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STUDY OF PARALLEL COMPUTING IN A TRANSPUTER BASED ENVIRONMENT 

USING INMOS C TOOLSET 

Tariq Asrar Alvi 

Master of Science in Engineering 

Youngstown State University, 1992 

This thesis builds upon the thesis work. done by Mr. S. V. 

Chala, who simulated a control process on a transputer network 

using the INMOS Occam Toolset. Here, the hardware and software 

aspects of parallel processing are presented, as well as their 

application in a control problem, using the pole placement 

technique. The hardware used is a network of T800 transputers 

and the supporting hardware, manufactured by the INMOS corpo­

ration. The software is the INMOS C TOOLSET, which incorpo­

rates a full ANSI C compiler that also supports parallel 

processing. 

Comparison is made between the serial and parallel 

versions of the same program. The parallel version of the 

simulation program is found to be faster than the serial 

version. 
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CHAPTER I 

OVERVIEW 

This chapter introduces transputers and parallel 

processing. All details relevant to this thesis will be 

provided in the succeeding chapters. 

Parallel processing is a powerful way of increasing 

system performance. The combination of hardware parallel 

support and a compiler package, which makes the hardware fea­

tures easily accessible from software, makes the transputer 

and the Toolset powerful vehicle for the development of para­

llel applications. 

Transputers 

Transputers are high-performance microprocessors that 

support parallel processing through on-chip hardware. They can 

be connected by their serial links in application specific 

ways and can be used as the building blocks for complex para­

llel processing systems. 

The transputer is a complete microcomputer on a single 

chip. It contains the hardware support for processor communi­

cations, a very fast (single cycle) on-chip memory, and a 

programmable memory interface that allows external memory to 
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be added with minimal supporting logic. Figure 1.1 shows the 

generalized architecture of the IMS T4 family of transputers. 

Multitransputer systems 

Multitransputer systems can be built very simply. The 

four high-speed links allow transputers to be connected to 

each other in arrays, trees, and many other configurations. 

The circuitry to drive the links is all on the transputer chip 

and only two wires are needed to connect a pair of trans­

puters. Some possible arrangements of transputers are illus­

trated in Figure 1.2. 

Links 

Transputer links provide a communication and synchro­

nization path between processors, allow memory to be examined 

directly by debugging programs, and permit programs to be loa­

ded onto whole networks of transputers via a single transputer 

link. Each individual transputer also supports communication 

between parallel processes through a system of internal links, 

implemented as words in memory. 

Hardware Parallel support 

Each transputer has a highly efficient built-in run­

time scheduler for processes running in parallel on the same 

transputer and supports channel communication through single 

words in memory. Processes waiting for input or output, or 

waiting on a timer, consume no CPU resources, and process 
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Fig. 1.1. Transputer Architecture 
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Fig. 1.2. Transputer Networks 
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context switching time can be as little as one microsecond. 

The communication links between processors operate in para­

llel with the processing unit and can transfer data simul­

taneously on all links without the intervention of the CPU. 

Transputer Products 

There is a complete family of transputer devices: 32-

bit and 16-bit processors, a peripheral control processor, a 

link switch, and a parallel link adaptor. A wide range of 

transputer programming boards is supplied by INMOS and other 

vendors for several hosts. These boards can be used for: 

(a) Developing and debugging transputer software. 

(b) Improving system performance (as accelerator boards). 

(c) Loading software onto embedded systems. 

(d) Building specific transputer networks. 1 

Transputers and C 

The ANSI C Toolset has been designed to reflect the 

parallel processing model of communicating sequential pro­

cesses (CSP). The inherent flexibility of the C language, the 

capacity to mix code from different languages, and the ability 

to use the parallel features of the transputer, make the Tool­

set a powerful tool for programming parallel systems. 2 

Programming Model 

The parallel programming model consists of a number of 

independent processes executing simultaneously and communica-
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ting through channels. A process can be built from any number 

of other parallel processes, so that an entire software system 

can be described as a hierarchy of intercommunicating parallel 

processes. This model is consistent with many modern software 

design methods. 

Communication between processes is synchronized. When 

data is passed between two processes the output process does 

not proceed until the input process is ready. Buffered commu­

nication and multiplexing can be achieved by inserting a 

specific buffer or multiplexing process between the two 

processes. Library functions are provided for the input and 

output of data on channels. Figure 1.3 illustrates the main 

elements of the programming model. The figure shows that 

modules can be made up of any number of sub-modules. The 

arrows represent the direction of communication between 

modules. 

Real Time Programming 

The parallel features of the transputer provide direct 

support for real time programming. The key features are listed 

below: 

(a) Direct and efficient implementation of parallel pro­

cesses in hardware. 

(b) Prioritization of parallel processes. 
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Fig. 1.3. Parallel Programming Model 



(c) The ability to implement software interrupts as high 

priority processes. 

(d) Easy programming of software timers, allowing close 

control of timing and non-busy polling. 

8 

(e) Placement of variables at specific addresses in memory­

mapped devices. 

Program Development 

The compiler and its supporting tools run under stan­

dard operating systems, either on the host itself or on a 

transputer board attached to the host, and can be used in 

conjunction with existing text-editing software and source 

control systems. For this reason no editor is provided with 

the Toolset. 

Software Design 

The software designer can use ANSI C to specify the 

components of a system in terms of communicating processes. 

The overall design can be directly expressed in the parallel 

constructs of the language. Common modules can be collected 

into libraries for the purpose of code sharing within prog­

ramming teams. 

Programming 

Code for single transputers is linked using the linker 

tool and loadable programs are generated using the collector 

tool. For multitransputer systems the collector tool reads and 
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processes a configuration data file created by the configurer 

tool, while for single transputer programs the collector adds 

bootstrap code for a single processor. Single processor boot­

strapping by the collector is controlled by a command line 

option. Software processes and channels are allocated using 

the configuration language and loadable code ready for 

distribution on the network is generated using the configurer. 

Debugging 

Programs for multitransputer systems can be debugged 

at the symbolic level using the network debugger that allows 

a halted program to be analyzed in terms of its source code. 

A low level debugging environment using direct memory display, 

instruction disassembly, and processor data is also provided. 

Breakpoint debugging allows programs to be executed interac­

tively. Post-mortem debugging allows stopped programs to be 

debugged from the contents of the transputers' memory. The 

debugger inserts no additional code into the program, but 

rather writes the data in a description file. This guarantees 

that the code generated when debugging is disabled will run 

the way it was originally designed to run. 1 
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CHAPTER II 

HARDWARE DESCRIPTION 

This chapter will discuss the hardware used in the 

thesis. The following hardware was used: 

(a) IMS T800 Transputer 

(b) IMS B403 TRAM (Transputer Module) 

(c) IMS B008 TRAM Motherboard 

IMS T800 

The IMS T800 transputer is a 32-bit CMOS microcomputer 

with a 64-bit floating point unit and graphics support. It has 

4 Kbytes of on-chip RAM for high-speed processing, a configur­

able memory interface, and four standard INMOS communication 

links. The instruction set achieves efficient implementation 

of high-level languages and provides direct support to the 

parallel programming model when using either a single trans­

puter or a network. The transputer is designed to implement 

the Occam language but also supports other languages such as 

C, Fortran, and Pascal. 

The processor speed of a device can be pin-selected in 

stages from 17.5 MHz up to the maximum allowed for the part. 

A device running at 30 MHz achieves an instruction throughput 
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of 15 MIPS. The high performance arithmetic and floating point 

unit enables the T800 to achieve 2.25 Mflops at 30 MHz. For 

convenience of description, the IMS T800 operation is split 

into the basic blocks (Figure 2.1) described below. 

Processor 

The 32-bit processor contains instruction processing 

logic, instruction and work pointers, and an operand register. 

It directly accesses the high-speed, 4 Kbyte on-chip memory, 

which can store data or programs. Where larger amounts of 

memory or programs in ROM are required, the processor has 

access to 4 Gbytes of memory via the external memory interface 

(EMI). 

Registers 

The design of the Transputer processor exploits the 

availability of fast on-chip memory by having only six regis­

ters that are used in the execution of a sequential process. 

The small number of registers, together with the simplicity of 

the instruction set, enables the processor to have relatively 

simple (and fast) data-paths and control logic. The six regis­

ters are: 

{a) The workspace pointer, which points to an area of 

storage where local variables are kept. 

{b) The instruction pointer, which points to the next 

instruction to be executed. 
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(c) The operand register, used in the formation of 

instruction operands. 

