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ABSTRACT 
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j- 10-1 

An algorithm is developed which performs the serial 

accumulation of parallel input data, while shifting each 

partial sum to the left. The algorithm is demonstrated 

to be applicable to the operation of multiplication, and 

evidence to support its applicability to division is 

presented. Various configurations of modular elements, 

including two types of configurations which support 

fully systolic communication patterns, are presented as 

suggested modes of algorithm implementation. These 

systems operate as on-line digital signal processors, in 

which data is processed in a most significant digit 

first serial fashion, so as to support the chaining of 

operations such as floating-point multiplication and 

division. Examples of the operation of the algorithm 

and its application to multiplication are presented, 

based on computer simulation data. Comparative data is 

presented which supports the conclusion that this system 

operates with a throughput rate a significant factor 

higher than existing on-line systems, while utilizing 

more simplistic hardware modules. 
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CHAPTER I 

INTRODUCTION 

1.1 DIGITAL SIGNAL PROCESSING 

Modern digital signal processing applications 

require the use of very high-speed arithmetic processing 

circuitry. A particularly important and challenging 

problem is the design of multiplication networks that 

can keep up with the demands of real time processing 

environments. 

Reference [7] contains an example of a 

traditional serial data flow approach to this multiplier 

design problem. In this system, data is accepted least 

significant digit first, the data stream is multiplied 

by a pre-loaded value, and after a brief latency period 

the output data stream is initiated in a least 

significant digit first protocol. 

For many applications this approach is 

considered to be too slow. In order to accelerate the 

multiplication process, a variety of parallel 

multiplication procedures have been developed. Two 

common types of parallel multiplication networks are the 

tree multiplier and the array multiplier constructs. 

The most common type of tree multiplier is the Wallace 

tree design which uses a tree of carry save adders 
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(CSAS) feeding into a single carry propagating adder 

(CPA) to perform high speed multiplication. A more 

recent innovation in tree multiplier design is the 

binary adder tree developed by Harata et al (6]. This 

design replaces the CSAs used in the Wallace trees with 

redundant adders of a type suggested by Avizienis (l], 

achieving more regular hardware interconnection patterns 

at the cost of more complex hardware modules. Array 

multiplier designs do not generally support as high a 

processing rate as the tree designs, especially for high 

precision operations; their simplicity of layout and 

efficient use of chip area, however, make them the 

generally preferred method of performing parallel 

multiplication (6]. Examples of modern array multiplier 

designs are given in references (3] and (18]. 

Two basic problems are encountered in performing 

parallel multiplication: the amount of hardware required 

is relatively large (as compared to serial approaches) 

and grows larger approximately in proportion to the 

square of the precision of the operands being 

manipulated (6]; and the parallel communication methods 

required to operate these parallel multipliers 

efficiently are much more problematic than simple serial 

communication patterns, especially in a VLSI environment 

[12]. 

The development of on-line systems is an attempt 

to combine the best features of parallel and serial 
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multiplication methods, so as to support very high-speed 

signal processing while maintaining serial communication 

patterns. Since the original design constructs 

presented in this thesis represent an on-line approach 

to computing, the remainder of this chapter is devoted 

to an introductory study of digit on-line processing 

systems, with particular emphasis placed on the study of 

on-line multipliers. 

1.2 THE ON-LINE COMPUTING APPROACH 

Given the problem of computing the value of some 

function hat a point x defined such that 

h(x) = g(f(x)), 

the traditional approach is to first compute the value 

of f(x), and then apply the function g to the operand 

thus obtained. The on-line approach, however, is to 

generate the digits that define the value of f(x) in a 

serial fashion such that the value of h(x) can begin to 

be computed before the value of f(x) can be computed 

completely. 

In order for this chaining operation to be made 

applicable to a broad range of functions of scientific 

importance, including floating-point addition and 

multiplication, the digits must be processed in a most 

significant digit (MSD) first fashion [8] - [11], rather 

than in a least significant digit (LSD) first fashion as 

in a traditional serial device [7]. The algorithmic 
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mechanisms by which this MSD first serial communication 

pattern is maintained is very different for each of the 

three systems considered here: however, for each of 

these systems the very nature of the operations 

performed requires the I/O data stream to be encoded in 

a redundant form [9]. The complications that arise from 

dealing with operands in a redundant form have been 

considered by a number of authors [1], [2], [11]. Of 

particular interest here are the methods established by 

Ercegovac and Lang [2] for efficiently converting these 

redundant operands to a conventional nonredundant form. 

The nature of this conversion algorithm and its 

applications are discussed briefly in Articles 1.6.2 and 

2.4.2, and an example is provided in Table 3.3. 

on-line computing techniques open up several 

interesting avenues of investigation not afforded by 

more traditional approaches. For one, on-line methods 

might be used to chain together a large number of simple 

functions in order to provide a rapid means of computing 

the value of some complicated mathematical expression. 

Another possibility is that if a system is constructed 

such that the output data stream is made available while 

the corresponding input data stream is still being 

injected into the system, the output might be used in 

some way to tailor the nature of the remaining inputs. 

The most obvious application of this is in variable 

precision arithmetic. For example, in computing the 
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difference of two products, (ab - cd), even though the 

individual products may be very large, the difference 

could be quite small. Thus if conventional floating

point methods were to be used (i.e., approximate the 

value of ab, approximate the value of cd, and subtract), 

then all or most of the significant digits in the 

product might be truncated. An on-line system, however, 

might be constructed such that if the MSDs of the output 

data are insignificant then the input is keyed, so as to 

continue computing the lower order digits of the 

products that would otherwise be truncated. 

One of the most important motivations for 

designing on-line networks, however, is that the 

inherently serial nature of data transfer afforded by 

these systems relieves the many communication 

bottleneck problems, such as are often encountered when 

large amounts of parallel data need to be transferred 

[8], [9]. These communication concerns are particularly 

critical when implementing a system in VLSI circuit 

form, where packing densities, and speed are often 

limited by communication considerations [12]. 

1.3 NETWORK COMPARISON CRITERIA 

In order to provide the reader with a concept of 

the relative merits of the system design presented 

herein, two other on-line networks will be briefly 

presented for comparative purposes. Each of the three 
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networks considered represents a very different approach 

to on-line arithmetic. So as to allow the performance 

of these networks to be compared in a more concise and 

objective manner, this section lays down some basic 

comparison criteria. 

1.3.1 GENERAL SYSTEM PROPERTIES 

In Section 1.2, it was suggested that on-line 

methods could be used to facilitate the solution of a 

problem of the form 

h(x) = g(f(x)). (1.1) 

In a conventional arithmetic processing system, the 

performance exhibited when evaluating h could simply be 

described by the sum of the computation times for 

performing f and g. In an on-line system, however, the 

performance analysis is complicated by the fact that the 

computation times of f and g overlap. In order to 

account for this computational overlap, the concept of 

latency must be introduced. The latency of the function 

f will be defined as the delay between the introduction 

of the data stream x and the output of the data stream 

f(x). This parameter will be referred to as the 

chaining latency, and will be given in terms of the 

cycle time (i.e., the time between consecutive digit 

generations). Thus in the analysis of operation (1.1) 

we may describe the chaining latency of has the sum of 

the chaining latencies off and g. 
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Operation (1.1) was defined such that only a 

single operand was chained between functions; however, 

since multiplication is generally defined as a two 

operand function, for this operation we might define a 

dual chaining operation such as 

P(P(w,x) ,P(y,z)) = wxyz. (1.2) 

This dual chaining operation is capable of performing 

the product of four operands in only two serial steps; 

three serial steps would be required for this operation 

using single operand chaining via 

P(w,P(x,P(y,z))) = wxyz. (1.3) 

operations which chain both multiplicative operands, 

such as (1.2), will be referred to as geometric chaining 

operations since the order of the partial result may 

rise geometrically with the number of serial operations 

performed; single multiplicative operand chaining, such 

as (1.3), will be referred to as linear chaining for 

identical reasons. 

Geometric chaining operations have the speed 

advantage when computing the value of high order 

polynomials; each is equally applicable to linear 

recurrence formulations. The fully digit on-line 

network investigated in Section 1.3 is capable of being 

configured in a multiprocessor environment to perform 

rapid geometric chaining operations. The other two 

networks do not possess this capability; this loss of 

flexibility will be justified in terms of hardware 
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considerations. 

