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ABSTRACT 


Constructions with compass and straightedge have been widely used in art and design across 

many cultures. In this way, Greek geometry (primarily through Euclid's Elements) has influenced 

art and architecture across the world. As translations of Euclid's Elements arose in various 

cultures, it inspired artists and gave them a theory of the idealized shapes that were their basic 

tools; artists repaid their debt to mathematics by making creative advances in the techniques that 

begged mathematicians to examine the underlying geometry . 

Using a compass and straightedge to recreate geometric designs found in artistic 

masterpieces are wonderful problems of Euclidean geometry for high school students; they are 

visually interesting and complex, but based on relatively simple underlying principles. The 

designs found in Gothic cathedrals are especially well suited for this purpose. 

Constructions with straightedge and compass provide limitless opportunities for students to 

apply the results of Euclidean geometry, they allow students to participate in the mathematical 

process of discovery and justification, and they are a link between geometry and art, architecture, 

and a variety of trades. 

A survey of constructions with compass and straightedge and an examination of how they 

can be used to enrich the teaching of high school geometry are provided within the framework of 

applications to Gothic architecture. 

Ill. 



The Compass and Straightedge 
in the Teaching of Eu.clidean'Geometry . 
with Applications in Gothic Architecture 

As a first year teacher, I came across a few basic constructions with straightedge and compass 
scattered through the text that I was using. They each consisted of step by step instructions on 
how to complete the desired construction and were accompanied by graphics of a cartoon 
compass completing the described movements. I faintly recalled performing a few clumsy 
constructions as a high school student myself, and as an undergraduate I had some exposure to 
the idea that such constructions had been a focus of the ancient Greek mathematicians who 
provided us with the foundations of Euclidean geometry. I also possessed a vague 
understanding that some of the constructions they attempted were not possible, but that this was 
not proven until relatively modern times. So out of respect to the history of geometry, as we 
came across these constructions in the text, I showed my students how to manipulate a compass 
and straight-edge to perform the desired figure. We started with constructing a perpendicular 
bisector of a segment; they learned how to place an arc above and below a line segment using one 
endpoint of the segment as a pivot and then the other. In fact, after a few attempts, they became 
rather adept at estimating where to place the mark so that they could use extremely short arcs to 
find the points needed to construct the bisector. After these obligatory excursions for some 
historic flavor, we went back to learning the definitions of geometric figures, their properties, and 
how these properties could be proven in our adopted axiomatic system. 

I didn't give the constructions much more thought until about a year later when I began 
researching the relationship between art and geometry hoping to find some applications of 
geometry that would lend themselves to good cumulative projects for high school students. It 
was then that I began to realize the potential of constructions in teaching students Euclidean 
geometry. Constructions with straightedge and compass provide limitless opportunities for 
students to apply the results of Euclidean geometry, they allow students to participate in the 
mathematical process of discovery and justification, and they are a link between geometry and 
art, architecture, and a variety of trades. What follows is a survey of constructions with compass 
and straightedge and an examination of how they can be used to enrich the teaching of high 
school geometry, including an application to gothic architecture. 

1. Constructions in the Curriculum 

The rules of the game are simple, 

1) Given two points, you can draw a line that passes through the two points. Though 
the theoretical line extends infinitely, for our physical model this means that we can 
extend it in either direction as far as is needed. 

2) Given two points, you can draw a circle with one of the given points as its center and 
passing through the other point. 

Our physical tools for accomplishing these tasks are the collapsible compass and the 
unmarked straightedge. By collapsible compass we mean that when the compass is picked up, it 
collapses, and thus it does not "keep track" of the radius of the circle that it has just drawn. Since 
the straightedge that we are using is also meant to be unmarked, neither of our tools individually 
provides the function of carrying a distance from one place in our figure to another, but we often 
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use the ability of our compass to carry distances in our constructions . Are we changing the rules? 
We don' t have to wait long to find the answer when examining Euclid's Elements; by the third 
proposition the equivalence of the collapsible compass and straightedge to our modem compass 
and straightedge has been established. Let us begin by examining these first propositions of 
Euclid. 

Note: The three constructions that follow are based on the Sir Thomas Heath trans lation of 
Euclid' s Elements. In Heath's translation, some terms are used differently than our modem 
interpretation; for example, the term " line" is used to describe what we would call a line segment 
and "equal" is used to mean congruent. I have used modern language where appropriate. I have 
also chosen a list format for the proofs in keeping with the style in many high school texts. In 
constructions we utilize points of intersection of lines, segments, rays, circles, and arcs to 
construct new lines and circles. Though Euclid used this method without justification, in a more 
complete development of geometry (such as [5]), reasoning should be provided to ensure that 
these intersections exist. For practical purposes of high school level geometry instruction, this is 
not typically addressed in constructions and will not be provided in this paper. 

E.I.1 	 To constmct an equilateral triangle with a given line segment as one of its sides. 

Let AB be the given line segment. 

Construct circle AB, the circle centered at A and passing through B. 

Construct circle BA. 

Label one of the points of intersection C. 

Claim: Triangle ABC is the desired triangle. 


Proof: 	 AC is congruent to AB as they are both radii of circle AB. 
BC is congruent to AB as they are both radii of circle BA. 
AC is congruent to BC by the transitive property of congruent segments. 
Thus ABC is an equilateral triangle. _ 

Notice that this construction didn' t require a length/ distance to be copied at any step, so this 
construction could just as easily be accomplish with a collapsible compass (if a physical model 
existed of such a tool) . The same is true of the next two propositions . 

...... -.. . . c . "1 

". -. 
F · 

A 

A B DjB 
IE ..., 

e " 

Figure 1.1 . First proposition of Euclid. (E.I.1) Figure 1.2. Second proposition of Euclid. (E.I.2) 
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E.I.2 To place at a given point [as an extremity] a line segment congruent to a given line segment. 

Let A be the given point and BC the given line segment. 
Construct line segment AB. 
On segment AB, construct equilateral triangle ABD (E.I.l). 
Construct circle Be. 
Let E denote the point of intersection of ray DB with circle Be. 
Construct circle with center D and passing through E. 
Let F denote the point of intersection of ray DA with circle DE. 
Claim: AF the desired line segment. 

Proof: 	 BC is congruent to BE as they are both radii of circle Be. 
DF is congruent to DE as they are both radii of circle DE. 
DA is congruent to DB as they are sides of an equilateral triangle. 
The remainder AF is congruent to remainder BE. 
AF is congruent to BC by the transitive property of segment congruence. _ 

E.I.3 	 Given two unequal line segments, to cut off from the greater a segment congruent to the less. 

E.I.3 follows quickly from E.1.2 (for a given larger line segment AX) by simply 

constructing circle AF. 

The point of intersection of this circle with a ray AX will produce the required cut. 


Again notice that Euclid's second and third propositions do not utilize any copying of a 
distance or length from one part of the figure to another; however, if you look closely at Euclid's 
third proposition, you will see that the purpose of the construction is to provide a method to 
"carry" distance with the straightedge and collapsible compass. Once this has been established, 
we could use this method to copy any length in our construction onto another ray. 
Unfortunately, the method is a little cumbersome to work through each time we want to carry 
distance, but since we know that it is possible, we can happily use this ability of our modern 
compass without having changed the original rules of the game. 

Notice that this traditional development allows us to justify our use of a modern compass in 
performing constructions immediately and without any other geometric results. However, it 
may not be a logical place to start a high school geometry class. If geometric results are desired 
before constructions are to be introduced, there is another sequence of constructions that nicely 
establish the ability of the collapsible compass and straightedge to carry length. This alternative 
development was presented by Edwin Moise in his text Elementary Geometry from an Advanced 
Standpoint. His presentation, though unlike Euclid's, requires some results of Euclidean 
geometry to already have been developed. Moise's constructions, Ml-M4 below, can be used in 
place of E.I.1 through E.I.3 to establish the ability to carry distances. 

M.l: 	 To construct the perpendicular bisector ofa given segment. 

Let AB be the given line segment. 

Construct circle AB. 

Construct circle BA . 


Let C and D denote the points of intersection of AB with BA . 


Line CD is the desired line. 

Let E denote the point of intersection of line CD with line segment AB. 

Point E is the bisector of the given segment. 
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Proof: 	 Ae, AD, and AB are congruent as they are radii of circle AB. 
Be, BD, and AB are congruent as they are radii of circle BA. 
Thus AC is congruent to BC and AD is congruent to BD by the transitive property of 
segment congruence. 
So .0.ACD is congruent to .0.BCD by SSS. 
Angle ACD is congruent to angle BCD as they are corresponding angles in congruent 
triangles . 
.0.ACE is congruent to .0.BCE by SAS. 
Thus AE congruent to BE by as they are corresponding sides of congruent triangles . 
And so E is the desired bisector of AB. 
Also, angle AEC is congruent to angle BEC as they are corresponding angles in 
congruent triangles. 
And since they are a linear pair, line CD is perpendicular to line AB.• 

" 
L2 

c 

A i IE : 8 	
I 
i A ~ p 8 

,. 

L1 

-....;... ­

v 

Figure 1.3. First construction of Moise (M.l) Figure 1.4. Second construction of Moise (M.2) 

M.2: 	 To construct a line perpendicular to a given line, and passing through a given point on the line. 

Let L1 be the given line and P the given point on this line. 

Choose another point A on L. 

Construct circle P A . 


The circle P A will intersect L1 at A and one other point. Label this other point B. 

Construct the perpendicular bisector L2 of AB as in the previous construction. 

Claim: L2 is the desired line. 


M.3: 	 Given three points A, B, and C to construct rec tangle ABED on A B such that AD congruent to 
AC. 

Let points A, B, and C be the given points. 

Construct line AB. 

Construct a perpendicular line to AB at A. Label this line h. 

Construct circle Ac. 

Choose one of the points of intersection of h with circle Ac and label it D. 

Construct a perpendicular line to h that passes through D. Label it b. 

Construct a perpendicular line to line AB that passes through B. Label it b. 

Let E denote the point of intersection of band b. 

