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ABSTRACT

THE STURM-LIOUVILLE MATHEMATICAL SYSTEM

Lorie L. Ceremuga
Master of Science in Mathematics

Youngstown State University, 1988

The Sturm-Liouville Mathematical System consists of a
mathematical framework of special linear and homogeneous boundary
value problems. That 1is, the system contains a linear and homogeneous
ordinary differential equation together with homogeﬁeous boundary
conditions.

In addition to historical notes, the qualitative theory of
differential equations is highlighted here, for such Sturm-Liouville
Systems, featuring theorems on 'separation', 'comparison', and
'oscillation' of solutions. Such theories lead to a generalization of
the standard 'eigenvalue problem'.

Illustrations are provided to delineate these q;alitative
features of said Sturm-Liouville type problems, showing that the

System is of steadily increasing importance today in both pure and

applied mathematics.
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CHAPTER I

INTRODUCTION

The Sturm-Liouville Mathematical System

1-1 Objective

This thesis is an expository report on-the Sturm-Liouville

Mathematical System. This system has been of steadily increasing
significance in both pure mathematics and in mathematical physics.
According to Bell (1], the Sturm-Liouville Theory of the 1830's
was the first step towards an unified treatment of numerous
boundary-value problems and their solutions that had been
accumuiating in applied mathematics since the early eighteenth
century. Expressed in this presentation will be a historical
perspective of the originators of the system, a listing of some
theoretical properties and significant features, and stability
criteria. Physical applications as well as present influences

will also be presented. .



1-2 Mathematical Biography of Charles Sturm and Joseph Liouville

Jacques Charles Francois Sturm (1803-1855) was a French
mathematician of Swiss origin who spent most of his life in Paris. .
In 1823, as a tutor for the de Broglie family, he went to Paris,
where he at last succeeded Poisson in the Cha;r of Mechanics at
the Sorbonne. In 1836, he was elected to the French Academy of
Sciences and later in 1838, was appointed to the staff of the
Ecole Polytechniqge (see Manougian and Northcutt [11]1).

Sturm's primary interests were realized in the fields of
algebra, geometry, physics, and differential equations. Some of
his published works, according to Bécher [3], include: .

An experimental memoir in collaboration with Colladon on the
compressibility of liquids; several paﬁers in geometrical optics;
some papers, partly in collaboration with Liouville, on the real
and imaginary roots of algebraic polynomial equations; -and many
minor geometrical papers.

Sturm was also recognized for the Three Great Memoires;
explicitly,

1835. '"Mémoire sur la résolution des equations numériques."

Mémoires des savants éstangers;

1836. "Mémoire sur les équations différentielles 1linéaires du

second ordre." Liouville's Journal; and

1836. "Mémoire sur une classe d'équations & différences

partielles." Liouville's Journal.

Joseph Fourier's work had a major impact on Charles Sturm.



The primary subjects of Fourier's life work had been the theory of
heat and the theory of the solutions of numerical differential
equations, After Fourier's death. in 1830, both subjects were
carried forward by Sturm, the first in the two Memoires of 1836,
the second in that of 1835. In one of his Memoires of 1836, he
extended the results of a special difference equation to the

following differential equation:

. d_(K&x) dy) - Gy = 0. (1-1)

dx dx ;
Sturm applied mathematics to other disciplines. With respect to
physics, he considered problems in small vibrations and celestial
mechanics. He made the first accurate determination of the
velocity of sound in w;ter and in 1827, 'Sturm won a prize for his
essay on compressible fluids. He also was acknowledged for his
work in Aifferential equations by winning the Grand Prix des
Science Mathematique [111,

Sturm pursued the study of real solutions of algebraic
equations and also of ordinary and partial differential equations
It was here that Sturm's most important and suggestive work was
done. His paper of July 27, 1829 was devoted to the analytic
treatment of systems of linear homogeneous differential equations
with constant coefficients. A result of this paper is a method of
treating the algebraic characteristic equation of the system

This led to his outstanding work done which today is called the

Sturm-Liouville Theory of Differential Equations, described in

recent writings of Simmons [14].



One famous by-product of Sturm's research was his theorem
on the separation of roots of an algebraic equation- the Sturm
Separation Theorem. Another consists of a theorem that rules out
the possibility of infinitely many oscillations (of a solution to

a differential equation) on closed intervals- the Sturm Comparison

Theorem.

Coupled with Sturm's name, in all this work in differential
equations, one finds the name of his young friend, Joseph
Liouville. Jéseph Liouville (1809-1882) was a French
mathematician who graduated from Ecole Polytechnique in. 1827. In
1833, he was appointed professor at the Sorbonne, and as a young
man of thirty, he was elected to the French Academy of Sciences.

In 1836, he founded and edited the Journal des Mathematique Pure

et Aleiquees.l which was one of the foremost high grade
mathematical periodicals that played a significant role in French
mathematical life throughout the nineteenth century,.

Among Liouville's notable achievements in analysis are the
proofs of the existence of transcendental numbers and research in
differential equations and boundary-value problems. He also
produced outstanding work in the theory of numbers and
differential geometry. Liouville was the first to solve a
boundary-value problem by solving an equivalent 1ntégf$l equation.
The scientific significance of in%egral equations, noted by
Liouville in the 1830's, but first elaborated on in 1904 by

Hilbert, 1s that 1in many important instances, one 1integral



equation 1is equivalent analytically to a differential equation
together with 1ts boundary conditions. The solution of an
integral equation inherently gives a solution to an associated
boundary-value problem in such instances.

Recent interest in the study of fractional calculus by
Oldham and Spanier [12], reveals the discovery that one of the
first major efforts in this branch of Calculus was started by
Liouville in 1832. His ingenious theory' of fractional

differentiation answered the 1long standing question of what

reasonable meaning can be assigned to the symbol d4y , when u is
dx™
not a positive integer. For example, he demonstrated that
M(x™) = C(n+t)x"*, for n > -1; (1-2)

it T(n+k)
with I'(n) denoting the Gamma Function of argument n.

Fractional operators are useful in solving problems in
mechanics and geometry. Liouville's brilliant solution came
several decades too early, finding its proper place in analysis;
only now in the twentieth century.

As mentioned by Simmons, the most original of all his
achievements was his theory of the 1integrals of elementary
functions, for here he proved that such integrals’:as Je‘xldx,

[sinxdx, [e®dx, [_dx , as well as Jacobian elliptic integrals of
X X logx

the first, second, and third kinds, cannot be expressed in terms
of a finite number of elementary functions.

The fascinating and difficult theory of transcendental



numbers 1s an important branch in mathematics that originated in
Liouville's work. In the eighteenth century, Lambert and Euler
proved the irrationality of n and e. Liouville expanded on their
discoveries and in 1844, he showed that e does not satisfy any
polynomial equation of the form

a X" t 8,—,x™' + ... + a;x + a5 = 0, (1-3)

with integer coefficients. This led him to conjecture that e

is transcendental. He was unable to prove this, yet his ideas
contributed to Hermite's success in 1873 and then to Lindemanp’s
proof in 1882 that n is also transcendental. In 1844, Liouville
invented a method for constructing any one of an extensive class
of transcendental numbers and used it to produce examples that are
provably transcendental. An example, given by Simmons ([14] is:

oo

310~ = [10-" + 1072 + 10~ + ... ] = 0.11000100...  (1-4)

Another accomplishment of Liouville was his discovery of

the fundamental result in complex analysis known as Liouville's

Theorem- that a bounded entire function is necessarily constant-
and used i1t as the basis for his own theory of elliptic
functions. There is also a well-known Liouville theorem in
Hamiltonian Mechanics, which states that volume integrals are
time invariant in phése space.

