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ABSTRACT 

CATEGORICAL PROPERTIES OF ALGEBRAIC CONSTRUCTIONS 

Sharon R . Verholek 

Master of Science in Mathematics 

Youngstown State University, 1994 

This paper presents some fundamental ideas from category 

theory and abstract algebra. Several algebraic constructions 

are given and then interpreted as adjunction between 

categories . As the final result. the First Isomorphism 

Theorem for Groups is interpreted as an adjunction of 

categories . 
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CHAPTER 0 

INTRODUCTION 

The intent of this thesis is to present some primary 

concepts of category theory and abstract algebra. and to 

develop a link between the two branches of mathematics . Much 

of the material presented in this paper is not new research ; 

however this paper attempts to join the two areas in an 

interesting way . Moreover. although much of the material in 

Chapter 2 appears in print . often in an obscure way (for 

example . [1.pp . 42-46] . [13 . p3-12]) . it is the author's 

experience that this information as presented in Chapter 3 

has not previously appeared in any standard text (see 

Bibliography) . And . it is the author's conjecture that 

Chapter 4 is new material. Additionally . the intent of this 

thesis is to encourage at least some readers to a further 

study of these branches of mathematics . 

Chapter 1 presents preliminary material referred to in later 

chapters. Chapter 2 gives three examples of standard 

algebraic constructions. Chapter 3 then interprets each 

algebraic construction of Chapter 2 as an adjunction of 

categories . Finally . Chapter 4 interprets the First 



Isomorphism Theorem for Groups as an adjunction between 

categories . 



CHAPTER 1 

CATEGORICAL PRELIMINARIES 

In this chapter, we develop the general notion of categories 

and adjunction between categories. For a more complete 

presentation of the ideas found in this chapter see any 

standard text on category theory, ( for example [ 10]) . 

A graph consists of : 

(i) a class of objects a,b.c ... 

(ii) a class with equality of arrows f,g , h, . .. ; 

(iii) two operations as follows; 

.Domain, which assigns to each arrow fan object 

a= dom ( f) : 

Codoma.in, which assigns to each arrow fan object 

b= cod ( f) : 

These operations on f can be indicated by showing fas an 

arrow from its domain to its codomain: 

f :a • b or 
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Two examples of finite graphs are : 

and a • b 

A category is a graph with two additional operations : 

Identity, which assigns to each object a an arrow 

ida :a • a ; 

4 

Compos.it.ion. which assigns to each pair (g . f) of arrows 

with dom(g) =cod(f) an arrow go f called their 

compos.ite, with fog : dom(f) • cod(g) . 

The following diagram illustrates the operation of 

composition . 

f 
a b 

g 

C 

These operations in a category are subject to the two 

following axioms : 

Associativity. For given objects and arrows 

a ~ b ~ c ~ d . 

we have the equality 

ko (go f)=(kog) of , 
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Thus when the composites on either side of the equal sign in 

the above equation are defined. the associative law holds. 

Unit law. For all arrows f : a • b and g : b • c 

composition with the identity arrow idb gives 

idb O f : f and goidb=g 

Thus the identity arrow idb for each object b acts as an 

identity for the operation of composition . The above 

equation can be represented pictorially by the statement 

that the following diagram is commutative : 

f 
a b 

C 

g 

The vertices of such a diagram represent the objects of a 

category and the edges represent the arrows of the same 

category . Such a diagram is commutative when . for each pair 

of vertices c and c' . any two paths formed from directed 

edges leading from c to c' yield by composition of labels . 

equal arrows from c to c' . 
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Some examples of categories are listed below. The morphisms 

for all categories are functions (with certain restrictions) 

and composition is ordinary function composition. 

SET= category of sets and functions. 

SGP = 

GRP = 

AB = 

category of semigroups and homomorphisms . 

category of groups and homomorphisms. 

category of (additive) abelian groups and 

homomorphisms . 

CRNG = category of commutative rings (with 1) and 

homomorphisms. 

POS = 

TOP= 

category of posets and order preserving maps . 

category of topological spaces and continuous 

functions . 

A functor is a morphism of categories. In detail for 

categories r and B, a functor T :C • b with domain C and 

codomain .fJ consists of two suitably related functions : the 

object function 1, which assigns to each object c of C an 

object Tc of .fJ ; and the arrow function, also written T, 

which assigns to each arrow f : c • c' of C an arrow T f : Tc • Tc' 

of .fJ , in such a way that 

T ( i d e ) = i d Tc , T ( g O f ) = T g O T f , 

the latter holding whenever the composite go f is defined 

in C . 



A functor can be described as a function T from arrows f of 

C to arrows Tf of ~ , carrying each identity of C to an 

identity of ~ and each composable pair <g. f> in C to a 

composable pair <Tg,Tf> in ~, with TgoTf = T(go f). 

Some examples of functors are listed below . 

ExAMPLE 1.1: T/Je .ident.ity functor ID c: C • C. It maps each 

object of C to itself and each morphism of f to itself. 

ExAMPLE 1 . 2 : Inc.l us.ion functors. C • : C • ~ . Let C be a 

subcategory of ~- The inclusion functor from f to ~ maps 

each object and each morphism of C to itself. 
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ExAMPLE 1. 3 : T/Je powerset functor P : SET • SET. For any set 

A, let P(A) denote the set of all subsets of A. If f :A • B 

is any map , then P(f) :P(A) • P(B) sends each Sc A, to its 

image f • (S)c B. This clearly defines a functor since both 

P (id A ) = id ?(A > and P ( g o f ) = P ( g) o P ( f ) . 

ExAMPLE 1 . 4 : Forgetfu.l functors. Let the objects of C be sets 

with a certain structure (for example , groups, topological 

spaces etc . ) and let the morphisms be structure preserving 

maps (homomorphisms, continuous functions, resp.) . Then the 

forgetful functor F :C • SET assigns to each object its 

underlying set and to each morphism the corresponding set 

map. For example the forgetful functor F:GRP • SET assigns 

to ea~~ group G the set f(G) of its elements (forgetting the 

multiplication and hence the group structure). and assigns 



to each morphism f:G • G' of groups the same function f. 

regarded just as a function between sets. 

We now introduce the concept of adjunction. Let e and B be 

categories . An adjunctJon from e to B . denoted by 

(f .G.a) :e • B . is a triple where F and 6 are functors 

while a is a class of functions which assigns to each pair 

of objects c E e , d E B a bijection 

a= a(c . d) :B(Fc.d) = e(c.Gd) 

8 

which is natural ind and c. The naturality of the bijection 

means that for all k :d • d' and all j :c • c' both the 

diagrams: 

a 
.8 (Fc . d) e(c.Gd) 

k. G(k). 

.B(fc.d') ------ e(c.Gd') 
a 

will commute. 

a 
.8 (Fc.d) ------- e ( c . Gd) 

F(j)° f 

B(fc' . d) ----• e ( c' . Gd) 

a 

WILLIAM F. MAAG LIBRARY 
YO UNGSTOWN STATE UNIVERSITY 
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In the above two diagram k. represents composition with k on 

the left and j. represents composition with j on the right . 

In words the diagrams state: 

'v c. c' e e. 'v d, ct' e JJ . 

'v k: d • d', 'v j : c • c'. 'v h: Fe • d. 

ex ( c. d) ( ko h) = G ( k) oex ( c. d) ( h) and 

ex(c,d) (hOF(j)) =ex(c,d) (h)Oj 

If (F.G.ex) is an adjunction, then Fis said to be a left 

adjoint of G and G is said to be a rig/Jt adjoint of F. A 

functor is said to /Jave a rig/Jt adjoint if it is the left 

adjoint of a functor, and is said to /Jave a left adjo.int if 

it is the right adjoint of a functor. 

