
Limitations of SML in Computational Category

Theory

by

Tod H. Matola

B.S., Youngstown State University (1992)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Master's of Science in Mathematics

at the

YOUNGSTOWN STATE UNIVERSITY

June 1994

Signature of Author /2.J.d.#~
Department of Mathematics

June 5, 1994

Certified by -~µJ.-
Stephen Rodabaugh Ph.D.

Professor of Mathematics
Thesis Supervisor

Certified by -~=~:;\,~--~-
Chairman, Dnent of Mathemaf

Accepted by /1/;;.9./ ~
pJ~r Kasvinsky Pl

Dean, School of Graduate St dies

Limitations of SML in Computational Category Theory

by

Abstract

Tod H. Matola

Submitted to the Department of Mathematics
on June 5, 1994, in partial fulfillment of the

requirements for the degree of
Master's of Science in Mathematics

The main theme of this paper is to provide a basic introduction to the notion of category
theory in computer science. It will include primer sections or chapters on category
theory and functional programming. The category theory tutorial will discuss the basic
concepts of the definition a category, and categorical limits, including the special limits
(products and equalizers). Next, we have the functional programming (FP) tutorial: it
contains a description of functional languages. This chapter also contains a brief history
of FP. The tutorial is then further refined into description of the functional language ML
and providing a ha.sic reference of useful functions and syntax of ML. These primers and
tutorials gives the necessary insight for the final illustration of a categorical proof encoded
in the programming language of SML/NJ (standard meta-language of New Jersey). The
illustration makes use of the constructions and definitions from the tutorial chapters, and
provides a sense of cohesion to the material.

Thesis Supervisor: Stephen Rodabaugh Ph.D.
Title: Professor of Mathematics

Contents

1 Category Theory

1.1 Introduction ..

1.2 Categories: the Basic Definition

2 Functional Programming

2.1 Introduction .

2.2 History ...

2.3 ML Tutorial

2.3.1 Basic Types and Values

2.4 Identifiers and Bindings

3 An illustration of a computational category theory in SML

3.1 Introduction ..

3.2 First Approach

3.2.1 Universal Categorical Constructions .

3.2.2 Limits

3.2.3 Limitations of the First Approach .

3.3 Second Approach

3.3.1 Categorical Datatype

3.3.2 The SML Abstract Datatype: 'a Set

3.3.3 Universal Constructions

11

1

1

2

18

18

20

21

23

27

31

31

33

35

39

42

44

44

45

48

3.3.4 Limits

3.3.5 Limitations of the Second Approach.

A ML Source Code

A.l Auxiliary List Functions

A.2 Types and Functions . .

A.2.1 The Complete Definition of Abstract Datatype 'a Set

A.2.2 FINSET Complete Definition .

A.3 The Limit Code

A.3.1 First Approach

A.3.2 Second Approach

Bibliography

lll

51

55

57

57

59

59

63

63

63

68

74

List of Figures

1-1 Illustration of categorical diagrams

1-2 Illustration of finite category with inclusion as non-identity arrows

1-3 Illustration of equalizer candidate

1-4 An example of a cone of the diagram D

1-5 The limit cone of D

1-6 Diagram of subcase 2.2

1-7 Rewrite of the diagram of subcase 2.2 .

1-8 E the equalizer of D.

IV

8

8

11

12

13

15

16

17

Chapter 1

Category Theory

1.1 Introduction

Category theory is the study of objects and morphisms, includes the algebra of functions

and the objects they operate on. For example, an object of a category could be a set,

a topological space, a group, or a domain or codomain of a function. A morphism of a

category is a model of a changing quantity, a continuous mapping, a homomorphism, or

an action translating an input to an output. So why is this study important? Category

theory gives a formal mechanism of organizing the abstraction of the discipline in question

(mathematics or computer science) to comprehend the disipline's content in a new light.

So, we can use what we have learned in one area and apply it to the less well-known

area (the one we are working with). According to [15], category theory was founded by

Eilenberg and Mac Lane in 1945 as they developed algebraic topology. It has since rapidly

spread throughout many areas of mathematics and is now being applied to computer

science.

A category, as mentioned earlier, is a collection of objects with arrows or morphisms

that act on the objects: for example, sets and functions between sets, or topological

spaces and the continuous mappings between the spaces. If category theory is in essence

the algebra of functions, then the primary mode of operation on the functions will have

1

to be composition. In other words, to be able to express a "complicated" function, with

its domain and codomain in a category it should be possible to express it using only

composition and simpler functions.

If we perceive a computer program as a function and view the function as being built

from many smaller functions, we quickly realize that a formal mechanism for collecting,

classifying, and abstracting these functions could be category-theoretic.

There are several other justifications for the use of category theory in computer sci

ence. The first is that machines are dynamic systems of finite sets of states and we have

functions that take us from state to state, so what better way to organize but with an

algebra. Next, we have the issue of data types and operations on and between the types,

which could be viewed as a large portion of computer programming; in programming, we

have programs, known as compilers, that guarantee that our programs are well-defined

and will stay within the boundaries of type restrictions, as long as they follow the pre

scribed paths of how to get from one type to another. This type checking prevents us

from making mistakes that do not make sense in the real world, so that our programs

behave the way we intended. Programming is also the ability to take a real world event

and translate it into an internalized version that illustrates the real event. Again, we have

a potential application for category theory and its organization, and how it might benefit

us in these translation problems. So we want a formal collection and comprehension of

the syntax, logic and semantics of the computer filtered by category theory.

1.2 Categories: the Basic Definition

Let us formally present the definition of a category C:

Definition 1.2.1. A category c comprises the following data.

1. A collection of objects;

2. A collection of arrows (or morphisms), mappmgs on or actions between the

objects of C;

2

3. The domain of an arrow f is an object assigned to f that describes the source or

inputs off (often denoted dom(f) or f: A - B). The codomain of an arrow f

is an object assigned to f that describes the target or outputs off (often denoted

codom(f) or f: A - B);

4. The composition operator assigns two arrows f and g, with codom(f) = dom(g),

a composition arrow go f: dom(f) - codom(g), satisfying the associative law:

V f : A - B, g : B - C, and h : C - D (with A, B, C and D

all objects of C and not necessarily distinct), ho (go f) =(hog) of;

5. There is a identity arrow for each object A, denoted idA : A - A, that satisfy

the identity law:

VJ: A - B, idB of= f and f o idA = J;

D

Now, that we have a formal definition of a category, we will cite several examples to

illustrate the definition. These are not the only categories in existence just some basic

comprehensible examples that are easily visualized.

Example 1.2.1. The category SET is comprised of the following data:

1. The objects of SET, collectively denoted I SET I, forms the class of all sets. If X

is a set, we write X E I SET I-

2. The morphisms of SET are the functions between sets. If f : X - Y is a

function, we write f E SET(X, Y), or, if X and Y are understood, f E SET.

3. There is a binary operation, composition, denoted o, which generates from

f,g E SET, having codom(f) = dom(g), the morphism go f E SET. This

3

morphism has domain = dom(f) and codomain = codom(g), and is defined by:

(go f)(x) = g(f(x)).

4. The objects, morphisms, and composition of SET satisfy the following axioms:

(a) Associativity: Vf,g, h E SET with codom(f) = dom(g) and

codom(g) = dom(h), ho (go f) =(hog) of.

(b) Identity morphism: VX EI SET I, 3idx E SET(X,X), VJ E SET,

dom(f) = X, Vg E SET, codom(g) = X, f o idx = f and idx o g = g.

D

Example 1.2.2. The category FINSET is similar to SET with one major

difference: SET is complete, FINS ET is only finitely complete. The objects of FINS ET

are finite sets, where all other stipulations are the same as for SET .

D

Next, we will introduce the partial ordered set or poset, a fundamental mathe

matical concept that yields a category similar to the previous examples. It is a common

notion throughout mathematics and logic, and thus is our next example of a category.

Definition 1. 2. 2. Let R be a binary relation on a set X. Then R is a partial

order iff the following hold:

1. R is reflexive (i.e., Vx EX, xRx);

2. R is antisymmetric (i .e., Vx,y EX, xRy and yRx => x = y);

3. R is transitive (i.e., V x, y, z EX, xRy and yRz => xRz).

4

Let R be a partial order, denoted ~. Let X be a set then (X ,R) or (X, <), is called

a partially ordered set.

•

Just as for SET we can define a category based on the notion of the poset, which is

normally denoted POSET and is defined as follows.

Example 1.2.3. The category POSET is comprised of the following data:

1. The objects of POSET , collectively denoted I POSET I, forms the class of all

posets, and we write (X,~) El POSET I-

2. The morphisms of POSET are the order preserving functions between posets.

If f: (X, ~) -+ (Y, ~) is a morphism, we write f E POSET((X, ~), (Y, ~)),

or if (X,~) and (Y,~) are understood, f E POSET.

3. There is a composition operation, denoted o, which is inherited from SET (i.e.,

it can be shown that the composition of monotone maps is again monotone). The

associativity of the composition operator is also inherited from SET .

4. Identity morphism is defined as follows:

Let (X,~) be a poset. Then we clearly see that id: X-+ Xis order preserving.

•

Now that we have the basic definition of a category, and some classic examples of

categories, we will use a discrete example to further re-enforce this definition. It will

actually be an object of an earlier category FINSET. Which will lead to the next topic

categorical diagrams and how they enrich category theory, but first the definition of the

discrete category C.

5

Example 1.2.4. The category c is comprised of the following data:

1. The objects of C:

(a) X = { 1, 2, 3 };

(b) Y = { 4, 5, 6 };

(c) Z = { 7, 8, 9 };

2. The morphisms of Care idx, idy, and idz, together _with the following functions:

f: X-+ Y by

4 if X = 3

f(x) = 5 if X = 1

6 if X = 2

g: Y-+ Z by

7 if X = 5

g(x) = 8 if X = 4

9 if X = 6

h: X-+ Z by

7 if X = 1

h(x) = 8 if X = 3

9 if X = 2

3. Note: Composition can be defined in only one way (i.e., inherited from SET) and

that fog = h. Thus, C satisfies the five parts of our definition of a category.

•

6

Definition 1.2.3. Let C be a category. Diagram is any collection of vertices

and directed edges, consistently labeled with objects and morphisms of C.

D

Definition 1.2.4. Let C be a category. Diagram is said to Commute if for

any two pairs of vertices X and Y, all paths in the diagram from X to Y are equal, in

the sense of that each path in the the diagram determines an arrow and these arrows are

equal in C.

D

Now we turn our attention to the issue of categorical diagrams. These are represen

tations of a category in the form of a directed graph. It is a collection of vertices, which

represent the objects of the category and directed edges, which are the arrows of the cat

egory. It is important that this graph accurately represent the domains and codomains

of the particular arrow, so if there is a function from A to B the graph would reflect this

by representing the arrow as an edge of the graph from the node representing A to the

node representing B. Figure 1-1 is an example of the diagram associated with category

C defined in example 1.2.4.