1.3.2 IMPLEMENTATION CONSIDERATIONS 

once the theoretical performance parameters have 

been established, the practical problems involved in 

implementation will be considered. The medium of choice 

for implementation will be assumed to be MOS VLSI 

circuitry, since this approach affords the highest 

packing densities of any medium available, and is 

amenable to efficient pipelining techniques [13]. 

Engineering considerations necessitate that VLSI 

systems be designed using simple modular components with 

regular intercomponent connection patterns. In addition 

communication problems are of overriding importance in 

MOS VLSI systems. C. L. Seitz succinctly sums up the 

nature of these problems in the following quotation: 

Communication is expensive in chip area; indeed, 
most of the area of a chip is covered with wires on 
several levels, with transistor switches rarely 
taking up more than about 5 percent of the area on 
the lowest levels ... 

When it comes to performance, communication is 
expensive in delay, both internally and between 
chips. In MOS technologies which exhibit the 
highest circuit density but a poor relationship 
between transistor driving capabilities and the 
wiring parasitics, circuit speeds are dominated by 
parasitic wiring capacitance. The switching speed 
of an MOS transistor in modern processes, with one 
minimum size transistor driving the gate of an 
adjacent transistor is in the 0.1 ns range, but if 
one adds a few hundred microns of wiring, the delay 
is increased to several nanoseconds. Also the 
nonzero resistance of the wires, together with the 
parasitic capacitance of a wire, imposes a delay in 
the wire itself that is becoming increasingly 
significant at smaller geometries ... 

Thus, both the cost and performance metrics of 



VLSI favor architectures in which communication is 
localized. [12] 
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The communication problems that will be dealt 

with in describing these on-line networks fall into two 

basic types: 

1. Input distribution problems which deal primarily 

with the problem of amplifying and distributing 

the serial output of one system component into the 

parallel input of another; and 

2. The interleaving of parallel data sets internal to 

the system component itself. 

The first of these problems may increase the 

system latency and increase the amount of hardware 

reserved for communication purposes. The second 

problem, however, since it deals with communication 

problems internal to the processing module itself, also 

has the potential for limiting the digit processing 

rate. Based on these considerations, a discussion of 

the efficiency with which each of the systems considered 

here might be implemented in MOS VLSI form will be 

presented. 

1.3.3 MISCELLANEOUS CONSIDERATIONS 

If it is assumed that the on-line network 

constructs presented will be used in the development of 

a mathematics coprocessor design, then it is important 

to consider the problem of communication with the host 
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system. In particular, the amount of time required for, 

and the amount of specialized hardware dedicated to the 

conversion of redundant on-line system operands to 

nonredundant operands compatible with host system 

conventions, will be considered along with the converse 

problem of converting host system operands into the on

line number system format. 

Another consideration, that will be discussed in 

more detail in Chapter III, is the degree to which the 

system can effectively support normalized arithmetic in 

some form. This is an important concern in a variety of 

scientific applications in which the normalization of 

operands is necessary in order to guarantee accurate 

solution convergence [11]. 

1.4 A FULLY DIGIT ON-LINE NETWORK 

The first on-line multiplication network to be 

investigated here, is one developed by Irwin and Owens 

[9], based on a modification of an algorithm suggested 

by Ercegovac and Trivedi [10]. This approach will be 

briefly summarized in the following discussion. 

Given radix r signed-digit fractions [1] X and Y 

defined by streams of digits xi and Yi respectively, , 

such that the ith digit of each fraction is made 

available to the system at time t = i, where i is 

measured in clock eyeless, at any given time t = j, the 

best approximation available for X and Y are given by 



and 

j . . 
X· = ~ x·r-1 = X· 1 + x·r-J 

J i=l 1 J- J 

j . . 
YJ· = ~ y·r-1 = YJ· -l + YJ· r-J. 

i=l 1 

11 

The best approximation of the product that can begin to 

be computed using these operands at time t = j is 

(2.4) 

This recursive function generates successively closer 

approximations of XjYj for each iteration, but in order 

to generate one digit of the product for each cycle time 

a successive approximation algorithm must be used. 

The block diagram of the mantissa multiplier 

module is given in Fig. 1.1. 

y• 
J 

X · 
J 

X· 
J 

y . 
J 

A 
D 
D 

A 
D 
D 

A 
D 
D 

A T· D Zj-k 
D 

J 
I 

D s 

A 
D 
D 

Fig. 1.1 Fully digit on-line multiplication module [9] 

The components that make up the module include 

three Add components which perform addition or 
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subtraction in four gate delays; two modified Add 

components which generate the product of a multi-digit 

operand, and a single digit in six gate delays; and one 

DIS (discretization) table look-up component which 

generates a rounding, based on an inspection of the two 

MSDS of its input, in two gate delays. [9] 

The entire time required to perform one complete 

iteration of the mantissa multiplier operation specified 

in (1.4), using the constructs of Fig. 1.1, is twenty 

gate delays. However, since there are only ten gate 

delays in the feedback loop, there exists the 

possibility of segmenting the system into two ten gate 

delay subsystems. Using such a pipelining scheme, the 

system could achieve a cycle time of ten gate delays. 

Assuming uniform clocking, and an input amplification 

and distribution delay of four gate delays or less, this 

system would exhibit a latency of three clock cycles. 

Considering that the digits of this system are 

processed in a radix eight format, this system exhibits 

impressive performance, especially considering the fact 

that it provides contingencies for geometric chaining 

operations. This performance, however, comes at the 

cost of much more complex hardware constructs than the 

other designs to be considered here. It is not possible 

to make an exact comparison of gate or transistor 

counts; this data is not published for this system. 

However, given the operational complexities required of 
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the devices used some comparisons are possible. On a 

per digit of word length basis, this system utilizes 

five radix eight redundant adders, and two sets of 

scaling hardware. In comparison the Paste-Up system 

investigated in the next section uses only two radix 

four redundant adders, and a single scaler. More 

importantly this system exhibits much more complex 

communication patterns that requires the parallel 

broadcasting of two radix eight input digits, as 

compared to a single radix four digit which is broadcast 

in the other two systems considered; and internally the 

system requires the interleaving of parallel data sets 

in two separate cases. Not only will this system 

require relatively large transistor outlays, but it will 

also exhibit lower packing densities, so as to 

accommodate the more complex communication patterns. 

It should also be noted that, for this fully 

digit on-line multiplier, the low latency chaining 

operations considered here are only possible using 

unnormalized arithmetic operation which in some cases 

casts doubt on the accuracy of the solution set 

generated [11]. 

1.5 A PASTE-UP MULTIPLIER 

The fully digit on-line system just considered 

[ 9 ], and the Paste-Up system [8] are both, as referenced 

here, detailed by the same pair of authors; the Paste-Up 
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system, however, is a later development and represents a 

very different approach to on-line computing. Paste-Up 

is a design system built around a small set of design 

primitives which can be configured in many different 

ways to form a host of useful arithmetic processing 

networks [8]. The operation of a Paste-Up scaler 

component is illustrated in Fig. 1.2. 

Rin 
Xin 
Zin 
Cin 

Load 

Ro Rin 
Xo = Xin 
Sj = YjXin + Zin - 4Co 
Za = Sj + Cin 
Xin,Xo c {-3,-2,-1,0,1,2,3} 
Zin,Zo c {-4,-3,-2,-1,0,1,2,3} 
Yj,sj,Cin,Co c {-2,-1,0,1,2} 

Fig. 1.2 Paste-Up scaler component. 

Fig. 1.3 shows a group of these scaler 

components interconnected to form a multiplier. 

Xin---,-------,-------,-------, 
Rin 

s 
C 

I--~ a 
I--~ 0 

Fig. 1.3 Paste-Up multiplier block diagram [8] 

This multiplier operates by successively 

broadcasting the multiplicand digits (Xin), MSD first 

across an array of single digit multipliers (scalers), 

that have been pre-loaded with the multiplier digits 
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system, however, is a later development and represents a 

very different approach to on-line computing. Paste-Up 

is a design system built around a small set of design 

primitives which can be configured in many different 

ways to form a host of useful arithmetic processing 

networks [8]. The operation of a Paste-Up scaler 

component is illustrated in Fig. 1.2. 

Load 

Ro= Rin 
Xo = Xin 
5 j = YjXin + Zin - 4 Co 
Zo = Sj + Cin 
Xin,Xo € {-3,-2,-l,O,l,2,3} 
Zin,Zo € {-4,-3,-2,-1,0,1,2,3} 
Yj,sj,cin,co € {-2,-1,0,l,2} 

Fig. 1.2 Paste-Up scaler component. 

