
LEFT SHIFTING ACCUMULATOR SYSTEMS

WITH APPLICATIONS IN DIGITAL SIGNAL PROCESSING

by

Jesse Charles Booher

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in the

Electrical Engineering

Program

(r4. 2~ 9:· ,2~
Advisor

Dean of Graduate School

YOUNGSTOWN STATE UNIVERSITY

JUNE, 1990

Date

Date

ABSTRACT

LEFT SHIFTING ACCUMULATOR SYSTEMS

WITH APPLICATIONS IN DIGITAL SIGNAL PROCESSING

Jesse Charles Booher

Master of Science, Electrical Engineering

Youngstown State University, 1990

ii

j- 10-1

An algorithm is developed which performs the serial

accumulation of parallel input data, while shifting each

partial sum to the left. The algorithm is demonstrated

to be applicable to the operation of multiplication, and

evidence to support its applicability to division is

presented. Various configurations of modular elements,

including two types of configurations which support

fully systolic communication patterns, are presented as

suggested modes of algorithm implementation. These

systems operate as on-line digital signal processors, in

which data is processed in a most significant digit

first serial fashion, so as to support the chaining of

operations such as floating-point multiplication and

division. Examples of the operation of the algorithm

and its application to multiplication are presented,

based on computer simulation data. Comparative data is

presented which supports the conclusion that this system

operates with a throughput rate a significant factor

higher than existing on-line systems, while utilizing

more simplistic hardware modules.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to

my family and friends who lent me encouragement and

support when I

like to thank

really needed it. I would especially

my thesis advisor, Professor Samuel

Skarote, without whose infinite patience, as I worked

and reworked my ideas, this thesis would not have been

possible in its present form.

iv

TABLE OF CONTENTS

PAGE

ABSTRA.CT. ii

ACKNOWLEDGEMENTS . iii

TABLE OF CONTENTS . iv

LIST OF SYMBOLS. vi

LIST OF FIGURES. vii

LIST OF TABLES. viii

CHAPTER

I. INTRODUCTION. 1

1.1 DIGITAL SIGNAL PROCESSING............... 1

1.2 THE ON-LINE COMPUTING APPROACH.......... 3

1.3 NETWORK COMPARISON CRITERIA............. 5

1.3.1 GENERA.L SYSTEM PROPERTIES......... 6

1.3.2 IMPLEMENTATION CONSIDERATIONS..... 8

1.3.3 MISCELLANEOUS CONSIDERATIONS...... 9

1.4 A FULLY DIGIT ON-LINE NETWORK........... 10

1.5 A PASTE-UP MULTIPLIER................... 13

1.6 MULTIPLIER DIGIT ON-LINE SYSTEMS........ 15

1.6.1 ALGORITHM PREVIEW................. 17

1.6.2 OPERAND CONVERSION METHODS........ 18

II. LEFT SHIFTING ACCUMULATOR THEORY............ 20

2.1 GENERA.L MODULE OPERATION ALGORITHM...... 20

2.1.1 PROBLEM STATEMENT................. 21

2.1.2 SOLUTION ALGORITHM................ 22

2.1.3 RECURSION EXAMPLES................ 22

2. 2 MODULAR OPERATION. 2 5

2.2.1 DELAYED FEEDBACK SYSTEMS.......... 28

2.3 SIGNED DATA HANDLING.................... 31

2.3.1 EXAMPLES RECONSIDERED............. 32

2.4 OUTPUT RECODING PROCEDURES.............. 35

2.4.1 ZERO INITIALIZATION CASE.......... 36

2.4.2 CONVERSION TO NON-REDUNDANT FORM.. 37

III. DIGITAL SIGNAL PROCESSING APPLICATIONS...... 38

3.1 MULTIPLICATION FUNDAMENTALS............. 38

3.1.1 PROBLEM DEFINITION................ 38

3.1.2 MULTIPLIER RECODING............... 39

3.1.3 PARTIAL PRODUCT GENERATION........ 39

3.2 LSA MULTIPLICATION...................... 40

3.2.1 MULTIPLICATION EXAMPLE............ 41

3. 3 LSA DIVISION. 44

IV. CONCLUSION. 4 7

4 • 1 SU'MMARY • • • • • • • • • • • • • • • • . • • • • . . • • • . . 4 8

4.2 FUTURE RESEARCH DIRECTIONS.............. 48

4.3 TWO TYPES OF APPLICATIONS............... 49

APPENDIX. LISTING OF SIMULATION PROGRAM.......... 51

LIST OF REFERENCES. 58

V

SYMBOL

l:

€

V

lxl

I lxl I
MSD

LSD

CSA

LIST OF SYMBOLS

DEFINITION

Summation of terms ...

Is a subset of ...

For all. ..

Such that ...

Absolute value of x

Greatest integer~ x

Most Significant Digit

Least Significant Digit

Carry Save Adder

vi

vii

LIST OF FIGURES

FIGURE PAGE

1.1 Fully digit on-line multiplication module ... 11

1.2 Paste-Up scaler component 14

1.3 Paste-Up multiplier block diagram 14

2.1 LSA functional block diagram 25

2.2 Two module cascade•.. 26

2.3 Semi-systolic LSA configuration 27

2.4 Fully systolic LSA configuration 27

2.5 Delayed feedback LSA operation 28

2.6 Delayed feedback LSA two element cascade 29

2.7 Alternative systolic LSA configuration 30

viii

LIST OF TABLES

TABLE PAGE

2.1 Carry Save Adder Functions 20

2.2 single Recursion Examples 23

2.3 Multiple Recursion Example 24

2.4 Signed Single Recursion Examples 33

2.5 Signed Multiple Recursion Example 34

3.1 Partial Product Digit Mappings
for Radix Four Multication 40

3.2 Multiplication Example 43

3.3 Redundant to Non-redundant Output conversion
Using Ercegovac/Lang Algorithm 44

1

CHAPTER I

INTRODUCTION

1.1 DIGITAL SIGNAL PROCESSING

Modern digital signal processing applications

require the use of very high-speed arithmetic processing

circuitry. A particularly important and challenging

problem is the design of multiplication networks that

can keep up with the demands of real time processing

environments.

Reference [7] contains an example of a

traditional serial data flow approach to this multiplier

design problem. In this system, data is accepted least

significant digit first, the data stream is multiplied

by a pre-loaded value, and after a brief latency period

the output data stream is initiated in a least

significant digit first protocol.

For many applications this approach is

considered to be too slow. In order to accelerate the

multiplication process, a variety of parallel

multiplication procedures have been developed. Two

common types of parallel multiplication networks are the

tree multiplier and the array multiplier constructs.

The most common type of tree multiplier is the Wallace

tree design which uses a tree of carry save adders

2

(CSAS) feeding into a single carry propagating adder

(CPA) to perform high speed multiplication. A more

recent innovation in tree multiplier design is the

binary adder tree developed by Harata et al (6]. This

design replaces the CSAs used in the Wallace trees with

redundant adders of a type suggested by Avizienis (l],

achieving more regular hardware interconnection patterns

at the cost of more complex hardware modules. Array

multiplier designs do not generally support as high a

processing rate as the tree designs, especially for high

precision operations; their simplicity of layout and

efficient use of chip area, however, make them the

generally preferred method of performing parallel

multiplication (6]. Examples of modern array multiplier

designs are given in references (3] and (18].

Two basic problems are encountered in performing

parallel multiplication: the amount of hardware required

is relatively large (as compared to serial approaches)

and grows larger approximately in proportion to the

square of the precision of the operands being

manipulated (6]; and the parallel communication methods

required to operate these parallel multipliers

efficiently are much more problematic than simple serial

communication patterns, especially in a VLSI environment

[12].

The development of on-line systems is an attempt

to combine the best features of parallel and serial

3

multiplication methods, so as to support very high-speed

signal processing while maintaining serial communication

patterns. Since the original design constructs

presented in this thesis represent an on-line approach

to computing, the remainder of this chapter is devoted

to an introductory study of digit on-line processing

systems, with particular emphasis placed on the study of

on-line multipliers.

1.2 THE ON-LINE COMPUTING APPROACH

Given the problem of computing the value of some

function hat a point x defined such that

h(x) = g(f(x)),

the traditional approach is to first compute the value

of f(x), and then apply the function g to the operand

thus obtained. The on-line approach, however, is to

generate the digits that define the value of f(x) in a

serial fashion such that the value of h(x) can begin to

be computed before the value of f(x) can be computed

completely.