(d) The A, B, and C registers, which form an evaluation 

stack. 

13 

A, B, and C are sources and destinations for most 

arithmetic and logical operations. Loading a value into the 

stack pushes B into C, and A into B, before loading A. Sto­

ring a value from A, pops B into A and C into B. The use of a 

stack removes the need for instructions to re-specify the 

location of their operands. Statistics gathered from a large 

number. of programs show that three registers provide an 

effective balance between code compactness and implementation 

complexity. 

Floating Point Unit (FPU) 

The 64-bi t FPU provides single and double length 

arithmetic to floating point standard (ANSI-IEEE 754-1985). 

It is able to perform floating point arithmetic in parallel 

with the CPU, sustaining in excess of 2.25 Mflops on a 30 MHz 

device. All data communication between memory and the FPU 

occurs under control of the CPU. 

The FPU consists of a microcoded computing engine with 

a three deep floating point evaluation stack for manipulation 

of floating point numbers. These three stack registers are FA, 

FB, and FC, each of which can hold either a 32-bit or 64-bit 

data; and an associated flag, set when -a floating point value 

is loaded. 

,I 
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The FPU has been designed to operate on both single 

length (32-bit) and double length (64-bit) floating point num­

bers, and returns results which fully conform to the ANSI-IEEE 

754-1985 floating point arithmetic standard. Denormalized num­

bers are fully supported in the hardware. All rounding modes 

defined by the standard are implemented. The basic addition, 

subtraction, multiplication and division are performed by 

single instructions. The floating point operation times for 

the IMS T800 are illustrated in Table 1. 

TABLE 1 

FLOATING POINT OPERATION TIMES FOR IMS T800 

TS00-20 TS00-30 

Operation Single Double single Double 
length length length length 

add 350 ns 350 ns 233 ns 233 ns 

subtract 350 ns 350 ns 233 ns 233 ns 

multiply 550 1000 ns 367 ns 667 ns ns 

divide 850 ns 1600 ns 567 ns 1067 ns 

Timers 

The transputer has two 32-bit timer clocks. The timers 

provide accurate process timing, allowing processes to de­

schedule themselves until a specific time. 

One timer is accessible only to high priority pro­

cesses and is incremented every microsecond, cycling com-
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pletely in approximately 4295 milliseconds. The other is 

accessible only to low priority processes and is incremented 

every 64 microseconds, giving exactly 15625 cycles in one 

second. It has a full period of approximately 76 hours. 

system Services 

System services include all the necessary logic to 

initialize and sustain operation of the device. They also 

include error handli~g and analysis facilities. 

The pins shown in Figure 2 .1 are described below. 

Power is supplied to the device via VCC and GND pins. CapPlus 

and CapMinus are connected externally by a low leakage, low 

inductance, 1 µF capacitor for the internally derived power 

supply for the internal clocks. Reset is assertive high and 

the falling edge initializes the transputer, triggers the 

memory configuration sequence and starts the bootstrap rou­

tine. Analyze will halt the transputer at the next deschedu­

ling point if it is taken high while the transputer is 

running. Errorin and Error, together, indicate that an error 

was detected. An internal error can be caused, for example, by · 

arithmetic overflow, divide by zero, array bounds violation, 

or software setting the flag directly. The error pin carries 

the OR'ed output of the internal error flag and the error in­

put. BootFromROM allows the transputer to be externally boot­

strapped when connected to high (e.g., to VCC). Clockin is the 

standard clock input supplied by the user. High frequency in­

ternal clocks are derived from Clockin and it must be derived 
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from a crystal oscillator, since stability is important. 

ProcSpeedSelect0-2 pins are used to vary the processor speed 

in discrete steps as shown in Table 2. 

TABLE 2 

SPEED VARIATION IN IMS T800 

Proc Proc Proc Processor Processor 
Speed Speed Speed Clock cycle 
Select2 Selectl Selecto Speed MHz Time ns Notes 

0 0 0 20.0 50.0 

0 0 1 22.5 44.4 

0 1 0 25.0 40.0 

0 1 1 30.0 33.3 

1 0 0 35.0 28.6 

1 0 1 Invalid 

1 1 0 17.5 57.1 

1 1 1 Invalid 

Memory 

The IMS T800 has 4 Kbytes of on-chip RAM (static memo­

ry) for high rates of data throughput. Each internal memory 

access takes one processor cycle. The transputer can also 

access 4 Gbytes of external memory space. Internal and ex­

ternal memory are part of the same 1 inear address space. 

Internal memory starts at the most negative address 

80000000 and extends to 80000FFF. User memory begins at 

80000070; this location is given the name MemStart. External 
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memory space starts at 80001000 and extends up through 

00000000 to 7FFFFFFF. 

External Memory Interface 

The external memory interface (EMI) allows access to 

a 32-bit address space, supporting dynamic and static RAM as 

well as ROM and EPROM. 

Link Interface(s) 

Four identical INMOS bi-directional serial links pro­

vide synchronized communication among the processors and with 

the outside world. Each link comprises an input channel and an 

output channel. A link between two transputers is implemented 

by connecting a link interface on one transputer to a link in­

terface on the other. Every byte of data sent on a link is 

acknowledged on the input of the same link; thus each signal 

line carries both data and control information. 

The quiescent state of a link output is low. Each data 

byte is transmitted as a high start-bit, followed by another 

high bit, followed by eight data bits, followed by a low stop­

bit. The least significant bit of data is transmitted first. 

After transmitting a data byte, the sender waits for the ack­

nowledge, which consists of a high start-bit, followed by a 

zero-bit. The acknowledge signifies both that a process was 

able to receive the acknowledged data-byte and that the 

receiving link is able to receive another byte. The sending 
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link reschedules the sending process only after the acknow­

ledge for the final byte of the message has been received. 

Link speeds can be set by LinkSpecial, Link0Special, 

and Link123Special. Link 0 speed can be set independently. 

Table 3 shows uni-directional and bi-directional data rates in 

Kbytes/second for each link speed. LinknSpecial is to be read 

as Link0Special when selecting link 0 speed and as Link123-

Special for the others. Data rates are quoted for a transputer 

using internal memory, and will be affected by a factor depen­

ding on the number of external memory accesses and the length 

of the external memory cycle. 

Link 
Special 

0 

0 

1 

1 

TABLE 3 

DATA RATES FOR EACH LINK SPEED 

Kbytes/sec 

Linkn 
Special Mbits/sec Uni 

0 10 910 

1 5 450 

0 10 910 

1 20 1740 

Event 

Bi 

1250 

670 

1250 

2350 

EventReq and EventAck provide an asynchronous hand­

shake interface between an external event and an internal pro­

cess. When an external event takes EventReq high, the external 

event channel (additional to the external link channels) is 

made ready to communicate with a process. When both the event 
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channel and the process are ready, the processor takes 

EventAck high and the process, if waiting, is scheduled. 

EventAck is removed after EventReq goes low. 

TRAMs are small, cost-effective sub-assemblies of 

transputers and other circuitry (often RAM) with a simple but 

efficient 16-signal-interface standard profiled in modular 

sizes. The interface accommodates 4 serial transputer links 

for interprocessor communication, power supply, and system 

signals. 

This standard allows the TRAMs to be mounted onto a 

variety of motherboards which provide specific host interface 

hardware. Each motherboard can connect to a number of TRAMs 

and provides facilities for configuring a network of TRAMs for 

the user specified topology, under software control. A soft­

ware package is provided for motherboards which allows this 

task to be undertaken with the minimum effort. 

All TRAMs are based upon a single module profile with 

a defined pin layout. This single format is known as size 1. 

The schematic figure of the size 1 TRAM is shown in Figure 

2 . 2 . 

Larger TRAMs are simply a multiple of the size 1 

footprint. Thus, a size 2 TRAM occupies two of the sockets 

into which a size 1 TRAM will plug. In order to avoid confu­

sion, discussions about motherboards always refer to "slots". 

A slot is one position into which a size 1 TRAM may be 
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plugged. Thus, a motherboard which has ten slots may have ten 

size 1 TRAMs, or five size 2 TRAMs, or two size 4 and two size 

1 TRAMs, or one size 8 TRAM, or even six size 1 TRAMs and one 

size 4 TRAM. The common pins that are available from the TRAMs 

are described below. 

