
STUDY OF PARALLEL COMPUTING IN A TRANSPUTER BASED ENVIRONMENT

USING INMOS C TOOLSET

by

Tariq Asrar Alvi

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in Engineering

in the

Electrical Engineering

Program

S~P~ I I /7-o /97__
Date Advisor

:S ~ m-U~tsb~
Dean of the Graduate School

YOUNGSTOWN STATE UNIVERSITY

December, 1992

ABSTRACT

Y-10-'/
rJ>

ii

STUDY OF PARALLEL COMPUTING IN A TRANSPUTER BASED ENVIRONMENT

USING INMOS C TOOLSET

Tariq Asrar Alvi

Master of Science in Engineering

Youngstown State University, 1992

This thesis builds upon the thesis work. done by Mr. S. V.

Chala, who simulated a control process on a transputer network

using the INMOS Occam Toolset. Here, the hardware and software

aspects of parallel processing are presented, as well as their

application in a control problem, using the pole placement

technique. The hardware used is a network of T800 transputers

and the supporting hardware, manufactured by the INMOS corpo­

ration. The software is the INMOS C TOOLSET, which incorpo­

rates a full ANSI C compiler that also supports parallel

processing.

Comparison is made between the serial and parallel

versions of the same program. The parallel version of the

simulation program is found to be faster than the serial

version.

iii

ACKNOWLEDGEMENTS

Most of all, the author would like to thank Dr. Dilip K.

Singh for initiating the study of transputer-based parallel

processing at Youngstown State University. The author's

sincere thanks are also due to Dr. s. R. Pansino for his

guidance as the advisor.

The author sincerely wishes to thank Mr. S. V. Chala for

lending a hand in setting up the hardware, and Ms. V. Kotwal

for helping with the analysis of the control problem. The

author would also like to thank all the friends from all over

the world using Net-News, who offered great advice when he was

learning the TOOLSET.

iv

TABLE OF CONTENTS

PAGE

ABSTRACT • • • . • • • • • . • • • . • . • • . . • • • • • • • . • • • . . . ii

ACKNOWLEDGEMENTS . iii

TABLE OF CONTENTS . iv

LIST OF FIGURES . vi

LIST OF TABLES . vii

CHAPTER

I . OVERVIEW . 1

II.

III.

IV.

Transputers

Transputers and c

HARDWARE DESCRIPTION

IMS TB O O ••.•••••• · •••••..•••...•.••.••...

TRAM

TRAM Motherboard

ANS I C TOOLS ET•......•........•...

1

5

10

10

19

21

25

Features of the Toolset 26

Toolset Summary.......................... 28

Program Development Using the Toolset .. .

PARALLEL PROCESSING

32

39

Elementary Parallel Operations......... 40

Matrix Multiplication.................. 42

v.

Parallel Evaluation
Expressions

Recursive Doubling

CONTROL SYSTEM
PLACEMENT

DESIGN

Integral Control

VI. APPLICATION DESIGN

Problem

Derivation

Hardware Setup

Software

Results

Conclusion

Recommendations

APPENDIX

Batch File

Configuration File

Control Software

REFERENCES

V

of Arithmetic
43

46

VIA POLE
50

50

59

59

61

62

63

66

68

70

71

71

71

74

86

FIGURE

1.1

1.2

1. 3

2.1

2.2

2.3

2.4

3.1

4.1

4.2

4.3

4.4

5.1

5.2

6.1

6.2

6.3

LIST OF FIGURES

Transputer Architecture

Transputer Networks

Parallel Programming Model

IMS T800 Block Diagram •...•.................

Schematic Diagram of a Size 1 TRAM

Schematic Diagram of IMS B403

Block Diagram of IMS B008

Steps in Development of a Program

Serial Evaluation

Parallel Evaluation ...•.....................

Recursive Doubling on Parallel Computer

Recursive Doubling for 8 Numbers

Integral Controller

Type 1 Servo System

Inverted Pendulum System

Hardware Setup

Response Curve for x3 (t)

vi

PAGE

3

4

7

12

20

22

23

34

45

45

48

48

51

53

60

64

67

TABLE

1

2

3

4

5

6

LIST OF TABLES

Floating Point Operation Times for IMS T8OO ...

Speed Variation in IMS T8OO•.........

Data Rates for Each Link Speed

Summary of Tools Used in the Project

Toolset File Extensions

Comparison of Serial and Parallel Evaluation ..

vii

PAGE

14

16

18

29

37

46

1

CHAPTER I

OVERVIEW

This chapter introduces transputers and parallel

processing. All details relevant to this thesis will be

provided in the succeeding chapters.

Parallel processing is a powerful way of increasing

system performance. The combination of hardware parallel

support and a compiler package, which makes the hardware fea­

tures easily accessible from software, makes the transputer

and the Toolset powerful vehicle for the development of para­

llel applications.

Transputers

Transputers are high-performance microprocessors that

support parallel processing through on-chip hardware. They can

be connected by their serial links in application specific

ways and can be used as the building blocks for complex para­

llel processing systems.

The transputer is a complete microcomputer on a single

chip. It contains the hardware support for processor communi­

cations, a very fast (single cycle) on-chip memory, and a

programmable memory interface that allows external memory to

2

be added with minimal supporting logic. Figure 1.1 shows the

generalized architecture of the IMS T4 family of transputers.

Multitransputer systems

Multitransputer systems can be built very simply. The

four high-speed links allow transputers to be connected to

each other in arrays, trees, and many other configurations.

The circuitry to drive the links is all on the transputer chip

and only two wires are needed to connect a pair of trans­

puters. Some possible arrangements of transputers are illus­

trated in Figure 1.2.

Links

Transputer links provide a communication and synchro­

nization path between processors, allow memory to be examined

directly by debugging programs, and permit programs to be loa­

ded onto whole networks of transputers via a single transputer

link. Each individual transputer also supports communication

between parallel processes through a system of internal links,

implemented as words in memory.

Hardware Parallel support

Each transputer has a highly efficient built-in run­

time scheduler for processes running in parallel on the same

transputer and supports channel communication through single

words in memory. Processes waiting for input or output, or

waiting on a timer, consume no CPU resources, and process

3

Processor

Unk Input
On-chip lnterfaoe Output

RAM
Link Input

lnterfaoe Output

Link Input
lnterlaoe Output

Link Input
Interlace Output

Memory interlace

Fig. 1.1. Transputer Architecture

4

Linked processors Pipeline

Tree structure Square array

Fig. 1.2. Transputer Networks

5

context switching time can be as little as one microsecond.

The communication links between processors operate in para­

llel with the processing unit and can transfer data simul­

taneously on all links without the intervention of the CPU.

Transputer Products

There is a complete family of transputer devices: 32-

bit and 16-bit processors, a peripheral control processor, a

link switch, and a parallel link adaptor. A wide range of

transputer programming boards is supplied by INMOS and other

vendors for several hosts. These boards can be used for:

(a) Developing and debugging transputer software.

(b) Improving system performance (as accelerator boards).

(c) Loading software onto embedded systems.

(d) Building specific transputer networks. 1

Transputers and C

The ANSI C Toolset has been designed to reflect the

parallel processing model of communicating sequential pro­

cesses (CSP). The inherent flexibility of the C language, the

capacity to mix code from different languages, and the ability

to use the parallel features of the transputer, make the Tool­

set a powerful tool for programming parallel systems. 2

Programming Model

The parallel programming model consists of a number of

independent processes executing simultaneously and communica-

6

ting through channels. A process can be built from any number

of other parallel processes, so that an entire software system

can be described as a hierarchy of intercommunicating parallel

processes. This model is consistent with many modern software

design methods.

Communication between processes is synchronized. When

data is passed between two processes the output process does

not proceed until the input process is ready. Buffered commu­

nication and multiplexing can be achieved by inserting a

specific buffer or multiplexing process between the two

processes. Library functions are provided for the input and

output of data on channels. Figure 1.3 illustrates the main

elements of the programming model. The figure shows that

modules can be made up of any number of sub-modules. The

arrows represent the direction of communication between

modules.

Real Time Programming

The parallel features of the transputer provide direct

support for real time programming. The key features are listed

below:

(a) Direct and efficient implementation of parallel pro­

cesses in hardware.

(b) Prioritization of parallel processes.

7

Fig. 1.3. Parallel Programming Model

(c) The ability to implement software interrupts as high

priority processes.

(d) Easy programming of software timers, allowing close

control of timing and non-busy polling.

8

(e) Placement of variables at specific addresses in memory­

mapped devices.

Program Development

The compiler and its supporting tools run under stan­

dard operating systems, either on the host itself or on a

transputer board attached to the host, and can be used in

conjunction with existing text-editing software and source

control systems. For this reason no editor is provided with

the Toolset.

Software Design

The software designer can use ANSI C to specify the

components of a system in terms of communicating processes.

