2 pin (IEEE 488 status) assignment..........cc..
B421 base address jumper pin assignment..........
B421 device capability jumper pin assignment.....

B008 register addresSSeS....ccceeeccssscccssscnnns

PAGE

8

11

13

37

37

38

44

44

45

46

58

CHAPTER T
INTRODUCTION

While spectacular progress in VLSI technology has
been realized over the last 15 years to increase component
density, less dramatic improvements in clock speed have been
forthcoming. These realities suggest that control engineers
might profitably investigate parallel processing solutions
to meet increasingly demanding requirements. This interest
has been further stimulated by the availability of the Inmos
transputer which provides a flexible element for the support

of parallel processing for real-time applications.
I.1 Real-time Systems and process control

One of the fastest expanding areas of computer
exploitation is that involving applications, whose prime
function is not that of information processing, but which
nevertheless require information processing in order to
carry out their prime function. A microprocessor-controlled
washing machine is a good example of such a system. Here
the prime function is to wash clothes; however, depending on
the type of clothes to be washed, different ‘wash programs’
must be executed. These types of computer applications are

generically called real-time or embedded. The Oxford

Dictionary of Computing gives the following definition of

real-time system:

Any system in which the time at which the output is
produced is significant. This is usually the case
because the input corresponds to some movement in the
physical world, and the output has to relate to that
same movement. The lag from input time to output time
must be sufficiently small for acceptable timeliness.
Automatic process control is concerned with
maintaining process variables: temperatures (as in the
present study), pressures, flows, compositions at some
desired operating value. Processes are dynamic in nature
since changes are always occurring. Hence if actions are
not taken on time, the important process variables-those
related to safety, product quality, and production rates-
will not achieve design values. Thus real-time systems find

extensive application in process control.
I.2 Transputers

The INMOS transputer family is a range of system
components each of which combines processing, memory and
interconnect in a single VLSI chip. A concurrent system can
be constructed from a collection of transputers which
operate concurrently and communicate through serial
Communication links. Such systems can be designed and

Programmed in OCCAM, a language based on communicating

processes. In addition each transputer product contains
special circuitry and interfaces adapting it to a particular
use. For example, a peripheral control transputer, such as
a General Purpose Interface Bus (GPIB) controller, has
interfaces tailored to the requirements of the IEEE-488 test
and instrumentation system bus signals.

The software required for the present study is
written in OCCAM, which is the true parallel processing
language for the transputer. Nevertheless, transputers may

also be programmed using parallel FORTRAN and parallel C.
I.3 Objective and outline of the thesis

For the present study, a transputer based real-time
experimental process control set up is considered. The
emphasis is placed on the hardware aspects of the
transputer, i.e., the links and interface to the
input/output (I/0). Communication with the control system
is achieved via the DACU by using command codes [3]. The
GPIB OCCAM [8] software is used to perform the command and
data I/O operations on the DACU.

The objective of the present study is to design and
build a transputer based hardware/software system and
implement it in controlling a simple process. The system
consists of a stirred tank heater whose temperature is
measured and controlled using a proportional control

algorithm. The control is achieved using a hardware system

consisting of a transputer network which is programmed in

the OCCAM language. The thesis problem is reduced into the

following steps:

(1)

(2)

(3)

(4)

(5)

Install the transputer hardware involving an

IBM PC/AT clone and the transputer motherboards.
Install the software including the OCCAM

toolset [10], DOS device driver and modules to run
the transputer motherboards, in the PC.

Interface the process control test system to the
transputer network (via the IBM PC/AT and the
DACU).

Estimate the process control parameters for

the test system and formulate the control
equations for a proportional control algorithm.
Implement the algorithm in the system using OCCAM

software.

CHAPTER IT
DESCRIPTION OF THE TRANSPUTER HARDWARE AND SOFTWARE
ITI.1 Overview of the transputer family

The transputers encountered during the course of the
present study are the IMS T414, M212, C004, C012, T222 and
T800. Their features are described briefly.

The IMS T414 is a 32 bit CMOS microcomputer with
2 Kbytes of on-chip RAM for high speed processing, a
configurable memory interface and four INMOS communication
links. The instruction set achieves efficient
implementation of high-level languages and provides direct
support for the OCCAM model of concurrency when used either
as a single transputer or a network. Although the T414
provides high-performance arithmetic and microcode support,
it lacks a floating point unit (FPU) on the chip and its
efficiency in terms of speed is thus restricted [11].

The IMS M212 is a 16 bit peripheral processor
configured for connection to soft sectored winchester and
floppy disk drives. Two byte-wide programmable
bidirectional ports are provided to control and monitor disk
functions such as head position, drive selection and disk
Status. The M212 is programmed as a normal transputer,

Permitting peripheral control facilities to be built into

the device and thus reducing the load on the traditional
central processor of a computer [11].

The IMS CO012 link adaptor is a communications device
enabling the INMOS serial communication link to be connected
to parallel data ports and microprocessor buses. The IMS
C004 is a programmable link switch and it provides a full
cross bar switch between 32 link inputs and 32 link outputs.
The C012 and C004 features are described in more detail on
pages 52 through 55.

The IMS T222 and T800 transputers (modules) were
used extensively in designing the hardware network for the

present study and hence their features are described below.
The IMS T800 transputer

For convenience of description, the IMS T800
operation is split into the basic blocks shown in Fig. II.1.

The various blocks in Fig. II.1 are described below.
32 bit CcpPU

The 32 bit CPU contains instruction processing
logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte
on-chip memory, which can store data or program. Where
larger amounts of memory or programs in ROM are required,
the processor has access to 4 Gbytes of memory via the

external memory interface (EMI).

FLOATING POINT UNIT (FPU)
VCC — 32 BIT
GND —1 CPU
CapPlus —]
CapMinus — LinkSpecial
Reset —{ SYSTEM LINK —LinkOSpecial
Analyse — SERVICES SERVICES —Link123Specia1
ErrorIn —
Error — LinkIn O
BOoOtFrmROM — LINK
ClockIn — INTERFACE -LinkOut 0O
ProcSpeed —
Select0-2 LinkIn 1
LINK
INTERFACE —LinkOut 1
LinkIn 2
. LINK
TIMERS INTERFACE —LinkOut 2
LinkIn 3
LINK
INTERFACE LinkOut 3
4 KBYTES
OF EventReq
ON-CHIP EVENT —EventAck
RAM
ProcClkoOut
notMemS0-4 —
notMemWrBO-3—
EXTERNAL
notMemRd —
MEMORY
notMemRf —
INTERFACE 32 MemAD2-31
MemWait — (EMI) _HennotRfDl
Hengoziig — MemnotWrDO
eRkeq —
MemGranted —

Fig. II.1 1IMS T800 architecture

WILLIAM F. maag LIBRA
. JRAR
YOUNGSTOWN STATE UI‘\HVERSYIW

Table II.1 IMS T800 pin designations

System Services

Pin In/Out Function

VCC, GND Power supply and return

CapPlus, CapMinus External capacitor for
internal clock power supply

ClockIn in Input clock

ProcSpeedSelect 0-2 in Processor speed selectors

Reset in System reset

Error out Error indicator

ErrorIn in Error daisychain input

Analyse in Error analysis

BootFromRom in Boot from external ROM or
from link

HoldToGND Must be connected to GND

DoNotWrite Must not be wired

External Memory Interface

ProcClockOut out Processor Clock

MemnotWRDO in/out Multiplexed data bit 0 and
write cycle warning

MemnotRfD1 in/out Multiplexed data bit 1 and
refresh warning

MemAD2-31 in/out Multiplexed data and
address bus

notMemRd out Read strobe

notMemWRBO-3 out Four byte-addressing write
strobes

notMemS0-4 out Five general purpose strobes

notMemRf out Dynamic memory refresh
indicator

MemWait in Memory cycle extender

MemReq in Direct memory access request

MemGranted out Direct memory access granted

MemConfig in Memory configuration data
input

Event/Link
EventReq in Event request
EventAck out Event request acknowledge
LinkInO-3 in Four Serial data input channels
LinkOuto0-3 out Four serial data output
channels
LinkSpecial in Select non-standard speed as 5
or 20 Mbits/sec
LinkOSpecial in Select special Speed for 1link O
Linkl123Special in Select special speed for links
1,2,3

The design of the transputer processor exploits the
availability of fast on-chip memory by having only six
registers (Fig. II.2), which are used in the execution of a
sequential process. The small number of registers, together
with the simplicity of the instruction set, enables the
processor to have relatively simple (and fast) data-paths
and control logic. The six registers are:

(1) The workspace pointer which points to an area of
store where local variables are kept.

(2) The instruction pointer which points to the next
instruction to be executed.

(3) The operand register which is used in the
formation of instruction operands.

(4) The A, B and C registers which form an evaluation
stack.

A, B and C are sources and destinations for most
arithmetic and logical operations; loading a value into the

Stack pushes B into C, and A into B. Storing a value from

10
A, pops B into A and C into B. The use of a stack removes
the need for instructions to respecify the location of
their operands. Statistics gathered from a large number of
programs show that three registers provide an effective
balance between code compactness and implementation

complexity. Further register details are given in [11].

Registers Locals Program

A

B

C

Workspace >>

Next inst >>

Operand

pig. 1I1.2 T800 registers
64 bit FPU

The 64 bit FPU provides single and double length
arithmetic to floating point standard (ANSI-IEEE 754-1985).
It is able to perform floating point arithmetic concurrently
with the CPU, sustaining in excess of 2.25 Mflops on a
30MHz device. All data communication between memory and the
FPU occurs under control of the CPU.

The FPU includes a three-register floating-point

€vValuation stack which contains the FA, FB and FC registers.

11

Each of the registers can hold either 32 bit or 64 bit data.
When a floating point value is loaded into any of the
registers an associated flag indicates the size of the
loaded value. The FPU has been designed to operate on both
single length (32 bit) and double length (64 bit) floating
point numbers, and returns results which conform to the
ANSI-IEEE 754-1985 floating point arithmetic standard.
Denormalized numbers are supported in the hardware. All
rounding methods, defined by the standard, are implemented;
the default is roundoff to nearest digit. Basic addition,
subtraction, multiplication and division are performed by
single instructions. Typical floating point operation times
for the IMS T800 transputer are listed in Table II.2 below.

The FPU has its own error flag FP_Error. This
reflects the state of the evaluation within the FPU and is
set in circumstances where invalid operations, division by

zero or overflow exceptions would be flagged.

Table II.2 Floating point operation times

Single Length Double Length
Operation T800-20 T800-30 T800-20 T800-30
add 350 ns 233 ns 350 ns 233 ns
subtract 350 ns 233 ns 350 ns 233 ns
multiply 550 ns 367 ns 1000 ns 667 ns
L_flivide 850 ns 567 ns 1600 ns 1067 ns

Further details on the operation of the FPU can be

founq [11].

12

System services

System services include all the necessary logic to
initialize and sustain operation of the device. They also
include error handling and analysis facilities. Some of the
pin functions that are specific to the transputer
architecture are described below:

CapPlus, CapMinus are connected externally by a low
leakage, low inductance 1 uF capacitor for the internally
derived power supply for the internal clocks.

Reset is assertive high and the falling edge
initializes the transputer, triggers the memory
configuration sequence and starts the bootstrap routine.

Analyze will halt the transputer at the nest
descheduling point if it is taken high while the transputer
is running.

ErrorIn, Error together indicate that an error was
detected. An internal error can be caused by arithmetic
overflow, divide by zero, array bounds violation or software
setting the flag directly. The error pin carries the OR’ed
output of the internal error flag and the errorin input.

BootFromROM allows the transputer to be externally
bootstrapped when connected to high (e.g. to vcC).

ClockIn is the standard clock input supplied by the
uUser. High frequency internal clocks are derived from
ClockIn and it must be derived from a crystal oscillator

Since stability is important.

13
ProcSpeedSelect0-2 pins are used to vary the
processor speed in discrete steps as shown in the Table II.3

below.

Table II.3 ProcSpeedSelect0-2 pin selections

Proc Proc Proc Processor Processor Notes
Speed Speed Speed Clock Cycle
Select2|Selectl |Select0| Speed MHz Time nS

0 0 0 20.0 50.0
0 0 1 22.5 44 .4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
| 0 1 Invalid
1 1 0 17.5 57.1
1 1 1 Invalid
Memory

The IMS T800 has 4 Kbytes of On-chip RAM (static
memory) for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut. The
transputer can also access 4 Gbytes of external memory
space. Internal and external memory are part of the same
linear address space.

Internal memory starts at the most negative address
#80000000 and extends to #80000FFF. User memory begins
at #80000070; this location is given the name MemStart.
External memory space starts at #80001000 and extends up

through #00000000 to #7FFFFFFF.

14

External Memory Interface

The external memory interface (EMI) allows access to
a 32 bit address space, supporting dynamic and static RAM as
well as ROM and EPROM. The associated pin functions are

defined in [11].
Event

EventReq and EventAck provide an asynchronous
handshake interface between an external event and an
internal process. When an external event takes EventReq
high the external event channel (additional to the external
link channels) is made ready to communicate with a process.
When both the event channel and the process are ready the
processor takes EventAck high and the process, if waiting,

is scheduled. EventAck is removed after EventReq goes low.
Link Interface(s)

Four INMOS bi-directional serial links provide
synchronized communication between processors and with the
outside world. Each link consists of an input channel and
output channel. A link between two transputers is
implemented by connecting a link interface on one transputer
to a link interface on the other transputer. Every byte of
data sent on a link is acknowledged on the input of the same

link, thus each signal line carries both data and control

information.

15

The quiescent state of a link output is low. Each
data byte is transmitted as a high start bit followed by a
one bit followed by eight data bits followed by a low stop
bit. The least significant bit of data is transmitted
first. After transmitting a data byte the sender waits for
the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a
process was able to receive the acknowledged data byte and
that the receiving link is able to receive another byte.
The sending link reschedules the sending process only after
the acknowledge for the final byte of the message has been
received. The IMS T800 link data and acknowledge packets

appear in Fig. II.3 below.

T
H H 0 1 2 3 4 5 6 7 L l H| L :
Data Ack
Fig. II.3 Link data and acknowledge

Link speeds can be set by LinkSpecial, LinkOSpecial
and Linkl23Special. The link 0 speed can be set
independently. Table 10.0 shows uni-directional and bi-
directional data rates in Kbytes/second for each link speed;
LinknSpecial is to be read as LinkOSpecial when selecting
link 0 speed and as Linkl123Special for the others. Data

rates are quoted for a transputer using internal memory, and

16
will be affected by a factor depending on the number of
external memory accesses and the length of the external

memory cycle.
Timers

The transputer has two 32 bit timer clocks which
’tick’ periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a
specific time.

One timer is accessible only to high priority
processes and is incremented every microsecond, cycling
completely in approximately 4295 milliseconds. The other is
accessible only to low priority processes and is incremented
every 64 microseconds, giving exactly 15625 ticks in one

second. It has a full period of approximately 76 hours.

The IMS T222 transputer

The IMS T222 transputer has a simlar architecture
compared to a T800 transputer with the following significant
differences:

(1) The On-chip RAM is limited to 2K bytes.

(2) Absence of a Floating Point Unit.

(3) Data bus and processor size is limited to 16 bits.
(4) External Memory Interface is limited to a 16 bit

address and data bus.

17

ITI.2 The OCCAM software model
Concurrency

The world which we inhabit is inherently concurrent.
Events happen in both space and time. It is possible for
events to occur in the same place one after the other in
time (i.e., sequentially), and equally possible for events
to occur in different places at the same time (i.e., in
parallel or concurrently). The terms concurrent and
parallel have similar but distinct meanings and it is
important that they are not confused. Two entities are said
to be executing in parallel if at some instant in time both
are actually executing. Entities are described as
concurrent if they have the potential for executing in
parallel. A concurrent programming language will therefore

have more than one distinct thread of control.
OCCAM overview

The programming model for transputers is defined by
OCCAM. In OCCAM processes are connected to form concurrent
systems. Each process can be regarded as a black box with
internal state, which can communicate with other processes
using point to point communication channels. Processes can
be used to represent the behavior of many things: a logic
gate, a microprocessor, a machine tool or as in the present

thesis, a stirred tank heater.

18

The processes themselves are finite. Each process
starts, performs a number of actions and then terminates.

An action may be a set of sequential processes performed one
after one another. Since a process is itself composed of
processes, some of which may be executed in parallel, a
process may contain any amount of internal concurrency, and
this may change with time as processes start and terminate.
A pair of concurrent processes communicate using a one.way
channel connecting the two processes. One process outputs a
message to the channel and the other process inputs the
message from the channel.

The key concept is that communication is
synchronized and unbuffered. If a channel is used for input
in one process, and output in another, communication takes
place when both processes are ready. The value to be output
is copied from the outputting process to the inputting
process; the inputting and outputting processes then
proceed. Thus communication between processes is like the
handshake method of communication used in hardware systems.
Since a process may have internal concurrency, it may have
many input channels and output channels performing
communication at the same time. The property of unbuffered
communication between processes can be exploited
Specifically in real-time applications since time losses are
minimized.