Fig. 1.3 shows a group of these scaler 

components interconnected to form a multiplier. 

Xin 
Rin--+....------+....------+....------. 

s s 
C C 

2in a 
cin 0 

Load 

Fig. 1.3 Paste-Up multiplier block diagram [8] 

This multiplier operates by successively 

broadcasting the multiplicand digits (Xin), MSD first 

across an array of single digit multipliers (scalers), 

that have been pre-loaded with the multiplier digits 
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(Yj) • After the pre-loading of the multiplier digits, 

there is a delay of three clock cycles before the 

highest order digit of the output is made available. 

since the Paste-Up system is designed to operate on a 

nominal ten gate delay clock cycle, this delay 

represents a device latency of thirty gate delays. This 

latency is independent of the digit length of the 

operands used. However, for longer multiplier operands, 

the problem of amplifying an internally generated signal 

sufficiently to allow for the parallel broadcasting of 

this signal across the array of scaler components, 

becomes increasingly costly, both in terms of hardware 

and delay. An advantage of the linear semi-systolic 

[15] layout of the array, however, is that the line 

delay associated with the broadcasting of this signal 

does not pose any intractable timing problems, because 

the data line delay is approximately offset by a skew in 

the gating signal (Rin> [15]. 

1.6 MULTIPLIER DIGIT ON-LINE SYSTEMS 

As discussed in Section 1.3, an on-line 

multiplier can be designed such that both multiplier 

and multiplicand digit flow through the system in a 

consistent serial fashion. In Section 1.4, a multiplier 

was discussed that exhibited this digit flow property 

only with respect to the multiplicand. The original 

multiplier design presented here investigates the third 
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possibility (i.e., the on-line property is defined with 

respect to the multiplier digits). 

conventional serial multiplication is also 

executed via a serial application of multiplier digits; 

however, this multiplication is performed using the 

least significant digits of the multiplier first, and is 

therefore not applicable to floating point on-line 

multiplication (10]. 

One method of performing multiplier digit on

line multiplication was made possible by the 

introduction of redundant signed-digit arithmetic 

processing techniques by Avizienis (1]. Although the 

multiplication algorithm presented in (1] is defined in 

a conventional LSD first fashion, in a later work by 

Avizienis (quoted in (14]) the obvious observation is 

made that multiplication can also be performed in an MSD 

first manner using the same basic method. 

The methods employed by Avizienis, however, will 

not be used here. The reasons for this divergence from 

the Avizienisian signed-digit approach are two fold. 

First, signed-digit redundant adders are slower and more 

complex than their conventional counterparts (1], (14]; 

and secondly simple methods of accelerating conventional 

multiplication such as using shift, and complement 

operations to perform radix four scaling, as used by 

[J] - [7] and (16], are not directly applicable to 

signed-digit operands. 



2. The carry save adder is modified to shift left 

instead of right, thus causing the digits to be 

generated MSD first. 
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3. An "on-the-fly" conversion is used to convert the 

digits generated by the CSA into values from the 

set { -2, -1, O, 1, 2 }. 

The system serially generates product digits MSD first 

in the same format as the input digits, thus 

establishing a multiplier digit on-line system. 

1.6.2 OPERAND CONVERSION METHODS 

The Paste-Up system incorporates hardware for 

converting redundant on-line operands to non-redundant 

form, and other hardware to perform the inverse 

operation [8]. The conversion of redundant to 

nonredundant operands is achieved with minimal latency 

using a simple and easy to implement algorithm developed 

by Ercegovac and Lang [2]. In Paste-Up, the purpose for 

which this conversion operation is used is to facilitate 

communication with the host system [9]. 

In the design presented here, the conversion 

methods of Ercegovac and Lang are more central to the 

design, being used not only for external communication 

purposes, but also for the internal conversion of 

multiplier operands into multiplicand format. This 

recoding of the multiplicand into a nonredundant form 

Permits the system to perform multiplication using 



simple high-speed bit adders, rather than the more 

complicated slower redundant adders. 
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CHAPTER II 

LEFT SHIFTING ACCUMULATOR THEORY 

This chapter introduces the theoretical 

underpinnings of the left shifting accumulator (LSA) 

theory upon which the applications presented in Chapter 

III are based. 

2.1 GENERAL MODULE OPERATION ALGORITHM 

The algorithm presented in this section is used 

as the model for the implementation of all the 

algorithms and applications presented in this thesis. 

The system is based on two standard arithmetic 

processing operations. The first of these is the carry 

save adder (CSA) functions, defined in Table 2.1. 

TABLE 2.1 

CARRY SAVE ADDER FUNCTIONS 

X Fc[X] Fs[X] 

0 0 0 

1 0 1 

2 1 0 

3 1 1 

The second operation is the carry propagating adder 

operation defined as the mapping operation given in 
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formula (2.1). 

X + y + Cin = z, ( 2 .1) 

a-1 · 
where X = ,:E xi2 1 , 

1.=0 

a-1 • 
y = ,:E Yi21., 

1.=0 

Cin € { o, 1 } , 

a . 
and z = . :E zi2 1 . 

1.=0 

The algorithm which follows is developed for an 

arbitrary shift factor a> 1. 

2.1.l PROBLEM STATEMENT 

Given a state value 

and inputs 

m . 
I B· = :E (b·) -2-1. (bi)j J i=l 1 J 

€ { o, 1 } V i, j 

and 
a . 

I U· = :E(u•) · 21 (ui)j € { O, 1 } V i, j; J i=O 1 J 

compute an output of the form 

such that the next state value is 

A·= A· 2° +BJ·+ u-2-m - VJ·· J J-1 J (2.2) 
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Given an initial value Ao, n recursions of 

expression (2.2) yields a string of output values such 

that 

2.1.2 SOLUTION ALGORITHM 

CSA application: 

(Xi)j = (ai+a>j-1 + (bi) j 

(si)j = Fs[(xi)j] V i 

(ci)j = Fc[(xi)j] 

CPA application . . 
a-1 • 

V· = :E (a·)· 12a-1-1 + (c1)J· 
J i=l 1 J-

Implicit mappings: 

1 :5 i :5 m-a 

(ai)j = (si)j + (ci+i>j Vi I 1 :5 i :5 m-a-1 

(am-a>j = (sm-a>j + (ua)j 

(ai)j = (bi)j + (um-i>j Vi I m-a < i :5 m 

2.1.3 RECURSION EXAMPLES 

(2.4) 

(2.5) 

( 2. 6) 

In Table 2.2, examples of single recursion 

operations of this algorithm are presented for various 

values of m and a. In Table 2.3, a series of four 

recursions of the algorithm are performed for a a= 2, 

m = 8 system. Each of these examples was generated 

using a simulation program that is listed in the 

appendix. 
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TABLE 2.2 

SINGLE RECURSION EXAMPLES 

(a, m) Bit Map Analysis 

(2, 8) 4Ao 10 211021 884 
B1 01100011 99 

S1 000001 
Cl 1 11010 
U1 011 + 3 

V1 011 768 
A1 11010122 218 

(3, 9) 8Ao 001 102101 936 
B1 110110001 433 

Sl 010011 
Cl 1 01100 
U1 1010 + 10 

V1 0010 1024 
Al 021012011 355 

( 4, 12) 16Ao 1101 12001101 57552 
B1 011001111010 1658 

S1 11101010 
Cl 0 1000101 
U1 11111 + 31 

V1 01101 53248 
A1 211020212121 5993 

(5, 8) 32Ao 12001 222 8896 
B1 01110011 115 

S1 011 
Cl 1 11 
U1 100110 + 38 

V1 100010 8704 
A1 12210121 345 
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TABLE 2.3 

MULTIPLE RECURSION EXAMPLE 

WEIGHTED 
BIT MAP INPUT OUTPUT 

4Ao 01 200122 35328 

B1 11001100 13056 

S1 110111 

Cl 1 00011 

U1 111 448 

V1 010 32768 

A1 11022211 

4A1 11 022211 
B2 01100011 1584 

S2 011011 
C2 0 11100 
U2 010 32 

V2 011 12288 
A2 12201121 

4A2 12 201121 
B3 10001111 572 

S3 101110 
C3 1 00011 
U3 001 4 

V3 101 5120 
A3 10122012 

4A3 10 122012 
B4 00110110 54 

S4 101111 
C4 0 11001 
U4 110 6 

V4 010 512 
A4 21112220 396 

51084 51084 TOTAL 
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In each of these examples, the output is 

weighted by the appropriate power of two so as to 

guarantee that all outputs will be integral. The gap in 

the bit mappings represents the placement of the radix 

point in the algorithmic definition of the operands. 

