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ABSTRACT 

MATHEMATICAL MODELING OF A MOVING SOLIDIFICATION BOUNDARY OF 

CONTINUOUS CAST ROUNDS 

Chidchai Loyprasert 

Master of science in Engineering 

Youngstown State University, 1995 

Continuous casting of rounds is an economic and efficient process and is standard 

industrial practice. Mathematical modeling for the continuous casting of slabs is well 

documented, but similar modeling has not been developed for casting of rounds. In this 

paper a mathematical model for the solidification of continuous cast rounds is presented. 

A computer program has been developed that determines the thickness of the solidified 

layer as a function of time for any diameter round. 
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CHAPTER I 

INTRODUCTION 

Traditionally the metal working process required to produce solid round stock 

(referred to in the trade as "Merchant Bars") was a complex multi-step operation. The 

starting material in the process was a cast ingot with a square cross-section. The ingot 

was 28 to 54 inches on a side and 6 to 8 feet long. This ingot is hot-rolled in a blooming 

mill to produce a billet. The billet which still has a square cross-section is considered a 

semi-finished product. It is used to produce sheets, plates, and bar stock. In order to 

reduce the billet from 32 x 32 inches to 4 x 4 inches requires rolling the material through 

27 separate blooming mills. The cross-section geometry is then changed from square ( or 

rectangular) to circular and final dimensions (diameter) by rolling the billet in a 

continuous bar-mill. In order to produce a 3/4 inch diameter bar from a 4 x 4 billet 

requires at least 16 stands (individual rolling units) in the bar-mill, (see Fig 1.1 °>). Thus, 

to produce one merchant bar can require at least 40 rolling operations after casting the 

ingot. This traditional process was made totally obsolete with the development of the 

continuous casting process for slabs, plated, and bar stock. 

1.1 Continuous Casting 

Continuous casting is an efficient and economic process developed to replace 

ingot casting and produced higher quality steels at reduced cost. Continuous casting of 
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metal was first developed in the United States and Europe in the mid-l 800's (2) _ 

Commercial production started in the early 1960's (2l . A continuous casting system, shown 

in Fig 1.2 (3l, consists of a ladle or liquid metal reservoir, a tundish or pouring system, a 

water-cooled mold, a cooling system, a driving system (rollers), and cutting devices. 

Nitrogen gas is bubbled through the molten metal for 5 to 10 minutes in order to clean the 

metal and stabilize the metal's temperature. Then, the metal is poured into the tundish 

where solid impurities are removed by filters. When the molten metal flows through the 

water-cooled mold, it begins to solidify. A roller system pulls the solidified stock from 

the mold. To start a casting process, a dummy bar or a solid starter is inserted to the 

bottom of the mold and the molten metal solidifies on the dummy bar. The withdrawal 

speed of the dummy bar is based on the pouring rate of the molten metal and 

solidification time of metal. At the end of the mold the stock must have a solidified shell 

of at least 12-18 mm <4l, in order to support its own weight. This constraint limits the 

withdrawal rate to about 25 mm/sec <4l_ The cooling system provides cooling water for the 

metal to solidify completely. The solidified metal is cut to the desired length by shearing 

or torch cutting. After cutting, the stock is ready for any needed finishing operations such 

as hot/cold rolling or heat treatment. Generally any finish rolling requires no more than 6-

12 stands as compared to the 40-60 stands needed in the traditional process. 

1.2 Continuous Casting or Rounds 

The first production casting of rounds was done by Eschweiler Bergwerks in 

Germany in 4-stand machine in 1965 (5l_ Recently, a 6-stand rounds caster was used to 
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produce rounds with diameter ranging from 100 to 400 mm <6>. The most important 

applications of rounds cast is a seamless tube. The basic process of continuous casting of 

rounds is similar to slab continuous casting. The casting speed is usually from 1.2 to 2.9 

m/min (7), with a maximum speed is 17 mis cs>. 