7

Figure 1-1: Illustration of categorical diagrams

{1,2,3}

{1,2} {1,3} {2,3}

IX><I
{!} {2} ~ {3}

~I~
0

Figure 1-2: Illustration of finite category with inclusion as non-identity arrows

8

1.3 Some Categorical Constructions

In category theory there are the categories which we have described and then there

are further abstractions, objects which are made from the categories themselves. These

are known as categorical constructions which are common to groups of categories or

operations that take place on the whole category, and not on any particular object or

arrow. These constructions are where we find the power of category theory, because they

guarantee certain characteristics about the the particular category. So we might think

of a categorical construction as being a function or black box.

There are several categorical constructions that are common to all categories, so we

label them universal constructions. We will start with the simplest of these.

Definition 1.3.1. An object O is an initial object if, for every object A there

exists exactly one arrow from O to A.

•

Definition 1.3.2. An object 1 is a terminal object if, for every A, there

exists exactly one arrow from A to 1.

•

Example 1.3.1. In SET (or FINSET), 0 is the only initial object. The empty

function is the unique arrow from any set X an object of SET to 0. Each singleton set

{x} E SET is a terminal object of SET (or FINSET). And, for every set X, there is a

function from X to { x} mapping every element of X to x, and is the only total function

from X to {x }.

•

Now, the next type of construction is that of a product. The notion of a product

is characterized in the category of SET by the Cartesian product, denoted A x B, where

A and Bare sets. An object of Ax Bis the ordered pair (x, y), where x EA and y EB.

9

Definition 1.3.3. A product of two objects A and B is A x B together with

the two arrows 1r1 : A x B -+ A and 1r2 : A x B -+ B known as projection mapping or

arrows. Such that, for any object C and pair of arrows f : C -+ A and g : C -+ B must

be factored uniquely through h: C--+ Ax B where the following diagram

C

f h I

0

I y

A------AxB
7r1

commutes (i.e., 1r1 oh= for 1r2 oh= g).

g

--------B

D

The next basic categorical construct is called an equalizer and is defined as follows.

Definition 1.3.4. An arrow e: X--+ A is an equalizer (or pre-equalizer)

of a pair of arrows f: A--+ Band g: A-+ B, where X CA if:

1. foe= go e;

2. for any e' : X'-+ A an equalizer candidate (i.e., satisfying foe'= go e'),

3!h : X'-+ X such that e' factors through e, or e o k = e';

10

D

k

X
A
I

X'

e f

A ---------- B

g

Figure 1-3: Illustration of equalizer candidate.

Example 1.3.2. Again we will use SET as our example category to illustrate

the categorical construction equalizer. Assume, we have to arrows f, g E SET defined

by f, g : A ---+ B and let X c A be define by:

X = {x EA and f(x) = g(x)}.

Then the inclusion function e : X ---+ A, where x E X to the same x considered as an

element of A, is an equalizer of f and g.

•

Terminal objects, products and equalizers are categorical constructions. These are a

special case of what is known as a categorical limit, which is the next area of discussion.

We will formally describe this topic as well as give a few examples to help clarify the

notion of a limit. Before, we can describe limits we need a definition of a common

component of categorical diagrams, called the limiting cone.

11

Definition 1.3.5. Let c be a category and let n be a diagram in C. Then a

cone over D, would be an object from C we shall call X, together with a collection of

arrows {Ji : i = 1, 2, · · ·} defined by /i : X-+ Di Vi (one for each object Di in bf D), so

that for each 9i E D, the diagram commutes.

D

X

Ii

0

D1~ D2-- D3 -------• D-
' 91 92 9i

Figure 1-4: An example of a cone of the diagram D

Definition 1.3.6. A limit of D is a cone {Ji: X-+ Di, Vi} such that for any

other cone {ff : X' -+ Di, Vi} that :3!h : X' -+ X so that it factors uniquely through h

(i.e., J: o h = Ji) and the diagram commutes.

D

12

g

X' - - - - - - - - - -> X

f' f

Figure 1-5: The limit cone of D

1.4 A Categorical Proof

In view of the categorical definitions that have been given throughout this chapter, we

are now capable of stating and proving the theorem that is foundation of the illustration.

It is a criteria that will guarantee that a specific category will posess all of its limits or it

is complete. The theorem takes the form of a inductive proof about complete categories.

Theorem 1.4.1. If c has terminal objects, (finite) products, and equalizers,

then C is (finitely) complete.

Proof. By induction on the number of nodes and edges.

Case 1. No nodes, and no edges:

Terminal object is the limit over this diagram.

Case 2. Let D be a nonempty diagram with limit (a, {fn : n is a node in D }).

Subcase 2.1. Add a node m to D to get D'.

Claim. The limit over D' is (a x n, {fn o 1r1 : n in D } U{ 1r2 }).

Proof of Claim. No new triangles have been set up, so commutativity in D' plus its limit

is automatic.

Consider another cone over D': (b, {gn: n ED} U {gm}).

l. (b, {gn: n ED} U {gn}) is a cone over D. So, :3!k: b-+ a, \/n E D,gn = fn o k.

13

2. (b, { k, gm}) is a cone over the diagram { a, m} (with no edges). Since (a X m{ 1r1 , 1r2 })

is the limit over { a, m }, :3!h : b-+ a x m,

k = 1r1 o h, and gm = 1r2 o h.

3. Show. {g~s} U {gm} factors uniquely through {fn o ,r~s} U {1r2} via h.

{g~s}

9n fn Ok

- fno(1r1oh)

- (fno1r1)oh

{gm} 9m = 1r2 oh (from above).

Uniqueness Suppose :3h: b-+ a x m, so that both the following hold:

(a) Vn, 9n = Un O 7r1) oh.

(b) 9m = 1r2 o h.

Using (a): Vn, 9n = fn o (1r1 oh) by the uniqueness of k, with respect to these

factorizations,

Using (b), we have: k = 1r1 oh and 9m = 1r2 oh. By uniqueness of h with respect

to these factorizations h = h.

Therefore the limit over D' is verified for subcase 2.1.

Subcase 2.2. Add an edge to D to get new diagram D'.

Have (E, e) equalizer of go fn1 and fn2 :

go fn 1 o e = J n1 o e and the limit.

14

a

0

m n

J

Figure 1-6: Diagram of subcase 2.2

Claim. (E,{fn o e: n node in D}) is the limit of D'.

Cone. We note there are two cases:

(i) j is already an edge.

Proof of (i). Let m and n be nodes with some edge m -+j n from D. Then fm, fn make

a commutative triangle. Then

fn o e

(ii) j = g.

(j o fm) o e

jo(fmoe)

Proof of (ii). Now, if m = n1, n = n2 and j = g, then fn1 o e = go Uni o e) from

equalization.

Therefore (E, {fn o e : n node in D}) is a cone over D.

Limiting Cone. Let (E', {gn : n node in D}).

Note: (E', fon : n node in D }) is a cone over D.

3!k : E' -+ a, Vn E D, 9n = fn o k.

15

Figure 1-7: Rewrite of the diagram of subcase 2.2

Claim. (E', k) "equalizes" g o f n 1 and fn'l.
-

Subproof. Since (E', {gn : n node in D }) is a cone over D',

So:

fn'l O k = g O J ni O k.

Now since (E, e) is the equalizer, :Hh: E'-+ E,

k = e oh.

Claim. Each 9n = Un o e) o h.

Subproof. Previously have:

9n - fn Ok

fno(eoh)

(/noe)oh

Claim. h is unique with respect to previous claim.

Subproof. Let h : E' -+ E, Vgn,

9n = (f n O e) O h.

16

E

/
a

fn

m n

J

Figure 1-8: E the equalizer of D.

But, we have k from the equalization, that is unique with respect to:

9n = fn Ok.

Since 9n =Uno e) oh= fn o (e oh) then

e oh= k.

But his unique with respect to factoring k through e, so

h = h.

Therefore, (E, {fn o e: n node in D}) is the limit of D'.

Therefore, by subcases 1 and 2, we see that if C has terminal objects, (finite) products,

and equalizers, then C is (finitely) complete.

D

In conclusion, we have seen the definition of a category, several examples of categories

(FINSET in perticular), universal constructions, and a fairly techincal categorical proof.

Which is all of the category theory that is required for the SML illustration of categorical

limits as functional programs. Now we will move to the background material of functional

progarmming, which will lead us to the discussion of SML, the language we use in the

illustration.

17

Chapter 2

Functional Programming

2.1 Introduction

The problem facing most modern programming languages is they are constructed with the

organization of the hardware and software as the primary set of restrictions rather than

the problem of representing mathematics as the major datatype. By getting away from

the machine-related problems, our specification or programming language could simplify

the process by which we convert a real world situation into a working piece of code. Some

types of computer languages are doing just that, by attempting to make the programs

take on a human-friendly form rather than a machine-friendly form. This way we could

let the machine perform memory management or selection processes rather than having

the programmer include all of the low level specification that many languages require.

These specifications would still be required but computing techniques are becoming so

advanced that the difficulties of these specifications could be mapped out during the

language design phase. The language should be simple to read, so that the process of

translating the real world situation into the language would be less taxing. Therefore,

we want a small set of language primitives that we can build from and expand into a

complex, situation-dependent set of programs. We also need a way to insure that the

programs are as error free as possible, providing the user with feedback and security.

18

The language would also require strong development of mathematical concepts, since

they are the foundations of many situations. Thus the language should build a bridge

that spans the gaps by redefining how we solve problems with the computer. One attempt

at such a language is the area of functional programming.

What is a functional programming language? It is an attempt computers, via the

programming language, resemble human thought, with respect to the notion of functions.

By the notion of functions, we are referring to the common mathematical definition

of a function. So we need to allow functions to be classified as first class datatypes,

allowing them to become an argument to other functions as well as accepting arguments

themselves. For example, a function can be composed with another function, creating

a new function, or we use auxiliary functions as simplifications of other functions. This

conjecture could give rise to a computer-related definition of a function. First, a function

has a domain, the set of inputs, and a range, the set of outputs. The domain and range

could be viewed as the type information about the function or what type of data that

is "input" to the function along with what is the type of the outputs. We would then

classify the function by the type of the range or outputs.

Example 2.1.1. If we had the function "add" (commonly denoted by'+'),

which accepts two arguments, we would then check if the arguments were of the same

type or from the function's domain. Then the function would be described by a rule

that would provide a mechanism for translating the arguments. From this rule, if it was

defined properly (i.e., closed under the operation), we could determine or infer the type

of the result, or what the range of the function would be. So in our example, if we had

'2 + 2' we knew that addition of two integers is guaranteed to give us an integer, we see

that our '+' function would be of type "integer".