0 Link2out Link3in 0 

0 Link2in Link3out 0 

0 vcc GND 0 

0 Linklout Link0in 0 

0 Linklin Link0out 0 

0 LinkSpeedA notError 0 

0 LinkSpeedB Reset 0 

0 Clockin (5 MHz) Analyze 0 

Fig. 2.2. Schematic Diagram of a "size 1 11 TRAM 

standard TRAM Pins 

. 
Transputers, and therefore TRAMs;- Lequire three sig-

nals to be connected to them to allow them to initialize, and 

debug so that they can signal an error. These signals are Re­

set for resetting, Analyze to allow debugging, and NotError to 

signal an error on a transputer or a TRAM. These three signals 

are collectively known as system services. The system services 

for a TRAM are treated as a single signal conceptually, al­

though they are actually three signals. 

IMS B403 

The IMS 8403 is a very compact TRAM providing 2 Mbytes 

of memory, but still providing maximum performance capability. 

Th' · 
is is achieved by extending the principle of fast on-chip 
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RAM to include 32 Kbytes of static RAM, which cycles as fast 

as possible. So, any technique which puts the most frequently 

accessed memory locations near the bottom of memory will speed 

up the processing. This TRAM is the most popular board for 

running INMOS' Toolset. 

The IMS B4 03 packs 11 square cm of silicon onto a 

board the size of a credit card. Four IMS B403 1 s fit onto the 

IMS BOOB in a single slot of the IBM PC. The schematic of the 

IMS B403 appears in Figure 2.3. 

TRAM Motherboard 

A TRAM motherboard provides a number of slots into 

which TRAMs can be- plugged. Each of these slots provides the 

necessary connections to pow~r, clock, reset signals and the 

transputer links. The motherboard provides -a· method of connec­

ting TRAMs together and may also include special circuitry to 

provide an interface to something other than a transputer 

system. 

IMS BOOS 

The IMS BOOB is a motherboard designed to plug into a 

PC or PC/AT bus. The board has ten TRAM slots, an interface to 

the PC bus, and a programmable link switch to allow a network 

of TRAMs to be set up under software control. Figure 2.4 pro­

Vides a functional block diagram of the IMS BOOB. 

The interface to the PC provides a single transputer 

link d an a system services port. This allows software running 
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on the PC to reset, analyze, communicate with, and monitor the 

error flag of a transputer network connected to or on the IMS 

BOOS. Data can be transferred to and from the link interface 

using programmed I/O or a DMA transfer mechanism, allowing 

data transfer to go on without processor intervention. In­

terrupts can be generated on link events, on error being 

asserted, or at the end of a DMA transfer, freeing the 

processor from polling the IMS BOOS to detect these events. 

The TRAM slots on the IMS BOOS are connected into a 

pipeline using two of the four links from each slot. The 

remaining two links from slots 1 to 9 and link 3 from slot o, 

are connected to the programmable link-switch which allows 

these links to be connected together via software. Control and 

configuration (programming) of the link switch is performed by 

a 16-bit transputer. 3 

PC Bus Interface 

The IMS BOOS has been designed to work when plugged 

into either a PC/AT bus slot or a PC bus slot. The bus 

interface on the IMS BOOS has four functions to perform: 

(a) Convert the S-bit parallel transfers on the PC bus to 

serial link transfers, and vice versa. 

(b) Provide a system services port. 

(c) Control DMA transfers. 

(d) Generate interrupts on link interface events, on the 

assertion of transputer error, or on DMA transfer end. 
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CHAPTER III 

ANSI C TOOLSET 

This chapter gives an overview of the ANSI C Toolset. 

It briefly describes each tool, outlines its purpose, and 

explains how the tools are used together to develop, config­

ure, load, and run transputer programs. The chapter also 

introduces the run-time library, outlines the standards for 

error reporting, and summarizes host-specific characteristics. 

The ANSI C Toolset is a software cross-development 

system for transputers, hosted on several systems, among them 

the PC/MS-DOS system. It consists of a full ANSI C compiler 

with parallel support, a multilanguage linker, a configurer 

for mapping programs onto transputer networks, a code collec­

tor tool for generating directly loadable files, and a program 

loader and host server tool. The Toolset also includes a fully 

interactive debugger, program building tools, and EPROM prog­

ramming tools. Together, the compiler and its supporting tools 

form an integrated environment for the development of programs 

on transputers and transputer-based hardware. 
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Features of the Toolset 

The ANSI C Toolset is an integrated development sys­

tem for transputer programs incorporating a new standard ob­

ject file format, a C-like configuration language, a compre­

hensive run-time library, and support for parallel programming 

based on the communicating process model. It represents a 

broad enhancement of the approach to parallel programming in 

C and introduces standards for the generation of object code 

for transputers and transputer-based hardware. 

Standard Object File Format 

The ANSI C compiler generates object code in an inter­

mediate form known as TCOFF (Transputer Common Object File 

Format). The adoption of this format introduces a standard for 

the development of future transputer compilers and enables 

code generated by compatible compilers to be freel~ mixed in 

the same system. 

Configuration Language 

The configuration language allows software and hard­

ware networks to be described separately and joined by a 

software-to-hardware description. The language is a simple 

declarative language that has the syntactic flavor of C and 

can be used on any size network. A full range of high-level 

language constructs including replicative and conditional 

statements make it easy to explore different configurations 

before committing to hardware. 

I 
I 

I' 
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Run-time Library 

A comprehensive run-time library is supplied with the 

Toolset providing full ANSI C support with additional support 

for parallel programming. The library of parallel functions 

provides channel-based communication. An optimized library 

with no server support is available for embedded code. 

Parallel Programming 

The abstract model used in ANSI C reflects the 

Communicating Sequential Process {CSP) model of parallel 

programming. The model maps easily onto the transputer to 

provide efficient parallel code. Software is broken down into 

independent processes which exchange data and synchronize 

their activity via channels. Processes can be mapped onto one, 

several, or many transputers using the configuration language. 

Transputer Targets 

The ANSI C Toolset can be used to write programs tar­

geted at IMS M212, T212, T222, T225, T400, T414, T425, T800, 

T801, and T805 transputers. Code can also be written to run on 

a group of processor types by compiling for a transputer 

class. 
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Toolset Summary 

The tools that were used are summarized in Table 4 

and are briefly described here. 

compiling the Code 

ANSI C Compiler - ice 

The compiler ice is an ANSI standard C compiler with 

additional support for parallel programming. It conforms fully 

to ANSI standard XJ.159 1989. 

The ANSI standard for C formalizes the original imple­

mentation of C as described in "The C programming Language" by 

Kernighan and Ritchie. It further extends it to include a run­

time library, some language extensions already in common 

usage, and many other improvements designed to standardize the 

language. 

ANSI C supports parallel programming through a series 

of C structures and a comprehensive set of process handling 

and channel communication functions. Some useful non-ANSI 

functions are also provided in the run-time library. 

The compiler produces code for specific processor 

types or transputer classes. The compiled object file must be 

linked, configured, and made executable before the program can 

be run. The executable file consists of code which can be 

directly loaded onto a transputer network. 
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Tool 

ice 

icconf 

icollect 

ilink 

iserver 

TABLE 4 

SUMMARY OF TOOLS USED IN THE PROJECT 

Description 

The ANSI C compiler. A full ANSI standard 

compiler with parallel support. Generates ob­

ject code for specific transputer targets. 

The configurer. Analyzes the configuration 

description and produces a configuration data 

file for the code collector. 

The code collector. Collects linked units 

into a single file for loading on a trans­

puter network. Takes as input a configuration 

data file or a single linked unit. 

The Toolset linker. Resolves external refer­

ences and links separately compiled code into 

a second file. 

The host file server. Loads programs onto 

transputer hardware and provides runtime 

access to the host. 

29 
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Generating Executable Code 

Three tools are used in sequence (or two for a single 

transputer program) to generate the loadable file from 

compiled object code. They are described below. 

Linker - ilink 

The Toolset linker, ilink, links separately compiled 

modules and libraries into a single code unit, resolving ex­

ternal references and generating a linked unit. Linked units 

can be used in configuration descriptions to map software onto 

specific arrangements of transputers, or can be bootstrapped 

for a single transputer using icollect. 

Library modules are linked with the program by the C 

start-up file which must be specified on the linker command 

line. The correct start-up file must be specified for the 

transputer type. 