The overall design can be directly expressed in the parallel

constructs of the language. Common modules can be collected

into libraries for the purpose of code sharing within prog­

ramming teams.

Programming

Code for single transputers is linked using the linker

tool and loadable programs are generated using the collector

tool. For multitransputer systems the collector tool reads and

9

processes a configuration data file created by the configurer

tool, while for single transputer programs the collector adds

bootstrap code for a single processor. Single processor boot­

strapping by the collector is controlled by a command line

option. Software processes and channels are allocated using

the configuration language and loadable code ready for

distribution on the network is generated using the configurer.

Debugging

Programs for multitransputer systems can be debugged

at the symbolic level using the network debugger that allows

a halted program to be analyzed in terms of its source code.

A low level debugging environment using direct memory display,

instruction disassembly, and processor data is also provided.

Breakpoint debugging allows programs to be executed interac­

tively. Post-mortem debugging allows stopped programs to be

debugged from the contents of the transputers' memory. The

debugger inserts no additional code into the program, but

rather writes the data in a description file. This guarantees

that the code generated when debugging is disabled will run

the way it was originally designed to run. 1

10

CHAPTER II

HARDWARE DESCRIPTION

This chapter will discuss the hardware used in the

thesis. The following hardware was used:

(a) IMS T800 Transputer

(b) IMS B403 TRAM (Transputer Module)

(c) IMS B008 TRAM Motherboard

IMS T800

The IMS T800 transputer is a 32-bit CMOS microcomputer

with a 64-bit floating point unit and graphics support. It has

4 Kbytes of on-chip RAM for high-speed processing, a configur­

able memory interface, and four standard INMOS communication

links. The instruction set achieves efficient implementation

of high-level languages and provides direct support to the

parallel programming model when using either a single trans­

puter or a network. The transputer is designed to implement

the Occam language but also supports other languages such as

C, Fortran, and Pascal.

The processor speed of a device can be pin-selected in

stages from 17.5 MHz up to the maximum allowed for the part.

A device running at 30 MHz achieves an instruction throughput

11

of 15 MIPS. The high performance arithmetic and floating point

unit enables the T800 to achieve 2.25 Mflops at 30 MHz. For

convenience of description, the IMS T800 operation is split

into the basic blocks (Figure 2.1) described below.

Processor

The 32-bit processor contains instruction processing

logic, instruction and work pointers, and an operand register.

It directly accesses the high-speed, 4 Kbyte on-chip memory,

which can store data or programs. Where larger amounts of

memory or programs in ROM are required, the processor has

access to 4 Gbytes of memory via the external memory interface

(EMI).

Registers

The design of the Transputer processor exploits the

availability of fast on-chip memory by having only six regis­

ters that are used in the execution of a sequential process.

The small number of registers, together with the simplicity of

the instruction set, enables the processor to have relatively

simple (and fast) data-paths and control logic. The six regis­

ters are:

{a) The workspace pointer, which points to an area of

storage where local variables are kept.

{b) The instruction pointer, which points to the next

instruction to be executed.

vcc
GNO

CapPlus
CapMlnus

Ruel
Analyu

Errorln
Error

BootFromROU
Clocklll

ProcSpud
Seltct0· 2

ProcClocllOut
notMemS0-4

no1MtmWr80·3
notMtmRd
notMemRI

Memw,,1
MemConlig

l.4emRtQ
MemG,~nltd

Sysltm
Serw1cts

Timers

4 Kbylli
Of

On-cll,p
RAM

E 11ern1I
lhmory
in1trfact

FIoa1,ng Po,nl UM

)

32 bil
ProctUOI

Link
LinkSptclal
Unk0Sptclal

Serv,cu ~::::::::=:=::::=_...- Llnk123Speclal

l.ri
ln1trfac1

l.ri
lnttrlac,

l.n
lnttrlac,

l.ri

Llnkln0
llnkOul0

Llnkln1
LlnkOut1

linkln2
llnkOut2

llnkln3
lnttrtact LlnkOut3

.----,.._ EventReq
I Ewtnl ~ £vt!'ll.lell

MtmA02-l1
Mtmno1RfO1
Mtmno1WrO0

Fig. 2.1. IMS T800 Block Diagram

12

I

'I
I
I

I

(c) The operand register, used in the formation of

instruction operands.

(d) The A, B, and C registers, which form an evaluation

stack.

13

A, B, and C are sources and destinations for most

arithmetic and logical operations. Loading a value into the

stack pushes B into C, and A into B, before loading A. Sto­

ring a value from A, pops B into A and C into B. The use of a

stack removes the need for instructions to re-specify the

location of their operands. Statistics gathered from a large

number. of programs show that three registers provide an

effective balance between code compactness and implementation

complexity.

Floating Point Unit (FPU)

The 64-bi t FPU provides single and double length

arithmetic to floating point standard (ANSI-IEEE 754-1985).

It is able to perform floating point arithmetic in parallel

with the CPU, sustaining in excess of 2.25 Mflops on a 30 MHz

device. All data communication between memory and the FPU

occurs under control of the CPU.

The FPU consists of a microcoded computing engine with

a three deep floating point evaluation stack for manipulation

of floating point numbers. These three stack registers are FA,

FB, and FC, each of which can hold either a 32-bit or 64-bit

data; and an associated flag, set when -a floating point value

is loaded.

,I

14

The FPU has been designed to operate on both single

length (32-bit) and double length (64-bit) floating point num­

bers, and returns results which fully conform to the ANSI-IEEE

754-1985 floating point arithmetic standard. Denormalized num­

bers are fully supported in the hardware. All rounding modes

defined by the standard are implemented. The basic addition,

subtraction, multiplication and division are performed by

single instructions. The floating point operation times for

the IMS T800 are illustrated in Table 1.

TABLE 1

FLOATING POINT OPERATION TIMES FOR IMS T800

TS00-20 TS00-30

Operation Single Double single Double
length length length length

add 350 ns 350 ns 233 ns 233 ns

subtract 350 ns 350 ns 233 ns 233 ns

multiply 550 1000 ns 367 ns 667 ns ns

divide 850 ns 1600 ns 567 ns 1067 ns

Timers

The transputer has two 32-bit timer clocks. The timers

provide accurate process timing, allowing processes to de­

schedule themselves until a specific time.

One timer is accessible only to high priority pro­

cesses and is incremented every microsecond, cycling com-

15

pletely in approximately 4295 milliseconds. The other is

accessible only to low priority processes and is incremented

every 64 microseconds, giving exactly 15625 cycles in one

second. It has a full period of approximately 76 hours.

system Services

System services include all the necessary logic to

initialize and sustain operation of the device. They also

include error handli~g and analysis facilities.

The pins shown in Figure 2 .1 are described below.

Power is supplied to the device via VCC and GND pins. CapPlus

and CapMinus are connected externally by a low leakage, low

inductance, 1 µF capacitor for the internally derived power

supply for the internal clocks. Reset is assertive high and

the falling edge initializes the transputer, triggers the

memory configuration sequence and starts the bootstrap rou­

tine. Analyze will halt the transputer at the next deschedu­

ling point if it is taken high while the transputer is

running. Errorin and Error, together, indicate that an error

was detected. An internal error can be caused, for example, by ·

arithmetic overflow, divide by zero, array bounds violation,

or software setting the flag directly. The error pin carries

the OR'ed output of the internal error flag and the error in­

put. BootFromROM allows the transputer to be externally boot­

strapped when connected to high (e.g., to VCC). Clockin is the

standard clock input supplied by the user. High frequency in­

ternal clocks are derived from Clockin and it must be derived

16

from a crystal oscillator, since stability is important.

ProcSpeedSelect0-2 pins are used to vary the processor speed

in discrete steps as shown in Table 2.

TABLE 2

SPEED VARIATION IN IMS T800

Proc Proc Proc Processor Processor
Speed Speed Speed Clock cycle
Select2 Selectl Selecto Speed MHz Time ns Notes

0 0 0 20.0 50.0

0 0 1 22.5 44.4

0 1 0 25.0 40.0

0 1 1 30.0 33.3

1 0 0 35.0 28.6

1 0 1 Invalid

1 1 0 17.5 57.1

1 1 1 Invalid

Memory

The IMS T800 has 4 Kbytes of on-chip RAM (static memo­

ry) for high rates of data throughput. Each internal memory

access takes one processor cycle. The transputer can also

access 4 Gbytes of external memory space. Internal and ex­

ternal memory are part of the same 1 inear address space.

Internal memory starts at the most negative address

80000000 and extends to 80000FFF. User memory begins at

80000070; this location is given the name MemStart. External

17

memory space starts at 80001000 and extends up through

00000000 to 7FFFFFFF.

External Memory Interface

The external memory interface (EMI) allows access to

a 32-bit address space, supporting dynamic and static RAM as

well as ROM and EPROM.