OCCAM can be used to program an individual

19
transputer; the transputer shares its time between the
concurrent processes and channel communication is
implemented by moving data within the memory (Fig. II.4a).
(The numbers indicate the transputer link numbers and P, Q,
R indicate the individual processes). When OCCAM is used to
program a network of transputers, each transputer executes
the process allocated to it (Fig. II.4b). Communication
between OCCAM processes on different transputers is
implemented directly by transputer links. Thus the same
OCCAM program can be implemented on a variety of transputer
configurations, with one configuration optimized for cost,
another for performance, and another for an appropriate

balance of cost and performance.

| 7
1 1 1
L I 4 P 2—— 4 Q 2
P Q
—4 2——
R 1
—4 R 2—
3 3
Fig IT.4a single transputer Fig. II.4b Transputer

network

20

Process

The definition of a process is the same as that of a
program in an ordinary sequential language; in OCCAM
more than one process may be executing at the same time,
and processes can send messages to one another. All OCCAM
programs are built from combinations of three kinds of

primitive processes. They are assignment, input and output.
Channels

Communication between processes is achieved by means
of channels. OCCAM communication is point-to-point,
synchronized and unbuffered. As a result, a channel needs
no process gueue, ho message queue and no message buffer.

A channel between two processes executing on the
same transputer is implemented by a single word in memory;

a channel between processes executing on different

transputers is implemented by point-to-point links.

Assignment

An assignment process changes the value of a
variable, just as it would in most conventional languages.
The symbol for assignment in OCCAM is ":=". The process

"fred := 2" makes the value in the variable fred two.

Input

An input process inputs a value from a channel into

21
a variable. The symbol for input in OCCAM is "2?". The
input process "chan3 ? fred" takes a value from a channel
called chan3 and puts it into variable fred.
An input process cannot proceed until a

corresponding output process on the same channel is ready.
Output

An output process outputs a value to a channel. The
symbol for output in OCCAM is "!". The output process
"chan3 ! 2" outputs the value 2 to a channel called chan3.
An output process cannot proceed until a corresponding input

process on the same channel is ready.
Communication

Communication over a channel only occurs when
both input and output processes are ready. If during the
execution of a program an input process is reached before
its corresponding output process is reached, the input will
wait until the output becomes ready. If the output is
reached first, it will wait for its input; the communication

is synchronized.
SKIP and STOP

SKIP represents a process that starts, does nothing
and then finishes. It might be used in a partly completed

Program in place of a process which will be written later.

22
STOP process starts but never proceeds and never
finishes. It might be used, like SKIP, to stand in for a

process which has yet to be written.
Combining processes

Several primitive processes can be combined into a
larger process by specifying that they should be performed
one after the other, or all at the same time. This larger
process is called a construction and it begins with an OCCAM
keyword which states how the component processes are to be

combined.

SEQ Construct

SEQ is short for ’‘sequence’ which explains the
way in which the processes within this construct are
to be executed, i.e., one after another.
Ex: SEQ
chan3 ? fred
jim fred + 1
chan4 ! jim
Notice the way that the processes which make up this
SEQ process are indented by two characters from the word
SEQ, so that they line up under the Q. This is not merely
to make the program look prettier, but is the way that OCCAM

knows which processes are part of the SEQ.

23

PAR construct

PAR is short for ’parallel’ and hence all the

component processes of a PAR start to execute

simultaneously.
Ex: PAR
SEQ

chan3 ? fred
fred := fred + 1
SEQ

chan4 ? jim

jim := jim + 1
The first two-character indent tells OCCAM that the PAR
process consists of two SEQ processes. The second level of
indentation shows that each SEQ is composed of two primitive

processes. In a PAR, the written order of the component

processes is irrelevant as they are all performed at the
same time. All the component processes in a PAR start at
the same time, and the PAR itself terminates when all its
component processes have terminated. Several other
constructs and the OCCAM syntax are well illustrated in [1]

and [13].
II.3 The OCCAM2 toolset for the IBM PC

The OCCAM2 toolset is a set of software tools for
developing transputer programs on host systems. Used with

the occaM libraies, it provides a complete environment for

24
developing programs on transputers and transputer networks.
This toolset allows OCCAM programs to be written using any
convenient text editor. Programs are then compiled and
linked using programs that are resident on the host or
running on the transputer board. Self-booting code for
single transputers and multitransputer networks is produced
using separate tools, and loaded from the host system down
the transputer link.

The OCCAM2 toolset is intended for developing
programs on transputers and transputer boards that are
loaded from the host via a transputer link. The tools that
are used in compiling, linking and downloading the OCCAM2
software onto the designed system are listed:

(1) ICHECK

(2) OCCAM
(3) ILINK
(4) ICONF

(5) ISERVER
The file extensions that have been frequently encountered in
the present software design are listed:
(1) .btl - Ooutput file from ICONF tool. Loadable code
file extension for boot from link boards.
(2) .cxy - Linked code output file from ILINK tool.
(3) .inc - Input file to the OCCAM tool consisting of
predefined constants and channel protocols.

(4) .lib - oOutput library file from the ILIBR tool.

25

Consists of compiled code.

(5) .map - Output file from the ICONF tool. Consists
of the configuration map in the ASCII format.

(6) .occ - Input file to the OCCAM tool consists of
the OCCAM source code.

(7) .pgm - Input file to the ICONF tool consists of
the configuration description source file.

(8) .txy - Output file to the OCCAM tool consists of
the compiled code.

The second and third characters x and y are listed:

x Class y Mode

2 T212, T222, M212 h Halt

4 T414 s Stop

5 T425 u Undefined
8 T800 X Universal
a T800, T425, T414

b T425, T414

c T800, T425

ICHECK

The OCCAM 2 checker icheck performs a syntax check
of the full OCCAM 2 product language but produces no object
code. The syntax checking performed by the checker is
similar to that of the compiler but it generates more data
and displays more information about the errors. By taking
advantage of the regular structure of the OCCAM programs
icheck can recover from errors that cause the compiler to

abort, and thereby perform a more comprehensive check. The

26
checker recognizes the compiler directives #INCLUDE, #USE,
#IMPORT, #SC, #OPTION, and #COMMENT. Directives are
described in more detail in [10].

To invoke the checker the following command line is
used:

icheck filename {options)

where: filename is the name of the file containing the

source code. If a file extension is not

specified, the extension .occ is assumed. If

the filename is omitted a brief "help"

information is displayed.

options is a list, in any order, of one or more

of the options available [10].

The options that have been frequently used for

checking the software for the present system are:

(1) T8 - Check for a T800 processor (the process
resident on the T800 based ‘ROOT TRAM’ in the
system).

(2) T2 - Check for a T222 processor (the process
resident on the T222 based ‘GPIB TRAM’ in the
system).

(3) B - Displays error messages in brief (single line)
format.

Details regarding usage, other options and error

messages can be obtained from [10].

27

The toolset compiler implements the OCCAM 2 language
targeting to IMS T222, T800 and several other transputers
[11]. Each compilation of a program must be targeted at a
specific transputer or transputer class and in one of four
execution error modes. All components of a program that are
to be run on the same transputer must be compiled with the
same target processor and error mode.

Six directives, extensions to standard OCCAM are
recognized by the OCCAM 2 compiler. These are #USE,
#INCLUDE, #IMPORT, #OPTION, #COMMENT and #SC. Compiler
directives are described in [10]. The operation of the

compiler in terms of the file extensions is described below.

.txy .inc

«0CC—> OCCAM ——> .tXy

.CXy .1ib
To invoke the compiler the following command line is
used:
occam filename {options)
where: filename is the name of the file containing the
source code. If a file extension is not
specified, the extension .occ is assumed. If
the filename is omitted brief help information

is displayed.

28
options is a list, in any order, of one or more

options available [10].
ILINK

The linker links compiled code into a single object
file, resolving all external references. Code files can be
separately compiled program units or library files.

The operation of the linker in terms of file

extensions is shown below.

-lib - -lxx

AAL —> . MXX
X —>- ILINK > . CXX
+.CXX —

To invoke the linker the following command line is
used:

ilink (filename} {options)

where: filename is a list of files generated by the
OCCAM 2 compiler, by INMOS compatible
compilers, by the librarian, or by the
linker. If the ‘o’ option is not specified
the name of the first file in the list is
used to generate the output file.
options is a list of any of the available

options [10].

29

ICONF

The configurer takes a configuration description and
produces either an object code file ready for loading into a
network of transputers, or a configuration map describing
the allocation of code and placement of the channels. A
configuration description describes how code is to be run on
a network of transputers. Code to be run on separate
processors is declared as separately compiled units, or
included as OCCAM source.

The operation of the configurer tool in terms of
toolset file extensions is illustrated below.

.txx .inc

J l —.map
- pgm—>{ ICONF —>.btr
1 1 L5 .btl

«CXX - 0OCC

To run the configurer the following command line is used:
iconf filename {options}
where: filename is the file containing the
configuration code. If no file extension is
given .pgm is assumed.
options is a list of options available from

[10].
ISERVER

The host file server iserver provides two functions:

(1)

(2)

30
Loading programs and controlling transputer
networks.
Runtime access to host services for application

programs.

To run the host file server the following line is used:

iserver {options)}

where: options is a list of one or more options listed

in [10].

The options that have been used for the present design are

(1)

(2)

(3)

SB - boots the program contained in the named
file.

SS - serves the link, that is, provides host
system support to programs communicating on the

host 1link.

SC - Copies the named file to the root transputer

link.

A more detailed description of the iserver an other tools

and their implementation aspects are given in [10].

The OCCAM Libraries

A comprehensive set of libraries and ’‘include’ files

are provided with the toolset. Some form part of the

standard support for the OCCAM language (the compiler

libraries), others are user-level libraries to support

Standard programming tasks such as terminal i/o and file

access.

31

Compiler libraries

The compiler libraries are used internally by code
generated by the compiler. With a number of exceptions [10]
they are not intended for direct use by the programmer. The
compiler references them automatically by searching the
directories specified by the ISEARCH host environment

variable [11].
Maths libraries

The maths libraries provide trigonometric and
logarithmic functions for all transputer types supported by

the toolset.
I/0 libraries

Two libraries containing routines to assist with i/o
are provided with the toolset. They are Hostio and Streamio
libraries.

The Hostio library is used for file handling, Host
access and Terminal i/o. The Streamio library is used for
general character-based i/o using stream protocols [11], and
for controlling the screen display. |

Details of these and other libraries are detailed in

[11].

32

CHAPTER TT1I

DESCRIPTION OF THE TRANSPUTER MODULES
AND MOTHERBOARDS

ITII.1 Transputer modules (TRAMs)

TRAMs are small, cost-effective sub-assemblies of
transputers and other circuitry (often RAM) with a simple
but efficient 16 signal interface standard profiled in
modular sizes. The interface accommodates 4 serial
transputer links for interprocessor communication, power
supply and system signals.

This standard allows the TRAMs to be mounted onto
a variety of motherboards which provide specific host
interface hardware. Each motherboard can connect to a
number of TRAMs and provides facilities for configuring
a network of TRAMs for the user specified topology under
software control. A software package is provided for
motherboards which allows this task to be undertaken with
minimum effort [4].

All TRAMs are based upon a single module profile
with a defined pin layout. This single format is known as

"size 1". The schematic picture of the size 1 TRAM is shown

below in Fig. III.1.

33
o Link2out Link3in o
o Link2in Link3out o
o VCC GND o
o Linklout LinkOin o
o Linklin LinkOout o
o LinkSpeedA notError o
o LinkSpeedB Reset o
O ClockIn(5MHz) Analyze o
Fig. 111.1 Size 1 TRAM footprint

Larger TRAMs are simply a multiple of the size 1
footprint. Thus, a "size 2" TRAM occupies two of the
sockets into which a size 1 TRAM will plug. In order to
avoid confusion, discussions about motherboards always refer
to "slots". A slot is one position into which a size 1 TRAM
may be plugged. So, a motherboard which has ten slots may
have ten size 1 TRAMs or five size 2 or two size 4 and two
size 1 or one size 8 or even six size 1 and one size 4.

The common pins that are available from the TRAMs are listed

below.
STANDARD TRAM PINs

Transputers and therefore TRAMsS require three
signals to be connected to them to allow them to initialize,
and debug so that they can signal an error. These signals
are Reset for resetting, Analyze to allow debugging, and
NotError to signal an error on a transputer or TRAM (Fig.
IITI.1). These three signals are collectively known as

System services. The system services for a TRAM are treated

34
as a single signal conceptually although they are actually
three signals. These three signals are described along with
the other pins in the description of the transputer
architecture above.

The following two TRAMs are used in realizing the
network for the process control system.
(1) IMS B403 (T800 based TRAM)

(2) 1IMS B421 (T222 based TRAM)
IIT.2 IMS B403 TRAM

The IMS B403 is a very compact compute module which
provides a full 2Mbytes of memory and still maximizes
performance capability. This is achieved by extending the
principle of fast on the chip RAM to include 32Kbytes of
static RAM which cycles as fast as possible. Any technique
which puts most frequently accessed memory locations near
the bottom of memory will speed up the processing. This
TRAM is the most popular board for running INMOS TDS or
Toolset packages.

The IMS B403 packs 11 sq. cm of silicon onto a board
the size of a credit card. Four IMS B404s fit onto the IMS
B008 in a single slot of the IBM PC. Fifty IMS B403s fit
into an ITEM [6], to give 100 Mbytes, 625 MIPS, 250
MWhetstones, with space to spare for other modules. The

Schematic of the IMS B403 appears in Fig. III.2.

35

Reset —
Analyze — 2 Mbytes
DRAM

NotError<=

Link o<-Jj}—{ T800

Link 1<-Jj}— 32 Kbytes
Link 2<-jJ}— SRAM
Link 3¢}
Terminated
links Subsystem |— SS Reset
—> SS Analyze
PAL notSSError
Fig. III.2 IMS B403 TRAM schematic

All the pins except the Subsystem PAL (Programmed
Array Logic) pins are described in the transputer hardware

section.
Subsystem Signals

The IMS B403 has a subsystem port in addition to the
usual TRAM signals. This enables the TRAM to reset or
analyze a subsystem of other TRAMs and/or motherboards. The
Polarity of these signals is the same as that of Reset,
Analyze and notError standard TRAM signals. Therefore the
IMS B403 subsystem can drive other TRAMs on the same

motherboard with no intermediate logic. However,

36
SubSystemReset and SubSystemAnalyze must go through
inverting buffers if they are to drive a subsystem off the
motherboard. These subsystem signals are accessed by
writing or reading to control registers in the transputer

memory space.
Memory configuration

The IMS B403 is able to access 2 Mbytes of memory.
There is 4 Kbytes of internal transputer memory, 28 Kbytes
of external SRAM and 2016 Kbytes of external DRAM. There
are 32 Kbytes of SRAM components and 2 Mbytes of DRAM
components on the board, but the address spaces of each type
of memory are superimposed. The total memory available is
limited to 2 Mbytes. This is sufficient to enable the
Transputer Development System (TDS) to be run on a single

IMS B403 TRAM.
Location of external memory

Table III.1 shows the start address of the external
SRAM and Table III.2 shows the start address of the external
DRAM on the IMS B403 (the # sign indicates a hexadecimal
number). The internal RAM on the IMS T800 occupies the
first 4 Kbytes of address space. Since the internal memory
on the IMS T800 is 1 cycle, the external SRAM is 3 cycle and
the DRAM is 4 (or 5) cycle, a memory speed hierarchy is

established. This architecture allows the programmers to

37

Table III.1 External SRAM addresses

Hardware byte address

From: #80001000
To: #80007FFF

Table III.2 External DRAM addresses

Hardware byte address

From: #80008000
To: #801FFFFF

structure their code for optimum performance, and will
become of greater significance when the next faster version

of the transputer becomes available.
Subsystem register locations

The subsystem register addresses start at hardware
address #00000000 in all TRAMs that utilize a 32-bit
processor, allowing software compatibility between TRAMs.
These registers are located as shown in Table III.3.

Setting bit 0 in either the reset or the analyze registers
asserts the corresponding signal. Similarly, clearing bit 0
deasserts the signal. When an error occurs in the
Subsystem, bit 0 of the error location becomes set. Byte
locations #00000008 and #0000000C are unused. The subsystem
registers are repeated at every sixteenth byte location in

the positive address space. See Fig. III.3.

38

Table III.3 Subsystem register addresses

Register Hardware
Byte
Address

SubSystemReset (write only) #00000000

SubSystemAnalyze (write only) #00000004

notSubSystemError (read only) #00000000

Fig. III.4 shows the schematic picture of the IMS
B403 TRAM. Since the IMS B403 contains CMOS components, all
normal precautions to prevent static damage should be taken.

The IMS B403 is supplied with spacer pin strips
attached to the TRAM pins on the underside of the board.
These spacers perform two functions. Firstly, they help to
protect the TRAM pins during transit. Secondly, they can be
used to space the TRAMs off the motherboard. If there are
no components mounted on the motherboard TRAM slot, then the
spacer strips are removed before the TRAM is inserted.

If the subsystem pins are required, a 3-way header
strip is plugged into the solder-side sockets on the IMS
B403.

The IMS B403 is plugged into the motherboard with
the silk screened triangle marking pin 1 on the TRAM aligned
With the silk screened triangle that appears in the corner

of the appropriate TRAM slot.

