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ABSTRACT 

THE STURM-LIOUVILLE MATHEMATICAL SYSTEM 

Lorie L. Ceremuga 

Master of Science in Mathematics 

Youngstown State University, 1988 

The Sturm-Liouville Mathematical System consists of a 

mathematical framework of special linear and homogeneous boundary 

value problems. That is, the system contains a linear and homogeneous 

ordinary differential equation together with homogeneous boundary 

conditions. 

In addition to historical notes, the qualitative theory of 

differential equations is highlighted here, for such Sturm-Liouville 

Systems, featuring theorems on 'separation', 'comparison', and 

'oscillation' of solutions. Such theories lead to a generalization of 

the standard 'eigenvalue problem'. 

·' 
Illustrations are provided to delineate these qualitative 

features of said Sturm-Liouville type problems, showing that the 

System is of steadily increasing importance today in both pure and 

applied mathematics . 
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CHAPTER I 

INTRODUCTION 

The Sturm-Liouville Mathematical System 

1-1 Objective 

This thesis is an expository report on the Sturm-Liouville 

Mathematical Syste~ This system has been of steadily increasing 

significance in both pure mathematics and in mathematical physics . 

According to Bell [ 1J, the Sturm-Liouville Theory of the 1830' s 

was the first step towards an unified treatment of numerous 

boundary-value problems and their solutions that had been 

accumulating in applied mathematics since the early eighteenth 

century. Expressed in this presentation will be a historical 

perspective of the odginators of the system, a listing of some 

theoretical properties and significant features, and stability 

criteria. Physical applications as well as present influences 

will also be presented. / 
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1-2 Mathematical Biography of Charles Sturm and Joseph Liouville 

Jacques Charles Francois Sturm (1803-1855 ) was a French 

mathematician of Swiss origin who spent most of his life in Paris. 

In 1823, as a tutor for the de Broglie family, he went to Paris, 

where he at last succeeded Poisson in the Cha:lr of Mechanics at 

the Sorbonne. In 1836, he was elected to the French Academy of 

Sciences and later in 1838, was appointed to the staff of t he 

Ecole Polytechnique (see Manougian and Northcutt (11)) . 

Sturm's primary interests were realized in the ' fields of 

algebra, geometry, physics, and differential equations. Some of 

his published works, according to Bocher [ 3), include: 

An experimental memoir ,in collaboration with Colladon on the 

compressibility of liquids; several papers in geometrical optics; 

some papers, partly in collaboration with Liouville, on the real 

and imaginary roots of algebraic polynomial equations; and many 

minor geometrical papers. 

Sturm was also recognized for the Three Great Memoires; 

e xplicitly, 

1835. "Memoire sur la resolution des equations numeriques. 11 

Memoires des savants estangers; 

183 6. "Memoire sur les equations differentielles lineaires du 

sec ond ordre. 11 Liouville' s Journal; and 

1836. "Memoire sur une classe d'equations a differences 

pa r tielles. " Liouville' s Journal. 

Joseph Fourier's work had a major impact on Charles Stur m. 
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The primary subjects of Fourier's life work had been the theory of 

heat and the theory of the solutions of numerical differential 

equations . After Fourier's death in 18.30, both subjects were 

carried forward by Sturm, the first in the two Memoires of 1836, 

the second in that of 1835. In one of his Memoires of 1836 , he 

extended the results of a special difference equation to the 

following differential equation: 

L(K<x) ~) - G<x>y = 0. <1-1) 
dx dx 

Sturm applied mathematics to other disciplines. With respect to 

physics, he considered problems in small vibrations and cele~tial 

mechanics. He made the first accurate determination of the 

velocity of sound in water and in 1827, · Sturm won a prize for his 

essay on compressible fluids. He also was ac knowledged for his 

work in differential equations by winning the Grand Prix des 

Science Mathematique [ 111 : 

Sturm pursued the study of real solutions of algebraic 

equations and also of ordinary and partial differential equations. 

It was here that Sturm's most important and suggestive work was 

done. His paper of July 27, 1829 was devoted to the analytic 

treatment of systems of linear homogeneous differential equations 

with constant coefficients. A result of this paper is a method of 

treating the algebraic characteristic equation of the system. 

This led to his outstanding work done which today is called the 

Stur m-Liouville Theory of Differential Equations, 

recent writings of Simmons (14]. 

described in 
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One famous by-product of Sturm's research wes his theorem 

on the separation of roots of an algebraic equation- the Sturm 

Separation Theorem. Another consists of a theorem that rules out 

the possibility of infinitely many oscillations (of a solution to 

a differential equation) on closed intervals- the Sturm Comparison 

Theorem. 

Coupled with Sturm's neme, in all this work in differential 

equations, one finds the name of his young friend, Joseph 

Liouville. Joseph Liouville (1809-1882) was a French 

mathematician who graduated from Ecole Polytechnique in. 1827 . In 

1833, he wes appointed professor at the Sorbonne, end as a young 

man of thirty, he was elected to the French Academy of Sciences. 

In 1836, he founded and edited the Journal des Mathematigue Pure 

et Appliguees, which was one of the foremost high grade 

mathematical periodicals that played a significant role in French 

mathematical life throughout the nineteenth century. 

Among Liouville's notable achievements in analysis are the 

proofs of the existence of transcendental numbers and research in 

differential equations and boundary- value problems. He also 

produced outstanding work in the theory of numbers and 

differential geometry. Liouville was the first to solve a 

boundary-value problem by solving en equivalent integral equation. 

The scientific significance of integral equations, noted by 

Liouville in the 1830's, but first elaborated on in 1904 by 

Hilbert, is that in many important instances, one integral 
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equation is equivalent analytically to a differential equation 

together with its boundary conditions . The solution of an 

integral equation inherently gives a solution to an associated 

boundary-value problem in such instances. 

Recent interest in the study of fr·actional calculus by 

Oldham and Spanier [ 12], reveals the discovery that one of the 

first major efforts in this branch of Calculus was started by 

Liouville in 1832. His ingenious theory of fractional 

differentiation answered the long standing question of what 

reasonable meaning can be assigned to the symbol d~y , when u is 
dx\4 

not a positive integer. 

cM.<x") = 
dJi 

For example, he demonstrated that 

r<n+l)xn-~ 
r<n+lh> 

for n > -1; (1-2) 

with f(n) denoting the Gamma Function of argument n. 

Fractional operators are usefu~ in solving problems in 

mechanics and geometry. Liouville's brilliant solution came 

several decades too early, finding its proper place in analysis 

only now in the twentieth century. 

As mentioned by Simmons, the most original of all his 

achievements was his theory of the integrals of elementary 

functions, for here he proved that such integrals .- as Je-~1rdx, 
,' 

Jsinxdx, Je>tdx, J.....91L., as well as Jacobian elliptic integrals of 
x x logx 

the first, second, and third kinds, cannot be expressed in terms 

of a finite number of elementary functions . 

The fascinating and difficult theory of transcendental 
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numbers is an important branch in mathematics that originated in 

Liouville' s work. In the eighteenth century, Lambert and Euler 

proved the irrationality of n and e. Liouville expanded on their 

discoveries and in 1844, he showed that e does not satisfy any 

polynomial equation of the form 

(1-3) 

with integer coefficients . This led him to conjecture that e 

is transcendental. He was unable to prove this, yet his ideas 

contributed to Hermite's success in 1873 and then to Lindemann's 

proof in 1882 that n is also transcendental. In 1844, Liouville 

invented a method for constructing any one of an extensive class 

of transcendental numbers and used it to produce examples that are 

provably transcendental. An example, given by Simmons [ 14] is: 

00 

I 10-n\ = [10-, + 10-2 + 10-G + ... = 0. 11000100 . .. (1-4) 

V\-: \ 

Another accomplishment of Liouville was his discovery of 

the fundamental result in complex analysis known as Liouville' s 

Theorem- that a bounded entire function is necessarily constant­

and used it as the basis for his own theory of elliptic 

functions. There is also a well-known Liouville theorem in 

Hamiltonian Mechanics, which states that volume integrals are 

time invariant in phase space. 