Sturm's work was practically completed before

Liouville's work began. Except for alternative proofs which



Liouville gave of some of Sturm's results and an extension to.
certain differential equations of higher order, Liouville's work
dealt with a problem not treated by Sturm, namely the proof that
the development of an arbitrary function which occurs in Sturm's
paper is valid. The functions introduced by Sturm are called
oscillating. In 1837, Liouville was led to a linear integral
equation, which he solved by the method of successive
substitutions. Liouville's problem was that of finding those
solutions, if any, of a linear second order differential equation
which assumes preassigned values of the independent variable. He
was thus concerned with Sturm's oscillating functions, and it is

customary to name the resulting theory after both men.
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CHAPTER II
INTRODUCTION TO BOUNDARY VALUE PROBLEMS

.2—1 Second Order Boundary Value Problems

A boundary-value problem (BVP) is a problem involving a

differential equation and associated or supplementary condition(s).

A typical second order BVP has the form given by Equation (2-1):

y'' = &y, y"), a¢x¢hb
y(a) = A, -1
y(b) = B; where A, B are constants.

Basic questions in the theory of differential equations concern
the existence of a solution to a differential equation and the
conditions that make the solution unique. The following theorem, téken
from the text of Burden and Faires [6] in the subject of numerical
analysis, gives general conditions that ensure that the solution to a

second order BVP will exist and be unique.

Theorem 2. 1

Suppose the function y'' = f(x,y,y') of Equation (2-1) is continuous

over set D = {(x,y,y')| atx<b, -o(y(®, -a(y'<=} and also that df and df

oy oy'
are continuous on D. If



(1) of(x,y,y') > O for all (x,y,y') 1In D, and
oy

(2) a constant M exists such that 'Q_f(x,y,y‘)l ¢ M holds for
oy’

all (x,y,y') in D, then the BVP has a unique solution.

A compact way of expressing differential equations is to use
operator notation. With respect to the second order linear differential
equations, operator L 1s defined as a rule that assigns to each twice-
differentiable functlion , y, on some interval I, the function L(yl,
where LIyl{(x)) = a,((x)y''(x) + a, (xX)y' (x) + a,(x)y(x); 2-2)
that 1s, Lly] = a,y'' + a,y' + apy; where a, } 0 (see Brauer and
Nohel, (51). Therefore the second order linear non-homogeneous
differential equation
a, (x)y'' (x) + a,(x)y'(x} t a, (x)y(x) = f(x) can be expressed as

Llyl((x)} = fx). (2=3)

Operator L is a member of a particular class of operators called

linear operators. By definition, L is linear 1f
'L(c,y, t+ cay2) = ¢, L(y;) + cpL(y:),
where c, and c, are arbitrary constants, y, and y. are any two functions
In S, where S is the collection of twice-differentiable functicns
defined on the interval I. Linear operator theory can be extended to
differential equations of higher order. For example,
L.yl = Byt 4 g, potd # o0 P Buea ' T 8u¥ ( 2-4)

where y is any function which 1s n times differentiable on some interval

I, and 4>, 48y, ..., &, are continuous functions on I, and a, % 0.



10
The second order linear non-homogeneous BVP
ac(X)py'' (x) + a, (X)y'(x) + ax(x)y(x) = f(x); a ¢ x ¢ b,
(2-5)
y(a) = A y(b) = B,

can be rewritten using previous operator notation as:

LLyl{(x)) = f(x); a{x<b

(2-6)
y(a) = A, y(b) = B.
When f(x, y, y').can be expressed in the form
fx,y,y') = pxoy' + q(x)y + r(x),

the differential equatlion y'' = f(x,y, y') 1s called linear.

The existence and uniqueness of solutions is ensured by a

simplification of Theorem 2.1 via the following corollary supplied by
Burden and Faires [6].

Corollary 2. 1

If the linear boundary-value problem

y''=pxly' + q(x)y + r(x,

af{x<bpb
@2-7)
y@) = A, y() =B,
satisfles the conditions that
(1) px), q(x), and r(x) are continuous on a € x ¢ b, and

(2) q(x) > 0on a € x €b,

then the problem has a unique solution.

2-2 Green's Function and Adjoint Forms

Another approach to the solution of nonhomogeneous boundary

value problems is by means of the construction of auxiliary functions

called Green's functions.

The knowledge of this function leads to
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solutions expressed as definite integrals rather than as infinite
series.
In the non-homogeneous case, LIyl = r(x). Given the BVP, from
Corollary 2.1, we seek yx) = y.(x) + y (%),
where y.(x) is the general solution of the associated homogeneous BVP;
that is; the 'complementary function', and
Yo (x) is a 'particular solution' of the nonhomogeneous BVP.
To find y,(x), it is useful to introduce Green's function, as detailed
by Waltman (16]; that is, let
Yo (X) =J" G(x, 2) f (2)dz, (2-8)
o

where G 1s Green's function defined as follows:

' Y (x)yo-(2) , as$ x ¢z
Wly,, y=2) (2)
G(x,2) = ) (2-9)
Ya 2Dy (X)) z ¢ x¢Db
W(yq, y=) (2)

Herein, y, (x) and yzkx) are two independent solutions of LIyl = O;

and W(y,, yz) (z) = [y,(z)y'2<z) = yz(z)y',(z)] is the 'Wronskian' of y,
and y,. It is noted that G(x,z) (for the BVP of Corollary 2.1 ) is
continuous. At x = z both parts are equivalent; however, there exists a

discontinuity in dG(x,2z) , which has a jump of one "unit", at x = z.
OX

Because this derivative is discontinuous, the second derivative (namely
y'') does not exist.
The advantage of expressing solutions in integral form is that

the Green's function is independent of the nonhomogeneous term in the
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differential equation. Therefore; once this function is determined, the
solutions to all possible problems with different functions f are known,
provided the integral ‘f G(x,z)f(z)dz exists.

Any second order ?&near differential equation of the form

ac(x)y'' + &, (X)y' + ax(x)y =0 (2-10)

can be written in the form

d (pxddy) + qx)y = 0 ‘ (2-11)
dx dx
after multiplication by a suitable factor. Differential Equation (2-10)
is said to be in adjoint form (see Leighton [101) if:
a, (x) = a'4ox). (2=12)
Suppose a,{(x) > 0 and a,(x), a,(x), and a,(x) are continuous on
a ¢ x ¢ b. Then Equation (2-10) can be transformed into Equation (2-11)

by. the function p, where

p=_1 exp{ (a.(xdx}, p(x) = as(x)p, and q(x) = a>(x) p(x). (2-13)
ae (x) ae (X) ) ao (%) 3

Adjoint problems are of particular interest physically
because they occur frequently in applications. They are also of
interest mathematically because their theory is especially well-
developed and elegant, as detailed by Boyce and DiPrim§~[4]. The
importance of the adjoint form(s) in the study of differential equations
of second order can hardly be over-emphasized. They arise naturally in
mechanics and have a central role in the calculus of variations. Many