Link Interface(s)

Four identical INMOS bi-directional serial links pro­

vide synchronized communication among the processors and with

the outside world. Each link comprises an input channel and an

output channel. A link between two transputers is implemented

by connecting a link interface on one transputer to a link in­

terface on the other. Every byte of data sent on a link is

acknowledged on the input of the same link; thus each signal

line carries both data and control information.

The quiescent state of a link output is low. Each data

byte is transmitted as a high start-bit, followed by another

high bit, followed by eight data bits, followed by a low stop­

bit. The least significant bit of data is transmitted first.

After transmitting a data byte, the sender waits for the ack­

nowledge, which consists of a high start-bit, followed by a

zero-bit. The acknowledge signifies both that a process was

able to receive the acknowledged data-byte and that the

receiving link is able to receive another byte. The sending

18

link reschedules the sending process only after the acknow­

ledge for the final byte of the message has been received.

Link speeds can be set by LinkSpecial, Link0Special,

and Link123Special. Link 0 speed can be set independently.

Table 3 shows uni-directional and bi-directional data rates in

Kbytes/second for each link speed. LinknSpecial is to be read

as Link0Special when selecting link 0 speed and as Link123-

Special for the others. Data rates are quoted for a transputer

using internal memory, and will be affected by a factor depen­

ding on the number of external memory accesses and the length

of the external memory cycle.

Link
Special

0

0

1

1

TABLE 3

DATA RATES FOR EACH LINK SPEED

Kbytes/sec

Linkn
Special Mbits/sec Uni

0 10 910

1 5 450

0 10 910

1 20 1740

Event

Bi

1250

670

1250

2350

EventReq and EventAck provide an asynchronous hand­

shake interface between an external event and an internal pro­

cess. When an external event takes EventReq high, the external

event channel (additional to the external link channels) is

made ready to communicate with a process. When both the event

19

channel and the process are ready, the processor takes

EventAck high and the process, if waiting, is scheduled.

EventAck is removed after EventReq goes low.

TRAMs are small, cost-effective sub-assemblies of

transputers and other circuitry (often RAM) with a simple but

efficient 16-signal-interface standard profiled in modular

sizes. The interface accommodates 4 serial transputer links

for interprocessor communication, power supply, and system

signals.

This standard allows the TRAMs to be mounted onto a

variety of motherboards which provide specific host interface

hardware. Each motherboard can connect to a number of TRAMs

and provides facilities for configuring a network of TRAMs for

the user specified topology, under software control. A soft­

ware package is provided for motherboards which allows this

task to be undertaken with the minimum effort.

All TRAMs are based upon a single module profile with

a defined pin layout. This single format is known as size 1.

The schematic figure of the size 1 TRAM is shown in Figure

2 . 2 .

Larger TRAMs are simply a multiple of the size 1

footprint. Thus, a size 2 TRAM occupies two of the sockets

into which a size 1 TRAM will plug. In order to avoid confu­

sion, discussions about motherboards always refer to "slots".

A slot is one position into which a size 1 TRAM may be

20

plugged. Thus, a motherboard which has ten slots may have ten

size 1 TRAMs, or five size 2 TRAMs, or two size 4 and two size

1 TRAMs, or one size 8 TRAM, or even six size 1 TRAMs and one

size 4 TRAM. The common pins that are available from the TRAMs

are described below.

0 Link2out Link3in 0

0 Link2in Link3out 0

0 vcc GND 0

0 Linklout Link0in 0

0 Linklin Link0out 0

0 LinkSpeedA notError 0

0 LinkSpeedB Reset 0

0 Clockin (5 MHz) Analyze 0

Fig. 2.2. Schematic Diagram of a "size 1 11 TRAM

standard TRAM Pins

.
Transputers, and therefore TRAMs;- Lequire three sig-

nals to be connected to them to allow them to initialize, and

debug so that they can signal an error. These signals are Re­

set for resetting, Analyze to allow debugging, and NotError to

signal an error on a transputer or a TRAM. These three signals

are collectively known as system services. The system services

for a TRAM are treated as a single signal conceptually, al­

though they are actually three signals.

IMS B403

The IMS 8403 is a very compact TRAM providing 2 Mbytes

of memory, but still providing maximum performance capability.

Th' ·
is is achieved by extending the principle of fast on-chip

21

RAM to include 32 Kbytes of static RAM, which cycles as fast

as possible. So, any technique which puts the most frequently

accessed memory locations near the bottom of memory will speed

up the processing. This TRAM is the most popular board for

running INMOS' Toolset.

The IMS B4 03 packs 11 square cm of silicon onto a

board the size of a credit card. Four IMS B403 1 s fit onto the

IMS BOOB in a single slot of the IBM PC. The schematic of the

IMS B403 appears in Figure 2.3.

TRAM Motherboard

A TRAM motherboard provides a number of slots into

which TRAMs can be- plugged. Each of these slots provides the

necessary connections to pow~r, clock, reset signals and the

transputer links. The motherboard provides -a· method of connec­

ting TRAMs together and may also include special circuitry to

provide an interface to something other than a transputer

system.

IMS BOOS

The IMS BOOB is a motherboard designed to plug into a

PC or PC/AT bus. The board has ten TRAM slots, an interface to

the PC bus, and a programmable link switch to allow a network

of TRAMs to be set up under software control. Figure 2.4 pro­

Vides a functional block diagram of the IMS BOOB.

The interface to the PC provides a single transputer

link d an a system services port. This allows software running

Reset

Analyse
NotE rror ___,......,,

L1nk0

Link 1

L1nk2

L1nk3

Term inated
links

TSOO

2 Mbytes
DRAM

32 Kbytes

SAAM

~
• SSReset

I • SSAnalyse
:- notSSError_ ____ __,

Subsystem
PAL

Fig. 2.3. Schematic Diagram of IMS B403

I\)

I\)

1

18 M PC bu,

Up
(Resel etc.)

[;~~]

I

onlelfup(
logic
-,--

OMA
logic -.--

Palchlinkl <=>-1- . . . ~l....!J 12 I
I (P,~ead

2 I

0 3 0

3
0 o, - ----...J

Con log Up IMS
Pa lc hL ,nkO C'), · Jo- . . . • '\. i I T222

I.. - - - .)

JP1
ISMHzl
~

3

; JP2

Rese1. ele
10 TRAM& 1 10 t
and IMS T222

2

reset
loge

Slot
9

Fig. 2.4. Block Diagram of IMS B008

Oown (Res.I etc .)
Subsyslem
(Reset etc.)

Pipe TA~

Links

ConligOown

rv
w

,

--
24

on the PC to reset, analyze, communicate with, and monitor the

error flag of a transputer network connected to or on the IMS

BOOS. Data can be transferred to and from the link interface

using programmed I/O or a DMA transfer mechanism, allowing

data transfer to go on without processor intervention. In­

terrupts can be generated on link events, on error being

asserted, or at the end of a DMA transfer, freeing the

processor from polling the IMS BOOS to detect these events.

The TRAM slots on the IMS BOOS are connected into a

pipeline using two of the four links from each slot. The

remaining two links from slots 1 to 9 and link 3 from slot o,

are connected to the programmable link-switch which allows

these links to be connected together via software. Control and

configuration (programming) of the link switch is performed by

a 16-bit transputer. 3

PC Bus Interface

The IMS BOOS has been designed to work when plugged

into either a PC/AT bus slot or a PC bus slot. The bus

interface on the IMS BOOS has four functions to perform:

(a) Convert the S-bit parallel transfers on the PC bus to

serial link transfers, and vice versa.

(b) Provide a system services port.

(c) Control DMA transfers.

(d) Generate interrupts on link interface events, on the

assertion of transputer error, or on DMA transfer end.

25

CHAPTER III

ANSI C TOOLSET

This chapter gives an overview of the ANSI C Toolset.

It briefly describes each tool, outlines its purpose, and

explains how the tools are used together to develop, config­

ure, load, and run transputer programs. The chapter also

introduces the run-time library, outlines the standards for

error reporting, and summarizes host-specific characteristics.

The ANSI C Toolset is a software cross-development

system for transputers, hosted on several systems, among them

the PC/MS-DOS system. It consists of a full ANSI C compiler

with parallel support, a multilanguage linker, a configurer

for mapping programs onto transputer networks, a code collec­

tor tool for generating directly loadable files, and a program

loader and host server tool. The Toolset also includes a fully

interactive debugger, program building tools, and EPROM prog­

ramming tools. Together, the compiler and its supporting tools

form an integrated environment for the development of programs

on transputers and transputer-based hardware.

26

Features of the Toolset

The ANSI C Toolset is an integrated development sys­

tem for transputer programs incorporating a new standard ob­

ject file format, a C-like configuration language, a compre­

hensive run-time library, and support for parallel programming

based on the communicating process model. It represents a

broad enhancement of the approach to parallel programming in

C and introduces standards for the generation of object code

for transputers and transputer-based hardware.