Sturm's work was practically completed before 

Liouville's work began. Except for alternative proofs which 
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Liouville gave of some of Sturm's results and an extension to 

certain di f ferential equations of higher order, Liouville's work 

dealt with a problem not treated by Sturm, namely the proof that 

the development of an arbitrary function which occurs in Sturm's 

paper is valid. The functions introduced by Sturm are called 

oscillating. In 1837, Liouville was led to a linear integral 

equation, which he solved by the method of successive 

substitutions. Liouville's problem was that of finding those 

solutions, if any, of a linear second order differential equation 

which assumes preassigned values of the independent variable . He 

was thus .concerned with Sturm's oscillating functions, and it is 

customary to name the resulting theory after both men. 

,, 
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CHAPTER II 

INTRODUCTION TO BOUNDARY VALUE PROBLEMS 

2-1 Second Order Boundary Value Problems 

A boundary-value problem <BVP) is a problem involving a 

differential equation and associated or supplementary condition (s). 

A typical second order BVP has the form given by Equation 

y' I = f (:<, y, y' ), a ~ X ~ b 

y<a) = A, 

y(b) = B; where A, B are constants. 

(2-1) : 

(2-1) 

Basic questions in the theory of differential equations concern 

the existence of a solution to a differential equation and the 

conditions that make the solution unique. The following theorem, taken 

from the text of Burden and Faires [6] in the subject of numerical 

analysis, gives general conditions that ensure that the solution to a 

second order BVP will exist and be unique. 

/ 

Theorem 2. 1 

SuppOse the function y'' = f(x, y, y') of Equation (2-1> is continuous 

over set D = { <x, y, y' > / a(x( b, -111<y<111, -111<y' (01} and also that of and of 
oy oy' 

are continuous on D. If 



(1) l>f(x,y,y') > 0 for all (x,y,y'J in D, and 
l>y 

(2) a constant /If exists such that I !Lf<x, y, y' ,, f /If holds for 
l>y' 

all <x,y,y') in D, then the BVP has a unique solution. 

9 

A compact way of expressing differential equations is to use 

operator notation. With respect to the second order linear differential 

equations, operator l is defined as a rule that assigns to each twice­

differentiable function , y, on some interval I, the function Uy], 

where U yJ {(x)) - a.,, (x) y" (x) + a, (x) y' (x) + a;;: (xJ y <xJ; (2-2) 

that is, l[ yJ - a0 y'' + a, y' + a:.."?Yi where a 0 t O <see Brauer and 

Nohel, [51). Therefore the second order linear non-homogeneous 

differential equation 

a,:, (xJy'' (x) + a, (x)y' (xJ + a .. 2 (x)y(x) = f(x) can be expressed as 

Uyl {(x)) = f<x>. (2-3) 

Operator l is a member of a particular class of operators called 

linear operators. By definition, Lis linear if 

where c, and c 2 are arbitrary constants, y, and y,~ are any two functions 

in 5, where 5 is the collection of twice-differentiable functions 

defined on the interval I. linear operator theory can be extended to 

differential equations of higher order. For example, 
/ 

L,.,[yl = a,:,yc»:, + a,yc·ro-•1 :, + .. . + a,,- ,y' + a,,y; (2-4) 

where y is any function which is n times differentiable on some interval 

I, and a,:,, a,, 
f '., 

a,, are continuous functions on I, and a,., f 0. 



The second order linear non-homogeneous BVP 

( a._~ (.v:) y'' (x) + a, (x) y' (x) + a2 (x) y (x) = f (x); 

l y<a) = A, y(b) = ~ 

can be rewritten using previous operator notation as: 

l llyJUx)) = 

y<a) = A, 

f <x>; a f X f b 

y(b) = 8. 

When f(x,y,y') -can be expressed in the form 

f(x, y, y') = p(x)y' + q<x>y + r(.v), 

a f x f b, 

the differential equation y'' = f(x,y,y') is called linear. 

10 

(2-5) 

(2-6) 

The existence and uniqueness of solutions is ensured by a 

simplification of Theorem 2. 1 via the following corollary supplied by 

Burden and Faires [61 . 

Corollary 2. 1 

If the linear boundary-value problem 

l y'' = p(x)y' + q<x>y + r(x), 

y(a) = A, y(b) = B, 

B f X f b, 

satisfies the conditions that 

(1) p(x), q(x), and r(x) are continuous on a f x f b, and 

(2) q (x) > 0 on a f x f b, 

then the problem has a unique solution. 

/ 

2-2 Green's Function and Adjoint Forms 

(2-7) 

Another approach to the solution of nonhomogeneous boundary 

value problems is by means of the construction of auxiliary functions 

called Green's functions . The knowledge of this function leads to 
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solutions expressed as definite integrals rather than as infinite 

series . 

In the non-homogeneous case, LCyJ = r(x). Given the BVP, from 

Corollary 2. 1, we seek 

where y~<x) is the general solution of the associated homogeneous BVP; 

that is, the 'complementary function', and 

yP(x) is a 'particular solution' of the nonhomogeneous BVP . 

To find yPCx), it is useful to introduce Green's function, as detailed 

by Waltman [ 16] i that is, let 

IA, 
yp<x> = o. G<x, z)f (z)dz, 

where G is Green's function defined as follows: 

G<x,z) = 

y,<x)y . .,(z), 

W<y,, Y2) <z) 

y, ( Z) y .. , ( X) , 

W<y 1 , y2 > <z) 

.a ~ X ~ Z 

z~x~b . 

(2-8) 

(2-9) 

Herein, y, <x) and y2 <x) are two independent solutions of LC yJ = O; 

and W<y 1 ,y2 )Cz) = [y, (z)y' 2 (z) - y,2 (z)y' 1 (z)] is the 'Wronskian' of y, 

and y2 • It is noted that G(x, z) (for the BVP of Corollary 2. l ) is 

continuous. At x = z both parts are equivalent; however, there exists a 

discontinuity in oG<x. z) , which has a jump of one "unit", at x = z. 
bx 

,' 

Because this derivative is discontinuous, the second derivative (namely 

Y'' > does not exist. 

The advantage of expressing solutions in integral form is that 

the Green's function is independent of the nonhomogeneous term in the 
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differential equation. Therefore; once this function is determined, the 

solutions to all possible problems with different functions fare known, 

provided the integral f~G(x,2)f(2)d2 exists. 

Any second order linear differential equation of the form 

ao<x>y'' + a, (x)y' + a2<x)y = 0 (2-10) 

can be written in the form 

g_(p<x)g_y,) + q<x>y = 0 <2-11) 
dx dx 

after multiplication by a suHable .factor. Differential Equation <2-10) 

is said to be in adjoint form <see Leighton ( 10]) if: 

a, (x) = a' 0 (x). (2-12) 

Suppose a0 (;,c) > 0 and a0 <x>, a 1 (x), and a2 (x) are continuous on 

a { x ~ b. Then Equation (2-10) can be transformed into Equation <2-11) 

by . the functionµ, where 

µ = _l_ exp{ fa, (x)dx}, p(x) = a0 (x)µ, and q<x> = a?(x) p(x). 
Bo (x) J 8 0 (x) Bo (x) 

Adjoint problems are of particular interest physically 

because they occur frequently in applications. They are also of 

interest mathematically because their· theory is especially well­

developed and elegant, as detailed by Boyce and DiPrima· [4]. The 
/ 

(2-13) 

importance of the adjoint form(s) in the study of differential equations 

of second order can hardly be over-emphasized. They arise naturally in 

mechanics and have a central role in the calculus of variations. Many 

properties of the solutions of differential equations can be discovered 
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by studying the equations themselves, without solving them in the 

traditional sense. In addition to transforming a second order linear 

differential equation into adjoint form, 

y'' + P(x)y' + Q(x)y = 0 

can be written as u'' + q(x)u = O 

(2-14) 

(2-15) 

by a simple change of the dependent variable. Simmons [ 14] notes that 

Equation (2-14) is considered to be in standard for~ while Equation 

(2-15) is referred to as Liouville normal form. To write Equation 

(2-14) in Liouville normal form, let 

y<x) = u(x)v(x); 

then y' (x) = u(x)v' (x) + v(x)u' (x), 

and y'' (x) = u(x)v'' <x) t 2u' (x)v' (x) + u'' (x)v(x) . 