Fig. III.3

Mechanical

HARDWARE

BYTE

ADDRESS

#7FFFFFFC Repeated
Subsystem
Registers

#00000004 Subsystem
#00000000 Registers

#801FFFFF 2016 Kbytes
External DRAM
(4 or 5 cycle)

#80007FFF 28 Kbytes
External
#80001000 SRAM(3 cycle)

#80000000 Internal RAM

IMS B403 subsystem register memory map

details and Installation

O000000000000000O0

o a Link2out/notSubSystemError..Link3in
o b Link2in/SubSystemReset Link3out
o c¢ VCC/SubSystemAnalyze GND
Linklout LinkOin
Linklin LinkOout
LinkSpeedA notError
LinkSpeedB Reset
ClockIn(5MHz) Analyze
NC NC
NC NC
NC NC
NC NC
NC NC
GND vCcC
NC NC
NC NC

O00000000000O000O0O

Fig. I11.4

IMS B403 schematic

39

40

III.3 1IMS B421 (GPIB) TRAM

The GPIB (General Purpose Interface Bus) TRAM allows
IEEE-488 test and instrumentation systems to be directly
connected to network of transputers. The parallel interface
permits high speed communication of control and measurement
information, and the power of the transputer can provide
sophisticated data analysis facilities. The user can define
the characteristics of the GPIB interface in terms of
address, etc., for maximum flexibility in system
configuration. The schematic description of the TRAM

appears in Fig. III.5.
Oonboard Transputer System

The IMS B421 TRAM has an IMS T222-20 transputer with
4K bytes of fast internal RAM. This is supplemented by 48K
bytes of external static RAM, which runs without wait
states. The TRAM is thus provided with considerable
processing power in comparison with many existing IEEE-488
interface products, allowing it to provide a compact
solution in embedded applications which might otherwise

require separate interface and processing modules.
IEEE-488 Interface (GPIB)

This is provided by a Texas Instruments TMS9914A
GPIB controller, in conjunction with SN75160B and SN75162A

buffers. These devices allow the IMS B421 to act as a

41

48K 8K Configuration
Reset ‘ SRAM EEROM switches
Analyze——
NotError<— !
Link O <y IMS T222
Link 1 <pgg>
interface IEEE-488
controller BUS

Fig. III.5 IMS B421 architecture

System Controller, non-system Controller, Talker or
Listener, and ensure full electrical compliance with the

IEEE-488 standard.
Electrically Erasable Read Only Memory (EEROM)

The IMS B421 TRAM contains an EEROM device of 8
Kbyte capacity. This is provided essentially to assist in
implementing the requirements of IEEE-488.2, which calls for
compliant devices to accept, retain and return various
identifying information upon demand. The content of these
messages cannot be determined in advance by INMOS, so the
EEROM is provided as a non-volatile means of retaining the
necessary character strings, which may be conveniently
stored in the device by IMS F00l1 [8] commands. The device
Capacity is more than enough to store the information
required for compliance with the standard, so the remainder
may be allocated to any purpose defined by the user, and is

easily accessed via additional IMS F001 commands [8].

43
26-way dual-row 0.1 in.IDC socket at one end, and an IEEE-
488 compatible IDC connector at the other. It is stressed
that such a connection minimizes performance as well as
cost, so cable length must be kept as short as possible. It
is only suitable for making a temporary connection to a

system during development.

2468 ... 24 26
1357 ... 23 25
*

Fig. III.6 Jl - IEEE 488 connector

Table III.4 below shows the J1 signal assignments.

Further details of the IEEE-488 standard appear in [3].

Auxiliary connector J2

The IMS B421 also has a similar connector, J2, (Fig.
III.7) with four pins arranged in a single row on 0.1

inch pitch.

* %* * *

1

Fig. 111.7 J2 auxiliary connector

Pin 1 of J2 is marked with a yellow dot; pin numbering
Proceeds along the row of contacts. Connection to J2 may be
made with an IDC connector and ribbon cable, as described

for J1 above; the termination at the far end of the cable is

44

at the user’s discretion.

Table III.4 J1 Signal assignment

IMS B421 IEEE-488 IEEE-488 compatible

Jl signal name | connector pin number

1 DIO1 1

2 DIO5 13

3 DIO2 2

4 DIO6 14

5 DIO3 3

6 DIO7 15

7 DIO4 4

8 DIOS8 16

9 EOI 5

10 REN 17

11 DAV 6

12 Gnd 18

13 NRFD 7

14 Gnd 19

15 NDAC 8

16 Gnd 20

17 IFC 9

18 Gnd 21

19 SRQ 10

20 Gnd 22

21 ATN 11
22,23,24 Gnd 23
25, 26 Gnd not used

Table III.5 J2 pin (IEEE 488 status) assignment

IMS B421

J2 Pin signal name
1 IEEE-488 SRQ line status
2 IEEE-488 IFC line status
3 IEEE-488 REN line status
4 TRIG

The status of the three IEEE-488 lines is provided

(Table IIT.5) so that the hardware in which the IMS B421 is

45
embedded may directly receive Service Request messages,
Interface Clear messages, and Remote/local status. Note
that the J2 pins have the same logic polarity as the IEEE-
488 lines, i.e. TTL logic 0 level indicates TRUE.

The TRIG signal is produced by the IMS B421 when it
receives a Group Execute Trigger message [8]. The pin goes
to TTL logic 1 level to indicate this event, and may be used

to trigger other embedded functions such as some form of

data acquisition hardware.
Bus address jumpers, JPl1 to JP5

The intended address value is indicated as a binary
number on these jumpers (Table III.6). The encoding
considers bit significance to begin at JP1 and increase in
numeric sequence to JP5; presence of a jumper forces a bit’s
contribution to zero, whereas absence allows it to
contribute its weighted value. For example, for the present

project, the address 28,, is encoded as follows:

Table III.6 B421 base address jumper pin assignment

Jumper | Status |Bit Significance |Contribution
JP1 Present 1 (none)
JpP2 Present 2 (none)
JP3 Absent 4 4
JP4 Absent 8 8
JP5 Absent 16 16
Address 16+8+4 = 28

46

Device capability jumpers, JP6 and 7

The IEEE-488 capability of the device is selected
via these jumpers to be a controller, talk & listen as shown

in Table III.7:

Table III.7 B421 device capability jumper pin assignment

JP7 JP6 Capability

Absent Absent Controller, talk & listen

Further details of the jumper selection appear in [7].
Bus drive selection jumper, JPS8

When this jumper is present the IMS F001 software
will configure the IMS B421 for open-collector drive of
IEEE-488 data signals. When the jumper is absent, as in the
case of configuration for the present project, the tri-state

drive is selected.
Data protect jumper, JP9

The IMS F001 software takes the presence of this
jumper to indicate that EEROM contents are NOT protected;
IMS F001 commands which involve modification of EEROM
contents will be accepted and obeyed. Conversely, absence
of this jumper is taken to mean that EEROM contents should
not be altered. Any IMS F001 command which seeks to perform

Such an alteration will be rejected.

47

t

Memory configuration
Fig. III.8 shows a memory map for the systen.
Subsystem register locations

The subsystem registers are not implemented in the

standard way on the IMS B421, but are part of the I/O ports.

Hardware OCCAaM
addresses addresses
#7FFF #7FFE
#6000 EEROM 8K #7000
#5FFF #6FFE
GPIB control 2K
#5800 #6C00
#57FF #6BFE
I/0 ports 2K
#5000 #6800
#4FFF #67FE
RAM 48K
#9000 #0800
#8FFF #07FE
Internal RAM 4K
#8000 #0000

Fig. III.S8 IMS B421 memory map

The IMS B421, whose schematic is shown in Fig.
ITI.9, is also composed of CMOS components and hence all
normal precautions to prevent static damage should be taken.
Similar to the IMS B403, the IMS B421 is also supplied with
Spacer pin strips and the 3-way header strip (for subsystem

signals). Further details appear in [7].

Mechanical details and Installation

o o Link2out/SubsystemnotError Link3in o
o o Link2in/SubsystemReset Link3out o
o0 o VCC/SubsystemAnalyze GND o
o Linklout LinkOin o
o Linklin LinkOout o
o LinkSpeedA notError o
o LinkSpeedB Reset o
o ClockIn(5MHz) Analyze o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o GND VCC o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o VCC GND o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o NC NC o
o GND VCC o
o NC NC o
o NC NC o

Fig. III.9 IMS B421 footprint

III.4 Transputer motherboards

A TRAM motherboard has a number of slots into
which TRAMs can be plugged. Each of these slots contains

the necessary connections to power, clock, reset signals

49
and the transputer links. The motherboard provides a
method of connecting TRAMs together and may also include
special circuitry to interface to something other than a
transputer system. The following two motherboards are used
in the project:
(1) PC/AT TRAM IMS B008 Motherboard

(2) IMS B012 Eurocard
III.5 IMS B008 Motherboard

The PC/AT TRAM MOTHERBOARD (Part# IMS B008), is
designed to plug into a PC or PC/AT bus. The board has ten
TRAM slots, an interface to the PC bus and a programmable
link switch (Part# IMS C004) to allow a network of TRAMs to
be setup under software control. Fig. III.10 provides a
functional block diagram of the IMS B00S8.

The interface to the PC provides a single transputer
link and a system services port (Reset, Analyze and Error).
This allows software running on the PC to reset, analyze,
communicate with, and monitor the error flag of a transputer
network connected to or on the IMS B008. Data can be
transferred to and from the link interface using programmed
I/0 or a DMA transfer mechanism allowing data transfer to go
on without processor intervention. Interrupts can be
generated on link events; on error being asserted, or at the
end of a DMA transfer, freeing the processor from polling

the IMS B008 to detect these events.

50

PC bus
interface

Host system services

o Controlled by SW1:3 Down system services
O <>
<>—-0 Subsystem services
Up system ‘ <>
services l Controlled by SWl1l:4
o) o

O System services to
| slots 1 to 9

System
services
into slot
Subsysten
port
Slot O Slot 1 Slot 9

Fig. III.1O IMS B008 functional block diagram

The system services are generated by the system
services port of the IMS B008 PC bus interface, or by a
subsystem port on a TRAM. TRAMs with a subsystem port have
three extra connections which are made via a row of three
sockets on the underside of the TRAM. The IMS B008 has a
corresponding row of three sockets underneath the slot 0
pPosition only. To connect the subsystem port on the TRAM to
the IMS B008 a strip of three double-ended pins is inserted
in the sockets in the TRAM and the IMS B008. The specific
details of installation may be obtained from [4].

System services for a TRAM plugged into slot 0 on

51
the IMS B008 and come from one of two sources: Up system
services fed from another motherboard, or the Host system
services which are controlled by the system services port of
the PC bus interface. The system services fed to slot 0 are
known as down system services and are buffered and connected
to pins of P2, the 37 way D-type connector at the back of
the IMS B008. These Down system services can be fed to the
Up system services of another motherboard. The sources,
destinations, and switching of system services
on the IMS B008 are illustrated in the functional diagram
(Fig. III.10).

The TRAM slots on the IMS B008 are connected into
a pipeline using two of the four links from each slot.

The remaining two links from slots 1 to 9 and link 3 from
slot 0 are connected to the programmable link switch
which allows these links to be connected together via
software. Control and configuration (programming) of the
link switch is performed by a 16-bit transputer (IMS
T222).

The IMS B008 performance is monitored by the
following prominent devices whose operation is briefly
described:

(1) Programmable Link Switch (IMS C004)
(2) Network Configuration Processor (IMS T222)
(3) Link Interface Adaptor (IMS C012)

(4) PC BUS Interface

52

Programmable Link Switch (IMS C004)

The IMS C004 is a programmable link switch designed
to provide a full crossbar switch between 32 link inputs and
32 link outputs. The IMS C004 is internally organized as a
set of thirty 32-to-1 multiplexers. Each multiplexer has
associated with it a six bit latch, five bits of which
select one input as the source of data for the corresponding
output. The sixth bit is used to connect and disconnect the
output. These latches can be read and written by messages
sent on the configuration link via ConfigLinkIn and Config
LinkOut.

The output of each multiplexer is synchronized with
an internal high speed clock and regenerated at the output
pad. This synchronization introduces, on an average, a 1.75
bit time delay on the signal. Since the signal is not
electrically degraded in passing through the switch, it is
possible to form links through an arbitrary number of link
switches. It is also possible to use a single IMS C004 as
a component of a larger link switch.

Inputs and outputs of the IMS C004 are individually
identified by numbers in the range 0 to 31. A configuration
message consisting of one, two or three bytes is transmitted
on the configuration link. The IMS C004 must be hard reset
after power up by pulsing the Reset pin high for the minimum
time specified.

The link bandwidth may be lower than for a simple

transputer-to-transputer connection, depending upon the
type of transputers on the TRAMs at both ends of the 1link
which passes through an IMS C004. For instance, two IMS
T800 transputers connected together will give uni-
directional link bandwidth of 1.7 Mbytes/s. However,
with one IMS C004 switching the link, the link bandwidth
is 1.3 Mbytes/s. With two IMS C004s switching the link,
as is the case with some board-to-board links using IMS
B008s, the link bandwidth will be 800 Kbytes/s.
Theoretically it is possible to change the
configuration of the IMS C004s while a program is
executing on the TRAM array. This may be useful, for
example, in a system which needs a particular network
during a data gathering phase but a completely different
network during a data processing phase. The basic idea
is that providing there is no traffic on a link, the path
it takes through an IMS C004 can be switched. After
switching, processing can proceed using the new network.

Obviously this requires careful synchronization between

53

all the programs in all the TRAMs; this is usually achieved

via the links which are being switched.
Network Configuration Processor (INS T222)

The network configuration processor, a 16 bit
transputer (the IMS T222), is used to route configuration

data on the IMS B008. Network configuration data is

54
received on link 1, known as ConfigUp of the IMS T222 (
referred to as the T2 for brevity) either from a TRAM in
slot 0 (root TRAM) or from another board’s network
configuration processor if the board is in a pipeline of
boards. This pipeline of network configuration processors
is made in a similar way as that of a pipeline of TRAMS on
multiple boards. The link ConfigDown on the first board in
the configuration pipeline connects to ConfigUp on the next
board and so on down the pipeline.

Software running on the T2 examines the
configuration data for connections to be made by the
IMS C004 to which the T2 has a link connection. This
connection data is extracted from the configuration
data and the connections are made by sending a set of
messages to the IMS C004 via link 3 of the T2.
Configuration data for the boards further down the
configuration pipeline is then sent out on link 2
(Configbown). This pipeline arrangement of T2 processors is
used on all transputer motherboards that have IMS C004 link
switches on them. Thus arbitrary large networks of mixed
transputer motherboards can be configured by sending
configuration data down a single link, Configup, at the

head of the configuration pipeline.
Link Interface Adaptor (IMS C012)

The IMS C012 provides for full duplex transputer

55
link communication with standard microprocessor and sub-
system architectures, by converting bi-directional serial
link data into parallel data streams. Status and data
registers for both input and output ports can be accessed
across the byte-wide bi-directional interface. Two
interrupt outputs are provided: one to indicate input data
available and one for output buffer empty.

The IMS C012 link runs at either the standard speed
of 10 Mbit/s or at the higher speed of 20 Mbit/s. Data
reception is asynchronous, allowing communication to be
independent of clock phase. The various link adaptor
registers and their memory addresses are listed in table
III.3. The link adaptor input and output processes are
described below.

LINK ADAPTOR INPUT PROCESS

A data byte received on the C012 link is transferred
into the input data register and the data present flag set
in the input status register. If interrupts are enabled,

a link data input interrupt is generated. A processor
controlling the PC bus will, either in response to the
interrupt or in a polling loop, examine the input status
register. The data present flag will be set to signify that
valid data is in the input data register. The processor
then reads the data byte.

If a DMA transfer from the IMS B008 to the PC memory

has been set up then the DMA logic in the PC and the control

56
logic on the board will transfer the data byte from the
input data register. The process then reads the data.byte-
A new data byte can now be received and the process repeats.
LINK ADAPTOR OUTPUT PROCESS

The output ready flag will be set in the output
status register. If interrupts are enabled for this event,
an interrupt will be generated. The processor, either after
receiving an interrupt or in a polling loop, reads the
output status register. It will determine from the output
ready flag that a byte may be written to the output data
register. It then writes the byte to the output data
register. The byte is transmitted on the C012 link output.
When the link adaptor is ready to transmit another byte the
output ready flag will be set. The DMA logic in the PC and
the control log}c on the board will transfer the data byte
from PC memory to the output data register without
intervention from the processor if a DMA transfer from PC

memory to the IMS B008 has been set up.
PC BUS Interface

The IMS B008 has been designed to work when plugged
into either a PC/AT bus slot or a PC bus slot. The bus
interface on the IMS B008 has four functions to perform:

(1) cConvert the 8 bit parallel transfers on the PC bus
to serial link transfers, and vice versa.

(2) Provide a system services port.

57
(3) Control DMA transfers.
(4) Generate interrupts on link interface events,
on the assertion of transputer error, or on DMA

transfer end.

HostAnalyze
Host
HostReset
System
Interrupt Services |notHostError
logic -
PC Bus| PC Bus

[

OutputInt &
BN interface InputInt

DMA

co1l2
C012 Link

Fig. III.11 PC bus interface functional diagram

The block diagram of the PC bus interface is given
in Fig. III.11. The PC the PC bus interface has a
number of registers which are mapped into the I/O address
space of the PC bus, separate from the memory address space.
They are located on a thirty-two byte long block of I/O
addresses decoded by the IMS B00S. This thirty-two byte
block can have a base address of #150, #200, or #300 set by
option switches. A memory map of the registers is given in

table 3.3. only nine of the thirty-two locations have

58
registers mapped into them; writing to the remainder of the
I/0 locations will have no effect and reading these
locations will result in un-defined data being returned.

The IMS B008 is however still driving the bus when
these addresses are read, this means that other boards on
the PC bus must be configured so that the I/0O addresses they
respond to do not overlap this block of thirty two
addresses. Details of how these functions are performed and

how they are controlled from these registers are given in

[4].

Table III.8 BO008 register addresses

Address Register

#00 |Link adaptor input data

#01 |Link adaptor output data

#02 [Link adaptor input status

#03 |Link adaptor output status

#10 |Reset/Error

#11 |Analyze

#12 |DMA request

#13 |Interrupt enable

#14 |DMA and interrupt channel select

Board address
Board address
Board address
Board address
Board address
Board address
Board address
Board address
Board address

+4++++++++

ITI.6 Support software for the B008

The S708 software supports the use of an IMS B008
board in an IBM PC/AT. The S708 is a software package
consisting of the following tools which are used for loading
transputers via a server.