Standard Object File Format

The ANSI C compiler generates object code in an inter­

mediate form known as TCOFF (Transputer Common Object File

Format). The adoption of this format introduces a standard for

the development of future transputer compilers and enables

code generated by compatible compilers to be freel~ mixed in

the same system.

Configuration Language

The configuration language allows software and hard­

ware networks to be described separately and joined by a

software-to-hardware description. The language is a simple

declarative language that has the syntactic flavor of C and

can be used on any size network. A full range of high-level

language constructs including replicative and conditional

statements make it easy to explore different configurations

before committing to hardware.

I
I

I'

--
27

Run-time Library

A comprehensive run-time library is supplied with the

Toolset providing full ANSI C support with additional support

for parallel programming. The library of parallel functions

provides channel-based communication. An optimized library

with no server support is available for embedded code.

Parallel Programming

The abstract model used in ANSI C reflects the

Communicating Sequential Process {CSP) model of parallel

programming. The model maps easily onto the transputer to

provide efficient parallel code. Software is broken down into

independent processes which exchange data and synchronize

their activity via channels. Processes can be mapped onto one,

several, or many transputers using the configuration language.

Transputer Targets

The ANSI C Toolset can be used to write programs tar­

geted at IMS M212, T212, T222, T225, T400, T414, T425, T800,

T801, and T805 transputers. Code can also be written to run on

a group of processor types by compiling for a transputer

class.

28

Toolset Summary

The tools that were used are summarized in Table 4

and are briefly described here.

compiling the Code

ANSI C Compiler - ice

The compiler ice is an ANSI standard C compiler with

additional support for parallel programming. It conforms fully

to ANSI standard XJ.159 1989.

The ANSI standard for C formalizes the original imple­

mentation of C as described in "The C programming Language" by

Kernighan and Ritchie. It further extends it to include a run­

time library, some language extensions already in common

usage, and many other improvements designed to standardize the

language.

ANSI C supports parallel programming through a series

of C structures and a comprehensive set of process handling

and channel communication functions. Some useful non-ANSI

functions are also provided in the run-time library.

The compiler produces code for specific processor

types or transputer classes. The compiled object file must be

linked, configured, and made executable before the program can

be run. The executable file consists of code which can be

directly loaded onto a transputer network.

Tool

ice

icconf

icollect

ilink

iserver

TABLE 4

SUMMARY OF TOOLS USED IN THE PROJECT

Description

The ANSI C compiler. A full ANSI standard

compiler with parallel support. Generates ob­

ject code for specific transputer targets.

The configurer. Analyzes the configuration

description and produces a configuration data

file for the code collector.

The code collector. Collects linked units

into a single file for loading on a trans­

puter network. Takes as input a configuration

data file or a single linked unit.

The Toolset linker. Resolves external refer­

ences and links separately compiled code into

a second file.

The host file server. Loads programs onto

transputer hardware and provides runtime

access to the host.

29

30

Generating Executable Code

Three tools are used in sequence (or two for a single

transputer program) to generate the loadable file from

compiled object code. They are described below.

Linker - ilink

The Toolset linker, ilink, links separately compiled

modules and libraries into a single code unit, resolving ex­

ternal references and generating a linked unit. Linked units

can be used in configuration descriptions to map software onto

specific arrangements of transputers, or can be bootstrapped

for a single transputer using icollect.

Library modules are linked with the program by the C

start-up file which must be specified on the linker command

line. The correct start-up file must be specified for the

transputer type.

Configurer - icconf

The configurer, icconf, generates configuration infor­

mation for transputer networks from a configuration descrip­

tion written in the transputer configuration language. The

tool prepares the program for configuring on a specific

arrangement of transputers by analyzing the configuration

description and producing a data file for the code collector

tool.

-
31

Code Collector - icollect

The code collector tool, icollect, takes the data file

generated by icconf and generates a single file that can be

loaded and run on a transputer network. The file contains

bootable code modules for all processors on the network, along

with distribution information that is used by the loader to

place the modules on each processor.

icollect is also used to generate bootable code for

single transputer programs from linked units by appending

single transputer bootstrap code. The single transputer mode

of operation is selected by a command-line option.

Loading and Running Programs

Bootable code for single transputers and transputer

networks is loaded onto the transputer hardware using the host

file server tool, iserver, which both loads the program and

starts the run-time environment that supports interaction with

the host.

Host File Server - iserver

The host file server, iserver, is a combined host

server and loader tool. When invoked to load a program it both

loads the code onto the transputer hardware and provides run­

time services on the host (such as program input/output) for

the transputer program.

32

Program Development Using the Toolset

The ANSI C Toolset is a cross-development system for

transputers. Creation of executable code for a transputer or

transputer network takes several stages involving the use of

specific tools at each stage. Program development is supported

by tools which provide facilities for debugging and creating

object code libraries.

The main stages in developing a program and the tools

used are listed below:

(a) Write the source

Source code can be written using any ASCII editor. Code

can be divided between any number of source files.

Source code must conform to ANSI standard. Source code

syntax can be checked prior to compilation by invoking

the compiler with the check option.

(b) Compile the source

Each source file is compiled using the ANSI C

compiler, ice, to produce one or more compiled object

files. Each file must be compiled for the same trans­

puter type or for a transputer class covering several

compatible types.

(c) Link the compiled units

The compiled source files are linked together using

ilink. This generates a single file called a linked

unit in which all external references are resolved. The

linking operation also links the library modules

--
33

required by the program, which are selected by trans­

puter type from the compiled library code.

(d) Configure the program

For multitransputer programs a configuration descrip­

tion must be constructed in order to assign linked

units to specific nodes on the transputer network and

link them by channel variables. The description is pro­

cessed by the configurer tool, icconf, to produce a

configuration data file. Single transputer pro.grams can

also be configured.

(e) Generate an executable file

The configuration data file generated by icconf is read

by the code collector, icollect, which generates a

single executable file for a transputer network. The

same tool is used to directly generate bootable files

for single transputer programs from linked units.

(f) Load and run the program

The executable or bootable file is loaded or run on the

transputer network down a host link using iserver. Once

loaded, code begins to execute immediately. The server

tool also starts up and maintains the environment that

supports the programs communication with the host.

Figure 3. 1 illustrates the development in terms of the

architecture of the toolset. The default file extensions

assumed and generated by the tools are used to represent

source and target files.

>------------~icconf

, --
' ' .h :

' .

ice

. -. , '
: .Ink:
' ,

ilink ieollect

Fig. 3.1. Program Development Using the Toolset

w
.i:,.

,

35

Run-time Library

The run-time library is a library of compiled C func­

tions that perform common programming operations. The library

contains the complete set of ANSI standard functions plus

functions to support parallel programming and some non-ANSI

extensions.

The parallel functions are divided into three func­

tional groups: process management, channel communication, and

semaphore handling. The non-ANSI extensions include a set of

i/o primitives, a set of short math functions, functions for

retrieving information about the host system, and debugging

functions.

A reduced library is available for linking with pro­

grams that do not use i/o or i/o dependent functions, for

example, code for embedded systems or code that only commu­

nicates with other processes on the network and has no direct

interaction with the host. The reduced library contains no

calls to the iserver.

Header Files

Library functions, like all C functions, must be de­

clared before use. Declarations of library functions with

associated constants, macros, and definitions are held in a

number of library header files to ensure that function

declarations are of the correct form and that supporting

macros and constants are included. Header files are given the

extension .h.

--
36

T~e library header files contain groups of routines

collected together according to common usage. For example,

routines that control standard i/o operations are grouped in

the file stdio.h. Most header files also contain definitions

of constants and macros that are associated with the func­

tions' use.

Many of the header files and function groupings are

defined in the ANSI STANDARD. The library extensions which

support parallel programming and other non-ANSI operations are

also grouped for programming convenience, for example, func­

tions for sending data down channels are grouped separately

from those which manipulate semaphores. Similarly, non-ANSI

functions such as short math functions and low level i/o

functions are grouped separately. Parallel programming func­

tions are in fact grouped into three files covering process

handling, channel communication, and semaphore handling.

Some library functions are implemented as macros, and

a few are implemented as both functions and macros. The deci­

sion about which to use depends on the programming style and

personal choice.

Toolset File Extensions

The toolset uses a standard set of file extensions to

identify specific source, intermediate, and object files.

Certain file extensions are assumed on input, and generated on

output if extensions are not specified on the command line.

For example, the compiler assumes the extension .c for the

37

input source file and adds the extension .tco to the output

file, unless otherwise specified. The adoption of a standard

system allows file extensions to be omitted on the command

line and permits host file handling systems to manipulate the

files. The system forms an integrated whole and is designed to

reflect the architecture of toolset compilation. The main file

extensions are listed in Table 5.

TABLE 5

TOOLSET FILE EXTENSIONS

Extension Description

.btl Bootable code file.