Claim: ABDE is the desired rectangle. 
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Proof: Angle BAD is a right angle as h was constructed perpendicular to AB. 
Angle ABE is a right angle as b was constructed perpendicular to AB. 
Angle ADE is a right angle as h was constructed perpendicular to h. 
h is parallel to b since they are both perpendicular to AB. 
Angle DEB is a right angle since same-side interior angles of parallel lines are 
supplementary. 
Thus ABED is a rectangle. 
And AD is congruent to AC as they are radii of circle Ac. _ 

~ ~ 

Figure 1.5. Construction M.3 	 Figure 1.6. Construction M.4 

M.4: Given a line segment and a ray, to construct a segment on the ray congruent to the given 
segment. 

Let AC be the given segment and BX the given ray. 

Construct segment AB. 

Construct a rectangle ABED on AB such that AD is congruent to AC 

Construct circle BE. 

Let F denote the intersection of circle BE with ray BX. 

Claim: BF is the desired segment. 


Proof: 	 AC congruent to AD by construction. 
AD congruent to BE as they are opposite sides of a rectangle , 
BE congruent to BF as they are radii of circle BE. 
Thus Ac is congruent to BF by the transitive property of segment congruence. _ 

Again, the ability of the collapsible compass and straightedge to transfer lengths has been 
established. This development requires a few more constructions, but these constructions are 
time well spent as M.l and M.2 are fundamental constructions that the majority of later 
constructions will utilize. These four constructions also provide applications of properties of 
parallel lines and rectangles as well as triangle congruence postulates. 

Whichever development you choose, we have certainly established the validity of using a 
modern compass to complete our constructions. Let us now look at how geometric constructions 
can be used to teach students mathematics. 
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Basic constructions and the instructional method 

Students receive many benefits from learning compass and straightedge constructions. 
Constructions provide an opportunity for students to experience genuine mathematical methods 
while applying geometric properties. Students can look for construction methods to accomplish 
the desired outcome (discovery/problem solving), and then write proofs to explain how they 
know the construction produces the desired result (formal justification based on an axiomatic 
system). Meanwhile, they are applying the properties of, and relationships between, geometric 
figures. In other words, constructions can help students to mature mathematically as well as 
master the content objectives. 

Before beginning constructions, students will need to be introduced to the compass and 
straightedge that they will be using, and the rules must be explained. These rules are repeated 
here for convenience: 

1) Given two points, you can draw a line that passes through the two points. 
2) Given two points, you can draw a circle with one of the given points as the center 

and passing through the other point. 
The discussion of the collapsible compass may be left until later when they are more familiar 
with the concept of constructions. However, after the definition of a circle is discussed and they 
have had some time to practice using the tools, the ability of the compass to mark off congruent 
distances with congruent circles should be noted. They are now ready to begin exp loring 
constructions. 

The first step in any construction is to pose the problem to the students. The students must 
then clarify what elements they are starting with and what they will need to construct. After they 
have explored the problem for a time, the students may get stuck and need a hint as to how the 
construction may be accomplished . Finding an appropriate technique will not be obvious to 
most students, and many of the techniques that we employ were discovered and improved upon 
through the years, so the students may not discover them independently in a short amount of 
time. Having the students work in small groups may also be helpful. The hints are meant to 
illuminate a key idea in a common method of constructing the figure, but the students will have 
to use geometric properties to complete the construction and to feel confident that it produces the 
desired result. There are often multiple ways that the constructions can be accomplished, and 
students should be encouraged to explore alternate methods, but they must be able to justify that 
these alternate methods produce the required figure. After a method has been found, the 
students should write up a thorough description of the method (including a labeled figure) and 
then complete a formal justification of why the method produces the desired result. This 
justification could take a variety of forms depending on the role of proof in their course; here the 
standard two-column proof format will be used. 

Though Euclid began his development of geometry with three constructions (E.I.1-E.I.3), he 
then went on to prove a variety of results before returning to constructions, w hich he 
interspersed throughout Elements. The basic constructions rely on triangle congruence postu lates 
or other results, so it seems natural to introduce constructions to our students shortly after they 
have studied triangle congruence and to explore more complex constructions after the required 
geometriC results are developed. Let us examine the basic constructions that would provide a 
good introduction to students. We begin with a construction E.I.1 that we have already 
examined, but with a look at how we could lead students through its development. 

C.l . To constntct an equilateral triangle with a given segment as one side. 

Task: 

Let AB be the given segment. We wish to construct an equilateral triangle ABC. 

What conditions does a figure have to meet to be an equilateral triangle? 
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(We need to find where to place the third vertex so that it is equidistant to the given 
endpoints.) 

Hints: 
Consider all points that are the same distance from A as B is from A. Where are these 
points? 
Consider all points that are the same distance from B as A is from B. Where are these 
points? 
Are there any points that satisfy both requirements? 

c 
, ,~ - :, 

A :. :8 

Figure 1.7 

The construction and justification are provided in E.!.l earlier. Notice that the construction 
and justification reinforce the idea of a circle as a locus of points and the definition of an 
equilateral triangle. This is a good construction to begin with as it can be introduced early in the 
development of Euclidean geometry and is very intuitive. The next construction we will examine 
is not the second of Euclid, but is extremely useful as it is useful in many other constructions. 

C.2. To construct an angle on a given ray that is congruen t to a given angle. 

Task: 

Let angle A be the given angle and PQ the given ray. 

We want to find a point R so that the angle QPR is congruent to angle A. 


Hints: 

Consider the given angle as one of the angles of a triangle. 

What could we use to form a congruent triangle on the given ray? (SAS, ASA, AAS, SSS) 

Why wouldn't the SAS postulate, the ASA postulate, or the AAS theorem be practical? 

If we want to use the SSS postulate, how can we form congruent sides? 


Construction: 

Let angle A be the given angle and PQ the given ray. 

Construct a circle with center P and passing through Q. 

Construct a circle with center A and radius of length PQ. 

Let D and E denote the points of intersection of circle A with the rays of angle A. 

Construct a circle with center Q and radius of length DE. 

Let R denote the point of intersection of this circle and circle PQ. 

Construct ray PR. 

Claim: Angle QPR is the desired angle. 
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Figure 1.8 

Iustifica tion: 

Given: Angle QPR constructed as described. 
Show: Angle QPR is congruent to angle A. 

Statement Reason 

1. LQPR constructed as described 

2. Circles A and PQ are congruent. 

- - ­ -
3. PQ=. AD , PR =. AE 

4. QR =DE 

-
5. QR =.DE 

6. tillAE =. t::.QPR 

7. LDAE =. LQPR 

1. Given 

2. Def. of congruent circles. (Circle 
A constructed with same radius 
as PQ.) 

3. Radii of congruent circles are 
congruent. 

4. Circle QR was constructed with 
radius of length 0 E 

5. Def. of segment congruence. 

6. SSS Triangle Congruence 
Postulate 

7. Corresponding parts of 
congruent triangles are 
congruent. 

This construction may have been more difficult for the students to discover independently, 
but with some hints, they should be able to see the logic used and begin to get a feel for the 
thought process in trying to develop constructions. After working through this example, they 
can apply similar ideas to accomplish the next construction. 

C.3. To bisect a given angle. 

Task: 

Let BAC be the given angle. 

What needs to be true to have an angle bisector? 

(We must construct a ray in the interior of angle BAC so that it cuts the angle into two 

congruent parts.) 
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Hints: 

Imagine the desired bisector. 

How can we make the two angles congruent? 

Consider the two angles as angles in congruent triangles. 

How could we form these congruent triangles? 

Which triangle congruence postulate/theorem would be helpful? 

How could we meet the requirements of this postulate/theorem? 


Construction: 

Let angle BAC be the given angle. 

Construct circle AB. 

Let D denote the point of intersection of AB and ray AC. 

Construct an equilateral triangle on DB. Label the third vertex E. 

Claim: Ray AE is the desired bisector. 


c 

'-. 0 

•. 1; .> 
A 

Figure 1.9 

I ustification: 

Given: Ray AE constructed as above. 
Show: Ray AE bisects angle BAe. 

Statement Reason 
1. Ray AE constructed as above. 1. Given 

- - 2. All radii of a circle are congruent.2. AD =: AB 

3. WEB is equilateral. 3. By construction. 

4. DE=: BE 4. Def of equilateral triangle. 

5. AE =: AE 5. Reflexive property of segment 
congruence. 

6. WAE =: MAE 6. SSS Triangle Congruence Postulate 

7. LDAE =: LBAE 7. Corresponding angles of congruent 
triangles are congruent 

The use of the equilateral triangle in the previous construction may not be the first suggested 
method (congruent circles DB and Bo could also be used to get the required point E), but it is a 
nice example of how constructions can call upon earlier constructions in a similar fashion to 
theorems building upon one another to provide a more concise representation. The next 
construction makes use of C.2. 
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C.4 To construct a line parallel to a given line and through a given point. 

Task: 

Let L1 be the given line and P the given point not on L1 . 

We want to construct a line though P that is parallel to Ll. 


Hints: 

Imagine the desired line. 

What theorems do we have that conclude that a pair of lines is parallel? 

What are the requirements of these theorems? 

Where might we want to construct a transversal? 


Construction: 

Let Ll be the given line and P the given point not on L1. 

Choose two points on L1. Let A and B denote these two points. 

Construct line AP. 

Construct a point C on line AP so that A-P-C. 

Construct a point D so that the angle CPD is congruent to angle PAB (C.2) and they are 

corresponding angles with respect to lines PD and Ll and transversal AP. 

Construct line PD. 

Claim: PD is the desired line. 


.of! 

. 
" C 

~< .. ~~~ .. .... ~.. . . .. -p. ~ l> 

D 

L1 A B 

v 
Figure 1.10 

Iustification: 

Given: Line PO constructed as above. 
Show: PO passes through P and is parallel to L1• 

Statement Reason 

1. LinePDconstructed as above. 
2. L.PABandL.CPDare 

corresponding angles with 
respect to lines L1 and PO and 
transversal AP. 

3. L.PAB == L.CPD 

4. Lines PD and L1 are parallel. 

5. Line PD passes through P. 

1. Given 
2. By construction. 

3. By construction. (C.2) 

4. If two lines are crossed by a 
transversal and corresponding 
angles are congruent, then the lines 
are parallel. 

5. By construction. 
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Parallel lines could be formed in a similar manner by constructing the congruent angle in a 
different position so that are alternate interior or alternate exterior angles are congruent. Ou r 
ability to copy angles (along with our capacity to transfer lengths) also provides us with a variety 
of methods to construct congruent triangles. 