(1) MS-DOS device driver (S708DRIV.SYS)

(2) INMOS server (ISERVER.EXE)

59
(3) Module Motherboard Software (MMS2.B4)

The DOS device driver is provided to interface the
IMS B008 to the DOS operating system. The INMOS server
enables programs to be run on the B008. It also loads
programs to transputer networks and provides file and
terminal services to the executing program. The module
motherboard software (MMS) is used to set the programmable
switches on the B008 motherboard and any other transputer
boards connected to the B008. These switches determine the
topology of the transputers hosted on the B008 and
associated boards. The MMS also contains a network mapper
(worm) program which is used to explore the inter-
-connections of these transputers and provide a means of

checking the topology.
MS-DOS device driver

A DOS device driver (S708DRIV.SYS) is used to
interface the IMS B008 to the DOS operating system. Having
physically installed both the hardware and the software
components in the PC it is necessary to tell the DOS to
recognize the new device. This is done by adding the
following line describing the device driver to the
CONFIG.SYS file in the root directory of the boot disk.
DEVICE = pathname [/A address] [/D chan | N] [/N name] [/I

int_num]

Pathname is the full DOS pathname of the

60

device driver file.

Address is the I/O address of the B008 card,

as set by the hardware switches on

installation.

Chan is the DMA channel number (0, 1, 3, or

N). If ’N’ is specified then the driver

will not attempt to use the DMA facilities

of the BO00S8.

Name is the DOS device name which the device

will assume. If INMOS software products are

to be used then the default name to be used

is ’LINK1’. The name cannot be more than

the DOS limit of eight characters.

Int_num is the interrupt request line used

by B008, which should be set to the correct

value for the board. The default is Irqg3.

The following line is used in CONFIG.SYS to describe

the device driver for the present project.
DEVICE = c:\S708\S708DRIV.SYS /A 150 /LINK1 /D 1

Driver file name = S708DRIV.SYS

Pathname = c:\S708\S708DRIV.SYS

Address = 150 (HEX)

Name = LINK1

Channel (DMA) =1

NOTE: The default interrupt request line IRQ3 is used.

61

INMOS Server

Programs are run on the B008 by using the server
program provided. The server loads programs to transputer
networks and provides file and terminal services to the
executing program. Both the module motherboard software and
the WORM are executed this way. All the sources for the
ISERVER are found in the ISERVER directory and ISERVER.EXE
is the executable copy of the ISERVER.

A detailed explanation of the ISERVER tool appears

in [10].
Module Motherboard Software

The range of INMOS Module Motherboards and Modules
allows many different configurations of modules and the
connections between them to be specified without making
physical changes to the boards. The configuration is
performed by sending configuration data to the IMS C004 link
switch(es) on the board(s). The MMS is designed to make it
easy to generate data needed to configure a system of
motherboards. The MMS presents a menu-driven interface and
provides interactive control of a motherboard or a system of
motherboards.

A terminal description file called PCMMS.ITM is used
by the MMS and hence a line is included in the autoexec.bat
file as follows:

set ITERM = PCMMS.ITM

62

Running the MMS

To run the MMS, the following command line is

entered at the DOS prompt:

iserver /sb mms2.b4 softwire hardwire

replacing softwire and hardwire by files containing the

softwire description and hardwire description respectively.

The MMS will display the following menu options and prompt

key command. At this point selection is made for the

command codes listed on the menu.

H

O W H X 4 Bt =B Z H 0 0 O

Help

Quit

Set C004 links

Check source files
Toggle diagnostics
Network mapper

Manual command entry
Change link numbers
View source files
Reset subsystem
Initialize C004s
Create a bootable file
Create an OCCAM table

In order to be able to configure the links

connecting the IMS C004s on the motherboards the MMS reads

files, known as the ’‘softwire ’ and ‘hardwire’ files.

63
Hardwire definition
This section describes how to define the hardware
configuration of a motherboard system. The MMS needs to
know how the slots, IMS C004s and edges are connected
together on the board in order to be able to determine
whether a particular set of softwire connections is possible
or not. The hardwire file contains a description of the
hardware configuration of the boards being used. Once this
description has been set up no changes will have to be made
unless physical changes are made to the motherboard system.
The following sections will describe what is required in
each section of a board definition, including some examples.
Given below is a sample ‘hardwire’ file for two IMS B008
motherboards connected in a chain.
DEF BOOSONE -- FIRST B008 IN THE CHAIN IS NAMED BOOS8ONE
-- DESCRIPTION OF THE COMPONENTS ON THE BO0O08
SIZES
T2 1
C4 1
SLOT 10
EDGE 10
END

-- SPECIFY THE LINK NUMBER (CONFIG LINK) IN THE T2
== TO C4 CONNECTION

T2CHAIN
T2 0, LINK 3 C4 0
END
== DESCRIPTION OF THE ACTUAL WIRE CONNECTIONS ON THE BOARD
HARDWIRE

== DESCRIPTION OF THE SLOT TO SLOT CONNECTIONS

64

SLOT 0, LINK 2 TO SILOT 1, LINK 1
SLOT 1, LINK 2 TO SLOT 2, LINK 1

SLOT 8, LINK 2 TO SLOT 9, LINK 1

== DESCRIPTION OF THE C4 LINK SWITCH TO SLOT CONNECTIONS

C4 0, LINK 10 TO SLOT 0, LINK 3
C4 0, LINK 1 TO SLOT 1, LINK O

END
DEF BOO8TWO -- SECOND B008 IN THE CHAIN IS NAMED BO0O8TWO

-== DESCRIPTION OF THE COMPONENTS ON THE B008

SIZES
T2 1
C4 1
SLOT 10
EDGE 10
END

—-— SPECIFY THE LINK NUMBER (CONFIG LINK) IN THE T2
== TO C4 CONNECTION

T2CHAIN
T2 0, LINK 3 C4 0
END
—— DESCRIPTION OF THE ACTUAL WIRE CONNECTIONS ON THE BOARD

HARDWIRE

—— DESCRIPTION OF THE SLOT TO SLOT CONNECTIONS

SLOT 0, LINK 2 TO SLOT 1, LINK 1
SLOT 1, LINK 2 TO SLOT 2, LINK 1

SLOT 8, LINK 2 TO SLOT 9, LINK 1
-— DESCRIPTION OF THE C4 LINK SWITCH TO SLOT CONNECTIONS

C4 0, LINK 10 TO SLOT O, LINK 3
C4 0, LINK 1 TO SLOT 1, LINK O

END

== END THE HARDWIRE DESCRIPTION

65

PIPE BOOSONE, BOO8S8TWO END
Softwire Definition

The softwire connections allow links on modules on a
motherboard to be connected to other modules and edges,
without requiring a direct hardwired route between the two.
Instead the MMS routes the channels via the IMS C004s on the
motherboard. The connections that can be made depends on
how the IMS C004s and the module slots are physically
connected to each other.

A softwire description corresponding to the hardwire
example above has the following basic structure:

SOFTWIRE

PIPE BOO8S8ONE -- CONNECTIONS FOR THE FIRST BOARD
SIOT 1, LINK 0 to SLOT 3, LINK O

PIPE BOO8S8TWO -- CONNECTIONS FOR THE SECOND BOARD
SLOT 2, LINK 3 TO EDGE 3

END
Further details regarding softwire, hardwire and

multiple board connections appear in [4].
III.7 IMS B012 Eurocard

IMS B012 is a eurocard TRAM motherboard which is
designed to fit into standard card cages such as the INMOS
ITEM or used for stand-alone operation. It has slots for up
to 16 TRAMs - the smallest that can be accommodated being of

‘size 1’. Each module site, or ’slot’, has connections for

66
four INMOS links which are designated link 0, link 1, link 2
and link 3. TRAMs which are larger than size 1 can be
mounted on the B012. A larger module occupies more than one
slot and need not use all if the avgilable link connections
provided by the slots which it occupies.

The B012 has two IMS C004 link switch ICs. These
devices are able to connect together links from the slots
and 32 links which are available on an edge connector. The
connections can be changed by control data passed to the
board down a configuration link, which may come from some
master system or from one of the TRAMs on the B012 itself.
Hardware Description

The 16 module sites or slots provided by the IMS
B012 are 16-pin sockets in accordance with the TRAM
Specification [12]. The slots are numbered as shown on the
board silk screen and in Fig. III.12. The IMS B012 has two
DIN41612 96-way edge connectors, Pl and P2. These carry
almost all signals and power to/from the board and are
easily identified from the board silk screen printing and
from Fig. III.12. P2 carries power, pipeline and
configuration links and system control signals (reset and
analyze and error).

Full details of the connections to every pin on P1

and P2 are to be found in [5].

67

LEDs
O LD1 Slot 1 Slot 2
O LD2
O LD3 Slot 5 Slot 6
Pl
K1 Slot 9 Slot 10
1
Slot 13 Slot 14
Switch
Slot O Slot 3 SW1
L_ Slot 4 Slot 7
— Slot 8 Slot 11 P2
Lr Slot 12 Slot 15

User power connector P3
Fig. III.12 IMS B012 schematic
Link Connections
Two links from each slot (links 1 and 2) are used to
connect the 16 slots as a 16-stage pipeline (in a pipeline,

multiple processors are connected end-to-end as in Fig.

IIT.13.)
SLOTO SLOT1 SLOT15
— Linkl Linkl —i i—1 Link1l —
PipeHead || PipeTail
— Link2 Link2f—{ ;— Link2 [—
Fig. II1.13 Pipeline connection for B012 slots

The pipeline is actually broken by jumper block by
jumper block K1 [5]. K1 will usually be jumpered in the

standard way to give a 16-stage pipeline but can allow other

68
combinations. When modules larger than size 1 are used, the
pipeline will be broken at the slots which are underneath
large modules. Pipe-jumpers [5] are provided to plug into
the unused slot and connect the signals for links 1 and 2
together, thus connecting the pipeline through to the next
TRAM in the chain.

Link 1 on slot 0 is wired to an edge connector (P2)
and is called pipehead. Link 2 on slot 15 is also taken to
P2 and is called pipetail. By connecting the pipe heads and
tails from multiple boards together, a large, multi-board
pipeline is created. The other two links (links 0 and 3) of
each slot are, in general, connected to two IMS C004
programmable link switches (For detailed information on the
IMS C004 see IMS C004 link switch data sheet).

The link output signals from all the link Os on all
the slots (16 signals) are connected to 16 inputs of one IMS
C004 (IC2). The link input signals from all the link 3s on
all the slots (16 signals) are connected to 16 outputs of
the same IMS C004. The remaining 16 inputs and 16 outputs
of that IMS C004 are connected to an edge connector (Pl).

The other IMS C004 (IC3) is connected similarly,
except that 16 of its inputs are connected to the outputs of
all link 3s on all the slots, and 16 of its outputs are
connected to the inputs of all link 0s on all the slots.

The remaining inputs and outputs are connected to P1. The

Schematic appears in the Fig. III.14 below.

P1 Edge Connector Links

69

| | |9
IMS C004 (IC2)
I
I
LinkOut3 LinkOut3
LinkIn3 ‘ LinkIn3
; | | :
Pipe | Pipe
I 47‘
Head Slot O Slot 15 Tail
< < |
LinkIno LinkIno L
LinkOutOI LinkOuto
IMS C004 (IC3)
H
Pl edge connector links
Fig. III.14 IMS C004 to slot connections

By hardwiring two of the edge connector links together off

the board, any of the slot link 0Os can be routed to another

slot link 0, via the two connected edge links. Slot 0 link

0 (shown to be connected directly to the appropriate C004s

in the diagram) is actually connected to edge connector P2,

along with the respective pins from the IMS C004s. A link

jumper connector which is supplied with the board is used to

make the connection between the slot 0 link 0 and the IMS

C004s. Slot 0 link 0 is taken to P2 in order to provide two

links (links 0 and 1) which are directly connected to module

0 on an edge connector.

The IMS C004s can be conveniently

bypassed in this way, should the application demand it.

Similarly slot 0 link 3 is connected to pins on

70
jumper block Kl. Usually K1 will be configured to connect
slot 0 link 3 to the appropriate pins on the two IMS C004s.
Fig. III.15 shows the organization of the pipeline links and

the links which are available on P2 and K1.

P2 < to C004s > K1
<___—_j? ' >
P2 —% Slot;O %——-Slot 1 Slot 2 Slot 3 |——> Kl
L
> K1
— Slot 4 Slot 5 Slot 6 Slot 7 > K1
> K1
—— Slot 8 Slot 9 Slot 10 Slot 11 > K1
> Kl
— Slot 12 Slot 13 Slot 14 Slot 15
P2 <
< >
P2 < > K1

Fig. III.15 Pipeline links and links on P2 and K1
Pl Links

Connector P1 has three rows of 32 pins. All the
pins in column "a" are connected to ground. All the pins in
column "b" are link inputs and all the pins in column "c"
are link outputs. At each of the 32 positions along P1l, the
three pins from rows a, b and ¢ together carry one link.
These signals may be connected to devices with link ports in
any way the user desires, especially in a stand-alone

application for the Eurocard. Fig. III.16 shows the P1 pin

71
assignment.
P2 links
When the IMS B012 is used in an INMOS ITEM card cage

the P2 connections are easy since a built-in back-to-back

Pl Edge Link To TRAM slot links

VWCONONIDDWNKEO

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

.
VVVVVVVVVVVVVVVVVVVYVVVVVVVVVVYVVYV
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY
COO0OO0OWWWWWWOOWOOWWOOWOOoOWWWWOOOoOOoO WW

Fig. III.16 Pl pin assignments

72
connector is provided which allows link and reset cables to
be connected to P2. However, for stand-alone applications
or in a card cage other than ITEM, the back-to-back
connector supplied may be useful. The P2 connections are

schematically represented in Fig. III.17.

Power <———— 1 —

C004 signals
usually connected < 3
to Slot 0, Link O

——> PipeTail

PipeHead <

ConfigUp <

—t+> ConfigDown

—t—> Subsystem

Link connections <

from K1
- l
> Down
Up <
Fig. III.17 P2 pin connections
Implementation

Given below in Fig. III.18, is a multiple-board
daisy chain suitable for a installation in a card cage as
well as for stand-alone operation.

Switch configuration

The IMS C004 devices are controlled by an IMS T212

73
16-bit transputer. The IMS T212 has four links. Links O
and 3 are connected to the two IMS C004s (link 0 to IC2 and
link 3 to IC3). Link 1 is available on edge connector P2
and is called ConfigUp. Link 2 is available on P2 and is
called ConfigDown. The organization of these links is shown

in Fig. III.19.

Subsystem Up Down Up
HOST IMS BO12 IMS BO12
‘ N . N 3 L]
Link2 PipeTail
Linkl
PipeHead PipeHead
ConfigUp CofigDown ConfigUp

Fig. III.18 B012 multiple-board daisy chain

ConfigUp
(Link 1)
Config . Config
> Link O
IC2 Link Link IC3
IMS C004 Link 3 rs————————- IMS C004
ConfigDown
(Link 2)

Fig. III.19 B012 config links organization

74

The switch connections are made according to information
sent to the IMS C004 down its ConfigLink (Fig. III.18). The
two IMS C004s on the IMS B012 allow 64 link connections to
be made under software control using the module motherboard
software (MMS). Further details of the switch connections
can be obtained from (B012 user guide/reference manual).

Configuration data for the IMS C004 is fed into one
of the IMS T212’s links (ConfigUp) from the master
configuration system which must be connected to P2. The
configuration system could be one of the TRAMs on the IMS
B012, provided that one of its links may be connected to
ConfigUp. In a multiple motherboard system it is intended
that the ConfigUp and ConfigDowm links from adjacent boards
be connected together to form a configuration daisy-chain
(Fig. III.19). This configuration architecture is fully
compatible with other INMOS TRAM motherboards. For
instance, an IMS B008 fitted to an IBM PC/XT or PC/AT or
compatible, may be part of a system containing multiple IMS
B012 motherboards fitted into a card cage such as the ITEM
[5].
Reset, Analyze and Error

Some TRAMs and most evaluation boards are capable of
generating system services for other TRAMs and transputers.
This is called a ’‘subsystem control capability’. The IMS
B012 can be connected to another board with subsystem

control and can also accommodate one TRAM with subsystem

75
control. Furthermore, the IMS B012 can generate subsystem
control signals for other boards.

The Reset, Analyze and Error pins of TRAMs (and
transputers) referred to collectively as ’system services’
are available for slot 0 only. In order to use these pins
it is necessary to have a module with subsystem capability
installed in slot 0. The system service signals for slot O
are buffered and output on edge connector P2 as the ‘Down’
pins. This allows system services for multiple boards to be
daisy-chained, the ‘Down’ of one board being connected to
the ’‘Up’ of the next (Fig. III.18). Fig. III.20 below shows

the complete organization of the system services.

‘Up’ pins on P2 ‘Down’ pins on P2
Buffers

Module in slot 0

Subsystem pins

’Subsystem’

—O0 (o] Buffers —
O Switch 6 pins on P2

Modules in slots 1 to 15
and IC1 (IMS T212)

Fig. III.20 BO12 System services organization

76

Power Connections

A four-pin power connector (designated P3) is
mounted near the front edge of the board as shown in Fig.
ITI.12 (page 63). P3 is wired to 0V, +5V and via a wide PCB
track to 2 pins on P2. This connector is the kind used on
most floppy disk drives and when the appropriate pins on P2
are wired to 12V, P3 may be used to power disk drives or
similar equipment. Users may take other power signals to
P3, such as ECL power supplies. These power pins can carry
up to 3A of current and pin 1 can have up to 50V with
respect to GND.
There is a pin post fitted in one corner of the board
(marked GND on the silk screen). This is connected directly
to the 0V plane and can be useful for attaching scope probe
ground leads.
Error lights

Three yellow LED indicators are mounted on the edge
of the board, opposite P1 (Fig. III.12). An indicator will
be 1it when a module asserts its error pin. One LED, LD1,
monitors error from slot 0. The other two LEDs, LD2 and
LD3, monitor error from the modules on the front row (not
including slot 0), and back row of slots respectively. The
front row is the group of seven slots situated along the
front panel side of the board (not including slot 0). The
back row is the group of eight slots situated along the

Opposite edge of the board (Fig. III.12).