Configurer - icconf 

The configurer, icconf, generates configuration infor­

mation for transputer networks from a configuration descrip­

tion written in the transputer configuration language. The 

tool prepares the program for configuring on a specific 

arrangement of transputers by analyzing the configuration 

description and producing a data file for the code collector 

tool. 
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Code Collector - icollect 

The code collector tool, icollect, takes the data file 

generated by icconf and generates a single file that can be 

loaded and run on a transputer network. The file contains 

bootable code modules for all processors on the network, along 

with distribution information that is used by the loader to 

place the modules on each processor. 

icollect is also used to generate bootable code for 

single transputer programs from linked units by appending 

single transputer bootstrap code. The single transputer mode 

of operation is selected by a command-line option. 

Loading and Running Programs 

Bootable code for single transputers and transputer 

networks is loaded onto the transputer hardware using the host 

file server tool, iserver, which both loads the program and 

starts the run-time environment that supports interaction with 

the host. 

Host File Server - iserver 

The host file server, iserver, is a combined host 

server and loader tool. When invoked to load a program it both 

loads the code onto the transputer hardware and provides run­

time services on the host (such as program input/output) for 

the transputer program. 
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Program Development Using the Toolset 

The ANSI C Toolset is a cross-development system for 

transputers. Creation of executable code for a transputer or 

transputer network takes several stages involving the use of 

specific tools at each stage. Program development is supported 

by tools which provide facilities for debugging and creating 

object code libraries. 

The main stages in developing a program and the tools 

used are listed below: 

(a) Write the source 

Source code can be written using any ASCII editor. Code 

can be divided between any number of source files. 

Source code must conform to ANSI standard. Source code 

syntax can be checked prior to compilation by invoking 

the compiler with the check option. 

(b) Compile the source 

Each source file is compiled using the ANSI C 

compiler, ice, to produce one or more compiled object 

files. Each file must be compiled for the same trans­

puter type or for a transputer class covering several 

compatible types. 

(c) Link the compiled units 

The compiled source files are linked together using 

ilink. This generates a single file called a linked 

unit in which all external references are resolved. The 

linking operation also links the library modules 
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required by the program, which are selected by trans­

puter type from the compiled library code. 

(d) Configure the program 

For multitransputer programs a configuration descrip­

tion must be constructed in order to assign linked 

units to specific nodes on the transputer network and 

link them by channel variables. The description is pro­

cessed by the configurer tool, icconf, to produce a 

configuration data file. Single transputer pro.grams can 

also be configured. 

(e) Generate an executable file 

The configuration data file generated by icconf is read 

by the code collector, icollect, which generates a 

single executable file for a transputer network. The 

same tool is used to directly generate bootable files 

for single transputer programs from linked units. 

(f) Load and run the program 

The executable or bootable file is loaded or run on the 

transputer network down a host link using iserver. Once 

loaded, code begins to execute immediately. The server 

tool also starts up and maintains the environment that 

supports the programs communication with the host. 

Figure 3. 1 illustrates the development in terms of the 

architecture of the toolset. The default file extensions 

assumed and generated by the tools are used to represent 

source and target files. 
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Fig. 3.1. Program Development Using the Toolset 
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Run-time Library 

The run-time library is a library of compiled C func­

tions that perform common programming operations. The library 

contains the complete set of ANSI standard functions plus 

functions to support parallel programming and some non-ANSI 

extensions. 

The parallel functions are divided into three func­

tional groups: process management, channel communication, and 

semaphore handling. The non-ANSI extensions include a set of 

i/o primitives, a set of short math functions, functions for 

retrieving information about the host system, and debugging 

functions. 

A reduced library is available for linking with pro­

grams that do not use i/o or i/o dependent functions, for 

example, code for embedded systems or code that only commu­

nicates with other processes on the network and has no direct 

interaction with the host. The reduced library contains no 

calls to the iserver. 

Header Files 

Library functions, like all C functions, must be de­

clared before use. Declarations of library functions with 

associated constants, macros, and definitions are held in a 

number of library header files to ensure that function 

declarations are of the correct form and that supporting 

macros and constants are included. Header files are given the 

extension .h. 
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T~e library header files contain groups of routines 

collected together according to common usage. For example, 

routines that control standard i/o operations are grouped in 

the file stdio.h. Most header files also contain definitions 

of constants and macros that are associated with the func­

tions' use. 

Many of the header files and function groupings are 

defined in the ANSI STANDARD. The library extensions which 

support parallel programming and other non-ANSI operations are 

also grouped for programming convenience, for example, func­

tions for sending data down channels are grouped separately 

from those which manipulate semaphores. Similarly, non-ANSI 

functions such as short math functions and low level i/o 

functions are grouped separately. Parallel programming func­

tions are in fact grouped into three files covering process 

handling, channel communication, and semaphore handling. 

Some library functions are implemented as macros, and 

a few are implemented as both functions and macros. The deci­

sion about which to use depends on the programming style and 

personal choice. 

Toolset File Extensions 

The toolset uses a standard set of file extensions to 

identify specific source, intermediate, and object files. 

Certain file extensions are assumed on input, and generated on 

output if extensions are not specified on the command line. 

For example, the compiler assumes the extension .c for the 
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input source file and adds the extension .tco to the output 

file, unless otherwise specified. The adoption of a standard 

system allows file extensions to be omitted on the command 

line and permits host file handling systems to manipulate the 

files. The system forms an integrated whole and is designed to 

reflect the architecture of toolset compilation. The main file 

extensions are listed in Table 5. 

TABLE 5 

TOOLSET FILE EXTENSIONS 

Extension Description 

.btl Bootable code file. 

.c C source files. 

.cfb Configuration data file. 

. cfs Configuration description . 

. lku Linked unit . 

.lnk Linker indirect file. 

.tco Compiled code file. 

Error reporting 

All errors · are reported in a standard format contain­

ing the name of the tool, a severity level, and some explana­

tory text explaining why the error occurred. Errors found in 

files or the file system may also generate a filename and line 

number. For example: 

Warning-icc-prog.c(25) inventing 'extern int foo() ;' 
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Host dependencies 

The ANSI C Toolset can be hosted on several platforms, 

and is designed to blend in as far as possible with each host 

operating system. Source and object code is portable between 

all systems. 

The Toolset is available for the following systems: 

(a) IBM PC and NEC PC running MS-DOS. 

(b) VAX running VMS . 

(c) sun 3 running sunos. 

(d) Sun 4 running sunos. 1 
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CHAPTER IV 

PARALLEL PROCESSING 

Parallel processing is a technique for increasing the 

computation speed for a task, by dividing the algorithm into 

several sub-tasks and allocating multiple processors to 

execute multiple sub-tasks simultaneously. Compared to serial 

systems, parallel systems permit more freedom of expression. 

A foundation in the skills of thinking in parallel is basic to 

the understanding of such systems. 

The following general principles may provide some 

useful guidelines: 

(a) The most obvious approach is to examine a serial 

method and convert it into a procedure that operates on 

composite mathematical objects such as vectors and 

matrices, so that many data are processed simulta­

neously. However, the latest and most efficient serial 

method is not always best suited for such adaptation; 

often an earlier less efficient, serial method already 

possesses a high degree of parallelism, and so is much 

more adaptable to parallel computation. 

(b) It may turn out that an iterative algorithm equivalent 

to a certain non-iterative method possesses a higher 
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degree of parallelism (more independent computations) 

and can be organized systematically on a parallel 

machine. 

(c) The computations may be broken down into smaller units 

and distributed among processors. 

These ideas are discussed in connection with the 

following topics: 

(a) elementary parallel operations, 

(b) matrix multiplication, 

(c) parallel evaluation of arithmetic expressions, 

and 

(d) recursive doubling. 

Elementary Parallel Operations 

The following operations are likely to be available on 

most parallel computers, and will, therefore, be defined: 

(a) Arithmetic operations:+, -, *, + denote term-wise 

addition, subtraction, multiplication, and division 

respectively on matrices and vectors. 

(b) Row and column selection operations: Ai- and A-j denote 

the ith row and jth column of matrix A. 

If, 

A = [~ !] 
( 4-1) 
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then, 

A1• = [l 2] 
(4-2) 

and 

( 4-3) 

(c) Row and column operations: ~rA and ~cA denote the 

row and column vector obtained by summing the rows 

and columns of A, respectively; for example, for 

A as in (b) above, 

LIA = [4 6] 
( 4-4) 

and 

LcA = [~] 
( 4-5) 

(d) Matrix formation operations: r(VlT, ... ,VnT) and 

c(Vl, ... ,Vn) denote those matrices whose rows or 

columns respectively are vectors VlT, ... ,VnT and 

Vl, ... ,Vn, where T denotes transpose. 