D

We can see several flaws in the example, which I will point out and clarify when we

have better terminology.

19

2.2 History

• 1930: Alonzo Church (3] pioneered the concept of A-calculus in hopes of formalizing

computers. It was an attempt at the theory of functionality and was thought to

be the first functional language. It proved to be logically inconsistent and required

a type mechanism to overcome these flaws. Church did however point out three

important facts that are still relevant to functionality today:

- Variable names - defined by the common m_athematical terms e.g., x, y

- Terms or expressions defined by groupings or orderings of functions, e.g., x2

or y = x + 1

- Functional Abstraction - defined by the application of the term or expression,

e.g., f(x) = y

• 1958: MacCarthy [7] developed LISt Processing language (LISP) which has simi

larities to the A-calculus described above. It also lacked a type mechanism, which

brought about the dialect of SCHEME. This was an attempt to force LISP to

behave as modern functional languages behave.

• 1965: P. Landin ·(5] developed ISWIM (If you See What I Mean), which is viewed

as the origin of the ML style languages.

• 1978: J . Backus [1] defined FP: a language of combinators. It was the first time

that it was possible to reason about programs or develop a consistent validation of

a program with respect to logic. One major fault was the lack of variable names,

which can over-complicate matters.

• 1978: R. Milner [4] introduced ML (Meta-Language) which was designed to aid in

the study of programming of mathematical proofs. Its key feature was its original

type system combined with abilities of ISWIM.

20

• 1985: D. Turner [14] proposed the Miranda programming language which uses the

ML type system but terms are evaluated with lazy rules. This evaluation technique

uses the shortest or laziest path for expressions.

The concept of datatype was designed to aid in the correct use of a variable; the type

mechanism or system checks how a datatype is against how it is supposed to be used.

This helps the person confronted with the task of repairing all the program's errors or

bugs. The compiler will report any misusage-usage to the programmer by means of error

messages; then it is up to the programmer to track down the bug and attempt a repair.

2.3 ML Tutorial

An introductory tutorial of the functional programming language Standard ML is the

next topic of discussion, but first we give a brief overview of the outstanding features of

Standard ML:

• ML is a functional programming language, i.e., functions are first-class data ob

jects. The principal control mechanism in ML is recursive function application.

• ML is an interpreter based language. Every phrase read is analyzed, compiled,

and executed, and the value of the phrase is reported, together with its type,

interactively.

• ML is strongly typed. Every legal expression has a type which is determined auto

matically by the compiler. Strong typing guarantees that no program can incur a

type error at run time, a common source of bugs.

• ML has a polymorphic type system. Each legal phrase has a uniquely-determined

most general typing that determines the set of contexts in which that phrase may

be legally used.

21

• ML supports abstract datatypes. Abstract types are a useful mechanism for program

modularization. New types are defined together with a set of functions on objects

of that type. The details of the implementation are hidden from the user of the

type, achieving a degree of isolation that is crucial to program maintenance.

• ML is statically scoped. ML resolves identifier references at compile time, leading

to more modular and more efficient programs.

• ML has a type-safe exception mechanism. Exceptions are a useful means of handling

unusual or deviant conditions arising at run-time.

Since standard ML is an interpreter based language the compiler takes the program

source code and translates it interactively into machine instructions. So, that when the

ML compiler is invoked it returns by saying:

Y.) sml

Standard ML of New Jersey, Version 0.93, February 15, 1993

val it=() : unit

where the "val" ML keyword says that variable ' 'it' ' is of unit type, and ' 'it' '

is the variable name given to the top level of the interpreter. The "-" is the ML compiler

prompt waiting for input. The form of the interpreter is similar to that of a LISP

interpreter using the "read-eval-print" dialogue, where we enter a expression, it is read,

evaluated, and the result is printed back to the terminal, assuming all goes well.

22

Example 2.3.1. Here is a sample session with the compiler:

- 10 + 10;

val it= 20 : int

In this example the user entered "10 + 10" and ML responded with "val it = 20 :

int", saying that we are at the outermost level of evaluation as well as evaluating and

typing the expression to "20" and ": int" respectively.

D

If our expression was incorrect there are three basic types of problems that the com

piler can report. They are syntax errors, type errors and run-time faults. The intention

of this chapter is to introduce the reader to SML/NJ, so a full language description is not

included. This means that most of the important details will be introduced and detailed

explanations can be obtained from the reference materials included.

Syntax errors are when you incorrectly use a part of the SML grammar, such mis

spelling a key word or leaving out punctuation. Type errors occur when the type checking

system can not resolve the type a function or variable, due to incomplete input or errors

in the definition. We will have more to say about types and type checking in a later

section of this chapter. Finally, we have run-time faults or results that were caused by

ill-defined actions, such as division by zero.

2.3.1 Basic Types and Values

We begin our definition of ML by analyzing the use of the term type. In ML, a type is

a collection of values, where a value is an object that is manipulated by a computer or

computer program. For example, we have a set of integers, a set of character strings, or

boolean values. This is not an exhaustive list of basic types in ML, so we need to develop

a clear description of type so that we can expand our list to include the many other types

necessary for SML.

23

--

Definition 2.3.1. A type is a classification of objects or operations on objects,

such as integers or floating point addition. They identify the properties or requirements

of the objects or operators. The type is also the domain and range values of function or

group of functions that map a set of one class to another class. We use the type of an

expression to abstractly describe the rule that will guarantee that if a.n expression has a

value that the type of the value will be that of the expression, or that expression are well

formed. In mathematics we refer to this as the closure property.

•

As we can see this definition can not be clear cut as in the traditional sense of types in

programming. ML allows for polymorphic types or "variable typed" type. By doing this

we allow a greater sense of abstraction to our data, by not forcing it to be a predefined

static type, but allowing a dynamic use of the type. ML also allows the user to define

what they call an abstract type or a previously nonexistent type (by nonexistent type

I mea.n it is not included in the core language definition and is supplied by the user).

ML also treats functions as first class citizens, by allowing them to be treated as if they

were data, assigning them types. So we see that a function can return another function

as a result of some processing or modification. This is the same view mathematics has

of functions. So again we see composition enter into our description of the computers

language. These topics will further be described after a preliminary amount of material

is covered.

We wa.nt to introduce other formally defined types of the core ML language, we will

start by showing a simple example of a boolean expression:

Example 2.3.2.

- not (true andalso (false orelse true));

val it= false : bool

Here we are introduced to the boolean values true and false along with their operators

andalso and orelse.

24

-
•

This gives a simple working example of how the ML compiler handles an expression

of primitive core types and operators on those types.

1. UNIT: this consists of a single value, denoted O. It is used whenever an expression

has no interesting value, or a function is to have no argument.

2. BOOLEAN: ML supports a boolean type, which describes "TRUE" and "FALSE."

3. INT: the set of positive and negative integers as normally viewed. There are

several basic operations defined+, -, •,div, and mod which are the normal binary

arithmetic operations which map two integers to an integer. There is also a set of

relational operators<,<=,>,>=,= , and<> which compare two integers and return

a boolean value describing the comparison.

4. REAL: the set of floating point numbers or numbers in a decimal notation. Each

is represented by an integer followed by a decimal point with one or more following

digits, or E is to denote the exponential notation. The decimal point or E can be

dropped as long as one or the other is present to allow ML to distinguish between

integers and reals. The conversion from one type to another must be explicit,

due to the required hardware difference during processing. There are several basic

operations denoted+, -, •, / , and mod, which are the normal arithmetic operations

which map two reals to a real. Neither mod nor div {for reals) is defined but there

is normal real valued division, denoted /. There are also other functions, including

sin, sqrt, and exp.

5. STRING: the set of finite sequences of ascii characters. Examples include, "123",

"abc" or "Thesis". Strings are written in the conventional form between double

quotes. There only specific meaning to ML is to denote the user's intention. There

is a built-in size function, as well as append operator, denoted "~".

25

6. LIST: these are homogeneous or "single type" collections of any of the allowed

types. This is the first occurrence of a. polymorphic or "variable typed" type. This

means that we can have a list of strings or a list of integers, but not a mixed list

of strings and integers. There a.re two basic notations for lists: the conventional

way and the abbreviated form. The conventional way, finding its origins in LISP,

is an empty list or an expression followed by another list. We write the empty list

as nil, and a non-empty list ash: :t, where has an expression describing the type

of the list, and t is another list of the same type as h. We refer to h as the head of

the list, t as the tail of the list and : : operator as "cons" from the LISP operator.

For example, 1,2,3 would be 1: :2: :3: :nil, or more generally, e1 :: e2 :: • •·::nil.

This allows us to describe infinite collections without actually using the explicit

description of each element. The abbreviated form uses recursion, where you define

one or more base cases and one or more recursive cases. The base case should be

nil since it functions as a delimiter for lists. Then the recursive cases constructed

using the "cons" operator. We note that ML uses a compressed format for lists

where [] represents nil and a list is placed in the brackets, separated by commas,

such as [1, 2, 3] . It is important to note that nil and : : are still the primary

form.

7. TUPLES: this is a non-homogeneous collection of values. It is also of polymorphic

type. The type of the tuple is represented as the cartesian product of the types

contained in the tuple. Thus a tuple of the form (3, "abc") would have a type

of "int * string". Thus we have an ordered pair of values and corresponding cross

product of types. These tuples are not restricted to only two components but rather

can be thought of as n-tuples where n ~ 2. The components are listed separated

by commas and equality is determined component by component.

These are already defined in the compiler and are the primitive set of types that all

other types are built from.

26

2 .4 Identifiers and Bindings

A common programming practice is to include variable names with expressions and

values so that they can be referenced without having to explicitly refer to them on every

occurrence. ML provides a system for handling this matter. It is known as value binding,

which is dependent on textual context of its definition, and not on some notion of past

value assignment. We refer to these occurrences as value identifiers or variables. All

identifiers must be declared before they are used.

Example 2.4.1.

- val x = 15 + 15;

val x = 30 : int

- val y = 10;

val y = 10 int

- val foo = [x, y

val foo = [30, 10

- val x= 3.5;

val x = 3.5 real

] ;

] :

- val stuff = 11 a b c 11
;

int list

val stuff= 11 ab c 11
: string

•

We see that keyword "val" is used to inform the compiler that what is to follow is

a binding. Thus xis bound to the value "30" and is of type integer, y is bound to the

value "10" and is of type integer, foo is bound to an integer list consisting of the values

of x and y. Thus the phrase val x = 15 + 15; is a value binding. To determine a

binding, ML evaluates the right-hand side of an equation and then sets the left-hand

27

side to this value. Once an identifier is set, it can never be changed. This is known

as referential transparency, where the binding is permanent and fixed as opposed to an

assignment statement in another language such as Pascal, where the value is maintained

and updated. Hence bindings are more closely related to const declarations rather than

var declarations. We illustrate multiple bindings of a variable with the following example.