77

Cables

INMOS has developed a standard cable set for
evaluation boards. The connectors on all INMOS boards and
modules are designs to be compatible with these cables. The
IMS B012 is provided with a cable set which include many
short 1link cables (which can be used to link edge links to
each other), some standard and long link cables (which can
be used to connect multiple cables together), a power cable,
some system services cables (reset, analyze and error) and
two DIN 41612 connectors which when plugged into P1 and P2
allow cables to be connected to the board.
DIL Switch

Each of the six switches which make up SW1 controls
one signal on the board. When a switch is on the signal is
low and when the switch is off the signal is high. Further
information on the switch settings can be obtained from [5].
Eurocard (B012) Stand-Alone Implementation

The B012 is designed not only for installation in
the ITEM [6] but also for stand-alone operation. The
various connections and requirements for stand-alone
operation are described below.
Power connections

Power is supplied to the board via the P3 connector
(Fig. III.12) using an INMOS standard power cable.
Link connections

Links 0 and 3 of the various slots are available

78
from the Pl edge link connector (Fig. IiI.lG). Links 1 and
2 of each slot are pipelined (Fig. III.13) and link 1
(PipeHead) and link 2 (PipeTail) of slots 0 and 15
respectively are available on the edge link connector P2
(Fig. III.17). Further the P3 links (ConfigUp, ConfigDown,
System Services etc) can be accessed by connecting a back-
to-back connector (Fig. III.17, page 68). The purpose of
this connector is to allow multiple small leads (link cables
and reset cables) to be plugged and unplugged at the same
time. 1In addition the back-to-back connector has keying
pins either removed or sleeved to make it difficult to

orientate standard INMOS link and reset cables incorrectly.
III.6 Inmos Transputer Evaluation Module (ITEM)

The ITEM is a modular cabinet that has been designed
to accommodate up to 10 INMOS double extended Eurocard
transputer boards. For example, the B211] will accept boards
such as the IMS B012 (double extended Eurocard) used for the
present project. The ITEM provides a simple means of
connecting transputer boards together with the necessary
power and cooling requirements to provide potential
supercomputing power, The ITEM is consequently suitable as
an evaluation vehicle for large transputer systems or as a
powerful embedded accelerator accessible from a host.

The ITEM is designed to be upgradeable to meet the

user’s changing requirements as a project evolves. Further

79
evaluation boards can be easily added to give additional
functionality such as disk storage or graphics. If greater
computing power is required, the multiple ITEMs can be
linked and stacked to build even larger transputer arrays.
An ITEM complete with 10 IMS B012 motherboards has a maximum
processing power of 3200 MIPs/360 MFLOPs sustainable power,
when each one is loaded with 16 T800-G20 Transputer Modules
or TRAMs. The connector panel at the rear of the ITEM
includes:

(1) Four BNC connectors for linking the ITEM to color
monitors.

(2) Two 25-way D connectors for RS232 connection
terminals, computers, and peripherals.

(3) Two 37-way D connectors, each of which can carry
12 transputer links, and three system service
ports. A cable is supplied with the ITEM to
connect to these D connectors.

Further details of ITEM appear in [6].

80

CHAPTER IV

DESCRIPTION OF THE PROCESS CONTROL SYSTEM

The block diagram of the system is shown in Fig. IV.1.

link 2 link 3
link O out 1in out in
IBM PC ROOT > T222 > T800
USER TRAM|{in out|B421|in out|B403
INTERFACE TRAM | TRAM
link 1 link 3
THERMOCOUPLE HP3497A
STIRRER DACU
ON/OFF
CONTROL

q POWER
SUPPLY

Fig. IV.1 System block diagram

The various blocks in the diagram are described below.
IBM PC/AT Clone
The PC is used essentially for user I/0. It also

holds the occaM Toolset [10] and the IMS B008 TRAM

81
motherboard required for compiling and downloading the OCCAM
software on to the transputer network. ‘The IMS B008 also
holds the IMS B403 (root) TRAM.

ITEM

The ITEM rack is used essentially to hold the
Eurocard which in turn holds the GPIB (T222) TRAM. Note
that both the TRAMs used in the system can be mounted on the
IMS B008 motherboard in the IBM PC. The ITEM is implemented
in the designed system purely for qualitative analysis.
HP3497 Data Acquisition/Control Unit (DACU)

The DACU is used to acquire and achieve analog to
digital conversion of the thermocouple voltage. This is
achieved by using HPIB programming using HPIB command codes
[3]. The data transfer between the DACU and the GPIB TRAM
is monitored by the OCCAM process residing on the GPIB TRAM.
Test process control system

The test process control system comprises of a
stirred tank heater. The liquid (water) in the tank is
heated by turning the heating element ON or OFF at regular
intervals. The system (mathematical) model is determined by
conducting dynamic tests and the necessary control equations
are formulated. A proportional control algorithm is
implemented to control the temperature of the water in the
tank.

IV.1 Test system description

The controlled variable in the test control system

82
of the stirred tank heater is the temperature of the liquid
in the tank. The automatic control system is designed to
manipulate the heating element to keep the water temperature
at its desired value or set point in spite of the various
disturbances. Flow rate of the liquid in the tank is
regulated by adjusting the input and output pumps.

The process control is achieved through a
proportional control algorithm. The controlled quantity,
i.e., the temperature of the heating element, is effected by
the manipulated variable which is the heat supplied to the
liquid. Disturbance (characterised by the deviation in the
desired temperature setting owing to the steady flow of
water) enters the process and tends to drive the controlled
quantity away from its set-point condition. The control
algorithm then maintains the set-point of the controlled
quantity (temperature) by adjusting the manipulated variable
(heat) and hence reduces the effect of the disturbance.

The feedback controller determines changes needed in
the heat to compensate for the disturbance that upset the
process or for changes in set point. The control algorithm
designed for the present system implements proportional
control in which the controller output is algebraically
proportional to the error input signal to the controller.
IV.2 Process Characterization

The typical block diagram of a feedback control loop

is shown below in Fig. IV.2. The various signals and

83

transfer functions (Laplace transforms) are described below.

U(S)-—— GU—(S)

R(s) + E(s) M(s)
k >1G.(s) ——’Elv(s) —>{G (s) = = >
) C(s)
H(s)
Fig. Iv.2 A typical feedback control system

M(s) - the controller-output signal

C(s) - the transmitter-output signal

E(s) - the error signal

U(s) - the disturbance signal

G.(s) - the controller transfer function

G,(s) - the transfer function of the final control
element

G,.(s) - the process transfer function between the
controlled and the manipulated variable

G,(s) - the process transfer function between the

controlled variable and the disturbance

H(s) - the transfer function of the sensor-

transmitter
Using simple block diagram algebra manipulations and
for the system model under consideration the block diagram

of Fig. IV.2 is further reduced as shown below. In this

84

U(s)
d
R(s) + M(s) 4 c(s)
—ig > G_(s) G(s) H< —
G(s) = G,(s) G.(s) H(s) |

Fig. IV.3 Reduced block diagram for the system model

diagram there are only two blocks in the control loop, one
for the controller and the other for the rest of the
components of the loop. The advantage of this simplified
representation is that it highlights the two signals in the
loop that can be usually observed and recorded: the
controller output M(s) (the power output control to the
heating element) and the transmitter signal C(s) (the
thermocouple voltage). Therefore, the lumping of the
transfer functions of the control valve, the process, and
the sensor-transmitter into a single block is not just a
convenience, but a practical necessity. This combination of
the transfer functions is represented by G(s). This
combined transfer function is approximated by low-order
models for the purpose of characterizing the dynamic
response of the process. Thus the characterized "process"
includes the dynamic behavior of the control valve and the
sensor/transmitter. The stirred tank heater system under
study is modeled as a First-order Plus Dead Time (FOPDT)

sSystem.

85
The transfer function G, (s) for a proportional
controller is a gain K,. The transfer function G(s), of the

system in the Laplace domain for the FOPDT model is shown

below
Ke‘t“
c(s) BT it (1)
and the controller gain
K. = (1/K} * (/T)ee...(2)

This model characterizes the process by three parameters:
system gain K, dead time or transportation lag t,, and
system time constant T’. The problem of determining the
parameters for this loop is solved by performing a dynamic

flow test as outlined below.
VI.3 Dynamic test and system model

The controller is placed in "manual"™ mode (i.e. the
loop is opened) and the level of water in the tank is kept
steady. Heat is applied to the water at a constant rate and
the temparature values are acquired until a steady state is
reached. A graph with temparature vs time, also known as a
process reaction curve (Appendix B), is ‘plotted and is
interpreted to obtain the parameters required for
formulating the system equations.

The procedure for the actual test for the designed
sSystem is

(1) water is admitted into the tank heater and the

86
output pump is turned on.

(2) The input flow (coming from the tap source) and

| the output flow (controlled by the pump) are
adjusted until the level in the tank is
maintained constant.

(3) The data acquisition program data_acqg.bas is run
on the PC in the LabWindows [15] environment and
simultaneously power is supplied to the heating
element at the desired percentage (60%), by
adjusting the heater dial manually.

(4) Temparature values are acquired in 5 second

intervals until the system has reached a steady
state (constant temparature) and the graph of
temparature Vs time is obtained.

(5) From the acquired data the required FOPDT model
parameters for the proportional control algorithm
are obtained.

In the absence of the disturbances, and for the conditions

of the test, the block diagram of Fig. IV.3 is redrawn as in

Fig. IV.4.
R(s) + M(s) C(s)
—_— = G.(s) —||—> G(s) >
Open
- loop

Fig. 1Iv.4 Block diagram for the dynamic test

87
The response of the transmitter output signal is given
by
C(s) = G(s) M(s)
For a step change in controller output of magnitude Am

and a FOPDT model, we have

Ke % Am

C(s)= 5
(s) TS+l s

- (3)

Expanding this expression by partial fractions, we obtain

co=kam &l -2 @

Thus Inverting with the help of Laplace transforms and
applying the real translation theorem of Laplace transforms

[16], we get

-t
Ce = K. Am. Uikt IS E)

Where the unit step function U(t - t,) indicates that

Ac(t)=-0fortst,y..... (6)

The term Ac is the change of the transmitter output from its

initial value:
Ac(t)=c(t)-c(0)..... (7)

From the graph obtained from running the dynamic test, the
term Ac, is the steady state change in c(t). Thus from

equation 5 we find

AC(s)=1imAC(t)=K.Am..... (8)

88
From the above result and knowing that the model response
must match the process reaction curve at steady state, the
steady state gain K is calculated, which is one of the model

parameters:

The dead time or transportation lag t, and the time constant "V
are determined by the following method proposed by Dr.Cecil
L. Smith [14].

The values are obtained from the process reaction
curve by selecting two points in the region of high rate of
change. The two points recommended are

{tc + (1/3) *T}.....(10)
and

It # P Yess iR
To locate these points we make use of equation 5.

C(t, +7) = K. m.[1-e“P] = 0.632 AC,.....(12)

C (t, + (1/3)*) = K. m.[1-e?/] = 0.238A4C,.....(13)
These two points are labeled t, and t,, respectively, in the
process reaction curve appearing (Appendix B). The values
of t, and 7V are then obtained by the simble solution of the
following set of equations:

£ F V=L, ooors Bl
t, + (1/3)* T =¢t, «.... (15)

which reduces to

89
= (3/2)* (t, - t,) (16)

t, =k =T covee (17)
where t, is the time at which

AC = 0.283AC, (18)
and t, is the time at which

Ac = 0.6324C, (19)
The actual values obtained from the process reaction curve
are listed below.
The minimum and maximum values of c(t) are,

c(t,,) = 17.24 °C 118

C(tuax) 21.32 "¢

The steady state value of c(t)

Ac, = 21.32 - 17.24 = 4.08 C (22)
To calculate t, and t,,

AC, = 0.283 C, = 1.16 "C NSRS,

AC,, = 0.632 C, = 2.58 "C RN Y

AC, C, + C(t,,,) = 1.16 + 17.24 = 18.4 C (25)

AC, = C.. + C(t,,,) = 2.58 24 29,82 C{26)
From the process reaction curve
t, (at AcC,,) = 23.0 * 5 = 115 seconds (27)

t, (at AcC,,)

40.0 * 5

200 seconds (28)
Hence using equation 16

T = 127.5 seconds (29)
and dead time from equation 17

t, = 72.5 seconds (30)

90
Also the process gain K is evaluated using equation 9
K= (4.08/0.6) = 6.8 (31)
Note that m=0.6 (or 60%) is the value at which the heater
dial is set manually for the duration of the dynamic test.
Thus the controller gain from equation 2 is

K. = (1/6.8)*%(127.5/72.5) = 0.26 (32)
IV.4 Proportional controller implementation aspects

The proportional controller is the simplest type of
controller, with the exception of on-off controller [14].
The equation which describes its operation is the following:

m(t) =m + K, * (e(t)) (33)

where

m(t) = output from the controller

r(t) = set point (or reference temperature)

c(t) = controlled variable (temperature of the liquid in the
tank)

e(t) = error signal. This is the difference between the
reference temperature and the actual temperature of
the liquid in the tank i.e.,

e(t) = r(t) - c(t) (34)

K. = controller gain (calculated to be .26 or 26% from
equation 2.
m, = bias value of the controller.

Equations 33 and 34 show that the output of

controller is proportional to the error between the

91
reference temperature and actual temperature read from the
thermocouple sensor. The proportionality is given by the
controller gain K.,. This gain, or controller sensitivity,
determines how much the output from the controller changes
for a given change in error. In reality, for the system
under study, this proportional action is achieved in a
slightly different manner as outlined below.

To achieve proportional control action on the system
the following scheme is implemented on the system.
(1) Temperature is acquired from the thermocouple
in a free running mode.
(2) The error value is evaluated using equation 34.
(3) The controller output m(t) is evaluated using
equation 33.
(4) A control interval time (Interval) is chosen such
that
Interval = [r(t) * K] seconds (35)
(5) The heater is turned ON for a time period of
ON.time = [e(t) * K] seconds (36)
and OFF for a time period of
OFF.time = [Interval - ON.time] seconds (37)
The above scheme is used since the energy supplied
to the heating element installed in the tank is not
controllable continuously using the DACU i.e., the heater
can only be turned ON or OFF. Hence proportional control is

achieved by having the heater-ON and heater-OFF time periods

92
proportional to the error signal as governed by the

proportional gain value K_,, within the control interval

time.
The procedure is illustrated in the following
example.
Let
r(t) = 50.0 °C

c(t) = 25.0 °C
then for a proportional gain value of

K, = 0.26
the control interval is obtained from equation 35 as,

Interval = 13 seconds
and from equation 34

e(t) = 25.0 °C
thus the ON time period

ON.time = 6.5 seconds
and the OFF time period

OFF.time = 6.5 seconds

The proportional control algorithm is implemented on

the transputer network using OCCAM2. Two separate processes
are written to achieve the proportional control and they are
mapped on to the transputer network. The software is listed

and the implementation on the transputer network is

illustrated in the following sections.

93

IV.5 Software outline

Two OCCAM processes are written to separately handle
the data and command input/output (I/0) and proportional
control action as described below.

(1) Process PROC_IO (I/O process): This process
acquires the data (thermocouple voltage) from the
DACU by sending the appropriate HPIB command
codes. The data acquired, which is in ASCII
format, is passed on to the control process
PROC_CON (control process). The acquire
process is mapped onto the GPIB TRAM which
interacts with the DACU via GPIB programming.

(2) Process PROC_CON (control process): This process
converts the ASCII data to a 32-bit floating point
number. The thermocouple voltage is converted to
a temparature value and the necessary proportional
control operation is performed. The ON/OFF
control message is passed on back to the acquire
process which in turn relays the appropriate
command to the DACU. Eventually the DACU turns
the tank heater ON or OFF for the required time
period as determined by the software.

The descriptive listing of the two processes appears

in appendix A.

94

IV.6 Network configuration and software implementation

The system is set up as outlined for performing the
dynamic test in section IV.3 above. As outlined in section
III.4 the necessary Hardwire and Softwire are created for
the IMS B008 motherboard. The contents of the Hardwire file
are listed in section III.4. For the present network both
the IMS B403 (T800 based TRAM) and the IMS B421 (T222 based
GPIB TRAM) are installed on the B008 motherboard. Further
the root TRAM on the B008 is not used as part of the network
and hence the B403 TRAM is made to interact with the host
(IBM PC) by skipping the link 2 of the root TRAM. This

network is depicted in Fig. IV.S5.

IBM PC INTERFACE

link 2 link 3
out in out in
ROOT > IMS = IMS
TRAM B42l < B403
in out in out
link 1 link 3

TO DACU AND
TEST SYSTEM
Fig IV.5 Transputer network schematic
The two OCCAM process are compiled, linked and
downloaded onto the transputer network in the IBM PC (DOS

environment) as outlined below.