Properties of the solutions of differential equations can be discovered



13

by studying the equations themselves, without solving them in the
traditional sense. In addition to transforming a second order linear
differential equatioﬁ into adjoint form,

y'' + PX)y' + Qx)y =0 (2-14)
can be written as u'' +-q(x>u =0 (2-15)
by a simple change of the dependent variable. éimmoné [14] notes that

Equation (2-14) is considered to be in standard form, while Equation

(2-15) is referred to as Liouville normal form. To write Equation

(2-14) in Liouvilie normal form, let
y(x) = uxIvx);
then y'(x) = ux)v' (x) + v(x)u' (x),
and yrix) = uGov'(x) + 2u' (v (x) + u'! Gov.
By substituting this aédition and produtt rule differentiation, Equation
(2-14) reads:
[(uv'' + 2u'v' + u''v) + PCuv' + u'v) + Quw)] = 0, or
vu'' + (2v' +Pwu' + (v'' + Pv' + Qviu = 0. (2-16)
Setting the coefficient of u' equal to zero, in Equation (2-16), and
solving for v yields:
v = Cexp{-®JP(x)dx}; " @2-17)
where C is an arbitrary non-zero constant.
Since v(x), given by Equation (2-17) is non-zero, the
transformation of Equation (2-14) into Equation (2-15) has no effect
whatever on the zeros of the solutions and therefore does not alter the

9scillation phenomena in the physical interpretation of the system.

(A solution u = 0(x), of Equation (2-15) is said to be oscillatory if
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there exists a sequence {x,} with lim x, = ®, and such that
Nn—soe
ox,,) =0, forn=12,3, ... .)
With the coefficient of u' set equal to zero, in Equation (2-16), the
equation has the form:
u'' + qx)u = 0.
If q(x) < 0, then the solutions of Equation (2-15) do not oscillate at

all. Thus we are led to Theorem 2. 2.

Theorem 2.2
If q(x)> < 0, and u(x) 1s a non-trivial solution of u'' + q(x)u = 0, then

u(x) = 0 has at most one zero.

In consideration of the oscillation of solutions, this leads us
to confine our stud} Qf Equation (2-15) to the special case in which
q(x) > 0. Even In this case, it Is not necessarily true that all
solutions will oscillate. The central feature of the behavior of
solutions of Equation (2-15) 1s that they oscillate in such a manner
that their zeros are distinct and occur alternately. 'Iﬁ this direcfion,

we are led to the Sturm Separation Theorenm.

2-3 The Sturm Separation Theorem
Theorem 2. 3

If y,(x) and Y= (x) are two linearly independent solutions of
y'' + P(Xy' + Qx)y = 0, then the zeros of these functions occur
Glternately- 1n the sense that y, (x) vanishes exactly once between any

two zeros of Y2 (x), and conversely.
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Procof:
GSince y, and y. are linearly independent, their Wronskian does not

vanish; that 1is,

B AT £

Wy, y2) = ',y', v'ali = (viy'2 - y2y'y) $ 0. (2-18)

Since the Wronskian is continuous, it must have a constant sign.
Further, 1t 1s noted that y, and y. cannot have a common zero, for 1f
they do, then the Wronskian would vanish at that point, which is
impossible.

Assume next that x, and x; are successive zeros of y,. We want to show
that y, vanishes between these two points. At x, and at x,

W(yy, y2) = Y1 (XOy'2(x) = yo(xX)y', (XD

YV (0y' 200 § 0.

This implies that y,(x) ¥ 0 and y'-(x) # O.

Furthermore, y'>(x,) and y'x>(x>) must have opposite signs, because if y,
is increasing at x,, 1t must be decreasing at x., and vice versa.

Since W(y,,y.) has a constant sign, y,(x,) and y, (x») must also have
opposite signs, and therefore, by continuity, y,(x) must vanish at some
point (s) bétween X, and x,. Function y, cannot vanish more than once
between x, and x,; for 1f 1t does, then the same argument shows that y.
must vanish between these zeros of y,, which contradicts the original

.

assumption that x, and x, are successive zeros of y.. '

The Sturm Separation Theorem tells us that the zeros of any two
(non-trivial) solutions of y'' + P(x)y' + Q(x)y = 0 either coincide or

occur alternately, depending on whether these solutions are linearly
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dependent or independent. Thus, all solutions of

gt P(x)y' + Q(x)y = 0 oscillate with essentially the same rapidity,
in the sense that on a given Interval, the number of zeros of any
solution cannot differ by more than one from the number of zeros of any
other solution. Waltman [16] discusses the interlacing of these zeros

in Corollary 2. 2.

Corollary 2.2

The zeros of linearly independent solutions of u'' + q(x)u =0

interlace, as depicted in Figure 2-1.

A consequence of Corollary 2.2 1is that under the hypothesis of

the Sturm Separation Theorem, if one solution of z'' + Q.(x)z =0 is
oscillatory, all solutions of y'" + Q,(x)y = 0 are oscillatory, if

Qy (X)) 2 Q. (x).

“

Fig. 2-1 The Interlacing (Intersecting) of Solutions
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A key feature exhibited by Equation (2-15) is that, as q¢x) (the
amplitude) gets larger, the solutions of this equation oscillate more

rapidly. This feature is stressed in the Sturm Comparison Theorem.

2-4 The Sturm Comparison Theorem

Theorem 2. 4
Let y(x) and z(x) represent non-trivial solutions of the following

differential system:

y'' +qxy =0

(2-19)

z'' + r(x)z 0,
where q(x) and r(x) are both positive functions such that q(x) > r(x),

where x;, € x € x>. Then y(x) vanishes at least once between any two

zeros of z(x) = 0.

Proof:

Let x, and x, be successlive zeros of z(x); that 1s, z(x,) = z(x3) =0
and assume y(x) does not vanish on the open interval x, < x < Xa.
Proof of the theorem 1s achieved by contr;diction.

Assume y(x) and z(x) are positive on X, < x X

With Wy, z)

yz! = zy',

then dW(y, z) = yz'' + y'z' = z'y' -zy''

dx

yz'' - zy''. (2-20)

From the system given by Equation (2-19), we re-write Equation (2-20)
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as: ' :
dW(y, z) = y(-rz) = z(-qy) = yz(q-r) > 0, 2-21)
dx

on x;, < X < X>. Now by our assumption that y and z are both positive

and q > r, then xi
dWix)dx = W(xz) - W(x,) > 0, (2-22)
dx
X,
or Wixa) » W, ),
Now, at x, and Xz, Wy, z) = yz'
and Wix,) = y(x,)z' (x,) 2 0,
(2-23)
and Wixz) = y(x)z' (xz) € 0.
Hence, Equations (2-22) and (2-23) lead to a contradiction.
Figure 2-2 illustrates The Sturm Comparison Theorem.
TS |
A=Y (X)
ws 2(X)
" : » X
X, *y Xy
Fig. 2-2 Graphical Interpretation of the Sturm Comparison Theorem.
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CHAPTER III

THE STURM-LIOUVILLE SYSTEM

3-1 The Regular Sturm-Liouville Mathematical System

The following boundary-value problem

d (ptx)dy) - qx)y + Ar(x)y = 0;

dx dx
(3~1)
a,y(a) + a,y' (a) = 0,
b,y(b) + b,y' (b) = 0,

1

is called a regular Sturm-Liouville System (5-L system) over the

interval a ¢ x ¢ b when the following conditions are satisfied:

(1Y px), p'x), qx), and r(x) are real—vaiued continuous functions
for a € x ¢ b,

(2) p(x) >0 and r(x) > 0 for a ¢ x ¢ b,

(3) X is a parameter independent of x, and

(4) a,, a b,, and b; are real constants with (a%, + a#;) > 0 and

(b2, + b=zy) > 0.