1.3 Solidification of Rounds 

The casting speed of the continuous casting depends on the thickness of solidified 

shell of the metal. The thickness of solidified shell can be predicted by using the Fourier's 

heat equation. The problem begins with unsteady state heat conduction through the liquid 

and solid phase. Boundary conditions are (1) the temperatures of the liquid and solid 

phases are equal at the solid-liquid interface, and (2) the conservation of thermal energy 

at the phase boundary. The solidified shell grows from the outer surface to the core of 

round. The temperature of the outer shell is kept at the constant using cooling water. The 

melting point of the metal is the temperature that molten metal solidifies. From this 

information, the thickness of the solidified shell can be predicted at any particular time. 
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Figure 1.1 Passes and reductions of a 4 by 4-in. Billet to a 3/4-in. Round bar <1
> 
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CHAPTER II 

MODELING 

2.1 Solidification in Infinite Rounds 

The formation of the problem begins with unsteady state heat conduction through 

the liquid and solid phases. The boundary conditions are the temperatures of the liquid 

and solid at the liquid-solid interface are equal, and conservation of thermal energy at the 

phase boundary. 

7 

The liquid metal at Tw is poured to the round mold to cast round steel in 

continuous casting. The initial temperature of cooling water temperature is T,.o , as shown 

in Fig 2.1. The growth of a solidified layer in the bar can be determined by using the 

unsteady state conduction equation in cylindrical coordinates<10
l as 

(2.1) 

for the liquid phase, and 

aTs a2T 1 aTs 
= (X (--s + --) 

at s ar 2 r ar 
(2.2) 

for the solid phase where 

R(t) = distance from center to solid-liquid interface, 

ltJILL111· ~- ;, :,· r, L'.BRC\ RY 
YOUNGSTOW STATE UNIVERSITY 
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T t o 

Tmp 

T , .o 

r = radial distance from the center of a cylinder, 

R = radius of the cylinder, 

a,= thermal diffusivity of liquid, 

as = thermal diffusivity of solid . 

..- --------. 
Solidified layer ' 

. -------, 
' \ 

( Liq,id mdal ) ) 

________ .,,..,,,,·· 

-R -R(t) 0 R(t) R 

Fig 2.1 Temperature profile in the solidification of liquid metal in rod 

The outer shell of a rod is cooled to T. 0 using a water spray. The initial 

temperature of the liquid metal is T,.o . At zero time, Tw is constant for all r. The metal 

will solidify suddenly at melting point temperature. The temperature at the liquid-solid 

interface at r = R(t) must be equal to the melting point of the metal. 

The boundary conditions are 

8 
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T, (r,O) T_, .. o at t = 0, R(t) < r < R 

T, (R,t) Ts,O at t > 0, r = R 

T, (r,O) T,.o at t = 0, 0 < r < R(t) (2.5) 

T, (R(t), t) = Tmp at t > 0, r = R(t) 

T, = T_, = Tmp at r = R(t). 

The heat balance at the solidified interface is 

ar, aT d 
k- - k-s = p/l.H -R(t). 

I ar s ar dt 

Where k, = thermal conductivity of liquid, 

k., = thermal conductivity of solid, 

p = density of a solid phase, 

(2.3) 

(2.4) 

(2.6) 

(2.7) 

(2.8) 

..dH = latent heat of solidification per unit mass of liquid. 

9 

The rate ofradial advance of the solidification front, dR(t) I dt, will be positive or 

negative for solidification and melting, respectively. In this case, it should be positive and 

..dH will be negative. 

2.2 Mathematical Modeling 

Consider the solid phase equation 

l aT 
+ __ s), 

r ar 
(2.1) 



boundary conditions 

T_, (r,O) 

T, (R,t) T,.o 

at t = 0, R < r < R(t) 

at t > 0, r = R. 

(2.3) 

(2.4) 

From the boundary conditions, this is a nonhomogeneous problem. To solve this 

problem, we have to make it to be a homogeneous problem by introducing new two 

function U, and tp, <11 >, related to T, by 

T_, (r,t) U,, (r, t) + tp,(r). (2.9) 

From the boundary condition, which we get 
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and, 

tp,. (r) 

T_, (r,t) U5 (r,t) + T,.o. 

(2.10) 

(2.11) 

The problem for U, (r, t) is 

aus a2u 1 au 
= a (--s + __ s). 

at s ar 2 r ar 

The boundary conditions are 

U, (R,t) 

U, (r,O) 

0 

T,.o. 