95

The process PROC_IO is checked for syntax errors
using the following command line.
ICHECK PROC_IO /T2 /B

The process is then compiled and linked with the
appropriate library modules using the following command
lines.
OCCAM PROC_IO /T2
and

ILINK PROC_IO.t2h hostio.lib convert.lib f001.1lib f00l1io.lib

foolllev.1lib

similarly the process PROC_CON is checked, compiled and
linked using the following command lines.
ICHECK /T8 /B
OCCAM PROC_CON /T8
ILINK PROC_CON.t8h hostio.lib convert.lib
The output files from the above ILINK tool have extensions
.c2h and .c8h corresponding to the processes PROC_ACQ and
PROC_CON respectively. A network configuration file
PROC_NET.pgm is created (whose contents are listed and
described below) the appropriate network is configured using
the ICONF tool and the following command line.
ICONF PROC_NET

As outlined in section III.4 the necessary Hardwire
and Softwire files are created for the IMS B008 motherboard.
Note for the present network both the IMS B403 (T800 based

TRAM) and the IMS B421 (T222 based GPIB TRAM) are installed

96
on the B008 motherboard. Further the root TRAM on the B008
is not used as part of the network and hence the B403 TRAM
is made to interact with the host (IBM PC) by skipping the
link 2 of the root TRAM and placing the host link on link 1
of the B403 TRAM. This network is schematically represented

below.

97

CHAPTER V
SUMMARY
V.1l Findings

The problem of designing and implementing a
transputer network for a real-time application was
successfully tackled and the overall system performed as
expected. The performance of the individual components of
the system is discussed.

PC TRAM motherboard (B008)

The IBM PC served as a good platform for installing
and evaluating both the hardware and software required to
support the B008. The B008 interfaced well with the PC bus
and all its features were well exploited. The module
motherboard software required for the set up and evaluation
of transputer networks performed well. The S708 [4] DOS
device driver supported the B008 without any hitch.

OCCAM2 toolset

All the features of the OCCAM2 toolset performed as
expected. The software for the system performed well
without any major debugging problems.

Eurocard (B012)
The Eurocard B012 performed well in the ITEM [6] but

its performance was not evaluated for stand-alone operation.

98

HP3497A Data Acquisition/Control Unit (DACU)

The DACU responded well to the programming from the
GPIB transputer. It played an important role in converting
analog thermocouple voltage to digital format and subsequent
transfer of data to the PC for analysis and control.
Test system

The test system responded well to the control action
and the thermocouple voltage was acquired without any
problem. The input and output pumps performed well in
maintaining the level of water constant in the tank.
Transputer network

The software and hardware aspects of networking the
transputers were dealt with successfully. The required
hardware connections were established with the standard
cables supplied by INMOS. The transputer link connections
were adequately established using the MMS software supplied
by INMOS.
Control Algorithm

The proportional control algorithm was modified to
accomodate the hardware and software constraints imposed by
the test system. The modified algorithm was successfully
implemented over the network and the expected results were

obtained.
V.2 Conclusions

The transputer proved to be an effective computing

99
tool in implementing the proportional control algorithm for
the designed test system. The OCCAM programming language
provided not only the simplicity and structure of a high-
level language but also the flexibility of an assembly
language [1]. In designing and realizing the entire systenm,
transputer networking (hardware) and GPIB programming (using
HP3497A command codes [3]) proved to be more time-consuming
compared to the control algorithm design and OCCAM coding.
This happened since the transputer hardware was installed
for the first time. Students interested in further study in
this area are recommended not to delve into the hardware
details (except for removal or addition of transputers to
the network) but to concentrate on the relevant software,
i.e, OCCAM (or PARALLEL C), for programming and the MMS for
linking the custom made networks.

The documentation supplied by INMOS regarding their
products is found to be more descriptive than functional.
It is recommended that only the sections describing the

actual implementation aspects be studued to save time.
V.3 Recommendations

The proportional control algorithm implemented for
the present study has been modified to suit the available
hardware. It is recommended that an analog amplifier be
designed and interfaced to the heating coil so that the

power supplied to the heating element can be controlled

100
continuously.

Also, the data acquisition and control operations
could be performed by designing an interface compatible with
GPIB programming. This would not only eliminate the need
for the DACU but also speed up the data transfer rate upto
20 Mbits/s, which is the peak rate achievable by the
transputer links. Further the network could be expanded to
monitor several other parameters (i.e., pressure, frequency
etc.) with ease with such an interface as outlined in the

figure V.1.

GPIB PRESSURE
USER -<— SENSOR
INTERFACE
> CONTROL
ACTION
link x
Y link y GPIB TEMPERATURE
ROOT | >{ USER <— SENSOR
TRAM INTERFACE
x link 2z > CONTROL
ACTION
GPIB FREQUENCY
> USER -<— SENSOR
INTERFACE
> CONTROL
ACTION

Fig. V.1 A typical transputer based multi-sensor network

101

SOFTWARE LISTING

PROCESS PROC_IO.OCC

PROCESS PROC_IO0.0CC ACQUIRES THE THERMOCOUPLE VOLTAGE (IN
ASCII FORMAT), INTERACTS WITH THE PROCESS PROC_CON.OCC AND
SENDS THE ‘ON' OR ‘OFF' COMMANDS TO THE HEATER VIA THE
DACU.

#1
#1
1
#1I
#1

PR

THE VARIOUS PROTOCOLS ARE DEFINED IN THE ‘INCLUDE‘ FILES
LISTED BELOW.

NCLUDE "hostio.inc"
NCLUDE "errors.inc"
NCLUDE "flconst.inc"
NCLUDE “gpibprot.inc"
NCLUDE "acgprot.inc"

PROCESS DEFFINITION

OC PROC_IO (CHAN OF SP fs, ts, CHAN OF ACQPROT
chn.aski.acq, chn.aski.cnv)

—- LIBRARY FILES ARE ‘USED‘ BELOM.

#USE "hostio.lib"
#USE "f001.1ib"

#USE "f00lio.lib"
#USE "convert.lib"

—— THE FOLLOWING PROCESS RESIDES ON THE T222 BASED GPIB TRAM
—— AND COMMUNICATES WITH THE F001 SOFTWARE (APPENDIX [1)
-— VIA THE CHANNELS from.F00l1 AND to.F001

PROC hpibt2 (CHAN OF FOO01PROT from.F001, to.F001)
—— DECLARATION OF VARIABLES

INT16 source, pri.address, mode, drivers, error, count.mssg:
INT16 tx.period, term, countm, count.control, tk.address:
INT lenl, t, i, iterate:

BYTE result:

[1]INT16 la.list:

REAL32 check.end, check.two, check.three:

102
(12)BYTE data, data.aski.acq,

data.aski.co
[lﬁéﬁ?miﬁiggi temp, er, switch, avg.ref: o o oL
[4 :

(5)BYTE ON.Or.OFF, mssg:
[6]BYTE Sread.val:
poOL error.itn, loop:

-- SET UP ROUTINES FOR THE GPIB TRAM APPEAR BELOW
-~ DETAILS OF THE ROUTINES APPEAR IN THE FOO1 MANUAL [8].

SEQ

F001.START.SETUP (from.F00l, to.F001, error)

pri.address := 28 (INT16)
source := default

FOOl1.SET.GPIB.ADDRESS (from.F00l, to.F00l, source,
pri.address, error)

mode := system.controller
FOOl.SET.DEVICE.MODE (from.F001,

to.F001, source, mode,
error)

drivers := tristate

F0O01.SET.BUS.DRIVERS (from.F001, to.F001, source, drivers,
error)

tx.period := 500 (INT16) =-- mS _
FOOl1.SET.TIMEOUT (from.F001, to.FOO1, tx.period, error)

term := LF.term
FOO1.SET.TX.TERMINATOR (from.F00l, to.F00l, term, error)

FOO1l.SET.RX.TERMINATOR (from.F00l, to.F0O1, term, error)
FOO1.END.SETUP (from.F00l, to.F001l, error)
FOO1.SEND.IFC (from.F001, to.F001, error)

FOO1.SET.REN (from.F001, to.F001, TRUE, error)

mesage := WAR M —— RESET THE ANALOG CHANNELS IN THE
~— DACU
countm := 4 (INT16)
ti-llst [0] := 9 (INT16)
-8ddressg := NT1l6]
FO01.s5END [frni.ééﬂlf %ﬂ'Fggl, la.list, countm, mesage,
arror)

mesage ;= n " —~— CLEAR THE DACU COMMAND BUFFER

FOO1.sEND (from.F00l1, to.F001, la.list, countm, mesage,
error)

-- THE REFERENCE INPUT VALUE
—— KEYBOARD. IS TAKEN IN FROM THE

so.write.string (fs, ts, "ENTER TH

. ¢ E R -
so.read.echo.line (fs, ts, leni
so.write.nl (fs, ts) ' + Sread.val, result)

chn.aski.acqg ! medm: Sread.val

o quBER OF SAMPLES TO READ (AND AVERAGE) IS INPUT

so.write.string (fs, ts, "ENTER ITERATION VALUE "y

sg.reqd.echﬂ*int (fs, ts, iterate, error.itn)
so.write.nl (fs, ts)

WHILE loop
SEQ

103

mesage := M"AR " -- RESET THE ANALOG CHANNELS IN THE

-— DACU

FOO1l.SEND (from.F00l1, to.F001, la.list, countm,
mesage, error)

mesage := " n _

FOO1.SEND (from.FoO0l, to.F001l, la.list, countm,
mesage, error)

mesage := "AIl " -—- INPUT VOLTAGE VALUE FROM ANALOG

~— CHANNEL 1 i.e., THERMOCOUPLE
—- PROBE VOLTAGE (T_PROBE) IN
—— ASCIT FORMAT.

FOO1.SEND (from.F00l, to.F001, la.list, countm,
mesage, €rror)

FOO1.RECEIVE (from.F00l1, to.F001l, tk.address, scrap,

error)
WHILE t > 0 (INT)

SEQ
check.two := 10.0 (REAL32)

-- SEND FLAG (10.0) TO PROC_CON TO INDICATE
-— T _PROBE ACQUISITION (AND AVERAGING).

chn.aski.acq ! float; check.two

S e

104

FOO1.SEND (from.F001, to.F001, la.list, countn,
mesage, error)

FOO1.RECEIVE (from.F001, to.F00l1l, tk.address,
data, error)

data.aski.acq := data
=— SEND T_PROBE TO PROC_CON
l chn.aski.acq ! long; data.aski.acq
=— RECEIVE THE T_PROBE AVERAGE VOLTAGE
chn.aski.cnv ? CASE long; data.aski.conv
avg.volt := data.aski.conv
t :=t -1 (INT)
so.write.string (fs, ts, "THE AVERAGE PROBE
VOLTAGE IS [volts] ")
so.write.string.nl (fs, ts, avg.volt)
mesage := "AR "

FOO1.SEND (from.F00l1, to.F00l1l, la.list, countm,
mesage, error)

mesage := " "
FOO1.SEND (from.F00l1, to.F001, la.list, countm,
mesage, error)

mesage := "AI19" -- INPUT ANALOG CHANNEL 19
-- i.e., REFERENCE JUNCTION
== (T_REF) VOLTAGE VALUE.

FOO1.SEND (from.F00l1, to.F00l1, la.list, countm,
mesage, error)
FOO1.RECEIVE (from.F00l1, to.F00l1, tk.address,
scrap, error)

SEQ
WHILE i > 0 (INT)
SEQ
check.three := 20.0 (REAL32)

-- SEND FLAG (20.0) TO PROC_CON TO INDICATE
-- T_REF ACQUISITION (AND AVERAGING).

chn.aski.acq ! float; check.three
la.list [0] := 9 (INT16)
tk.address := 9 (INT1l6)

mesage := "AI19"

105

FOO1.SEND (from.F001, to.F001, la.list,
countm, mesage, error)

FOO1.RECEIVE (from.F001, to.F001, tk.address,
data, error)

data.aski.acq := data

== SEND THE REFERENCE JUNCTION VOLTAGE
== (ASCII) VALUE TO PROC_CON FOR AVERAGING.

chn.aski.acq ! long; data.aski.acq
== RECEIVE AVERAGE T_REF VALUE.

chn.aski.cnv ? CASE long; data.aski.conv
avg.ref := data.aski.conv
i :=1i -1 (INT)

t := iterate

iz:x=t

so.write.string (fs, ts, "THE AVERAGE REFERENCE
VOLTAGE IS [volts] ")

so.write.string.nl (fs, ts, avg.ref)

check.end := 30.0 (REAL32)

~- SEND FLAG (30.0) TO PROC_CON TO INDICATE END
== OF ACQUISITION FROM DACU.

chn.aski.acq ! float; check.end

== RECEIVE AND DISPLAY THERMOCOUPLE TEMPARATURE
—= VALUE FROM PROC_CON.

chn.aski.cnv ? CASE long; temp

so.write.string (fs, ts, "MEASURED TEMPARATURE IS
[DEG. C] ™)

so.write.string (fs, ts, temp)

chn.aski.cnv ? CASE long; temp

so.write.string.nl (fs, ts, temp)

—=- RECEIVE ‘ON.time‘ VALUE FROM PROC_CON.

chn.aski.cnv ? CASE long; switch
so.write.string (fs, ts, "ON.time")
so.write.string.nl (fs, ts, switch)

mssg := "AR "

count.mssg := 5 (INT16)

FOO1.SEND (from.F001, to.F00l1l, la.list, count.mssg,
mssg, error)

106

mssg := " "
FOO1.SEND (from.F00l1, to.F001, la.list, count.mssg,
mssg, error)

== RECEIVE ON.or.OFF MESSAGE AND SEND THE ‘ON‘ AND
—— ‘OFF' COMMANDS TO THE HEATER VIA THE DACU.

chn.aski.cnv ? CASE md.srt; ON.or.OFF

so.write.string.nl (fs, ts, ON.or.OFF)

FOO1.SEND (from.F001, to.F001l, la.list,
count.control, ON.or.OFF, error)

chn.aski.cnv ? CASE md.srt; ON.or.OFF

so.write.string.nl (fs, ts, ON.or.OFF)

FOO1.SEND (from.F001, to.F001, la.list,
count.control, ON.or.OFF,
error)

== RECEIVE AND DISPLAY ERROR VALUE FROM PROC_CON

chn.aski.cnv ? CASE long; er
so.write.string.nl (fs, ts, "ERROR REFERENCE ")
so.write.string (fs, ts, er)

mesage := "SI " -- SYSTEM INITIALIZE THE DACU.
FOO1.SEND (from.F001, to.F00l1l, la.list, countmn,
mesage, error)

mssg := "AR T
FOO1.SEND (from.F001, to.F001, la.list, count.mssg,
msSsSg, error)

FOO1.DEVICE.CLEAR (from.F001, to.F001, TRUE, la.list,
error)
FOO1.SET.REN (from.F00l1l, to.F00l1l, FALSE, error)

so.exit (fs, ts, sps.success)

—— THE F001 (APPENDIX []) AND hpibt2 (ABOVE) PROCESSES ARE
—== RUN ON THE B421 TRAM IN PARALLEL.

CHAN OF FOO1PROT from.F001, to.FO001l:
SEQ
PAR
F00l1 (from.F001, to.F001)
hpibt2 (from.F001, to.F001)

107

PROCESS PROC_CON.OCC

~= PROCESS PROC_CON.OCC RECEIVES THE THERMOCOUPLE VOLTAGES
—— FROM THE PROCESS PROC_IO.OCC, EVALUATES THE THERMOCOUPLE
—= TEMPARATURE, DETERMINES THE ‘ON.time‘ AND ‘OFF.time‘ AND
—~ SENDS THE APPROPRIATE ‘ON* OR ‘OFF' COMMAND TO THE PROCESS
== PROC_IO.OCC.

#INCLUDE "acgprot.inc"
PROC PROC.CON(CHAN OF ACQPROT chn.aski.acq, chn.aski.cnv)
#USE "convert.lib"
[S]BYTE ON, OFF:
[6]BYTE Rread.val:
[12)BYTE aski, aske, asi, ase, askt, er.val, switch.val:
[12]BYTE time:
REAL32 read.val, test, size.test:
REAL32 count.probe, real.data.probe, sum.probe, avg.probe:
REAL32 count.ref, real.data.ref, sum.ref, avg.ref,
REAL32 Vv, V1, TT, TTla, TT2, TT3, TT3.0ld, TT4:
REAL32 step, tac, eror, eror.i, interval, switch.on.point:
REAL32 switch.off.point:
INT len.probe, len.ref, len.temp, len.er, debut:
INT len.switch, ON.time, OFF.time, timenow, len:
BOOL error, tester, repeat:
TIMER clock:

== CONSTANTS ASSOCIATED WITH THE EVALUATION OF THE
== TEMPARATURE FROM THE THERMOCOUPLE VOLTAGE ARE LISTED
-- BELOW.