Example 2.4.2.

- val x = 15 + 15;

val x • 30 : int

- val x• 3.5;

val x • 3.5 real

- val X = II a b c11;

val X = II a b c11 :

- val stuff = x·
'

val stuff = ' ' a b

string

C' I string

•

We see that that x is hidden by rebinding it "3. 5" and "a b c". We see that if we

have multiple binds of the same identifier, there must be a rule for determining which

binding is to be used. This is the one that occurs textually closest to the use of the

identifier, which is similar to conventional programming languages. Thus when we bind

stuff to the value of x we see the closest occurrence is the string ' ' a b c' '.

These value bindings or environments (a collection of bindings) can be used to con

struct larger, more complex environments, so we are not limited in how many levels of

bindings we use to construct a value. To this point , we have been using value bindings

and predefined functions, but we now move toward a more complex topic: function

bindings. This will allow the user a convenient means of describing complex functional

descriptions and guarantee they are of the specified type.

28

We will begin by making some basic characteristics of a functions in ML. Most func

tions are evaluated by a function identifier followed by the arguments that it acts upon,

for example /(e1 , e2 , · • ·), where f is the function identifier and e1 , e2 , • • • are the argu

ments to f. This syntax is known as prefix notation, since the function precedes the list

of arguments. ML uses another syntax for a core set of predefined functions, it is infix

notation since the function is embedded in the list of arguments. An illustration of this

would be "1 + 2" where the function identifier is "+", or addition of integers.

The general form of a function is ee' where e is the expression that describes the

function. In the simplest case e is just a single functional identifier, but we could have

a complex list of identifiers describing the function identifier. The way the ML compiler

evaluates the expression ee' is first by evaluating e obtaining a function identifier and

then by evaluating e' obtaining a value. We then attempt to resolve the function based

on the type of the function. A function in ML is a value and all values have a type

associated with them. A function has a compound type that has functions as members.

We see the form of a function type to be a-+ {3, where a is known as the domain type

and f3 is the range type. So then a function can be evaluated if its arguments are of type

a and return values of type "/3".

Example 2.4.3.

- size;

val it= fn: string-> int

- val how_big = size;

val how_big = fn: string-> int

- size "abcdefg";

val it= 7 : int

- how_big("abcde 11
);

val it= 5 : int

std_in:6.1-6.10 Error: operator and operand don 1 t agree (tycon mismatch)

operator domain: string

29

-

operand: int

in expression:

size(+: overloaded (10,8))

- size "10+8";

val it = 4 : int

D

Up to this point, we have seen description of functional programming, the history

of functional programming, and a working model (SML) of a functional language. This

has also been an introduction or primer for some of the necessary SML syntax. We now

have most of the components needed to begin our development of categorical limits as a

functional programs.

30

Chapter 3

An illustration of a computational

category theory in SML

3.1 Introduction

In researching computational category theory, two approaches were encountered ([2) and

[12)). Both of these approaches will be the focus of the next chapter, with the work

form the conference proceedings [2] being the starting point, since it seems to be simpler

approach. This will be followed by the later work [12]. Each illustration will be followed

by the limitation of each attempt.

We now look at what is needed to develop categories as a program. A categories is

a class of objects and a class of arrows together with the structure that organizes it. In

programming we have a class of types with the structure that organizes or manipulates

these types. Thus we try to see a logical connection from a category to a computer pro

gram. Now we develop a scheme or mapping for converting these structure in categories

into structure in programs.

In categories we see that the structure is related to functions that pick out common

information. They are the target and source functions which return an object for each

arrow that occurs in the category, the identity function, returning an arrow for each

31

object and composition which for two composable arrows returns their composed arrow.

Rarely does one work with a category and no other structure about that category, so with

these four functions, we still need some more information. The additional information

is the type of the objects and the definition of the arrows, along with some common

categorical constructions.

To make computational category theory usable product, the programs have to be

constructed in such a general way that the will remain reusable, just like the mathematical

counterparts. The common constructions (i.e., products, equalizers) must be designed so

that they can be recycled or applied to range of different categories. This is accomplished

in ML by the use of binding, we can rebind the functions to the specifics of the various

categories. Then these functions can be passed as data to other functions, so we encounter

the problem of high-order programming. High-order programming is precisely the ability

of being able to use function as first class data, for example, being allowed to have a

function that returns another function as its result.

There is one final major requirement that is necessary from the prospective language.

This is polymorphism, or the ability of a function or datatype to be applicable to a range

of values, for example, the datatype "list" is a good candidate. It can be defined to be of

type "real", "strings" or "tuples" of which is again polymorphic, so we can have "many

types" lists. There exist functions which are polymorphic by nature such as isanumber

which would have a type of 'a -> bool. This means that any argument given to our

function isanumber whether it is a letter, string, or some other type, will be evaluated

to see if it is a number, returning "true" if it is a number and "false" otherwise. So we

see when any type is passed to the function it returns a boolean value, thus showing that

isanumber ranges over the domain of all possible datatypes and maps them to a boolean

value. Thus we see that our choice for ML is not without reason.

32

3.2 First Approach

We must start by finding a way to represent our categories in ML, we might be to

accomplish this using a list of objects and a list morphisms, together with a composition

arrow. But we would quickly see that would be insufficient in that we would be attempting

to build infinite lists to describe our categories. In programming languages and math

we know that if we can express a pattern that will exhausted all of the possibilities then

we have a much better solution that trying to list all possible elements and this is the

precise thing that we make use of.

So we will define a type (i.e., programming language datatype) for our "object"

and also for our "arrow". Along with this we need four functions to help us capture the

structure necessary for the proper definition of a category. They would be:

source: arrov -> object

target: arrov -> object

identity: object-> arrov

composition: arrov • arrov -> arrov

We note that in the above description the terms arrov and object represent the respec

tive datatypes.

Example 3.2.1. Suppose we had the category FINSET as our goal (i.e., we

want to implement it as a ML program). We could see that our above description would

reqmre:

type set_object, set_arrov;

source: set_arrov -> set_object;

target: set_arrov -> set_object;

ident : set_object -> set_arrow;

comp: set_arrow • set_arrov -> set_arrow;

Would be the type information that we are looking for and the formal ML definition

would be:

33

type set_object = int list;

type set_arrov = set_object * (int->int) * set_object;

fun set_eq([]:set_object,[] :set_object) = true

set_eq(hd1: :tl1:set_object , hd2: :t12:set_object) = if hd1 = hd2 then

set_eq(t11:set_object , t12:set_object)

else false

set_eq(hd: :tl:set_object , D :set_object) = false

set_eq([] :set_object , hd::tl:set_object) = false;

exception no_composition;

fun set_source((a,f,b):set_arrov) = a;

fun set_target((a,f,b):set_arrov) = b;

fun set_ident(a:set_object) = (a, fn x => x, a):set_arrov;

fun set_comp((a,f,b):set_arrov,(c,g,d):set_arrov) =

if set_eq(b,c) then (a, fn x => g(f(x)), d):set_arrov

We see that a few more issue arise when we try to implement the category of FINSET .

The first is the fact that there is no primitive type "set", so we use integer lists instead.

The next problem comes from composition function need to be able to determine the

element-wise equality of our domains to see if the arrows are composable, and ML does

not provide such a function so it is up to the user. Finally we see exception in use, so

that if seLcomp determines that two arrows do not have the same domain, then we raise

an exception warning the user that composition is impossible.

•

Other categories can be constructed in similar manner, but the main focus of this

paper is to evaluate the ML functions on the category FINSET. So we will now begin

34

to look at how other categorical structure is obtained through computational category

theory.

3.2.1 Universal Categorical Constructions

Rarely are categories worked with only the properties of how the are defined, as seen in

the category chapter, we have what is known as universal constructions. They provided

added structure that is applied across various classes of categories, in particular terminal

objects, products, and equalizers. Just as we have seen that it is possible to describe

categories in ML, there is a need to describe the universal constructions in ML. This is

where the difficulties began do develop.

Following the scheme of deciding the type an data in question (product) and the

develop the program. So we see that a product is an object x object -+ object and the

projection functions. So a final type for product would be object x object -+ object x

arrow x arrow.

We need two auxiliary functions to implement the product function in ML. The first

is pre which operates on list elements and by prepending an element to a list. The second

will take two lists and return a single list that represents the cross product of the lists.

The following are the auxiliary functions:

fun pre(x, []) = []

I pre(x, y: :1) = (x,y)::pre(x,l);

fun pairs ([] , 1) = []

I pairs(x: :m, 1) = pre(x,l) ~ pairs(m, l);

So the product function would look something like this:

fun set_product(a, b) =

let val p = pairs(a,b);

val i = (p, fn(x,y)=>x, a)

35

and j = (p, fn(x,y)=>y, b);

in (p, i , j) end;

However the product (p,iJ) (i.e., (Ax B, 1r1 , 1r2)) produced by this function has

a universal property that for any C, f : C -+ A, and g : C -+ B there is a unique

h : C-+ Ax B such that f = ho i (i.e., f = ho 1r1) and g : ho j (i.e., g : ho 1r1). So

the function product will be modified to yield a forth result the unique function h that

from objects (C) and pairs of arrows (f,g). So the type of product is now:

product: object•object -> object•object•arrow•

(object•arrow•arrow -> arrow)

Note that the • represents cross product of the type. This same expression could be

rewritten using the short notation introduced above, and would look like the following:

product: 'o • 'o -> 'o • 'o * 'o * ('o * 'a* 'a-> 'a)

To make this addition to the function product we need another auxiliary function ap

which is used to apply a set arrow to a set object. It would be defined by:

fun ap((a,f,b), x) = f x;

So the new product would be the same until the addition of the unique function h as

seen below:

exception no_product;

fun set_product(A, B) =

let val P = pairs(A,B);

val pi_1 = (P' fn(x,y)=>x, A)

and pi_2 = (P' fn(x,y)=>y, B);

fun h(Q,f,g) =

36

if (set_eq(set_source(f),Q) andalso set_eq(set_source(g), Q)

andalso set_eq(set_target(f), A) andalso set_eq(set_target(g),B))

then (Q, fn x => (ap(f,x), ap(g,x)), P)

else raise no_product

in (P, pi_1, pi_2, h) end;

We see in the above example the use of exception which is ML mechanism for handle

runtime error or exceptions, so that rather causing the function to stop execution of the

interpreter it executes an exception which if the necessary handling routines were in place

we would be able to recover. This illustrations has no need for such recovery other than

warning the user that the input provided does not product a product, by printing the

message "no_product".