(e) Maximum and minimum operations: max A and min A 

denote the maximum and minimum elements of a 

vector or matrix A. 
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(f) Logical operations: AND and OR denote the term­

wise Boolean operations on objects such as 

logical matrices and vectors; for example, for 

logical vectors Mand P: 

MAND P = (Ml, ... ,Mn) AND (Pl, ... ,Pn) 

= (Ml AND Pl, ... ,Mn AND Pn). 

Matrix Multiplication 

Let A and B be matrices of size m x n and n x p 

respectively. In forming the matrix product C = AB with 

elements 

( 4-6) 

there are mnp products aikbkj to be calculated. 

A strategy for forming this product on a parallel 

computer with N > mnp processors will be considered. 

The matrix C = AB has mp entries; each is the sum of 

products of n pairs of numbers; and the total number of scalar 

multiplications is mnp. Since N > mnp, all multiplications can 

be performed with a single application of *, by multiple 

positioning of data entries, as 

t 

[A BlTf m t[BlT. 
BlT- BlT-

,l. ,l. 

+- np • +- np • 

Where BiT- denotes the ith row of BT. 
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The p successive copies of A are placed in adjacent 

positions and columns of B are placed horizontally and 

repeated m times. Various additions must be made, and the sums 

assigned to correct positions in C. In general there are mp 

results in the result matrix, and each entry consists of n 

numbers. 

Parallel Evaluation of Arithmetic Expressions 

Arithmetic expressions are central to any type of 

computation, and therefore, it is important to consider their 

evaluation on a parallel machine. 

An arithmetic expression is built up from variables 

x 1 , ••• ,xn by means of the operations of addition, subtraction, 

multiplication, and division. Two expressions are equivalent 

if they take the . same value for every assignment of values to 

the variables. 

On a parallel computer, the evaluation of an arithme­

tic expression Eis based on the selection of an equivalent 

expression a for which several operations can be carried out 

simultaneously. 

Consider, 

(4-7) 
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The order of evaluation of (4-7) on a serial computer 

may be indicated by 

E = ( ( ( ( X 1 , X 2 ) + X 3 ) , X 4 ) + X 5 ) 

( 4-8) 

The equivalent 

( 4-9) 

suitable for parallel computation, is evaluated as 

(4-10) 

where the rule is that all the inner brackets are computed at 

step 1, all the next brackets at step 2, and so on. The serial 

and parallel evaluations using E and a respectively are shown 

in figures 4.1 and 4.2. In serial computation, the operations 

are carried out sequentially, leading to expression E as a 

result, as in Figure 4.1. In the parallel case (figure 4.2), 

at step t=l, the products x1x2 and x3x4 are computed simulta­

neously; at step t=2, the product x 1x2 • x4 and the sum x3x4+x5 

are computed simultaneously; finally, at step t=3, the sum is 

computed to produce a. 

We can compare the serial and parallel evaluations as 

follows: 

Let 

t = number of parallel or serial steps, 

p = number of processors used, 



X 1.X2 

x 1.x2+x3 

ex 1.x2+x3).x4 

E = ex 1.x2+x3).x4+x5 

Fig. 4.1. Serial Evaluation 

STEP 1 

STEP 2 

STEP 3 a= x I .x2 .x4+x3.x4+x5 

Fig. 4.2. Parallel Evaluation 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

5 
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s = total number of operations performed by 

the algorithm. 
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In Table 6 the values of (t,p,s) are displayed for the 

two cases. Although the number of parallel steps is one less 

than the number of serial steps, the total number of indi­

vidual operations is increased by one in the parallel compu­

tation. This example thus underlines the connection between 

optimizing the use of processors, which may otherwise lie 

idle, and minimizing the total number of steps. 

TABLE 6 

COMPARISON OF SERIAL AND PARALLEL EVALUATION 

serial evaluation, E Parallel evaluation, a 

t:4 3 

p:1 2 

s:4 5 

Recursive Doubling 

If o is an associative operation on pairs of mathemat­

ical objects (numbers, vectors, matrices, etc.), thus 

(aOb} Oc = aO(bOc} 
( 4-11) 

then the "product" 

(4-12) 

I 

I' 
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is uniquely defined, independent of the bracketing; for 

example, 

(4-13) 

The left-hand side represents the natural way of cal­

culating the product; the right-hand side is an alternative 

method, such that on a parallel machine the operations in the 

brackets can be carried out simultaneously, as in Figure 4.3. 

Computations within each level are performed in paral­

lel, and (in general) if the size of the set of objects is n, 

then the result is produced in log2n ~teps. This is the basic 

idea behind recursive doubling, whereby the total computation 

is repeatedly divided into two seperate computations of equal 

complexity that can be executed in parallel. The natural means 

of carrying out these operations is to use a binary intercon­

nection of processors. If we take 23 = 8 numbers then the 

calculations may be arranged as shown in Figure 4.4, where 

each of the processors, not necessarily distinct, Pl, ... ,P7 

performs an associative operation 0 on distinct pairs of 

objects chosen from a 1, ••• , a8 • 

At step 1, P4: a 1oa2 , store result as x,' 

Ps: a 3oa4 , store result as Xz' 

P6: a 5oa6 , store result as X3, 

P7: a 7oa8 , store result as X4• 
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STEP 2 

Fig. 4.3. Recursive Doubling on Parallel Computer 

Fig. 4.4 Recursive Doubling for 8 Numbers 



At step 2, P2 : a 1 oa2 , store result as x
5

, 

P3 : a 3oa4 , store result as x6 • 

At step 3, P1 : a 5oa6 , output result. 

49 

Computations within each step are performed simulta­

neously, and in three steps the result appears in P1 • 3 
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CHAPTER V 

CONTROL SYSTEM DESIGN VIA POLE PLACEMENT 

This chapter will present a design method commonly 

called the pole placement or pole assignment technique. This 

method will be applied to control a fourth order system, to be 

presented in Chapter 6. It will be assumed that all states 

variables are measurable and are available for feedback. It 

will be shown that if the system is completely state control­

lable, then poles of the closed-loop system may be placed at 

any desired locations by means of state feedback through an 

appropriate state feedback gain matrix. 

Since the system to be considered in Chapter 6 is not 

type 1, an integral controller will be used. 

Integral Control 

In an integral controller the value of output u(t) is 

changed at a rate proportional to the actuating error signal 

e(t). That is, 

du ( t) - Kie ( t) 
dt 

( 5-1) 



or 

C 

u ( t} = K1f e ( t} dt 
0 

Here Ki is an adjustable constant. 
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(5-2) 

The transfer function of the integral controller is 

U(s) 
E(s) s 

(5-3) 

If the value of e(t) is doubled, then the value ~f u(t) varies 

twice as fast. For zero actuating error, the value of u(t) 

remains stationary. Figure 5.1 shows a block diagram of an 

integral controller. 

£(s) K· I 
U(s) 

s 

Fig. s.1. Integral Controller 

Design ot Type l Servo system Where Plant has no Integrator 

Since the plant has no integrator (type O plant), the 

basic principle of the design of a type 1 servo system is to 
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insert an integrator in the feed forward path between the 

error comparator and the plant as shown in figure 5.2. From 

the diagram, 

x = Ax+Bu 
(5-4) 

Y = ex 
(5-5) 

( 5-6) 

( = r-y = r-Cx 
(5-7) 

Here X = state vector of the plant (n-vector) 

u = control signal ( scalar) 

y = output signal (scalar) 

~ = output of the integrator (state variable of the 

system, scalar) 

r = reference input signal (step function, scalar) 

A = n X n constant matrix 

B = n X 1 constant matrix 

C = 1 X n constant matrix 



r 

Fig. 5.2. Type 1 Servo System 

y 

Ul 
w 
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Assuming that the plant given by equation (5-4) is 

completely state controllable, the transfer function can be 

given by 

(5-8) 

To avoid possibility of the inserted integrator being 

canceled by the zero at the origin of the plant, it is assumed 

that GP(s) has no zero at the origin. 