An adjunction may also be described directly in terms of 

arrows . It is a bijection which assigns to each arrow 

f: Fe • d an arrow ex( f) = rad ( f): c • Gd. t/Je r.ig/Jt adjunct 

off. in such a way that the naturality conditions of the 

above two diagrams 

ex(fOFh) = exf oh, ex(kOf) = Gk o exf. 

hold for all f : Fe • d and all arrows k:d • d' and h:c • c'. 

We now introduce the unit T) and the counit Eby: 

Tl= ex(id) and E = ex-1 (id). 
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These definitions of adjunction. together with the notions 

of unit and counit. may be equivalently described as saying 

that the following two diagrams are always satisfied . 

Major Diagram 

C 
F 

> C j1-------, 

Gd~---- Gfc 
GI 

.s 

Fe 

13,I 

I 
t 
d 

The Major Diagram is satisfied if the following quantified 

statements are true : 

'r;/ c e IC I . 3 T/c : c • Gf c e e . 

'r;f de 111 1 • 'r;f f : c • Gd e e . 
3 ! I: F C • d E .8 . f =GI O T/c E e . 



Minor Diagram 

C 

h c ____ _ 

0 

GFc----

c' 

llc· 

GFc' 

11 

Fe 

Fe' 

To satisfy the Minor Diagram F :C • B must be a functor such 

that the action of Fon h. for h : c • c' in C. is Fh=Ttc,oh . 

Note: The Major Diagram only uses the action of Fon 

objects . Therefore. if Fis only known on objects and the 

Major Diagram is satisfied, the Minor Diagram will stipulate 

the action of Fon morphisms such that F becomes a functor 

and F--lG . Specifically. the left side and the right side 

of the Minor Diagram commuting implies Fh = Ttc·ofi 



CHAPTER 2 

DEVELOPMENT OF STANDARD ALGEBRAIC CONSTRUCTIONS 

In this chapter we give three examples of algebraic 

constuctions . Motivation for the following material can be 

found in Rotman [13] or Birkhoff and Maclane [l] . We start 

with booting certain semigroups up to groups . 

SECTION l . SEMIGROUPS TO GROUPS . 

Let (S . *) be a cancellation . abelian semigroup . Then• is 

an operation from SxS into S such that the following 

properties hold ; 

( i ) associativity : V a . b . c E s. a* (b*c) = (a•b)*c 

( i i ) cancellation : V a.b . c E s . a• b =a* c • b=c 

(iii) commutativity : V a.b E s. a• b = b * a 

( s . * ) need not be a group because it might lack identity 

and inverses . 

Now let (a . b) e SxS . Think of (a . b) as a•b·1
• Then we 

define a relation on SxS by (a . b) ~ (c.d) <::) a*d=b*c 

LEMMA 2.1.1 : ~ is an equivalence relation on SxS. 
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PROOF : 

(i) reflexivity Let (a , b) e SxS . (a , b) ~ (b,a) since 

a*b=b•a by commutivity 

(ii) symmetry Let (a,b) ~ (c , d) , i.e . a•d=b•c . Then 

(c,d) ~ (a , b) by commutativity of• and symmetry of 11-11 

(iii) transitivity Let (a . b) ~ (c.d) ~ (e . f) . That means 

a•d=b•c and c•f=d•e . Then by associativity and 

commutativity of• we have : 

So 

( a• d) • f = ( b • c ) • f = b • ( c • f ) = b • ( d * e ) 

(a•d)•f=b•(d*e) 

a•(d•f )=b•(e*d) 

a•( f•d)=(b•e)•d 

(a*f)•d=(b*e)•d 

13 

a•f=b•e ( by cancellation) . 

~ is an equivalence relation on Sx S . I 

Now set G=(Sx S)/~. i . e. G={[(a , b)] : ( a , b)E SxS}. Define a 

binary operation o on G to be : 

[(a,b)JO[(c,d)J=[a•c . b•d]. 

LEMMA 2.1.2: The operation o is well defined on G . 

PROOF: Let (a ,b) ~( a.bl and (c .d) ~( c , d). We must show 

(a•c . b•d) ~ (a• c . b•d). 

By definition of~ it suffices to show 



(a•c )* (b•d) = ( b•d )* (a• C) . 

Since ( a . b ) ~ (a . b) and ( C • a ) ~ ( C . d) . then a. b = b. a and 

c•d=d•c. respectively . Now by associativity and 

commutativity. 

( a • C ) • ( b• d ) = a • ( C • b ) • d 

o is well defined. I 

= (a•bi• (c•cti 

= (b•a)• (d•c) 

= b•(d•a)•c 
,._ ,._ 

= (b•d )* (a• c) 

LEMMA 2.1.3 : The operation o is associative in (G,O). 

PROOF : 

([(a . b))O[(c . d)))O[(e.f)] = [(a•c . b•d))O[(e . f)] 

= [((a*c)•e . (b*d)•f)] 

= [(a*(c•e).b*(d*f))] 

= [(a.b))O([(c•e . d•f)]) 
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= [(a . b))O([(c.d))O[(e . f)]) 

o is associative . I 

LEMMA 2. 1 . 4 : ( G . o) has an identity . 

PROOF : Let a e Sand let (c.d) e SxS . Then 

[ (a.a) Jo [ ( c. d)] = [ ( a• c. a• d)] 

and we know [(a•c . a•d)] ~ [(c . d)] iff (a•c)•d=(a•d) •c . 

Now ( a• c) • d = a• ( c• d ) = a• ( d• c) = ( a• d) • c. Thus 



15 

[(a.a)]O[(c.d)] = [(c . d)] 

So we have shown that given any a e S. [(a.a)] is the left 

identity element of (G,O) . It can be shown in a similar way 

that [(a.a)] also acts as a right identity . 

(G , O) has an identity . I 

LEMMA 2.1.5: (G,O) has the inverse property. 

PROOF: Let (a. b) e S x S and let x e S. Then 

[ ( a . b ) ] o [ ( b . a ) ] = [ (a• b . b• a ) ] . 

and [(a•b.b•a)J ~ [(x.x)] iff (a•b)•x=(b•a)•x . Since• is 

commutative the latter is true . Thus the class [(a.b)] . has 

inverse [(b.a)] . :. every [(a.b)] e (G , O) has an inverse. I 

LEMMA 2 .1·. 6: The operation o is commutative in (G. o) . 

PROOF: We need to show V [ (a , b)] . [ ( c . d)] e ( G, o) , 

((a . b)]O((c.d)] = [(c,d)]O[(a.b)] . 

Using the commutivity of• we have : 

[(a,b))O((c,d)] = [a•c , b•d] 

= [ c• a . d • b ] 

= [(c.d))O((a . b)]. 

(G. o) is abelian. I 

From Lemmas 2.1 . 1 through 2.1 . 6. we obtain the following 

theorem: 



1m:OREM 2.1.7 : From (S , *) we get an abelian group (G , 0). 

We now examine the relationship between (S , *) and (G,0) . 

First , fix des . Then Va e S , we have the class 

[(a•d . d)] . Next . define a mapping ~d:S • G by 

~d (a)=[ (a*d , d)]. 

LEMMA 2 . 1 . 8 , : There is only one ~: i . e . , V c e S. ~c = ~d . 

PROOF : Let a E s. We note [ ( a• C . C)] ~ [ ( a• d ' d)] if f 

(a•c)•d=c• (a•d) . Since this is true by the commutativity 

and associativity of• we have 
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~c (a)=[(a•c . c)] ~ [(a•d.d)]= ~d (a) . V C E S. ~c = ~d , I 

LEMMA 2.1 . 9: ~ is a sernigroup homomorphism from (S , •) to 

(G. o) . 