By substituting this addition and produtt rule differentiation, Equation 

(2-14) reads: 

[(uv" t 2u'v' + u"v) + P(uv' + u'v) + Q(uv)] = 0, or 

vu'' + (2v' +Pv)u' + <v'' + Pv' + Qv)u = 0. (2-16) 

Setting the coefficient of u' equal to zero, in Equation (2-16), and 

solving for v yields: 

v = Cexp{-~JP<x)dx}i 

where C is an arbitrary non-zero constant. 

(2-17) 

Since v(x), given by Equation (2-17) is non-zero, the 

transformation of Equation (2-14) into Equation (2-15) has no effect 

whatever on the zeros of the solutions and therefore does noi alter the 

oscillation phenomena in the physical interpretation of the system. 

<A solution u = <D(x), of Equation (2-15) is said to be oscillatory if 
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there exists a sequence {xn) with lim Xn = oo, and such that "'--~(x.,) = 0, for n = 1, 2, 3, . . . . ) 

With the coefficient of u' set equal to zero, in Equation <2-16), the 

equation has the for~ 

u" + q(x)u = O. 

If q(x) < 0, then the solutions of Equation (2-15) do not oscillate at 

all. Thus we are led to Theorem 2. 2. 

Theorem 2.2 

If q(x) < O, and u(x) is a non-trivial solution of u'' + q(x)u = O, then 

u (x) = 0 has at most one zero. 

In consideration of the oscillation of solutions, this leads us 

to confine our study of Equation (2-15) to the special case in which 

q(x) > 0. Even in this cas~ it is not necessarily true that all 

solutions will oscillate. The central feature of the behavior of 

solutions of Equation (2-15) is that they oscillate in such a manner 

that their zeros are distinct and occur alternately. In this direction, 

we are led to the Sturm Separation Theorem. 

2-3 The Sturm Separation Theorem 

Theorem 2.3 

If Y, (x) and y2 (x) are two 1:lnearly independent solutions of 

Y'' + P(x)y' + Q(x)y = O, then the zeros of these functions occur 

alternately- in the sense that y, (x) vanishes exactly once between any 

th'O zeros of y2 (x), and conversely. 
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Since y, and Y:.2 are linearly independent, their Wronskian does not 

vanish; that is, 

Wey,, Y:.2> = l
y, Y:.21 · 

' I I ' - I t Y 1 Y 2 _' - (y, Y :.2 - Y:2Y I) f o. (2-18) 

Since the Wronskian is continuous, it must have a constant sign. 

Further, it is noted that y, and y2 cannot have a common zero, for if 

they do, then the Wronskian would vanish at that point, which is 

impossible. 

Assume next that x, and x2 are successive zeros of y2 • We want to show 

that y, vanishes between these two points. At x, and at x2 , 

W<y,, Y:.2> = y, (x) y' 2 <x> - y2 (x) y', <x> 

- y, (x) y' :.2 <x> t 0. 

This implies that y, (x) t O and y' :2 (x) f 0. 

Furthermore, y' 2 (x,) and y' .2 (x2 ) must have opposite signs, because if y ,, 

is increasing at x,, it must be decreasing at x2 , and vice versa. 

Since W<y,,y2 > has a constant sign, y, <x,) and y, (x2 ) must also have 

opposite signs, and therefore, by continuity, y, (x) must vanish at some 

point(s) between x, and x2 • Function y, cannot vanish more than once 

between x, and x2 ; for if it does, then the same argument shows that Y:.: 

must vanish between these zeros of y,, which contradicts the original 

assumption that x, and x2 are successive zeros of y;,,• / 

The Sturm Separation Theorem tells us that the zeros of any two 

(non-trivial) solutions of y'' + P(x)y' + Q<x>y = 0 either- coincide or 

occur alternately, depending on whether these solutions are linearly 
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dependent or independent. Thus, all solutions of 

y'' + P(x)y' + Q(x>y = 0 oscillate with essentially the same rapidity, 

in the sense that on a given interval, the number of zeros of any 

solution cannot differ by more than one from the number of zeros of any 

other solution. Waltman [ 161 discusses the interlacing of these zeros 

in Corollary 2. 2. 

Corollary 2. 2 

The zeros of linearly independent solutions of u'' + q<x)u = 0 

interlace, as depicted in Figure 2-1. 

A consequence of Corollary 2. 2 is that under the hypothesis of 

the Sturm Separation Theorem, if one solution of z'' + 1~ 2 (:{ ) :: = 1) is 

oscillatory, all solutions of y' '· + Q, Cx) y = 0 are oscillatory, if 

Q 1 ( :.:) ~ Q:;: ( X) , 

Al 

Fig. 2-1 The Interlacing (Intersecting> of Solutions 
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A key feature exhibited by Equation (2-15> is that , as q (z ) (the 

amplitude) gets larger, the solutions of this equation oscillate more 

rapidl y. This feature is stressed in the Sturm Comparison Theorem. 

2-4 The Sturm Comparison Theorem 

Theorem 2. 4 

Let y<xJ and z(x) represent non-trivial solutions of the following 

differential system: 

{ y', + q(x)y = 0 

z', + r(x)z = o, 
(2-19) 

where q(x) and r(x) are both positive functions such that q<x) > r(xJ, 

where x, ( x ( x2 • Then y(x) vanishes at least once between any two 

zeros of z (x) = 0. 

Proof: 

let x, and X::z be successive zeros of z <xJ; that is, z <x, J = z C·<;2 J - 0 

and assume y<xJ does not vanish on the open interval x, < x < x2 • 

Proof of the theorem is achieved by contradiction. 

Assume y <xJ and z (:0 are positive on 

With 

then 

W<y, z) = yz' - zy', 

dW(y,z) = yz'' + y'z' - z'y' -zy'' 
dx 

= yz'' - zy' ' . (2-20) 

From the system given by Equation (2-19), we re-write Equation (2 -20 ) 



as: 
dW<v,z> =y(-rz) -z<-qy> =yz<q-r) > 0, 

dx 

18 

(2-2 J) 

on x, < x < X2, Now by our assumption that y and z are both positive 

and q > r, then 

or W<x~> > W<x, >. 

Now, at x, and .'(2, 

and 

and 

x,. 

f dW(x)dx = W(x:2> - W<x, > > 0 , 
dx 

x, 

W<y, z) = yz' 

W<x,) = y<x, )z' <x,> ) 0, 

Hence, Equations (2-22) and (2-23) lead to a contradiction. 

Figure 2-2 illustrates The Sturm Comparison Theorem. 

(2-22) 

(2-23) 

X 

Fig. 2-2 Graphical Interpretation of the Sturm Comparison Theorem. 



CHAPTER III 

THE STURM-LIOUVILLE SYSTEM 

3-1 The Regular St urm-Liouville Mathematical System 

The following boundary-value problem 

L(p<x)~) - q(x)y + Ar(x)y = O; 
dx dx 

is called a regular Sturm-Liouville System <S-L system) over the 

interval a~ x ~ b when the following conditions are satisfied: 

19 

(3-1) 

(1) p(x), p' <x), q<x), and r(x) are real-valued continuous functions 

for a ~ x ~ b, 

(2) p<x> > 0 and r(x) > 0 for a~ x ~ b, 

(3) A is a parameter independent of x, and 

<4) a,, a2 , b 1 , and b2 are .real constants with (a::~, + a 2
2 ) > 0 and 

<The restrictions imposed on p, q, and rare necessary in order to 

ensure the differential equation has solutions. Notice, if p<x) 

vanishes at any points in a~ x ~ b, or if q(x) or r(x) become 

unbounded in the interval, the solution of the differential equation 

may become unbounded,) 
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In the regular S-L system, we seek to find special values for the 

parameter h that yield non-trivial solutions, to find those 

solutions, and to identify properties of such solutions. 