In order for this chaining operation to be made

applicable to a broad range of functions of scientific

importance, including floating-point addition and

multiplication, the digits must be processed in a most

significant digit (MSD) first fashion [8] - [11], rather

than in a least significant digit (LSD) first fashion as

in a traditional serial device [7]. The algorithmic

4

mechanisms by which this MSD first serial communication

pattern is maintained is very different for each of the

three systems considered here: however, for each of

these systems the very nature of the operations

performed requires the I/O data stream to be encoded in

a redundant form [9]. The complications that arise from

dealing with operands in a redundant form have been

considered by a number of authors [1], [2], [11]. Of

particular interest here are the methods established by

Ercegovac and Lang [2] for efficiently converting these

redundant operands to a conventional nonredundant form.

The nature of this conversion algorithm and its

applications are discussed briefly in Articles 1.6.2 and

2.4.2, and an example is provided in Table 3.3.

on-line computing techniques open up several

interesting avenues of investigation not afforded by

more traditional approaches. For one, on-line methods

might be used to chain together a large number of simple

functions in order to provide a rapid means of computing

the value of some complicated mathematical expression.

Another possibility is that if a system is constructed

such that the output data stream is made available while

the corresponding input data stream is still being

injected into the system, the output might be used in

some way to tailor the nature of the remaining inputs.

The most obvious application of this is in variable

precision arithmetic. For example, in computing the

5

difference of two products, (ab - cd), even though the

individual products may be very large, the difference

could be quite small. Thus if conventional floating

point methods were to be used (i.e., approximate the

value of ab, approximate the value of cd, and subtract),

then all or most of the significant digits in the

product might be truncated. An on-line system, however,

might be constructed such that if the MSDs of the output

data are insignificant then the input is keyed, so as to

continue computing the lower order digits of the

products that would otherwise be truncated.

One of the most important motivations for

designing on-line networks, however, is that the

inherently serial nature of data transfer afforded by

these systems relieves the many communication

bottleneck problems, such as are often encountered when

large amounts of parallel data need to be transferred

[8], [9]. These communication concerns are particularly

critical when implementing a system in VLSI circuit

form, where packing densities, and speed are often

limited by communication considerations [12].

1.3 NETWORK COMPARISON CRITERIA

In order to provide the reader with a concept of

the relative merits of the system design presented

herein, two other on-line networks will be briefly

presented for comparative purposes. Each of the three

6

networks considered represents a very different approach

to on-line arithmetic. So as to allow the performance

of these networks to be compared in a more concise and

objective manner, this section lays down some basic

comparison criteria.

1.3.1 GENERAL SYSTEM PROPERTIES

In Section 1.2, it was suggested that on-line

methods could be used to facilitate the solution of a

problem of the form

h(x) = g(f(x)). (1.1)

In a conventional arithmetic processing system, the

performance exhibited when evaluating h could simply be

described by the sum of the computation times for

performing f and g. In an on-line system, however, the

performance analysis is complicated by the fact that the

computation times of f and g overlap. In order to

account for this computational overlap, the concept of

latency must be introduced. The latency of the function

f will be defined as the delay between the introduction

of the data stream x and the output of the data stream

f(x). This parameter will be referred to as the

chaining latency, and will be given in terms of the

cycle time (i.e., the time between consecutive digit

generations). Thus in the analysis of operation (1.1)

we may describe the chaining latency of has the sum of

the chaining latencies off and g.

7

Operation (1.1) was defined such that only a

single operand was chained between functions; however,

since multiplication is generally defined as a two

operand function, for this operation we might define a

dual chaining operation such as

P(P(w,x) ,P(y,z)) = wxyz. (1.2)

This dual chaining operation is capable of performing

the product of four operands in only two serial steps;

three serial steps would be required for this operation

using single operand chaining via

P(w,P(x,P(y,z))) = wxyz. (1.3)

operations which chain both multiplicative operands,

such as (1.2), will be referred to as geometric chaining

operations since the order of the partial result may

rise geometrically with the number of serial operations

performed; single multiplicative operand chaining, such

as (1.3), will be referred to as linear chaining for

identical reasons.

Geometric chaining operations have the speed

advantage when computing the value of high order

polynomials; each is equally applicable to linear

recurrence formulations. The fully digit on-line

network investigated in Section 1.3 is capable of being

configured in a multiprocessor environment to perform

rapid geometric chaining operations. The other two

networks do not possess this capability; this loss of

flexibility will be justified in terms of hardware

8

considerations.

1.3.2 IMPLEMENTATION CONSIDERATIONS

once the theoretical performance parameters have

been established, the practical problems involved in

implementation will be considered. The medium of choice

for implementation will be assumed to be MOS VLSI

circuitry, since this approach affords the highest

packing densities of any medium available, and is

amenable to efficient pipelining techniques [13].

Engineering considerations necessitate that VLSI

systems be designed using simple modular components with

regular intercomponent connection patterns. In addition

communication problems are of overriding importance in

MOS VLSI systems. C. L. Seitz succinctly sums up the

nature of these problems in the following quotation:

Communication is expensive in chip area; indeed,
most of the area of a chip is covered with wires on
several levels, with transistor switches rarely
taking up more than about 5 percent of the area on
the lowest levels ...

When it comes to performance, communication is
expensive in delay, both internally and between
chips. In MOS technologies which exhibit the
highest circuit density but a poor relationship
between transistor driving capabilities and the
wiring parasitics, circuit speeds are dominated by
parasitic wiring capacitance. The switching speed
of an MOS transistor in modern processes, with one
minimum size transistor driving the gate of an
adjacent transistor is in the 0.1 ns range, but if
one adds a few hundred microns of wiring, the delay
is increased to several nanoseconds. Also the
nonzero resistance of the wires, together with the
parasitic capacitance of a wire, imposes a delay in
the wire itself that is becoming increasingly
significant at smaller geometries ...

Thus, both the cost and performance metrics of

VLSI favor architectures in which communication is
localized. [12]

9

The communication problems that will be dealt

with in describing these on-line networks fall into two

basic types:

1. Input distribution problems which deal primarily

with the problem of amplifying and distributing

the serial output of one system component into the

parallel input of another; and

2. The interleaving of parallel data sets internal to

the system component itself.

The first of these problems may increase the

system latency and increase the amount of hardware

reserved for communication purposes. The second

problem, however, since it deals with communication

problems internal to the processing module itself, also

has the potential for limiting the digit processing

rate. Based on these considerations, a discussion of

the efficiency with which each of the systems considered

here might be implemented in MOS VLSI form will be

presented.

1.3.3 MISCELLANEOUS CONSIDERATIONS

If it is assumed that the on-line network

constructs presented will be used in the development of

a mathematics coprocessor design, then it is important

to consider the problem of communication with the host

10

system. In particular, the amount of time required for,

and the amount of specialized hardware dedicated to the

conversion of redundant on-line system operands to

nonredundant operands compatible with host system

conventions, will be considered along with the converse

problem of converting host system operands into the on

line number system format.

Another consideration, that will be discussed in

more detail in Chapter III, is the degree to which the

system can effectively support normalized arithmetic in

some form. This is an important concern in a variety of

scientific applications in which the normalization of

operands is necessary in order to guarantee accurate

solution convergence [11].

1.4 A FULLY DIGIT ON-LINE NETWORK

The first on-line multiplication network to be

investigated here, is one developed by Irwin and Owens

[9], based on a modification of an algorithm suggested

by Ercegovac and Trivedi [10]. This approach will be

briefly summarized in the following discussion.

Given radix r signed-digit fractions [1] X and Y

defined by streams of digits xi and Yi respectively, ,

such that the ith digit of each fraction is made

available to the system at time t = i, where i is

measured in clock eyeless, at any given time t = j, the

best approximation available for X and Y are given by

and

j . .
X· = ~ x·r-1 = X· 1 + x·r-J

J i=l 1 J- J

j . .
YJ· = ~ y·r-1 = YJ· -l + YJ· r-J.

i=l 1

11

The best approximation of the product that can begin to

be computed using these operands at time t = j is

(2.4)

This recursive function generates successively closer

approximations of XjYj for each iteration, but in order

to generate one digit of the product for each cycle time

a successive approximation algorithm must be used.

The block diagram of the mantissa multiplier

module is given in Fig. 1.1.

y•
J

X ·
J

X·
J

y .
J

A
D
D

A
D
D

A
D
D

A T· D Zj-k
D

J
I

D s

A
D
D

Fig. 1.1 Fully digit on-line multiplication module [9]

The components that make up the module include

three Add components which perform addition or

12

subtraction in four gate delays; two modified Add

components which generate the product of a multi-digit

operand, and a single digit in six gate delays; and one

DIS (discretization) table look-up component which

generates a rounding, based on an inspection of the two

MSDS of its input, in two gate delays. [9]

The entire time required to perform one complete

iteration of the mantissa multiplier operation specified

in (1.4), using the constructs of Fig. 1.1, is twenty

gate delays. However, since there are only ten gate

delays in the feedback loop, there exists the

possibility of segmenting the system into two ten gate

delay subsystems. Using such a pipelining scheme, the

system could achieve a cycle time of ten gate delays.