PROOF : Let a , b e S. We must show ~(a•b) = ~(a)O~(b) . Observe 

~(a*b) = [(a•b)•c , c)] , 

and 

~(a)0~(b) = (a•c,c)JO((b•c , c)] 

= [ ( (a• c ) • ( b• c ) , c• c) ] . 

And [((a•c)*(b*c) . c*c)] = [((a*b)*c.c)] iff (a•b)*c*(c*c) 

= c•(a*c)*(b*c). By commutativity and associativity of* we 

have: 

(a*b)*c*(c•c) = c*(a*b)*(c*c) 

= c• a• ( b * c) * c 
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= c• ( a• c ) • ( b• c) . 

i,(a*b) = i,(a)Oi,(b) . I 

LEMMA 2.1 . 10: 11 is one to one. 

PROOF: Let a.b ES. and let i,(a) = i,(b). Then 

i,(a) = ((a•c . c)] = ((b*c.c)] = i,(b). 

But ((a•c.c)] = ((b•c.c)] iff a•c = b•c so. by cancellation 

a= b . 11 is one to one . I 

Lemmas 2.1 . 8 through 2.1.10 prove the following theorem . 

DiEOREM 2 . 1.11: 11 is a homomorphic embedding of (S.*) into 

(G. o). 

Non: At this point we will drop the inner parentheses when 

referring to a member of an equivalence class . This 

reduction of parentheses is only a shift of notation and 

does not represent a change of meaning. 

LEMMA 2 .1.12: Let (G,o) be a group and let f: (S. •) • (G,o) 

be a semigroup homomorphism . If f : (G , O) • (G,o) is a 

homomorphism making the following triangle commute. then h 

is of the form 

f[a.b] = f(a)o (-)f(b) . 

Where "-" indicates the inverse operation in G. 



(S.•) ____ ....., (G. o) 

I 

( 6, o l 

PROOF : Let f be a homomorphism that makes the triangle 

commute. and let a e S. Then. given [a•a.a] e G, 

f(a)=(fO~)(a)=f(~(a))=f[a•a . a] . 
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Claim : [a,b]=[a*a,a)O(-) [b•b.b]. To justify this claim . we 

observe 

where the last 

[a•a.a)O(-)[b•b.b] = [a•a.a)O[b,b•b] 

11-11 

= [ (a•a)•b.a• (b•b)] 

= [a . b] 

above follows from 

a• ( a• b• b) = b• ( a• a• b) . 

which is true by associativity and commutativity of• . Now 

to finish the proof of the lemma. I is a homomorphism 

implies that; 

I [a. b J = I ( [ a• a. a] o ( - ) [ b• b. b] ) 

= f[a•a.a]o(-)f[b•b.b] 

= f(a)o (-)f(b) 

f[a . b] = f(a)o (-)f(b). I 



LEMMA 2. 1 . 13: If f: ( G. o) • ( G . o ) is defined by 

f[a.b]= f(a) 0 (-)f(b). then f is a homomorphism that makes 

the above triangle commute. 

PROOF: Let [a.b],[c.d] e G. and let f:(G,O) • (G,o) be 

defined by f[a.b] = f(a)o (-)f(b) . We first show f is a 

homomorphism. Note 

f([a.b)O(c,d]) = f(a•c.b•d) 

= f(a•c)o (-)f(b•d) 

= f(a)o (-)f(c)o (-)f(b)o (-)f(d) 

= (f(a)o (-)f(b))o (f(c)o (-)f(d)l 

= f[a.b]of[c.d]. 

Therefore. f is a homomorphism. We next show f makes the 

triangle commute. 

f(a) = f(a)oe 

= f (a)o ( f(a)o (-) f (a)) 

= f(a•a)o(-)f(a) 

= f[a•a.a] 

= f(T1(a)) 

f is a homomorphism that makes the triangle commute. I 

Lemmas 2 . 1 . 12 and 2.1.13 prove the following theorem. 

'niE:oREM- 2 . 1 . 14 : If f : ( S . • ) • ( G, 0 ) is a homomorphism then 

19 

3 a unique homomorphism f : (G. o) • (G. 0 ) such that f = foT'I , 
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SECTION 2 . SEMIRINGS TO RINGS. 

All our work in Section 1 has concerned a set on which a 

single binary operation has been defined . In this section we 

look at a set on which two binary operations are defined . We 

now define an algebraic structure with two binary operations 

that we will call a semiring. 

DEFINITION2.2 . 1 : (S . + . ·) isa semiringiff (S.+) isan 

abelian . cancellation semigroup . (S . ·) is a semigroup. and 

(S . + .· ) is distributive . We say (S . +.·) is a commutative 

semiring iff (S . ·) is also abelian ; and (S . + . ·) is a 

commutative semiring ff.'it/J unityiff (S . ·) further has 

identity 1 . 

DEFINITION 2. 2 . 2: A ring (R . +. ·) is a set R with two binary 

operations+ and• . which we call addition and 

multiplication. defined on R such that (R.+) is an abelian 

group , multiplication is associative , and multiplication is 

left and right distributive over addition 

We now look at booting a [commutative] semiring (S . +.·) to a 

[commutative] ring (R . + . ·) . and a commutative semiring with 

unity to a commutative ring with unity . In the construction 

of (R.+ . ·) from (S,+.·) the additive part is done the same as 
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was shown for booting (S . •) to (G,O) in Section 1 . Thus the 

construction of the equivalence classes of (R . +) and the 

operation of addition are the same as defined above in 

Section 1 . Therefore . only the multiplicative proofs will be 

shown here . 

We now wish to define a multiplication on Rand prove that 

the multiplication properties of (S.+.·) are preserved in 

(R.+.·) . Let a . b.c , d e R. and let [a , b], [c , d] be members of 

(R , + . ·). We define the operation of multiplication of the 

members of equivalence classes of (R . +.·) as : 

[a,b][c,d] = [ac+bd , ad+bc] , 

(where ' · ' is written as juxtaposition). 

We start" with showing that (R.+ , ·) is a ring . 

LEMMA 2.2.3 : Multiplication is well defined in (R , + , ·). 

PROOF : We must show that our definition of multiplication 

does not depend on the choice of representatives of 

equivalence classes. Let [a,b] , [c,d] , [a ,b] , [c . d] be 

elements of (R.+ , ·), and let (a.b) ~ (a.b) and (c , d) ~ 

(c,d) . We must show 

[ac+bd,ad+bc] ~ [ac+bd . ad+bc] . 

Using our definition of~. it suffices to show 

(ac+bd)(ad+bc) = (ad+bc)(ac+bd) . 
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By our definition of~ and by comrnutivity of multiplication 

ins. we know ab=ba=ab and cd=dc=cd . Therefore. 

(ac+bd) (ad+bc) = acad+acbc+bdad+bdbc 

= aa cd +ab cc +a bdd +bb Cd 

= ai C d+a bee +ab db +bb cd 

= aacd+abdb+abcc+bbcd 

= ada C +adbd +bca C +bcbd 

= (ad+bc)(ac+bd) . 

multiplication in (R . + . ·) is well defined. I 

LEMMA 2 . 2.4: Multiplication in (I.+ . ·) is associative. 