2 MODULAR OPERATION 2. 

Fig. 2.1 contains a functional block diagram of 

a module which executes the algorithm described in 

Article 2.1.1. In this functional description, it is 

assumed that Bj was the previous parallel input value. 

Aj 

V . .-------,I :-J u . 
J~ LSA/2]--J 

Bj+lt 

Fig. 2.1 LSA functional block diagram. 

The parameter q is defined by 

q = Tp - Ts, (2.7) 

where rs is the cycle period of the CSA operation 

described in (2.3), and rp is the cycle time of the CPA 

operation described in (2.4). If high-speed conditional 

sum techniques are used to generate vj then the 

disparity between the operational speeds of the CSA and 

CPA could be eliminated (q = 0). However, if chains of 

CSA operations are used to synthesize the CPA operation, 

then the system would be constrained to operate with 

q ~ a-1. 
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since the inputs and outputs of these systems 

are of compatible form, these modules can be cascaded as 

illustrated in Fig. 2.2. 

LSA/q 

Al· J 

Vlj-q _ 
--t-------1LSA/q 

uoj-q 
BOj+l-q ~~ 

Fig. 2.2 Two module cascade. 

This cascading of two identical module permits 

the basic recursion defined in formula (2.2) to be 

executed such that 

and 

Bj = BOj + Blj2-m, 

Aj = AOj + Alj2-m. 

In an analogous manner, any number of modules may be 

cascaded to form an arbitrarily high precision 

processor. For example Figures 2.3, 2.4, and 2.7 are 

each four module configurations which process operands 

of the form 

B· = BO · + B1·2-m + B2 · 2-2m + B3j2-3m, J J J J 

and A· = AO· + Al · 2-m + A2 · 2-2m + A3j2- 3m. J J J J 

Assuming that each value B· J is selected from 

some set of predetermined values, and further assuming 

that the value assigned to Bj is dependent on a 

selection variable Yj, then if the parameter q is 

reduced to zero the signal Yj must be distributed 

simultaneously across all of the selection modules as 



27 

illustrated in Fig. 2.3. The latency imposed by the 

selection module is assumed here to be equal to the CSA 

latency (i.e., one clock cycle). 

AO· J 

LSA/0 

SELECT 

Al· J 

14-1---1 LSA/ 0 

SELECT 

A2 · J 

SELECT 

A3 • 
J 

SELECT 

U· J 

Yj+2 .._ ____ ____. _____ ___._ _____ __.__ __ _ 
Fig. 2.3 Semi-systolic LSA configuration. 

This configuration is termed semi-systolic [12] 

because, although nearest neighbor interconnect is 

maintained internally, the input signal Yj must be 

distributed globally. If, however, q is allowed to 

equal one, then the configuration illustrated in Fig. 

2.4 is made possible. 

A3· J 

14-----lSELECT14-----lSELECT14-----lSELECT 

Fig. 2.4 Fully systolic LSA configuration. 

U· J 

This approach introduces one extra cycle of 

latency per module in cascade; however, the system is 

now fully systolic, with the select signal being 

sequentially propagated from module to module. As 



discussed in detail in reference [12], this type of 

communication pattern is highly desirable in VLSI 

applications. 

2.2.l DELAYED FEEDBACK SYSTEMS 
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The possibilities afforded by inserting delay in 

the feedback loop of the LSA will now be investigated. 

Lett be the system time measured in clock 

cycles, with some arbitrary reference, and j and k be 

defined such that 

j = 11 t/2 I I I 

and k = I I t/2 I I + ½. 

Fig. 2.7 illustrates two successive operational cycles 

of an LSA with unary delay inserted in the feedback 

loop. 

MEM A· J MEM Ak 

Ak Aj+l 
U · vj-w+l Uk J LSA/2w IBA/2w 

Bj+l Bk+l 

(a) (b) 

Fig. 2.5 Delayed feedback LSA operation. 

This device exhibits the interesting property of 

toggling between two independent data sets, such that 

each data set is operated upon every alternate clock 

cycle. Fig. 2.6 illustrates the operation of a two 

element cascade of LSAs with delayed feedback. 
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MEM AO· J MEM Alk+w-1 

UO· 
Alj+w 

Uk+w-1 Vl· J J LSA/2w LSA/2w 

BOj+l Blk+w 
(a) 

MEM AOk MEM Alj+w 

AOj+l Alk+w 
uok Vlk Uj+w 

LSA/2w LSA/2w 

BOk+l Blj+l+w 
(b) 

Fig. 2.6 Delayed feedback LSA two element cascade. 

An important property of this type of LSA 

configuration is that it permits a system to be defined 

in such a way as to maintain fully systolic 

communication patterns, while still generating an MSD 

first on-line output data stream whose latency is 

independent of the number of modules in the cascade. 

Fig. 2.7 provides an illustration of the operation of 

such a system. 
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A3j-1 
,----, 

AOj+l Alk A2· J A3k-1 
V· 1 

J+ LSA/0 LSA/0 

Yk+l Yj+l 
Yj+2 SELECT SELECT SELECT SELECT 

( a) 

AOj+l Alk A2· J A3k-1 

AOk+l Alj+l A2k A3· J 
Vk+l 

LSA/0 LSA/0 LSA/0 LSA/0 

Y·+2 Yk+l Y'+l 
SELECT J SELECT SELECT J SELECT 

(b) 

Fig. 2.7 Alternative systolic LSA configuration. 

Due to the added latency in the feedback path, 

this LSA configuration has an operational cycle about 

twice as long as the systolic configuration illustrated 

in Fig. 2.4; however, the total effective throughput 

remains unchanged due to concurrency. This system has a 

great advantage when operating in a high-precision on

line environment since the output latency is independent 

of the number of modules in the cascade. 

By inserting a series of delay units in the 

feedback loop of a q = o LSA, a system can be designed 

to operate on any number of data sets concurrently, 
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with the cycle time being directly proportion to the 

degree of concurrency supported. Some applications 

afforded by this design flexibility will be discussed in 

chapter III. 

3 SIGNED DATA HANDLING 2. 

In Article 2.1.1 the parameters Aj, Bj, and Vj 

are defined by 

A· m -i = ,L (ai)j2 , J 1=1 

B· m -i = ,L (bi)j2 , J 1=1 

a . 
and V· = ,L (vi)j2 1 . (2.7) J 1=0 

It is easily established that the algorithm defined in 

Article 2.1.2 is equally applicable to operands of the 

form 

m . 
A·= -12 + L (a · ) · 2- 1 

J i=l 1 J ' 

m . 
B· = _!,,2 + L (b·) ·2- 1 

J i=l 1 J ' 

and V· = J 
_ 2a-1 + a i ,L (v1·)J·2 • 

1=0 
( 2. 8) 

This simple offsetting of the operands in no way 

implies any change in the Boolean logic levels of the 

d ' . 191ts in the operands, but simply provides a 

reinterpretation of existing logical constructs . The 



32 

operand redefinition given in (2.8) will be referred to 

as the signed operand set, in order to distinguish them 

from the unsigned set given in (2.7). This signed set 

permits the input B to be in the range 

-:!,, < B. < +:!,, 
2 - J 2 f 

while generating output digits such that 

v • € { -2a-l, ••• , -1, O, 1, ... , 2a - 2a-l - 1 } . 
J 

2.3.1 EXAMPLES RECONSIDERED 

Tables 2.2 and 2.3 provide examples of unsigned 

applications of the LSA algorithm; in Tables 2.4 and 2.5 

this data is reinterpreted as signed operations. 