C.S 	 To construct a tn·angle congruent to a given triangle. (With a given point as a vertex and a side 
on a given ray.) 

Task: 

Let ABC be the given triangle and PQ the given ray . 

We need to find a point R on ray PQ and a point S not on line PQ so that triangle PRS is 

congruent to triangle ABC 


Hints: 

How do we know when two triangles are congruent? 

How can we construct a triangle that meets these requirements? 


Method 1: Using the side-side-side (SSS) triangle congruence postulate 

Hints : 

Mark the point R on PQ so that PR is the same length as AB. 

What points are at a distance CA from P? 

What points are at a distance BC from R? 

What point(s) satisfy both requirements? 


Cons truction: 

Let ABC be the given triangle and ray PQ the given ray. 

Construct a point R on ray PQ so that PR == AB. 

Construct a circle with center P and radius equal to AC 

Construct a circle with center R and radius equal to BC 

Let S denote one of the points of intersection of circle P and circle R. 

Claim: Triangle PRS is the desired triangle. 


c 

s .... 
- --.~ 

A 8 

p R Q 

Figure 1.11 
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Iustification: 

Given: Triangle PRS consh'ucted as above. 
Show: Triangle PRS congruent to triangle ABe. 

Statement Reason 
1. Triangle PRS constructed as 

above. 

2. PR =: AB 

3. PS = AC 

- -
4. PS=:AC 

5. RS = BC 

6. RS =: AC 

7. MRS=:MBC 

1. Given 

2. By construction. 

3. Circle Ps was constructed with 
radii of length A e. 

4. Def of segment congruence 

5. Circle Rs was constructed with 
radius of length Be. 

6. Def of segment congruence. 

7. SSS Triangle Congruence Postulate 

Method 2: Using the side-angIe-side (SAS) triangle congruence postulate . 

Construction: 

Let triangle ABC be the given triangle and let ray PQ be the given ray (P the given point) . 

Construct an angle on ray PQ congruent to angle BAC. 

Let r1 denote the ray constructed. 

Construct a point R on ray PQ so that PR =: AB. 

Construct a point S on r1 so that PS =: AC. 

Claim: Triangle PRS is the desired triangle. 


I' 

rf·. 

C~B s , . 

0-­

p QR 

Figure 1.12 
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Tustification' 

Given: Triangle PRS constructed as above. 
Show: Triangle PRS congruent to triangle ABC. 

Statement Reason 

1. Triangle PRS constructed as 
above. 

2. PR -= AB 

3. L.RPS -= L.BAC 
- -

4. PS-=AC 

5. MRS-=MBC 

1. Given 

2. By construction. 

3. By construction. 

4. By construction. 

5. SAS Triangle Congruence Postulate 

Method 3: Using the angle-side-angle (ASA) triangle congruence postulate. 

Cons truction: 

Let triangle ABC be the given triangle and ray PQ the given ray. 

Construct point R on ray PQ so that PR -= AB. 

Construct ray Ll from P so that angle P is congruent to angle A. 

Construct ray L2 from R (on the same side of line PQ as L1) so that angle formed on ray 

RP is congruent to angle B. 

Let S denote the point of intersection of Ll and L2. 

Claim: Triangle PRS is the desired triangle. 


i' 

L1 C~8 
" L; . - _.$ 

p QR 

Figure 1.13 
Tus tifica tion' 

Given: Triangle PRS constructed as above. 
Show: Triangle PRS congruent to triangle ABC. 

Statement Reason 
1. Triangle PRS constructed as 

above. 

2. PR -= AB 

3. L.P == L.A 

4. L.R -= L.B 

5. MRS -= MBC 

1. Given 

2. By construction. 

3. By construction. 

4. By construction. 

5. ASA Triangle Congruence 
Postulate 
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Though method 1 requires some creativity, the other two are a direct application of the 
postulates being used. Students may also suggest the SAA triangle congruence theorem, but 
when they attempt to use it, they will quickly see that it is not practical for this purpose. Another 
basic ability that we will want to have at our disposal is that of constructing a perpendicular line. 

C6. To construct a perpendicular bisector ofa given segment. 

Task: 

Let AB be the given segment. 

Construct a line that is perpendicular to AB and passes through its midpoint. 


Hints: 

Consider the construction for an equilateral triangle on this segment. 

If you connect the two points of intersection of the circles it looks like it might be a 

perpendicular bisector to the segment. How could we justify this? 

Consider the triangles formed . 


I>. 

:C · 

A : :E ':B 
I • 

~6 
"V 

Figure 1.14 

The construction and justification for C.6 are given as M.1 above. Notice that this 
construction would be very difficult for students to discover, but it is a good exercise in 
justification that requires using the characteristics of the larger triangles DAC and DBC to find 
properties of the smaller triangles, a common technique used in high school geometry proofs. 
With the technique to construct a perpendicular bisector of a segment established, the next two 
constructions follow easily . 

C 7. To construct a line perpendicular to a given line and through a point on the given line. 

Task: 

Let Ll be the given line and P the given point. 

Construct a line perpendicular to Ll and passing through P. 


Hints: 

What makes this construction different from C.4? 


Construction: 

Let LJ be the given line and P the given point on L1. 


Choose another point A on LJ. 
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Construct circle P A. 


Let B denote the other point of intersection of circle PA with L1 . 


Construct the perpendicular bisector L2 of segment AB. 

Claim: L2 is the desired line. 


A 

: L2 

'A : p '· 8 
( . . . :. 

L1 

v 
Figure 1.15 

Iustification: 

Given: L2 constructed as above. 
Show: L2 passes through point P and is perpendicular to Lj • 

Statement 

1. L2 constructed as described. 

2. PA=.PB 

3. PA = PB 

4. P is the midpoint of AB 

5. L2 is the perpendicular bisector of 
AB 

6. L2 is perpendicular to LJ 

7. L2 passes through P 

Reason 

1. Given 

2. Radii of a circle are congruent. 

3. Def of segment congruence. 

4. Def of midpoint. 

5. By construction. 

6. Def of perpendicular bisector. 

7. Def of perpendicular bisector. 

c.s. To construct a line perpendicular to a given line and through a point not on the given line. 

Task: 

Let Ll be the given line and P the given point (not on Ll). 

We want to construct a line that passes through P and is perpendicular to L1. 


Hints: 

We know how to construct a perpendicular bisector. 

How could we find two points on Ll so that the perpendicular bisector of the segment 

formed would pass through P? 


Construction: 

Let Ll be the given line and P the point not on the line. 

Construct a circle P that intersects Ll in two points. 
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Let Rand Q denote these points of intersection of circle P and L) . 

Construct the perpendicular bisector of RQ, label it L2. 

Let M denote the point of intersection of L2 and L). 

Claim L2 is the desired line. 


AL2 

~p 

. M..( 

R -'. 
) 

Q L1 

" Figure 1.16 

Iustification: 

Given: L2 constructed as above. 
Show: L2 perpendicular to L1 and passes through P. 

Statement Reason 
1. L2 constructed as above. 

2. L2 is the perpendicular bisector of 
RQ. 

3. L2 is perpendicular to L1• 

4. RM ==QM 

5. PR == PQ 

6. PM ==PM 

7. t:.RMP == t..QMP 

8. LRMP==LQMP 

9. LRMP and LQMP are a linear 
pair 

10. LRMP and LQMP are right 
angles 

11. Line PM is perpendicular to L1 

12. P is on L2 

1. Given 

2. By construction. 

3. Def. of perpendicular bisector. 

4. Def of perpendicular bisector. 

5. All radii of a circle are congruent. 

6. Reflexive property of segment 
congruence. 

7. SSS Triangle Congruence Postulate 

8. Corresponding angles of congruen t 
triangles congruent 

9. Definition of linear pair. 

10. Definition of right angle. 

11. Definition of perpendicular lines. 

12. Through a point on a line, there is 
exactly one perpendicular line 
passing through the point. 
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Once perpendiculars have been developed, we can move on to the construction of our second 
regular polygon, the square. Probably the most intuitive method is to construct perpendiculars 
to segment AB through both of its endpoints, and then to mark off a segment congruent to AB on 
one of these lines and create a perpendicular through this new point. A method that is slightly 
less obvious, but more practical for drawing [6], is to construct a perpendicular through one of 
the endpoints, say B, mark off a point C on this perpendicular so that BC congruent to AB and 
then to construct two circles passing through B with centers at A and C. The intersection of these 
two circles will provide the final vertex D for the square. 

~ L1 

D.· : C 

< . . .. • 
. A i s 

v 
Figure 1.17 

It may be worthwhile to let students work through the most obvious construction which 
requires three perpendiculars, and then to encourage them to find methods that are more 
economic for drawing (such as the one presented in detail below which requires two 
perpendiculars to be constructed or the even more concise method above.) 

e.9. To construct a square with a given segment as a side. 

Task: 
Let AB be the given segment. 
We wish to construct points C and D so that ABCD a square. 

Hints: 

What do we need to be true about figure ABCD so that it is a square? 


Construction: 

Let AB be the given segment. 

Construct a line Ll perpendicular to AB and passing through point A. 

Construct a line L2 perpendicular to AB and passing through point B. 

Construct a point Con L2 so that BC=AB. 

Construct a point Don LJ so that AD=AB. 

Construct segment CD. 

Claim: Figure ABCD is a square. 
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Figure 1.18 

Justification: 

Given: Figure ABeD constructed as described. 
Show: Figure ABeD a square. 

Statement Reason 
1. Figure ABeD constructed as 

described. 