Assuming uniform clocking, and an input amplification

and distribution delay of four gate delays or less, this

system would exhibit a latency of three clock cycles.

Considering that the digits of this system are

processed in a radix eight format, this system exhibits

impressive performance, especially considering the fact

that it provides contingencies for geometric chaining

operations. This performance, however, comes at the

cost of much more complex hardware constructs than the

other designs to be considered here. It is not possible

to make an exact comparison of gate or transistor

counts; this data is not published for this system.

However, given the operational complexities required of

13

the devices used some comparisons are possible. On a

per digit of word length basis, this system utilizes

five radix eight redundant adders, and two sets of

scaling hardware. In comparison the Paste-Up system

investigated in the next section uses only two radix

four redundant adders, and a single scaler. More

importantly this system exhibits much more complex

communication patterns that requires the parallel

broadcasting of two radix eight input digits, as

compared to a single radix four digit which is broadcast

in the other two systems considered; and internally the

system requires the interleaving of parallel data sets

in two separate cases. Not only will this system

require relatively large transistor outlays, but it will

also exhibit lower packing densities, so as to

accommodate the more complex communication patterns.

It should also be noted that, for this fully

digit on-line multiplier, the low latency chaining

operations considered here are only possible using

unnormalized arithmetic operation which in some cases

casts doubt on the accuracy of the solution set

generated [11].

1.5 A PASTE-UP MULTIPLIER

The fully digit on-line system just considered

[9], and the Paste-Up system [8] are both, as referenced

here, detailed by the same pair of authors; the Paste-Up

14

system, however, is a later development and represents a

very different approach to on-line computing. Paste-Up

is a design system built around a small set of design

primitives which can be configured in many different

ways to form a host of useful arithmetic processing

networks [8]. The operation of a Paste-Up scaler

component is illustrated in Fig. 1.2.

Rin
Xin
Zin
Cin

Load

Ro Rin
Xo = Xin
Sj = YjXin + Zin - 4Co
Za = Sj + Cin
Xin,Xo c {-3,-2,-1,0,1,2,3}
Zin,Zo c {-4,-3,-2,-1,0,1,2,3}
Yj,sj,Cin,Co c {-2,-1,0,1,2}

Fig. 1.2 Paste-Up scaler component.

Fig. 1.3 shows a group of these scaler

components interconnected to form a multiplier.

Xin---,-------,-------,-------,
Rin

s
C

I--~ a
I--~ 0

Fig. 1.3 Paste-Up multiplier block diagram [8]

This multiplier operates by successively

broadcasting the multiplicand digits (Xin), MSD first

across an array of single digit multipliers (scalers),

that have been pre-loaded with the multiplier digits

14

system, however, is a later development and represents a

very different approach to on-line computing. Paste-Up

is a design system built around a small set of design

primitives which can be configured in many different

ways to form a host of useful arithmetic processing

networks [8]. The operation of a Paste-Up scaler

component is illustrated in Fig. 1.2.

Load

Ro= Rin
Xo = Xin
5 j = YjXin + Zin - 4 Co
Zo = Sj + Cin
Xin,Xo € {-3,-2,-l,O,l,2,3}
Zin,Zo € {-4,-3,-2,-1,0,1,2,3}
Yj,sj,cin,co € {-2,-1,0,l,2}

Fig. 1.2 Paste-Up scaler component.

Fig. 1.3 shows a group of these scaler

components interconnected to form a multiplier.

Xin
Rin--+....------+....------+....------.

s s
C C

2in a
cin 0

Load

Fig. 1.3 Paste-Up multiplier block diagram [8]

This multiplier operates by successively

broadcasting the multiplicand digits (Xin), MSD first

across an array of single digit multipliers (scalers),

that have been pre-loaded with the multiplier digits

15

(Yj) • After the pre-loading of the multiplier digits,

there is a delay of three clock cycles before the

highest order digit of the output is made available.

since the Paste-Up system is designed to operate on a

nominal ten gate delay clock cycle, this delay

represents a device latency of thirty gate delays. This

latency is independent of the digit length of the

operands used. However, for longer multiplier operands,

the problem of amplifying an internally generated signal

sufficiently to allow for the parallel broadcasting of

this signal across the array of scaler components,

becomes increasingly costly, both in terms of hardware

and delay. An advantage of the linear semi-systolic

[15] layout of the array, however, is that the line

delay associated with the broadcasting of this signal

does not pose any intractable timing problems, because

the data line delay is approximately offset by a skew in

the gating signal (Rin> [15].

1.6 MULTIPLIER DIGIT ON-LINE SYSTEMS

As discussed in Section 1.3, an on-line

multiplier can be designed such that both multiplier

and multiplicand digit flow through the system in a

consistent serial fashion. In Section 1.4, a multiplier

was discussed that exhibited this digit flow property

only with respect to the multiplicand. The original

multiplier design presented here investigates the third

16

possibility (i.e., the on-line property is defined with

respect to the multiplier digits).

conventional serial multiplication is also

executed via a serial application of multiplier digits;

however, this multiplication is performed using the

least significant digits of the multiplier first, and is

therefore not applicable to floating point on-line

multiplication (10].

One method of performing multiplier digit on

line multiplication was made possible by the

introduction of redundant signed-digit arithmetic

processing techniques by Avizienis (1]. Although the

multiplication algorithm presented in (1] is defined in

a conventional LSD first fashion, in a later work by

Avizienis (quoted in (14]) the obvious observation is

made that multiplication can also be performed in an MSD

first manner using the same basic method.

The methods employed by Avizienis, however, will

not be used here. The reasons for this divergence from

the Avizienisian signed-digit approach are two fold.

First, signed-digit redundant adders are slower and more

complex than their conventional counterparts (1], (14];

and secondly simple methods of accelerating conventional

multiplication such as using shift, and complement

operations to perform radix four scaling, as used by

[J] - [7] and (16], are not directly applicable to

signed-digit operands.

2. The carry save adder is modified to shift left

instead of right, thus causing the digits to be

generated MSD first.

18

3. An "on-the-fly" conversion is used to convert the

digits generated by the CSA into values from the

set { -2, -1, O, 1, 2 }.

The system serially generates product digits MSD first

in the same format as the input digits, thus

establishing a multiplier digit on-line system.

1.6.2 OPERAND CONVERSION METHODS

The Paste-Up system incorporates hardware for

converting redundant on-line operands to non-redundant

form, and other hardware to perform the inverse

operation [8]. The conversion of redundant to

nonredundant operands is achieved with minimal latency

using a simple and easy to implement algorithm developed

by Ercegovac and Lang [2]. In Paste-Up, the purpose for

which this conversion operation is used is to facilitate

communication with the host system [9].

In the design presented here, the conversion

methods of Ercegovac and Lang are more central to the

design, being used not only for external communication

purposes, but also for the internal conversion of

multiplier operands into multiplicand format. This

recoding of the multiplicand into a nonredundant form

Permits the system to perform multiplication using

simple high-speed bit adders, rather than the more

complicated slower redundant adders.

19

20

CHAPTER II

LEFT SHIFTING ACCUMULATOR THEORY

This chapter introduces the theoretical

underpinnings of the left shifting accumulator (LSA)

theory upon which the applications presented in Chapter

III are based.

2.1 GENERAL MODULE OPERATION ALGORITHM

The algorithm presented in this section is used

as the model for the implementation of all the

algorithms and applications presented in this thesis.

The system is based on two standard arithmetic

processing operations. The first of these is the carry

save adder (CSA) functions, defined in Table 2.1.

TABLE 2.1

CARRY SAVE ADDER FUNCTIONS

X Fc[X] Fs[X]

0 0 0

1 0 1

2 1 0

3 1 1

The second operation is the carry propagating adder

operation defined as the mapping operation given in

21

formula (2.1).

X + y + Cin = z, (2 .1)

a-1 ·
where X = ,:E xi2 1 ,

1.=0

a-1 •
y = ,:E Yi21.,

1.=0

Cin € { o, 1 } ,

a .
and z = . :E zi2 1 .

1.=0

The algorithm which follows is developed for an

arbitrary shift factor a> 1.

2.1.l PROBLEM STATEMENT

Given a state value

and inputs

m .
I B· = :E (b·) -2-1. (bi)j J i=l 1 J

€ { o, 1 } V i, j

and
a .