Assuming that the reference input (step function) is 

applied at t=0, then for t>0 system dynamics can be described 

by 

[x< t)] [ A o][.x( t)] [B] [o] e ( t) = -c O ~ ( t) + 0 u ( t) + 1 r ( t) 
(5-9) 

At steady state we have 

(5-10) 

Since r(t) is a step input, we have r(oo) = r(t) = r (constant) 

for t>0. By subtracting equation (5-10) from equation (5-9), 

we obtain 
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Define 

x(t) -x(oo) =xe(t) 
~ ( t) - ~ ( oo) = ~ e ( t) 
u(t) - u(oo) = ue(t) 

Then equation (5-10) can be written as 

[
x,, ( t) l [ A o][x,, ( t) l [B] 
te(t) = -CO ~e(t) + 0 ue(t) 

where 

Define a new (n + l)th-order error vector e(t) by 

[
.r,,(t)l 

e(t) = ~e(t) 

The equation (5-13) then becomes 

55 

(5-12) 

(5-13) 

(5-14) 

(5-15) 

(5-16) 
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where 

(5-17) 

and equation (5-14)becomes 

u = -xe e 
(5-18) 

where 

(5-19) 

Equations (5-16) and (5-18) describe the dynamics of 

the (n+l)th-order regulator system. If the system defined by 

equation (5-16) is completely state controllable, then, by 

specifying the desired characteristic equation for the system, 

matrix K can be determined by the pole placement technique. 

The steady state values of x(t), ~(t), and u(t) can be found 

as follows: At steady state (t = oo), from equations (5-4) and 

(5-7), we derive the equations (5-20) and (5-21). 

x ( oo) = 0 = Ax ( oo) + Bu ( oo) 
(5-20) 

e (00 ) = 0 = r-Cx(oo) 
(5-21) 
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These two can be combined into one vector-matrix equation: 

If matrix P, defined by 

is of rank n + 1, then its inverse exists and 

[ l [ l-1[ l x(oo) A B 0 

u ( oo) = -c O -r 

Also, from Equation (5-6) we have 

U ( 00) = - Kx ( 00) + k I~ ( 00) 

Therefore, we have 

~ ( 00) = _l_ [u(oo) + ICx(oo)] 
kI 

(5-22) 

(5-23) 

(5-24) 

(5-25) 

(5-26) 

It is noted that, if matrix P given by equation (5-23) 

has rank n+l, then the system defined by equation (5-16) 

becomes completely state controllable. Therefore, if the rank 

I I 
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of matrix P given by Equation (5-23) is n + 1, then the 

solution to this problem can be obtained by the pole placement 

approach. 

The state error equation can be obtained by substitut­

ing equation (5-18) into equation (5-16) . 

. (..... ":'~ e = A - BAJ e 
(5-27) 

If the desired eigenvalues of matrix A - BK (that is, 

the desired close loop poles) are specified as µ.1 , µ.2 , ••• , µ.n+1 , 

then the state feedback gain matrix Kand the integral gain 

constant k 1 can be determined. 5 In the actual design, it is 

necessary to consider several different matrices K (which 

correspond to several different sets of desired eigenvalues) 

and carry out computer simulations to find the one that yields 

the best overall system performance. Then the best one is 

chosen as the matrix K. 
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CHAPTER VI 

APPLICATION DESIGN 

This chapter presents the application of the informa­

tion put forth in the preceding chapters. A program is 

presented that will utilize the pole placement technique to 

control a system. First, a sample problem and its tran_sfer 

function and its state-space equations are presented. Fol­

lowing that, all the variables needed for the pole placement 

method are found. Then the hardware and the software imple­

mentation are discussed. Finally, the graphical results are 

presented. 

Problem 

An inverted pendulum system, as shown in figure 6.1, 

is considered. Here, only the two-dimensional problem is con­

sidered. The inverted pendulum is unstable in that it may fall 

over any time unless a suitable control force is applied. It 

is assumed that the pendulum mass is concentrated at the end 

of the rod as shown in the figure. The rod is assumed to be 

massless. The control force u is applied to the cart. 

In the diagram, e is the angle of the rod from the 

vertical. It is assumed that e is small enough so that it is 
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Fig. 6.1. Inverted Pendulum System 
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reasonable to approximate sin 9 by a, cos 9 by 1, and that 982 

~ o. These assumptions will linearize the systems non-linear 

equations. It is desired to keep the inverted pendulum upright 

as much as possible and control the position of the cart in 

step fashion. 

The values for M, m, and 1 are: 

M = 2 Kg, m = 0.1 Kg, 1 = 0.5 m 

Derivation 

Define state variables X1' Xz, X3, and X4 by: 

X1 = 8 

• 
Xz = 8 

X3 = X 

• 
X4 = X 

8 and X are considered outputs of the system, or 

y = [::] = [!] = [::] 

The state space representation of the system is: 

0 1 0 0 0 
X1 

M+m O 
X1 1 

X2 Ml g 0 0 
X2 Ml 

= + u 
X3 0 0 0 1 X3 0 

X4 m 0 0 0 X4 1 --g 
M M 

( 6-1) 



and 

After 

0 0 

0 1 

substituting the 

0 1 

20.601 0 
A = 

0 0 

-0.4905 0 
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(6-2) 

numerical values: 

0 0 0 

0 0 -1 
C = [~ 

0 0 ~] I B = 
0 1 0 0 1 

0 0 0.5 

Using the pole placement method outlined in chapter V, 

the following values for Kand k 1 are determined. 

K= [-157.6336 - 35.3733 -56.0652 -36 . 7466] 

kI = -50. 9684 

These values were used as input to the program. 

Hardware Setup 

After considering both the cost and program efficiency 

it was decided that four TB00 transputers would be used. They 
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were arranged in a loop as shown in figure 6.2. The links were 

connected as follows: 

(a) Link O of the master processor was connected to the 

host (IBM PC) for input and output. 

(b) Link 2 of processorl was connected to link 1 of pro­

cessor2. 

(c) Link 2 of processor2 was connected to link 1 of 

processor3. 

(d) Link 3 of processor3 was connected to link 3 of pro­

cessorl to complete the loop. 

Software 

Software consisted of three parts: 

(a) A batch file to run all the different tools. 

(b) The configuration file to describe the hardware 

software relationship to be used by the configure tool. 

(c) The four programs, comprising the control software, 

which were placed on the four transputers. 

Batch File 

First, all the four c programs were compiled, using 

ice, for the T800 transputer. Then, all the four compiled pro­

grams were linked, using ilink with the appropriate libraries. 

It is important to note that the program thesl.c had to be 

linked with the startup.lnk library. This was done because 

this program would reside on the master processor and would 

need to interact with the host for input and output. The other 
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three programs were linked with the reduced library because 

they only needed interprocessor communication. 

Following this, the config tool was run on the 

configuration description. This would check for any irregu­

larities in the description. Then, icollect tool was run for 

the marriage of software and hardware description. Finally, 

iserver tool was run to start the simultaneous execution of 

the four programs. 

configuration Description 

The first part of the configuration file thes. cfs 

describes the hardware. This includes the memory available on 

each transputer and the hard link connection information. 

The software description starts with the information 

about the memory requirements of each module and the software 

channels that it would use for communication with the host as 

well as with the programs residing on other transputers. Then 

there is a description of how the software channels are 

connected to each other. Following that, each module is 

assigned the actual program that it would be using. 

Finally, there is the marriage between hardware and 

software, where it is specified that which program will reside 

on which transputer. 

Control Software 

Of the four programs, thesl and thes4 did the actual 

computation while thes2 and thes3 acted as buffers so that 
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idle time was minimized for the master processor and pro­

cessor3. This was done to take advantage of parallel 

processing where the overall run-time is reduced due to 

computation load being shared over multiple 

processors. 

Program thesl was solely responsible for input and 

output since it resided on the master processor which had 

access to the host input and output devices. During input, if 

at all possible, processor3 was kept busy in some other 

calculation. 

The actual solution to the problem was done by an 

improvised version of the Runge-Kutta method. The computations 

were shared by the master processor and processorl. 

All the results were saved on a disk resident on the 

host for possible graphing at a later time. It should be noted 

that this version of C does not have graphics capabilities. 

Results 

The reference input to the plant was 0.5. From 

figure 6. 2 it can be seen that the state that was to be 

controlled (x3 (t)) reached 0.5 in less than 3 seconds. 

Moreover, the behavior in the transient region is accep­

table. 

Another point to note is that a dry run (that is, 

without printing the output) of this program ran more than 

twice as fast on the transputer system as compared to a 

similar program run on the IBM 486. 

, I 
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Conclusion 

The transputer environment brings parallel computing 

within the realms of college research. It provides great 

flexibility in the sense that parallel programs can first be 

tested on a single transputer before committing oneself to 

hardware. Once the hardware needed is decided, it is fairly 

inexpensive to set up small networks in a PC environment. 