(The restriétions imposed on p, q, and r are necessary in order to
énsure the differential equation has solutions. Notice, if p(x)
vanishes at any points in a ¢ x ¢ b, or if q(x) or r(x) become
unbounded in the interval, the solution of the differential equation

* May become unbounded. )
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In the regular S-L system, we seek to find special values for the
parameter A that yield non-trivial solutions, to find those
solutions, and to identify properties of such solutions.

The special values of A for which there are non-trivial
solutions of the S-L system are called eigenvalues and the

corresponding solutions are called eigenfunctions. Note that Equation

(3-1) describes a homogeneous, linear, second order ordinary
differential equation. If y(x) is an eigenfunction associated with
this differential equation, then Cy(g) is also an eigenfunction,
where C is a constant. The set of all eigenvalues is called the
spectrum of the system.

If we re-define the S-L system as follows:

y'' + p'y' -~ gyt Ary =0, ‘ (3-2)
P P P

and let Vi =Y Y= =Y, (3-3)

then the following equivalent network results:

( VARTEED £
y'2 = “ply= + (q - A)y
J p P P 3-4)
a ¢ x ¢b
1,: a,y,(a) + azy-(a) =0, p
\ 1ot by, (b) + baya.(b) = 0.
We can now obtain a simple geometric view of the existence of
eigenvalues for the,S;L system as follows: in the y, - y- plane,

the boundary conditions can be viewed as straight lines through
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<

the origin (see Figure 3-1). We seek a solution of the differential
system given by Equation (3-4) that starts at t = a on line 1,, and
terminates at t = b,'which lies on liﬁe l.. Of course, the solution
may encircle the origin many times before terminating on 1., at time
t = b, If N\ is not an eigénvalue, by definition, the only solution
that starts on 1, at t = a and terminates on lﬂ.at t = b is the
trivial solution, represented by the origin.

The geometrical notion here relies on varying X\ until all the

elements of the set of solutions at t = a on 1, terminate at t = b on
l.,. This value of A will be an eigenvalue. This view of the boundary
value problem is a "shooting method", when one interprets the

geometrical action in a numerical computation sense.

SN

§0 Ay +ay=o

FiS- 3-1 A geometric view of linear two point boundary conditions
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3-2 Theoretic Properties of the S-L System

Clearly, Equation (3-1) is a self-adjoint differential

equation. Recall the definition of the adjoint differential equation
(Equation (2-10)) and use of operator L{ul (as employed in Equation
(2-2)), then the eigenvalue problem of Equation (3-1) is said to be

self-adjoint 1f I
s(vL[u] - uLlvl)dx = 0. (3-5)
a

Since Equation (3-5) 1is satisfied for the regular S-L system given by

Equation (3-1), this 1s a self-adjoint system. Two key properties

associated with self-adjoint systems are that:

(1> the eigenvalues are real, and

(2) the eigenfun;tions correspondiﬁg to different eigenvalues are
orthogonal.

The proof of these properties follows in the manner deséribed by

Zauderen [18] in Theorems 3.1 and 3. 2.

Theorem 3. 1

All the eigenvalues of the regular Sturm-Liouville System are real.

Proof:
Given d (pxydy) + (Ar(x) - qux))y = 0; a ¢ x ¢ b,
dx dx ‘
and ‘a,y(a) + ayy' (a) = 0, ' (3-6)

b,y(b) + boy' (b) 0.
where px), p' (x), q(x), and r(x) are continuous. on a ¢ x ¢ b;
P(X), qx), r(x), a,, as, b,, and b, are real-valued.

while X and y may be complex;

also P(X) > 0 and r(x) > 0 for a ¢ x ¢ b.
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Taking the complex conjugate of the original system yields

Equation (3-7):

d_(P(X)Qi) + (;\-r(x) - q(x) ); = 0Q;

dx dx
and a,y(a) + asy' (@) = 0, | (3-7)
byy(b) + bay' (b) = 0.

Combining the differential equations of Equations (3-6) and (3-7)

gives: =
[y{d_(p¢>dy) + (A\rx) - qx))y = 0}
dx dx

y{d_(pcoody) + (\r - qx) )y = 0}]
dx dx

n

d { peolyy - yy'1}+ (A - XN)royy = o. (3-8)
dx

Integrating Equation (3-8) from x = a to x = b, gives:

L _ _ _ L _
fIg_{p<x)[yy' - yy'l}dx = (N - A)I r (x)yydx
dx ('
= _ _ L (3-9)
P& [yy' - yy']l = (N - N)] roolyl=dx .
a (™

From the boundary conditions stated in Equations (3-6) and (3-7),

the left side of Equation (3-9) reduces to the following:

P [y(b)y' (b - yib)y' (1] - pad[yady' (@ - yaly' (a]

= Py y) [-by + by] - play@y(a [a. - a.] = 0 ; (3-10)
: b2 b2 8x a2
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From the weight function r(x) > 0, defined over the open interval
a < x < b, we have
S r(x)|yl=dx > 0. (G-11)
— L —
Therefore (N=2) =0, 3N = A

ie., M\ is real.

Theorem 3. 2

If y, and y» are two eigenfunctions of the regular Sturm-Liouville
System corresponding to eigenvalues A, and A, respectively, and 1f
A # A», then rx)y, (x)y,(x)dx = 0; that is, y,, y- are thusly

orthogonal.

Proof:

Let y, and y, satisfy the operational statements

Lly,y] = \yrx)y,
(3-12)
Llysl = Aar(x)ys
By rearrangement, Equation (3-12) gives:
y=Lly:l = MirxX)y .y
yiLly>]l = Aar(x)y,y- , or by grouping
y=Lly,] = y,Lly2] = O\ = A2drx)y,y2, oOr (3-13)
g__{p<x)[y',y2 = y'eyil} = (N - A2)ryaya. (3-14)
dx
Integrating both sides of Equation (3-14), from x = a to x = b,
ylelds: 2 , £
JL{ PBRILY' 1y = ¥ 2y,] Jdx = (A, - xzz)[ r(x)y,yadx ,
dx a
a

or L
PGO [y ya - ylzy‘]l = (n - xz)g r(0y,yzdx.  (3-15)
a

a
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The left side of Equation (3-15) becomes

p(D)y: (B)y=(b) [-by + by] - plady,(a)ya(a)la, - 8.1 = 0 ; (3-16)
bo bi as an

where a», bz # 0.

Therefore, we arrive at the statement:

yA
0= (n - xz)s r(x)y,y=dx. (3-17)
a
Since A; F A> by hypothesis, this implies that

r(x)y, x)y>(x)dx = 0. (3-18)
[

Equation (3-18) expresses the property of orthogonality of the

eigenfunctions with respect to the weight function r(x). Also, any

4
orthogonal system {y,) with norm |ly.l|| =’ S r¢o (y.(x))#dx > 0 can
a

be converted into an orthonormal system, given by

0,(x)) = Yo (X) . (3-19)
HynGI

As stated by Danese (8], the orthogonal system is then said to be
normalized.