The special values of h for which there are non-trivial 

solutions of the S-L system are called eigenvalues and the 

corresponding solutions are called eigenfunctions. Note that Equation 

(3-1) describes a homogeneous, linear, second order ordinary 

differential equation. If y(x) is an eigenfunction associated with 

this differential equation, then Cy(x) is also an eigenfunction, 

where C is a constant. The set of all eigenvalues is called the 

spectrum of the system. 

If we re-define the S-L system as follows : 

y', + u' - S-.Y + m = o, 
p p p 

and let y, = Yi Y2 = y', 

then the following equivalent network results: 

y', = Y2 

y' :2 = -u:2 + (~ - hr)y, 
p p p 

a ~ X ~ b. 

1,: a, Y1 (a) + a2Y2 (a) = 0 

12: b, y, (b) + b2 y2 <b) = 0 

We can now obtain a simple geometric view of the existence of 

(3-2) 

(3-3) 

(3-4) 

eigenvalues for the .S-L system as follows: in they, - Y2 plane, 

the boundary conditions can be viewed as straight lines through 
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the origin (see Figure 3-1), We seek a solution of the differential 

system given by Equation (3-4) that starts at t = a on line 11, and 

terminates at t = b, which lies on line 12 • Of course, the solution 

may encircle the origin many times before terminating on 12 , at time 

t = b. If >. is not an eigenvalue, by definition, the only solution 

that starts on 1 1 at t = a and terminates on 12 at t =bis the 

trivial solution, represented by the origin. 

The geometrical notion here relies on varying~ until all the 

elements of the set of solutions at t = a on 1 1 terminate at t = b on 

i ~~ · This value of >. will be an eigenvalue. This view of the boundary 

value problem is a "shooting method", when one interprets the 

geometrical action in a numerical computation sense. 

~, 

'-- / ............_ ___ __ 

Fig, 3-1 A geometric view of linear two point boundary conditions . 
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3-2 Theoretic Properties of the S-L System 

Clearly, Equation (3-1) is a self-adjoint differential 

equation. Recall the definition of the adjoint differential equation 

<Equation (2-10)) and use of operator L[u] (as employed in Equation 

(2-2)), then the eigenvalue problem of Equation (3-1) is said to be 

self-adjoint if .f,. 

1 (vu uJ - uU vJ )dx = 0. (3-5) 
(l. 

Since Equation (3-5) is satisfied for the regular S-L system given by 

Equation (3-1), this is a self-adjoint system. Two key pr.operties 

associated with self-adjoint systems are that: 

(1) the eigenvalues are real, and 

(2) the eigenfunctions corresponding to different eigenvalues are 

orthogonal. 

The proof of these properties follows in the manner described by 

Zauderen [ 18] in Theorems 3. 1 and 3. 2. 

Theorem 3. 1 

All the eigenvalues of the regular Stur.m-Liouville System are real. 

Proof: 

Given 

and 

where 

L(p<x)fU) + (>-.r(x) - q(x) )y = O; a~ x ~ b, 
dx dx 

·a, y (a) + a2 y1 (a) = 0, 

P <x), p' Cx), q (x), and r (x) are continuous. on a ~ x ~ b; 

p(x), q<x), r(x), a,, a2 , b 1 , and b2 are real-valued. 

while A and y may be complex; 

also p(x) > 0 and r(x) > 0 for a~ x ~ b. 

(3-6) 
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Taking the complex conjugate of the original system yields 

Equation (3-7): 

g_(p<x>~) + (Ar(x) - q<x) )y = O; 
dx dx 

and a, y (a) + a2 y' Ca) = 0, 

b 1 y ( b) + b2 y I ( b) = 0. 

(3-7) 

Combining the differential equations of Equations (3-6) and (3-7) 

gives: 
[y{g_(p<x>~) + (Ar(x) - q<x) )y = o} 

dx dx 

- y{g_(p (x) ~) + (Ar <x) - q (x) )y = 0 }] 
dx dx 

- - -= g_{ p <xH yy' - yy' J } + (A - A )r (x) yy = O. 
dx 

Integrating Equation (3-8) from x = a to x = b, gives: 

J, 
-·rg_{p (x)[ yy' 

- II, -
- yy' J }dx = (>-. - }..) r<x>yydx 

dx 
0,.. t. 0. 

p<x) [yy' - yy' Jj = (~ - A)t r(x)lyl 2 dx 
Cl ,_ 

From the boundary conditions stated in Equations (3-6) and (3-7), 

the left side of Equation (3-9) reduces to the following: 

.' 

p(b) (y<b>y' Cb) · _ y<b)y' (b)] - p(a) [y<a>y' (a) - y<a)y' (a)] 

-
= p < b > y < b > y < b > [ - h + h] p(a)y<a)y(a) [~ - ~] = 0; 

b2 b2 a 2 a 2 

Where a:2 and b2 f 0. 

(3-8) 

(3-9) 

(3-10) 
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From the weight function r(x) > O, defined over the open interval 

a< x < b, we have 

Therefore 

Theorem 3. 2 

A,. i r(x)lyl 2 dx > 0. 
0.. 

A)= O, ~A= A 

ie., A is real. 

(3-11) 

If y, and y2 are two eigenfunctions of the regular Stur.m-Liouville 

System corresponding to eigenvalues A, and A2 , respectively, and if 

A, t A,. then t r<x>y, <x>y2 (x)dx = O; that ls, y., y2 are thusly 
0.. 

orthogonal. 

Let y, and y2 satisfy the operational statements 

Uy,l = >-.,r<x)y, 

By rearrangement, Equation (3-12) gives: 

,' 

!:L{p<x) (y' 1 y2 - y1
2 y 1 l) = (A, - >-. 2 )r<x)y 1 y2 • 

dx 

Integrating both sides of Equation (3-14), from x = a to x = b, 

yields: 

or 

t 
J~} 

i 
: (A, - >--2) f r(x)y,y:2 dX 

J, Cl 
0. t. 

p(x)[y',Y:2 - Y1 :2Y1Jf = (A, - A2 )}. r(x)y 1 y2 dx. 
0.. ca. 

(3-12) 

(3-13) 

(3-14) 

(3-15) 
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The left side of Equation (3-15) becomes 

p ( b > y , < b ) y 2 < b ) [ - h + h] - p <a) y , < a ) Y.2 < a )[ 2..1.. - ~ ... 1.J = 0 
b2 b4 a2 a2 

(3-16) 

where a2, b2 l 0. 

Therefore, we arrive at the statement: 
.I, 

0 = (>.., - >-. 2 )1 r(x)y,y2dx. 
CL 

Since A. 1 i >..:2 by hypothesis, this implies that 

(3-17) 

L r(xly, (xly,(x)dx = 0. 

0. 

(3-18) 

Equation <3-18) expresses the property of orthogonality of the 

eigenfunctions with respect to the weight function r (x). Also, any 

orthogonal system lyn> with norm I I Yn I I =J ~: r (x) (Yn (x) ) 2 dx ) 0 can 

be converted into an orthonormal system, given by 

(3-19) 

As stated by Danese (81, the orthogonal system is then said to be 

normalized. 

Since the eigenfunctions correspo~ding to distinct eigenvalues 

of a S-L system are orthogonal with respect to the weight function, 

tis suggests, the expansion of an arbitrary function f<x>; for which 

f r<x> (f<x) )2 dx is represented by a Fourier series in the terms of a 
0. 

finite number of eigenfunctions. That is, the eigenfunctions of the 

S-L system of Equation (3-1) are not only orthogonal, but also 

~omplet~ as noted by Weinberger (171. 