I U· = :E(u•) · 21 (ui)j € { O, 1 } V i, j; J i=O 1 J

compute an output of the form

such that the next state value is

A·= A· 2° +BJ·+ u-2-m - VJ·· J J-1 J (2.2)

22

Given an initial value Ao, n recursions of

expression (2.2) yields a string of output values such

that

2.1.2 SOLUTION ALGORITHM

CSA application:

(Xi)j = (ai+a>j-1 + (bi) j

(si)j = Fs[(xi)j] V i

(ci)j = Fc[(xi)j]

CPA application . .
a-1 •

V· = :E (a·)· 12a-1-1 + (c1)J·
J i=l 1 J-

Implicit mappings:

1 :5 i :5 m-a

(ai)j = (si)j + (ci+i>j Vi I 1 :5 i :5 m-a-1

(am-a>j = (sm-a>j + (ua)j

(ai)j = (bi)j + (um-i>j Vi I m-a < i :5 m

2.1.3 RECURSION EXAMPLES

(2.4)

(2.5)

(2. 6)

In Table 2.2, examples of single recursion

operations of this algorithm are presented for various

values of m and a. In Table 2.3, a series of four

recursions of the algorithm are performed for a a= 2,

m = 8 system. Each of these examples was generated

using a simulation program that is listed in the

appendix.

23

TABLE 2.2

SINGLE RECURSION EXAMPLES

(a, m) Bit Map Analysis

(2, 8) 4Ao 10 211021 884
B1 01100011 99

S1 000001
Cl 1 11010
U1 011 + 3

V1 011 768
A1 11010122 218

(3, 9) 8Ao 001 102101 936
B1 110110001 433

Sl 010011
Cl 1 01100
U1 1010 + 10

V1 0010 1024
Al 021012011 355

(4, 12) 16Ao 1101 12001101 57552
B1 011001111010 1658

S1 11101010
Cl 0 1000101
U1 11111 + 31

V1 01101 53248
A1 211020212121 5993

(5, 8) 32Ao 12001 222 8896
B1 01110011 115

S1 011
Cl 1 11
U1 100110 + 38

V1 100010 8704
A1 12210121 345

24

TABLE 2.3

MULTIPLE RECURSION EXAMPLE

WEIGHTED
BIT MAP INPUT OUTPUT

4Ao 01 200122 35328

B1 11001100 13056

S1 110111

Cl 1 00011

U1 111 448

V1 010 32768

A1 11022211

4A1 11 022211
B2 01100011 1584

S2 011011
C2 0 11100
U2 010 32

V2 011 12288
A2 12201121

4A2 12 201121
B3 10001111 572

S3 101110
C3 1 00011
U3 001 4

V3 101 5120
A3 10122012

4A3 10 122012
B4 00110110 54

S4 101111
C4 0 11001
U4 110 6

V4 010 512
A4 21112220 396

51084 51084 TOTAL

25

In each of these examples, the output is

weighted by the appropriate power of two so as to

guarantee that all outputs will be integral. The gap in

the bit mappings represents the placement of the radix

point in the algorithmic definition of the operands.

2 MODULAR OPERATION 2.

Fig. 2.1 contains a functional block diagram of

a module which executes the algorithm described in

Article 2.1.1. In this functional description, it is

assumed that Bj was the previous parallel input value.

Aj

V . .-------,I :-J u .
J~ LSA/2]--J

Bj+lt

Fig. 2.1 LSA functional block diagram.

The parameter q is defined by

q = Tp - Ts, (2.7)

where rs is the cycle period of the CSA operation

described in (2.3), and rp is the cycle time of the CPA

operation described in (2.4). If high-speed conditional

sum techniques are used to generate vj then the

disparity between the operational speeds of the CSA and

CPA could be eliminated (q = 0). However, if chains of

CSA operations are used to synthesize the CPA operation,

then the system would be constrained to operate with

q ~ a-1.

26

since the inputs and outputs of these systems

are of compatible form, these modules can be cascaded as

illustrated in Fig. 2.2.

LSA/q

Al· J

Vlj-q _
--t-------1LSA/q

uoj-q
BOj+l-q ~~

Fig. 2.2 Two module cascade.

This cascading of two identical module permits

the basic recursion defined in formula (2.2) to be

executed such that

and

Bj = BOj + Blj2-m,

Aj = AOj + Alj2-m.

In an analogous manner, any number of modules may be

cascaded to form an arbitrarily high precision

processor. For example Figures 2.3, 2.4, and 2.7 are

each four module configurations which process operands

of the form

B· = BO · + B1·2-m + B2 · 2-2m + B3j2-3m, J J J J

and A· = AO· + Al · 2-m + A2 · 2-2m + A3j2- 3m. J J J J

Assuming that each value B· J is selected from

some set of predetermined values, and further assuming

that the value assigned to Bj is dependent on a

selection variable Yj, then if the parameter q is

reduced to zero the signal Yj must be distributed

simultaneously across all of the selection modules as

27

illustrated in Fig. 2.3. The latency imposed by the

selection module is assumed here to be equal to the CSA

latency (i.e., one clock cycle).

AO· J

LSA/0

SELECT

Al· J

14-1---1 LSA/ 0

SELECT

A2 · J

SELECT

A3 •
J

SELECT

U· J

Yj+2 .._ ____ ____. _____ ___._ _____ __.__ __ _
Fig. 2.3 Semi-systolic LSA configuration.

This configuration is termed semi-systolic [12]

because, although nearest neighbor interconnect is

maintained internally, the input signal Yj must be

distributed globally. If, however, q is allowed to

equal one, then the configuration illustrated in Fig.

2.4 is made possible.

A3· J

14-----lSELECT14-----lSELECT14-----lSELECT

Fig. 2.4 Fully systolic LSA configuration.

U· J

This approach introduces one extra cycle of

latency per module in cascade; however, the system is

now fully systolic, with the select signal being

sequentially propagated from module to module. As

discussed in detail in reference [12], this type of

communication pattern is highly desirable in VLSI

applications.

2.2.l DELAYED FEEDBACK SYSTEMS

28

The possibilities afforded by inserting delay in

the feedback loop of the LSA will now be investigated.

Lett be the system time measured in clock

cycles, with some arbitrary reference, and j and k be

defined such that

j = 11 t/2 I I I

and k = I I t/2 I I + ½.

Fig. 2.7 illustrates two successive operational cycles

of an LSA with unary delay inserted in the feedback

loop.

MEM A· J MEM Ak

Ak Aj+l
U · vj-w+l Uk J LSA/2w IBA/2w

Bj+l Bk+l

(a) (b)

Fig. 2.5 Delayed feedback LSA operation.

This device exhibits the interesting property of

toggling between two independent data sets, such that

each data set is operated upon every alternate clock

cycle. Fig. 2.6 illustrates the operation of a two

element cascade of LSAs with delayed feedback.

29

MEM AO· J MEM Alk+w-1

UO·
Alj+w

Uk+w-1 Vl· J J LSA/2w LSA/2w

BOj+l Blk+w
(a)

MEM AOk MEM Alj+w

AOj+l Alk+w
uok Vlk Uj+w

LSA/2w LSA/2w

BOk+l Blj+l+w
(b)

Fig. 2.6 Delayed feedback LSA two element cascade.

An important property of this type of LSA

configuration is that it permits a system to be defined

in such a way as to maintain fully systolic

communication patterns, while still generating an MSD

first on-line output data stream whose latency is

independent of the number of modules in the cascade.

Fig. 2.7 provides an illustration of the operation of

such a system.

30

A3j-1
,----,

AOj+l Alk A2· J A3k-1
V· 1

J+ LSA/0 LSA/0

Yk+l Yj+l
Yj+2 SELECT SELECT SELECT SELECT

(a)

AOj+l Alk A2· J A3k-1

AOk+l Alj+l A2k A3· J
Vk+l

LSA/0 LSA/0 LSA/0 LSA/0

Y·+2 Yk+l Y'+l
SELECT J SELECT SELECT J SELECT

(b)

Fig. 2.7 Alternative systolic LSA configuration.

Due to the added latency in the feedback path,

this LSA configuration has an operational cycle about

twice as long as the systolic configuration illustrated

in Fig. 2.4; however, the total effective throughput

remains unchanged due to concurrency. This system has a

great advantage when operating in a high-precision on

line environment since the output latency is independent

of the number of modules in the cascade.

By inserting a series of delay units in the

feedback loop of a q = o LSA, a system can be designed

to operate on any number of data sets concurrently,

31

with the cycle time being directly proportion to the

degree of concurrency supported. Some applications

afforded by this design flexibility will be discussed in

chapter III.