.c C source files.

.cfb Configuration data file.

. cfs Configuration description .

. lku Linked unit .

.lnk Linker indirect file.

.tco Compiled code file.

Error reporting

All errors · are reported in a standard format contain­

ing the name of the tool, a severity level, and some explana­

tory text explaining why the error occurred. Errors found in

files or the file system may also generate a filename and line

number. For example:

Warning-icc-prog.c(25) inventing 'extern int foo() ;'

38

Host dependencies

The ANSI C Toolset can be hosted on several platforms,

and is designed to blend in as far as possible with each host

operating system. Source and object code is portable between

all systems.

The Toolset is available for the following systems:

(a) IBM PC and NEC PC running MS-DOS.

(b) VAX running VMS .

(c) sun 3 running sunos.

(d) Sun 4 running sunos. 1

--
39

CHAPTER IV

PARALLEL PROCESSING

Parallel processing is a technique for increasing the

computation speed for a task, by dividing the algorithm into

several sub-tasks and allocating multiple processors to

execute multiple sub-tasks simultaneously. Compared to serial

systems, parallel systems permit more freedom of expression.

A foundation in the skills of thinking in parallel is basic to

the understanding of such systems.

The following general principles may provide some

useful guidelines:

(a) The most obvious approach is to examine a serial

method and convert it into a procedure that operates on

composite mathematical objects such as vectors and

matrices, so that many data are processed simulta­

neously. However, the latest and most efficient serial

method is not always best suited for such adaptation;

often an earlier less efficient, serial method already

possesses a high degree of parallelism, and so is much

more adaptable to parallel computation.

(b) It may turn out that an iterative algorithm equivalent

to a certain non-iterative method possesses a higher

40

degree of parallelism (more independent computations)

and can be organized systematically on a parallel

machine.

(c) The computations may be broken down into smaller units

and distributed among processors.

These ideas are discussed in connection with the

following topics:

(a) elementary parallel operations,

(b) matrix multiplication,

(c) parallel evaluation of arithmetic expressions,

and

(d) recursive doubling.

Elementary Parallel Operations

The following operations are likely to be available on

most parallel computers, and will, therefore, be defined:

(a) Arithmetic operations:+, -, *, + denote term-wise

addition, subtraction, multiplication, and division

respectively on matrices and vectors.

(b) Row and column selection operations: Ai- and A-j denote

the ith row and jth column of matrix A.

If,

A = [~ !]
(4-1)

-
41

then,

A1• = [l 2]
(4-2)

and

(4-3)

(c) Row and column operations: ~rA and ~cA denote the

row and column vector obtained by summing the rows

and columns of A, respectively; for example, for

A as in (b) above,

LIA = [4 6]
(4-4)

and

LcA = [~]
(4-5)

(d) Matrix formation operations: r(VlT, ... ,VnT) and

c(Vl, ... ,Vn) denote those matrices whose rows or

columns respectively are vectors VlT, ... ,VnT and

Vl, ... ,Vn, where T denotes transpose.

(e) Maximum and minimum operations: max A and min A

denote the maximum and minimum elements of a

vector or matrix A.

42

(f) Logical operations: AND and OR denote the term­

wise Boolean operations on objects such as

logical matrices and vectors; for example, for

logical vectors Mand P:

MAND P = (Ml, ... ,Mn) AND (Pl, ... ,Pn)

= (Ml AND Pl, ... ,Mn AND Pn).

Matrix Multiplication

Let A and B be matrices of size m x n and n x p

respectively. In forming the matrix product C = AB with

elements

(4-6)

there are mnp products aikbkj to be calculated.

A strategy for forming this product on a parallel

computer with N > mnp processors will be considered.

The matrix C = AB has mp entries; each is the sum of

products of n pairs of numbers; and the total number of scalar

multiplications is mnp. Since N > mnp, all multiplications can

be performed with a single application of *, by multiple

positioning of data entries, as

t

[A BlTf m t[BlT.
BlT- BlT-

,l. ,l.

+- np • +- np •

Where BiT- denotes the ith row of BT.

43

The p successive copies of A are placed in adjacent

positions and columns of B are placed horizontally and

repeated m times. Various additions must be made, and the sums

assigned to correct positions in C. In general there are mp

results in the result matrix, and each entry consists of n

numbers.

Parallel Evaluation of Arithmetic Expressions

Arithmetic expressions are central to any type of

computation, and therefore, it is important to consider their

evaluation on a parallel machine.

An arithmetic expression is built up from variables

x 1 , ••• ,xn by means of the operations of addition, subtraction,

multiplication, and division. Two expressions are equivalent

if they take the . same value for every assignment of values to

the variables.

On a parallel computer, the evaluation of an arithme­

tic expression Eis based on the selection of an equivalent

expression a for which several operations can be carried out

simultaneously.

Consider,

(4-7)

44

The order of evaluation of (4-7) on a serial computer

may be indicated by

E = ((((X 1 , X 2) + X 3) , X 4) + X 5)

(4-8)

The equivalent

(4-9)

suitable for parallel computation, is evaluated as

(4-10)

where the rule is that all the inner brackets are computed at

step 1, all the next brackets at step 2, and so on. The serial

and parallel evaluations using E and a respectively are shown

in figures 4.1 and 4.2. In serial computation, the operations

are carried out sequentially, leading to expression E as a

result, as in Figure 4.1. In the parallel case (figure 4.2),

at step t=l, the products x1x2 and x3x4 are computed simulta­

neously; at step t=2, the product x 1x2 • x4 and the sum x3x4+x5

are computed simultaneously; finally, at step t=3, the sum is

computed to produce a.

We can compare the serial and parallel evaluations as

follows:

Let

t = number of parallel or serial steps,

p = number of processors used,

X 1.X2

x 1.x2+x3

ex 1.x2+x3).x4

E = ex 1.x2+x3).x4+x5

Fig. 4.1. Serial Evaluation

STEP 1

STEP 2

STEP 3 a= x I .x2 .x4+x3.x4+x5

Fig. 4.2. Parallel Evaluation

STEP 1

STEP 2

STEP 3

STEP 4

5

45

s = total number of operations performed by

the algorithm.

46

In Table 6 the values of (t,p,s) are displayed for the

two cases. Although the number of parallel steps is one less

than the number of serial steps, the total number of indi­

vidual operations is increased by one in the parallel compu­

tation. This example thus underlines the connection between

optimizing the use of processors, which may otherwise lie

idle, and minimizing the total number of steps.

TABLE 6

COMPARISON OF SERIAL AND PARALLEL EVALUATION

serial evaluation, E Parallel evaluation, a

t:4 3

p:1 2

s:4 5

Recursive Doubling

If o is an associative operation on pairs of mathemat­

ical objects (numbers, vectors, matrices, etc.), thus

(aOb} Oc = aO(bOc}
(4-11)

then the "product"

(4-12)

I

I'

47

is uniquely defined, independent of the bracketing; for

example,

(4-13)

The left-hand side represents the natural way of cal­

culating the product; the right-hand side is an alternative

method, such that on a parallel machine the operations in the

brackets can be carried out simultaneously, as in Figure 4.3.

Computations within each level are performed in paral­

lel, and (in general) if the size of the set of objects is n,

then the result is produced in log2n ~teps. This is the basic

idea behind recursive doubling, whereby the total computation

is repeatedly divided into two seperate computations of equal

complexity that can be executed in parallel. The natural means

of carrying out these operations is to use a binary intercon­

nection of processors. If we take 23 = 8 numbers then the

calculations may be arranged as shown in Figure 4.4, where

each of the processors, not necessarily distinct, Pl, ... ,P7

performs an associative operation 0 on distinct pairs of

objects chosen from a 1, ••• , a8 •

At step 1, P4: a 1oa2 , store result as x,'

Ps: a 3oa4 , store result as Xz'

P6: a 5oa6 , store result as X3,

P7: a 7oa8 , store result as X4•

48

STEP 2

Fig. 4.3. Recursive Doubling on Parallel Computer

Fig. 4.4 Recursive Doubling for 8 Numbers

At step 2, P2 : a 1 oa2 , store result as x
5

,

P3 : a 3oa4 , store result as x6 •

At step 3, P1 : a 5oa6 , output result.

49

Computations within each step are performed simulta­

neously, and in three steps the result appears in P1 • 3

50

CHAPTER V

CONTROL SYSTEM DESIGN VIA POLE PLACEMENT

This chapter will present a design method commonly

called the pole placement or pole assignment technique. This

method will be applied to control a fourth order system, to be

presented in Chapter 6. It will be assumed that all states

variables are measurable and are available for feedback. It

will be shown that if the system is completely state control­

lable, then poles of the closed-loop system may be placed at

any desired locations by means of state feedback through an

appropriate state feedback gain matrix.

Since the system to be considered in Chapter 6 is not

type 1, an integral controller will be used.