An orthonormal sequence of functions {~n} in a~ x ( bis 

££)mplete With _respect to a given class of functions if for every 



function fin this class, 
J. 

lim ~- [ f (x) 
r\ • 00 0. 

t\ 

- l ck~k <x) ] 2 dx = O, 
1<.a1 

at points of continuity off, where 
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(3-20 > 

ck =t f(x)$k(x)dx. (3-21) 
~ 

The ck's are called the generalized Fourier coefficients of f with 

respect to { $k }. 

The class of functions which determines the completeness 

property of {$k(x)} cannot be arbitrary. 

necessary restrictions on {$k} in a~ x 

Now, let us consider some 
t. 

~ b. Since~ (~k <x> )2dx = 1, 
0.. 

for n = 1, 2, ... , it follows that $k 2 <x> must be integrable in 

a ~ x ~ b. That is, $k is square-integrable in a ~ x ~ b. 

Obviously, 

~ 0. 

Upon expansion of <3-22), we have 

( Fdx - 2 I (c, r" r~. ctx) + f c, 2 l O, 

o. ":.' a.. \(;. I 
or 

.L 
~ f2dx 

Cl. 
which implies that 

n n 
- 2 l c,< :.:: + l ck 2 ~ O, 

'(:.I Kal 

(3-22) 

(3-23) 

(3-24) 

I ck ::.: ~ ( _ . .e.Pdx = 11 fl 12 • (3-25) 
~-=, >ca. 

Since the right 

follows that 

This inequality, 

hand side of Inequality (3-25) is independent of n, it 

00 

I ck ::.: ~ I I f I I 2 • (3-26) 

"' I known as Bessel's inequality. is valid for every 

orthonormal system. 
00 

It implies l ck 2 is convergent and therefore 

~~' 
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lim Cw 2 = 0 or that lim ck= 0. For a complete orthonormal system of 
~-oo \<-oo 

functions, Bessel's inequality becomes an equality for every function 

f. That is, 
Q) CL 
}: ck 2 = J. (f<x) )2 dx = 11 f(x) I 12

, 

'fC•\ CL 

(3-27) 

This relation is Parseval's equation and is also known as the 

"completeness relation" (see Courant and Hilbert [7)). In other 

words, the orthogonal sequence {¢k} in a C x S bis complete with 

respect to the class of square-integrable functions if and only if for 

every function fin this class, Parseval's equation is true at points 

of continuity off. It is important to note that if Equation (3-20) 
00 

is satisfied, the functions I c.,.¢>< converges to the mean of the 
t•I 

function. 

In addition to Theorems 3. 1 and 3. 2, there are some other 

interesting basic properties of eigenvalues and eigenfunctions . 

For example, each eigenvalue is 'simple'. That is, since the S-L 

system is a second order system, there can be at most two linearly 

independent eigenfunctions for each distinct eigenvalue A. However 

for the S-L system, there is only one linearly independent 

eigenfunction for each eigenvalue. Thus, each eigenvalue is termed 

'simple', It is also noted that there exists a set of/ eigenvalues 

having a limit point at infinity. The set of eigenvalues can be 

arranged as follows: 

with Aw •~, ask • oo , 

the spectrum ot' th e system is discrete and has a limit point at 

infinity. A th no. er interesting property of the S-L system refers to 
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the number of zeros of the eigenfunctions. In the case when 

a
2 

:: b2 = O, in Equation (3-1), Theorem 3. 3 describes this feature. 

Theorem 3. 3 

There exits an infinite sequence of characteristic numbers 

A,, A2 , ••• of the simplified S-L system with the properties A, < A2 

.. ,,An • ao, and a corresponding sequence of characteristic functions 

y, (x), y2 (x), . . . defined on the interval a ( x ( b. 

y"(x) has precisely n zeros on the interval a< x ( b. 

The function 

The proof of this theorem is very detailed and can be found in texts 

as Birkhoff and Rota [21, Ince [91, and Leighton [ 101 

3-3 Green's Functions - Inversion of Differential Operators to 

Integral Operators 

Now consider a regular 5-L system in Liouville normal form, 

given as follows: 

{ y'' + {>.. - q (x) j y = 0 > 

y<a) = y<b) = 0 

Rewriting Equation (3-28) yields: 

y' I - q<:Oy = ->..y, 

(3-28) 

.' 

(3-29) 

where· <->..y> can be viewed as a "forcing term" for the differential 

equation 

y" - q<x>y = O. (3-30) 

Equation <3-29) is now viewed as a second order linear nonhomogeneous 



differential equation. 

Let G(x,z) be Green's function defined by 

G(x, z) = 

y, (x)y . ., (z) , 

W<y,, Y:2> (z) 

y, (z) y . ., (x) , 

W<y,,y2 ><z> 

a f X $ Z 

z!x!b, 

29 

(3-31) 

where y, (x) and y2 (x) are linearly independent solutions of Equation 

(3-30) with y, (a) = 0 and y ,;,: (b) = 0, and W is the Wronski an of 

y, (x) and Y2 (:0 . (In fact, in Equation (3-30), W will be constant, 

since the first derivative term does not appear). 

A solution of the system, given by Equation (3-28), can be 

expressed by 
J, 

y(x) = >-f G<x,z)y(z)dz. 

a. 

(3-32) 

.Equation (3-32) is an integral equa·tion for an unknown function yCx) . 

This integral equation is the object under considerable mathematical 

study and perhaps, as indicated by Waltman [161, the most elegant way 

to present the Sturm-Liouville Theory. 
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CHAPTER IV 

APPLICATIONS OF STURM-LIOUVILLE DIFFERENTIAL SYSTEMS 

4-1 Introduction . 

Here three examples of physical problems are presented as 

illustrations of Sturm-Liouville systems. Explicitl y, these 

examples describe (1) the 'harmonic oscillator'; (2) the elastic 

buckling problem with the differential equation and boundary 

condition(s) possessing the eigenvalue parameter; and (3 ) a 

detailed study of the one-dimensional heat conduction problem. 

4-2 The Harmonic Oscillator 

The I harmonic oscillator' can be described by ' the foll or.Jing 

Sturm-Liouville mathematical system, for parameter A = -J 

y' 1 
- 1y = O; y = r {x, 'x }, o r x r L 

y<O) = 0 (4-1) 

y' (L) = 0. 

If th e parameter ~ is negative, then the general solution to the 

homogeneous, linear , second order, ordinary differential equation 
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describes "simple harmonic motion". Here, with t' < 0, this 

'harmonic oscillator' problem yields explicit solutions to system 

(4-1) called eigenfunctions: 

y., = AsinH,,x ; 

with A, an arbitrary con st ant, and possessing e_igen values, 

for n = O, 1, 2, 3, 

Note: If '5: J O, then y - O. 

4-3 Bucklin~ of ·an Elastic Column 

In an investigation of the buckling of a uniform elastic 

column of length l by an axial load P, Timoshenko and Gere [ 151 

lead to the development of the following fourth order ordinary 

differential equation: 

Eid"y + Pd2 y = q, 
dx" dx 2 

where E is the modulus of elasticity, 

( 4-2 > 

(4-3) 

(4-4) 

I is the moment of inertia of the cross-section about an axis 
through the centroid perpendicular to the x-y plane, 

Pis the axial force in the beam-column, 

q is the intensity of the uniformly distributed load, and 

Y is the deflection at location x. 

In determining the critical buckling loads, the uniformly 

diSfributed load vanishes. (If Pis less than the 'critical' loa~ 

the column is 'stable', implying that if the uniform loading is 

applied and then removed, the col.umn returns to its initially 



J2 

straight position. If P exceeds the 'critical' load, the column 

becomes 'unstable', implying that a small uniformly applied load 

produces a deflection which does not disappear when the uniform 

loading is removed!). This implies that the differential equation 

for the column becomes, 

EI d 4 y + Pd:::·y = 0; 
dx 4 dx2 

Next, substituting ). - L 
EI 

Equation (4-5) reduces to 

yl' V + )..y' I = O, 

(4-5) 

(4-6) 

Assuming P > 0 and).>~ then the general solution of this equation 

is 
y = Asin/Ax + Bcos/X.x + Cx + D. (4-7) 

The constants of this equation and the critical load(s) are round 

from the end conditions of the elastic column. The boundary 

condi ti ans at x = 0 and x = L depend on how the ends or the beam are 

supported. 