3 SIGNED DATA HANDLING 2.

In Article 2.1.1 the parameters Aj, Bj, and Vj

are defined by

A· m -i = ,L (ai)j2 , J 1=1

B· m -i = ,L (bi)j2 , J 1=1

a .
and V· = ,L (vi)j2 1 . (2.7) J 1=0

It is easily established that the algorithm defined in

Article 2.1.2 is equally applicable to operands of the

form

m .
A·= -12 + L (a ·) · 2- 1

J i=l 1 J '

m .
B· = _!,,2 + L (b·) ·2- 1

J i=l 1 J '

and V· = J
_ 2a-1 + a i ,L (v1·)J·2 •

1=0
(2. 8)

This simple offsetting of the operands in no way

implies any change in the Boolean logic levels of the

d ' . 191ts in the operands, but simply provides a

reinterpretation of existing logical constructs . The

32

operand redefinition given in (2.8) will be referred to

as the signed operand set, in order to distinguish them

from the unsigned set given in (2.7). This signed set

permits the input B to be in the range

-:!,, < B. < +:!,,
2 - J 2 f

while generating output digits such that

v • € { -2a-l, ••• , -1, O, 1, ... , 2a - 2a-l - 1 } .
J

2.3.1 EXAMPLES RECONSIDERED

Tables 2.2 and 2.3 provide examples of unsigned

applications of the LSA algorithm; in Tables 2.4 and 2.5

this data is reinterpreted as signed operations.

33

TABLE 2.4

SIGNED SINGLE RECURSION EXAMPLES

(a, m) Bit Map Analysis

(2, 8) 4Ao 10 211021 372
B1 01100011 -29

Sl 000001
Cl 1 11010
U1 011 + 3

V1 011 256
A1 11010122 90

(3, 9) 8Ao 001 102101 -1112
Bl 110110001 177

Sl 010011
Cl 1 01100
U1 1010 + 10

V1 0010 -1024
Al 021012011 99

(4, 12) 16Ao 1101 12001101 24784
Bl 011001111010 -390

S1 11101010
Cl 0 1000101
U1 1111 + 31

V1 01101 20480
Al 211020212121 3945

(5, 8) 32Ao 12001 222 4800
B1 01110011 -13

S1 011
Cl 1 11
U1 100110 + 38

V1 100010 4608
A1 12210121 217

34

TABLE 2.5

SIGNED MULTIPLE RECURSION EXAMPLE

WEIGHTED
BIT MAP INPUT OUTPUT

4Ao 01 200122 2560

B1 11001100 4864

S1 110111
Cl 1 00011
U1 111 448

V1 010 0
A1 11022211

4A1 11 022211
B2 01100011 -464

S2 011011
C2 0 11100
U2 010 32

V2 011 4096
A2 12201121

4A2 12 201121
B3 10001111 60

S3 101110
C3 1 00011
U3 001 4

V3 101 3072
A3 10122012

4A3 10 122012
B4 00110110 -74

S4 101111
C4 0 11001
U4 110 6

V4 010 0
A4 21112220 268

7436 7436 TOTAL

4 OUTPUT RECODING PROCEDURES 2.

35

output digits of the form generated by (2.8) are

cumbersome to deal with. The following recoding

procedures generate an output data stream which is in a

minimally redundant symmetrical signed-digit form.

Let

and

so that Pj € {

a-1 ·
WJ· = .~ (v_1·)J·2 1

1=0

Pj = Wj + (v-a>j+1,

a-1 -2 , ... , -1, o, 1, ... ,

(2.9)

(2. 10)

with the boundary conditions established by initializing

w0 in the range

wj € { -2a-1, ... , -1, o, a-1 1, ... , 2 -1 },

implied by (2.9); and by defining

Pn = Wn

where Pn is the last digit generated by the recursion.

Using this procedure the value P may be defined such

that

p =

where

n .
~ p,2-GJ =

j=O J

which guarantees

o = A 2-na n , (2. 12)

36

4 1 ZERO INITIALIZATION CASE 2. .

An important special case of (2.11) is the case

for which A0 and w0 are zero so that P can be defined

such that

P = .~(BJ·+ UJ•2-m)2-aj - 6.
J=l

(2. 13)

If the input data set is such that it can be guaranteed

that for some value o in the range implied by (2.12)

there exists a value P such that

(2. 14)

then P can be guaranteed to be recodable into an n digit

representation such that

n .
P = ,l: p-2-aJ.

J=l J
(2 • 15)

In order to guarantee that the insignificant

digit Po is not generated, the following recoding

procedure makes use of a selective carry suppression

algorithm.

Let a Boolean flag ¢j be defined such that

¢0 = 1,

¢j+l = (V_a)j+l¢j E j ~ 0.

Using this flag the digits that define P can be

generated in the form given in (2.15) such that

Pj = Wj + ¢j(V_a)j2a-l + ¢j(V_a)j+l·

(2. 16)

(2.17)

2 .4.2 CONVERSION TO NONREDUNDANT FORM

The problem of converting redundant operands,

such as P, into a nonredundant form has been

traditionally handled using carry propagating adders.

37

A much simpler method of performing this conversion,

however, has been suggested by Ercegovac and Lang [2].

In the Ercegovac/Lang algorithm, the conversion of

redundant to nonredundant operands is achieved "on-the

fly," i.e., instead of waiting for all the redundant

digits to become available before beginning the

conversion, the conversion is executed as an ongoing

process which commences as soon as the first digit of

the result becomes available.

This system was designed specifically to meet

the operand conversion needs of on-line arithmetic

processing systems, such as those systems developed in

this thesis. It is capable of very high speed

operation, approximately equivalent to that of a CSA,

and can be implemented using simple shift register

constructs. For more detailed information on these

conversion methods refer to reference [2].

38

CHAPTER III

DIGITAL SIGNAL PROCESSING APPLICATIONS

This chapter applies the theory developed in

chapter II to practical arithmetic processing problems.

3.l MULTIPLICATION FUNDAMENTALS

This section defines the nature of the operands

that will be utilized in the application of LSA theory

to the problem of multiplication, and briefly reviews

multiplication operand processing techniques.

3.1.1 PROBLEM DEFINITION

Given a multiplicand X and a multiplier Y, the

product XY will be defined here as a summation of n

partial products such that

where

and

XY =
n .
L Xy•2-aJ

j=l J

k-1 -i
X = -x0 + , L x 1·2 ,

1=1

y =
n .
L y · 2-aJ

j=l J

(3 .1)

(3. 2)

(3.3)

39

3 .1.2 MULTIPLIER RECODING

If the multiplier is initially defined such that

na-1 ·
2Y = -y0 + .E y1•2-1 ,

l=l

these digits may be recoded into the form required in

(2.3) via the operation:

Yj+l
a-1 • - 2a-1 + - 2a-1 + -= -yJ· a E y· . yJ·~ i=l JO'+l V

V j I 1 ~ j < n-1,

with the boundary condition set by

a l a-1 .. 2e1-i
Y1 = -Yo 2 - + i~l Yi + Ye1+1

and - a-1 a-l - a-i
Yn = -Yna-a2 + i~l Yna-a+i2 ·

This digit definition stipulates that

Yj e { -2°-l, ... , -1, O, 1, .. . , 2a-l} V j.

3.1.3 PARTIAL PRODUCT GENERATION

If the shift factor a= 2 is chosen, the

multiplier digits are defined such that

Yj e { -2, -1, o, 1, 2 } •

(3. 4)

With this multiplier digit set the partial products Xyj

can be easily generated using simple shifting and

complementing operations. If a larger value of a is

chosen then cumbersome carry propagating adder hardware

must be used to generate the partial product set; this

fact effectively limits practical partial product

generation schemes to the radix four case [5].

In Table 3.1 the digits of the operand Bj are

defined as a function of X and Yj for a a= 2 system

such that

40

k+l · k = I: (b·) ,2-1 + 2- -113.
i=l 1 J

(3.5)

TABLE 3.1

PARTIAL PRODUCT DIGIT MAPPINGS
FOR RADIX FOUR MULTIPLICATION

Yj (b1)j (bi)j f3 •
J

+2 Xo x , a
l 0

+1 Xo Xi-1 0

+o 1 0 0

-0 0 1 1

-1 Xo xi-1 1

-2 Xo x , a
l 1

3.2 LSA MULTIPLICATION

Obviously if we assign

(uo)j = /3j or alternatively (u2)j+l = /3j,

and k = m-1,

(3. 6)

the zero initialization case of the LSA operation given

in (2.13) is directly amenable to the multiplication

Problem:

n .
XY = . :E BJ· 4 -J •

J=l

41

(3.7)

aowever, an m bit LSA processing module, as defined in

Article 2.1.2, is only capable of processing an m-1 bit

multiplicand using either of the operand mappings

described in (3.6). An alternative operand mapping

which supports an m+l bit multiplicand is given in

(3.8).

(u1) j+l = (bk) j

(u2)j+l = (bk+1> j

(uo>j+2 = {3 •
J

(3. 8)

3.2.l MULTIPLICATION EXAMPLE

Table 3.2 provides an example of multiplication

of a nine bit two's complement multiplicand

X = 0.110101112 = 215 • 2-8

with a minimally redundant signed-digit multiplier

Y = o. 2-1-2 1 o o o o4 = 105 • 2_8 ,

using the zero initialization case of the LSA algorithm

defined in expression (2.13) form= 8, with the operand

digit mapping being provided by Table 3.1 and the

mappings given in (3.8).