33 

TABLE 2.4 

SIGNED SINGLE RECURSION EXAMPLES 

(a, m) Bit Map Analysis 

( 2, 8) 4Ao 10 211021 372 
B1 01100011 -29 

Sl 000001 
Cl 1 11010 
U1 011 + 3 

V1 011 256 
A1 11010122 90 

( 3, 9) 8Ao 001 102101 -1112 
Bl 110110001 177 

Sl 010011 
Cl 1 01100 
U1 1010 + 10 

V1 0010 -1024 
Al 021012011 99 

( 4, 12) 16Ao 1101 12001101 24784 
Bl 011001111010 -390 

S1 11101010 
Cl 0 1000101 
U1 1111 + 31 

V1 01101 20480 
Al 211020212121 3945 

(5, 8) 32Ao 12001 222 4800 
B1 01110011 -13 

S1 011 
Cl 1 11 
U1 100110 + 38 

V1 100010 4608 
A1 12210121 217 
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TABLE 2.5 

SIGNED MULTIPLE RECURSION EXAMPLE 

WEIGHTED 
BIT MAP INPUT OUTPUT 

4Ao 01 200122 2560 

B1 11001100 4864 

S1 110111 
Cl 1 00011 
U1 111 448 

V1 010 0 
A1 11022211 

4A1 11 022211 
B2 01100011 -464 

S2 011011 
C2 0 11100 
U2 010 32 

V2 011 4096 
A2 12201121 

4A2 12 201121 
B3 10001111 60 

S3 101110 
C3 1 00011 
U3 001 4 

V3 101 3072 
A3 10122012 

4A3 10 122012 
B4 00110110 -74 

S4 101111 
C4 0 11001 
U4 110 6 

V4 010 0 
A4 21112220 268 

7436 7436 TOTAL 



4 OUTPUT RECODING PROCEDURES 2. 
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output digits of the form generated by (2.8) are 

cumbersome to deal with. The following recoding 

procedures generate an output data stream which is in a 

minimally redundant symmetrical signed-digit form. 

Let 

and 

so that Pj € { 

a-1 · 
WJ· = .~ (v_1·)J·2 1 

1=0 

Pj = Wj + (v-a>j+1, 

a-1 -2 , ... , -1, o, 1, ... , 

(2.9) 

( 2. 10) 

with the boundary conditions established by initializing 

w0 in the range 

wj € { -2a-1, ... , -1, o, a-1 1, ... , 2 -1 }, 

implied by (2.9); and by defining 

Pn = Wn 

where Pn is the last digit generated by the recursion. 

Using this procedure the value P may be defined such 

that 

p = 

where 

n . 
~ p,2-GJ = 

j=O J 

which guarantees 

o = A 2-na n , ( 2. 12) 
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4 1 ZERO INITIALIZATION CASE 2. . 

An important special case of (2.11) is the case 

for which A0 and w0 are zero so that P can be defined 

such that 

P = .~(BJ·+ UJ•2-m)2-aj - 6. 
J=l 

( 2. 13) 

If the input data set is such that it can be guaranteed 

that for some value o in the range implied by (2.12) 

there exists a value P such that 

( 2. 14) 

then P can be guaranteed to be recodable into an n digit 

representation such that 

n . 
P = ,l: p-2-aJ. 

J=l J 
( 2 • 15) 

In order to guarantee that the insignificant 

digit Po is not generated, the following recoding 

procedure makes use of a selective carry suppression 

algorithm. 

Let a Boolean flag ¢j be defined such that 

¢0 = 1, 

¢j+l = (V_a)j+l¢j E j ~ 0. 

Using this flag the digits that define P can be 

generated in the form given in (2.15) such that 

Pj = Wj + ¢j(V_a)j2a-l + ¢j(V_a)j+l· 

( 2. 16) 

(2.17) 



2 .4.2 CONVERSION TO NONREDUNDANT FORM 

The problem of converting redundant operands, 

such as P, into a nonredundant form has been 

traditionally handled using carry propagating adders. 

37 

A much simpler method of performing this conversion, 

however, has been suggested by Ercegovac and Lang [2]. 

In the Ercegovac/Lang algorithm, the conversion of 

redundant to nonredundant operands is achieved "on-the

fly," i.e., instead of waiting for all the redundant 

digits to become available before beginning the 

conversion, the conversion is executed as an ongoing 

process which commences as soon as the first digit of 

the result becomes available. 

This system was designed specifically to meet 

the operand conversion needs of on-line arithmetic 

processing systems, such as those systems developed in 

this thesis. It is capable of very high speed 

operation, approximately equivalent to that of a CSA, 

and can be implemented using simple shift register 

constructs. For more detailed information on these 

conversion methods refer to reference [2]. 
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CHAPTER III 

DIGITAL SIGNAL PROCESSING APPLICATIONS 

This chapter applies the theory developed in 

chapter II to practical arithmetic processing problems. 

3.l MULTIPLICATION FUNDAMENTALS 

This section defines the nature of the operands 

that will be utilized in the application of LSA theory 

to the problem of multiplication, and briefly reviews 

multiplication operand processing techniques. 

3.1.1 PROBLEM DEFINITION 

Given a multiplicand X and a multiplier Y, the 

product XY will be defined here as a summation of n 

partial products such that 

where 

and 

XY = 
n . 
L Xy•2-aJ 

j=l J 

k-1 -i 
X = -x0 + , L x 1·2 , 

1=1 

y = 
n . 
L y · 2-aJ 

j=l J 

( 3 .1) 

( 3. 2) 

(3.3) 
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3 .1.2 MULTIPLIER RECODING 

If the multiplier is initially defined such that 

na-1 · 
2Y = -y0 + .E y1•2-1 , 

l=l 

these digits may be recoded into the form required in 

(2.3) via the operation: 

Yj+l 
a-1 • - 2a-1 + - 2a-1 + -= -yJ· a E y· . yJ·~ i=l JO'+l V 

V j I 1 ~ j < n-1, 

with the boundary condition set by 

a l a-1 .. 2e1-i 
Y1 = -Yo 2 - + i~l Yi + Ye1+1 

and - a-1 a-l - a-i 
Yn = -Yna-a2 + i~l Yna-a+i2 · 

This digit definition stipulates that 

Yj e { -2°-l, ... , -1, O, 1, .. . , 2a-l} V j. 

3.1.3 PARTIAL PRODUCT GENERATION 

If the shift factor a= 2 is chosen, the 

multiplier digits are defined such that 

Yj e { -2, -1, o, 1, 2 } • 

( 3. 4) 

With this multiplier digit set the partial products Xyj 

can be easily generated using simple shifting and 

complementing operations. If a larger value of a is 

chosen then cumbersome carry propagating adder hardware 

must be used to generate the partial product set; this 



fact effectively limits practical partial product 

generation schemes to the radix four case [5]. 

In Table 3.1 the digits of the operand Bj are 

defined as a function of X and Yj for a a= 2 system 

such that 
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k+l · k = I: (b·) ,2-1 + 2- -113. 
i=l 1 J 

(3.5) 

TABLE 3.1 

PARTIAL PRODUCT DIGIT MAPPINGS 
FOR RADIX FOUR MULTIPLICATION 

Yj (b1)j (bi)j f3 • 
J 

+2 Xo x , a 
l 0 

+1 Xo Xi-1 0 

+o 1 0 0 

-0 0 1 1 

-1 Xo xi-1 1 

-2 Xo x , a 
l 1 

3.2 LSA MULTIPLICATION 

Obviously if we assign 

(uo)j = /3j or alternatively (u2 )j+l = /3j, 

and k = m-1, 

( 3. 6) 

the zero initialization case of the LSA operation given 

in (2.13) is directly amenable to the multiplication 

Problem: 



n . 
XY = . :E BJ· 4 -J • 

J=l 
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(3.7) 

aowever, an m bit LSA processing module, as defined in 

Article 2.1.2, is only capable of processing an m-1 bit 

multiplicand using either of the operand mappings 

described in (3.6). An alternative operand mapping 

which supports an m+l bit multiplicand is given in 

(3.8). 

(u1) j+l = (bk) j 

(u2)j+l = (bk+1> j 

(uo>j+2 = {3 • 
J 

( 3. 8) 

3.2.l MULTIPLICATION EXAMPLE 

Table 3.2 provides an example of multiplication 

of a nine bit two's complement multiplicand 

X = 0.110101112 = 215 • 2-8 

with a minimally redundant signed-digit multiplier 

Y = o. 2-1-2 1 o o o o4 = 105 • 2_8 , 

using the zero initialization case of the LSA algorithm 

defined in expression (2.13) form= 8, with the operand 

digit mapping being provided by Table 3.1 and the 

mappings given in (3.8). 