In some buckling problems, the eigenvalue parameter appears 

in the boundary conditions as well as in the differential equation 

One particular case occurs when one end of the column is clamped and 

the other is free. In this case ,.,e are led to the following 

mathematical system 

as shown in Figure 4-1. 

y ,lV + >.y' I = O; 

y (0) = 0 

y' (0) = 0 

(a) 

(b) 

y' I (L) = 0 (c) 

{y',, (l) + Ay' (l)] = o (d) 

(4-8) 
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Note: The end conditions (a) and (b) above represent clamped or 

fixed ends, and conditions (c) and (d) represent the free end 

at X = l. 

Now, with y'' = z, the network in Equation (4-8) depicts a 

sturm-Liouville system . 

. +X 

L 

Fig. 4-1 Geometry and Loading Conditions for the Elastic Column 

It is now desired to determine the eigenvalues and 

eigenfunctions of Equation (4-6) subject to the stated boundary 

conditions. In particular, the smallest eigenvalue gives the 1 oad 

at which the column buckles, or can assume a curved equilibrium 

position as shown in Figure 4-2. The eigenfunction corresponding to 

the buckling load then describes the configuration of this buckled 

column, 

Fig. 4-2 Deflection Mode of the Elastic Column 
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As applied to Equation (4-7), Equations (a), (b>, (c), and (d) give 

the following equations for determining the constants in the general 

solution: 

B + D = 0 

./AA + C = 0 

Asin </AL> + Beas </AL> = 0 

.>.C = 0 

(4-9) 

For a non-trivial solution of Equation (4-9)- a system of 

homogeneous, linear, algebraic equations- the determinant of the 

coefficients must equal zero; that is, the 'determinant al' 

equation 

0 1 

0 

sinP.L cosPL 

0 0 

0 

1 

0 

1 

0 

0 

0 

must be satisfied. Expansion gives 

.>. (./A cos (/XL) } = 0. 

Si.nee .>. > O, it follows that 

Therefore 

so that 

·cos (./AL> = 0. 

fl.L = ~<=2=n'---~1-'-)rc , for n = 1, 2, ... 
2 

./A= (2n - l)rc, for n = 1,2, . .. 
2l 

= 0 

The smallest eigenvalue corresponds ton= 1, therefore 

(4-10) 

( 4-11) 

( 4-12) 

(4-13) 

(4- 14) 



Am.i l"l = lf
2 

4-L"'' 

and the equation for the corresponding deflection curve 

(eigenfunction) is 
y = 1 - cos {.rrx:) 

2L 

Also, Pc, ... t-1; = >."' 1 ,.,EI = rr 2 EI = Euler Buckling load 
4l 2 

4-4 One-Dimensional Heat Conduction Problem 
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(4-15) 

(4--16) 

An exampl~ of the One-Dimensional Heat Conduction Problem can 

be represented mathematically by the following system 

a::!u, .... >< = U.t., 0 < X < l, t > 0 (a) 

u (0, t) u_,,, (0, t), t > 0 (b) (4-17) 

u (l. t) = -u,< (l, t >, t ,) 0 (c) 
' 

u (x, 0) = 1, 0 f X: f l. (d) 

In this system, u represents the temperature Un a one dimensional 

bar as a function of position x and of time t>; a is the 

'conductivity' of the ba~ Equations (b) and (c) represent the 

boundary data, and Equation (d) is the initial data. A visual 

representation of the system of Equation (4-17), is shown in Figure 

4-3. 

Fig. 4-3 

* 

~1----------t--------..X 
0 

The Space-Time Frame Identifying the Boundary and Initial 
Conditions for the One-Dimensional Heat Conduction Problem 
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The underlying problem of heat conduction is to find u(x, tJ 

which satisfies Equation (4-17). That is, this problem can be viewed 

as solving an initial value problem in the time variable t and a 

boundary value problem with respect to the spatial variable x. 

To find a solution of the given system, we will employ the 

analytical technique- separation of variables. We seek a solution of 

Equation (a) of the form 

u(x, t) = X<x)T(t). (4-13) 

M~king the substitution of Equation (4-18) into Equation (a) yields: 

cx 2 X1 IT = XT' I (4-19) 

x.'.....'._ = 1 r_ . (4-20) 
X cx2 T 

In order for Equation (4-20) to be valid for O < x < L, t > 0 it 

is essential that both sides of this equation be equal to the same 

constant. That is, Equation (4-20) becomes 

x.'.....'._ : 1 r_ : -A, I 

X cx2 T 

where ->.. is referred to as the "separation constant" . 

<the choice of->.. is for convenience). 

(4-21) 

He~ce, from Equation (4-21) are two ordinary differential equations 

X'' + >..X = 0 

and / 

(4-22) 

(4-23) 

The essence of this method of separation of variables is that the 

partial differential equation has been replaced by two ordinary 

differential equation~. 

<4-22) are given as 

The boundary conditions for Equation 



' 
(X(0) - X' (0)) = 0, 

and (X<U + X' <U) = 0, 

Thus for the system comprised of Equations (4-22), (4- 2 4 ) , and 

(4-25) we have a Sturm-Liouville System. 
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(4-24) 

(4-25) 

To find the eigenvalues of Equation (4-22), we make us e of 

the differential operator Das follows: 

<0'2 + )...){x) = 0 

which is satisfied for 

D =±A 

For A given, the general solution of Equation (4- 22 ) is shown 

in t he following three cases. 

Case I 

Cas e II 

Case I II 

For >-. = O; 

For A < 0; 

For >-.. > O; 

X(x) =A+ Bx 

X(x) = Cexp{/=F:.x} + De:<p{-/=xx} 

X(x) = Esin.{hx + Fcos/Xx 

(4-26 ) 

( 4-27) 

(4-28) 

(4-29) 

( 4-30) 

Case I If A= 0; the boundary conditions, Equations (4-24 ) and 

(4-25) suggest that A= B = 0 

only for the trivial solution. 

and that>-..= 0 is sat i sfied 

Cas e II If >-. < 0; Equation (4-24) results in 

c = 0(1 + A) 
A - 1 

8nd Equation (4-25) gives 

Cexp<AL>(l +A)+ Dexp{-AU(1 - A)= 0 

Subst1tuti E ng quation (4-31) into Equation (4-32) yields 

(4-31) 

(4- 32) 
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D[exp{AL> (1 + .f="f,_>:"2 + exp{-T-°AL> (1 - A>] = 0 . (4-33) 
<A - t> 

The only nontrivial solution occurs for A= O, which contradicts our 

assumption that A < 0, See Figure 4-4. 

1 

0 1 I 2 

lll 
t(z)= e 

3 

( ~-1\' 
~(~)= ~, 

l 

Fig. 4-4 Graphical Interpretation for the Case: A( O 

Case III If >,. > O; Equation (4-24) yields 

F = 11.E 

and Equation (4-25) gives 

' 
cos(f1,.L) [F + E/X'] + sin(/'XL) [E - Fn:] = 0, 

Substituting Equation (4-34) into Equation (4-35) results in 

tan ({XL) = 2a · 
A - 1 

Non-trivial solutions exist where Equation (4-36) is satisfied . 

To solve for>.. graphically we make the substitution 

9 = /1..L 

Therefore, Equation <4-36) is now ' of the form 

(4-34) 

(4-35) 

(4-36) 

(4-37) 
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Let f(8) = tan8 and g<8) = 2L8 
92 - L:.: 

2L8 
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(4-38) 

The resulting graph of these two functions is shown in Figure 4-5 . 