Table 3.2 illustrates the operations performed

by the LSA algorithm, in executing this multiplication,

Using the following format.

42

4Aj-l al a2 a3 a4 a5 a6 a7 as
B· b1 b2 b3 b4 b5 b6 b7 bs
u~

J U2 Ul Uo

2mv,
J + A· J V_2 V_lVQ a.1 a.2 a.3 a.4 a.5 a.6 a.7 a.a

In Table 3.3 the conversion methods of Ercegovac

and Lang [2] are used to recode the resulting product,

P = o. 1 2-2 0 1 -1 0 -14 = 22,575 • 2-16 ,

into a two's complement normalized form such that

2P = 0.1011000001011112 .

successive approximations are made of the value of P

such that

l -i
PJ· = . I: Pi 4 .

1=1

By maintaining storage of both Pj and Pj - 4-j, the

system permits these successive approximations to be

made without using any carry propagation hardware [2].

P1 =

P2 =

P3 =

P4 =

Ps =

PG =

P7 =

Pa =

10 00 00
11 10

TABLE 3. 2

MULTIPLICATION EXAMPLE

00
10 11

0 00

0 10 11 10 10 11
01 00 10 10

0 10

0 11 11 11 01 20
00 01 01 00

0 00

1 0 11 11 11 01 00
10 11 01 01

1 01

2 1 00 01 20 02 02
10 00 00 00

1 11

-2 0 10 10 10 11 11
10 00 00 00

0 00

0 0 11 00 11 11 00
10 00 00 00

0 00

1 0 01 01 11 00 00
10 00 00

0

-1 0 10 01 00 00
10 00

0 0 01 10 00

-1

43

Y1 = 2

Y2 = -1

Y3 = -2

Y4 = 1

Y5 = 0

Y6 = 0

Y7 = 0

00 Ya = 0
00

00
00 00 Yg = 0

0 00

00 00

j

1

2

3

4

5

6

7

8

TABLE 3.3

REDUNDANT TO NONREDUNDANT OUTPUT CONVERSION
USING ERCEGOVAC/LANG ALGORITHM

Pj 2P· 2 (Pj - 4-j)
J

1 0.1 0.0

2 0.110 0.101

-2 0.10110 0.10101

0 0.1011000 0.1010111

1 0.101100001 0.101100000

-1 0.10110000011 0.10110000010

0 0.1011000001100 0.1011000001011

-1 0.101100000101111 0.101100000101110

3.3 LSA DIVISION

44

The idea of performing division using a left

shifting accumulator is not a new one. In fact,

division is inherently an on-line process, inasmuch as

the quotient digits are most conveniently generated MSD

first.

In reference (6], a division procedure is

outlined such that the partial remainders are stored in

a redundant accumulator similar to those considered

here. In this system, each successive radix four

quotient digit is generated based on an inspection of

the most significant digits of the partial remainder

such that Yj € { -2, -1, o, 1, 2 }. This quotient digit

45

is then multiplied by the divisor X, and the resulting

product (XYj) is subtracted from the previous

partial remainder (Aj-l) to form a new partial remainder

(Aj) .

This process can obviously be implemented using

the same basic recursive operation that was developed

for multiplication in the previous section. However,

unlike multiplication, in which the next selection

operand Yj+l is known independent of the output of the

system Aj, division requires that the partial remainder

be inspected after each cycle in order to determine the

next appropriate selection value. In the ILLIAC design

[4] this inspection procedure is accomplished by first

recoding the six most significant digits of the partial

remainder into a nonredundant form and then using Table

look-up methods. This procedure introduces a large

amount of latency into the feedback loop of the system,

thus this division algorithm could only be expected to

cycle at a fraction of the rate associated with the

multiplication algorithm considered in Section 3.2.

In order to compensate for this slower cycle

rate, the delayed feedback systems discussed in Article

2.3.1 might be used, such that the delay imposed by the

accumulator inspection techniques is balanced by a

series of delays in the accumulator feedback loop. This

could allow the CSAs to still cycle at maximum rate by

operating on a number of data sets concurrently. One

46

would expect such a division system to operate with the

same total effective throughput as an LSA multiplier

in spite of the slower individual operand processing

rates. A detailed simulation of the operation of such a

division system has not yet been developed. This is

left as a topic for future research into the operation

of LSA networks.

47

CHAPTER IV

CONCLUSION

4.1 SUMMARY

This thesis has investigated possible

applications of a class of devices referred to here as

left shifting accumulators. The general left shifting

accumulation algorithm was precisely defined in terms of

well known arithmetic operations. Various

configurations of modules developed from this algorithm

were presented and their operational characteristics

discussed. Included in this development were

configurations to support the highly desirable systolic

communication pattern [15). Through the use of computer

simulation data, it was demonstrated that the operation

of these devices could be applied equally well to both

signed and unsigned operations.

The algorithm was then applied to the

development of a multiplier which performs radix four

multiplication in a multiplier digit on-line fashion

with a possible maximum cycle rate equivalent to that of

a carry save adder. Examples of system operation were

provided using computer simulation data.

Facilities for the conversion of the output data

stream into a nonredundant form are provided using the

methods of Ercegovac and Lang (2]. This system

generates successive approximations of the value of

output data stream in two's complement form, using

simple shift functions.

Evidence to support the contention that LSA

systems could be configured to support high efficiency

division operations is presented, although simulation

data for this operation is not yet available.

4.2 FUTURE RESEARCH DIRECTIONS

48

In Chapter I, it was suggested that the LSA

configurations developed here might be used in high

speed digit signal processing applications. In order

for this to become a reality, much more research and

development will be necessary. At the module level, the

design task is simplified by the algorithm's usage of

already well developed arithmetic functions. At the

system level, the various possible ways in which the

modules can be configured provides a great deal of

flexibility to the IC layout engineer. Ultimately, the

choice of an optimum network configuration will be

dependent upon the particular application to which the

system is being applied.

Other research directions should include the

development of redundant adders that could be used to

combine data streams, so as to support the operation of

addition using simple serial constructs. (Paste-Up (8]

already includes such a redundant adder, but it is

likely that this device would have to be modified in

order to support the higher communication bandwidth

possible using LSA multiplication systems.)

49

The systems presented in this thesis are new and

for the most part hypothetical in nature. This makes it

difficult to predict with any certainty into what form

future research will mold these concepts. Section 4.3,

however, concludes this thesis with a discussion of two

general types of digital signal processing applications

that seem to hold promise.

4.3 TWO TYPES OF APPLICATIONS

In Section 2.2, two different systolic module

configurations were developed. The first of these is

illustrated in Fig. 2.4. The primary advantage

exhibited by this network is a fast (single clock cycle)

operational period. Its most notable disadvantage

is that the latency of the network is dependent upon the

number of modules in the cascade. The network

illustrated in Fig. 2.7 also exhibits systolic

communication patterns; however, its other operational

properties are very much different from that of the

system in Fig. 2.4. This delayed feedback system has a

cycle rate double that of its direct feedback

counterpart; however, overall the system maintains the

same high throughput rate through the use of concurrent

50

processing. The main advantage of this configuration

is that it has a very low latency, and this low latency

is maintained independent of the number of modules in

the cascade.

If a system is to be designed with the

requirement that it multiply together two floating-point

operands, returning the final result as quickly as

possible, then Fig. 2.4 is obviously the most

appropriate choice of configurations. If, on the other

hand, an on-line arithmetic processing network that

takes full advantage of multiprocessing capabilities to

perform long chains of high precision operations before

returning a final result is desired, then Fig. 2.7 is

unquestionably the superior circuit for the job.

These two cases represent extreme examples; in

real world applications the choice between high cycle

speed and low latency might not be as easy to make.

What is important, however, is that whichever option is

chosen an LSA configuration with systolic communication

patterns can be applied to the task. To put the problem

in perspective with respect to existing technologies,

the slow cycle rate associated with Fig. 2.7 can still

be expected to be significantly faster than Paste-Up's

ten gate delay clock cycle [8].