PROOF : 

([a . b][c , d])[e . f]=[ac+bd.ad+bc][e . f] 

=[(ac+bd)e+(ad+bc)f . (ac+bd)f+(ad+bc)e] 

=[ace+bde+adf+bcf.acf+bdf+ade+bce] 

=[ace+adf+bcf+bde . acf+ade+bce+bdf] 

=[a(ce+df)+b(cf+de) . a(cf+de)+b(ce+df)] 

=[a.b][ce+df.cf+de] 

=[a.b] ( [c . d] [e. f]) 

multiplication in (R.+.·) is associative. I 

LEMMA 2.2 . 5: Multiplication distributes over addition on 

both sides in (R . +.·) . 
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PROOF: We shall prove left distributivity . Right 

distributivity can be shown in a similar manner . Let [a.b]. 

[c.d]. [e.f] be elements of (R.+.·) . 

[e. f] ( [a.b]+[c.d]) = [e. f] [a+c.b+d] 

= [e(a+c)+f(b+d).e(b+d)+f(a+c)] 

= [ea+ec+fb+fd.eb+ed+fa+fc] 

= [ea+fb+ec+fd.eb+fa+ed+fc] 

= [ea+fb.eb+fa]+[ec+fd.ed+fc] 

= ([e.f] [a.b]) + ([e.f] [c.d]) 

multiplication distributes over addition on both sides 

in (R.+.·). I 

1rfEOREM 2 . 2.6: If (S.+,·) is a [commutative] semiring, then 

(R,+ . ·) is a [commutative] ring . 

PROOF: Lemmas 2.2.2 through 2.2.4 establish that (R.+.·) is a 

ring. thus we need only show that (R.·) is abelian . Let 

[a.b], [c , d] be elements of (R.+.·). 

[a.b][c,d]=[ac+bd.ad+bc]=[ca+db.da+cb]=[c.d][a,b] 

(R.·) is abelian . I 

1rfEoREM 2.2.7 : If (S.+.·) is a [commutative] semiring with 

unity. then (R,+ , ·) is a [commutative] ring with unity . 

P~oF: We claim that~ a e S. the identity element can be 

written as [a+ls,a] . Let c.d.a e S . and let [c.d] e R. then 

[ c. d] [a+ ls . a] = [ c (a+ ls ) +da. ca+d (a+ ls ) ] 



= [ca+c+da . ca+da+d] 

= [c+ca+da . d+ca+da] 

=[c , d] . 

'<:/ [ c . d ] E R [ c . d ] [ a + 18 • a ] = [ c . d ] . I 

Now let a , b , c.d ES and let [a , b] , [c , d] ER. Define a 

mapping D :S • R by D(a)=[a+a . a] . 

LEMMA 2 . 2 . 8 : Dis a homomorphism with respect to addition 

and with respect to multiplication . 

PROOF : Since the additive part follows immediately from the 

proof of Lemma 2 . 1 . 9 by replacing"*" with"+". we only 

show the multiplicative part : 

D(ab) = [ab+ab.ab] = [2ab.ab] . 

and 

D(a)D(b) = [a+a , a][b+b , b] 

= [(2a)(2b)+ab.(2a)b+a(2b)] 

= [4ab+ab.2ab+2ab] 

= [5ab . 4ab] . 

By equivalence [2ab.ab] ~ [5ab.ab] iff 2ab+4ab = ab+5ab. 
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Clearly . the latter is true . D preserves multiplication . 

Dis a homomorphism with respect to addition and with 

respect to multiplication . I 
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LEMMA 2.2.9: T) is one to one. 

PROOF: This follows from the proof of Lemma 2.1 . 10 by 

replacing "*" with "+" . T) is one to one. I 

LEMMA 2.2.10: T) preserves unity if S has one. 

PROOF: Let ls be the multiplicative identity in S. Then 

T)(ls)=[ls+l5 .15 J. But by the proof of lemma 2.2.5. [ls+l5 .lsJ is 

an allowable form of the unity in R . 

T) preserves unity in (R.+.·) . I 

LEMMA 2. 2. 11: Let ( R, +,-:-) be a ring and let f: ( S. + . •) • 

(R,+,-:-)be a semiring homomorphism. If I: (R.+ , ·) • (R,+,-:-) 

makes the following triangle commute . then I is of the form 

f[a.bJ = f(a)o (-)f(b) . 

Where"-" indicates the inverse operation in either R or R. 

( s . + .. ) ----~~(R,+ . ·) 

I 

( R, +,-:-) 

PROOF : Since f and f satisfy the hypotheses of Lemma 2 . 1 . 12 

with respect to the additions involved. then by Lemma 2.1 . 12 

I has the desired form . I 



LEMMA 2.2.12: If I: (R,+,·) • (R,+,~) is defined by 

f[a,b]= f(a)i (-)f(b), then I is a homomorphism that makes 

the above triangle commute. 
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PROOF: Since the additive part is the same as the proof of 

Lemma 2.1.13 only the proof of the multiplicative part will 

be shown. We first show I is a homomorphism with respect to 

multiplication: 

f([a,b][c,d]) = f(ac+bd.ad+bc]) 

= f(ac+bd)+(-)f(ad+bc) 

= f(ac)+f(bd)+(-)f(ad)+(-)f(bc) 

= f(a)f(c)+f(b)f(d)+(-)(f(a)f(d))+(-)(f(b)f(c)) 

= f(a)f(c)+(-)(f(a)f(d))+(-)(f(b)f(c))+f(b)f(d) 

= ( f(a)+ (-) f(b)) ( f(c)+ (-) f(d)) 

= f[a,b]f[c,d]. 

Finally, it follows from the proof of Lemma 2 .-1.13 that I 

makes the above triangle commute. I is a ring 

homomorphism that makes the triangle commute. I 

Lemmas 2 . 2.11 and 2.2.12 prove the following theorem. 

THEOREM 2.2.13: Let (S , +,·) be a [commutative] semiring and 

let (R,+,~) be a [commutative] ring . If f: (S.+,·) • (R,+,~) 

is a simiring homomorphism then 3 a unique homomorphism 

I: (R,+,·) • (R,+,~) such that f = Io11 . 



The above theorem is also true for ($,+,•) a commutative 

semiring with unity and (R,+,~) a commutative ring with 

unity. 

SECTION 3: Integral Domains to Fields. 
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In Section 2 we booted a semiring to a ring . This was done 

with respect to addition and we found that the 

multiplicative properties were undisturbed . In this section 

we start with an integral domain and boot to a field [l]. 

but this time the booting is done with respect to 

multiplication . Our goal here is to develop multiplicative 

inverses while preserving the additive properties. 

We begin this section with some definitions. 

DEFINITION 2. 3 . 1: (I.+.•) is an .integral domain if f (I.+ . ·) is 

a commutative ring with unity such that the cancellation 

laws hold for multiplication : For every a.b.c e I. if ac=bc 

and c * 0 . then a = b . 

DEFINITION 2.3.2 : A f.ield(F.+ . ·) is a commutative ring with 

unity_such that every nonzero element of (F.+ . ·) has a 

multiplicative inverse in (F.+ . ·) . 



Let (I.+,·) be an integral domain. let I°= (I-{0}) and let 

(a,b) be an element in Ix I°. Think of (a.b) as a/b. Now 

define a relation on Ix I° by (a.b) ~ (c.d) iff ad = be 

LEMMA 2. 3. 3: ~ is an equivalence relation on Ix I° . 

PROOF: This follows from the proof of Lemma 2.1.1 by 

replacing 11
• 

11 with 11
• 

11 I 

Now set F = (Ix I°)/ ~. i.e. F = { [ (a, b)]: a E I. b E J°} . 
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(As was done in Section 1. we will drop the inner 

parentheses when referring to a member of an equivalence 

class). Define the operations of addition and multiplication 

on the equivalence classes of the relation~ in Ixl° thus: 

[a,b]+(c.d] = [ad+bc.bd] 

[a.b][c,d] = [ac.bd]. 