VAL RO IS 0.75004344E-6(REAL32):
VAL Rl IS 0.505321995E-4(REAL32):
VAL R2 IS 0.2348050017E-7(REAL32):
VAL PO IS -0.3595568424(REAL32):
VAL P1 IS 19750.87948(REAL32):

VAL P2 IS -175116.5425(REAL32):
VAL P3 IS 18212965.58(REAL32):

VAL P4 IS -2831128435.0(REAL32):
VAL P5 IS 271508383300.0(REAL32):
VAL P6 IS -1.38014121E+13(REAL32):
VAL P7 IS 3.7924384326E+14(REAL32):
VAL P8 IS -5.371925517E+15(REAL32):
VAL P9 IS 3.0840255439E+16(REAL32):
VAL CON1 IS 100.0(REAL32):

SEQ
== INITIALIZATION OF VARIABLES

108
tester := UE
count.probe := 0.0 (REAL32)
sum.probe := 0.0 (REAL32)
avg.probe := 0.0 (REAL32)
count.ref := 0.0 (REAL32)
sum.ref := 0.0 (REAL32)
avg.ref := 0.0 (REAL32)

-~ HPIB COMMANDS FOR HEATER ‘ON® AND ‘OFF‘
ON := "DC4,0"
OFF := "DO4,0"

=— RECEIVE REFERENCE TEMPARATURE VALUE
chn.aski.acq ? CASE medm; Rread.val
STRINGTOREAL32 (error, read.val, Rread.val)
repeat := TRUE

WHILE repeat
SEQ
WHILE tester
SEQ
chn.aski.acq ? CASE float; test -- RECEIVE ‘FLAG"‘
size.test := test
IF
size.test = 10.0 (REAL32)
SEQ
count.probe := count.probe + 1.0 (REAL32)
chn.aski.acq ? CASE long; asi
STRINGTOREAL32 (error, real.data.probe, asi)
sum.probe := sum.probe + real.data.probe

—= CALCULATE AND SEND AVERAGE T_PROBE VALUE

avg.probe := sum.probe/count.probe
REAL32TOSTRING (len.probe, ase, avg.probe,
2, 6)

chn.aski.cnv ! long; ase
tester := TRUE

size.test = 20.0 (REAL32)

SEQ

count.ref := count.ref + 1.0 (REAL32)
chn.aski.acq ? CASE long; aski
STRINGTOREAL32 (error, real.data.ref, aski)
sum.ref := sum.ref + real.data.ref

—- CALCULATE AND SEND AVERAGE T_REF VALUE

avg.ref := sum.ref/count.ref

109

REAL32TOSTRING (len.ref, aske, avg.ref, 2,
6)
chn.aski.cnv ! long; aske
tester := TRUE
TRUE
tester := FALSE

~~ USE T_PROBE AND T_REF VALUES TO CALCULATE THE
~- THERMOCOUPLE TEMPARATURE (TT3 = CENTIGRADE AND
~-— TT2 = FARENHEIT)

= avg.ref * 10.0 (REAL32)

= RO + (TT*(R1+(TT*R2)))

¢= V1 + avg.probe

la := PO + (V* (PL+ (V* (P2+ (V* (P3 + (V * (P4
+ (V* (P5 + (V* (P6 + (V* (P7 + (V * (P8 +

(V*P9)))))))))IN)

(32.0(REAL32)) + ((1.8(REAL32)) * TTla))

TE2 =
TT3 := (((TTla * CON1) + (0.5(REAL32)))) / (CON1)
== ERROR VALUE IS EVALUATED

eror := read.val - TT3

—— SEND TEMPARATURE VALUE TO PROC_IO

REAL32TOSTRING (len.temp, askt, TT3, 2, 2)
chn.aski.cnv ! long; askt

REAL32TOSTRING (len.temp, askt, TT3.o0ld, 2, 2)
chn.aski.cnv ! long; askt

—— EVALUATE ‘CONTROL INTERVAL', ‘ON.time‘' AND
—— ‘OFF.time‘.

interval := read.val * kc

switch.on.point := eror * kc
switch.off.point := interval - switch.on.point

REAL32TOSTRING (len.switch, switch.val,
switch.on.point, 2, 4)
chn.aski.cnv ! long; switch.val

ON.time := INT ROUND (switch.on.point * 15625.0
(REAL32))

OFF.time := INT TRUNC (switch.off.point * 15625.0
(REAL32))

clock ? timenow
INTTOSTRING (len, time, timenow)

110
chn.aski.cnv ! long; time
=— SEND HEATER ‘ON‘ COMMAND TO PROC_IO
chn.aski.cnv ! short; oN
clock ? AFTER timenow PLUS ON.time

~— AFTER ON.time TURN HEATER ‘OFF' FOR A DURATION OF
-= ‘OFF' TIME.

chn.aski.cnv ! short; OFF
clock ? AFTER timenow PLUS OFF.time
—= SEND ERROR VALUE TO PROC_IO

REAL32TOSTRING (len.er, er.val, eror, 2, 4)
chn.aski.cnv ! long; er.val

tac := tac + step
tester := TRUE
count.probe := 0.0 (REAL32)

sum.probe := 0.0 (REAL32)
avg.probe := 0.0 (REAL32)
count.ref := 0.0 (REAL32)
sum.ref := 0.0 (REAL32)
avg.ref := 0.0 (REAL32)

111

PROCESS PROC_NET.PGM

== PROCESS PROC_NET.PGM DESCRIBES THE NETWORK CONFIGURATION
== WITH THE LINK CONNECTIONS BETWEEN PROCESSORS EXPLICITLY
~— SPECIFIED.

#INCLUDE "hostio.inc"
#INCLUDE "linkaddr.inc"
#INCLUDE "acgprot.inc"

-- OUTPUT FILES FROM THE ‘ILINK‘ TOOL ARE USED

#USE "PROC_IO.c2h"

#USE "PROC_CON.c8h"

CHAN OF SP fs, ts:

CHAN OF ACQPROT chn.aski.acq, chn.aski.cnv:

== PROCESSES PROC_IO AND PROC_CON ARE PLACED PARALLEL ON THE
== INDIVIDUAL TRANSPUTERS

PLACED PAR

PROCESSOR 0 T222
PLACE fs AT linkl.in:
PLACE ts AT linkl.out:
PLACE chn.aski.acq AT link3.out:
PLACE chn.aski.cnv AT link3.in:
PROC.IO (fs, ts, chn.aski.acq, chn.aski.cnv)

PROCESSOR 1 T800
PLACE chn.aski.acq AT link3.in:
PLACE chn.aski.cnv AT link3.out:
PROC.CON (chn.aski.acq, chn.aski.cnv)

1PA

PROGRAM DATA_ACQ.BAS

REM * %X XXX XXX AR XKRX XXX R XA R R AR R AR KRR A A RRRRR XA XA AR R A AR R KRR KR AR R R K &

REM * THE FOLLOWING QuickBasic PROGRAM IS RUN IN THE Lab -
REM * - Windows ENVIRONMENT TO ACQUIRE THE THERMOCOUPLE
REM * VOLTAGE AND HENCE DETERMINE THE TEMPARATURE, WHILE
REM * CONDUCTING THE ‘DYNAMIC TEST'. THE PROCESS REACTION
REM * CURVE SHOWS THE TEMPARATURE Vs TIME PROFILE.

*

REM AKX E XA AKX AR A XX AR AR R KR AKX AR R R R R AR R A AR RRR KRR RA AR R A A A AR Rk Xk X X

DIM voltage#(1000), refvoltage#(1000), temp#(1000), T1#(1000)

REM X% XXX kX X A XA XA AR X XA XA XA AR A AR XX AR R XX AR R AR AR A XXX A AR A XA XA XX %

REM * THE CONSTANTS ASSOCIATED WITH THE CALCULATION OF THE

REM * TEMPARATURE ARE LISTED BELOW.
REM XA A Xk kAR AR R AKX AR R AR AR K AR A KRR AR AR AR R AR KR AR K AR KA KRR AR AR R AR KA X

RO = -0.75004344E-6
R1 = .505321995E-4
R2 = .2348050017E-7
PO = -.3595568424

P1 = 19750.87948

P2 = -175116.5425

P3 = 18212965.58

P4 = -2831128E3

P5 = 2715083833E2

P6 = -1.38014121E13
P7 = 3.79242384326E14
P8 = -5.371925537E45
PS = 3.0840255439E16
CLS

INPUT "ENTER THE NUMBER OF SAMPLES REQUIRED ";A

REM * %X Xk X2 A kA A A X AR A XX R A XA A XA XK R XX A XA A A XA AR A A KA XK KRR KRR KRR KA XXX X X

REM * CALL THE INITIALIZING ROUTINE FOR THE HP3497A

REM **X kXXX XA A A A XXX XXX A A XX XRR XXX A A A A XA AR A AR R AR KRR AR XXX R kX Xk kX X

CALL hp3497a.init (9)

REM EX R KRR XA XA R KR AR R AR R AR R AR AR R AR AR R AR R R R R AR AR R R R KRR AR AR R R Ak &

REM * LOOP 'I' TIMES TO ACQUIRE THE THERMOCOUPLE PROBE AND
REM * REFERENCE VOLTAGES AND CALCULATE THE TEMPARATURE VALUE

REM * USING THE CONSTANTS LISTED ABOVE.
REM A A A XA Xk kA XXX AR AR R R R A A KR KR R R AR KRR A AR AR R AR R AR KRR R AR AR A AKX

FOR I = 0 TO A-1

3

CALL hp3497a.init (9)

CALL hp3497a.Conf.Elapsed.Time (0)
CALL hp3497a.Conf.Elapsed.Time (2)
CALL hp3497a.Read.Elapsed.Time (del%)

REM *%XXXxXkXAXXXXkRXAXXXAXX X%

REM * WAIT FOR 5 SECONDS
REM XXXXXAXXXKAXXXRRRR KR

while del% < 5

CALL hp3497a.Read.Elapsed.Time (del%)
wend

CALL hp3497a.init (9)

REM * XXX XXX XXX X RARAX AR R KRR R AR RRKRRARARRRRR R AR AR R A AR A A AR A R AR R AR AR

REM * CALL THE ROUTINE TO READ ANALOG CHANNEL #1 (PROBE
REM * VOLTAGE)

REM *%* XX XXX A XX XA X AXR KA AR A A AR R R R AR R R KRR AR A AR XA AR XX AR A A A AR R AR Rk %

CALL hp3497a.ReadCh (1, volt#)

REM XXX XXXk X X XXX XXX ARXR AR AR R AR AR KRR XA R KRR R AR R AR AR AR AR R A AR R AR AR X X

REM * CALL THE ROUTINE TO READ ANALOG CHANNEL #19 (REFERENCE

REM * VOLTAGE)
REM ** X x X A R Ak A XA A K AR AR AR AR A AR AR AR AR AR AR A AR AR AR AR AR AR AR R AR XK X %

CALL hp3497a.ReadCh (19, refvolt#)

refvoltage#(I) = refvolt#
voltage#(I) = volt#
T = refvoltage(I) * 10
Vi = RO + T*(R1 + T * R2)
V = V1 + voltage#(I)
T1#(I) = PO+V*(P1+V* (P2+V* (P3+V* (P4+V* (P5+V* (P6+V* (P7+V* (P8+
V*P9))))))))
32+1.8*T1#(1I)
3 (T1#(I)*100+.5)/100
T4 (T2*100+.5) /100
PRINT I;voltage#(I);T3;T4

T2

del% = 0

NEXT I

REM****tt**'kt***t**t**t‘k****t*****tt*t*ttt*tttt*t***t*t*tt*t

REM * CALL THE ROUTINES TO RESET AND PLOT THE APPROPRIATE

REM * CURVES
REMA A XA AKX AR AR K AR R AR R AR R AR K KA AR A KRR R AR R A AR AR R AR R KR XA KRR R KRR X %

CALL GrfLReset {0, N0 SIEN1)
CALL GrfYCurv2D (T1#(), 600)
CALL HardCopy

END

APPENDIX B

Process reaction curve

4

280

S AMPLE i

o

N

N & -

150

—_—

-~

TEMPARATURE °C

Pata For the process reaction awyrve

INDEX

B OONOANLEWN -
WO ¢ ¢ o ¢ o o o
°,* * O00DO000O0O0O0
(- N -N-]

[
s
o

15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
33.0
34.0
35.0
36.0
37.0
38.0
39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0
48.0
49.0
$0.0
51.0
$2.0
$3.0
54.0

55.0

56.0
87 A

THERMOCHOUPLE
VOLIAGE &a 9
-0.000383
=-0.000379
-0.00038
-0.000376
=-0.00039
-0.000376
-0.000376
=0.000377
-0.000369
=0.000367
=-0.000367
<0.000362
-0.000357
-0.000353
-0.000348
-0.000344
-0.000337
-0.000334
-0.000324
-0.000323
-0.000317
-0.000313
-0.000307
-0.000304
-0.000299
-0.000298
-0.000287

. =0.000283

=0.000281
-0.000281
=0.000271
-0.000269
=0.000265
=0.000258
=0.000257
=0.000254
=0.00025

-0.000246
=0.000238
-0.000241
=0.000233
=0.000234
-0.000232
=0.000228
=0.000227
=0.000226
-0.000222
-0.000218
=0.000219
=0.000214
-0.000212
-0.000211
-0.000207
=0.000209

-0.000206
-0.000206

N AN A"

-~ . =t 24" A

G °F
16.887117 62.392811
16.966035 62.534863
16.948571 62.503429
17.030506 62.65091
16.760833 62.165499
17.033526 62.656347
17.03554 62.659971
17.018077 62.628538
17.177906 62.91623
17.216854 62.986336
17.22088 62.993584
17.318244 63.168839
17.418621 63.349518
17.499521 63.495138
17.597872 63.672169
17.678761 63.81777
17.817036 64.066665
17.878449 64.177207
18.076095 64.532971
18.097569 64.571623
18.217348 64.787227
18.298202 64.932763
18.417964 65.148335
18.47935 65.25883
18.578637 65.437547
18.601108 65.477995
18.818103 65.868586
18.898922 . 66.014059
18.940838 < /& 66.089508
18.944859 66.096747
19.141349 66.450429
19.183258 66.525864
19.264055 66.671299
19.403178 66.92172
19.425636 66.962145
19.486978 67.07256
19.568763 67.219773
19.648533 67.36336
19.807055 67.6487
19.752762 67.550971
19.911272 67.83629
19.895855 67.80854
19.936737 67.882126
20.0195 68.0311
20.040944 68.069699
20.063392 68.110105
20.145143 68.257258
20.2289 68.408019
20.210472 68.37485
20.312651 68.558771
20.354524 68.634144
20.376967 68.674541
20.457697 68.819854
20.422857 68.757143
20.48516 68.869288
20.489178 68.87652

P Y Y YYs

INDEX

58.0
59.0
60.0
61.0
62.0
63.0
64.0
65.0
66.0
67.0
68.0
69.0
70,0
71.0
72.0
73.0
74.0
75.0
76.0
77.0
78.0
79.0
80.0
81.0
82.0
83.0
84.0
85.0
86.0
87.0
88.0
89.0
90.0
91.0
92.0
93.0
$4.0
95.0
96.0
97.0
98.0
99.0
100.0
101.0
102.0
103.0
104.0
105.0
106.0
107.0
108.0
109.0
110.0
111.0
112.0
113.0

114.0
115.0

THERMOLOVPLE
VOLTAGE (VouI9)

-0.000204
=0.000195
=0.000198
-0.000195
=0.000191
=0.000202
-0.000192
-0.000197
=0.000191
=0.000191
-0.000187
-0.000189
+0.000188
-0.000184
-0.000187
-0.000185
-0.000186
-0.000188
-0.000186
-0.000187
-0.000198
-0.000185
-0.000185
=0.000191
-0.000189
-0.000184
=0.000189
=0.000191
-0.000181
=0.00017

-0.000185
-0.000184
-0.000183
-0.000184
=0.000164
-0.000183
-0.000181
=0.000182
-0.000182
-0.000182
-0.00018

-0.00018

=0.000179
-0.000181
-0.000184
-0.00018

-0.000187
-0.000182
-0.000181
-0.000181
=-0.000188
=0.000181
-0.000183
-0.000182
=0.000183
-0.00018

-0.000181
-0.000182

4L

20.535064
20.713916
20.659658
20.722955
20.803664
20.594005
20.793278
20.700173
20.819732
20.823748
20.905456
20.870628
20.894068
20.97778

20.923531
20.967396
20.951991
20.917164
20.960024
20.946627
20.737994
20.993503
20.998524
20.887014
20.93088

21.033007
20.941926
20.905091
21.105325
21.323943
21.036682
21.061123
21.085563
21.07016

21.464531
21.099621
21.14348

21.130086
21.134102
21.139123
21.182981
21.188002
21.21244

21.179628
21.126392
21.209088
21.080184
21.180292
21.205735
21.212764
21.082856
21.223809
21.189994
21.215437
21.200035
21.264314

21.249917
21.237528

°F

68.959115
69.281049
69.183384
69.297318
69.442595
69.06521

69.423901
69.256312
69.471517
69.478747
69.625822
69.563131
69.605322
69.756004
69.658357
69.737312

69.709583

69.646895
69.724043
69.699929
69.324389
69.784306
69.793343
69.592626
69.671584
69.855412
69.691467
69.625163
69.985584
70.379098

'~ 69.862027

69.906021
69.950014
69.922288
70.632155
69.975318
70.054265
70.030155
70.037384
70.046422
70.125366
70.134403
70.178393
70.119331
70.023506
70.172358
69.940331
70.120526
70.166324
70.178975
69.945142
70.198857
70.137989
70.183786
70.156064
70.271764
70.24585

70.22355

16

INDEX

117.0
118.0
119.0
120.0
121.0
122.0
123.0
124.0
125.0
126.0
127.0
128.0
129.0
130.0
131.0
132.0
133.0
134.0
135.0
136.0
137.0
138.0
139.0
140.0
141.0
142.0
143.0
144.0
145.0
146.0
147.0
148.0
149.0
150.0
151.0
152.0
153.0
154.0
155.0
156.0
157.0
158.0
159.0
160.0
161.0
162.0
163.0
164.0
165.0
166.0
167.0
168.0
169.0
170.0
171.0
172.0

173.0
174.0

THERNOCOUPLE
VoLTAGE Qoirs)