2. AB ~ BC, AB ~ AD 

3. BC ~ AD 

4. Ll ~ AB, L2 ~ AB 

5. L DAB and LCBA are right 
angles 

6. mL DAB =90, mL CBA =90 

7. mLDAB + mLCBA = 180 

8. L DAB is supplementary to 
L CBA 

9. Ll 11L2 

10. Quadrilateral ABeD a 
parallelogram. 

11. L ABC ~ L ADC , 
LDAB~LDCB 

12. mL ABC = mLADC , 
mL DAB = mLDCB 

13. 90 = mL ADC , 
90 = mL DCB 

14. L ADC and LDCB 'are right 
angles 

1. Given 

2. By construction. 

3. Transitive property of segment 
congruence. 

4. By construction. 

5. Def of perpendicular lines. 

6. Def. of right angles . 

7. Substitution 

8. Def. of supplementary. 

9. If two lines are crossed by a 
transversal and same-side interior 
angles are supplementary, then the 
lines are parallel. 

10. In a quadrilateral, if a pair of 
opposite sides are both congruent 
and parallel, then the 
quadrilateral a parallelogram. 

11. In a parallelogram, opposite 
angles are congruent. 

12. Def of angle congruence. 

13. Substitution 

14. Def. of right angle 
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15. In a parallelogram, opposite sides 15. AB == CD 
are congruent. 

16. Substitution.16. AD == BC == AB == CD 
17. Quadrilateral ABeD is a square. 17. Def. of a square. 

Notice that C.9 has also provided another way to construct parallel lines. This completes the 
first round of basic constructions that could be introduced after triangle congruence postulates 
were established. The next construction requires results on similar triangles. 

C.lO To cut a given segment into n congruent parts. 

Task: 

Let AB be the given segment. We will first consider cutting it into five congruent parts. 

We will need to find 4 pOints equally spaced along AB. 


Hints: 

Consider a ray from A that is noncollinear with AB. 

How could we find five equally spaced points along the ray? 

Is there a way that we could use these points to find the desired points on AB? 

Connect the last of these points to B. Now can you see a way? 


Construction: 

Let AB be the given segment. 

Construct ray AX where X is not on line AB. 

Choose a point C on ray AX. 

Mark off the distance AC on ray CX. Let D denote this new point. 

Mark off the distance AC on ray DX. Let E denote this new point. 

Continue along ray EX, obtaining two more points F and G. 

Construct segment GB. 

Construct a line parallel to GB and passing through F. 

Let H denote the point of intersection of this line and AB. 

Construct parallel lines to GB through points F, E, D, and C. 

Let H, I, J, and K respectively denote the intersections formed by these lines and segment 

AB. 

Claim: The segments AK, KJ, JI, IH, and HB are the desired segments. 
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I ustifica tion: 

Given: Segments AK, Kl, 11, IH, and HB constructed as above. 
- - - - ­

Show: AK ~ KJ ~ JI ~ IH ~ HB. 

Statement Reason 

1. AK, KJ, JI, IH, and HB 
constructed as described. 

2. Lines FH, El, 01, and CK are all 
parallel to line GB. 

3. AC = CO = DE = EF = FG 

4. AC: CD : DE : EF : FG 
=1:1:1:1:1 

5. AK: Kl : 11 : IH : HB 
=1:1:1:1:1 

6. AK = KI = 11 = IH = HB 

7. AK=KI=JI=IH~HB 

1. Given 

2. By construction 

3. By construction. 

4. Def. of proportional. 

5. If three or more parallel lines 
intersect two transversals, they cut 
the transversals proportionally. 

6. Proportion Notation 

7. Def. of segment congruence. 

Though this construction cut the segment into five congruent segments, the same method can 
of course be used to cut a segment into any finite number of congruent pieces. The next 
construction follows easily from the result that a line tangent to a circle is perpendicular to the 
radius of the circle at the endpoint on the circle. 

Cll To construct a line tangent to a given circle and passing through a given point on the circle. 

Task: 

Let circle A be the given circle and let B be the given point on it. 

We wish to construct a line through B that is tangent to circle A at B. 


Hints: 

What do we know about the relationship between a circle and its tangent lines? 


Construction: 

Let circle A be the given circle and point B the given point on the circle. 

Construct ray AB. 

Construct Ll perpendicular to line AB and passing through point B. 

Claim: Ll is the desired line. 
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Figure 1.20 

Justification: 

Given: LJ constructed as above. 
Show: LJ tangent to circle A. 

Statement 
1. LJ constructed as described. 

Reason 
1. Given 

2. LJ perpendicular to line AB. 2. By construction. 

3. LJ is tangent to circle A. 3. If a line is perpendicular to the 
radius of a circle at the endpoint on 
the circle, then the line is a tangent 
to the circle. 

Constructing a line tangent to a circle from a point not on the circle requires a little more 
ingenuity, but is still accessible with a few hints . 

e12 To construct a line tangent to a given circle and passing through a given point not on the circle. 

Task: 

Let B be the given circle and A the given point not on circle B. 

We need to find a point on circle B so that the line passing through this point and point A 

is tangent to circle B. 


Hints: 

What do we know about the relationship between a circle and its tangent lines? 

So what would we need to be true about the triangle with A, B, and the point of tangency 

as vertices? 

In what situations have we found that we have a right triangle? 

Where would the center of this circle need to be? 

Construct this circle. What point(s) would complete the desired triangle? 

So how can you now construct the tangent line(s)? 


Construction: 

Let B be the given circle and A the given point. 

Construct segment BA. 
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Bisect segment BA, let C denote the midpoint. 

Construct circle CB. 

Let D denote the point of intersection of circle CBwith circle B. 

Construct line AD. 

Claim: Line AD is the desired line. 


.' . 

o . 

B~ --.­

-:A-c···· ....• . 
. .,. 

Figure 1.21 

Iustification: 

Given: Line AD constructed as above. 
Show: Line AD tangent to circle B. 

Statement Reason 
1. Line AD constructed as 1. Given 

described. 
2. C is the midpoint of AB 2. By construction. 

3. CB=CA 3. Def. of midpoint. 

4. Circle Ca contains A. 4. Def of circle. 

S. Segment BA is a diameter of S. Def. of diameter of a circle. 
circle Ca. 

6. Arc BOA is a semicircle 6. Def of semicircle. 

7. Angle BOA is a right angle 7. If an inscribed angle in a circle 
intercepts a semicircle, then the 
angle is a right angle. 

8. Segment BD is perpendicular to 8. Def of right angle. 
DA 

9. Line AD is tangent to circle B. 9. If a line is perpendicular to the 
radius of a circle at the endpoint on 
the circle, then the line is a tangent 
to the circle. 

This concludes the basic toolkit of constructions that students will need to begin exploring 
applications. However, there is another construction that is instructional to students. 
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C.13 To construct a triangle from three segments, 

Task: 

Let AB, CD, and EF be the given segments, 

We want to construct a triangle with sides of length AB, CD, and EF on ray PQ, 


Hints: 

Begin with one side of the triangle. 

How can you find the third vertex? 


Construction: 

Let AB, CD, and EF be the given segments. 

Mark off a distance EF from P on ray PQ. 

Let R denote this point. 

Construct a circle with center R and radius CD, 

Construct a circle with center P and radius AB. 

Let S denote one of the points of intersection of circle P and R. 

Claim: PRS is the desired triangle. 


A. B S, ' 
',. 

C D 
P R "Q- ' 

E F 

Figure 1.22 

Iustification: 

Given: Triangle PRS constructed as above. 
Show: PR=EF, RS=CD, and SP=AB. 

Statement Reason 
1. Triangle PRS constructed as 

described. 
2. PR=EF 

3. RS=CD 

4. SP=AB 

1. Given 

2. By construction. 

3. Circle Rs was constructed with 
radius of length CD. 

4. Circle Ps was constructed with 
radius of length AB. 

Though this construction is quite simple, if we change the lengths of the given segments, we 
may certainly have a problem as you can see in figure 1.23 below where segment CD has been 
shortened, This is a simple illustration for students of why a more thorough development of 
geometry is sometimes desired. 
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Figure 1.23 

II. An Application: Gothic Tracery 

Constructions with compass and straightedge have been widely used in art and design across 
many cultures. In this way, Greek geometry (primarily through Euclid's Elements) has influenced 
art and architecture across the world. The architecture of ancient Greece was designed around 
ideal geometric proportions that are still used in art today for their pleasing appearance. The 
stroke of the compass also arises in gothic architecture, Islamic tile work, paintings of the 
Renaissance, and even Buddhist sand mandalas; it is present almost anywhere we have sought to 
beautify the world around us with geometric design. The use of the compass by artists and 
artisans has caused the development of Euclidean geometry to become intertwined with the 
development of art and fine crafts. As translations of Elements arose in various cultures, it 
inspired artists and gave them a theory of the idealized shapes that were their basic tools; artists 
repaid their debt to mathematics by making creative advances in the techniques that begged 
mathematicians to examine the underlying geometry. 

Geometric designs found in artistic masterpieces often lend themselves to wonderful 
problems of Euclidean geometry. They are visually interesting and complex, but based on 
relatively simple underlying principles. The designs found in gothic cathedrals are especially 
well suited for this purpose, as they are readily available for examination with countless texts and 
websites devoted to their documentation . Once students have mastered the basic constructions 
they can access endless possibilities in design. 

Gothic architecture refers to a style of architecture that began in 12th century France and 
quickly spread throughout Europe where it remained the prominent style for cathedrals built 
during the next three-hundred years. Gothic architects utilized flying buttresses and the pointed 
arch to support soaring ribbed vault ceilings and large expanses of stained glass with delicate 
tracery. On the exterior, they used sharply pointed spires to further emphasize the vertical reach. 
Intricate carvings of circular designs, gargoyles, saints, and biblical scenes covered tlle 
stonework. 
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Figure 2.2. Photograph by Jean Roubier.* 

Figure 2.3. St. Denis Abbey, Paris. Photograph by Chuck LaChiusa-. 

The Horizon Book o/Great Cathedrals, Jay Jacobs, editor in charge, American Heritage Publishing, 1968 . 
.. Architecture Around the World, http://ah.bfn.org/. Used with permission. 
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Figure 2.4. Notre Dame Cathedral, Paris. Figure 2.5. Notre Dame Cathedral, Paris. 

Photograph by Chuck LaChiusa'. Photograph by Chuck LaChiusa*. 