LEMMA 2.3.4: The operations of multiplication and addition 

in (F , +.·) are well-defined. 

PROOF: If we replace II o" with 11
• 

11 in the proof of Lemma 

2.1.2 the multiplicative part of the proof follows 

immediately. We now show that our definition of addition is 

well defined in (F,+.·). Let [a.b].[c,d],[a,b].[c.d] be 

elements of (R.+.·). and let (a.b) ~ (a.b) and (c.d) ~ 

( c . d ) . We must show 



[ad+bc . bd] ~ [ad+bc , +bd]. 

Using our definition of~. it suffices to show 

(ad+bc) (bd) = bd(ad+bc). 

We know ab=ba=ab and cd=dc=cd. Therefore. 

(ad+bc)(bd) = adbd+bcbd 

= abdd+cdbb 

= ba ctd +de bb 

= bdad+bdbc 

= bd(ad+bc) . 

addition in (F . + , ·) is well-defined . I 

LEMMA 2.3 . 5 : Addition and multiplication in (F . + . ·) are 

associative. 

PROOF: The multiplicative part of the proof is the same as 

the proof of Lemma 2 . 1.3 if we replace "O" with" · " . · Let 

[a,b] , (c.d].[e . f] e F , 

[a.b]+( [c.d]+[e . f]) = [a.b]+[cf+de.df] 

= [a(df)+b(cf+de) . b(de)] 

= [adf+bcf+bde.bde] 

= [(ad+bc)f+bde. (bd)e] 

= [ad+bc.bd]+[e . f] 

= ( [a.b]+[c.d] )+[e. f] 
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multiplication and addition in (F.+ . ·) are associative. I 



LEMMA 2.3 . 6: Addition and multiplication in (F . +,·) are 

commutative. 
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PROOF : The multiplicative part of the proof is analogous to 

the proof of Lemma 2 . 1.6 if we replace "O" with" · " . For the 

additive part let (a , b] , [c.d] e F : 

[a , b]+[c , d] = [ad+bc,bd] 

= [cb+da.db] 

= [c , d]+[a . b] 

multiplication and addition in (F . + . ·) are commutative . I 

LEMMA 2.3 . 7 : Multiplication is left and right distributive 

over addition in (F . + , ·) . 

PROOF : Let [a , b] , [ c , d] , [ e, f] e F , 

• [a , b] ( [ c, d] + [ e, f] ) = [a, b] [cf +de, d f] 

= [ a (cf +de) , bd f] 

= [acf+ade , bdf] , 

and 

(a , b][c , d]+[a.b][e . f] = [ac , bd]+[ae , bf] 

= [acbf+bdae , bdbf] . 

Now by our definition of equivalence 

[acf+ade , bdf] ~ [acbf+bdae , bdbf] iff 

(acf+ade)(bdbf) = (bdf)(acbf+bdae) . 

Clearly . we can see that if we multiply both sides, these 

two are equal. And by the commutativity of multiplication. 

right distributivity follows. multiplication in (F,+ ,· ) 
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distributes over addition . I 

LEMMA 2 . 3 . 8 : [ O . 1 ] is the zero cl ass of ( F. + . · ) . 

PROOF: First we show V [a.b] e (F,+.·). {a.b]+(O.l] = [a.b]. 

Let [a. b] e ( F. +. •) . 

[a.b]+[0.1] = [al+bO.bl] = [a.b]. 

Now we must show V a:;eO,b:;eO e I. [O.a] = [O.b]. and this is 

obviously true since Ob=aO . 

(F.+ . ·) . I 

[0.1] is the zero class of 

LEMMA 2.3.9: V [a.b] e (F.+.·). [a.b] is not the zero class 

of ( F. +. · ) if f a :;e 0, b :;e O in I . 

PROOF: Let [a,b]:;e[O,l] e (F.+,·). then a=al:;ebO=O so a:;eO,b:;eO. 

Now let a:;eO,b:;eO in I. [a.b] ~ [0.1] iff al=bO. Clearly this 

is not true . [a.b] is not the zero class of (F.+. · ). I 

LEMMA 2.3 . 10: (F-{[0 . 1]}.·) is an abelian group and so has 

multiplicative inverses for each non-zero class. 

PROOF: Given Lemma 2 . 3.9. the reader can verify that 

(F-{[0.1]}.·) is the abelian group produced by Section 1 

from the abelian. cancellation semigroup (I-{O}.·) with 

multiplicative identity. (F-{[0.1]}.·) has 

multiplicative inverses V non-zero class . I 
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LEMMA 2 . 3.11: (F.+,·) has unity . namely [1.1) . 

PROOF : [1.1) is the identity from the group (F-{[0 , 1)}.·) of 

Lemma 2 . 3 . 10 . We need only show that it is the 

multiplicative identity of the zero class (0.1) : 

[0,1)(1.1) = [0,1) 

is clearly true . the unity of (F.+ . ·) is (1.1). I 

LEMMA 2.3 . 12: Every [a.b] in (F.+.·) has an additive inverse 

in (F.+) . 

PROOF: We claim that V [a.b] e (F,+ . ·) . the additive inverse 

of [a . b] is [-a,b] where -a is the additive inverse of a in 

I . Let [a,b] e (F,+ , ·) , and let -a be the additive inverse 

of a in I. We must to show [a,b]+[-a , b] = [0,1) . 

• [a, b J + [-a. b J = [ ab+b (-a) , bb J 

= [ ab+ ( -ab ) , bb] 

= [ O. bb] . 

And [0,bb] = [0,1) since 0·l =bb·0. V [a,b] e (F,+ . ·). 

the additive inverse of [a . b] is [-a.b] . where -a is the 

additive inverse of a in I . I 

Lemma 2.3 . 4 through Lemma 2 . 3 . 12 establish the following 

theorem . 

!m:OREM 2 . 3 . 1 3 : ( F . + . · ) is a f i el d , 



Now let 1 e I and define a mapping ·11: (I.+,·) • (F,+ , ·) by 

Va e I. T1(a) = [a , l]. 

LEMMA 2.3.14 : Tl is well defined and one-to-one. 

PROOF: Let a, b e I. Then : 

11 (a) = Tl ( b) ~ [a. 1] = [ b. 1] ~ al = lb~ a= b 

Tl is well defined and one-to-one . I 

LEMMA 2.3 . 15: Tl is an integral domain homomorphism with 

respect to addition and with respect to multiplication. 

PROOF: Leta . be I. For the additive part : 

Tl ( a ) +ll ( b ) = [a . 1 ] + [ b . 1 ] = [ a 1 + 1 b . 1 ] = [a+ b , 1 ] = Tl ( a+ b ) . 

Now for the multiplicative part : 

11 ( a ) Tl ( b) = [ a , 1 ] [ b , 1] = [ ab , 1 ] = Tl ( ab) . 

. . Tl preserves addition and multiplication. I 

LEMMA 2.3.16 : 11 preserves both the multiplicative identity 

and the additive identity . 

PROOF: 1 is the multiplicative identity, and O is the 

additive identity in I . By our definition of fl : 

11 ( 1 ) = [ 1. 1 J and Tl ( 0 ) = [ O , 1] . 

Tl preserves both identities . I 
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Tl 
(I.+,·) _____ .,. ( F, + , .) 

f 

( F,+,~) 

LEMMA 2. 3. 17: Let (I.+,•) be an integral domain, let ( F,+, ~) 

be a field and let f: (I,+,•) • ( F,+, ~) be an integral domain 

homomorphism. If f: ( F , +, ·) • ( F,+, ~) is a homomorphism 

making the above triangle commute, then f is of the form 

f [ a , b] = f ( a ) ( f ( b ) ) - 1 , 

(where "-1
" indicates the inverse operation in F) and f is a 

monomorphism. 