Another great advantage is flexibility in forming 

networks. The four serial links allow several ways in which 

transputers can be connected together, depending on the 

application. 

The INMOS C TOOLSET brings the flexibility of the C 

language together with the power of parallel computing. The 

other parallel programming languages such as Occam are very 

rigid in their construction and are very cumbersome to use. 

The incorporation of data communication statements in the 

toolset takes the hassle out the normal serial communication. 

The transputer itself takes care of any clashes in timing. 

One drawback in the transputer is the speed of the 

serial links. The link speeds are very high, but they still 

compromise the virtual parallelism that is supposed to exist 

in parallel programming. A portion of time that is saved by 

parallel execution is lost when a process is waiting for the 

completion of data transfer. This problem is specially evident 

in transfers that involve large matrices. One possible 

solution could be the use of parallel links instead of the 

serial links by INMOS in the future. 



69 

Another drawback is the way the toolset is set up. It 

should be on a par with other packages available today, such 

as Borland TURBO C. Running the tools from the operating 

system seems very primitive after having worked with much more 

advanced systems. 

Finally, the literature available on both hardware and 

software leaves a lot to be desired. The information is very 

sketchy and there is a profound lack of examples. This, 

however, is quite understandable since this is a fairly new 

system. 
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Recommendations 

It takes considerable amount of time to learn to 

program in a parallel environment. It is recommended that 

anyone willing to do further research on this subject should 

consult this thesis, as well as that of Mr. S. V. Chala, in 

order to cut down the amount of time needed to learn to use 

the INMOS C or Occam Toolsets as well as getting used to 

programming in a parallel multiprocessor environment. 

A good follow up on this thesis would be the use of a 

multitransputer system in an actual control process where a 

very high sampling rate is required. The maximum clock speed 

available on a single T800 transputer is 35 MHz. A network of 

transputers sampling the same signal could deliver sampling 

rates not attainable by any other means. If it were an em­

bedded system containing no calls to the host system, the 

performance could be improved even further. 
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APPENDIX 

Software Used in the Thesis 
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Batch File 

This file consists of all the commands that were 

needed to build the program. It is much easier to have the 

commands in a batch file, rather than run them individually. 

The batch file can be edited any time. The contents of the 

batch file are given below: 

ice thesl.c /t800 

ice thes2.c /t800 

ice thes3.c /t800 

ice thes4.c /t800 

ilink thesl.tco /t800 /f startup.lnk 

ilink thes2.tco /t800 /f startrd.lnk 

ilink thes3.tco /t800 /f startrd.lnk 

ilink thes4.tco /t800 /f startrd.lnk 

icconf thes.cfs 

icollect thes.cfb 

iserver /sb thes.btl /se 

Configuration File 

The configuration file, thes.cfs, contains the 

description that will be needed by the icconf tool. This 

description is written in a C like language. It contains the 

hardware description, the software description, the placement 

of software channels on hard-links, and the placement of 

software programs on individual processors. 



The file contents are given below: 

/* Hardware Description*/ 

T800 (memory= 2M) master_processor; 

T800 (memory= lM) mult_processorl; 

T800 (memory= lM) mult processor2; 

T800 (memory= lM) mult_processor3; 

connect master_processor.link[O], host; 
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connect master_processor.link[2], mult_processorl.link[l]; 

connect mult_processorl.link[2], mutt_processor2.link[l]; 

connect mult_processor2.link[2], mult_processor3.link[lJ; 

connect mult_processor3.link[3], master_processor.link[3J; 

/* Software description*/ 

process (stacksize = 400k, heapsize = 400K, 

interface (input in, output out, input frommultl, output 

tomultl, input frommult3, output tomult3)) master; 

process (stacksize = 400k, heapsize = 400k, 

interface (input frommaster, output tomaster, 

input frommult2, output tomult2)) multl; 

process (stacksize = 400k, heapsize = 400k, 

interface (input frommultl, output tomultl, 

input frommult3, output tomult3)) mult2; 

process (stacksize = 20k, heapsize = lOk, 

interface (input frommult2, output tomult2, 

input frommaster, output tomaster)) mult3; 

input from_host; 

output to_host; 

connect master.in, from_host; 
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connect master.out, to_host; 

connect master.frommultl, multl.tomaster; 

connect master.tomultl, multl.frommaster; 

connect multl.frommult2, mult2.tomultl; 

connect multl.tomult2, mult2.frommultl; 

connect mult2.frommult3, mult3.tomult2; 

connect mult2.tomult3, mult3.frommult2; 

connect mult3.frommaster, master.tomult3; 

connect mult3.tomaster, master.frommult3; 

use "thesl.lku" for master; 

use "thes2.lku" for multl; 

use "thes3.lku" for mult2; 

use "thes4.lku" for mult3; 

/* Module Placement*/ 

place master on master_processor; 

place multl on mult_processorl; 

place mult2 on mult_processor2; 

place mult3 on mult_processor3; 

place to host on host; -
place from host on host; . 

Control Software 
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The control software consisted of four programs, one 

for each transputer. Thesl. c and Thes4. c did the actual 

calculation using the Runge-Kutta method, while Thes2.c and 

Thes3.c acted as buffer programs to minimize processor idle 

time. The listing of each of the programs is given below. 



Thesl.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <misc.h> 

#include <channel.h> 

#include <time.h> 

#define CLEAR "\x1B[2J" 

double MAT2[4][4],MAT4[4],X[4]; 

int NUMVAR,NUMU; 

double funcl(int EQNUM) 

/* Calculates (A-BK)X + BKiG */ 

{ 

} 

double k; 

int count; 

k=O; 

for (count=O;count<=NUMVAR-l;count++) 

k=k+MAT2[EQNUM][count]*X[count]; 

k=k+MAT4 [ EQNUM] ; 

return k; 

int main(int argc, char* argv[J) 

{ 

Channel *tomultl, *frommultl; 

Channel *tomult3, *frommult3; 

int i, j, k, N; 

double a, b, h, t; 

double Kl[4], K2[4], K3[4], K4[4); 
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double A [ 4] [ 4] , B [ 4] [ 4] , K [ 4] [ 4] , Ki [ 4] [ 4] , G [ 4] ; 

double MAT5[4],MAT6[4],U[4]; 

FILE *stream; 

tomultl= (Channel*) get_param(4); 

frommultl= (Channel*) get param(J); 

tomult3= (Channel*) get_param(6); 

frommult3= (Channel*) get_param(5); 

/**OPEN DATA FILE FOR GRAPH**/ 

if ((stream= fopen( 11 odeser.dat 11 , 11 w 11 ))==NULL) 

{ 

} 

printf( 11 Could not open file"); 

abort(); 

/*****************************/ 

/* GET DATA */ 

printf(CLEAR); 

printf( 11 Enter starting point: 11 ); 

scanf("%lf 11 ,&a); 

printf("Enter ending point: 11 ); 

scanf ( 11 %lf 11 , &b) ; 

printf( 11 Enter number of intervals: 11 ); 

scanf ( 11 %d 11 , &N) ; 

printf( 11 Enter system order: 11 ); 

scanf( 11 %d 11 ,&NUMVAR); 

printf( 11 Enter number of inputs(<=%d): 11 ,NUMVAR); 

scanf ( 11 %d 11 , &NUMU); 

Chanoutint(tomult3,NUMVAR); 
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Chanoutint(tornult3,NUMU); 

printf (CLEAR) ; 

for (i=O;i<=NUMVAR-l;i++) 

{ 

} 

printf("Enter initial condition for X%d: ",i+l); 

scanf("%lf",&X[i]); 

printf (CLEAR) ; 

printf("\nA Matrix\n"); 

for (i=O;i<=NUMVAR-l;i++) 

{ 

for(j=O;j<=NUMVAR-l;j++) 

{ 

} 

printf("\nA[%d] [%d]: 11 ,i+l,j+l); 

/* READ A MATRIX*/ 

scanf("%lf",&A[i] [j]); 

} 

printf(CLEAR); 

printf("\nB Matrix\n"); 

for (i=O;i<=NUMVAR-l;i++) 

{ 

for(j=O;j<=NUMU-l;j++) 

{ 
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} 

printf( 11 \nB[%d] [%d]: 11 ,i+l,j+l); 

/* READ B MATRIX*/ 

scanf( 11 %lf 11 ,&B[i] [j]); 