51

APPENDIX

LIST OF SIMULATION PROGRAM

The following simulation program was employed to

generate the data presented in tables 2.2, 2.3, 2.4,

2.5, and 3.2. The program is written in the Basic

programming language, and was executed on an Atari S00XL

personal computer.

l• REM LSA SYSTEM SIMULATION
11 REM BY JESSE BOOHER
12 REM
z• REM GENERAL INITIALIZATIONS
J[} !JI !"I A (16) , l:\ (16) , b (1 Lt·) , C (11.,.) , U (6) , 'v' (6) , F~:; <3) ,

C(.. ~) X(1D), Y (8) 1= ... , '
35 :O J:l"I i<'.;.~; (l 6) , Bi;; (16 l , U$ (7) , Sii, (11+) ,, C~; (:I . . t.,.) ,, ',/1,; (7 l ,
N$ (5) , t,H; (:i) ,, Fii; (8C:J) , BL..$ (15) , X~; (:1. O)

4o FS(• l=• :FC(O l=O
50 FS(l)=l:FC(ll=O
60 FS(2)=• :FC(2l=:I.
70 FS(3)=1:FCC3l= 1
!:JO BL <.~ :::: II "

90 GOTO 30•• :REM ACCESS MENU
100 REM PARTIAL PRODUCT GENERATION
11 0 X (1,·1+ 1 l 00==U
120 SH=l-INT(ABS(Y/2)+0.1)
13D I I\J,/::--=HGN (Y)
1-2 IF INV=-1 THEN B(ll=X(•)
134 IF INV=• THEN B(ll=l
136 IF INV=l THEN B(ll= NOT X(O)
137 B$ (:I. , :L) ::::ST I~~; (B (1 l l
140 FOR 1=2 TO M+2
15D IF INV=-1 THEN B(Il= NOT X(l-SH-1)
:t.60 IF INV=• THEN B(Il=O
170 IF INV= l THEN B(I l=X (I-SH-1)
175 B$ C I,, I) :::::!.3T F~~~ CB (I l)
180 NEXT I
189 BETA::::(J
190 IF Y<O THEN BETA=l
200 U(2l=U2A:USC3,3l=STRSCU2Al
210 U(1l=U1A:US(2,2l=STR$CU1A>
220 U(Ol=U• A:US<1,1)=STR$(UOA)
230 U2l\===U2B
240 Ult\=B(M+:t.)
250 U01\====B (1"1+2)
:,,: 6[) U 21~, ::::: Ji. I:: TA
270 FH=:Tl..mN
~00 REM MULTIPLICATION INITIALIZATION
305 f-'i (1 l ::::: 1
:.HO FOl::i I=:;;:: TO M
320 i\(I)::::()::/;.~;(I, I) :::-s "CJ"

::BLl NEXT I
340 U2A=O:U1A=• :UOA=O:U2B=O

50 RETUHI\J
400 REM MULTIPLIER RECODING
410 F (1"1) =U
420 FOR J=0 TO N-1
430 E(J+1)=-F(2*Jl+F(2*J+1l+F(2*J+2)
'+40 NEXT J
450 RETUHN
jQ['J REM ACCUMULATION
510 FOR 1=1 TOM-SIG
52• X=ACI +SIGl+B(Il

52

53[)
1540
55Cl
~J6Cl
60Cl
610
620
630
64[)

650
66Cl
67Cl
bBO
70Cl
71Cl
720
730
740
750

b (.l) :::::i::·s (X)
C (I) :ccF C (X)

NEX T I
F,IETUF!I\I
RE M V DIGIT GENERATION
C= C<l)
FOR I=SIG TO :I. STEP -:I.
X=C+A(I)
V (SH:i··-·l) ==FS (X)

C==FC(X)
NE:XT I
V<SI(;) :::::C
RE:TURI\I
REM IMPLICIT MAPPINGS
FOR 1=1 TO M-SIG-1
A (I J =0-=S (I) + C (I+ 1)
t-.JEXT I
X==l'l···-S J: G
A (X J •=S (X) +U (SIG)

160 FOf~ l=-.:: 1 TO bIG
770 A(X+l)=B(X+l)+U(SIG- I)
780 I\JEXT I
790 RE T Ul-~N
800 REM PRINT A(l)
!310 FOf~ 1°-=l TO M
820 A$ (I, I) =STR$ U\ (I))
U30 NE:XT I
840 RE:TUHN
850 REM PRINT 8(1)
860 FOR 1=1 TOM-SIG
f:l70 Sil; (I •i I) :::::ST Ii$ (S (I))
880 NEXT I
El90 RE: T UF<I\I
900 REM PRINT C(l)
910 FOR 1=1 TOM-SIG
920 C<J; (I , I) ==ST F<~; (C (I) l
930 NEXT I
9Lf0 RETURN
9 50 REI"! PR I I\IT V
960 FOR l=SIG TOO STEP -1
9 70 V$(S I G-l+l , SIG-I+1)=STRSCV(ll)
980 NEXT I
990 RETURN
1000 REM l NPUT A
l • fYS liEr~;D f'.\'ii
1810 FOR 1=1 TOM
l 02(] A (I) =Vr-'.l,L (A$ (I, I))
1030 NEXT I
1040 li ETURN
lOSO REM INPUT B
l055 F<E;\D B$
l060 FOR 1=1 TOM
1•-7(J-· B (I) c::Vf\L (BS (I , I))
l •B0 NEXT I

53

F~_1:_~-1-URN 109• -
11•• REM COMPUTE (2 AM)*B
11 1• B=D
l120 FOR 1=1 TOM
l130 B=B+B+B(l)
1140 NEXT I
l 150 RET URN
1200 REM COMP UTE (2AM)*A
1210 A=•
1220 FOR 1=1 TOM
1230 A=A+A+A(l)
1240 NEXT I
1250 RE TURN
1300 REM COMPUTE V
1310 V=D
1320 FOR I=SIG TOO STEP - 1
1330 V=V+V+V(l)
1340 NE XT I
135 0 RETU RN
1400 REM COMPUTE U
1410 U=O
1420 FOR l =SIG TOO STEP - 1
1430 U=U+U+U(l)
1440 NEXT I
1450 RETURN
15 JO REM INPUT U
1505 READ US
1510 FOR I=• TO SIG
15 20 UCSIG-I>=VAL(US(I+l,I+l)l
1530 NEXT I
15 40 RETU RN
1600 REM RIGHT JUSTIFICATION
1605 MS="
1610 LN=LEN(N$)
1615 FOR 1=1 TO LN
1620 MS(S -LN+I,S)=NS<I, I)
1625 NE XT I
1630 RETURN
170 0 REM FI ND V
1710 FOR I=• TO S IG
1720 V(S IG-I>=VAL(V$(I+1,I+1)l
1730 NEXT I
17 40 RETURN
2 100 REM LSA RECURSION
2 150 GOS UB 402• :REM PRINT A*(2ASJG)
2155 GOSU B 4065:REM LOAD AND PR INT B
2160 GOSUB so• :REM ACCUMULATE
2190 GOS UB 418• :REM DRAW DIVIDER LINE
2200 GOS UB 4207:REM PRINTS AND C
2225 GOSUB 4105:REM LOAD AND PRINT U
2230 GOS UB 4 18• :REM DRAW DIVIDER LINE
2240 GOSUB 6 •• :GOSUB 95• :GOSUB 1300:REM GENERATE V
2250 GOS UB 4 3 •• : REM PRINT V
2260 GOSUB 7 •• :REM REGENE RAT E ACCUM .

54

2 270 GOSUB 44 •• :REM PRINT A
228• GOSUB 5 10• :REM SCREEN DUMP
23 0 D m :: TU RN
2500 REM SYSTEM INITIALIZATION
:.,:505 PRII\IT "DO YOU WANT S IGNED OUTPUT";: INPUT l\1$
2506 i:;; 1,1"'' (N$ (1 , 1) ::::: "Y")
2507 GOt;UB 52UO
25 J. iJ RE /:\D r\l
2520 IF N=O THEN RETURN
:.'.~5 3 Cl F~EAD M, t3 I b
2540 C-:i0!3UB 1000
2550 FOR J= l TON
2560 PFU: NT " } 11

:j

2571] (:iOSUB 2 1DO
25tl0 l\lf:::XT <J
:;,::5 9 D C:iOTO 2'.510
JOUCJ m~l·I MENU
JOO'.::i 1:31\lac, :I.
3Cl10 P!~INT "}"
302(] PRINT
J OJO 1~; RINT "CHOOSI:: OPERATION DESIRl::D:"
3040 PRINT " 1) MIXED EXAMPLES."
3045 PRINT" 2) MULTIPLE RECURSION EXAMPLE."
3050 PRII\IT " 3> MULTIPLI C/>,TION SI MULt-iTIOr~."
3060 PRINT" 4) EXIT."
3065 PR I I\IT
i:lUlU I I\IPUT I 9
3080 IF 19=1 THEN RESTORE 900• :GOSUB 2500
3090 IF 19=2 THEN RESTORE 920• :GOSUB 2500
3100 IF 19=3 THEN RESTORE 9500:GOSUB 7000
3110 IF 19=4 THEN END
3200 GOTO 3UUO
4000 REM I /0 SUBROUTINES
4020 REM PRINT A*(2ASIG)
4025 N$=STR$(2AS I G):GOSUB 1600
L~030 r)l~JI\IT l•11~(4,'.:i); 11 *A 11 ,C:.f ··-·l;" 11 ;A$(l,SIG); 11 11