An example 

Let us examine the stone tracery of the window shown in Figure 2.5. Our chalIenge is to recreate 
this design with our compass and straightedge. It seems logical in an architectural application to 
begin with the window opening and work inward. The pointed arch outline of the window is 
one of the staples of gothic design, and a great example of the interaction between art and 
geometry. The gothic arch, or equilateral arch, is formed by the same method that we used for 
constructing an equilateral triangle on a segment. The arch is simply comprised of the arcs AC 
and BC as shown in figure 2.6 below. 

. 
, . , , 
___ _ ___ · w _, _ _ _U 

c 

A : B 

: . 

Figure 2.6 

Architecture Around the World, http://ah.bfn,org/. Used with permission, 
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Once the arch has been constructed, we wish to fill in the smaller equilateral arches along its 
base and the circle so that they are just touching one another and the outer arch. The following 
definition and result will be helpful. 

Definition. We say that two circles or a line and a circle are tangent, if they intersect in 
exactly one point. This point of intersection is called the point of tangency. 

Theorem. If circles with centers A and B pass thru a distinct point P that is on line AB, 
then the circles are tangent at the point P. [1] 

Notice that the theorem does not specify whether or not the circles are exterior to one another, so 
it would apply to either of the arrangements shown in figures 2.7 and 2.8. 

A [I 
A B 

Figure 2.7 Figure 2.8 

C.14 To inscribe two congment equilateral arches and a circle in a given equilateral arch as in figure 
2.5 (so that each figure is tangent to the other two and to the larger arch). 

Hints 
Construct the arches first. 
How can we construct two congruent arches along this base line? 

How can we construct a circle that just fills the space? 
If D is the midpoint of segment AB, imagine circles Ao and AB. 
Now consider circles Bo and BA . 

What must be true about our desired circle? What do we know about the center point? 

Now that we have found the center point, how do we find the radius? 

Where will the desired circle be tangent to arc DE on circle Ao? 


Construction: 

Let ACB be the given equilateral arch with base AB. 

Bisect segment AB. 

Let D denote the midpoint. 

Construct equilateral arches on AD and DB. 

Bisect segments AD and DB. 

Let G and H denote their respective midpOints. 

Construct circle with center A and passing through H. 

Construct circle with center B and passing through G. 

Let K denote the intersection of circles AH and Be that is on the same side of line AB as C. 

Construct segment AK. 
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Let I denote the point of intersection of segment AK with circle AD. 

Construct circle with center K and passing through 1. 

Claim: Circle Kr and equilateral arches AED and DFB are tangent to the larger equilateral 

arch and to each other. 


I' 1 c 

J 
.. .. .. 

K 
" 

E • . I " ., L ,:' . F 
., " ~... ' . 


BA G o H 

Figure 2.9 Figure 2.10 

Iustification: 

Points A, D, B are collinear by construction of D, and D is on circles AD and BD by 

construction, so AD is tangent to BD at D by the above result. Thus the equilateral arches 

are tangent to one another. 


Also G and H are collinear with A and B by their construction, and A is a point on circles 
GAand BA by their construction, so GAis tangent to BA at A Similarly HB is tangent to AB 
at B, Thus the smaller arches are tangent to the larger arch. 

Points A, I, K are collinear by construction of L and I is on circles AD and K! by 
construction of I and Kr respectively, so AD is tangent to Kr at 1. Let Land M denote the 
points of intersection of ray BK with circle BD and BA respectively. We know that 
AH=AK as segments AH and AK are radii of the same circle. Also AD=AI as segments 
AD and AI are radii of the same circle. Subtracting AI from AK and subtracting AD from 
AH leaves us IK=DH. Similarly LK=DG. And DH=DG as halves of congruent segments 
are congruent. Thus IK=LK by transitivity, so L is on circle Kr. But L was also on circle 
BD, and B, K, and L are collinear by construction of L, thus Kr is tangent to BD at L. 
Therefore the circle is tangent to the two sub-arches. 

Let J denote the intersection of ray AK and circle AB. Reasoning similar to that in the 
previous argument gives us that, JK=BH and IK=DH. Since H is the midpoint of 
segment DB by construction, BH=DH. So by tranSitivity, JK=IK Thus, J is on circle Kr. 
And A, K, J collinear by construction of J, so we have that Kr tangent to AB at J. Similarly 
Kr is tangent to BA at M. Therefore the circle is tangent to the larger arch. _ 

As is common in the gothic windows, the same configuration is repeated within the smaller 
arches. With the basic structure in place, we turn our attention to the flower-like figures within 
the circles. Such designs, referred to as lobed or foiled figures, are present everywhere in gothic 
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cathedrals. They are a major component of almost every window and adorn a variety of other 
surfaces, such as the marble floor shown in figure 2.11 and the iron gate in figure 2.12. 

Figure 2.11. St. Denis Abbey, Paris. Figure 2.12. St. Denis Abbey, Paris. 

Photo by Chuck LaChiusa·. Photo by Chuck LaChiusa*. 


These lobed figures are formed by inscribing various numbers of congruent circles inside of a 
larger circle (around the perimeter) so that adjacent circles are tangent to one another and to the 
outer circle. To create an n-foil, we can think of slicing the larger circle into n congruent sectors 
and then inscribing a circle within each sector. We begin with a slightly simplified problem. 

C.IS To inscribe a circle in a given triangle. 

Hints: 

Imagine such a circle. What would need to be true about the center of the circle? 

Sketch such a circle in your triangle. 

Sketch in the line segments that would show the perpendicular distance of the center of 

this circle from each of the sides of the triangle. 

Consider the triangles formed by these segments, the sides of the triangle, and the 

segments connecting the vertices of the triangle to the center of the circle. 

Would any of these triangles be congruent? 

Starting again with the empty triangle, how could we construct these triangles in such a 

way that the appropriate pairs were congruent? 


Construction: 

Let triangle ABC be the given triangle. 

Construct the angle bisectors of angles CAB and CBA. 

Let D denote their point of intersection. 

Construct a line perpendicular to line AB and passing thru point D. 

Let E denote the intersection of this perpendicular with segment AB. 

Construct circle with center D and passing through E. 

Claim: Circle DE is the desired circle. 


Architecture Around the World, http: //ah.bfn.org(. Used with permission. 
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Figure 2.13 

Iustifica tion: 

Given: Circle DE constructed as described. 
Show: Segments AB, BC, and CA are tangent to the circle DE. 

Statement Reason 

1. Circle DE constructed as 
described 

2. Construct the line perpendicular 
to BC that passes through D. Let 
F denote the intersection of this 
line with line Be. 

3. Construct the line perpendicular 
to CA that passes through D. Let 
G denote the intersection of this 
line with CA. 

4. DE..l AB, 
- -
DF .1 BC, 

DG..l AC 

5. LBFD, LBED, LDGA, and 
LDEA are right angles 

6. MBD, tiFBD, MAD, and 
f:.GAD are right triangles 

7. Ray BD bisects angle CBA. 
Ray A D bisects angle CA B. 

8. LFBD == L EBD, 
LGAD==LEAD 

9. BD == BD, 

AD == AD 
10. tiFBD == MBD, 

f:.GAD == MAD 
- --­

11. ED == FD, GD == ED 

1. Given 

2. Construction C.8. 

3. Construction C.8. 

4. By construction. 

5. Perpendicular lines form four 
right angles. 

6. Definition of right triangle. 

7. By construction. 

8. Definition of angle bisector. 

9. Reflexive Property of Segment 
Congruence 

10. Hypotenuse Leg Right Triangle 
Congruence Theorem 

11. Corresponding segments in 
congruent triangles are 
congruent. 

- 30­



12. Def. of circle. 12. Points F and G are on circle DE 

13. If a line is perpendicular to the 13. AB is tangent to DE at E, 
radius of a circle at the

BC is tangent to DE at F, 
endpoint on the circle, then the 

CA is tangent to DE at G line is a tangent to the circle. 

Now that we can inscribe a circle in an arbitrary triangle, our task of inscribing a circle in a 
sector becomes rather simple. 

C.16 To inscribe a circle in a given sector (of a given circle) . 

Hints: 

On what line would the center of the circle have to lie? 

if this were a triangle, we would know what to do. Is there a triangle that we could use? 


Construction: 

Let AB be the given circle and let the sector defined central angle BAC be the given sector. 

Construct the angle bisector f) of angle BAC. 

Let D denote the intersection of r1 with arc BC. 

Construct the tangent line to arc BC at D. 

Let E and F denote the intersection of this tangent line with rays AB and AC respectively. 

Inscribe a circle in triangle AEF. 

Let G denote the center used in the construction of this circle. 

Claim: Circle G is tangent to arc BC and segments AC and AB. 


i' ,-:'f 
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Figure 2.14 

Justification: 
Circle GD is tangent to AF and AE by construction. So it is tangent to segments AC and 
AB. When constructing GD in triangle AEF, the angle bisector AD of FAE had already 
been constructed, and its intersection with one of the remaining angles is used to find G. 
Thus G is collinear with A and D. Notice also that D is on AB by construction of D as the 
intersection of r1 and AB. Thus GD and AB are tangent at D.• 

With the ability to inscribe a circle in an arbitrary circle, we are ready to construct our first 
foiled figure. Let us begin with the 4-foil, also known as a quatrefoil. 
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C 17 To inscribe four congruent circles in a given circle that are tangent to the larger circle and to each 
other. 

t' 

Hints: 
How can we divide the circle into four congruent sectors? 
The construction is simpler if you bisect two adjacent sectors and inscribe a circle in the 
sector bounded by the two bisectors. Why is this equivalent? 
Once one of the circles is formed, how can we use this circle to more easily construct the 
others? (What determines a circle?) 

Construction: 
Let AB be the given circle. 
Construct line AB . 
Construct a perpendicular to line AB through A. 
Let E and D denote the points of intersection of this line with circle AB. 
Construct angle bisectors of EAC and EAB. 
Let F and G respectively denote the points of intersection of these bisectors with circle AB. 
Inscribe a circle H in the sector of AB with central angle GAF. 
Construct circle AH. 
Let 1, J, and K denote the intersections of AH with rays AC, AD, and AB respectively. 
Construct circles Ie, JD, and KB. 
Claim: H , Ie, JD, and KB are the desired circles. 
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Figure 2.15 

Iustification: 
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Figure 2.16 

'K .. .j .".. .. .. B 

All of the smaller circles are tangent to circle AB by construction, so we only need to 
consider their tangency to one another. Without loss of generality, let us consider circles 
HE and Ie. AE=AC as they are both radii of circle AB by construction of E and C Also 
AH=AI as radii of AH. So by subtracting AH and AI from AE and AC respectively, we 
get HE=IC In other words, HE and Ie are congruent circles. 