PROOF : Let f be a homomorphism that makes the triangle 

commute, and let a e I. Then, given [a,l] e F, 

f (a) = ( f OT) ) (a) = f ( Tl (a) ) = f [a, 1] . 

In the sequel .,- i ., refers to the inverse operation in F . 

Claim : [a,b]=[a , l]([b,1))-1
. We justify this claim by noting 

[a, 1 ]([b,lJr1 = [a, 1] [Lb] 

=[al.lb] 

=[a.b] . 

Now, since f is a homomorphism: 

f(a,b] = f( [a, l]((b,lJr1 J 

= f[a, l]f(( b,lJr1
) 

= f ( a ) ( f ( b ) ) - 1 . 
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To see how this forces f to be a monomorphism. the well­

definedness off implies that f(b) is invertible when b*O. 

that is . b*O • f(b)*O . This says ker(f) = {O}. which 

implies f is injective . I 

LEMMA 2.3 . 18 : If f : (I.+ . ·) • (F,+,-:) is a monomorphism and 

f : (F . + . ·) • (F,+,-:) isdefiIB:ib{f[a.b]=f(a)(f(b))-1 • then f is 

a field homomorphism that makes the above triangle commute . 

PROOF : We first note that the injectivity of f implies 

ker(f)={O}. so that b¢0 implies f(b)¢0 . It follows that 

f(b) is invertible and f is well-defined . Next we show that 

f is a homomorphism with respect to both addition and 

multiplication . Let [a . b]. [c.d] e (F.+ . ·). Then. 

And . 

f([a . b]+[c . d]) = f(ad+bc . bd]) 

= f(ad+bc)(f(bd) r 1 

= ( f ( ad ) + f ( b c) ) ( f ( b ) f ( d ) r 1 

= f(a)f(d)f(d r 1 f(b r :. +f(b)f(c)f(d )-1 f(b) -l 

= f(a)f(br 1 +f(b)f(br1 f(c)f(dr 1 

= f(a)f(br1 +f(c)f(dr1 

= f[a.b]+f[c.d] . 

f([a.b][c.d]) = f[ac . bd] 

= f(ac)(f(bd))- 1 

= f (a) f ( C) ( f ( b) f ( d) r l 

= f(a)f(c)f(dr 1 f(br 1 



= f(a)f(br 1 f(c)f(dr 1 

= f[a.b]f[c.d] . 
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Therefore I is a homomorphism . Now we show that I makes the 

above triangle commute . 

f(a) = f(a)e 

= f(a)f(l) 

= f(a)f(1r 1 

= f[a.1] 

= I (T)(a) J 

I is a field homomorphism that makes the triangle 

commute. I 

We can use the nature of field homomorphisms to derive the 

following lemma about integral domain homomorphisms from 

integral domains to fields. 

LEMMA 2 . 3.19: Let (F.+.·) and (F,+,-:-) be fields. and let 

I : F • F be a field homomorphism. then I is injective on F . 

PROOF: We must show that ker(f) = {O} . Let a*O be in F . a*O 

implies a has a multiplicative inverse therefore a a-1 = 1 and 

I ( a a-1 ) = I ( 1 ) . So 

I ( a J I ( a-1 ) = I ( a a-1 ) = I ( 1 ) = f * 6 . 

Now by the zero divisor law in F. f(a) *6. Thus we conclude 

a E ker (I). I 



Lemmas 2.3.17, 2.3 . 18 and 2.3 . 19 prove the following 

theorem . 

'niEoREM 2 . 3.20: If f: (I.+,·) • (F,+,-:-) is an integral domain 

homomorphism, then 3 ! monomorphism f: ( F, +, •) • ( F,+,-:-) such 

that f=fo11 iff f is a monomorphism . 
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CHAPTER 3 

STANDARD ALGEBRAIC CONSTRUCTIONS INTERPRETED AS ADJUNCTION 
OF CATEGORIES 

In Chapter 2 we showed three examples of algebraic 

constructions . We will now interpret each of these 

constructions as an adjunction between well known 

categories . Also we will use the adjunction to reveal more 

information about the construction than was possible in 

Chapter 2 . The morphisms in each of the categories discussed 

in this chapter are functions with certain restrictions and 

the composition is ordinary function composition in SET . . 

SECTION 1 . SEMIGROUPS AND ABELIAN GROUPS . 

In this section we consider the adjunction between SEMIGRP 

and ABELGRP . A discussion of this adjunction can be found 

in Herrlich [8] . 

The objects of SEMIGRP . collectively denoted ISEMIGRPI , are 

the class of all cancellation , abelian semigroups. and the 

morphisms of SEMIGRP are homomorphisms between 

cancellation , abelian semigroups . Similarly, the objects of 

ABELGRP , collectively denoted IABELGRPI , are the class of 
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all abelian groups. and the morphisms of ABELGRP are 

homomorphisms between abelian groups. 

Now we define the functors 6 and V. where 6 :SEMIGRP • 

ABELGRP and V:ABELGRP • SEMIGRP . 
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The action of 6 on objects of SEMIGRP is defined as the 

booting of a cancellation. abelian semigroup to an abelian 

group as in section 1 of chapter 2. Thus for (S.•) and 

(G,O) from Section 2.1. G((S.*))=(G.o). and G(f). for fa 

semigroup morphism. will be stipulated later . The action of 

V on objects of ABELGRP is defined as V( (G. o)) = (G. o) 

viewed as a cancellation abelian semigroup. and V(f) = f 

viewed as a semigroup homomorphism. Therefore. V:ABELGRP • 

SEMIGRP is a forgetful functor since V forgets the 

structure of (G. o). 

The Major Diagram of Chapter 1 can be represented thus : 

SEMIGRP ABELGRP 
6 

V ( S . • ) e I SEMI GRP I G(S. •) e IABELGRPI 

I 
I 

3 Tl 3 If f 

I 

• 
V ( G . o) < VG ( s. • ) e I SEMIGRP I (G.'o)e IABELGRPI 

V(fl=f 
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Now, given V defined above, V has a left adjoint whose 

action on objects coincides with 6, and we see that Section 

2.1 justifies the major diagram of Chapter 1. Then the minor 

diagram stipulates the action of 6 on the morphisms of 

SEMIGRP so that G becomes both a functor and the left 

adjoint of V. Specifically for fa semigroup homomorphism, 

G(f) = 11of . 

We now give an illustration of adjunction between SEMIGRP 

and ABELGRP. Let (N , +), (Ne,+) e ISEMIGRPI, where (N,+) is 

the semigroup comprised of the natural numbers with the 

binary operation of addition ; and (Ne,+) is the abelian 

group comprised of the even natural numbers with the binary 

operation of addition . Let (Z,+), (Ze,+l e IABELGRPI, where 

(Z,+) is the abelian group comprised of the integers with 

the binary operation of addition ; and (Ze , +l is the abelian 

group comprised of the even integers with the binary 

operation of addition. Now define a semigroup homomorphism 

f : ( N , + ) • ( Ne , + ) by f ( n ) = 2 n 'v n e N . 

From Section 2.1 we have 11 1 :N• Z and 11 2 :Ne • Ze defined to 

be mappings such that 11i(a)=[a+a . a] = [2a.a] 'v a e N and 

11 2 (b)=[b+b . b] = [2b . b] 'vb e Ne. 