To separate variables in the heat equation, let 

U, (r,t) F(r) T(t). 

After some algebra, the following equation is obtained (see Appendix A) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 



F 

for some constant A, then 

F Ii + _!__ F l + A F = 0, 
r 

= -l , 

T 1 + A T = 0. 

11 

(2.16) 

(2.17) 

Consider three cases of A, which are A= 0, A< 0, and A> 0 (see Appendix A), by 

using Strum-Liouville Theory <12> and Bessel FunctionP3>, we got 

(2.18) 

where 

(2.19) 

Zn = positive zeros of Bessel Functions. 

Then, the solution for temperature of a solid phase is 

(2.20) 

Using the same procedure for the liquid phase give the following solution 
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z,; 
oo z --a; 

r, (r,t) = LB Jo(-n r) e R(/)
2 

+ T mp 
(2.21) 

n=I n R(t) 

where 

(2.22) 

Consider the heat balance of the solidified front (2.8) with the temperature of solid 

(2.20) and liquid (2.21 ), we got 

z2 z2 
Z II I Z - ...!!..a; 

p!:,,.HdR(t) = k/t B J. '(-n r) e - R2(1) a) - k/t An J~( __!!_r) e R2 ) • (2.23) 
dt n=I n O R(t) n =I R 

This is equation is the solution that can be used to determine the position of the 

solidified front at any time. 

The detail of these calculations are shown in Appendix A. 

2.3 Computer Stimulation 

The solidification time and the moving of solidified front can be determined by 

using equation (2.24) which is obtained by substituting (2.19), (2.20), (2.21 ), and (2.22) 

into (2.23). 



d 
p!iH(-R(t))= 

dt 
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(2.24) 

The solidified front can not be determined directly by equation (2.24) because the 

R(t) terms is in both sides of equation. The right-hand side is too complicated to integrate. 

It can be determined by a numerical method. The concepts of solving this problem can be 

described as follows. 

First, consider the left hand side of the equation (2.24), dR(t), and 

dt 

dR(t) = R - R(t) (2.25) 

The R(t) of equation (2.25) is the same R(t) in the right hand side of equation 

(2.23), or (2.24). For any dt, the thickness of the solidified layer can be determined by 

finding R(t) in dR(t) of the right hand side that matched the R(t) in left hand side of the 

equation (2.24). The thickness of the solidified layer is equaled dR(t) at dt. 
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Chapter III 

RESULTS 

3.1 Computer Results 

From the computer program in Appendix B, the thickness of the solidified layer at 

different time and different diameter can be determined by using these data<14>. 

a., = 0.44 ft2 hr"1 

a, = 0.22 ft2 hr"1 

ks = 20 Btu hr·1 ft· 1 °F·1 

k, = 10 Btu hr·1 ft•1 °F·1 

Ml = 110 Btu lb"1 

p = 490 lb ft•3 

Tmp = 2700 °F 

T,o = 2950 °F 

T_, .. o = 100 OF 

The thickness is calculated for 15.15 inches (400 mm), 11.81 inches (300 mm), 

7.87 inches (200 mm), and 5.91 inches (150 mm) diameter. The data are shown in Table 

3.1 and Fig 3.1. 



3.2 Equation Results 

From the graph in Fig 3 .1 , the thickness of the solidified layer of the first five 

second can be represent by a simple equation, 

where 

o=A , B 1 

o = the thickness of the solidification layer, 

A, B = constants, 

t = time. 

For 15.74 inches (400 mm) diameter round, 

o = 0.506 t 0.9731
• 

For 11.81 inches (300 mm) diameter round, 

0 = 3.251 t 1.021
• 

For 7.87 inches (200 mm) diameter round, 

o = 1.649 t 1.222'. 

For 5.91 inches (150 mm) diameter round, 

0 = 1.523 t 0. 7981
• 

(3.1) 

(3 .2) 

(3.3) 

(3.4) 

(3.5) 

The comparison of the thickness from the computer stimulation and from the 

equation (3.1) is shown in Fig 3.2, Fig 3.3, Fig 3.4, and Fig 3.5. 