The next universal construction that is implemented is the terminal object. So the

type of a terminal object (i.e., an unique arrow from any object A to the terminal

object "1 ") would be:

terminal: object* (object-> arrov)

So then the terminal = (t ,m) where t is the terminal object ("1 ") and for any

object a we see m(a): -+ t is the unique arrow tot. We see the ML definition would

look like the following:

val set_terminal = let val t = [O];

fun m(a) = (a, fn x => 0, t)

in (t, m) end;

The final universal construction that is necessary for our development of categorical

limits is that of an equalizer. Recall that an equalizer off: A-+ Band g : A-+ Bis an

object E and an arrow e : E -+ A which satisfies the following conditions:

1. foe= go e;

37

2. whenever E' and e' : E' -+ A such that f o e' = g o e', there is a unique h : E' -+ E

such that e' = h o e.

Now as we have done for the other constructions, a type must be defined then we can

precede to the development of the function. The type would be defined as follows:

equalizer: 'a* 'a -> 'o * 'a* (1 0 * 'a-> 'a)

In SET (or FINSET) we take our set E = xix EA and f(x) = g(x). Also we note

that our unique arrow h is really just e' restricted to E, so we could define an auxiliary

function eql to help us with set_equalizer. The type of eql would be:

eql: 'int list* (int-> ''a)* (int-> ''a)-> (int list)

and the function would be:

fun eql(D, f, g) = []

I eql(x::l, f, g) = if f x = g x then x : :eql(l,f,g)

else eql(l,f,g);

In view of this auxiliary function we can now construct the equalizer that we need.

It would be defined as follows:

exception mediate_equalizer;

exception no_equalizer;

fun set_equalizer((A,f,B),(A' ,g,B')) =

if (set_eq(A,A') andalso set_eq(B,B')) then

let val E = eql(A,f,g);

fun h(E',(E'',e',A')) =

if (set_eq(E'' ,E') andalso set_eq(A',A)) then (E' ,e' ,E)

else raise mediate_equalizer;

in (E, (E, fn x => x, a), h) end

else raise no_equalizer;

38

3.2.2 Limits

We now want to start to put together some these universal constructions to aid us in

the computation of finding the limit of a finite diagram in FINSET . As we saw in

the category chapter a categorical proof usually involves diagram chasing where more

information about the category can be obtained from the diagram. So we are going

see that this is how to approach the computation. Which means we need to know how

to represent a diagram and other related categorical constructions, so to start a type

definition is necessary.

Since int is the type of our objects, our graph will contain integer sets (i.e.,

set_objects), and integer functions (i.e., set....a.rrows). This will be the starting point.

Example 3.2.2. The illustration of a diagram as represented in ML. We will

start with the types definitions of tbe necessary components of a categorical diagram:

type node= int;

type edge = int;

type graph_object = node list* edge list* (edge-> node) * (edge -> node);

type ('o, 'a)diagram = graph_object * (node -> 'o) * (edge -> , a);

type ('0, 'a)cone = (, 0, 'a)diagram * 'o * (node-> , a);

type (, 0, 'a)limit_cone = ('o, 'a)cone * (('o, 'a)cone -> , a);

•

Based on these types a type for the categorical limit could be constructed, it could

be represented:

Limit: ('o, 'a)diagram -> ('o, 'a)limit_cone

But some additional information is required, the source, target, identity, and compo

sition functions for the particular category would be necessary. They could be added to

our definition, but it would become rather length, so a definition or value binding will be

used to express which category we are working with. So:

39

-

type (1 0, 'a)category = (1 a-> 1 0)•(1 a-> 10)•(10-> 1 a)•(1 a• 1 a-> 1 0)

With this new datatype a "category", a slightly more accurate definition of what a

limit is, can be given:

Limit: (1 0, 'a)category • (1 0, 'a)diagram -> (1 0, 'a)limit_cone

Recall from the first chapter the final section a categorical proof, it illustrates what

is necessary to guarantee that a limit exist. If a category has a terminal object, binary

products and equalizers then it has all finite limits. So aga.in, we must add more restraints

to our definition of what a limit is:

type (1 0,'a)Terminal = 'o • (1 0->'a);

type ('o,'a)Product = ('o•'a•'a) • (('o•'a•'a)->'a);

type ('o,'a)Equalizer ='a• ('a->'a);

type ('o,'a)category_tpe = ('o,'a)category •

('o,'a)Terminal •

(
1 0,'a)Product •

(
1 0,'a)Equalizer;

Which will yield the correct datatype for categorical limits.

Limit: ('o, 'a)category_tpe • ('o, 'a)diagram -> (1 0, 'a)limit_cone

This means that limit of a category can iteratively be constructed by splitting the

computation into pieces. Finding the products over all the nodes, and then taking into

account all the edges. This construction built form a diagram that has no nodes (or

edges), since the limit of this is terminal object of the category. We then start looking

at what happens as we add nodes to the base case, until we have added all the node

that are required. Once this is complete we move to the next stage of the construction,

a diagram that has all of the nodes and no edges. We then add the edges to our diagram

40

-

one at a time examining at each step how the new diagram (one with one more edge)

affects the the old diagram. This is continued until all the edges are added. The final

two steps are to take the product over all the nodes, and add in the effect of the edges

thus resulting in the limit of the diagram.

Now that the technique is mapped out for how we utilize the mathematical proof to

in our construction, we will start to define the rest of the necessary ML functions. We

will start with the function limi tplusnode.

limitplusnode: ('o, 'a)limit_cone •node* 'o -> ('o, 'a)limit_cone

fun limit_plus_node(((a,c),h_limit), m, new)=

let val ((p,i,j), h_prod) = product(a, new);

val a'= p;

fun c'(n) = if n=m then j else comp(i,c(n));

val h'_limit(b',d') = let val h1 = h_limit(b' ,d')

in h_prod(b' ,h1,d'(m)) end

in ((a' ,c'), h'_limit) end;

We see now that our next function would be similar to the above function where we

add a node, only we will add an edge. This means that it will be a similar construction

only the use of the equalizer instead of the product is required.

So then the development of the functions that will take the product over the all the

nodes and the function that take the limit of the diagram including the edge is all that

remain to get a function that will compute limits of finite diagrams. So we see that a

the product of all the could be obtain by the following:

fun limit_of_nodes([], Dn) = terminal, fn n => raise no nodes)

limit_of_nodes(n: :N, Dn) = limit_plus_node(

limit_of_nodes(N, Dn),n, Dn);

And the function to obtain the limit over the diagram with the edges would be:

41

fun limit_of_edges((n,[], dO, d1), Dn,De) = limit_of_nodes(N, Dn)

limit_of_edges((N,e::E, d0,d1),Dn,De) =

limit_plus_edge(limit_of_edges((N,E,d0,d1),Dn,De),

dO e,d1 e,e,De e)

We see that all of these functions are dependent on the composition, terminal object,

product, and equalizer of the particular category. So we must include them as arguments

to our function limit which would look like the following:

fun limit(((source,target,ident,comp),terminal,product,equalizer), D) =

let fun limit_plus_node(...) =
fun limit_plus_edge(...) = ••• J

fun limit_of_nodes(...) =
fun limit_of_edges(...) = ••• J

in limit_of_diagram D end;

3.2.3 Limitations of the First Approach

The largest limitation that I faced in extracting the functions from the descriptions was

the problem of inconsistent notation. This seems to be a small matter, but one strong

points of category theory is to provide a common naming convention across categories.

When this name convention is disregarded, the task of trying to redesign the ML functions

became extremely laborious and difficult. So I have tried to provide a "cleaner" more

categorical approach to computational category theory.

The next major rough spot was that lack of complete source or documentation. In

describing, the less trivial constructions (i.e., limits) the authors choose to leave out

important details, as well as most auxiliary functions and provided no motivations for

why incomplete descriptions were provided. This is probably the largest reason for ap

proaching the subject from a limitation point of view. If the source material was carefully

organized and thoroughly described maybe the reader would find reason for following the

42

material. So this is the beginning of why computational category theory is limited in

ML.

Now for explicit examples of where problems occurred in the development of functions

that were supposed to be complete. As stated both approaches uses the normal, basic

category FINSET , and still the material was insufficient to adequately describe common

starting point for logical development of a formal system. The first approach begins to

falter in it's definition of the "seLobjects", they defined them to:

type set_object = int list;

Example 3.2.3. As we can see this is not a polymorhic type as they suggest

as requirement for the chosen language. This causes considerable confusion when one

attempts to develop a function for products. As we by the type information that the

SML interpreter gives:

val set_product = fn

int list* int list

->(int* int) list* ((int* int) list* ('a* 'b ->'a)* int list)

•((int* int) list* ('c * 'd -> 'd) • int list)

• (set_object * set_arrow * set_arrow

-> set_object *(int-> int* int)* (int* int) list)

Since we would have a hard time trying to force the compiler into realizing that a (int

* int) list is an int list. This is relatively small problem, we could attempt a patch

by using 'a list rather than limiting ourself to only integers.

D

The next major problem was the amount of detail that the easier material was pre

sented with, followed by a less trivial calculation of a finite limit, that was treated trivially.

The authors thoroughly developed the universal construction with sufficient detail, then

announce that the next construction is less trivial and proceed to start leaving out detail.

43

They claim that there is a close connection to the proof of the theorem, then do not even

state the theorem formally. The informally describe how the proof could be constructed,

which is based on the categorical diagram. The diagram and several of the cases that

are necessary are not addressed. This lack of detail as the complexity of the functions

increase, leaves a strong feeling of distrust and confusion.

3.3 Second Approach

Now we turn to the second approach to computational category that we see in (12]. Here

are using a more sophisticated approach to what is involved in defining a category, but

the authors choose a somewhat unorthodox introduction to categories. They approach

datatypes with greater thought, but when they begin to implement the universal cate

gorical constructions they develop -the less intuitive route of dual constructions (i.e.,

coproducts, coequalizes and colimits) and develop the more natural route (i.e., prod

ucts, equlaizers and limits) as dual functions. So although, they improve their approach

the overcomplicate matters and give no formal justifications as to why.

3.3.1 Categorical Datatype

If a category can be described by the datatypes of the objects and arrows, along with the

four function discussed earlier, a datatype for a category would be the next step. Since

we require these types to be polymorhic or ranging over a variety of types. Then we could

represent the datatype objects as I o and the type of arrows as I a. So then the source

and target functions would have type I a -> 1 o, the identity function would have type

1 o -> 'a and the type of composition would be 'a • 1 a -> 1 a (note: • represents the

cross product of types). The type of a category uses four types and is constructed from

a 4-tuple as seen below:

Example 3.3.1.

datatype (1 o, 'a)Cat =

44

cat of ('a->'o)•('a->'o)•('o->'a)•('a•'a->'a)

This example introduces the "datatype" definitions in ML, there is a key word datatype,

which signals a type definition. Then the type identifier ('o. 'a) Cat which is parame

terize type displaying the type of the categories' objects and arrows, followed by the data

constructor cat, the ML keyword of and type information.