Consider this representation of the Minor Diagram : 

f 
(N , +) ( z , +) 

l11 

(Z,+) ( z., +) 

V(T1 2 0 f) 

The above diagram stipulates 6( f) =V(ll 20f) =112of such that 

ll 20f : (Z,+) • (28 . +) is a mapping from the equivalence 

classes of the integers to the equivalence classes of the 

even integers . So given [m.n] e (Z.+) we expect 

ll 2 0f([m.n]) =2[m,n] = [m,n] + [m,n] = [2m.2n]. To check this . 

let [m , n] e (Z . +) . Then 

V(ll 20f) ( [m.n]) = (ll 20f) ( [m.n]) 

= [ f ( m) + f ( m) . f ( m) ] + [ f ( n ) + f ( n ) . f ( n ) ] - 1 

= [2m+2m. 2m]+[2n+2n . 2nJ-1 

= [ 4m. 2m] + [ 2 n, 4 n] 

= [ 4m+2n. 2m+4n J . 
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And [ 4m+2n . 2m+4n] = [ 2m. 2n] since ( ( 4m+2n) +2n) = ( ( 2m+4n) +2m) . 



SECTION 2. SEMIRINGS AND RINGS . 

In this section we consider the adjunction between SEMIRNG 

and RNG. 
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The objects of SEMIRNG. collectively denoted ISEMIRNGI, are 

the class of all semirings. and the morphisms of SEMIGRP 

are homomorphisms between semirings. Similarly . the objects 

of RNG . collectively denoted IRNGI. are the class of all 

commutative rings, and the morphisms of RNG are 

homomorphisms between commutative rings . 

Now we define the functors G and V, where G:SEMIRNG • RNG 

and V:RNG • SEMIRNG. 

The action of G on objects of SEMIRNG is defined as the 

booting of a semiring to a ring as in Section 2.2. Thus for 

(S,+ . ·) and (R.+ . ·) from Section 2 . 2. G((S.+.·)) = (R,+,·). and 

G(f), for fa semiring morphism. will be stipulated later . 

The action of Von objects of RNG is defined as 

Y( (R.+.·)) = (R.+.·) viewed as a semiring. and Y( f) = f viewed 

as a semiring homomorphism . Therefore . V :RNG • SEMIRNG is 

a forgetful functor since V forgets the structure of 

(R. + . . ) . 



The Major Diagram of Chapter 1 can be represented thus : 

SEMIRNG RNG 
G 

'v ( s . + . · ) e I SEMIRNG I t-1 _____ .,.., G ( s . + . · ) e I RNG I 

3 Tl 

V ( R, +, ~ ) ~ VG ( s . + . . ) E I SEMIRNG I 
V(f)=f 

I 
I 

31 ! I 
I 

~ 
( R, +, ~) E I RNG I 
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Now. given V defined above, V has a left adjoint whose 

action on objects coincides with 6. and we see that Section 

2 . 2 justifies the major diagram of Chapter 1 . Then the minor 

diagram stipulates the action of G on the morphisms of 

SEMIRNG so that G becomes both a functor and the left 

adjoint of V . Specifically for fa semiring homomorphism . 

G(f) = riof. 

In addition to the adjunction between SEMIRNG and RNG seen 

above Theorem 2 . 2 . 13 allows for the categorical 

interpretation of the adjunction between the categories of 

commutative semirings and commutative rings. and the 

categories of commutative semirings with unity and 

commutative rings with unity . 



SECTION 3 . INTEGRAL DoMAINS AND FIELDS. 

In this section we consider the adjunction between INTOOM 

and FIELD (see (8], (10]). 

The objects of INTOOM , collectively denoted IINTOOMI , are 

the class of all integral domains, and the morphisms of 

INTOOM are monomorphisms between integral domains . 

Similarly, the objects of FIELD, collectively denoted 

IFIELDI, are the class of all fields, and the morphisms of 

FIELD are homomorphisms between fields. 
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Now we define the functors 6 and V, where 6 :INTDOM • FIELD 
. 

and V :FIELD • INTOOM . 

The action of 6 on objects of INTOOM is defined as the 

booting of an integral domain to a field as in section 3 of 

chapter 2. Thus for (I,+ , ·) and (F,+ , ·) from Section 2 . 3 , 

G((I,+ , ·)) = (F,+ , ·) , and G(f), for fan integral domain 

monomorphism, will be stipulated later . The action of Von 

objects of FIELD is defined as Y( (F.+ , ·)) = (F , + , ·) viewed as 

an integral domain, and V(f) = f viewed as an integral domain 

monomorphism. Therefore , V:FIELD • INTDOM is a forgetful 

functor since V forgets the structure of (F.+,·). 



The Major Diagram of Chapter 1 can be represented thus: 

INTOOM FIELD 
6 

v ( I. + . · ) e I INTDOM I -1 --, 6 ( I. + . · ) e I FIELD I 

3 Tl 

V ( F, +,-:- ) ( VG ( I, + , . ) E I I NTOOM I 
V(fl=f 

3 1! I 
I 

\' 
(F,+,-=-) E IFIELDI 
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Now, given V defined above, V .has a left adjoint whose 

action qn objects coincides with 6. and we see that Section 

2.3 justifies the major diagram of Chapter 1. Then the minor 

diagram stipulates the action of 6 on the morphisms of 

INTOOM so that 6 becomes both a functor and the left 

adjoint of V. Specifically for fan integral domain 

monomorphism, G(f) = Tlof. 

From Theorem 2 . 3 . 20 of Section 2.3 we have such an 

adjunction iff the morphisms of INTOOM are monomorphisms . 

But are there integral domain homomorphisms that are not 

monomorphisms, that is, is the restriction required by 6--1 

V significant? 



46 

Consider the following example . Let (Z . +.·) e IINTOOMI. where 

( Z. + . •) is the integral domain comprised of the integers 

with the binary operations of addition and multiplication . 

Let ( ZP. +, •) be the field comprised of the congruence 

classes of the integers mod p. where pis prime, with the 

binary operations of addition and multiplication. Then the 

mapping f : (Z.+.·) • (ZP.+.·) defined by f(z)=z(mod p) (v' z e 

Z) is a non-injective integral domain homomorphism . 

The above two paragraphs seem to be an improvement on a 

remark of MacLane [10, p.56] . 



CHAPTER 4 

THE FIRST ISOMORPHISM THEOREM INTERPRETED AS AN ADJUNCTION 

In this chapter we interpret the First Isomorphism Theorem 

for Groups as an adjunction of categories . 

We begin by stating the First Isomorphism Theorem for 

Groups . Our statement of this theorem is a combination of 

Theorem 2 . 9 and Theorem 3.1 from Fraleigh [5; p.148 and 

p . 181) . 

TuEoREM 4 . 1.1 (First Isomorphism Theorem for Groups) : Let 

(G. o) and (G,o) be groups. and let f :G • G be a group 

homomorphism with kernel K. Then f(G) is a group. and the 

map f :G/K • r+(G) given by f(aK) = f (a) is an isomorphism . 

If 11 :G • G/K is the homomorphism given by 11(a) =aK , then 

VaeG, f(a)=(fOll)(a) . 

This theorem says that if ( G. o ) and (G, o) are groups, and if 

f is a homomorphism from G on to G , where K = ker ( f) , then 

every element of G/K corresponds to one and only one element 

of f • (G)cG and f :G/K • f • (G) is an isomorphism. Thus 

every group homomorphism with domain G gives rise to a 
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factor group G/K, and every factor group G/K gives rise to a 

homomorphism mapping G into G/K . 

A A A 

TiiEOREM 4 .1. 2 : r/ group (G, o), r/ group (G, 0 ), r/ f :G • G with 

kernel K. 3 Tl :G • G/K. 3 I :G/K • G, such that r/a eG, 

f (a)=(fOll) (a). Furthermore, 11 is given by 11(a) = aK, f is 

given by f(aK) = f(a). and the image of Gunder f is a 

group . 