15 
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TABLE 3.1 

SOLIDIFIED THICKNESS AS A FUNCTION OF TIME 

Time (sec) 400mm. 300mm. 200 mm. 150 mm. 

0 0.000 0.000 0.000 0.000 

1 0.493 3.316 2.016 1.216 

2 0.959 6.825 4.935 1.940 

3 1.400 10.492 8.934 2.365 

4 1.818 14.256 13.697 2.613 

5 2.213 18.038 18.272 2.756 

6 2.586 21.743 21.840 2.839 

7 2.939 25.271 24.255 2.887 

8 3.272 28.531 25.765 2.915 

9 3.587 31.458 26.673 2.931 

10 3.884 34.017 27.209 2.940 

11 4.164 36.201 27.522 2.946 

12 4.429 38.030 27.704 2.949 

13 4.678 39.538 27.809 2.951 

14 4.914 40.765 27.870 2.952 

15 5.136 41.545 27.905 2.952 

16 5.345 42.525 27.925 2.953 

17 5.542 43.176 27.937 2.953 

18 5.728 43.675 27.944 2.953 

19 5.903 44.070 27.948 

20 6.068 44.380 27.950 

21 6.224 44.625 27.951 

22 6.370 44.817 27.952 
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TABLE 3.1 (CONT.) 

SOLIDIFIED THICKNESS AS A FUNCTION OF TIME 

Time (sec) 400mm. 300mm. 200mm. 

23 6.508 44.968 27.952 

24 6.637 45.086 27.953 

25 6.760 45.175 27.953 

26 6.874 45.251 27.953 

27 6.983 45.308 

28 7.085 45.353 

29 7.180 45.387 

30 7.271 45.415 

31 7.355 45.436 

32 7.435 45.452 

33 7.510 45.465 

34 7.581 45.476 

35 7.647 45.484 

36 7.710 45.490 

37 7.769 45.495 

38 7.824 45.498 

39 7.876 45.501 

40 7.925 45.504 

41 7.971 45.506 

42 8.014 45.507 

43 8.054 45.508 

44 8.093 45.509 

45 8.128 45.510 
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TABLE 3.1 (CONT.) 

SOLIDIFIED THICKNESS AS A FUNCTION OF TIME 

Time (sec) 400mm. 300mm. 

46 8.162 45.510 

47 8.194 45.511 

48 8.224 45.511 

49 8.252 45.511 

50 8.278 45.511 

51 8.303 45.512 

52 8.326 45.512 

53 8.348 

54 8.369 

55 8.388 

56 8.406 

57 8.423 

58 8.439 

59 8.454 

60 8.469 
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CHAPTER IV 

DISCUSSION 

Continuous casting of both slabs and bars are proven industrial processes. Mathematical 

modeling of slab continuous casting is well documented <15
>_ A mathematical model for the 

continuous casting of rounds can not be found in the literature. Both models require solution to 

Fourier Heat Equation and boundary condition that involves first order differential (temperature 

gradient) and another first order differential that results from the heat generated by the liquid to 

solid phase transition. Solution to the Fourier Equation is classic for both the slab and the round 

solidification. In the case of slab solidification of the boundary differential equation, the solution 

is straight forward and yields the approximate solution that the thickness of the solidified crust is 

proportional to the square root of time, 

where 

o oc ft. 

o = solidified thickness, 

t = time. 

In the case of round solidification, the solution to Fourier equation, now written in 

(4.1) 

cylindrical co-ordinate, involves complex Bessel Functions. These Bessel Functions make it 

impossible to solve in closed form the differential equation associated with the boundary 

condition. A computer model was developed to solve the boundary condition. This approach 

leads to the approximate relationship for the thickness of the solidified crust 
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o ex tB 1
, (4.2) 

where B is a constant. 

The computer model developed here only works for the initial stage of the solidification 

process. The problem with the method results from trying to sum the infinite series associated 

with the Bessel Functions. The work presented here indicates the solidification of rounds is 

initially faster but then slower than solidification of slabs. No experimental data could be found 

to compare with the theoretical work presented there. 
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CHAPTERV 

CONCLUSION 

The mathematical model presented here for the solidification of continuously cast 

rounds predicts the kinetics of the solidified layer which is considerably different from 

the kinetics of the solidification of slab material. The model only works for the initial 

stages of solidification. As the solidified layer approaches the center of the round the 

model fails to properly converge. The problem is probably associated with the boundary 

condition (equation (2.8)) near the end of the solidification process. Unfortunately, no 

experimental data could be found to determine the correctness of the equations developed 

in this work. 