The approximate values of 8 for which f(9) = g(8) are identified 

in this figure, for the case L = 1: 

Noting that 

81 l'3 1. 3065424 

8,2 ~ 3. 6731944 

9,:,, ~ 6. 5846200 

94 ~ 9. _6316846 

0 ( 81 ( 1. Tt ' 

2 

2 Tt ( 8,3 ( ~ Tt ' 

·2 

(n-1)1t <Sn< (2n - 1) 1t, for n = 1,2, ... . 
2 

Referring to said graphics, note that 

en F':l (n - 1) Jt t (4-39) 

for n sufficiently large. 

To fi nd the eigenvalues we recall the substitution for 8 so that 

(4-40) 
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').)O 

,' 

Fig 4-5 Graphical Interpretation for the Case: A>O 



Upon solving Equation (4-40) for An, we obtain 

An approximation for AT'l can be obtained by the substitution 

Equation (4-39) into Equation (4-41) so that 

An f'$ (n-1) =="n:''' I for n suitably large . 
L2 

Hence, the eigenfunction corresponding to An is 

X( :<) = <ti,,(x, A,.,) = (sin(/X.,x) + /X,.,cos </Anx) ), for n ? 1. 

Now upon considering Equation (4-43) where A > 0, we find 

T<t) = Gexp{-cx=">-t }, t > O; 

wh er e G is an arbitrary constant , 
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(4-41) 

of 

(4-42) 

(4-43) 

(4-44) 

Cons equently, the solutions of the heat conduction equation of the 

form of Equation (4-18) can be represented by 

u(x, t) = Gexp{-cx;:;:,-t }(sin(/Ax) + ' /Xcos(/Ax)) 

and the fundamental solutions of Equation (a) are given by 

u,.,<x, t) = Gnexp{-cx2 A,, t }[sin(IX;,.,x) + /Ancos</X, ,x >), 

for n = 1, 2, ... 

There fore, 
00 

u (x, t) = I G,,exp{-cx2 A,., t }[sin(/Xnx> + /A,.,cos (~,x)]. 
l"I'" I 

Finally, it remains to impose the initial data 
00 

u <x , O) = 1 = IG,., [sin(/X"T.,x ) + /A,.,cos ( /X:,x>), 0 < x < L. 
n-:.1 

Due t o the orthogonality feature of Sturm-Liouville problems , 

the Gn's can be determined as follows: 

Upon completion of the 

L 
G,., = Jo X(x)dx 

jLX2 (x)dx 
() 

integration for the G,., coefficien t s, 

Equat ion (4-47) then reads: 

(4-45) 

(4-46 ) 

(4-47 ) 

(4-48 ) 

(4-49) 



oQ 

u(x,t) = L G,.,exp{-cx2 >-.,..,t}('sin(/X",,x) + /A,,cos(/A, .. ,x)); where 
n=t 

G,, = 4 [ 1 - cos <l);:.,U + IA,.,sin C/X",.,U l 
(2/A;.,Cl+A,.,) + sin(2,-X:.,U C>-.,,-1) + 4/Xn(sin(/X,,L) )2

] 
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(4-50) 

(4-51 > 

4-4A Numerical Solutions of The One-Dimensional Heat Conduction 
Equation 

Ci) Computation By The Method of Finite Differences 

Numerical methods complement analytical techniques in that 

they handle problems that appear non-tractable or too difficult to 

solve analytically. One fundamental and important technique for 

numerical solution of partial differential equations is the method of 

finite differences. 

Here, we consider the one-dimensional heat conduction problem 

given by Equation (4-17) and employ finite differences, seeking the 

value u(x, t) at discrete grid points <xi, t.1 ), by defining a grid on 

the rectangle u = { Cx, t): 0 ~ x ~ L, 0 ~ t ~ T }. 

Let Mand N be positive integers so that 

h ~Ax= k, where xi= ih for i = O, 1, ... ,M 
M 

and k _ At = L where tj = jk for j = O, 1, ... , N. 
N 

The resulting grid is shown in Figure 4-6. 

N *. • • • • 
N-\ • (xA * j) • 

• A. , 

l • 

' x" , ~ 

i.:~:O 
0 

' 

• • 
• h • 

'2. '3 

A • 1~1 
• 

... 
M-1 

• 
• 

: } 
M 

Fig. 4-6 Grid Arrangement for the Finite Difference 
Method of Computation 

K 

X 
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Next, we need to find a finite-difference appr,oximation of the 

partial differential equation [Equation (a) of <4~17)] that will 

relate the values of u at various grid points. Namely, 

0 u (Xii t .1 ) ~ u ( X 1 I t 1 + k) - u (XI I t I ) ( 4-5 2) 
ot k 

and 02 u(x 11 tj) ~ u(x 1 + h, t 1 ) - 2u<x 11 t.) + u(x, - h, t.) 
ox2 h 2 

Replacing approximations (4-52) and <4-53) with 

t ., + k = tj+ll 

results in the following difference equation 

a2 [u<x 1 * 1 ,t 1 >-2u(x"t 1 )+u<x 1 1 ,t 1 >] = u(x 1 ,t 1 * 1 )-u(x 11 t,) 
h2 k 

for i = 1, 2, ... , M-1, and j = 0, 1,2, .. . ,N-1. 

or re-writing in subscript notation: 

a2 
( U 1 J j - 2 U 1 j t U 1 ± J j ) : U 1 j ± J - U 1 

h2 k 

for i = 1, 2, . . . , M- 1, and j = 0, 1, 2, ... , N-1. 

(4-53) 

(4-54) 

(4-5~) 

Equation (4-55) then serves as the finite-difference approximation of 

partial differential equation in Equation <4-17). 

Solving for U1 , j+l yields 

for 

Where 

1 = l 2 , , ... , M-1, and j = 0, 1, 2, ... , N-1, 

r = a 2 k 
h:.:: 

/ 

(4-56) 

Now consider the given boundary conditions, (b) and (c) of Equation 



44 

(4-17). The central difference approximation to u,.., at the grid point 

<xi, tJ) is given as 

bu(xi,tJ) ~s u<x, + h,t 1 ) - u<x 1 - h,t 1 ) 

bx 2h 

for i = 1,2, ... ,M-l, and j = 0,1,2, ... ,N. 

Using this approximation, we have 

Uo. j = =u..._, __,__--=u=--.__..f I 

2h 

and uM, J = - [=uM=± .... 1 __.__--"'u=H~_.._,] ' 
2h 

for j = 0, 1, 2, ... , N. 

(4-57) 

(4-58) 

(4-59) 

We can eliminate u_,. J and uM ... ,, j from Equations (4-58) and (4-59) 

by setting i = 0 and i = M in Equation (4-56), Thus 

Uo, J•i = ru,. j + (1-2r)u.,, J + ru_,, J 

and uM , J-+-1 = ruM ... ,, ,1 + <1-2r)uM , j + ru,.,_1 . . 1 

(4-60) 

(4-61) 

Now by eliminating u_,. J; from Equations (4-58) and <4-6~), and 

eliminating uH•i. j from Equations (4-59) and (4-61) we obtain 

I.lo. j ... 1 = 2 r u, . j + < 1 - 2 r - 2 r h ) u,:,, J 

and uM. J•1 = 2ruM-1 , j + <1 - 2r - 2rh)uM, J 

where j = 0, 1, 2, ... ' N- 1. 

(4-62) 

(4-63) 

Finally, the initial data [ (d) in Equation <4-17)) is of the form 

for i = 0, 1, 2, ... , M. .' (4-64) 

Therefore th , e appropriate difference approximation to Equation 

<4-l 7> is given by E ti qua ons (4-56), (4-62), (4.:.63), and <4-64). 

If we wish to approximate u<O. 1, 0. 02) 

Where 
o:2 = 0. 10 cm/sec;;: 

L = 1 cm. 
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x = 0. 1 cm. 

t = 0. 02 sec. 

and choose h = 0 . 05 cm. and k = 0. 0025 sec. so that O < r ~ 12 

in order for this method to converge. <The development of stability 

conditions in the theory of finite differences can be found in the 

text of Burden and Faires [ 6) ). The appropriate difference 

approximations for this problem are as follows: 

U1.J = 0 . lu i+ l,J + 0 . 8u,,J + 0. lui-, . .1 (4-65 ) 

for i = 1, 2, ... , M- l, and j = 0, 11 2, . . . 1 N. 

u0 , J-+l = 0. 2u, . J + 0. 79u0 , J (4-66) 

for j = 0, 1, 2, . . . 1 N-1. 