•

3.3.2 The SML Abstract Datatype: 'a Set

In this section we begin developing a SML abstract datatype "'a Set" that will be the

type we use for our category FINSET . One main step in developing a program is the

choice of the type of the data that is to be manipulated by the program. We should

see that this is not a unique solution for this problem, since programs and the problems

they are written for are extremely varied. Rarely if ever is there a direct mapping of the

datatype to the real world data that the program expresses. One often represent data

in various forms that are different from how it exist in the real world or how humans

perceive it in the context of the problem. Often it is necessary to provide more structure

with the chosen datatype than we need to express the real world data.

What we do need to guarantee is that certain operations are defined and have a given

behavior. It is often important to separate the representation from the use of the type.

There is a 'interface' between the representation and it's use, so that the representation

can be changed without requiring the rewriting of the programs that make use of the type.

This is known as data abstraction and is a common concept in computer programming.

We also note that for this concept to be effective we need to limit what is available to

the user, they should only have access to the interface or functions that act on the newly

constructed type.

Now we start by explaining the various components of the of the abstract type "'a

Set" . This we will see is the foundation of what we construct our category FINSET

45

from. The first obstacle that we encounter is what primitive type is our "'a Set" going

to be constructed from. The SML "list" of the elements of the set is going to the choice.

Example 3.3.2. The following is an example of what a abstract datatype

for set looks like in ML. We see a key word abstype signals the start of the definition,

followed by the type label and how the type is constructed or what is known as the

"interface to the type". We see "'a Set" is polymorphic and are based on the list. What

follows is the interface or the set functions that allow us to manipulate the type. With

this approach, where we have interface to the type, we can build into the interface specific

type components, such as equality or membership.

abstype 'a Set= set of 'a list

vith

end

val emptyset = set ([]) ;

fun mkset [] = emptyset

I mkset (hd: :tl) = set(hd: :tl)

fun member(x,set(l)) = list_member(x,l)

fun seteq(set([]),set([])) = true

I seteq(set(hd1: :tl1),set(hd2::tl2)) = if hd1 = hd2 then

seteq(set(tl1),set(tl2))

else false

seteq(set(hd :: tl),set([])) = false

seteq(set([]),set(hd::tl)) = false

The rest of the interface

Note: this is not a complete list of the interface for the set used in later constructions.

The primitive type "list" is building block of Set, so we need to bootstrap a more complex

of 'a list environment. This has been incorporated into the definition of Set and a

complete collection of the necessary list functions are in the appendix.

46

•

So in FINSET objects are of type 'a Set where 'a is the polymorphic type variable

that describes type of the elements of that set.

Example 3.3.3. So using this user defined type 'a Set we could ML interpre

tation of FINSET as follows:

fun set_s(set_arrow(a,_,_)) = a;

fun set_t(set_arrow(_,_,b)) = b;

fun set_ident(a) = set_arrow(a,fn x => x,a);

fun set_comp(set_arrow(c,g,d),set_arrow(a,f,b)) =

if seteq(b,c) = true then set_arrow(a,fn x => g(f(x)),d)

else raise non_composable_pair;

val FinSet = cat(set_s,set_t,set_ident,set_comp);

Which yields that following type information:

val set_s = fn

val set_t = fn

'a Set_Arrow -> 'a Set

'a Set_Arrow -> 'a Set

val set_ident = fn: 'a Set-> 'a Set_Arrow

val set_comp = fn: 11 a Set_Arrow • ''a Set_Arrow -> ''a Set_Arrow

val FinSet = cat (fn,fn,fn,fn) : (''a Set,''a Set_Arrow) Cat

So it is clear that we can build a category as a datatype, then abstractly describe

the content of the prospective category (FINSET), from the four functions discussed

earlier.

•

47

3.3.3 Universal Constructions

As in the earlier section we examined what is needed to implement terminal object,

products, and equalizers in the category FINSET. The terminal object of is almost

identical to the terminal object this approach, which is just a value binding representing

the relationship singleton sets along with constant function.

Example 3.3.4. This has three parts: the definition of the SML datatype, the

actual construction of the function, and the use of the type constructor to force it use

the defined datatype.

datatype ('o, 'a)TerminalObj = terminal of 'o • ('o -> 'a);

val st_terminal =

let val t = mkset([ttrue])

in (t, fn a=> set_arrow(a,fn x => ttrue,t)) end;

val set_terminal = terminal(st_terminal);

The interpreter would then respond with the following:

datatype ('a,'b) TerminalObj

con terminal : 'a• ('a-> 'b) -> ('a,'b) TerminalObj

val st_terminal = (-,fn) 'a Tag Set• ('b Tag Set-> 'b Tag Set_Arrow)

val set_terminal = terminal (-,fn) ('a Tag Set,'a Tag Set_Arrow) TerminalObj

D

To ensure that elements of our categories are disjoint, we develop a type definition

t hat will allows us clearly see the elements are distinct. This process could be thought

48

of as tagging the elements or labeling them with markers so we can be sure as to where

they came from. But we must be sure that the type of elements is closed under the

requisite operations: pairing for products and a constant element (which we call ttrue)

for terminal objects. So the following definition will accomplish this:

datatype 'a Tag =

just of 'a

pink of ('a Tag)

blue of ('a Tag)

pair of ('a Tag)•('a Tag)

ttrue;

So we are ready to develop the universal construction product. Using the SML

datatype "'a Set" solves the earlier problems that products faced, that of a non-polymorphic

type for set objects. We also modify the function to clean up the organization and naming

conventions. So as above in terminal object, we have a three part definition of categorical

construction product in FINSET .

Example 3.3.5. This is the implementation of the categorical products: we

have the SML datatype for products, the definition of a function for FINSET, and the

application of the type constructor.

datatype ('o,'a)Product =

product of 'o * 'o -> ('o•'a•'a) • ('o•'a•'a->'a);

fun st_prdt(a,b) =

let val a_cross_b = mapset(pair,X(a,b))

val proj_a =

set_arrow(a_cross_b,fn pair(y,z) => y, a)

val proj_b =

set_arrow(a_cross_b,fn pair(y,z) => z, b)

49

val univ=

fn (p,f1,f2) =>

set_arrow(p,

fn y => pair(OF(f1,y) ,OF(f2,y)),

a_cross_b)

in ((a_cross_b,proj_a,proj_b),univ) end;

val set_product = product(st_prdt);

The interpreter would then respond with the following:

datatype ('a,'b) Product

con product

: ('a • ' a -> ('a • 'b • 'b)- * ('a • 'b * 'b -> 'b)) -> (' a, 'b) Product

val st_prdt = fn

''a Tag Set• ''a Tag Set

-> (''a Tag Set* ''a Tag Set_Arrow * ''a Tag Set_Arrow)

* (''a Tag Set* ''a Tag Set_Arrow * ''a Tag Set_Arrow

-> ''a Tag Set_Arrow)

val set_product = product fn (''a Tag Set,''a Tag Set_Arrow) Product

D

The final construction needed is the equalizer, it is similar to the earlier construction,

except we incorporate the auxiliary functions into the main function. We again see a

better use of categorical names and standards. Equalizers will also be defined in the

three part definition:

Example 3.3.6. This is the implementation of the categorical equalizers: we

have the SML datatype for equalizers, the definition of a function for FINSET, and the

50

application of the type constructor.

datatype (1 0, 1 a)Equalizer = equalizer of 1 a * 1 a ->

(
1 0 * 1 a) * (1 0 * 1 a -) 1 a) ;

fun st_equalizer(f,g) =

let val a= source(FinSet)(f)

vale• filter_by((fn y => (OF(f,y))=(OF(g,y))),a)

in ((e,set_arrow(e, fn x •> x,a)),

(fn (e1,h1) => set_arrow(e1,fn y => OF(h1,y),e))) end;

val set_equalizer = equalizer(st_equalizer);

The interpreter would then respond with the following:

datatype ('a,'b) Equalizer

con equalizer : ('b * 'b -> ('a* 'b) *('a* 'b -> 'b)) -> ('a,'b) Equalizer

val st_equalizer = fn

''a Set_Arrow * ''a Set_Arrow

-> (''a Set* ''a Set_Arrow) * (''a Set* ''a Set_Arrow -> ''a Set_Arrow)

val set_equalizer = equalizer fn (''a Set,''a Set_Arrow) Equalizer

D

3.3.4 Limits

We now turn our attention to the development of finite limits in FINSET. We again

must remember the proof that guarantees us the that if we have terminal objects, prod

ucts and equalizer then categories is finitely complete. Again the way we prove this is

by induction on the nodes and edges of a diagram. So we need to develop all of the

51

datatypes or definitions for the various diagram related components of a limit. In the

following example 3.3. 7 we collect all the necessary pieces.

Example 3.3. 7. We need to define a node, an edge, a graph, a diagram, a cone

and finally limiting cone. The follow would the SML implementations of such categorical

objects.

datatype Node= word of string;

datatype Edge= word' of string;

datatype Graph= graph of (Node Set)•(Edge Set)•(Edge->Node)•(Edge->Node);

datatype('o,'a)Diagram = diagram of Graph•(Node ->'o)•(Edge->'a);

datatype ('o,'a)Cone = cone of 'o • ('o,'a)Diagram • (Node ->'a);

datatype ('o,'a)Cone_Arrow = cone_arrow of ('o,'a)Cone • 'a• ('o,'a)Cone;

type ('o,'a)Limiting_Cone =

('o,'a)Cone • (('o,'a)Cone -> ('o,'a)Cone_Arrow)

type (1 0,'a)Limit =

('o,'a)Diagram -> ('o,'a)Limiting_Cone;

datatype ('o,'a)Complete_Cat =

complete_cat of ('o,'a)Cat * ('o,'a)Limit;

•

Example 3.3.8. This is a sample of SML code that describes a categorical

diagram. It is an example of the definitions of nodes, graphs, diagrams and edges.