Table 3.2 illustrates the operations performed 

by the LSA algorithm, in executing this multiplication, 

Using the following format. 
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4Aj-l al a2 a3 a4 a5 a6 a7 as 
B· b1 b2 b3 b4 b5 b6 b7 bs 
u~ 

J U2 Ul Uo 

2mv, 
J + A· J V_2 V_lVQ a.1 a.2 a.3 a.4 a.5 a.6 a.7 a.a 

In Table 3.3 the conversion methods of Ercegovac 

and Lang [2] are used to recode the resulting product, 

P = o. 1 2-2 0 1 -1 0 -14 = 22,575 • 2-16 , 

into a two's complement normalized form such that 

2P = 0.1011000001011112 . 

successive approximations are made of the value of P 

such that 

l -i 
PJ· = . I: Pi 4 . 

1=1 

By maintaining storage of both Pj and Pj - 4-j, the 

system permits these successive approximations to be 

made without using any carry propagation hardware [2]. 



P1 = 

P2 = 

P3 = 

P4 = 

Ps = 

PG = 

P7 = 

Pa = 

10 00 00 
11 10 

TABLE 3. 2 

MULTIPLICATION EXAMPLE 

00 
10 11 

0 00 

0 10 11 10 10 11 
01 00 10 10 

0 10 

0 11 11 11 01 20 
00 01 01 00 

0 00 

1 0 11 11 11 01 00 
10 11 01 01 

1 01 

2 1 00 01 20 02 02 
10 00 00 00 

1 11 

-2 0 10 10 10 11 11 
10 00 00 00 

0 00 

0 0 11 00 11 11 00 
10 00 00 00 

0 00 

1 0 01 01 11 00 00 
10 00 00 

0 

-1 0 10 01 00 00 
10 00 

0 0 01 10 00 

-1 
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Y1 = 2 

Y2 = -1 

Y3 = -2 

Y4 = 1 

Y5 = 0 

Y6 = 0 

Y7 = 0 

00 Ya = 0 
00 

00 
00 00 Yg = 0 

0 00 

00 00 



j 

1 

2 

3 

4 

5 

6 

7 

8 

TABLE 3.3 

REDUNDANT TO NONREDUNDANT OUTPUT CONVERSION 
USING ERCEGOVAC/LANG ALGORITHM 

Pj 2P· 2 (Pj - 4-j) 
J 

1 0.1 0.0 

2 0.110 0.101 

-2 0.10110 0.10101 

0 0.1011000 0.1010111 

1 0.101100001 0.101100000 

-1 0.10110000011 0.10110000010 

0 0.1011000001100 0.1011000001011 

-1 0.101100000101111 0.101100000101110 

3.3 LSA DIVISION 
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The idea of performing division using a left 

shifting accumulator is not a new one. In fact, 

division is inherently an on-line process, inasmuch as 

the quotient digits are most conveniently generated MSD 

first. 

In reference (6], a division procedure is 

outlined such that the partial remainders are stored in 

a redundant accumulator similar to those considered 

here. In this system, each successive radix four 

quotient digit is generated based on an inspection of 

the most significant digits of the partial remainder 

such that Yj € { -2, -1, o, 1, 2 }. This quotient digit 
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is then multiplied by the divisor X, and the resulting 

product (XYj) is subtracted from the previous 

partial remainder (Aj-l) to form a new partial remainder 

(Aj) . 

This process can obviously be implemented using 

the same basic recursive operation that was developed 

for multiplication in the previous section. However, 

unlike multiplication, in which the next selection 

operand Yj+l is known independent of the output of the 

system Aj, division requires that the partial remainder 

be inspected after each cycle in order to determine the 

next appropriate selection value. In the ILLIAC design 

[4] this inspection procedure is accomplished by first 

recoding the six most significant digits of the partial 

remainder into a nonredundant form and then using Table 

look-up methods. This procedure introduces a large 

amount of latency into the feedback loop of the system, 

thus this division algorithm could only be expected to 

cycle at a fraction of the rate associated with the 

multiplication algorithm considered in Section 3.2. 

In order to compensate for this slower cycle 

rate, the delayed feedback systems discussed in Article 

2.3.1 might be used, such that the delay imposed by the 

accumulator inspection techniques is balanced by a 

series of delays in the accumulator feedback loop. This 

could allow the CSAs to still cycle at maximum rate by 

operating on a number of data sets concurrently. One 
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would expect such a division system to operate with the 

same total effective throughput as an LSA multiplier 

in spite of the slower individual operand processing 

rates. A detailed simulation of the operation of such a 

division system has not yet been developed. This is 

left as a topic for future research into the operation 

of LSA networks. 
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CHAPTER IV 

CONCLUSION 

4.1 SUMMARY 

This thesis has investigated possible 

applications of a class of devices referred to here as 

left shifting accumulators. The general left shifting 

accumulation algorithm was precisely defined in terms of 

well known arithmetic operations. Various 

configurations of modules developed from this algorithm 

were presented and their operational characteristics 

discussed. Included in this development were 

configurations to support the highly desirable systolic 

communication pattern [15). Through the use of computer 

simulation data, it was demonstrated that the operation 

of these devices could be applied equally well to both 

signed and unsigned operations. 

The algorithm was then applied to the 

development of a multiplier which performs radix four 

multiplication in a multiplier digit on-line fashion 

with a possible maximum cycle rate equivalent to that of 

a carry save adder. Examples of system operation were 

provided using computer simulation data. 

Facilities for the conversion of the output data 

stream into a nonredundant form are provided using the 



methods of Ercegovac and Lang (2]. This system 

generates successive approximations of the value of 

output data stream in two's complement form, using 

simple shift functions. 

Evidence to support the contention that LSA 

systems could be configured to support high efficiency 

division operations is presented, although simulation 

data for this operation is not yet available. 

4.2 FUTURE RESEARCH DIRECTIONS 
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In Chapter I, it was suggested that the LSA 

configurations developed here might be used in high

speed digit signal processing applications. In order 

for this to become a reality, much more research and 

development will be necessary. At the module level, the 

design task is simplified by the algorithm's usage of 

already well developed arithmetic functions. At the 

system level, the various possible ways in which the 

modules can be configured provides a great deal of 

flexibility to the IC layout engineer. Ultimately, the 

choice of an optimum network configuration will be 

dependent upon the particular application to which the 

system is being applied. 

Other research directions should include the 

development of redundant adders that could be used to 

combine data streams, so as to support the operation of 

addition using simple serial constructs. (Paste-Up (8] 



already includes such a redundant adder, but it is 

likely that this device would have to be modified in 

order to support the higher communication bandwidth 

possible using LSA multiplication systems.) 
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The systems presented in this thesis are new and 

for the most part hypothetical in nature. This makes it 

difficult to predict with any certainty into what form 

future research will mold these concepts. Section 4.3, 

however, concludes this thesis with a discussion of two 

general types of digital signal processing applications 

that seem to hold promise. 

4.3 TWO TYPES OF APPLICATIONS 

In Section 2.2, two different systolic module 

configurations were developed. The first of these is 

illustrated in Fig. 2.4. The primary advantage 

exhibited by this network is a fast (single clock cycle) 

operational period. Its most notable disadvantage 

is that the latency of the network is dependent upon the 

number of modules in the cascade. The network 

illustrated in Fig. 2.7 also exhibits systolic 

communication patterns; however, its other operational 

properties are very much different from that of the 

system in Fig. 2.4. This delayed feedback system has a 

cycle rate double that of its direct feedback 

counterpart; however, overall the system maintains the 

same high throughput rate through the use of concurrent 
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processing. The main advantage of this configuration 

is that it has a very low latency, and this low latency 

is maintained independent of the number of modules in 

the cascade. 

If a system is to be designed with the 

requirement that it multiply together two floating-point 

operands, returning the final result as quickly as 

possible, then Fig. 2.4 is obviously the most 

appropriate choice of configurations. If, on the other 

hand, an on-line arithmetic processing network that 

takes full advantage of multiprocessing capabilities to 

perform long chains of high precision operations before 

returning a final result is desired, then Fig. 2.7 is 

unquestionably the superior circuit for the job. 

These two cases represent extreme examples; in 

real world applications the choice between high cycle 

speed and low latency might not be as easy to make. 