Circle HE by construction is tangent to segment AF. Let us call this point of tangency L. 
Consider triangles HAL and IAL. By construction AF is the angle bisector of angle EAC, 
so angles HAL and IAL are congruent. As radii of the same circle HA=IA, and the 
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segment AL is shared . Thus triangle HAL is congruent to triangle IAL. So IL=HL as IL 

and HL are corresponding parts of congruent triangles. 


From above, the radius of circle Ie is equal to HL, so IL a radius of Ie. 

Therefore L is on circle Ie. Also, HLA is a right angle since LA is tangent to circle HE at L. 

Then by triangle congruence, ILA is also a right angle. Thus I, L, and H are collinear. 

Therefore Ie and HE are tangent at point L. • 
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Figure 2.17 Figure 2.18 

The other points of tangency can be found by connecting the centers of remaining consecutive 
circles pairs. We now have all of the curves and points needed to describe the quatrefoil as 
shown in figure 2.18 above. So we can now inscribe quatrefoils in the smaller circles of our basic 
window structure from figure 2.10 to further replicate the design of our example window. Other 
popular gothic designs that can be formed by the four inscribed circles are shown in figures 2.19 
through 2.21 below. 

Figure 2.19 Figure 2.20 Figure 2.21 

If we wish to construct an 8-foiled figure we can simply bisect all the angles between the 
diameters that we used to construct the 4-foil and then proceed in the same fashion as is 
illustrated in figures 2.22 and 2.23. An alternate design based on the eight inscribed circles is 
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shown in figure 24. Notice that we could continue bisecting the sectors to create a 16-foil, then a 
32-foil, etc. 

<' 

Figure 2.22 Figure 2.23 Figure 2.24 

Notice that the tangency proof for the quatrefoil does not depend upon the measure of the 
central angle that determines the sectors; it only requires that the sectors are congruent, so we can 
generalize this method to create n-foils as long as we can devise a way to cut the circle into n 
congruent slices. One way to accomplish this is to inscribe a regular n-gon in the circle. The 
other lobed figure needed to complete our example window is the 6-foil, so let us turn our 
attention to the hexagon. 

C.IS To inscribe a regular hexagon in a circle. 

Hints: 

Consider the desired regular hexagon; imagine six segments connecting the vertices to 

the center of the circle. 

What do we know about these triangles? 

What is the relationship between the various sides of these triangles and the circle? 

How can we use this information to construct the vertices? 


Construction: 

Let AB be the given circle. 

Construct line AB. 

Let C denote the other point of intersection of line AB with circle AB. 

Construct circles BA and CA. 

Let D and E denote the intersections of BA with AB. 

Let F denote the intersection of CA and AB that is on the same side of AB as D. 

Let G denote the other point of intersection of CA with AB. 

Construct segments BE, EG, Gc, CF, FD, and DB. 

Claim: Hexagon BEGCFD is the desired figure . 
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Justification: 
Because they share radius AB, AB and BA are congruent circles, Thus AB, AD, AE, EB, 
and DB are all equal as they are the measures of radii of congruent circles, So triangles 
ABE and ABO are equilateral. Also, circle CAis congruent to circle AB, since they share 
radius AC So AC AF, AG, GC, and FC are all equal. Thus triangles ACG and ACF are 
equilateral. Notice that all four of these equilateral triangles are congruent as they all 
have side length equal to radius of AB, 

And equilateral triangles are also equiangular with all their angle measures equal to 60 
degrees, so angles BAE, GAC BAD, and FAC all have measure 60 degrees, The sum of 
the measures of angles BAE, EAG, and GAC is 180, because together they form a straight 
angle, Thus the measure of angle EAG is 60 degrees. Likewise, the sum of the measures 
of angles BAD, OAF, and FAC is 180. So the measure of angle OAF is 60 degrees. 
Therefore, triangles EAG and OAF are congruent to all of the other triangles by the Side­
Angle-Side Triangle Congruence Postulate. 

So all sides of hexagon BEGCFD are congruent as they are corresponding segments of 
congruent triangles, and all angles of hexagon BEGCFD are congruent (with measure 
120). Thus BEGCFD is a regular hexagon, _ 

We now have a way to slice the circle into 6 congruent sectors, so we can create a 6-foil just as 
we constructed the quatrefoil above - by inscribing a circle in each sector and connecting the 
centers of adjacent circles to find their points of tangency. The hexagon also allows us to 
construct another popular figure in gothic design, the 3-foil or tri-foil, by using every other vertex 
of the hexagon to divide our circle. We can also form a 12-foil, 24-foil, etc. by bisecting the central 
angles. 

- 35­



Figure 2.27 	 Figure 2.28 

With the 6-lobed figures established, we can now complete the example window. The 3, 4, 
and 6-foil (and their multiples) are some of the most popular lobed figures in gothic design. 
Another common figure, the 5-foil requires a bit more work. 

The pentagon 

The problem of constructing the pentagon is equivalent to constructing a central angle of 72 
degrees (or an inscribed angle of 36 degrees). This is accomplished by constructing an isosceles 
triangle whose base angles are twice the third angle, but we will first need to establish a few 
results. 

C.19 	 To cut a given segment so that the rectangle contained by the whole and one of the segments is 
equal (in area) to the square on the remaining segment. 
(To construct a point H on segment AB so that (HB)(AB)=(AHY) 

Construction: 

Let AB be the given segment. 

Construct square ABCD on segment AB. 

Construct ray DA (extending side DA). 

Construct the midpoint E of AD. 

Construct circle EB. 

Let F denote the point of intersection of EB with ray DA. 

Construct square FAHG on FA so that Hand G are on the same side of FA as B. (Notice 

that H will lie on segment AB.) 

Claim: H is the desired point. 
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Iustification: 
Quadrilateral ABCD is a square by construction, thus angle DAB a right angle, So 
triangle EAB is a right triangle. The Pythagorean Theorem then gives us 

(AE)2+(AB)2=(EB)2 ~ 
Now E is the midpoint of segment AD by construction, so AE=1/2 (AD). Again because 
ABCD a square, AB=AD. From these two equalities we have 

AE = 1/2 (AB). 
Also, EB=EF as they are radii of the same circle, and EF=EA+AF, so EB=EA+AF. 
Substituting from our last result gives EB=1/2(AB)+AF. Also, quadrilateral FAHG is a 
square by construction, so AF=AH, which then gives us 

EB= 1/2 (AB)+AH. 
Now substituting into the equation that we obtained from the Pythagorean Theorem 
produces 

( 1/2 (AB))2 + (AB)2 = ( 1/2 (AB) + AH)2 

which becomes 


(AB)(AB - AH) = (AH)2 

with simple algebraic manipulation. Thus 


(AB)(HB) = (AH)2 .• 


The ratio between the resulting segments is often referred to as the divine proportion or 
golden ratio. We will soon be utilizing this construction in the formation of our desired isosceles 
triangle. This construction was certainly not as intuitive as the previous constructions, but once 
the construction is complete, it is not too difficult to establish that it produces the desired result. 
Though this would not be an appropriate construction for high school students to develop, they 
could be given the construction and asked to provide a proof. This construction (along with the 
entire pentagon formation) would certainly be a good example for them of a more complicated 
construction that requires clever applications of the basic results of geometry. Before we move on 
to the construction of our triangle, we need one more result. 

Theorem (E.III.32). The angle formed by a chord of a circle and a ray tangent to the 
circle at one of the endpoints of the chord is congruent to any inscribed angle that 
intercepts the arc that lies on the same side of the chord as the ray. 
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Proof Let BC be a chord of circle A and let line L1 be tangent to circle A at B. If CB is 
perpendicular to L11 then it passes through A, and so cuts the circle into two semicircles, 
In this case any inscribed angle would also be a right angle, and would thus be congruent 
with the angle formed by L1 and Be, which is what was required, Let us assume then 
that chord BC is not perpendicular to L1, Thus it forms one acute angle and one obtuse 
angle with the opposite rays from B on L1, Choose points 0 and C on L1 so that O-B-C 
and 0 is on the ray of L1 that forms the acute angle with Be Choose a point F on minor 
arc Be Construct ray BA and let E denote the other point of intersection of this ray with 
circle A Angle BCE is a right angle because it is inscribed in a semicircle, thus angles 
CEB and CBE are complementary, Notice that OBC is also complementary to angle CBE 
because radius AB is perpendicular to tangent line L1, Thus angles CEB and OBC are 
congruent, and all inscribed angles that intercept minor arc BC are congruent, so angle 
OBC is congruent to any arc that intercepts minor arc Be 

Now for the obtuse angle: Because angels CEB and BFC are opposite angles in an 
inscribed quadrilateral, they are supplementary. But we have established that angle CEB 
is congruent to angles OBe, so angles OBC and BFC are also supplementary. We also 
know that as a linear pair angles OBC and CBC are supplementary, Therefore angle BCF 
is congruent to angle CBC. • 

Now we are ready to construct our triangle. This construction is also not really appropriate 
for student discovery, but the proof is an excellent application of many familiar results , Due to 
the length of the proof, it would probably be best to present it to students (though they could 
provide the justification for each step) , 

C.20 To construct an isosceles triangle whose base angles are equal to twice the third angle (with a 
given segment as one of the congruent sides). 

Cons truction: 
Let AB be the given segment. 
Construct circle AB. 
Cut segment AB at H so that (HB)(AB)=(AH)2. 
Construct a circle with center at B and radius equal to AH. 
Let C denote one of the points of intersection of this circle with circle AB. 
Construct segments BC and CA 
Claim: BAC is the desired triangle. 
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Justification: 

(HB)(AB)=(AH)2 by construction of H, and BC=AH by construction of C Substitution 

then gives us (HB)(AB)=(BC)2. 