} 

printf ( CLEAR) ; 

printf( 11 \nK Matrix\n 11
); 

for (i=0;i<=NUMU-l;i++) 

{ 

for(j=0;j<=NUMVAR-l;j++) 

{ 

} 

printf( 11 \nK[%d] [%d]: 11
, i+l,j+l); 

/* READ K MATRIX*/ 

scanf( 11 %lf 11
, &K[i] [j]); 

} 

Chanout(tomult3, (void*) A,16*sizeof(double)); 

ChanOut(tomult3, (void*) B,16*sizeof(double)); 

Chanout(tomult3, (void*) K,16*sizeof(double)); 

printf(CLEAR); 

printf( 11 \nKi Matrix\n 11
); 

for (i=O;i<=NUMU-l;i++) 

{ 

for(j=0;j<=NUMU-l;j++) 

{ 

printf ( 11 \nKi [ %d] [ %d]: 11
, i+l, j+l) ; 

/* READ Ki MATRIX*/ 
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scanf("%lf",&Ki[i] [j]); 

} 

printf ( CLEAR) ; 

printf("\nG Matrix\n"); 

for (i=O;i<=NUMU-l;i++) 

{ 

} 

printf("\nG[%d]: 11 ,i+l); /* READ G MATRIX*/ 

scanf("%lf",&G[i]); 

/*****************************/ 

for (i=O;i<=NUMU-l;i++) 

{ 

MAT5[i]=O; 

for (j=O;j<=NUMU-l;j++) 

/* MAT5=KiG */ 

MAT5[iJ=MAT5[i]+Ki[iJ[j]*G[jJ; 

} 

for (i=O;i<=NUMVAR-l;i++) 

{ 

} 

MAT4[i]=O; 

for (k=O;k<=NUMU-l;k++) 

/* MAT4=BKiG */ 

MAT4[i]=MAT4[i]+B[i][k]*MAT5[k]; 

Chanout(tomultl, (void*) MAT4,4*sizeof(double)); 

Chanout(tomultJ, (void*) MAT4,4*sizeof(double)); 

Chanin(frommultJ, (void*) MAT2,16*sizeof(double)); 
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I* 

for(i=O;i<=NUMVAR-l;i++) 

{ 

for(j=O;j<=NUMVAR-l;j++) 

} 

printf( 11 A-BK[%d] [%d]=%f 11 ,i+l,j+l,MAT2[i] [j]); 

printf( 11 \n 11
); 

*I 

h=(b-a)/N; 

t=a; 

printf(CLEAR); 

printf( 11 t=%4.2f 11 ,t); 

for (i=O;i<=NUMVAR-l;i++) 

printf( 11 X[%d]=%6.3f 11 ,i+l,X[i]); 

for (i=O;i<=NUMU-l;i++) 

printf( 11 U[%d]=%6.3f 11 ,i+l,U[i]); 

printf ( 11 \n 11
) ; 

fprintf(stream, 11 %.3f, 11 ,t); 

for (i=O;i<=NUMVAR-l;i++) 

fprintf ( stream, 11 % . 3 f, 11
, X [ i]) ; 

for (i=O;i<=NUMU-l;i++) 

fprintf (stream, 11 % . 3 f, 11
, U [ i] ) ; 

fprintf(stream, 11 \n 11
); 

for (i=l;i<=N;i++) 

{ 

for (j=O;j<=NUMVAR-l;j++) 

Kl[j]=funcl(j)*h; 
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for (j=O;j<=NUMVAR-l;j++) 

K2(j]=funcl(j)*h; 

for (j=O;j<=NUMVAR-l;j++) 

K3[j]=funcl(j)*h; 

for (j=O;j<=NUMVAR-l;j++) 

K4[j]=funcl{j)*h; 

for (j=O;j<=NUMVAR-l;j++) 

X[j]=X[j]+(Kl[j]+2*K2(j]+2*K3(j]+K4[j])/6; 

for {j=O;j<=NUMU-l;j++) 

{ 

} 

MAT6[j]=O; 

for (k=O;k<=NUMVAR-l;k++) 

MAT6[j]=MAT6[j]-K[j] [k]*X[k]; 

/* MAT6=-KX */ 

U(j]=MAT5[j]+MAT6[jJ; 

/* U=-KX+KiG */ 

t=a+i*h; 

printf("t=%4.2f ",t); 

for {j=O;j<=NUMVAR-l;j++) 

printf("X[%d]=%6.3f ",j+l,X[j]); 

for {j=O;j<=NUMU-l;j++) 

printf("U[%d]=%6.3f 11 ,j+l,U[j]); 

printf("\n"); 

fprintf ( stream, 11 %. 3 f, ", t) ; 

for {j=O;j<=NUMVAR-l;j++) 

fprintf (stream,"%. 3f, 11 , X[j J); 
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for (j=O;j<=NUMU-l;j++) 

fprintf (stream,"%. 3f, 11 , U[j J); 

fprintf (stream, "\n"); 

} 

exit terrninate(EXIT SUCCESS}; - -

} 

Thes2.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <misc.h> 

#include <channel.h> 

#include <time.h> 

double MAT2[4][4], MAT4[4]; 

int NUMVAR, NUMU; 

int main(int argc, char* argv[J) 

{ 

Channel *tomaster, *frommaster; 

Channel *tomult2, *frommult2; 

tomaster= (Channel*) get param(2}; 

frommaster= (Channel*) get_param(l}; 

tomult2= (Channel*) get param(4); 

frommult2= (Channel*) get_param(3}; 

Chanin(frommult2, (void*) MAT2, 16*sizeof(double)); 
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Chanin(frornrnaster, (void*) MAT4, 4*sizeof(double)); 

} 

#include <stdio.h> 

#include <stdlib.h> 

#include <rnisc.h> 

#include <channel.h> 

#include <tirne.h> 

double MAT2[4][4],MAT4[4]; 

int NUMVAR, NUMU; 

Thes3.c 

int rnain(int argc, char* argv[]) 

{ 

Channel *tornultl, *frornrnultl; 

Channel *tornult3, *frornrnult3; 

tomultl= (Channel*) get pararn(2); 

fromrnultl= (Channel*) get_pararn(l); 

tomult3= (Channel*) get_param(4); 

fromrnult3= (Channel*) get_param(3); 

NUMVAR=Chaninint(frornrnult3); 

NUMU=Chaninint(frornrnult3); 

Chanin(frornrnult3, (void*) MAT2,16*sizeof(double)); 

Chanout(tornultl, (void*) MAT2,16*sizeof(double)); 

Chanin(frornrnult3, (void*) MAT4,4*sizeof(double)); 

} 
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Thes4.c 

#include <stdio.h> 

#include <stdlib.h> 

#include <rnisc.h> 

#include <channel.h> 

#include <tirne.h> 

double A[4] [4] ,B[4] [4] ,K[4] [4] ,MAT1[4] [4] ,MAT2[4] [4], 

MAT4[4J; 

int i, j, k, NUMVAR, NUMU; 

int rnain(int argc, char* argv[J) 

{ 

Channel *tornult2, *frornrnult2; 

Channel *tornaster, *frornrnaster; 

tornult2= (Channel*) get pararn(2); 

frornrnult2= (Channel*) get pararn(l); 

tornaster= (Channel*) get_pararn(4); 

frornrnaster= (Channel*) get pararn(3); 

NUMVAR=Chaninint(frornrnaster); 

NUMU=Chaninint(frornrnaster); 

ChanOutint(tornult2,NUMVAR); 

ChanOutint(tornult2,NUMU); 

Chanin(frornrnaster, (void*) A,16*sizeof(double)); 

Chanin(frornrnaster, (void*) B,16*sizeof(double)); 

Chanin(frornrnaster, (void*) K,16*sizeof(double)); 

for (i=0;i<=NUMVAR-l;i++) 

{ 

for (j=0;j<=NUMVAR-l;j++) 
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} 

{ 

MATl[i] [j ]=O; 

/* MAT2=A-BK */ 

} 

for (k=O;k<=NUMU-l;k++) 

MATl[i] [j]=MATl[i] [j]+B[i] [k]*K[k] [j]; 

MAT2[i] [j]=A[i] [j]-MATl[i] [j]; 

Chanout(tomult2, (void*) MAT2,16*sizeof(double)); 

Chanin(frommaster, (void*) MAT4,4*sizeof(double)); 

Chanout(tomult2, (void*) MAT4,4*sizeof(double)); 

Chanout(tomaster, (void*) MAT2,16*sizeof(double)); 

} 
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