Integral Control

In an integral controller the value of output u(t) is

changed at a rate proportional to the actuating error signal

e(t). That is,

du (t) - Kie (t)
dt

(5-1)

or

C

u (t} = K1f e (t} dt
0

Here Ki is an adjustable constant.

51

(5-2)

The transfer function of the integral controller is

U(s)
E(s) s

(5-3)

If the value of e(t) is doubled, then the value ~f u(t) varies

twice as fast. For zero actuating error, the value of u(t)

remains stationary. Figure 5.1 shows a block diagram of an

integral controller.

£(s) K· I
U(s)

s

Fig. s.1. Integral Controller

Design ot Type l Servo system Where Plant has no Integrator

Since the plant has no integrator (type O plant), the

basic principle of the design of a type 1 servo system is to

52

insert an integrator in the feed forward path between the

error comparator and the plant as shown in figure 5.2. From

the diagram,

x = Ax+Bu
(5-4)

Y = ex
(5-5)

(5-6)

(= r-y = r-Cx
(5-7)

Here X = state vector of the plant (n-vector)

u = control signal (scalar)

y = output signal (scalar)

~ = output of the integrator (state variable of the

system, scalar)

r = reference input signal (step function, scalar)

A = n X n constant matrix

B = n X 1 constant matrix

C = 1 X n constant matrix

r

Fig. 5.2. Type 1 Servo System

y

Ul
w

-- 54

Assuming that the plant given by equation (5-4) is

completely state controllable, the transfer function can be

given by

(5-8)

To avoid possibility of the inserted integrator being

canceled by the zero at the origin of the plant, it is assumed

that GP(s) has no zero at the origin.

Assuming that the reference input (step function) is

applied at t=0, then for t>0 system dynamics can be described

by

[x< t)] [A o][.x(t)] [B] [o] e (t) = -c O ~ (t) + 0 u (t) + 1 r (t)
(5-9)

At steady state we have

(5-10)

Since r(t) is a step input, we have r(oo) = r(t) = r (constant)

for t>0. By subtracting equation (5-10) from equation (5-9),

we obtain

--

Define

x(t) -x(oo) =xe(t)
~ (t) - ~ (oo) = ~ e (t)
u(t) - u(oo) = ue(t)

Then equation (5-10) can be written as

[
x,, (t) l [A o][x,, (t) l [B]
te(t) = -CO ~e(t) + 0 ue(t)

where

Define a new (n + l)th-order error vector e(t) by

[
.r,,(t)l

e(t) = ~e(t)

The equation (5-13) then becomes

55

(5-12)

(5-13)

(5-14)

(5-15)

(5-16)

56

where

(5-17)

and equation (5-14)becomes

u = -xe e
(5-18)

where

(5-19)

Equations (5-16) and (5-18) describe the dynamics of

the (n+l)th-order regulator system. If the system defined by

equation (5-16) is completely state controllable, then, by

specifying the desired characteristic equation for the system,

matrix K can be determined by the pole placement technique.

The steady state values of x(t), ~(t), and u(t) can be found

as follows: At steady state (t = oo), from equations (5-4) and

(5-7), we derive the equations (5-20) and (5-21).

x (oo) = 0 = Ax (oo) + Bu (oo)
(5-20)

e (00) = 0 = r-Cx(oo)
(5-21)

57

These two can be combined into one vector-matrix equation:

If matrix P, defined by

is of rank n + 1, then its inverse exists and

[l [l-1[l x(oo) A B 0

u (oo) = -c O -r

Also, from Equation (5-6) we have

U (00) = - Kx (00) + k I~ (00)

Therefore, we have

~ (00) = _l_ [u(oo) + ICx(oo)]
kI

(5-22)

(5-23)

(5-24)

(5-25)

(5-26)

It is noted that, if matrix P given by equation (5-23)

has rank n+l, then the system defined by equation (5-16)

becomes completely state controllable. Therefore, if the rank

I I

-
58

of matrix P given by Equation (5-23) is n + 1, then the

solution to this problem can be obtained by the pole placement

approach.

The state error equation can be obtained by substitut­

ing equation (5-18) into equation (5-16) .

. (..... ":'~ e = A - BAJ e
(5-27)

If the desired eigenvalues of matrix A - BK (that is,

the desired close loop poles) are specified as µ.1 , µ.2 , ••• , µ.n+1 ,

then the state feedback gain matrix Kand the integral gain

constant k 1 can be determined. 5 In the actual design, it is

necessary to consider several different matrices K (which

correspond to several different sets of desired eigenvalues)

and carry out computer simulations to find the one that yields

the best overall system performance. Then the best one is

chosen as the matrix K.

59

CHAPTER VI

APPLICATION DESIGN

This chapter presents the application of the informa­

tion put forth in the preceding chapters. A program is

presented that will utilize the pole placement technique to

control a system. First, a sample problem and its tran_sfer

function and its state-space equations are presented. Fol­

lowing that, all the variables needed for the pole placement

method are found. Then the hardware and the software imple­

mentation are discussed. Finally, the graphical results are

presented.

Problem

An inverted pendulum system, as shown in figure 6.1,

is considered. Here, only the two-dimensional problem is con­

sidered. The inverted pendulum is unstable in that it may fall

over any time unless a suitable control force is applied. It

is assumed that the pendulum mass is concentrated at the end

of the rod as shown in the figure. The rod is assumed to be

massless. The control force u is applied to the cart.

In the diagram, e is the angle of the rod from the

vertical. It is assumed that e is small enough so that it is

60

y

------x __ __,_

2 cos 8

0

M

Fig. 6.1. Inverted Pendulum System

61

reasonable to approximate sin 9 by a, cos 9 by 1, and that 982

~ o. These assumptions will linearize the systems non-linear

equations. It is desired to keep the inverted pendulum upright

as much as possible and control the position of the cart in

step fashion.

The values for M, m, and 1 are:

M = 2 Kg, m = 0.1 Kg, 1 = 0.5 m

Derivation

Define state variables X1' Xz, X3, and X4 by:

X1 = 8

•
Xz = 8

X3 = X

•
X4 = X

8 and X are considered outputs of the system, or

y = [::] = [!] = [::]

The state space representation of the system is:

0 1 0 0 0
X1

M+m O
X1 1

X2 Ml g 0 0
X2 Ml

= + u
X3 0 0 0 1 X3 0

X4 m 0 0 0 X4 1 --g
M M

(6-1)

and

After

0 0

0 1

substituting the

0 1

20.601 0
A =

0 0

-0.4905 0

62

(6-2)

numerical values:

0 0 0

0 0 -1
C = [~

0 0 ~] I B =
0 1 0 0 1

0 0 0.5

Using the pole placement method outlined in chapter V,

the following values for Kand k 1 are determined.

K= [-157.6336 - 35.3733 -56.0652 -36 . 7466]

kI = -50. 9684

These values were used as input to the program.

Hardware Setup

After considering both the cost and program efficiency

it was decided that four TB00 transputers would be used. They

63

were arranged in a loop as shown in figure 6.2. The links were

connected as follows:

(a) Link O of the master processor was connected to the

host (IBM PC) for input and output.

(b) Link 2 of processorl was connected to link 1 of pro­

cessor2.

(c) Link 2 of processor2 was connected to link 1 of

processor3.

(d) Link 3 of processor3 was connected to link 3 of pro­

cessorl to complete the loop.

Software

Software consisted of three parts:

(a) A batch file to run all the different tools.

(b) The configuration file to describe the hardware

software relationship to be used by the configure tool.

(c) The four programs, comprising the control software,

which were placed on the four transputers.

Batch File

First, all the four c programs were compiled, using

ice, for the T800 transputer. Then, all the four compiled pro­

grams were linked, using ilink with the appropriate libraries.

It is important to note that the program thesl.c had to be

linked with the startup.lnk library. This was done because

this program would reside on the master processor and would

need to interact with the host for input and output. The other

To Host

0

master
processor

2 -
3

processorl processor2

1 2 1 2

Fig. 6.2. Hardware Setup

processor3

- 1

3

0\
.i.

65

three programs were linked with the reduced library because

they only needed interprocessor communication.

Following this, the config tool was run on the

configuration description. This would check for any irregu­

larities in the description. Then, icollect tool was run for

the marriage of software and hardware description. Finally,

iserver tool was run to start the simultaneous execution of

the four programs.

configuration Description

The first part of the configuration file thes. cfs

describes the hardware. This includes the memory available on

each transputer and the hard link connection information.

The software description starts with the information

about the memory requirements of each module and the software

channels that it would use for communication with the host as

well as with the programs residing on other transputers. Then

there is a description of how the software channels are

connected to each other. Following that, each module is

assigned the actual program that it would be using.

Finally, there is the marriage between hardware and

software, where it is specified that which program will reside

on which transputer.