Construct segment HC, and consider the circle 0 through A, H, and C Notice that BA is 
a secant segment to this circle and BC is a segment from an exterior point of the circle to a 
point on the circle, thus segment BC is tangent to circle O. (Euclid III.37: If from a point 
outside a circle a segment to a point on the circle and a secant segment to the circle is 
drawn and the square of the measure of the first segment is equal to the product of the 
measures of the secant segment and the external part of the secant segment, then the 
segment drawn to a point on the circle is tangent to the circle at that point.) Now by 
E.IIL32 above, the measures of angles HCB and angle CAH are equal. 

Since H is in the interior of angle ACB, mLACB = mLACH + mLHCB. Substitution then 
given us mLACB = mLACH + mL CAH. Using triangle HAC, mLACH + mLCAH = mL 
CHB, because the measure of an exterior angle of a triangle is equal to the sum of the 
measures of the two remote interior angles O. Thus the transitivity of equality gives us 
mLACB = mLCHB. 

Also, segment AC is congruent to AB as they are both radii of circle AB. Thus triangle 
BAC is and isosceles triangle, so the measures of the base angles ACB and ABC are equal. 
So substitution in mLABC for mLACB results in mLABC = mL CHB, thus triangle HCB 
is an isosceles triangle, In other words HC=BC But BC=AH by construction of C, thus 
HC=AH. So triangle AHC is also isosceles, and so mLACH= mLCAH. 

RecaIl that mLACB = mLACH + mLCAH. Substituting in mLCAH for mLACH yields 
mLACB = mLCAH + mLCAH = 2(mLCAH). Which means that mLCBA = 2(mLCAH). 
Therefore triangle BAC is the desired isosceles triangle. _ 

Now that we have our triangle with the desired angle measurements, we simply need a way 
to inscribe it in a given circle. This construction is much more intuitive and its generation would 
be accessible to students. 

e21 To inscribe a triangle in a given circle similar to a given triangle. 

Hints : 

Could we choose any point on the circle for one of our vertices? 
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Consider the tangent line to the circle at this point. 

How can we use this tangent line to inscribe angle ABC in the circle? 

What about angle ACB? 


Cons truction: 

Let ABC be the given triangle and DE the given circle. 

Construct a tangent line L1 to DE at E. 

Chose points G and F on LJ so that G-E-F. 

Construct a ray r1 from E (on the same side of L1 as D) so that the angle formed by T] and 

ray EF is congruent to angle ABC from the given triangle. 

Let H denote the other point of intersection of fJ and DE. 

Construct a ray r2from E (on the same side of L1 as D) so that the angle formed by r2 and 

ray EG is congruent to angle ACB from the given triangle. 

Let I denote the other point of intersection of ray r2 and DE. 

Construct segments EI, IH, and HE. 

Claim: Figure EIH is the desired triangle. 
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Figure 2.33 

Iustification: 

Angle ABC and FEH are congruent by the construction of r1, and angles ACB and GEl 

are congruent by the construction of r1. Now by theorem 0, angle FEH is congruent to 

angle EIH, and angle GEl is congruent to angle EHI. So by transitivity of angle 

congruence, angle ABC is congruent to angle EIH, and angle ACB is congruent to EHI. 

Thus, triangle ABC is similar to triangle EIH by the side-side triangle similarity theorem. 


• 
We now have our desired triangle and a method of inscribing it in a circle, so are ready to 

construct the regular pentagon. 

C22 To construct a regular pentagon in a gi7'en circle. 

Hints: 

Inscribe a triangle similar to the triangle from C.20 in the circle. 

How can you determine where to place the other vertices? 

Consider the arcs subtended by the angles of the triangle. 
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Construction: 

Let AB be the given circle. 

Construct an isosceles triangle XYZ whose base angles (Y and Z) are twice its third angle 

(X) . 
Inscribe a triangle BEF in AB that is similar to triangle XYZ. 

Construct angle bisectors r1 of BEF and r2 of BFE. 

Let G denote the other point of intersection of r1 with AB. 

Let H denote the other point of intersection of r2 with AB. 

Construct segments BH, HE, EF, FG, and GB. 

Claim: Polygon BHEFG is the desired figure. 
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Figure 2.34 

Iustifica tion: 
By construction of isosceles triangle XYZ, the measures of angles X and Z are equal to 
half the measure of angle Y. Triangle BEF was constructed to be similar to triangle XYZ, 
so triangle BEF is also isosceles, and mLEBF = 1/2 (mLBEF) . Also, rays EG and FH were 
constructed to bisect angles BEF and BFE respectively, so mLBEG= 1/2 (mLBEF), m L GEF 
= 1/2 (mLBEF), nzLBFH = 1/2 (mLBFE), and mLHFE = 1/2 (mLBFE) . Since triangle BEF is 
isosceles, its base angles are congruent, i.e. mLBFE = mLBEF. So the last relationship 
implies that mLBFH = 1/2 (mLBEF), and mLHFE = 1/2 (mLBEF) . 

Now, we have that all five inscribed angles LEBF, LBEG, LGEF, LBFH, LHFE are equal 
in measure to 1/2mLBEF, thus they are all congruent to one another. Then the minor 'lrcs 
of circle A that they intercept, EF, BG, GF, BH, and HE, are also congruent. Thus the 
corresponding cords of circle A are congruent, i.e. segments EF, BG, GF, BH, and HE are 
all congruent to one another. 

Since the arcs that are cut by the vertices of pentagon BHEFG are congruent, any adjacent 
grouping of three of these arcs will also be congruent, i.e. major arcs HG, BE, HF, EG, and 
FB are all congruent to one another. Thus angles HBG, BHE, HEF, EFG, and FGB which 
subtend these arcs are congruent. Therefore, polygon BHEFG is a regular pentagon. _ 

With the pentagon established, the 5-foil can be constructed in the same maImer as before. 
This also provides the 10 and 20 foil, etc., as well as the pentagram, or 5-pointed star. 
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Figure 2.35 Figure 2.36 

The rose window 

The large round windows, called rose windows, that serve as the focal points in Gothic cathedral 
facades provide interesting geometric problems. Figure 2.37 shows the tracery of the rose 
window of the cathedral of Sens, France. 

Figure 2.37. The cathedral of Sens [3]. 
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Though this design is not composed directly of regular polygons and circles, these figures 
certainly underlie its basic structure. The outer ring is composed of twelve circles that are 
tangent to the larger circle and one another; they can be constructed using an inscribed hexagon 
as discussed above. 

.> 

Figure 2.38 	 Figure 2.39 

The next task is to construct the ring of six circles that lies within this ring of twelve. 

C.23 	 To construct 6 congruent circles that are tangent to one-another and to the n'ng of twelve circles 
in figure 2.39. 

Cons truction: 

Construct segments connecting the centers of consecutive circles in the ring of twelve. 

Construct an equilateral triangle on one of these segments (towards the center of the 

larger circle) and then on alternating ones as you move around the circle as depicted in 

figure 2.40. 


For each triangle, construct a circle with the inner vertex of the triangle as the center of 

the circle and passing thru the midpoint of one of the sides of the triangle that extends 

from this inner vertex (notice that it will then pass thru the midpoint of the other side 

extending from this vertex also) . 


Claim: These circles are tangent to one another and to the outer twelve circles. 
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I ustification: 

Consider two consecutive circles, say X and Z constructed as above. Circles K, M, 0, and 

Q are congruent by construction . By the prior discussion on constructing foiled figures, 

circles K and M are tangent to AD and each other at say L. Circles 0 and Q are tangent 

to AH and each other at say P. If two circles are tangent, then their centers are collinear 

with their point of tangency [1], so L is on KM and P is on OQ. 


Triangles KXM and OZQ are equilateral by construction, and KM=OQ as they are both 

twice equal radii, so triangles KMX and OQZ are congruent. Since circles X and Z were 

constructed to have radii equal to half the side of the congruent equilateral triangles, they 

are also congruent to outer circles and to each other. Since circles X and K pass thru the 

same point R on KX by construction of circle X, they are tangent to each other at R. The 

radii of circles X and M are also half the length of XM, so they would be tangent to one 

another at T. Similarly, circle Z is tangent to circle 0 at U (on OZ) and to circle W (on 

ZQ) . 


Now to establish the tangency of circles X and Z: 

X is on AL, and Z is on AP as each vertex of an equilateral triangle is on the 

perpendicular bisector of the opposite side. AK=AO by the construction of 0 on circle 

AK. By the construction of K, mLKAL=30, and by the construction of P, mLOA P=30. 

Angles LKLA and LOPA are right angles, because they are formed by radii of circles 

and their respective tangent lines. Thus triangles KLA and OPA are congruent by the 

Angle-Side-Angle Triangle Congruence Postulate, so as corresponding segments AL=AP. 

Also, as corresponding altitudes of the congruent equilateral triangles, LX =PZ. So by 

subtraction of congruent segments AX=AZ, i.e. XAZ is an isosceles triangle. Since mL 

XAZ=60, triangle XAZ is equilateraL So we. have mLAXZ=60, and it is easy to see that 
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mLLXM=30, so mLMXZ=90 since the three angles together form a straight angle. 
Similarly mLOZX=90. 

With XM and ZO being perpendicular to XZ, they are parallel to each other. Thus 
quadrilateral MXZO has a pair of opposite sides that are both congruent and parallel, so 
it is a parallelogram. Also, consecutive sides XM and MO are congruent, so MXZO a 
rhombus. We also know that XM=MO, so MXZO a square with sides twice the radii of 
the congruent circles. Therefore, circles X and Z both pass through the midpoint of 
segment XZ, and so are tangent to one-another there. _ 

Other possibilities 

So far, we have constructed figures based on squares, hexagons, and pentagons. What other 
regular n-gon' s can we construct with compass and straightedge? 

Gauss Wantzel Theorem. A regular n-gon is constructible with ruler and compass if and 
only if n is an integer greater than two such that the greatest odd factor of n is either 1 or 
a product of distinct Fermat primes. [4] 

22Definition. Fennat primes are odd primes of the form Fn = " + 1. 

There are 5 known Fermat primes: 3, 5, 17, 257, and 65537. So we have already established how 
to construct many of the n-gons that can be reasonably constructed by hand. Constructions of the 
15-gon and 17-gon will not be included here, but can be found in [2] and [1] respectively . 