It is recommended that a numerical methods are used to solve equation (2.1 ), 

(2.2), and (2.8), and that the results compared to the results presented here. 

Having a valid model for the solidification process should facilitate the industrial 

process and allow maximum yield of the casting process. 
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APPENDIX A 

MATHEMATICAL MODELING 

A.I Solidification condition 

The unsteady state conduction equation in cylindrical coordinationC10l 

(A.I) 

for the liquid phase, and 

ars a2r 1 ars 
= a (--s + --) at s ar 2 r ar (A.2) 

for the solid phase where T, = temperature of liquid phase which is the function of (r,t), 

T., = temperature of solid phase which is the function of (r,t), 

R(t) = distance from center to solid-liquid interface, 

r = radial distance from the center of a cylinder, 

R = radius of the cylinder, 

a, = thermal diffusivity of liquid , 

a_, = thermal diffusivity of solid. 

The boundary conditions are 

T, (r,O) = T,.o at t = 0, R(t) < r < R (A.3) 



T, (R,t) = Tso at t > 0, r = R 

T, (r,O) T,.o at t = 0, 0 < r < R(t) 

T, (R(t),t)= T,,,P at t > 0, r = R(t) 

T, = T, = Tmp at r = R(t). 

The heat balance of the solidified front 

where 

aT, aTs d 
k - - k - = pl:!H -R(t) 

I ar s ar dt 

k, = thermal conductivity of liquid 

k., = thermal conductivity of solid 

p = density of a solid phase 

.dH = latent heat of solidification per unit mass of liquid. 

A.2 Temperature of solid phase 

(A.4) 

(A.5) 

(A.6) 

(A.7) 
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(A.8) 

Consider the solid phase of Fourier heat equation for cylindrical coordination< 10l, 

and boundary conditions are 

Ts (r,O) = Tso at t = 0, R(t) < r < R 

Ts (R,t) Tso at t > 0, r = R. 

Because of the boundary conditions equation (A.3) and (A.4), this is a 

nonhomogeneous problem (equation (A.2)). To solve this problem, it has to be 

(A.2) 

(A.3) 

(A.4) 
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transformed to a homogeneous problem. Consider the functions U, and ,;,y 1\ related to T_, 

by 

assume 

Us (r,t) + t/t., (r). 

Partial differentiation of equation (A.9) is shown as 

= u, 

= u + ,1r". 
rr 't' s 

Then, substitute equation (A. l 0), (A.11 ), and (A.12) into (A.2), yields 

Consider the boundary condition (A.4) 

Let 

Ts (R, t) = us (R, t) + I/ls (R) = Tso 

Us (R,t) = 0, and 1/ls (R) = 1'.,.o 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 



Let cf> = w: 

rcf> 1 + cf> = 0 

[ ref> ]1 = 0 

~(rep) = 0 
dr 

as r = R(t) which goes to 0, In (r) go to -00 

so C, must be 0 

and equation is now 

r/1., (R) = T,.o = C2 

1/ls (r) = T, 0 

I U = a (U + -U) 
I s ll r r 

and, the boundary conditions are 

U, (R, t) = 0 for t > 0 

for R(t) < r < R 
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(A.16) 

(A.17) 



-

To separate variables in the heat equation, let 

U, (r,t) = F, (r) Ts (t) 

au 
U = _s = T 1(t). 

I at 

a2u 
s = F 11(r) . 

at2 

These three equations are substituted to equation (A.17) and after some algebra, the 

following equation is obtained 

=---- = -'}.. 
F 

for some constant A.. Then 

F 11 + l_pt + )..F = 0 
' r 

T 1 + )..a T = 0 
s 

Now consider cases on A.. 

Case 1: ').. = 0 The differential equation for Fis F 11 + l_p t = O , with general 
r 

solution 

F(r) = C In (r) + K. 