What is important, however, is that whichever option is 

chosen an LSA configuration with systolic communication 

patterns can be applied to the task. To put the problem 

in perspective with respect to existing technologies, 

the slow cycle rate associated with Fig. 2.7 can still 

be expected to be significantly faster than Paste-Up's 

ten gate delay clock cycle [8]. 
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APPENDIX 

LIST OF SIMULATION PROGRAM 

The following simulation program was employed to 

generate the data presented in tables 2.2, 2.3, 2.4, 

2.5, and 3.2. The program is written in the Basic 

programming language, and was executed on an Atari S00XL 

personal computer. 



l• REM LSA SYSTEM SIMULATION 
11 REM BY JESSE BOOHER 
12 REM 
z• REM GENERAL INITIALIZATIONS 
J[} !JI !"I A ( 16) , l:\ ( 16) , b ( 1 Lt·) , C ( 11.,.) , U ( 6) , 'v' ( 6) , F~:; <3) , 

C( .. ~) X( 1D), Y ( 8) 1= ... , ' 
35 :O J:l"I i<'.;.~; ( l 6) , Bi;; ( 16 l , U$ ( 7) , Sii, ( 11+) ,, C~; ( :I . . t.,.) ,, ',/1,; ( 7 l , 
N$ ( 5) , t,H; ( :i) ,, Fii; ( 8C:J) , BL..$ ( 15) , X~; ( :1. O) 

4o FS( • l=• :FC(O l=O 
50 FS(l)=l:FC(ll=O 
60 FS(2)=• :FC(2l=:I. 
70 FS(3)=1:FCC3l= 1 
!:JO BL <.~ :::: II " 

90 GOTO 30•• :REM ACCESS MENU 
100 REM PARTIAL PRODUCT GENERATION 
11 0 X ( 1,·1+ 1 l 00==U 
120 SH=l-INT(ABS(Y/2)+0.1) 
13D I I\J,/::--=HGN ( Y) 
1-2 IF INV=-1 THEN B(ll=X( •) 
134 IF INV=• THEN B(ll=l 
136 IF INV=l THEN B(ll= NOT X(O) 
137 B$ ( :I. , :L ) ::::ST I~~; ( B ( 1 l l 
140 FOR 1=2 TO M+2 
15D IF INV=-1 THEN B(Il= NOT X(l-SH-1) 
:t.60 IF INV=• THEN B(Il=O 
170 IF INV= l THEN B(I l=X (I-SH-1) 
175 B$ C I,, I ) :::::!.3T F~~~ CB ( I l ) 
180 NEXT I 
189 BETA::::(J 
190 IF Y<O THEN BETA=l 
200 U(2l=U2A:USC3,3l=STRSCU2Al 
210 U(1l=U1A:US(2,2l=STR$CU1A> 
220 U(Ol=U• A:US<1,1)=STR$(UOA) 
230 U2l\===U2B 
240 Ult\=B(M+:t.) 
250 U01\====B ( 1"1+2) 
:,,: 6[) U 21~, ::::: Ji. I:: TA 
270 FH=:Tl..mN 
~00 REM MULTIPLICATION INITIALIZATION 
305 f-'i ( 1 l ::::: 1 
:.HO FOl::i I=:;;:: TO M 
320 i\( I)::::()::/;.~;( I, I ) :::-s "CJ" 

::BLl NEXT I 
340 U2A=O:U1A=• :UOA=O:U2B=O 

50 RETUHI\J 
400 REM MULTIPLIER RECODING 
410 F ( 1"1) =U 
420 FOR J=0 TO N-1 
430 E(J+1)=-F(2*Jl+F(2*J+1l+F(2*J+2) 
'+40 NEXT J 
450 RETUHN 
jQ['J REM ACCUMULATION 
510 FOR 1=1 TOM-SIG 
52• X=ACI +SIGl+B(Il 
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53[) 
1540 
55Cl 
~J6Cl 
60Cl 
610 
620 
630 
64[) 

650 
66Cl 
67Cl 
bBO 
70Cl 
71Cl 
720 
730 
740 
750 

b ( .l ) :::::i::·s ( X) 
C ( I ) :ccF C ( X ) 

NEX T I 
F,IETUF!I\I 
RE M V DIGIT GENERATION 
C= C<l) 
FOR I=SIG TO :I. STEP -:I. 
X=C+A(I) 
V ( SH:i··-·l) ==FS ( X) 

C==FC( X) 
NE:XT I 
V<SI(;) :::::C 
RE:TURI\I 
REM IMPLICIT MAPPINGS 
FOR 1=1 TO M-SIG-1 
A ( I J =0-=S ( I ) + C ( I+ 1 ) 
t-.JEXT I 
X==l'l···-S J: G 
A ( X J •=S ( X ) +U (SIG) 

160 FOf~ l=-.:: 1 TO bIG 
770 A(X+l)=B(X+l)+U(SIG- I) 
780 I\JEXT I 
790 RE T Ul-~N 
800 REM PRINT A(l) 
!310 FOf~ 1°-=l TO M 
820 A$ (I, I ) =STR$ U\ ( I ) ) 
U30 NE:XT I 
840 RE:TUHN 
850 REM PRINT 8(1) 
860 FOR 1=1 TOM-SIG 
f:l70 Sil; ( I •i I ) :::::ST Ii$ ( S ( I ) ) 
880 NEXT I 
El90 RE: T UF<I\I 
900 REM PRINT C(l) 
910 FOR 1=1 TOM-SIG 
920 C<J; ( I , I ) ==ST F<~; ( C ( I ) l 
930 NEXT I 
9Lf0 RETURN 
9 50 REI"! PR I I\IT V 
960 FOR l=SIG TOO STEP -1 
9 70 V$(S I G-l+l , SIG-I+1)=STRSCV(ll) 
980 NEXT I 
990 RETURN 
1000 REM l NPUT A 
l • fYS liEr~;D f'.\'ii 
1810 FOR 1=1 TOM 
l 02(] A ( I ) =Vr-'.l,L ( A$ ( I, I ) ) 
1030 NEXT I 
1040 li ETURN 
lOSO REM INPUT B 
l055 F<E;\D B$ 
l060 FOR 1=1 TOM 
1•-7(J-· B ( I ) c::Vf\L ( BS ( I , I ) ) 
l •B0 NEXT I 
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F~_1:_~-1-URN 109• -
11•• REM COMPUTE (2 AM)*B 
11 1• B=D 
l120 FOR 1=1 TOM 
l130 B=B+B+B( l) 
1140 NEXT I 
l 150 RET URN 
1200 REM COMP UTE (2AM)*A 
1210 A=• 
1220 FOR 1=1 TOM 
1230 A=A+A+A(l ) 
1240 NEXT I 
1250 RE TURN 
1300 REM COMPUTE V 
1310 V=D 
1320 FOR I=SIG TOO STEP - 1 
1330 V=V+V+V(l) 
1340 NE XT I 
135 0 RETU RN 
1400 REM COMPUTE U 
1410 U=O 
1420 FOR l =SIG TOO STEP - 1 
1430 U=U+U+U(l) 
1440 NEXT I 
1450 RETURN 
15 JO REM INPUT U 
1505 READ US 
1510 FOR I=• TO SIG 
15 20 UCSIG-I>=VAL(US(I+l,I+l)l 
1530 NEXT I 
15 40 RETU RN 
1600 REM RIGHT JUSTIFICATION 
1605 MS=" 
1610 LN=LEN(N$) 
1615 FOR 1=1 TO LN 
1620 MS(S -LN+I,S)=NS<I, I) 
1625 NE XT I 
1630 RETURN 
170 0 REM FI ND V 
1710 FOR I=• TO S IG 
1720 V(S IG-I>=VAL(V$(I+1,I+1)l 
1730 NEXT I 
17 40 RETURN 
2 100 REM LSA RECURSION 
2 150 GOS UB 402• :REM PRINT A*(2ASJG) 
2155 GOSU B 4065:REM LOAD AND PR INT B 
2160 GOSUB so• :REM ACCUMULATE 
2190 GOS UB 418• :REM DRAW DIVIDER LINE 
2200 GOS UB 4207:REM PRINTS AND C 
2225 GOSUB 4105:REM LOAD AND PRINT U 
2230 GOS UB 4 18• :REM DRAW DIVIDER LINE 
2240 GOSUB 6 •• :GOSUB 95• :GOSUB 1300:REM GENERATE V 
2250 GOS UB 4 3 •• : REM PRINT V 
2260 GOSUB 7 •• :REM REGENE RAT E ACCUM . 
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2 270 GOSUB 44 •• :REM PRINT A 
228• GOSUB 5 10• :REM SCREEN DUMP 
23 0 D m :: TU RN 
2500 REM SYSTEM INITIALIZATION 
:.,:505 PRII\IT "DO YOU WANT S IGNED OUTPUT";: INPUT l\1$ 
2506 i:;; 1,1"'' ( N$ ( 1 , 1 ) ::::: "Y" ) 
2507 GOt;UB 52UO 
25 J. iJ RE /:\D r\l 
2520 IF N=O THEN RETURN 
:.'.~5 3 Cl F~EAD M, t3 I b 
2540 C-:i0!3UB 1000 
2550 FOR J= l TON 
2560 PFU: NT " } 11 