Control Software

Of the four programs, thesl and thes4 did the actual

computation while thes2 and thes3 acted as buffers so that

66

idle time was minimized for the master processor and pro­

cessor3. This was done to take advantage of parallel

processing where the overall run-time is reduced due to

computation load being shared over multiple

processors.

Program thesl was solely responsible for input and

output since it resided on the master processor which had

access to the host input and output devices. During input, if

at all possible, processor3 was kept busy in some other

calculation.

The actual solution to the problem was done by an

improvised version of the Runge-Kutta method. The computations

were shared by the master processor and processorl.

All the results were saved on a disk resident on the

host for possible graphing at a later time. It should be noted

that this version of C does not have graphics capabilities.

Results

The reference input to the plant was 0.5. From

figure 6. 2 it can be seen that the state that was to be

controlled (x3 (t)) reached 0.5 in less than 3 seconds.

Moreover, the behavior in the transient region is accep­

table.

Another point to note is that a dry run (that is,

without printing the output) of this program ran more than

twice as fast on the transputer system as compared to a

similar program run on the IBM 486.

, I

0.5

-

0.3 ---M
)(

-

0.

:d
-0.

0

~ '

'

·---·- - --

·-··· · . -- -------

2 4
t (sec)

Fig. 6.3. Response Curve for X:5(t)

I

6

-

--- -

8

0\
..J

68

Conclusion

The transputer environment brings parallel computing

within the realms of college research. It provides great

flexibility in the sense that parallel programs can first be

tested on a single transputer before committing oneself to

hardware. Once the hardware needed is decided, it is fairly

inexpensive to set up small networks in a PC environment.

Another great advantage is flexibility in forming

networks. The four serial links allow several ways in which

transputers can be connected together, depending on the

application.

The INMOS C TOOLSET brings the flexibility of the C

language together with the power of parallel computing. The

other parallel programming languages such as Occam are very

rigid in their construction and are very cumbersome to use.

The incorporation of data communication statements in the

toolset takes the hassle out the normal serial communication.

The transputer itself takes care of any clashes in timing.

One drawback in the transputer is the speed of the

serial links. The link speeds are very high, but they still

compromise the virtual parallelism that is supposed to exist

in parallel programming. A portion of time that is saved by

parallel execution is lost when a process is waiting for the

completion of data transfer. This problem is specially evident

in transfers that involve large matrices. One possible

solution could be the use of parallel links instead of the

serial links by INMOS in the future.

69

Another drawback is the way the toolset is set up. It

should be on a par with other packages available today, such

as Borland TURBO C. Running the tools from the operating

system seems very primitive after having worked with much more

advanced systems.

Finally, the literature available on both hardware and

software leaves a lot to be desired. The information is very

sketchy and there is a profound lack of examples. This,

however, is quite understandable since this is a fairly new

system.

70

Recommendations

It takes considerable amount of time to learn to

program in a parallel environment. It is recommended that

anyone willing to do further research on this subject should

consult this thesis, as well as that of Mr. S. V. Chala, in

order to cut down the amount of time needed to learn to use

the INMOS C or Occam Toolsets as well as getting used to

programming in a parallel multiprocessor environment.

A good follow up on this thesis would be the use of a

multitransputer system in an actual control process where a

very high sampling rate is required. The maximum clock speed

available on a single T800 transputer is 35 MHz. A network of

transputers sampling the same signal could deliver sampling

rates not attainable by any other means. If it were an em­

bedded system containing no calls to the host system, the

performance could be improved even further.

71

APPENDIX

Software Used in the Thesis

72

Batch File

This file consists of all the commands that were

needed to build the program. It is much easier to have the

commands in a batch file, rather than run them individually.

The batch file can be edited any time. The contents of the

batch file are given below:

ice thesl.c /t800

ice thes2.c /t800

ice thes3.c /t800

ice thes4.c /t800

ilink thesl.tco /t800 /f startup.lnk

ilink thes2.tco /t800 /f startrd.lnk

ilink thes3.tco /t800 /f startrd.lnk

ilink thes4.tco /t800 /f startrd.lnk

icconf thes.cfs

icollect thes.cfb

iserver /sb thes.btl /se

Configuration File

The configuration file, thes.cfs, contains the

description that will be needed by the icconf tool. This

description is written in a C like language. It contains the

hardware description, the software description, the placement

of software channels on hard-links, and the placement of

software programs on individual processors.

The file contents are given below:

/* Hardware Description*/

T800 (memory= 2M) master_processor;

T800 (memory= lM) mult_processorl;

T800 (memory= lM) mult processor2;

T800 (memory= lM) mult_processor3;

connect master_processor.link[O], host;

73

connect master_processor.link[2], mult_processorl.link[l];

connect mult_processorl.link[2], mutt_processor2.link[l];

connect mult_processor2.link[2], mult_processor3.link[lJ;

connect mult_processor3.link[3], master_processor.link[3J;

/* Software description*/

process (stacksize = 400k, heapsize = 400K,

interface (input in, output out, input frommultl, output

tomultl, input frommult3, output tomult3)) master;

process (stacksize = 400k, heapsize = 400k,

interface (input frommaster, output tomaster,

input frommult2, output tomult2)) multl;

process (stacksize = 400k, heapsize = 400k,

interface (input frommultl, output tomultl,

input frommult3, output tomult3)) mult2;

process (stacksize = 20k, heapsize = lOk,

interface (input frommult2, output tomult2,

input frommaster, output tomaster)) mult3;

input from_host;

output to_host;

connect master.in, from_host;

connect master.out, to_host;

connect master.frommultl, multl.tomaster;

connect master.tomultl, multl.frommaster;

connect multl.frommult2, mult2.tomultl;

connect multl.tomult2, mult2.frommultl;

connect mult2.frommult3, mult3.tomult2;

connect mult2.tomult3, mult3.frommult2;

connect mult3.frommaster, master.tomult3;

connect mult3.tomaster, master.frommult3;

use "thesl.lku" for master;

use "thes2.lku" for multl;

use "thes3.lku" for mult2;

use "thes4.lku" for mult3;

/* Module Placement*/

place master on master_processor;

place multl on mult_processorl;

place mult2 on mult_processor2;

place mult3 on mult_processor3;

place to host on host; -
place from host on host; .

Control Software

74

The control software consisted of four programs, one

for each transputer. Thesl. c and Thes4. c did the actual

calculation using the Runge-Kutta method, while Thes2.c and

Thes3.c acted as buffer programs to minimize processor idle

time. The listing of each of the programs is given below.

Thesl.c

#include <stdio.h>

#include <stdlib.h>

#include <misc.h>

#include <channel.h>

#include <time.h>

#define CLEAR "\x1B[2J"

double MAT2[4][4],MAT4[4],X[4];

int NUMVAR,NUMU;

double funcl(int EQNUM)

/* Calculates (A-BK)X + BKiG */

{

}

double k;

int count;

k=O;

for (count=O;count<=NUMVAR-l;count++)

k=k+MAT2[EQNUM][count]*X[count];

k=k+MAT4 [EQNUM] ;

return k;

int main(int argc, char* argv[J)

{

Channel *tomultl, *frommultl;

Channel *tomult3, *frommult3;

int i, j, k, N;

double a, b, h, t;

double Kl[4], K2[4], K3[4], K4[4);

75

double A [4] [4] , B [4] [4] , K [4] [4] , Ki [4] [4] , G [4] ;

double MAT5[4],MAT6[4],U[4];

FILE *stream;

tomultl= (Channel*) get_param(4);

frommultl= (Channel*) get param(J);

tomult3= (Channel*) get_param(6);

frommult3= (Channel*) get_param(5);

/**OPEN DATA FILE FOR GRAPH**/

if ((stream= fopen(11 odeser.dat 11 , 11 w 11))==NULL)

{

}

printf(11 Could not open file");

abort();

/*****************************/

/* GET DATA */

printf(CLEAR);

printf(11 Enter starting point: 11);

scanf("%lf 11 ,&a);

printf("Enter ending point: 11);

scanf (11 %lf 11 , &b) ;

printf(11 Enter number of intervals: 11);

scanf (11 %d 11 , &N) ;

printf(11 Enter system order: 11);

scanf(11 %d 11 ,&NUMVAR);

printf(11 Enter number of inputs(<=%d): 11 ,NUMVAR);

scanf (11 %d 11 , &NUMU);

Chanoutint(tomult3,NUMVAR);

76

Chanoutint(tornult3,NUMU);

printf (CLEAR) ;

for (i=O;i<=NUMVAR-l;i++)

{

}

printf("Enter initial condition for X%d: ",i+l);

scanf("%lf",&X[i]);

printf (CLEAR) ;

printf("\nA Matrix\n");

for (i=O;i<=NUMVAR-l;i++)

{

for(j=O;j<=NUMVAR-l;j++)

{

}

printf("\nA[%d] [%d]: 11 ,i+l,j+l);