-0.000178
-0.000185
-0.000182
-0.000167
-0.000186
-0.00018

-0.000179
-0.000181
-0.000181
-0.000179
-0.000182
-0.00018

-0.000181
=0.000183
-0.00018

-0.000183
-0.000178
-0.000185
-0.000184
-0.000183
-0.000185
-0.000184
-0.000181
=0.000183
-0.000184
=0.000185
-0.000184
-0.000188
-0.000185
-0.000184
-0.000185
-0.000178
=0.000189
-0.000186
-0.000182
=0.000185
-0.000186
-0.000184
-0.000185
-0.000186
-0.000189
-0.000185
-0.000189
=0.000184
-0.000183
-0.000186
-0.000193
-0.000187
=0.000206
-0.000189
=0.00019

-0.00019

=0.000193
-0.000194
=-0.000191
-0.000194

-0.000195
-0.000194

i

21.325238

'21.196345

21.259619
21.556875
21.193998
21.315523
21.342973
21.308156
21.314181
21.359039
21.306814
21.351672
21.337276
21.305472
21.368742
21.317522
21.419623
21.289735
21.315177
21.340618
21.307811
21.333252
21.397525
21.364719
21.351328
21.337937
21.365387
21.291738
21.357017
21.383462
21.369068
21.510998
21.303453
21.367728
21.452419
21.400199
21.386808
21.43066

21.420283
21.405889
21.354671
21.438359
21.366723
21.470829
21.496269
21.44405

21.314166
21.438695
21.074785
21.411916
21.398527
21.405557
21.356349
21.34095

21.407232
21.355011

21.342625
21.368068

°F

—.70.381428

70.14942

70.263314
70.798374
70.145196
70.363942
70.413351
70.350681
70.361526
70.44227

70.348265
70.42901

70.403097
70.34585

70.459736
70.36754

70.551321
70.317523
70.363318
70.409113
70.350059
70.395854
70.511546
70.452494
70.42839

70.404286
70.453696
70.321128
70.438631

70.486232
" 70.460322

70.715796
70.342215
70.45791
70.610354
70.516357
70.492255
70.571189
70.55251
70.5266
70.434409
70.585047
70.456101
70.643492
70.689284
70.595291
70.361498
70.585651
69.930613
70.537449
70.513348
70.526002
70.437427
70.40971
70.529018
70.43502

70.412726
70.458522

"7

INDEX

176.0
177.0
178.0
179.0
180.0
181.0
182.0
183.0
184.0
185.0
186.0
187.0
188.0
189.0
190.0
191.0
192.0
193.0
194.0
195.0
196.0
197.0
198.0
199.0
200.0
201.0
202.0
203.0
204.0
205.0
206.0
207.0
208.0
209.0
210.0
211.0
212.0
213.0
214.0
215.0
216.0
217.0
218.0
219.0
220.0
221.0
222.0
223.0
224.0
225.0
226.0
227.0
228.0
229.0
230.0
231.0

232.0
233.0

v rwv Y Ty wy."

ae9 ASAATYRTA

THERMOCOUPLE * °C o F
VoLtAGeE (Nouts)
-0.000196 21.341288 70.410319
-0.000197 21.327898 70.386217
-0.000198 21.316517 70.365731
-0.000195 21.381797 70.483234
-0.000194 21.407239 70.52903
=0.0002 21.297773 70.331991
-0.000198 21.342633 70.412739
-0.000134 22.590759 72.659367
-0.000199 21.336274 70.401294
-0.00022 20.935505 69.679909
=0.000207 21.196003 70.148806
-0.000197 21.395195 70.507352
-=0.000201 21.324562 70.380212
~0.000204 21.273343 70.288018
-0.0002 21.358041 70.440475
-0.000204 21.287407 70.313332
-0.000208 21.216768 70.186183
-0.000197 21.437382 70.583287
-0.000209 21.21041 70.174738
-0.000203 21.333946 70.397103
-0.000205 21.30114 70.338052
-0.000205 21.308172 70.350709
-0.000194 21.528771 70.747788
-0.000205 21.322236 70.376024
-0.000207 21.290434 70.318781
-0.000205 21.335295 70.399531
-0.000206 21.323915 70.379047
-0.000208 21.292114 70.321805
-0.000211 21.239889 70.227801
-0.000204 21.381834 70.483302
© =0.000207 21.330618 | -+ 70.391112
-0.000211 21.258978 " 70.26216
-0.000214 21.208762 70.171771
-0.000208 21.332298 70.394137
-0.000211 21.28108 70.301945
-0.000211 21.286104 70.310987
-0.000212 21.273719 70.288695
-0.000213 21.262339 70.268211
-0.000211 21.306197 70.347155
-0.000213 21.276405 70.293529
-0.000213 21.282433 70.30438
-0.000212 21.308883 70.351989
-0.000214 21.276077 70.292939
-0.000224 21.089931 69.957875
-0.000213 21.310565 70.355017
-0.000212 21.33601 70.400817
-0.000215 21.284792 70.308626
-0.000214 21.311242 70.356236
-0.000216 21.279442 70.298995
-0.000221 21.189386 70.136895
-0.000214 21.333346 70.396023
-0.000216 21.300541 70.336974
-0.000216 21.307575 70.349634
-0.000222 21.198103 70.152585
-0.000213 21.380895 70.48161
-0.000217 21.310263 70.354473
-0.000218 21.297879 70.332183
_8.320217 21.323325 70.377984

20.324362

18

APPENDIX C

| 3437a ComMmanos |

nq

‘f.ha' =0 0999

AfR, n =0w32

AEQ = EXT PICR O8F
A = ERT MNCR ON

AE2 w FASTSCaAN

ANALOG CLOSE.
Closes 1 w0 4 ch fone per of ensiog
ANALOG EXTERNAL INCREMENT.

Ensbiss or diasbiss the EXT INCR pert. In FAST SCAN (AED),
mubiframe BBM Sy is ignored. In AE1, extemal puise ime EXT
INCR pont increments chennel closed % next chennel.

st Obo |
chans Ow
vdve

° 10238 (Y0AQ
<o:z|ouc(%ao

ANALOG OUTPUT.

Seta the outgt volage level for the VDAL and output current isvel
for the IDAC. VDAC oviput is - 10.2376V e + 10.2378Vin 2.8
mV increments. IDAC eutput 8 0- 20 mA (A increments) er
4-20 mA 4 pA incremental.

| AR] ANALOG RESST.
> Opens channsls in 3497A and 3498A ond sets
["AF chans o, ANALOG FIRST CHANMNEL. VELL VT, VWO, V80, ASO. AFO and ALSSS.
ersonst | i T e AT T AnALoG ST,
S of 2o from the vy closed chen-
—— G el 89 next chennel. e command sequencses channels
Michans] ANALOG meUT. mu-uum-” ¥ AF <AL, channels increment. i
Shars Cloess channel and wriggers DVM 1 tahe & messurement. AF> AL chennsls
1 e |
i s el i S T LAV chans ANALOG VIEWED CHANNEL.
Voale. i CE R e : | Dedicates dlapiey @ stocted but 4098 not closs Chennel
oA ey Selects last channel 10 be Closed in an enslog sequence butdoss (207 M 010999 | gng goes net sffect other 3497A operstiens. Diapley
e W N I8 not close chennel. when chennel clesed end messurement taken.
!va_wvtn|
B k] G L VAr neitos VOLTMETER RANSS.
t:?:: ::':: ;:: th autozers o, OVM mekes sutosers . frw 1= D0 :.r”‘d:l“ I suterangs, m-ﬁ;‘mdu
| N &Y reading and when DVM switched W new range. ;: :ooz scale and dowrvanges st 11% of hi-scsls.
4 = '00V
Venn=0'e ! VOLTMETER CURRENT SOURCE RANGE. 51y Actizengel s |
0 = oF Progrems euput of OVM curent source 10 1 of Jvalues: 104, =0z 0z
§ = 10 it [Vsn w7 Otwg | VOLTMETER STORAGE.
100 i M.‘” (80 tas mm-w‘l@
%: l‘:t O's Stgiage JFF ~.3Mh Use V8 withaut rumber
< | = Stove = ASTH
2 = >acaeq 3CD
TP VOLTMETER DISPLAY.
[o TTT | Selects number of dights 10 be dlaplayed en fromt panel end sews -
33 3 U2 vas " Max reading 1ot fur 80 e Vin nm Vo4 | VOLTMETER TRGGER
4o 412 nans is 300 resdinga/sec (Autozero OFF). Max reee fer 80 Mz s 280 Snndhwn'm mn—nmmm«
€ w52 g o/ ' = Interna | snother reading when one

Non nelw3s |
‘1 aasc
2= Pice-d 8CD

1= ‘h-g LSCII Chsra

VNv\ L rp_f;!:-]

VOLTMETER NUMBER READINGS/ TRIGGER.

Sets number of reedings taken per trigger pulse nent. Reedings
ore Lsken sequentislly and cutput over the bus in formet set by VEa.

Jm External
3= Sotaare
1 m Hog

wm-mmmu—mnwam
907 (38 80t by VNNl In software, commend couses OVM 0 trigger
and take A readings 38 80t by VINA. In hold. DVM peuses and doss

Vwe = 0 9999%

not ke Messurerments.

VOLTMETER WAIT.

Causes the DVM 10 wait n 1 100 seec between eech reading. Mex
mum wat tme s 99 9999 sec

OC siers chom, Chem

slet- = O to B4

Chon'z O ko IF

(DEdot-vive
Slots = Oy ¢
Valve = _o e-a‘n (o)

i SNITA

_DIGITAL CLOSE.

For Option 110 bly . NO o com-
mon. For Option 118 closes channel releys.
Channels not specified reman n previous stete.

DIGITAL INTERRUPT ENABLE.
Enabiss the Option 080 sssembly 10 send an nterrupt 1© the J487A
when channel bits selected by the command are set trus Dy ex-
tornal rgant to the sesembly).

D1 slots DIGITAL INTERRUPT STATUS.
Used 1o determing interrupt status of brts O - 7 in the Option 080
Yotr Ok 4 . Alse used to couse of i upt from the Op-
mooom
‘D& sots T 77| ovGITAL LOAD.
P e]
|bu;°h” F-Om.mm m':-nu:?-n 177777 of con

nput channels. retums ec-
tal value 10 - |7771ndm¢|0mm Op-
ton 118 sssembly. retums octal vehue (0 - 377) of condition of §
channel releys.

DO Yots ctons Chons

islots = O B9
[avus owlis

P

rﬂSIlo'l slets
‘slots = Jt0 4
[Vowe 2 210377 O rar

[N oo
L’f’" £ 0 1c 39 o

ek

OW stot? vahe H

siotd = 010 89

Yive ® D10 177777
ocw !

DIGITAL OPEN.

For Option 110 © for
mm hwnlw epens releys n chen-
nets Releys n remen in pr

sate.

OIGITAL READ.

For HP-18, mmmmuum except
thet g8 are paeted F-Sondbm weh SO
n effect retums continuously "gs. With SO0 mn of
M.Mnmnm.

DIGITAL INTERRUPT SENSE.

Sets edge ransition sense whuch will cause chennel 0- 7 bts 1 ¢
be set in an Option 060 sssembly. Polarity senes set by ocial vakue
Polerity sense 1 = chen bit st by low-te-lugh tranesien,

DIGITAL VIEWED SLOT

Dedicases the frort penel diapiey 10 siot specified. To exnt the mode.
vse DV witheut sict specsfier.

DIGITAL WITE.

For Option 110]]

se wpecified by ectsl vehus. Far Optian 118 sesembly, cpere o
closes relave 83 wpecified by octal value. All chare of sssy n siet

—

ore sffected by OW

120

— “ H

7] -

Oupiay OFF
Drsplay ON

SEn |HP 18|

n = 010 377 ioctal)

SEn (Serial Detal

n = 0o 377 toctatl

SYSTEM ALARM.
intigtes on sudidie slerm (BEEP).

SYSTEM CLEAR.

message. sxcept thet §C dess net

return the 3487A te local mode. SC clsers system errors bt dose
not reset VF2, VFJ or clear voltmeter storage.

SYSTEM DIMLAY.

$00 turne off e dlagisy and CHANNEL ights fer fester
reeding rotes. With ondy deta entered with SVn commend of-
focts diapley.

SERVICE REQUEST ENABLE.

SE sots the SAQ mesk bits which ensbies 3497A 1 send an inter-
rapt % the controlier when specified system conditions ecows.

SLn 1Sensl Detal i

SLO = Keyboard Ensbieq

SA siotd.n

siotd = Ot0 09;
A=0w?

SR 3018.0 = Read s

SR 3018.0-7 = Read

STn

STO = Seif Test OFF
ST1 « Soif Tomt ON

Svn
n = 3999999

01 enebiss 3497A 1 send & singls reeding/cammand for sem-
mends which normelly retum continueus dets. such as ST, VT4,
OR gioed, TD and CR st 3.

SL1 = Kevboerd 10 local mode unises SLO b sent or power is tumed off.
Disabled SW siotd.reqisters.deta | SYSTEM WRITE.
Use SW 19 write deta %0 any sssembly directly corwrclied by te
Yot? = Ot 89 Main procosser ii.e. Gghal sesemnbfien).
regsierd = Q10 7
dets = 0o 377
¥ “;
TIMER %
TA =M MM SS TIME ALARM (SET). ' TE j ELAPSED TWAE MEAD).
Sets 3497A timer. N SRQ mesk HP-8) or inemupt mask (Seriad Uss TE 1 resd clapesd time (1 sac inCremaents) sinee slepesd tmer
Hours = Oto 24 Detal has been set for thme slerm, intemupt sent % contrelier whan contrel started commend. Dets retumed hes fermet
Minutes = O to 59 time on real-time closk metches time set by TA. DOOOOD ses.
Seconas = 0 10 59
TIME INTERVAL.

TD MMDOHHMMSS or |
10 OCMMH=MMSS |
Shoivr il

TWME OF DAY (SET.

Use Tin w0 generste
o0c 19 24 Iw. ¥ SAQ or imemupt mask set, I487A sends vtarnept
for every pulse cupt.

:—“—_; TIME OF DAY (READI. [Cow | TIME OUTPUT.

s == ‘ Reeds time of dey frem resi-tme clack. Dets rensmed hes fermet e 9 . UssTOnwm puises from TIMER port with periods fram 100

MM o Buropeer 145498, (" =0109999 ' Lsec 1 0.9990 ssc (in 100 ssec incremental. Period sutpat s n

—— ——— 1 100 gses. intarmupt not svelishie with TOn cemwand.
T " T 7771 Use TEn @ moniker slapsed time frem start of en eperstien. Use
TEQ o RESET the TE command (without 8 rumber! 1 reed thwe slapeed since
TE' g MALT TE2 commend
TE2 = START
o COUNTER ENASLE INTERRUPTS. [Ceacier] CoweTeRmaS L ain 1
. Enables counter 10 send an interrupt 10 J497A when soecfied i | <11y = 0 10 89 m"’"_:""""”‘""""‘“‘""""“ gt v'eng ot
Sy 01'0‘ termupt condition occurs. N 3497A is set for Dighal Imempt. imer- [» 1 (o 3 :
= ‘o

O = No nterrupts
enabiea
| = !rrerrugt In ~ag
Surement ~on cretel
= nterrupt w

L Sverlow _

siotd = 0 ‘0 89
"=0wsb

O w Counter Stop

s Count Up

= Count Down

= Avg 1000 Perods
= Avg 100 Perods
= Measure 1 Penod

1
2
3
)
s
€ = Messure | Penod

nupt is sent te controfler.

COUNTER FUNCTION.

Sets mode of operstion fer the countsr and starts the functien. CT
command MUST be set before CF command ls executed. Per n =
3106, CT slotd, 1 and 2 set period messurements and CT sloes,
3 and 4 set puise width messurements.

' < Read without wart
2 - Read ath want
3 + Read continuously

CS sot? vave

siot? = 0 10 B9 1
valve = 010 999999 |

———
CT siotd n
siots = 010 89 i
Nns1104d

1 e Rimng Risng Edges

l0.

11.

12.

13.

14.

121

BIBLIOGRAPHY
Books

Burns, Alan. Programming in OCCAM2.
Addison-Wesley, 1988.

Coughanowr. Process Systems Analysis and Control.

McGrawhill, 1991.
HEWLETT PACKARD Ltd. HP3497A Data Acquisition/Control

INMOS Ltd. B008 User Guide and Reference Manual. 1988.

INMOS Ltd. B012 User Guide and Reference Manual. 1988.

INMOS Ltd. B21l1 ITEM Reference Manual. 1987.

INMOS Ltd. B421 Engineering Data. 1990.

INMOS Ltd. FOOlA -1 GPIB OCCAM. 1988.

INMOS Ltd. OCCAM2 Reference Manual. 1988.

INMOS Ltd. et I . 1989.

INMOS Ltd. The Transputer Data Book. 1989.

INMOS Ltd. Transputer Devices and ig Systems
Data Book. 1989.

Pountain, Dick and May, David. A Tutorial Introduction
to OCCAM Programming. McGrawhill, 1987.

Smith and Corripio. Principles and Practice of Automatic
Process Control. John Wiley and Sons, 1985.

122

15. National Instruments Ltd. Labwindows User Guide and

Reference Manual. 1988.
16. Phillips, Charles and Harbor, Royce. Feedback Control

Systems. Prentice Hall, 1988.

Articles

17. Colin Whitby-Strevens., "Transputers-Past, Present, and
Future", IEEE Micro, 8, 16-27, 1990.

18. Halang W. A., "Education of Real-Time Systems Engineers",
Microprocessing and Microprogramming, 25, 71-76,
1989.

19. Homewood, M., David, S., May, D., and Shepard, Roger.,
"The IMS T800 Transputer", IEEE Micro,
Z, 10-26, 1987.

20. Katab, A., "A Multiprocessor Architecture for Robot-Arm

Control", Microprocessing and Microprogramming, 24,
673-680, 1988.

	466 Challa Thesis.pdf
	466missing102.pdf
	466missing103.pdf