Since the eigenfunctions corresponding to distinct eigenvalues
of a S-L system are orthogonal with respect to the weight function,
;?1s suggests, the expansion of an arbitrary function f(x), for which

i; r(o (f(x))2dx 1is represented by a Fourier series in the terms of a
finite number of eigenfunctions. That is, the eigenfd;ctions of the
S-L system of Equation (3-1) are not only orthogonal, but also
€omplete, as noted by Weinberger [171.

An orthonormal sequence of functions {0,} in a ¢ x ¢ b is

0
Somplete with respect to a given class of functions if for every
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function f in this class,

§ 2 n
lims_ [fx) = § c.0, (x)]=dx = 0, (3-20)
N-=0°0 ‘g Ka)
at points of continuity of f, where
Cre =gmhf(x)®k(x)dx. (3-21)
(R

The c.'s are called the generalized Fourier coefficients of f with

respect to {O }.

The class of functions which determines the completeness
property of {®.(x)} cannot be arbitrary. Now, let us consider some
necessary restrictions on {&.} in a ¢ x ¢ b. Sinceg (9 ) )=dx = 1,
forn=1,2,..., 1t follows that ¢,=(x) must be inte;;able in

a$x ¢ b That is, ¢, 1s square-integrable in a ¢ x ¢ b.

Obviously,
L n
g [fe0) = Y €@ (x)]=dx ? 0. (3-22)
o K=1

Upon expansion of (3-22), we have

n £ n . ;
f2dx - 2 z(ckS' f®kdx)+ Y cZ 3 0, (3-23)
a K=y “‘a K=\
or
L n n
S f2dx = 2 ) c.2 + ) c.2 2 0, (3-24)
a ¥=1 K=\
which implies that
n &
) €2 sg f2dx = [[f||= , (3-25)
Kﬂ\ a /

Since the right hand side of Inequality (3-25) is independent of n, it

follows that

)
2 c® ¢ LIfL=, (3-26)
This { =
Nequality, known as Bessel's inequality, is valid for every

orthonormal =
mal system. It implies ) c.2 is convergent and therefore
K=\
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1im c.® = 0 or that lim ¢, = 0. For a complete orthonormal system of
K= O W-=c0

functions, Bessel's inequality becomes an equality for every function

. That 1is,
J L

<
> =) (fx))2dx = |If) 1= (3-27)
¥X=\ a

This relation is Parseval's equation and is also known as the

"completeness relation" (see Courant and Hilbert [7]1). In other
words, the orthogonal sequence {0.} in a ¢ x ¢ b is complete with
respect to the class of square-integrable functions if and only if for
every function f in this class, Parseval's equation is true at points
of continuity of f. It is important to note that if Equation (3-20)

©0
is satisfied, the functions z c.®, converges to the mean of the

. K=y
function.

In addition to Theorems 3.1 and 3.2, there are some other
interesting basic properties of eigenvalues and eigenfunctions.
For example, each eigenvalue is 'simple'. That is, since the S-L
system is a second order system, there can be at most two linearly
1ndependen§ eigenfunctions for each distinct eigenvalue A. However
for the S-L system, there is only one linearly independent
eigenfunction for each eigenvalue. Thus, each eigenvalue is termed
‘simple'. It is also noted that there exiéts a set offeigenvalues
having a 1imit point at infinity. The set of eigenvalues can be
arranged as follows:

MoCha A with A\, 4 ®, as k 4 =

The spectrunm of the system is discrete and has a limit‘point at

infi
nity.  Another interesting property of the S-L system refers to
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the number of zeros of the eigenfunctions. In the case when

a. = b, = 0, in Equation (3-1), Theorem 3.3 describes this feature.

Theorem 3. 3

There exits an infinite sequence of characteristic numbers

Ay, Azy ... Of the simplified S-L system with the properties A, < Az
., A, ? @ and a corresponding sequence of characteristic functions

yy (x), y2(x), ... defined on the interval a ¢ x ¢ b. The function

¥n(x) has precisely n zeros on the interval a < x ¢ b.

The procof of this theorem is very detailed and can be found in texts

as Birkhoff and Rota [2], Ince [9], and Leighton [10]

3-3 Green's Functions - Inversion of Differential Operators to

Integral Operators

Now consider a regular 5-L system in Liouville normal form,

glven as follows:

v+t [A-q]y = 0,
(3-28)
yca) = yb) =0 .
Rewriting Equation (3-28) yields: E
y'' = qloy = =Ay, (3-29)

Where (-Ay) can be viewed as a "forcing term" for the differential

equat ion

y''t - qxoy = 0. (3-30)

Equa
@ ion (3-29) 15 now viewed as a second order linear nonhomogeneous
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differential equation.

Let G(x,z) be Green's function defined by

vy, (XDya(z) , af{x <z
Wy, y22(z) . v
G(x,z) = (3-31)
v, (z)ya(x) , z{x b,
W(y,, y22 (z)
where y, (x) and y.(x) are linearly independent solutions of Equation
(3-30) with y,(a) = 0 and y-(b) = 0, and W 1s the Wronskian of
¥ (x) and y>(x). (In fact, 1n Equation (3-30), W will be constant,
since the flrst derivative term does not appear).
A solution of the system, given by Equation (3-28), can be
expressed by ﬂ
y(x) = /\j" G(x, z)y(z)dz. . (3-32)
a
Equation (3-32) is an integral equation for an unknown function y(x).
This integral equation 1s the object under considerable mathematical

study and perhaps, as indicated by Waltman [16], the most elegant way

to present the Sturm-Liouville Theory.



CHAPTER IV

APPLICATIONS OF STURM-LIOUVILLE DIFFERENTIAL SYSTEMS

4-1 Introduction.

Here three examples of physical problems are pregented as
illustrations of Sturm-Liouville systems. Explicitly, these
examples describe (1) the 'harmonic oscillator'; (2) the elastic
buckling problem with the differential gquation and boundary
condition(s) possessing the eigenvalue parameter; and (3) a

detailed study of the one-dimensional heat conduction problem.

4-2 The Harmonic Oscillator

The '"harmonic oscillator' can be described by the followihg
Sturm-Liouville mathematical system, for parameter A = X
y"—')?y=0; y=f’{:(,?\‘}, 0 ¢ x €L
y@) =0 4-1)
y' (@) = 0
If the parameter % is negative, then the general solution to the

ho
Mogeneous, linear, second order, ordinary differential equation
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describes '"simple harmonic motion". Here, with A< 0, this
tharmonic oscillator' problem yields explicit solutions to system
(4-1) called eigenfunctions:

Yo = Asin/Tox ; (4-2)

with A, an arbltrary constant, and possessing eigenvalues,

£, = - [h(Zn + 1{]2 < 0; (4-3)
2L

forn=01,23 ...

Note: If X 2 0, then y = 0.