Values of n<40 
for which the n-gon is constructible with 

ruler and compass 

2k 4,8,16,32, . .. 
-

2k .3 3,6,12,24,,, . 
-

2k .5 5,10,20, ... 

2k .17 17,34, ". 

15, 30,,, . 2k .3 . 5 

The Gauss Wantzel Theorem leads to an interesting question: Why would any figure not be 
constructible with compass and straightedge? 

III. Constructability 

Let us begin by describing what points we can construct with a compass and straightedge. Recall 
that in order to construct a line, we need two distinct points to already be present in our 
construction, and in order to construct a circle, we also need two distinct points (one as the center 
and the other a point on the circle), so we must have at least two points given. For simplicity, let 
us consider these given points as (0,0) and (1,0) in the x-y plane. From these, we can construct a 
line and two distinct circles. We then use the intersections of this line and these circles to get new 
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points that we can use (in combination with our original points) to form new lines and circles, 
and so on. 

Definition. We say that a point is a constructible point if it is the last of a finite sequence 
of points such that each point is in {(O,O),(l,O)} or is 

1) a point of intersection of two lines, each of which passes through two pOints that 
appear earlier in the sequence 

2) a point of intersection of a line through two pOints that appear earlier in the 
sequence and a circle with an earlier point as center and passing through an 
earlier point 

3) a point of intersection of two circles each of which have an earlier point in the 
sequence as center and pass through an earlier point in the sequence. 

Let us refer to these lines and circles formed from points in the sequence as ntler and compass 
lines (r-c lines) and ntler and compass circles (r-c circles) respectively, but notice that not all points on 
a r-c line or circle are constructible (only the points formed by intersections of these lines/circles.) 
We'll say a number x is a constructible number if (x,O) is a constructible point. 

Now since the x-axis passes through (1,0) and (0,0), it is a r-c line. So its intersection with a 
circle centered at the origin and passing through (1,0), gives us that (-1,0) is also constructible. 
Continuing with circles of radius 1, we can get that (m,D) is constructible for all integers m. We 
can also construct r-c lines through these points that are perpendicular to the x-axis (by using 
intersections of r-c circles to construct perpendicular bisectors), and these vertical lines intersect 
the circles just described to give us all points (m,l). We can then continue to use circles of radius 
1 to move up and down these vertical lines to construct all points (m,n) where m and n are 
integers as shown in figure 3.1 below. 

• •• 
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> 
(O,q) : (p,q) 

(0,0) • (p,O) 

v 

Figure 3.1. Constructing points (m,ll) where m, n integers. Figure 3.2. Relating constructible numbers & pOints. 

Notice that this gives us that the y-axis is also a r-c line, and we can construct r-c lines 
perpendicular to both axes through r-c points, so if p and q are constructible numbers, then (p,q) is 
a constructible point (and conversely, it is not hard to see that if (p,q) is constructible, then p and q 
are constructible numbers.) Also, all of (P,O), (-p,O), (O,p), and (O,-p) constructible if anyone of 
them is. In fact, when we have a few constructible points, we can get many new ones: 

Theorem. The constructible numbers form a field, i.e. the constructible numbers contain°and 1, and for all constructible numbers a,b,c (c not zero), a+b, a-b, ab, alc are also 
constructible. 

Proof First, we will consider a+b and a-b where a and b are constructible. Since a and b 
constructible, the point (a,b) constructible, so if we construct a circle with center at (a,O) 
and passing through point (a,b) as in figure 3.3, the points where the r-c circle intersects 
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the x-axis will give us points (a-b,O) and (a+b,O). So we have that a-b and a+b constructible 
numbers. 

L4 

(O.b) .. .ta .b) 
0(0.1) 

. >L 1 

T(a/b.O) ;' (a-b.O) . (a+b.O) P(-a.O) .. ·· 

0 (0.0) S(ab.O)(0.0) : (a.O) 

L2L3 

R(O,-b) 

" 

Figure 3.3. Constructing a+b and a-b. Figure 3.4 . Constructing ab and alb. 

Before we move on, notice that the constructions that we have previously discussed 
are made up of r-c lines and r-c circles and are thus constructible points since we have 
been following these same rules for creating lines and circles from previous points in our 
entire development of constructions. Thus we will now use these constructions to 
discover more constructible points without further justification. 

Let us see how to construct abo If a and b are constructible numbers, then P(-a,O) and 
R(O,-b) are certainly constructible points. And we already have Q(O,1) constructible, so 
the line U in figure 3.4 a r-c line. We can construct line L2 through R parallel to U, and 
it is also an r-c line (since C.4 produces an r-c line as we have just discussed). Thus the 
intersection point S of L2 with the x-axis is a constructible point. Considering the y-axis 
as a transversal, alternate interior angles RQP and QRS are congruent, so ~OQP and 
~ORS are similar right triangles (by the angle-angle similarity postulate) in ratio 1:b. 
Which means that the length of line segment OS is ab, i.e. the coordinates of constructible 
point S are (ab,O). So we have that ab also a constructible number. 

A similar process can be used to construct alb . This time we begin line L4 through 
Q(O,1) and parallel to r-c line L3. L4 a r-c line, so its point of intersection T with the x-axis 
a constructible point. Notice that ~OQT and ~ORP similar right triangles in ratio 1:b, so 
the coordinates of constructible point Tare (alb,O). Thus ajb is a constructible number. _ 

Since all integers are constructible, this last result implies that all rational numbers are 
constructible numbers, but are the rational numbers the only constructible numbers? The 
following result gives us the answer. 

Theorem. If x constructible and x>O, then fx is also constructible. 

Proof Since (x,O) constructible, P(O,-x) also constructible, and we can construct the 
midpoint M of Q(O,1) and P. Now we can construct an r-c circle with center at M and 
passing through P. The point R, where this r-c circle intersects the x-axis is a 
constructible point. Notice that the distance from M to Q is x+ 1, and segment MR a 

2 


radius of the same circle, so MR= x+ 1. Also 

2 
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MO = MQ - OQ = x + I - 1= x - I . 
2 2 

Using the Pythagorean theorem gives us 

OR2 + ( x ~ I r= C'; I r 
OR2= (t 2 

+2x+l)-(x
2 
-2x+l) 

4 

OR=..Jx 

Thus the coordinates of Rare (Fx ,0), i.e. Fx a constructible number. _ 

·t· 

0(0,1 ) 

R 

o 

M(O,(1-x)/2) 

P(O,-x) 

Figure 3.5 . Constructing fx . 

We know that 2 and 3 are constructible numbers, so by this last result.fi and .J3 are also 
constructible, but these are certainly not rational numbers. So the rational numbers do not give 
us all constructible numbers. Let us consider what numbers we must add to the rationals to get 
all constructible numbers. 

Definition. If x a positive number in a field F, but .j; not in F, then 

F( .,Jx )={ y + z.,Jx Iy and z in F} 

is called a quadratic extension of F. 

It is not hard to verify that F(.,Jx) is also a field [4]. Let r be a rational number and let's 
consider Q(~), a quadratic extension of the rational numbers. We will use the notation 

Q (-F:, F: ,..;;:; ,.. ·,·f:) to denote a finite chain of quadratic extensions, meaning that the 

quadratic extension Q(-F:) of the rationals is formed and then this new field is extended with-F; 

in the same manner, and so on. This is called an iterated quadratic extension of the rationals . 
Let E denote the union of all iterated quadratic extensions of the field rationals. In other 

words, E is made up of all the possible numbers that you can get using the integers and the 
operations +,-,.,+,...). We have just seen how these operations on the integers form ruler and 
compass numbers, so we have the following result. 
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Theorem. If x is in E, then x is a ruler and compass number. 

Does E include all of the constructible numbers, or are there others? It turns out that the 
converse is also true. 

Theorem. If x is a ruler and compass number, then x is in E. 

Proof. Let x be a constructible number, then by definition (x,D) is a constructible point. 
Notice that the coordinates of a constructible point can be determined,algebraically by 
solving the system of two equations of the r-c objects (lines or circles) that are intersecting 
at this point. Solving these systems requires simply using the operations +,-,,+,-J. And) .(",.(.. 
the coefficients of these r-c lines and circles are formed by the operations +,-, ',+ from the 
coordinates of previous constructible points. Thus the coordinates of constructible points 
never leave E. So x is in E.• 

Thus E is exactly the field that we are looking for. 

Theorem. Point P is a ruler and compass point if and only if the coordinates of P are in E. 
(Number x is a r-c number if and only if x is in the field E.) 

The question, "What constructions are possible?" really becomes a question of what points 
can/ cannot be constructed with a compass and straightedge, so we needed a very specific way to 
describe what points we could construct. It was helpful to consider our constructions in the x-y 
plane so that we could specify the coordinates of the points and use the notation and results of 
modern algebra. This notation and development was not available to the ancient Greeks and 
prevented them from having a full understanding of what constructions were possible. Three of 
the most famous constructions proposed by the ancient geometers have been found to be 
impossible in relatively modern times. The Greeks may have suspected their impossibility, but 
lacked the machinery to prove it. These three classical construction problems were 

1) Given a cube, to construct a cube with twice its volume. 
2) Given a circle, to construct a square with equal area. 
3) Given an angle, to trisect it. 

The first construction problem boils down to constructing a segment of the desired length to 
serve as the edge of the cube: for a given segment of unit length x, to construct a segment of 
length Xo such that x~ = 2Xl . In other words, you would need to construct a segment of length V2 . 
The problem of "squaring the circle" requires constructing a segment of length yo such that 
y~ = lfy2 where y the radius of the given circle. In other words, you would need to construct a 

segment of length.Jff. Regarding the trisection of an arbi trary angle, some angles can be trisected 
(such as a right angle), but this can not be done in general. An angle measure of 60° will suffice 
for a counterexample. It can be shown that V2, .Jff, and cos(20°) are not in E and thus not 
constructible numbers, 
compass [1] . 

thus the required segments can not be constructed with ruler and 

Concluding Remarks 

There are countless geometric designs in Gothic architecture that would be interesting 
construction problems for students of Euclidean geometry. In the examples contained here, we 
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have simply established the framework for these excursions and explored the potential of the 
compass and straightedge as instructional tools in teaching Euclidean geometry. 
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