This diagram could then be used as an argument to the limit function, which requires

a diagram to iterate on. This example is included to illustrate the how an abstract

description can provide all the information needed to prove the existence of a limit with

in a category.

val G = let val N = mkset([word "a", word "b",word "c"])

val E = mkset([word' "f" , word' "g"])

52

fun src (vord' llf II) = vord II all

src (vord' llgll) = vord II all

fun tgt (vord' llf II) = vord llb11

I tgt (vord' II gll) = vord II CII

in graph(N, E, src, tgt) end;

val a_set = mkset[just 11 A11 , just 11 B11 ,just "C" ,just 11D11];

val b_set = mkset[just "C", just 11D11
, just 11E11 , just "F", just "G"];

val c_set = mkset [just 11 B11
, just 11 E11

, just 11 F 11
, just 11 G11];

fun f_fn (just II All) = just 11c11

f_fn (just IIB") = just "C"

f_fn (just "C") = just "D"

f_fn (just "D") = just "E";

fun g_fn (just II A") = just "B11

g_fn (just "B11) = just "E11

g_fn (just "C") = just "B"

g_fn (just "D") = just "F";

fun nodes_to_sets (vord 11 a 11) = a_set

nodes_to_sets (vord 11 b11) = b_set

nodes_to_sets (vord "c") = c set·
- J

fun edges_to_arrows (word' "f") = set_arrov(a_set,f_fn,b_set)

edges_to_arrows (word' "g") = set_arrow(a_set,g_fn,c_set);

53

val po_diagram = diagram(G, nodes_to_sets,edges_to_arrovs);

•

But in the second implementation [12) the authors choose to use the dual universal

constructions which were on the focus of this thesis, but enough information is available

to help the reader understand the dual concepts of dual diagrams and colimits. A dual

diagram is a similar diagram, only we reverse the arrows. Where a colimit is related to

least upper bound, as opposed to the greatest lower bound.

Example 3.3.9. We can now cite the SML code necessary for constructing a

categorical limit using the second approach.

val to_p_e_FinSet =

to_p_e_cat(FinSet, set_terminal,

set_product, set_equalizer);

fun dual_graph(graph(N,E,s,t)) = graph(N,E,t,s);

fun dual_diagram(diagram(g,nm,em)) = diagram(dual_graph(g),nm,em);

fun co_apex_arrov(cocone_arrov(cone1,arrov,cone2)) = arrov;

fun dual_cone(cocone(a,D,f),univ) =

let val result_cone = cone(a, dual_diagram(D), f)

val universal=

fn (c1 as cone(a1,D1,f1)) =>

let val c2 = cocone(a1, dual_diagram(D1), f1)

in cone_arrov(c1,

co_apex_arrov(univ c2),

54

result_cone) end

in (result_cone,universal) end;

fun dual_colimit(F) =

fn D => dual_cone(F(dual_diagram D));

val complete_FinSet =

complete_cat(FinSet,

limit(finite_limit(

to_p_e_cat(FinSet,

set_terminal,

set_product,

set_equalizer))));

3.3.5 Limitations of the Second Approach

D

The largest problem that kept reappearing was the fact that not all of the code that

was supposed to be given was given. This means that to extract a working function

from the text was difficult because not all of the specifications were available or vague

at best. Therefore, to develop these functions ourselves we had to base our work on the

given material and create the functions that would fill in the holes, which at times was

extremely difficult since we were unsure of there actual motivations. This is the reason

behind not accepting this as working functions a.nd describing the limitations of each

approach.

Next, was the problem of why the authors choose the coconstructions over the normal

functions. It was clear that the coconstruction were less intuitive a.nd more complex to

encode. The authors might have realized something profound about these coconstruc-

55

tions, but -they kept it a secret and failed to present any motivation as to why they choose

a much more difficult path and then failed to complete that. We had some conjecture as

to why the colimits were attempted, and it was that maybe they saw the colimit as out

puts and the colimit as the best output for the job, but this is only speculation and not

thoroughly developed. This is why throughout the paper, we adopted the more common

approach of limits verses colimits.

There£ ore in conclusion, we have seen a brief picture of category theory, followed by a

function programming. These two ideas we combined to form an illustration of how one

could convert mathematics into functional programs. This all was developed in hopes

of some day meshing the complex workings of mathematics and computer programming

languages to simplify the process of software development.

56

Appendix A

ML Source Code

A.1 Auxiliary List Functions

In section a collection of functions that were used to complement the type interface for

Set. Since "Set" is constructed out of the primitive type list, we need to be able to

manipulate lists. These functions then are inherited by the new type and by this method

we can bootstrap our interface into behaving properly.

Basically the functions should be straight forward implementations of lisp like list

functions. The majority of the functions were compiled from the reference material on

ML, so that any further questions could be directed to the ML texts from which the

functions were obtained.

fun cons ax= a::x;

fun consonto x a= a::x;

fun append x y = x~y;

fun list_member(e, [])=false

list_member(e,(a::x)) = if e = a then true

else list_member(e,x);

57

fun list_remove(e,[]) = 0

list_remove(e,(a::x)) = if e=a then list_remove(e,x)

else a::list_remove(e,x);

fun list_map(f,[]) = []

I list_map(f,a::x) = f(a)::list_map(f,x);

fun filter p (a::x) = if pa then a::filter p x else filter p x

I filter p [] = [];

fun exists p (a::x) = if pa then true else exists p x

exists p [] = false;

fun all p (a: :x) = if pa then all p x else false

all p [] = true;

fun accumulate fa (b::x) = accumulate f (fa b) x

accumulate fa [] = a;

fun reduce fa (al::rest) = f al (reduce fa rest)

I reduce fa[] = a;

fun cart(x,y) = reduce(fn a=> fn Z =>

reduce(fn b => fn Z => (a,b)::Z) Z y) [] x;

val link= accumulate append [];

val revonto = accumulate consonto;

val rev= revonto [];

58

A.2 Types and Functions

Here is a collection of the functions and types used to construct the category FINSET

. The is the abstract type definition for Set, along with some necessary function from

the interface. This is followed by the type information for defining a category, and the

definition of a FINSET .

A.2.1 The Complete Definition of Abstract Datatype 'a Set

This is a complete collection for the SML abstract datatype Set. It includes all of the other

types and auxiliary function needed in the second approach to constructing categorical

limits. There several function given here that were useful in developing the function that

are not referred to anywhere in the paper, such as functions for printing various tagged

sets, or even printing a set itself with the bracket notation.

datatype 'a Tag =

just of 'a

pink of ('a Tag)

blue of ('a Tag)

pair of ('a Tag)•('a Tag)

ttrue;

fun stringwith (front, sep, back) list

= let fun sepback []=back

sepback [a] = a·back

sepback (a::x) = a·sep·sepback x

in front·sepback list end;

datatype Node= word of string;

59

datatype Edge• word' of string;

fun strofNode (word x) = x;

fun stroftagNode (just(x)) = "just"-strofNode(x)

stroftagNode (blue(x)) = "blue"-stroftagNode(x)

stroftagNode (pink(x)) = "pink"-stroftagNode(x)

stroftagNode (pair(x,y)) = "pair"-stroftagNode(x)-stroftagNode(y)

stroftagNode (ttrue) = 11ttrue 11
;

(• fun strofEdge •)

val codeof0 = ord 11 011
;

fun charofdigit n = chr(n + codeof0);

fun stringofnat n = if n < 10 then charofdigit n

else stringofnat(n div 10)-charofdigit(n mod 10);

fun stringofint n = if n < 0 then 11
-

11 -stringofnat(-n)

else stringofnat n;

fun strofitag (just (x)) = 11 just 11 -stringofint (x)

strofitag (blue(x)) = 11bl ue 11
- strof i tag (x)

strofitag (pink(x)) = 11pink11 -strof i tag(x)

strofitag (pair(x,y)) = 11pair11 -strofitag(x)-strofitag(y)

strofitag (ttrue) = 11 ttrue 11
;

60

exception empty_set;

exception the_nil_fn;

abstype 'a Set= set of 'a list

with

val emptyset = set([]);

fun X(set(D) ,set([])) • set (cart ([], []))

X(set(a1::x1),set(a2::x2)) = set(cart(a1::x1, a2::x2))

X(set(D) ,set(a: :x))

X(set(a::x),set([]))

fun mkset[] = emptyset

• set(cart(D, a: :x))

= set(cart(a: :x, []));

I mkset (hd::tl) = set(hd::tl)

fun filter_by(f, set([])) = set(filter f [])

I filter_by(f, set(a::x)) = set(filter f (a::x));

fun is_empty(set(s)) = length(s) = 0

fun nil_fn (set(x)) = raise the_nil_fn

fun singleton(x) = set([x])

fun remove(x,set(l)) = set(list_remove(x,l))

fun union(set(s), set(t)) = set(s~t)

fun member(x,set(l)) = list_member(x,l)

fun intersection(set([]), s2) = set([])

intersection(set(h::t), s2) =

let val tset as (set(tl)) = intersection(set(t),s2)

in if member(h,s2) then set(h::tl) else tset end

fun seteq (set ([]) , set ([])) = true

I seteq(set(hd1: :tl1),set(hd2: :tl2)) = if hd1 = hd2 then

seteq(set(tl1),set(tl2))

else false

61

end;

seteq(set(hd::tl),set([])) = false

seteq(set([]),set(hd::tl)) = false

fun singleton_split(set(nil)) = raise empty_set

singleton_split(set(x::s)) = (x,remove(x,set(s)))

fun split(s) =

let val (x,s 1) = singleton_split(s) in (singleton(x),s 1
)

end;

fun diff(set(x),a) = if member(a,set(x)) then remove(a,set(x))

else set(x);

fun mapset(f,set(l)) = set(list_map(f,l));

fun card(set ([])) = 0
~

I card(set(h::t)) = if seteq(singleton(h),set([])) then 0

else 1+card(set(t));

fun prtintset (set ([])) =

stringwith("{",",", "}") (list_map(stringofint, []))

prtintset(set(a::x)) =

stringvi th("{",",","}") (list_map(stringofint, a: :x))

fun prttagset (set ([])) =

stringwi th("{",",", 11
}

11
) (list_map (strof i tag, []))

prttagset(set(a::x)) =

stringvith("{",",", "}") (list_map(strofitag, a: :x))

fun prtNodetagset(set([])) =

stringvi th("{",",","}") (list_map (stroftagNode, []))

prtNodetagset(set(a::x)) =

stringvith("{", 11
,

11
,

11
}

11
) (list_map(stroftagNode, a::x))

62

A.2.2 FINSET Complete Definition

Here is the complete definition of FINSET , along with various other necessary type

information.

datatype 'a Set_Object = set_object of 'a Set;

datatype 'a Set_Arrow = set_arrow of ('a Set)•('a->'a)•('a Set);

exception non_composable_pair;

datatype ('o,'a)Cat =

cat of ('a->'o)•('a-> 1 0)•(1 0->'a)•('a*'a->'a);

fun set_s(set_arrow(a,_,_)) = a;

fun set_t(set_arrow(_,_,b)) = b;

fun set_ident(a) = set_arrow(a,fn x => x,a);

fun set_comp(set_arrow(c,g,d),set_arrow(a,f,b)) =

if seteq(b,c) = true then set_arrow(a,fn x => g(f(x)),d)

else raise non_composable_pair;

val FinSet = cat(set_s,set_t,set_ident,set_comp);