4-3 Buckling of an Elastic Column

In an investigation of the buckling of a uniform elastic
column of length L by &n axial load F, Timoshenko and Gere [15]
lead to the development of the followlng fourth order ordinary

differential equation:

EId?y + Pd®y = q, (4-4)
dx2 dx= - '

where E is the modulus of elasticity,

I 1s the moment of inertia of the cross-section about an axis
through the centroid perpendicular to the x-y plane,

P is the axial force in the beam-column,
q Is the intensity of the uniformly distributed load, and
Y 1s the deflection at location x.
In determining the critical buckling loads, the uniformly
distributed load vanishes. (If P is less than the 'critical’ load,
the column ;s 'stable', implying that if the uniform loading is

a
PPlied and then removed, the column returns to its initially
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straight position. If P ekceeds the 'critical' load, the column
becomes 'unstable', Implying that a small uniformly applied load
produces a deflection which does not disappear when the uniform |
loading is removed!); This implies that the differential equation

for the column becomes,

EId“y + Fd%y = 0; (4-5)
dx4 dx= 5

Next, substituting A = P_, Equation (4-5) reduces to
EI

yrv 4+ Ay'' = 0. (4-6)
Assuming P > O and A > O, then the general solution of this equation

is
y = Asin/Xx + Bcos/Xx + Cx + D. (4-7)

The constants of this equation and the critical load(s) are found
from the end conditions of the elastic column. The boundary
conditions at x = 0 and x = L depend on how the ends of the beam are
supported.

In scme buckling problems, the eigenvalue parameter appears
in the boundary conditions as well as in the differential equation
One particular case occurs when one end of the column 15 clamped and
the other is free. In this case we are led to the following

mathematical system

yroot Ayttt =0
y(@) =0 (a)
{ y'@ =0 (b) (4-8)
y'ra) =0 (c)
[y''' ) + Ay )] =0 (d)

8s shown in Figure 4-1.
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Note: The end conditions éa) and (b) above represent clamped or
fixed ends, and conditions (c) apd (d) represent the free end
at x = L.
Now, with y'' = z, the network in Equation (4-8) depicts a .

Gturm-Liouville system.

I/
2 +X
e — Je— P
7]
4
vty
- -

Fig. 4-1 (Ceometry and Loading Conditions for the Elastic Column

\

It is now desired to determine ihe eigenvalues and
eigenfunctions of Equation (4-6) subject to the stated boundary
conditions, In particular, the smallest eigenvalue gives the load
at which the column buckles, or can assume a curved equilibrium
position as shown in Figure 4-2, The eigenfunction corresponding to

the buckling load then describes the configuration of this buckled

column,

L%

0 \\: "

™

Fig. 4-2 Deflection Mode of the Elastic Column
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As applied to Equation (4-7), Equations (a), (b), (c), and (d) give

the following equations for determining the constants in the general

solution:
f B+D=0
4 JXA +C =0
Asin (JAL) + Bcos(fXL) = 0 (4-9)
L AC =0

For a non-trivial solution of Equation (4-9)- a system of
homogeneous, linear, algebraic equatlions—- the determinant of the
coefficients must equal zero; that 1s, the 'determinantal'’

equation

0 1 0 1

oy 0 1 0
sindXL cosfAL

S

0 =0 (4-102

0 0 A 0

must be satisfied. Expansion gives

A (fXcos (/ALY ) = O (4-11)

Since A > 0, 1t follows that

cos(fXL) = 0. (4-12)
Therefore .
AL = ¢2n - D, forn=12... : (4-13)
2
S0 that
X = Cn - Dn, forn=12... (4-14)

2L

The
Smallest eigenvalue corresponds to n = 1, therefore
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Am:( ” = .”_:‘ (4"15)
4=

and the equation for the corresponding deflection curve

(eigenfunction) is
y =1 - cos(nx) . (4-16)
2L ’

AlSO; Pr:r'.tt = /\mierI = n*EI = Euler Buckling Load

L 2

N

4-4 One-Dimensional Heat Conduction Problem

An example of the One-Dimensional Heat Conduction Problem can

be represented mathematically by the following system

( a*U,.. = Uy, O0<Cx <L, t DO (a)
uco, t) = u, (0, t), t >0 (b) (4-17)

ﬁ ucdl.t) = -u, (L, t), ¢t >0 (c)

{ ulx,0) =1, 0 ¢ x ¢ L. (d»

In this system, u represents the temperature (in a one dimensional
bar as a function of position x and of time t); a is the
'conductivity' of the bar, Equations (b) and (c) represent the
boundary data, and‘Equation (d) is fhe initial data. A visual

representation of the system of Equation (4-17), 1s shown in Figure

sk

g3,

M(O,'f) =M o) LM = M 4 M) =M (L, %)
: X KX

o M (x,0) = | L

Fig, 4- '.
8 4-3 the Space-Time Frame Identifying the Boundary and Initial
tonditions for the One-Dimensional Heat Conduction Froblem
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The underlying problem of heat conduction is to find u(x, t)
which satisfies Equation (4-17). That is, this problem can be viewed

as solving an initial value problem in the time variable t and a

boundary value problem with respect to the spatial variable x.

To find a solution of the given system, we will employ the

analytical technique- separation of variables. We seek a solution of

Equation (a) of the form
ulx, t) = X(x)T). (4-18)

Making the substitution of Equation (4-18) into Equation (a) yields:

a=X''T = XT', (4-19)
X' = 1T . (4-20)
X 0T '

In order for Equation (4-20) to be valid for O < x (L, t > O it
is essential that both sides of this equation be equal to the same
constant. That is, Equation (4-20) becomes

X''=1T' =-\, 4-21)

where -\ is referred to as the "separation constant".
(the choice of -\ is for convenience).

Hence, from Equation (4-21) are two ordinary differential equations

X'+ =0 , (4-22)

and T + o@AT

0. (4-23)
The essence of this method of separation of variables is that the

Partial differential equation has been replaced by two ordinary

diff '
erential equations. The boundary conditions for Equation

(4-22) are glven as



(4-24)

[
2

(x€0> - X' (0))

and (xewy + X)) (4-25)

[
=

Thus for the system comprised of Equations (4-22), (4-24), and

(4-25) we have a Sturm-Liouville System.

To find the eigenvalues of Equation (4-22), we make use of
the differential operator D as follows:
(D= + M{x} =0 (4-26)
which is satisfied for
D= & #~K (4-27)
For X\ given, the general solution of Equation (4-22) is shown

in the following three cases.

Case I For A = 0; X(x) = A + Bx (4-28)
Case II For N < 0; ~ X(x) = Cexp{/=Ax)} + Dexp{-/=Xx} (4-29)
Case III For N > 0; X(x) = Esin/Xx + Fcos/Ax (4-30)

Case I If N\ = 0; the boundary conditions, Equations (4-24) and
(4-25) suggest that A =B =0 and that A = 0 is satisfied

only for the trivial solution.

Case II If X\ < 0; Equation (4-24) results in

C=D(1L+ [ (4-31)
X -1
and Equation (4-25) gives
Cexp{/=XL} (1 + /=X) + Dexp{(-/=XL} (1 - /=X) = 0 (4-32)

s
ubstituting Equation (4-31) into Equation (4-32) yields



D[exp{/mALY (1 + J=R)* + exp{(-J=AL}(l - /~X)] = 0. (4-33)
X - 1)

The only nontrivial solution occurs for A = 0, which contradicts our

assumption that A < 0. See Figure 4-4.

. ALO

2/

-1\ 2
k@)= %T:)

o L 2 3 2

Fig. 4-4 Graphical Interpretation for the Case: A<0O

Case IIT If X\ > 0; Equation (4-24) yields
| F = {XE (4-34)
and Equation (4-25) gives
cos (/AL) [F + EfX] + sin(/AL) [E - F/X] = 0. (4-35)
Substituting Equation (4-34) into Equation (4-35) results in

tan(/AL) = 2/X: (4-36)
-1

Non-trivial solutions exist where Equation (4-36) is satisfied.