:j 

2571] (:iOSUB 2 1DO 
25tl0 l\lf:::XT <J 
:;,::5 9 D C:iOTO 2'.510 
JOUCJ m~l·I MENU 
JOO'.::i 1:31\lac, :I. 
3Cl10 P!~INT "}" 
302(] PRINT 
J OJO 1~; RINT "CHOOSI:: OPERATION DESIRl::D:" 
3040 PRINT " 1) MIXED EXAMPLES." 
3045 PRINT" 2) MULTIPLE RECURSION EXAMPLE." 
3050 PRII\IT " 3> MULTIPLI C/>,TION SI MULt-iTIOr~." 
3060 PRINT" 4) EXIT." 
3065 PR I I\IT 
i:lUlU I I\IPUT I 9 
3080 IF 19=1 THEN RESTORE 900• :GOSUB 2500 
3090 IF 19=2 THEN RESTORE 920• :GOSUB 2500 
3100 IF 19=3 THEN RESTORE 9500:GOSUB 7000 
3110 IF 19=4 THEN END 
3200 GOTO 3UUO 
4000 REM I /0 SUBROUTINES 
4020 REM PRINT A*(2ASIG) 
4025 N$=STR$(2AS I G):GOSUB 1600 
L~030 r)l~JI\IT l•11~(4,'.:i); 11 *A 11 ,C:.f ··-·l;" 11 ;A$(l,SIG); 11 11

, 

4050 GOSUB 12•• :A=A-SN*2A(M-1) 
4055 NS=STR$(A*2ASIG):GOSUB 1600 
4[60 PRINT AS(SIG+l,M); 
406 1 FOR I=l TO SIG+l:PRINT " ";:NEXT I:PRINT M$ 
4062 RETURN 
4065 REM REA D AND PRINT B 
4070 IF MU LT=O THEN GOSUB 1050 
L~OB O 1-,RINT II B11 ;J·; :FOR 1=1 TO SIG+.t.1.:Pl~INT 11 11

; : NE XT I 
4095 GOSUB 11• 0:B=B-2A(M-1)*SN 
4097 N$=STRS(B) :GOSUB 1600 
4100 Pl~JI\IT BS ( 1,, M); 11 11 ;1"1$ 
'+10~2 F~ETUR I\I 
4105 REM READ AND OUTPUT U 
4 11 0 IF MULT=O THEN GOSUB 1500 
4120 PRINT II U11 ;J;BL$(1,M+3); 

.t.i-130 GOSUB l'+[HJ 
41 35 NS=STRS(U):GOSUB 1600 
'+lL1- 0 Pl~ I I\IT us :j 11 11 ; M$ 
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1+1'.':iCJ RE TUF<N 
41 80 REM DRAW DIVIDER LINE 
41 90 PRINT" "; 
'-1-2UU FOF~ 1=1 TO M .. I-SIG+2~PFUNT 11 ""' 11 ; :NEXT I:Pr-nNT II 
II a II -•~- -·-· I I 

' .t.1.20'.':i RETUF<N 
4~01 REM OUTPUTS AND C 

S" :; J' ; BU;; ( 1 ') 4+S I G ) ; ~:, 1;; ( l i M ..... 5 H:i) 

.L1-2UH G0!3UB FJ SO 
42DS:' i.:iOSUB 9CJO 
f.1,2:1.U PF<INT 11 

L~220 PFU I\IT 11 

1.1.2~1U F<ET Uf~I\I 
c " ; .J; But,< 1 ., 2+s 1 <:i i :; c~, < 1 , 1 i ; " " ; C$ < 2 ., M-·-s I G > 

4300 REM OUTPUT V 
4310 V=V-2A(SIG- ll *SN 
43 :2 0 PRII\IT II V"; J; II II:; V$ ( l •1 f.:;JG+l ); 
4 340 NS=STR$(V*2AM)~GOSUB 1600 
4350 PRINT Bl$(l~M+2i; 
,'.1-36D F,; l~II\IT M'.-i; 
4 37CJ RETUR1,I 
4400 REM OUTPUT A 

A" j J ; Bl$ ( l, SI <::i+'-1•) i 
4430 GOSUB l2• 0: A=A-SN*2A(M-1) 
4440 NS=STR$(A):GOSUB 1600 
'-1-45 U GO SUB BUD 
Lf l+b• f)RII\IT {,,$:;II II:; Jvl$ 

.t.1, 4 7 (J F~ ETU l=< I·-~ 
5000 REM SCREEN DUMP 
5005 LPRINT :LPRINT 
5010 FOR I=• T O B 
501 5 FOR K=:L TO 40 
5020 Tl=PEEK(39999+4D* l+K) 
5 025 PS<K ,K)=CHR$(32+T1) 
SOJO I\IEX T K 
5040 LPRINT BLS,PS 
5060 I\IE~X T l 
'.5070 F~E TURI\I 
5100 REM SD OPTION 
5 11 0 PR INT ~PRINT :PRINT 
5115 IF AP THEN 5000 

'.::i120 F>R INT "DUMP OUTPUT TO PFHNTEH"; 
5130 INPUT N$ 

'.::i 1•'.i-U J 1::: l\1$ ( 1, :L) c-:::" Y II TH[]\I souo 
5 :L 50 f~ET URN 
5200 REM AUTO PRINT OPTION 
53Cl0 Pl=<I NT "l1UTOr.,.1.t,TIC PRINTING"; 
'.:53 1 U I I\IPUT J\1 ·$ 

53:20 1\P:::::,: l\l!fi ( 1, 1) :=:: 
11 \ ' 11 ) 

'.:1JJU RET Ul~I\I 
·1ouu 1=<1::1•1 MUL. TI r-1 L I CAT I 01,1 s I i"IUL,6, TI ON 
70 US MUl_f :::::1:SN=l 
70 1U READ xs:M=LEN(X $)-1 
70 :L :'1 :::..; I (:i=2 
7 02D X=== O 
703 0 FOR 1=1 TO Jvl+l 



7040 X(I-1 ) =VAL( X$ Cl,I)) 
7045 X=X+X + XCI - 1) 
7050 NEX T I 
7• 60 x=x -2 ~M 
7070 J= l ~GOSUB 300 
7075 GOSUB 5200 
7080 REM BEGIN RECURSION 
7085 PRINT " l "; 
7090 REA D Y: IF Y=-99 THEN RETURN 
7 100 GOS UB l • O~REM PPG 
7 11 0 GOSUB 21 •• :REM RECURSION 
7 120 J=J + l :GOTO 7080 
9000 REM MIXED EXAMPLES 
9005 RE M DATA SET 1 
9010 REM N, M, S I G,A$ 
9020 DATA 1 , 8,2,10211021 
9030 REM INPUT B & U 
9040 DATA 01100011,011 
9050 REM DATA SET 2 
9060 DATA 1, 9 ,3,001102101 
9070 DAT A 110110001,1010 
9 080 RE M DATA SET 3 
9090 DATA 1 , 12,4,11011 2 001101 
9100 DATA 011001111010,11111 
9 110 REM DATA SET 4 
9120 DA TA 1,8, 5 ,1 2 001222 
9 130 DATA 01110011, 100110 
9190 DA TA 0 
9200 RE M MULTIPLE RECURS ION EXAMPLE 
9210 DATA 4,8,2,01200122 
9220 DAl" A 110011 0 0,111 
9230 DA TA 01100011,010 
9240 DAT A 100011 1 1,001 
9250 DA TA 00110110,110 
9260 DA TA 0 
9500 REM MULTIPLICATION SIMULATION 
9 51 0 DATA 011010111 
9520 DATA 2,-1, - 2, 1 
9530 DATA D,O,D,D 
9999 DATA -99 
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