A.3 The Limit Code

A.3.1 First Approach

This is a complete collection of the code used in the first approach to the finite limits

attempt.

type set_object = int list;

63

type set_arrov = set_object * (int->int) * set_object;

fun set_eq([] :set_object,[] :set_object) =true

I set_eq(hd1: :tl1:set_object , hd2::tl2:set_object) = if hd1 = hd2 then

set_eq(tl1:set_object , tl2:set_object)

else false ·

set_eq(hd::tl:set_object , [] :set_object) • false

set_eq([]:set_object, hd::tl:set_object) • false;

exception no_composition;

fun set_source((a,f,b):set_arrov) = a;

fun set_target((a,f,b):set_arrov) = b;

fun set_ident(a:set_object) = (a, fn x => x, a):set_arrov;

fun set_comp((a,f,b):set_arrov,(c,g,d):set_arrov) =

if set_eq(b,c) then (a, fn x => g(f(x)), d):set_arrov

else raise no_composition;

fun pre(x, []) = D

I pre(x, y: :1) = (x,y)::pre(x,l);

64

fun pairs ([] , 1) = []

I pairs(x: :m, 1) = pre(x,l) ~ pairs(m, l);

(• fun source(set_arrow(a,f,b)) = a;

exception tough_one;

fun OF(set_arrow(a,f,b),y) = if member(y,a) then f y

else raise tough_one;

fun target(set_arrow(a,f,b)) = b; •)

type ('o,'a)Terminal = 'o * ('o->'a);

type ('o,'a)Product = ('o•'a•'a) * (('o•'a•'a)->'a);

type ('o,'a)Equalizer ='a* ('a->'a);

fun ap((a,f,b), x) = f x;

exception no_product;

fun set_product(a, b) =

let val p = pairs(a,b);

val i = (p, fn(x,y)=>x, a)

and j = (p, fn(x,y)=>y, b)

fun h(q,f,g) =

if (set_eq(set_source(f),q) andalso set_eq(set_source(g), q)

65

andalso set_eq(set_target(f), a) andalso set_eq(set_target(g),b))

then (q, fn x => (ap(f,x), ap(g,x)), p)

else raise no_product

in (p, i, j, h) end;

val set_terminal = let val t = [O];

fun m(a) • (a, fn x => O, t)

in (t, m) end;

fun eql([], f, g) = []

I eql(x: :l:int list, f, g) = if f(x) = g(x) then x::eql(l,f,g)

else eql(l,f,g);

exception mediate_equalizer;

exception no_equalizer;

fun set_equalizer((a,f,b):set_arrov,(a',g,b'):set_arrov) =

if (set_eq(a,a') andalso set_eq(b,b')) then

let val e = eql(a,f,g);

fun h(e',(e'',i',a')) =

if (set_eq(e'' ,e') andalso set_eq (a', a)) then

else raise mediate_equalizer;

in (e, (e, fn x => x, a), h) end

else raise no_equalizer;

66

(e',i',e)

type ('o,'a)category = (set_arrow->set_object)•

(set_arrow->set_object)•

(set_object->set_arrow)•

(set_arrow•set_arrow->set_object);

type ('o,'a)category_tpe • ('o,'a)category *

('o,'a)Terminal *

('o,'a)Product *

('o,'a)Equalizer;

exception no_nodes;

fun limit(((source,target,ident,comp),terminal,product,equalizer), D)

= let fun limit_plus_node(((a,c),h_limit), m, new)=

let val ((p,i,j), h_prod) = product(a, new);

val a'= p;

fun c'(n) = if set_eq(n,m) then j else comp(i,c(n));

val h'_limit(b',d') = let val h1 = h_limit(b',d')

in h_prod(b',h1,d'(m)) end;

in ((a' ,c'), h'limit) end;

fun limit_plus_edge(((a,c),h_limit),l,m,e,f) =

let val (r, q, h_eq) = equalizer((a,comp(f,c(l)),m)(a,c(m),m));

val a'= r;

fun c'(n) = comp(c(n),q);

val h'_limit(E',k) = let val d(n) = comp(c(n),k);

val h1 = h_limit(E',k);

in h_eq(E',(E',h1,a')) end;

67

in O;

in ((a',c'), h'_limit) end;

fun limit_of_nodes([], On)= (terminal, fn n => raise no_nodes)

limit_of_nodes(n: :N, On)=

limit_plus_node(limit_of_nodes(N, On),n, On);

fun limit_of_diagram((n,D, dO, d1), On,Oe) = limit_of_nodes(N, On)

limit_of_diagram((N,e::E, dO,d1),0n,Oe) =

limit_plus_edge(limit_of_edges((N,E,dO,d1),Dn,Oe),dO e,d1 e,e,Oe e) ;

in limit_of_diagram(O);

A.3.2 Second Approach

This is a complete collection of the code used in the second approach to the finite limits

attempt.

datatype Graph= graph of (Node Set)•(Edge Set)•(Edge->Node)•(Edge->Node);

datatype('o,'a)Oiagram = diagram of Graph•(Node ->'o)•(Edge->'a);

datatype ('o,'a)Product = product of 'o * 'o -> ('o•'a•'a) * ('o•'a•'a->'a);

datatype ('o,'a)Equalizer = equalizer of 'a* 'a->

(' o * ' a) * (' o * ' a - > ' a) ;

datatype ('o, 'a)TerminalObj = terminal of 'o * ('o -> 'a);

68

datatype (1 0, 1 a)Cone = cone of 1 0 • (1 0, 1 a)Diagram • (Node -> 1 a);

datatype (1 0, 1 a)Cone_Arrow = cone_arrow of (1 0, 1 a)Cone • 1 a • (1 0, 1 a)Cone;

type (1 0, 1 a)Limiting_Cone =

(1 0, 1 a)Cone • ((1 0, 1 a)Cone -> (1 0, 1 a)Cone_Arrow)

type (1 0, 1 a)Limit =

(1 0, 1 a)Diagram -> (1 0, 1 a)Limiting_Cone;

datatype (1 0, 1 a)Complete_Cat =

complete_cat of (1 0, 1 a)Cat * (1 0, 1 a)Limit;

fun dual_graph(graph(N,E,s,t)) = graph(N,E,t,s);

fun dual_diagram(diagram(g,nm,em)) = diagram(dual_graph(g),nm,em);

fun co_apex_arrov(cocone_arrow(cone1,arrov,cone2)) = arrow;

fun dual_cone(cocone(a,D,f),univ) =

let val result_cone = cone(a, dual_diagram(D), f)

val universal=

fn (c1 as cone(a1,D1,f1)) =>

let val c2 = cocone(a1, dual_diagram(D1), f1)

in cone_arrov(c1,

co_apex_arrov(univ c2),

result_cone) end

69

in (result_cone,universal) end;

fun dual_colimit(F) =

fn D •> dual_cone(F(dual_diagram D));

fun source(cat(src,trg,id,comp)) = src;

exception tough_one;

fun OF(set_arrow(a,f,b),y) = if member(y,a) then f y

else raise tough_one;

val st_terminal =

let val t = mkset([ttrue])

in (t, fn a=> set_arrow(a,fn x => ttrue,t)) end;

val set_terminal = terminal(st_terminal);

fun st_prdt(a,b) =

let val a_cross_b = mapset(pair,X(a,b))

val proj_a =

set_arrow(a_cross_b,fn pair(y,z) => y, a)

val proj_b =

set_arrow(a_cross_b,fn pair(y,z) => z, b)

val univ=

fn (p,f1,f2) =>

70

set_arrov(p,

fn y => pair(OF(f1,y) ,OF(f2,y)),

a_cross_b)

in ((a_cross_b,proj_a,proj_b),univ) end;

val set_product = product(st_prdt);

fun st_equalizer(f,g) =

let val a= source(FinSet)(f)

vale= filter_by((fn y => (OF(f,y))=(OF(g,y))),a)

in ((e,set_arrov(e, fn x => x,a)),

(fn (e1,h1) => set_arrov(e1,fn y => OF(h1,y),e))) end;

· val set_equalizer = equalizer(st_equalizer);

datatype ('o, 'a) TO_P_E_Cat =

to_p_e_cat of ('o, 'a)Cat *

val to_p_e_FinSet =

('o, 'a)TerminalObj *

('o, 'a)Product *

('o, 'a)Equalizer;

to_p_e_cat(FinSet, set_term.inal,

set_product, set_equalizer);

fun limit(F) = fn D => cone(F(diagram D));

71

val complete_FinSet =

complete_cat(FinSet,

limit(finite_limit(

to_p_e_cat(FinSet,

set_terminal,

set_product,

set_equalizer))));

72

Bibliography

[1) J. Backus. Ca.n programming be liberated from the Von Neuma.nn style? A func

tional style a.nd its algebra of programs. Communications of the ACM, 21:133-140,

1978.

[2) R. Burstall and D. Rydeheard. Computing with categories. In David Pitt, editor,

Category theory and computer programming : tutorial and workshop, number 240

in Lecture Notes in Computer Science, pages 506-519, Guildford, U.K., September

1985. Springer-Verlag.

[3) A. Church. The Calculi of Lambda Conversions. Princeton University Press, 1941.

[4) M. Gordon, R. Milner, L. Morris, N. Newwey, and C. Wadsworth. A metala.nguage

for interactive proofs in lcf. Symposium on Principles of Programming Languages,

pages 119-130. ACM, 1978.

[5) P. Landin. The next 700 programming languages. Communications of ACM, 9:157-

164, 1966.

(6) Xavier Leroy and Michel Mauny. The Cami Light system, release 0.5 documentation

and user's manual, September 1992.

[7) J. MacCarthy. Lisp 1.5 Programmer's Manual. MIT Press, Cambridge Mass., 1962.

[8) Laurence C. Paulson. ML for the Working Programmer. Cambridge University

Press, 1991.

73

[9] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. Foundations

of Computing Series. The MIT Press, Cambridge Mass, 1991.

[10] Chris Reade. Elements of Functional Programming. Addison-Wesley Publishing

Company, 1989.

[11] S. E. Rodabaugh. Fuzzy sets with applications: An introductory outline. Introduc

tion to Category Theory, 1992 September.

[12] David E. Rydeheard and Rod M. Burstall. Computational Category Theory. Prentice

Hall International, 1988.

[13] S. Sokolowski. Applicative high order programming: Standard ML in practice. Chap

man and Hall computing series. Chapman and Hall, London; New York, 1st ed.

edition, 1991.

[14] D. Turner. Miranda: a non-strict functional language with polymorphic types.

In Functional Programming languages and Computer Architecture, number 201 in

Lecture Notes in Computer Science, pages 1-16. Springer Verlag, 1985.

[15] R. F. C. Walters. Categories and Computer Science. Cambridge University Press,

1991.

74