T
9 solve for \ graphically we make the substitution
6 = (XL . (4-37)

Th
Srefore, Equation (4-36) is now of the form
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tan® = 2L8 i (4-38)
92 - L2

Let f(B) = tan® and g(® = _ 2L6 .
0= = L=®

The resulting graph of these two functions is shown in Figure 4-5.
The approximate values of © for which f(8) = g(8) are identified

1

in this figure, for the case L
6, = 1.3065424
6., » 3.6731944
6. ® 6.5846200

B, » 9,6316846

Noting that
0 <8

N |—

t < 65 <

|W
A

’

n

2n < 65 <

|
A

™~

(n-1)nr < 6, < @2n~-1)mn, forn=12..
‘ 2

Referring to said graphics, note that

o, % (n - L, (4-39)
for n sufficiently large.
To find the eigenvalues we recall the substitution for @ so that

8, = /AL (4-40)
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B = - @:ﬁ;\
X
o
Ay
L=1

Fig 4-5 Graphical Interpretation for the Case: A\»0



Upon solving Equation (4-40) for \,, we obtain

An approxzimation for X\, can be obtained by the substitution of
Equation (4-39) into Equation (4-41) so that

An ® (n=D)*p* ,  for n suitably large.

the eigenfunction corresponding to X\, is
Xx) = 0, (x, \,)) = (sin(IX;x) + /T;cos(lx;x)), for n
Now upon considering Equation (4-43) where N > 0, we find

T(t)‘ = Gexp{-o®\t}, t > 0;
where G is an arbitrary constant.
Consequently, the solutions of the heat conduction equation of
form of Equation (4-18) can be represented by
ulx, t) = Gexp{-o®it }(sin(/Xx) + /Kcos(/Rx))

and the fundamental solutions of Equation (a) are given by

u.(x,t) = G.exp{-o®\,t }[sin(/K,x) + {X.cos (X, x)],

Therefore,
ulx, t) = ) Goexp{-oi,t }[sin /X, x) + /K,cos ({K,x)].
Finally, it remains to impose the initial data

<0
1 =% G,[sin(/K00 + [K,cos(/Rx)], 0 < x < L.

- Due to the orthogonality feature of Sturm-Liouville problems,

the G.'s can be determined as follows:

jtx<x)dx

b x= () dx
’ 0
completion of the integration for the G,, coefficients,

47) then reads:

(4-41)

(4-42)

(4-43)

(4-44)

the

(4-45)

(4-46)

(4-47)

(4-48)

(4-49)
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ulx, t) = Y Guexp{-o®\,t }[sin (/K,.x) + {K,cos(/X.,x)]; where (4-50)
n=|

D
1]

- 41 - cos(UR.L) + /K,sin(/K,L)] (4-51)
[27%, (1+N) + sinIKL) A\ -1) + 4/, (sin(/X,L) )#]

4-4A Numerical Solutions of The One-Dimensional Heat Conduction
Equation

(1) Computation By The Method of Finite Differences
Numerical methods complement analytical.techniques in that
they handle problems that appear non-tractable or too difficult to
solve analytically. One fundamental and important technique for
numerical solutio; of partial differential equations is the method of

finite differences.

Here, we consider the one-dimensional heat conduction problem
given by Equation (4-17) and employ finite differences, seeking the
value u(x, t) at discrete grid points (x;,t,), by defining a grid on
the rectangle u = {(t): O ¢ x <L, O¢t <Th

Let M and N be positive integers so that

h = Ax = L, where x; ih for i =0,1,..., M
M

1]
It

k = At jk for j

1
S
—
=2

T, where t,
N

resulting grid is shown in Figure 4-6.
N K
(X 4 ¢ N
x3)

o 4

300 )¢
/4" ¢ ‘0———."(

Grid Arrangement for the Finite Difference
Method of Computation
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Next, we need to find a finite-difference approximation of the
partial differential equation [(Equation (a) of (4-17)] that will
relate the values of u at various grid points. Namely,

dulx,,ty) = ulx, , t; + k) - ulx,,t,) (4-52)
ot k

and 2Fu(x,,t,;) » ulx, + h,t,;) - 2udlx,, t,) + ulx, - h, t,) (4-53)
dx= h=

Replacing approximations (4-52) and (4-53) with
X: P h = Ria
Xy = h = %4y,
ty + k=t,.,,
results in the following difference equation

0 (UK aay 630 =2u Ky, b UK b)) = uGy, by )UK, b)) (4-54)
h= k

Er 1 =1,2,..., M1, and § = 0,1,2,...,N-1.
or re-writing in subscript notation:

az(u4—| g —2uy 4 + Uy, .1) = Uy gy T Uy g (4'55)
h= k

for 1 = 1,2,...,M-1, and j =0,1,2,...,N-1,
Equation (4-55) then serves as the finite-difference approximation of
Partial differential equation in Equation (4-17).

Solving for Uy, 5+ ylelds

Ui, ge1 = [Fugey, g + (1=2P)uy, 5 + rugoy, ) (4-56)
R . .
or 1-1'2,...,M—1. and J=0,1.2,...,N-l,
ece r = a=k
e

Mc
. onsider the given boundary conditions, (b) and (c) of Equation
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(4-17). The central difference approximation to u. at the grid point

(x4, t;) 1s given as

b_g(x“t,) 2 ulx, + hlta) = wlxy = h‘t() (4‘57)
ox 2h
for 1 = 1,2,...,M-1, and j =0,1,2,...,N.

Using this approximation, we have

Uo,g = Wy = Uy o _ (4-58)
2h
and UM, 3 = '[!mzL_¢_:_Hm=4.4J , (4-59)
2h
for 3 =01,2,...,N

We can eliminate u_,, ; and uyn.,, ; from Equations (4-58) and (4-59)
by setting 1 = 0 and 1 = M in Equation (4-56). Thus
UC), I+ = ru‘_ J + (1_2r)u°'3 + l‘u_,, 3 (4_60)

.

and UM,J,1 = I‘UM...“‘., + (1-2!‘)UM,J + I‘UM_L‘, (4'-61)

Now by eliminating u_,,,; from Equations (4-58) and (4-60), and

eliminating um.,, ; from Equations (4-59) and (4-61) we obtain

Uo, jo3 = 2ruy, 4 + (1 - 2r - 2rhdu,, , (4-62)
and Um, 341 = 2FUpoy, 3 + (1 = 2r = 2rh)uy., | (4-63)
where 3 =0,1,2,...,N-1,

Finally, the initial data [ (d) in Equation (4-17)] is of the form
U, o = 1, for 1 = 0,1,2,...,M P (4-64)
efore, the appropriate difference approximation to Equation
170 1s given by Equations (4-56), (4-62), (4-63), and (4-64).
If we wish to approximate u(0.1,0.02) |
o = 0,10 cm/sec®

L=1cm
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x = 0.1 cm

t = 0.02 sec.

and choose h = 0.05 cm. and k = 0.0025 sec. so that 0 < r ¢ %
in order for this method to converge. (The development of stability
conditions in the theory of finite differences can be found in the

text of Burden and Faires [61). The appropriate difference

approximations for this problem are as follows:

u;, 53 = 0uluye,,y; +0,8uy,; +0.1u,_,, (4-65)
for 1 = 1,2,.00,M-1, and § = 0,1,2,...,N.
Us, g+ = 0. 2u,, 4 + 0,.79,, , (4-66)
for j =0,1,2,...,N-1,
Up, 547 = 0.2up—y, 3 + 0.79uy, 4 (4-67)
for § = 0,1,2,..vyN-1.
| u,,., = 1.0 (4-68)
for 1 =0,1,2,...,M

The grid representation of u(0.1,0.02) is u,, 5. After successive
iterations employing Equations (4-65), (4-66), (4-67), and (4-68),
U,, 5 = 0,1¢0,9988786) + 0.8¢0.9899982) + 0. 1(0.9889772)

= 0.9908.