But In (r) --+ - 00 as r - 0 ( as R(t) is at the center of the cylinder), so C must be Oto make 
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bounded solution. Then F(r) = K. 

If :l = 0, the differential equation for T is 

T 1 = 0 
' 

so T= constant also. Hence, when;{= 0, Us= constant. The function Us= constant will 

satisfy U., (R,t) = 0 fort> 0 only if the constant is zero. Thus, the solution Us (r,t) = 0 is 

trivial in this case. So, this case is eliminated. 

Case 2: A < 0 Write ;{ = -k2, with k positive. Then T 1 - ex k2T = O has general 
s 

solution T = ce a,k
21 

, which is unbounded if c ,1: 0. Thus, there is no bounded solution 

for;{ < 0. 

Case 3: A> 0 Write;{= k2, with k positive. Then T 1-cx/ 2T = 0 

The equation for F is 

The general solution of this equation is 

F(r) = AJo(kr) + BYo(kr), 

' so T = 

in which J0 and Y0 are Bessel Functionl'3l of order zero of the first and second kind, 

respectively. 

As r -+ 0, Y0 (kr) -+ - 00, which gives an unbounded solution. Choose B equal to 0. 

The new solution is 
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F(r) = AJo(kr). 

For every k > 0, the function is 

which satisfies the heat equation (A.17). 

Now, consider the boundary condition, Us (R,t) = 0. 

U/R,t) = A Jo(kR)e - k
2

a.1 = 0. 

To satisfy this condition with An* 0, J0 (kR) has to be equaled 0. Let Zn = k~. for n = 1, 

2, 3, .... , and Zn is the positive zero number of J0 (Z,J. So, k = ( Zn I R). Corresponding to 

each positive integer n, 

So, the solution is 

Zn 2 

Zr -- , a.,t 
usn(r,t) = A J (-n-)e R-

n o R 

Choose the An 's to satisfy l.!_, (r, OJ = Ts.a• Require that 

00 Zr 
U/r,0) = T O = LA J

0
(-n-). 

s, n=I n R 

(A.18) 

(A.19) 
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The orthogonality relationship<14
> for the function J0 (Z,,r/R). This relationship is 

If n * m. (A.20) 

Rearrange the equation (A.19) by multiplying both sides of equation by rJo(ZJIR) , with 

k any positive integer. 

Integrate both sides from R(t) to R, interchanging the summation and the integral, 

R Zr 00 R Zr Zr 
JrTs,cloC; )dr = ~A,,frJo(; Vo(~ )dr. 

R(t) n I R(I) 

By the orthogonality relationship< 16
l (A.20), all of the integrals on the right are zero except 

the one in which n = k. The last equation therefore reduces to 

Solve this equation for Ak to obtain 
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R ZK 
J rTs,c/o( R )dr 

Ak = _R('-'-t) ____ _ 

R Zr 
J r[Jo( ~ )]2dr 

R(t) 

fork= 1, 2, 3, .. .. These numbers are the Fourier-Bessel coefficients<17>, which can be 

changed to An 's . From the Bessel Function and Strum-Liouville Theory<18>, 

R Zr 1 
Jr[Jo( ; )]2dr = 2R 2[J1(Zn)]2. 
0 

Then, the equation for An is 

R Z 
2Ts,o f gJo( ; g)dg 

An= ----~R(~r) _____ _ 
z 

R 2[J1(Zn)]2 - R(t)2[J1( _!!_R(t))])2 
R 

Then, substitute equation (A.18) with (A.21) 

From equation (A.9), the solution for the temperature of a solid phase is 

(A.21) 

(A.22) 

(A.23) 
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where 
R Z 

2Ts,o J gJo( Rn g)dg 

(A.21) 

An = -------'R('-'-1) _____ _ 

z 
R 2[J,(Zn)]2 - R(t)2[J,( Rn R(t))])2 

A.3 Temperature of liquid phase 

From the same procedure as the solid temperature, the solution of the liquid 

temperature is 

z,; 
00 z --a.1 

T/_r,t) = L BnJoC-n r)e R(/)
2 

+ T 
n ; I R(t) mp 

(A.24) 

where 

(A.25) 

A.4 Heat balance at solidified front 

Consider the heat balance of the solidified front (A.8) with the temperature of 

solid (A.23) and the temperature ofliquid (A.24), 

(A.26) 



At r = R(t), this equation (A.26) can be expanded by given more detail of the Bessel 

Functions. The first term in the right side of (A.26) can be expanded as 
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(A.27) 

The second term can be expressed as 



APPENDIXB 

COMPUTER PROGRAM 

The following is the computer program for predicting the thickness of solidified 

layer of the infinite round. This program is written by using the Turbo Pascal for 

Windows. The flow chart shows in Fig B. l. 