,

4050 GOSUB 12•• :A=A-SN*2A(M-1)
4055 NS=STR$(A*2ASIG):GOSUB 1600
4[60 PRINT AS(SIG+l,M);
406 1 FOR I=l TO SIG+l:PRINT " ";:NEXT I:PRINT M$
4062 RETURN
4065 REM REA D AND PRINT B
4070 IF MU LT=O THEN GOSUB 1050
L~OB O 1-,RINT II B11 ;J·; :FOR 1=1 TO SIG+.t.1.:Pl~INT 11 11

; : NE XT I
4095 GOSUB 11• 0:B=B-2A(M-1)*SN
4097 N$=STRS(B) :GOSUB 1600
4100 Pl~JI\IT BS (1,, M); 11 11 ;1"1$
'+10~2 F~ETUR I\I
4105 REM READ AND OUTPUT U
4 11 0 IF MULT=O THEN GOSUB 1500
4120 PRINT II U11 ;J;BL$(1,M+3);

.t.i-130 GOSUB l'+[HJ
41 35 NS=STRS(U):GOSUB 1600
'+lL1- 0 Pl~ I I\IT us :j 11 11 ; M$

55

56

1+1'.':iCJ RE TUF<N
41 80 REM DRAW DIVIDER LINE
41 90 PRINT" ";
'-1-2UU FOF~ 1=1 TO M .. I-SIG+2~PFUNT 11 ""' 11 ; :NEXT I:Pr-nNT II
II a II -•~- -·-· I I

' .t.1.20'.':i RETUF<N
4~01 REM OUTPUTS AND C

S" :; J' ; BU;; (1 ') 4+S I G) ; ~:, 1;; (l i M 5 H:i)

.L1-2UH G0!3UB FJ SO
42DS:' i.:iOSUB 9CJO
f.1,2:1.U PF<INT 11

L~220 PFU I\IT 11

1.1.2~1U F<ET Uf~I\I
c " ; .J; But,< 1 ., 2+s 1 <:i i :; c~, < 1 , 1 i ; " " ; C$ < 2 ., M-·-s I G >

4300 REM OUTPUT V
4310 V=V-2A(SIG- ll *SN
43 :2 0 PRII\IT II V"; J; II II:; V$ (l •1 f.:;JG+l);
4 340 NS=STR$(V*2AM)~GOSUB 1600
4350 PRINT Bl$(l~M+2i;
,'.1-36D F,; l~II\IT M'.-i;
4 37CJ RETUR1,I
4400 REM OUTPUT A

A" j J ; Bl$ (l, SI <::i+'-1•) i
4430 GOSUB l2• 0: A=A-SN*2A(M-1)
4440 NS=STR$(A):GOSUB 1600
'-1-45 U GO SUB BUD
Lf l+b• f)RII\IT {,,$:;II II:; Jvl$

.t.1, 4 7 (J F~ ETU l=< I·-~
5000 REM SCREEN DUMP
5005 LPRINT :LPRINT
5010 FOR I=• T O B
501 5 FOR K=:L TO 40
5020 Tl=PEEK(39999+4D* l+K)
5 025 PS<K ,K)=CHR$(32+T1)
SOJO I\IEX T K
5040 LPRINT BLS,PS
5060 I\IE~X T l
'.5070 F~E TURI\I
5100 REM SD OPTION
5 11 0 PR INT ~PRINT :PRINT
5115 IF AP THEN 5000

'.::i120 F>R INT "DUMP OUTPUT TO PFHNTEH";
5130 INPUT N$

'.::i 1•'.i-U J 1::: l\1$ (1, :L) c-:::" Y II TH[]\I souo
5 :L 50 f~ET URN
5200 REM AUTO PRINT OPTION
53Cl0 Pl=<I NT "l1UTOr.,.1.t,TIC PRINTING";
'.:53 1 U I I\IPUT J\1 ·$

53:20 1\P:::::,: l\l!fi (1, 1) :=::
11 \ ' 11)

'.:1JJU RET Ul~I\I
·1ouu 1=<1::1•1 MUL. TI r-1 L I CAT I 01,1 s I i"IUL,6, TI ON
70 US MUl_f :::::1:SN=l
70 1U READ xs:M=LEN(X $)-1
70 :L :'1 :::..; I (:i=2
7 02D X=== O
703 0 FOR 1=1 TO Jvl+l

7040 X(I-1) =VAL(X$ Cl,I))
7045 X=X+X + XCI - 1)
7050 NEX T I
7• 60 x=x -2 ~M
7070 J= l ~GOSUB 300
7075 GOSUB 5200
7080 REM BEGIN RECURSION
7085 PRINT " l ";
7090 REA D Y: IF Y=-99 THEN RETURN
7 100 GOS UB l • O~REM PPG
7 11 0 GOSUB 21 •• :REM RECURSION
7 120 J=J + l :GOTO 7080
9000 REM MIXED EXAMPLES
9005 RE M DATA SET 1
9010 REM N, M, S I G,A$
9020 DATA 1 , 8,2,10211021
9030 REM INPUT B & U
9040 DATA 01100011,011
9050 REM DATA SET 2
9060 DATA 1, 9 ,3,001102101
9070 DAT A 110110001,1010
9 080 RE M DATA SET 3
9090 DATA 1 , 12,4,11011 2 001101
9100 DATA 011001111010,11111
9 110 REM DATA SET 4
9120 DA TA 1,8, 5 ,1 2 001222
9 130 DATA 01110011, 100110
9190 DA TA 0
9200 RE M MULTIPLE RECURS ION EXAMPLE
9210 DATA 4,8,2,01200122
9220 DAl" A 110011 0 0,111
9230 DA TA 01100011,010
9240 DAT A 100011 1 1,001
9250 DA TA 00110110,110
9260 DA TA 0
9500 REM MULTIPLICATION SIMULATION
9 51 0 DATA 011010111
9520 DATA 2,-1, - 2, 1
9530 DATA D,O,D,D
9999 DATA -99

57

[l]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

58

LIST OF REFERENCES

A. Avizienis, "Signed-Digit Number Representations
for Fast Parallel Arithmetic," IRE Trans. on
Electronic Computers, Sept. 1961, pp. 389-400.

M. D. Ercegovac and T. Lang, "On-the-Fly
Conversion of Redundant into Conventional
Representations," IEEE Trans. on Computers,
July 1987, pp. 895-7.

M. Uya et al, "A CMOS Floating Point Multiplier,"
IEEE Journal of Solid-State Circuits, Oct. 1984,
pp . 6 9 7 - 7 01.

D. E. Atkins, "Design of the Arithmetic Units of
ILLIAC III: Use of Redundancy and Higher Radix
Methods," IEEE Trans. on Computers, Aug. 1970,
pp. 720-33.

c. s. Wallace, "A Suggestion for a Fast
Multiplier," IEEE Trans. on Electronic Computers,
Feb. 1964, pp. 14-17.

Y. Harata et al, "A High-Speed Multiplier Using a
Redundant Binary Adder Tree," IEEE Journal of
Solid-State Circuits, Feb. 1987, pp. 28-33.

R. F. Lyon, "Two's Complement Multipliers," IEEE
Trans. on Communications, April 1976, pp. 418-25.

M. J. Irwin and R. M. Owens, "Digit-Pipelined
Arithmetic as Illustrated by the Paste-Up System:
A Tutorial," Computer, April 1987, pp. 61-73.

M. J. Irwin and R. M. Owens, "Fully Digit On-Line
Networks," IEEE Trans. on Computers, April 1983,
pp. 402-6.

K. S. Trivedi and M. D. Ercegovac, "On-Line
Algorithms for Division and Multiplication," IEEE
Trans. on Computers, July 1977, pp. 681-7.

M. J. Irwin and R. M. Owens, "Techniques to Reduce
the Inherent Limitations of Fully Digit On-Line
Arithmetic," IEEE Trans. on Computers, April 1983,
pp. 406-11.

C. L. Seitz, "Concurrent VLSI Architectures," IEEE
Trans. on Computers, Dec. 1984, pp. 1247-65.

J. Maver et al, Introduction to MOS LSI Design,
Addison-Wesley Pub. Co., 1983.

[14)

[15)

[16)

[17)

[18)

-

D. E. Atkins, "Introduction to the Role of
Redundancy in Computer Arithmetic," Computer,
June 1975, pp. 74-7.

H. T. Kung, "Why Systolic Architectures?"
Computer, Jan. 1982, pp. 37-46.

K. Hwang, Computer Arithmetic, New York: Wiley,
1979.

S. Waser, "High-Speed Monolithic Multipliers for
Real-Time Digital Signal Processing," Computer,
Oct. 1978, pp. 19-29.

J. Kernhof et al, "High-Speed CMOS Adder and
Multiplier Modules for Digital Signal Processing
in a Semicustom Environment," IEEE Journal of
Solid-State Circuits, June 1989, pp. 570-5.

59

	422_booher031
	422_booher032