(4-67) 

for j = 0, 11 2 1 ••• ,N-1. 

(4-68) 

for i = 01 1, 2, . .. 1 M. 

The grid representation of u<O. 1, 0. 02) is u2 , 8 • After successive 

iterations employing Equations (4-65), (4-66), (4-67) 1 and (4-68) 1 

(11) 

U2, a = 0 , 1 (0, 9988786) + 0, 8(.0, 9899982) + 0. 1 (0 . 9889772) 

~ 0 . 9908. 

Computation of the <Fourier-Eigenfunction) Serles Analytic 
Solution, 

In order to estimate the temperature of the bar at a specific 

pos1tton, u(O, 10, 0. 02) 1 we must evaluate Equation (4-50) with fixed 

a, L, t, and x and A 
r, approximated. 



In particular, cx::2 = 0. 10 cm/sec:.: 

L = 1 cm. 

t = 0. 02 sec, 

x = 0. 10 cm. 
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Employing the Newton-Raphson iterative scheme, the eigenvalues)," 

are approximated to 6 decimal places: 

>-, ::1 1. 707053 

A:2 ::1 13. 492357 

1- 3 ,,. 43. 357221 

,- 4 ~ 92. 769349 

<The choice of four eigenvalues is due to the rapid convergence of 

this series summation). 

Therefore Equation (4-50) gives . 

u(0. 1, 0. 02) = 0, 9241226 - 1. 1050899 X 10-e + 0. 0699305 

+ 4.7168876 X 10-9 

::1 o. 9941. 

/ 



4-5 Listing of Classical Problems in Mathematical Physics of 

Sturm-Liouville Type 
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In addition to the applications presented, many engineering 

and scientific problems are well described by Sturm-Liouville 

Mathematical Systems. An excellent compilation of several classical 

problems of S-L type is given by Segel [ 131 .· The following table 

identifies these classical problems - defined by the S-L differential 

equation, Equation (3-1), 

DE-Classical Name pl& ~ r(x) Interval 

Bessel DE X k:..: 1. X (0 , 1] 

X 

Fourier DE 1 0 1 [ -Tt, Tt] 

e-,c'1. 
1 

Hermite DE 0 e-X (- oo, c.o ) 

Laguerre DE xe-)C 0 e-X (0, o:> ) 

Legendre DE a-x~ 0 1 (-1 , 1) 

Table 1 
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CHAPTER V 

SUMMARY 

5-1 Thesis Review 

Throughout this presentation, consideration has been given to 

the historical prominence of Sturm and Liouville as mathematicians of 

great influence in the nineteenth century. Both men have contributed 

key theorems of great significance in many branches of mathematics. 

It was Sturm who was influential in the origination of this 

"oscillating" function, while Liouville dealt with the validity of 

this function, hence, the Sturm-Li ouvill e Theory. Cha pt er I 

delineates the productivity of investigators Sturm and Liouville. 

Prior to the presentation of the formal theory, Chapter II was 

necessary to introduce several relevant concepts. Namely, the 

existence and uniqueness of solutions of the second order BVP; linear 

operators; Green's function; self-adjointness; the oscillating 

Phenomena· 
I and two theorems (separation and comparison) by Sturm 

Which serve as the foundation in the development of the Sturm­

Liouville Theory. 

Chapter III defines what is meant by a regular S-L system. 
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<It is this particular system that was considered throughout this 

paper). The St urm-Liouville Theory provides us with inf onnat ion about 

the eigenvalues and eigenfunctions. There are certain features common 

to all S-L problems. For instance, there are an infinite numbe1- of 

eigenvalues and eigenfunctions (the eigenvalues are discrete and can 

be ordered); the eigenvalues are all real; the eigenfunctions 

corresponding to distinct eigenvalues are . orthogonal; the eigenvalues 

are simple; and most important, is that the infinite set of 

eigenfunctions constitutes an orthogonal basis and can be used to 

expand an essentially arbitrary function, f(x), defined on some 

interval such that the function can be represented in the following 

(Fourier-Eigenfunction) form: 

f(x) = l c,.,y,,<x), 
n=, 

ie, a linear combination of the eigenfunctions. 

(5-1) 

Chapter IV contains results of extensive personal efforts of 

analysis and computation to delineate three prime examples of physical 

problems of the S-L type. These illustrations well portray the fact 

that the Sturm-Liouville system is a particular class of eigenvalue 

problems of frequent occurrence in applications. 

Example 1, the 'Harmonic Oscillator', is obviously a regular 

S-L problem in that it satisfies Equation (3-1) with p<x) = 1, 

9 <x) = O, r (x) = · 1 0 b L 1 , a = , = ' a, = ' 

It is noted, that if 1 is negative, then the general solution 

describes "simple harmonic motion". 

• 
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Example 2, the Buckling of an Elastic Column, does not 

immediately fit the definition of a 5-L system. However, if we make 

the substitution y'' = z, Equation <4-8) gives a regular S-L system. 

The calculations of Section 4-3 imply that the smallest eigenvalue is 

,,., = ,t2, 

4L 2 

If we wish to determine the smallest critical load- the load at 

which the column buckles, this is given as 

P,~rit = 1t"'El 
4L:2 

(5-2 > 

In Example 3, a study is made of the one-<limensional heat 

conduction problem. By employing the method of separation of 

variables, the partial differential equation is replaced by two 

ordinary differential equations, of which the boundary value problem 

with respect to the spatial variable x gives a regular 5-L system. 

This example also beautifully illustrates the orthogonality feature .of 

S-L problems in the determination of the G" coefficients. Hence, we 

obtain a lengthy analytical solution given by Equations <4-50) and 

(4-51). 

In many instances, it may be more difficult to evaluate the 

analyt !cal solution than to solve the original problem. ·'numerically. 

In Section 4-4A, the numerical solution to the one-dimensional heat 

conduction problem by the method of finite differences was illustrated 

in Order t if 1 d it 1 d o approxima~e the temperature at a spec e pas on an 

time, in particular, u<O. 1, O. 02) . 
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In comparing the results of these two techniques, we find the 

solutions differ in the third decimal place. However, the numerical 

approach would yield much more accurate results if we increased the 

number of grid pointsj that is, decrease increments hand k without 

violating the stability criteria for convergence. 

Since all three examples presented are regular Sturm-Liouville 

systems, it is noted that the theoretical properties and significant 

features previously mentioned are satisfied. 

Eigenvalue problems do arise which are not of Sturm-Liouville 

type . For example, problems involving higher-order differential 

equations, non-linear differential equations, problems in which the 

boundary conditions are periodic, etc. In many of those cases, there 

is no well-developed theory like the S-L Theory to direct us . 

Fortunately, there are a multitude of eigenvalue problems we encounter 

that are of the Sturm-Liouville type. Many of the functions important 

in physics satisfy differential equations of S-L type. However, in 

many equations of physical interest, some of the conditions that 

defined the regular 5-L system are not satisfied. If p, q, and r 

satisfy those conditions on the open interval a < x < b, but fail to 

satisfy them at one or both of the boundary points thii problem is 

referred to as the singular Sturm-Liouville system. Table l 

identifies some singular problems. For example, in Bessel's equation 

p<O> = O and q <x) is discontinuous at x = 0, but the forement ioned 

COnd1ti ans are satisfied in 0 ~ x ~ 1, except at x = 0. The general 
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theory of singular boundary value problems is very difficult and the 

properties of their eigenvalues and eigenfunctions are often 

established individually for each equation. Therefore, the singular 

S-L system may or may not have the theoretical properties previously 

established for the regular system. Consequently, each of these 

problems must be treated independently. 
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