Start 

-=---1 
Input diameter 
and other data 

Predict R(t) 

Calculate dR(t) 
and R(t) 

/ 

. .,..-·/ compare ... '--.. 
Not Equai'---...___ R(t) ,,. / 

....... / 

L Equal 

~ -:--7 
Callculate thickness I 

~--------1 

Print thickness 
and time 

'-J~' L / . 
----< Compare '-..... . . . 

..... ........._ Thickness .,,,. / 
Not Equal --...._ ..--

'I .,Equal 

), 
( Stop ) 

Fig B.1 Flow chart for computer program. 
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Program Thesis (Input, Output); 

Uses Wincrt; 

Function Power (Base:Real; Time:Integer):Real; 

Var 
Count : Integer; 
VI, V2 : Real; 

Begin {Function Power} 
VI:= 1; 
V2 := 1; 
If Time = 0 Then Power := 1 

Else 
Begin 

If Time = -1 Then Power := 1 /base 
Else 
Begin 

If Base = 0 Then Power := 0 
Else 
Begin 

For Count := 1 to Time Do 
Begin 

V2 := Base* VI; 
VI :=V2; 

End; 
Power :=V2; 

End; 
End; 

End; 
End; {Function Power} 

Function Fae (k:Integer):Real; 

Var 
Count : Integer; 
F : Real; 

Begin 
Count:= 1; 
F := 1; 
Fae := 1; 
If k = 0 Then k := 1 

Else 
Begin 
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--

While Count <= k Do 
Begin 

F := Count * F; 
Count := ount + 1 ; 

End; 
End; 
Fae := F; 

End; 

Function Suml (Zn:Real):Real; 

Var 
Count : Integer; 
Sl, S2: Real; 

Begin 
SI := O; 
S2 :=O; 
For Count:= 1 To 15 Do 
Begin 

S 1 := Power(-1 ,Count)*Power(Zn,2*Count)/(2 * Count 
* Power(2,2*Count) * Fac(Count)*Fac(Count)); 

S2 :=SI+ S2; 
End; 
Suml := S2; 

End; 

Function Sum2 (Zn:Real):Real; 

Var 
Count : Integer; 
S1, S2: Real; 

Begin 
SI := O; 
S2 :=O; 
For Count:= 0 To 15 Do 
Begin 

S 1 := Power(-1 ,Count) * Power(Zn,(2*Count+ 1 ))/(Power(2,(2*Count+ 1 )) 
* Fac(Count) * Fac(Count+ 1)); 

S2 :=SI+ S2; 
End; 
Sum2 := S2 * S2; 

End; 
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Function Sum3 (Zn,Rt:Real):Real; 

Var 
Count : Integer; 
Sl , S2: Real ; 

Begin 
Sl := O; 
S2 :=O; 
For Count:= 1 To 15 Do 
Begin 

S 1 := Power(-1,Count)*2*Count*Power((Zn/Rt),(2*Count)) 
/(Power(2,(2*Count))*Fac(Count)*Fac(Count)); 

S2 :=SI+ S2; 
End; 
Sum3 := S2; 

End; 

Function Sum4 (Zn,R,Rt:Real):Real; 

Var 
Count : Integer; 
S 1,S2 : Real; 

Begin 
SI :=O; 
S2 := O; 
For Count:= 1 To 15 Do 
Begin 

SI := Power(-l ,Count)*Power((Zn/R),(2*Count)) 
*(Power(R,(2*Count+2))-Power(Rt,(2*Count+2))) 
/( 2 * Count * power (2,2*Count) *Fac(Count)*Fac(Count)); 

S2 :=SI+ S2; 
End; 
Sum4 := S2; 