/* READ A MATRIX*/

scanf("%lf",&A[i] [j]);

}

printf(CLEAR);

printf("\nB Matrix\n");

for (i=O;i<=NUMVAR-l;i++)

{

for(j=O;j<=NUMU-l;j++)

{

77

}

printf(11 \nB[%d] [%d]: 11 ,i+l,j+l);

/* READ B MATRIX*/

scanf(11 %lf 11 ,&B[i] [j]);

}

printf (CLEAR) ;

printf(11 \nK Matrix\n 11
);

for (i=0;i<=NUMU-l;i++)

{

for(j=0;j<=NUMVAR-l;j++)

{

}

printf(11 \nK[%d] [%d]: 11
, i+l,j+l);

/* READ K MATRIX*/

scanf(11 %lf 11
, &K[i] [j]);

}

Chanout(tomult3, (void*) A,16*sizeof(double));

ChanOut(tomult3, (void*) B,16*sizeof(double));

Chanout(tomult3, (void*) K,16*sizeof(double));

printf(CLEAR);

printf(11 \nKi Matrix\n 11
);

for (i=O;i<=NUMU-l;i++)

{

for(j=0;j<=NUMU-l;j++)

{

printf (11 \nKi [%d] [%d]: 11
, i+l, j+l) ;

/* READ Ki MATRIX*/

78

scanf("%lf",&Ki[i] [j]);

}

printf (CLEAR) ;

printf("\nG Matrix\n");

for (i=O;i<=NUMU-l;i++)

{

}

printf("\nG[%d]: 11 ,i+l); /* READ G MATRIX*/

scanf("%lf",&G[i]);

/*****************************/

for (i=O;i<=NUMU-l;i++)

{

MAT5[i]=O;

for (j=O;j<=NUMU-l;j++)

/* MAT5=KiG */

MAT5[iJ=MAT5[i]+Ki[iJ[j]*G[jJ;

}

for (i=O;i<=NUMVAR-l;i++)

{

}

MAT4[i]=O;

for (k=O;k<=NUMU-l;k++)

/* MAT4=BKiG */

MAT4[i]=MAT4[i]+B[i][k]*MAT5[k];

Chanout(tomultl, (void*) MAT4,4*sizeof(double));

Chanout(tomultJ, (void*) MAT4,4*sizeof(double));

Chanin(frommultJ, (void*) MAT2,16*sizeof(double));

79

I*

for(i=O;i<=NUMVAR-l;i++)

{

for(j=O;j<=NUMVAR-l;j++)

}

printf(11 A-BK[%d] [%d]=%f 11 ,i+l,j+l,MAT2[i] [j]);

printf(11 \n 11
);

*I

h=(b-a)/N;

t=a;

printf(CLEAR);

printf(11 t=%4.2f 11 ,t);

for (i=O;i<=NUMVAR-l;i++)

printf(11 X[%d]=%6.3f 11 ,i+l,X[i]);

for (i=O;i<=NUMU-l;i++)

printf(11 U[%d]=%6.3f 11 ,i+l,U[i]);

printf (11 \n 11
) ;

fprintf(stream, 11 %.3f, 11 ,t);

for (i=O;i<=NUMVAR-l;i++)

fprintf (stream, 11 % . 3 f, 11
, X [i]) ;

for (i=O;i<=NUMU-l;i++)

fprintf (stream, 11 % . 3 f, 11
, U [i]) ;

fprintf(stream, 11 \n 11
);

for (i=l;i<=N;i++)

{

for (j=O;j<=NUMVAR-l;j++)

Kl[j]=funcl(j)*h;

80

for (j=O;j<=NUMVAR-l;j++)

K2(j]=funcl(j)*h;

for (j=O;j<=NUMVAR-l;j++)

K3[j]=funcl(j)*h;

for (j=O;j<=NUMVAR-l;j++)

K4[j]=funcl{j)*h;

for (j=O;j<=NUMVAR-l;j++)

X[j]=X[j]+(Kl[j]+2*K2(j]+2*K3(j]+K4[j])/6;

for {j=O;j<=NUMU-l;j++)

{

}

MAT6[j]=O;

for (k=O;k<=NUMVAR-l;k++)

MAT6[j]=MAT6[j]-K[j] [k]*X[k];

/* MAT6=-KX */

U(j]=MAT5[j]+MAT6[jJ;

/* U=-KX+KiG */

t=a+i*h;

printf("t=%4.2f ",t);

for {j=O;j<=NUMVAR-l;j++)

printf("X[%d]=%6.3f ",j+l,X[j]);

for {j=O;j<=NUMU-l;j++)

printf("U[%d]=%6.3f 11 ,j+l,U[j]);

printf("\n");

fprintf (stream, 11 %. 3 f, ", t) ;

for {j=O;j<=NUMVAR-l;j++)

fprintf (stream,"%. 3f, 11 , X[j J);

81

for (j=O;j<=NUMU-l;j++)

fprintf (stream,"%. 3f, 11 , U[j J);

fprintf (stream, "\n");

}

exit terrninate(EXIT SUCCESS}; - -

}

Thes2.c

#include <stdio.h>

#include <stdlib.h>

#include <misc.h>

#include <channel.h>

#include <time.h>

double MAT2[4][4], MAT4[4];

int NUMVAR, NUMU;

int main(int argc, char* argv[J)

{

Channel *tomaster, *frommaster;

Channel *tomult2, *frommult2;

tomaster= (Channel*) get param(2};

frommaster= (Channel*) get_param(l};

tomult2= (Channel*) get param(4);

frommult2= (Channel*) get_param(3};

Chanin(frommult2, (void*) MAT2, 16*sizeof(double));

82

Chanin(frornrnaster, (void*) MAT4, 4*sizeof(double));

}

#include <stdio.h>

#include <stdlib.h>

#include <rnisc.h>

#include <channel.h>

#include <tirne.h>

double MAT2[4][4],MAT4[4];

int NUMVAR, NUMU;

Thes3.c

int rnain(int argc, char* argv[])

{

Channel *tornultl, *frornrnultl;

Channel *tornult3, *frornrnult3;

tomultl= (Channel*) get pararn(2);

fromrnultl= (Channel*) get_pararn(l);

tomult3= (Channel*) get_param(4);

fromrnult3= (Channel*) get_param(3);

NUMVAR=Chaninint(frornrnult3);

NUMU=Chaninint(frornrnult3);

Chanin(frornrnult3, (void*) MAT2,16*sizeof(double));

Chanout(tornultl, (void*) MAT2,16*sizeof(double));

Chanin(frornrnult3, (void*) MAT4,4*sizeof(double));

}

83

Thes4.c

#include <stdio.h>

#include <stdlib.h>

#include <rnisc.h>

#include <channel.h>

#include <tirne.h>

double A[4] [4] ,B[4] [4] ,K[4] [4] ,MAT1[4] [4] ,MAT2[4] [4],

MAT4[4J;

int i, j, k, NUMVAR, NUMU;

int rnain(int argc, char* argv[J)

{

Channel *tornult2, *frornrnult2;

Channel *tornaster, *frornrnaster;

tornult2= (Channel*) get pararn(2);

frornrnult2= (Channel*) get pararn(l);

tornaster= (Channel*) get_pararn(4);

frornrnaster= (Channel*) get pararn(3);

NUMVAR=Chaninint(frornrnaster);

NUMU=Chaninint(frornrnaster);

ChanOutint(tornult2,NUMVAR);

ChanOutint(tornult2,NUMU);

Chanin(frornrnaster, (void*) A,16*sizeof(double));

Chanin(frornrnaster, (void*) B,16*sizeof(double));

Chanin(frornrnaster, (void*) K,16*sizeof(double));

for (i=0;i<=NUMVAR-l;i++)

{

for (j=0;j<=NUMVAR-l;j++)

84

}

{

MATl[i] [j]=O;

/* MAT2=A-BK */

}

for (k=O;k<=NUMU-l;k++)

MATl[i] [j]=MATl[i] [j]+B[i] [k]*K[k] [j];

MAT2[i] [j]=A[i] [j]-MATl[i] [j];

Chanout(tomult2, (void*) MAT2,16*sizeof(double));

Chanin(frommaster, (void*) MAT4,4*sizeof(double));

Chanout(tomult2, (void*) MAT4,4*sizeof(double));

Chanout(tomaster, (void*) MAT2,16*sizeof(double));

}

85

86

REFERENCES

[1] INMOS Limited, ANSI C Toolset User Manual, 1990.

[2] INMOS Limited, ANSI C Toolset Language Reference, 1990.

[3] INMOS Limited, Transputer Reference Manual, 1988.

[4] G. R. Andrews and F. B. Schneider, Concepts and Notations

for Concurrent Programming, ACM Computing Surveys,

Vol. 15, 1983.

[5] Katsuhiko Ogata, Modern Control Engineering, Prentice

Hall, 1990.