Theorem 4 . 1 . 2 is the quantified restatement of Theorem 

4 . 1.1 . We now present a theorem that is more appropriate for 

our categorical interpretation of The First Isomorphism 

Theorem for Groups . 

TiiEOREM 4.1 . 3: r/ group (G,O). r/ K, a normal subgroup of G, 3 

11: G • G/K , r/ group (G, o) , r/ group homomorphism f : G • G with 

K=ker(f) , 3 ! f :G/K • G. f=fOT) . Furthermore, T) is given 

by T)(a) = aK, I is given by f(aK) = f (a) and the image of G 

under f is a group . 

METAlHEOREM 4.1.4: Theorem 4.1.2 and Theorem 4 . 1.3 are 

equivalent . 

PROOF: We first show that Theorem 4 . 1 . 2 implies Theorem 

4.1 . 3 . Let (G,O) be a group. and let K be a normal subgroup 

of G. Define 11 :G • G/K by 11(a) = aK. and let (G,o) and 
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A 

f:G • G be given. Then by Theorem 4.1.2. f • (G) is a group 

and 3 f:G/K • f • (G) by f(aK) = f(a). and we claim f is the 

unique solution to f = ( ) 011 . To justify the claim that f is 

unique let f be another solution . then f = f 011 and f = f 011 . 

Now let a eG . then . 

f (a)= f 011 (a) 

=f(11(a)) 
A 

= f ( aK) . 

And since we know that f(aK) = f(a) . we conclude f=f. 

To show that Theorem 4 . 1 . 3 implies Theorem 4.1.2 is trivial 

since ker(f) is a normal subgroup of G. and Theorem 4 . 1 . 3 

has the stronger ordering of the quantifiers. I 

The importance of this metatheorem is that Theorem 4.1.1 is 

equivalent to the formally stronger Theorem 4 . 1 . 3. and this 

formal strength is needed to redescribe Theorem 4 . 1.1 by 

adjunction between categories . 

The following diagram illustrates the above theorems. 

11 
G G/K 

I 

G 
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Let GROUP be the category whose objects are groups. and 

whose morphisms are group homomorphisms. Next we define the 

category QTGRP . The objects of QTGRP are the class of all 

ordered pairs of groups (G.H) such that His a normal 

subgroup of G. Collectively we denote the objects as 

I QTGRP I . If we let (G,H). (G,H) e I QTGRP I. then f : (G,H) • (G,fO 

is a morphism of QTGRP if f : G • G in GROUP and f IH: H • A 

in GROUP. Thus the morphisms of QTGRP are certain ordered 

pairs of homomorphisms between certain ordered pairs of 

groups. Composition of the morphisms of QTGRP is defined as 

ordinary function composition as from SET. Let f : (G,H) • 

(G,H) and g : (G,H) • (G,H) be QTGRP morphisms . Then go f :G • G 

and ( go f) IH : H • H . 

We now interpret the First Isomorphism Theorem for Groups as 

an adjunction between the categories QTGRP and GROUP . To 

begin we justify the claim that QTGRP is a category . To 

show this is true we must show that QTGRP has a well­

defined composition of its morphisms and has the identity 

morphism for each object . First , consider composition . Let 

f : (G,H) • (G,H) and g : (G,H) • (G,H) be QTGRP morphisms . Then 

gof :G • G is ordinary function composition as from SET . 

and (gOf)IH= g!lioflH :H • Hand both gof and glliof!Hare 



homomorphisms . The commutative diagram below illustrates 

composition of QTGRP morphisms. 

f 
G----G 

j 
H 

0 j 
___ .,..A 

g 
----G 

0 j 
----A 

Now we need an identity morphism that maps every ordered 

pair in QTGRP to itself . For each (G.H) e IQTGRPI 

i~~~ : (G.H) • (G . H) is given by usual identity functions 

i~ :G • G. and (i~ )IH:H • H. Thus we see that QTGRP is 

indeed a category. 
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We now describe a pair of functors. P and Q, where P maps 

the object of GROUP into the objects of QTGRP and the 

morphisms of GROUP into the morphisms of QTGRP : and Q maps 

the objects of QTGRP into the objects of GROUP and the 

morphisms of QTGRP into the morphisms of GROUP. 

QTGRP ~ GROUP 

QTGRP +-;,- GROUP 

The action of Pon the objects of GROUP is defined as: 

P(G) = (G.{e}) 'v Ge IQTGRPI. Now let f:G • G be a morphism 



of GROUP , then P(f) = f : (G , {e}) • (G , {e}) where f :G • G 
and f l{el : {e} • {e} . The action of P on morphisms of GROUP 

is illustrated in the following diagram . 

P( f) = f viewed as : 

f ... 
G G 

j j 
{e} { e} 

f I {e} 
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Let (G , H) e IQTGRPI . The action of Q on (G , H) is described 

as Q((G.H)) =G/H. The action of Q on the morphisms of QTGRP 

is not needed at this time and will be determined later. We 

will use the Minor Diagram from Chapter 1 to determine this 

action . 

We are now in a position to show that P and Q satisfy the 

Major Diagram from Chapter 1 , and thus constitute an 

adjunction of categories if the action of Q on morphisms of 

QTGRP is suitably chosen . To begin we give the following 

representation of the Major Diagram . 



Major Diagram 

QTGRP ~ GROUP 
QTGRP ~ GROUP 

QTGRP 

(G.H) 
Q 

11 

(G,{e }J -• (G/H.H) 
f=P(f) 

In words the Major Diagram states : 

GROUP 

A 

G 

V ( G . H) e I QTGRP I . 3 11 : ( G . H ) • ( G/H . H) e QTGRP . 

v G/H e I GROUP 1 • v f : ( G. H) • ( & . { e } ) e QTGRP . 

3 ! f : G /H • G E GROUP . f = p ( f ) 011 E QTGRP . 
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We use the First Isomorphism Theorem for Groups to prove 

that the Major Diagram is satisfied . Because of Metetheorem 

4 . 1.4. we are allowed to use Theorem 4 . 1 . 3 as the First 

Isomorphism Theorem for Groups . We have such an 11 (which is 

a group homomorphism) . Given G and f :G• G. where His the 

kernel of f . by Theorem 4 . 1 . 3 . 3 ! f : G/H • f • ( G) c G . We can 

regard fas an isomorphism (and hence an arrow) of G/H into 

G. i . e . f:G/H • G is a morphism of GROUP. and from Theorem 

4 . 1 . 3 . f = f 011. Thus we see that the above representation of 

the major diagram is mathematically equivalent to Theorem 

4. 1. 3 
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We now present the Minor Diagram and use it to determine the 

action of Q on the morphisms of QTGRP 

111 

QTGRP 

f 

0 

Minor Diagram 

PQ((G 11 H1 )) ~ PQ((G
2
,H

2
)) 

P(11 2of) 

GROUP 

Since the Major Diagram is satisfied and the action of Q on 

objects of QTGRP is known the Minor Diagram stipulates that 

for f : (G11 H1 ) • (G
2
,H

2
) Q( f )= 11 20£. Therefore. we see that 

Q:QTGRP • GROUP is a functor whose action can be described 

as: Q:jQTGRPI • IGROUPI; and Q:(morphisms of QTGRP) • 

(morphisms of GROUP) such that Q(fOg) =Q(f)OQ(g) (where 

the first composition is in QTGRP and the second 

composition is in GROUP) and Q(i~G,H>)=ida«G,H» (where i~G,H> is 

in QTGRP and ida((G,H» is in GROUP) . We have both the Minor 

Diagram and the Major Diagram satisfied. Thus we have an 

adjunction between the categories QTGRP and GROUP. I 
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