End; 

Function Sum5 (Zn,R,Rt:Real):Real; 

Var 
Count : Integer; 
S 1,S2 : Real; 

Begin 
Sl := O; 
S2 :=O; 
For Count:= 0 To 15 Do 
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--

Begin 
Sl := Power(-1,Count)*Power((Zn*Rt/R),(2*Count+l)) 

/(Power(2,(2*Count+ 1 ))*Fac(Count)*Fac(Count+ 1 )); 
S2 :=SJ+ S2; 

End; 
Sum5 := S2 * S2; 

End; 

Function Sun16 (Zn,R,Rt:Real):Real; 

Var 
Count : Integer; 
S1,S2: Real; 

Begin 
S1 := 0; 
S2 :=0; 
For Count :=1 To 15 Do 
Begin 

S 1 := Power(-1,Count)*2*Count*Power((Zn/R),(2*Count)) 
* Power(Rt,(2 * Count-1)) 
/(Power(2,(2*Count))*Fac(Count)*Fac(Count)); 

S2 := S1 + S2; 
End; 
Sum6 := S2; 

End; 

Type 
Table= Array [1..9] of Real; 

Var 
Zn: Table; 
n, I, J, K : Integer; 
R, Rt, Ra, Rb, Re, Rd, Tio, Tso, dRt, t: Real; 
An, Bn, d, H, kl, kKs, Tmp, Al, As : Real; 

Begin { Main Program } 
Zn[l]:= 2.405; 
Zn[2]:= 5.520; 
Zn[3]:= 8.654; 
t := 1/360; 
Bn :=0; 
An :=0; 
Tc :=0; 
K :=0; 
I := O; 
Rt :=0; 
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Write ('Enter the density of solid phase (lb/sq(ft)) = '); 
Readln (d); 
Write ('Enter the latent heat of solidification per unit mass of liquid (Btu/lb) ='); 
Readln (H); 
Write ('Enter the thermal conductivity ofliquid (Btu/(hr ft F)) = '); 
Readln (kl); 
Write ('Enter the thermal conductivity of solid (Btu/(hr ft F)) = '); 
Readln (ks); 
Write ('Enter the thermal diffusivity of liquid (sq(ft)/hr) = '); 
Readln (Al); 
Write ('Enter the thermal diffusivity of solid (sq(ft)/hr) = '); 
Readln (As); 
Write ('Enter the melting point temperature (F) = '); 
Readln (Tmp ); 
Write ('Enter the liquid steel temperature (F) = '); 
Readln (Tlo ); 
Write ('Enter the cooling Temperature (F) = '); 
Readln (Tso); 
Write ('Enter the radius of steel (mm.)='); 
Readln (Rd); 
Writeln (1:3,' ',Rt:8:3); 
Re:= Rd I (12 * 25.4); 
While K= 0 Do 
Begin 

J := O; 
R :=Re; 
Rt:= R - le-9; 
While J = 0 Do 
Begin 

For n := 1 To 1 Do 
Begin 

Bn := 2 * Tlo * Suml(Zn[n])/(Sum2(Zn[n])) 
* Sum3(Zn[n],Rt) 
* Exp ( -Zn[n] * Zn[n] * Al * t I ( Rt*RT)); 

An:= 2 *Tso* Sum4(Zn[n],R,Rt)* Sum6(Zn[n],R,Rt) 
/( ( R*R * Sum2(Zn[n])) 

- ( Rt * Rt* Sum5(Zn[n],R,Rt))) 
* Exp (- Zn[n] * Zn[n] *As* t /( R*R)); 

End; 
dRt := Abs ( ((kl * Bn) - (ks * An)) I ( d*H)); 
Ra:= ( R - Abs(dRt * t)); 
Rb := Abs ( Rt - Ra); 

If Rb < 5e-8 Then J := 1 
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Else Rt:= (Rt+ Ra) /2; 
End; 
I:= I+ 1; 
Writeln (1:3,' ',(Rd -(Ra* 12 * 25.4)): 8:3); 
Re := Abs( R - Ra ); 
If Re< Se-7 Then K := 1 
Else K:= O; 
Re:= Rt; 

End; 
End. 
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