11 Computation of the (Fourier-Eigenfunction) Series Analytic

Solution.

—_——

In order to estimate the temperature of the bar at a specific

PoSition, u(0.10,0.02), we must evaluate Equation (4-50) with fixed

% L ot, and and A,, approximated.
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In particular, o® = 0,10 cm/sec*

L=1c¢cm
t = 0.02 sec.
X = 0.10 cm

Employing the Newton-Raphson iterative scheme, the eigenvalues A\,
are approximated to 6 decimal places:

Ay & 1,707053

N> & 13.492357
Aa ~ 43.357221

A, & 92.769349

(The choice of four eigenvalues is due to the rapid convergence of
this series summation).
Therefore Equation (4-50) gives
u(0.1,0.02) = 0,9241226 - 1.1050899 X 10~® + 0.0699305
+ 4.7168876 X 10—

% 0.9941,



Sturm-Liouville Type

equation, Equation (3-1).

DE-Classical Name p(x)

Bessel DE X
Fourier DE s 1
Hermite DE e,gl
Laguerre DE xe=X

Legendre DE |=x®

problems of S5-L type is given by Segel [13].

k=1 X
X
0 i
0 e-x*
0 e=R
0 1

Table 1
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4-5H Listing of Classical Problems in Mathematical Physics of

In addition to the applications presented, many engineering
and scientific problems are well described by Sturm-Liouville
Mathematical Systems. An excellent compilation of several classical
The following table

identifies these classical problems - defined by the S-L differential

Interval

(0, 11

[-m, m)
(-0, @)
(0, @)

(=1, 1)
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CHAPTER V

SUMMARY

5-1 Thesis Review

Throughout this presentation, consideration has been given to
the historical prominence of Sturm and Liouville as mathematicians of
great influence in the nineteenth century. Both men have contributed
key theorems of great significance in many branches of mathematics.
It was Sturm who was influential in the origination of this
"oscillating" function, while Liouville dealt with the validity of
this function, hence, the Sturm-Liouville Theory. Chapter I
delineates the productivity of investigators Sturm and Liouville.

Prior to the presentation of the formal theory, Chapter II was
Necessary to introduce several relevant concepts. Namely; the
existence and uniqueness of solutions of the second order BVP; linear
Operators; Green's function; self-adjointness; the oécillating
Phenomena; and two theorems (separation and comparison) by Sturm
which serve as the foundation in the development of the Sturm-

Liouville Theory.

Chapter III defines what is meant by a regular S-L system.
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(It is this particular system that was considered throughout thig
paper). The Sturm-Liouville Theory provides us with information abgyt
the eigenvalues and eigenfunctions. There are certain features common
to all S-L problems. For instance, there are an infinite number of
eigenvalues and eigenfunctions (the eigenvalues are discrete and can
be ordered); the eigenvalues are all real; the eigenfunctions
corresponding to distinct eigenvalues are.orthogonal; the eigenvalues
are simple; and most important, is that the infinite set of
eigenfunctions coAstitutes an orthogonal basis and can be used to
expand an essentially arbitrary function, f(x), defined on some
interval such that the function can be répresented in the following
(Fourier-Eigenfunction) form:
. & |
f(x) = z Cr¥n (XD, B-1)
n=\

ie, a linear combination of the eigenfunctions.

Chapter IV contains results of extensive personal efforts of
analysis and computation to delineate three priﬁe exanples of physical
problems of the S-L type. These illustrations well portray the fact
that the Sturm-Liouville system is a particular class of eigenvalue
pProblems of frequent occurrence in applications:

Example 1, the 'Harmonic Oscillator', is obviously a regular
S-L problem in that it satisfies Equation (3-1) with p(x) = I,

9 =0, r(x) = ‘1, a=0, b=1L, a, =1, a, =0, b, =0, and b, = 1.
It is noted, that if A is negative, then the general solution

describeg "simple harmonic motion".
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Example 2, the Buckling of an Elastic Column, does not

immediately fit the definition of a S-L system. However, if we make

the substitution y'' = z, Equation (4-8) gives a regular S-L system.
The calculations of Section 4-3 imply that the smallest eigenvalue is

Ay =

& [
S

If we wish to determine the smallest critical load- the load at

which the column buckles, this is given as

P':ri'u = n_z.EI . (5"2)
4L:2

In Example 3, a study is made of the one-dimensional heat
conduction problem. By employing the method of separation of
variables, the partial differential equation is replaced by two
ordinary differential equations, of which the boundary value problem

with respect to the spatial variable x gives a regular S-L system.

This example also beautifully illustrates the orthogonality featurelof
S-L problems in the determination of the G, coefficients. Hence, we
obtain a lengthy analytical solution given by Equations (4-50) and
(4-51),

In many instances, it may be more difficult to evaluate the
8nalytical solution than to solve the original problem numerically.
In Section 4-4A, the numerical solution to the one-dimensional heat
conduction problem by the method of finite differences was illustrated
0 order to approximate the temperature at a spec;fied position and

t
Ime, in particular, u(o.1,0.02).
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In comparing the results of these two techniques, we find the
solutions differ in the third decimal place. However, the numerical
approach would yield much more accurate results if we increased the
number of grid points; that is, decrease increments h and k without
violating the stability criteria for convergence.

Since all three examples presented are regular Sturm-Liouville
systems, it is noted that the theoretical properties and significant
features previously mentioned are satisfied.

Eigenvalue problems do arise which are not of Sturm-Liouville
type. For example, problems involving higher-order differential
equations, non-linear differential equations, problems in which the
boundary conditions are periodic, etc. In many of those cases, there
is no well-developed theory like the S-L Theory to direct us.
Fortunately, there are a multitude of eigenvalue problems we encounter
that are of the Sturm-Liouville type. Many of the functions important
in physics satisfy differential equations of S-L type. However, in
many equations of physical interest, some of the conditions that
defined the regular S-L system are not satisfied. If p, q, and r
satisfy those conditions on the open interval a < x < b, but fail to
Satisfy them at one or both of thg boundary points this'problem is
referred to as the singular Sturm-Liouville system. Table |
1dentifies some singular problems. For example, in Bessel's equation
B = o and q(x) is discontinuous at x = 0, but the forementioned

co
Nditions are satisfied in 0 ¢ x ¢ 1, except at x = 0. The general
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theory of singular boundary value problems is very difficult and the
properties of their eigenvalues and eigenfunctions are often
established individually for each equation. Therefore, the singular
S-L system may or may not have the theoretical properties previously
established for the regular system. Consequently, each of these

problems must be treated independently.
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