Analyses of ribosomal DNA internal transcribed spacer sequences from Juglans nigra and leaf-associated fungi in Zoar Valley, NY

by
Vincent Ragozine

Youngstown State University
Submitted in Partial Fulfillment of the Requirements
for the Degree of
Masters of Science

Analyses of ribosomal DNA internal transcribed spacer sequences from
 Juglans nigra and leaf-associated fungi in Zoar Valley, NY

Vincent K. Ragozine
I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:
Vincent K. Ragozine, Student Date

Approvals:
Dr. Carl Johnston, Thesis Advisor Date
$\overline{\text { Dr. Thomas Diggins, Committee Member Date }}$
Dr. Heather Lorimer, Committee Member Date

Abstract

A genetic analysis of samples of Juglans nigra (Black Walnut) from three different locations in Zoar Valley, New York, was conducted. Nuclear ribosomal DNA (nrDNA) intragenic spacer regions (ITS1, ITS2) were PCR amplified along with the 5.8 S ribosomal RNA (rRNA) gene. Consensus sequence alignment of J. nigra DNA samples from Zoar Valley showed sequence variation (both base additions and substitutions) between samples. It is likely that at least some of the base substitutions in the consensus sequence are not an artifact of the method, and are different from the published sequence for J. nigra. This indicates the method has potential for examining within species variation for different populations of J. nigra.

A survey of fungi associated with the phyllosphere of two elm species native to Zoar Valley, NY, Ulmus americana and Ulmus rubra, was conducted on samples recovered from Zoar Valley, NY. Fungi were identified by sequencing cloned DNA of PCR amplified ribosomal DNA (rDNA) extracted from leaf tissue. Probable endophytes were identified (Phoma, Coprinellus), but the majority of fungi detected (Cryptococcus, Ampelomyces, Colletotrichum) were most likely parasites. Multiple genera of fungi were detected in single leaf tissue samples.

Introduction: DNA was isolated and sequenced from leaf samples collected in old growth forest in Zoar Valley, in hopes of forming a preliminary colonial history of Juglans nigra in Zoar Valley, and detection of specific hereditary variations in sequence within populations. This combined thesis was a byproduct of the universal eukaryotic ribosomal DNA primers (ITS1 and ITS4) used in this study. The original intention was to isolate and PCR replicate plant DNA only for further downstream application. As research methods progressed to DNA sequencing, it became apparent after the completion of numerous sequencing reactions, that fungal DNA was being PCR amplified and cloned along with plant DNA. Fungi from either within the leaves or upon their surface was being DNA extracted along with the leaves themselves, and was present in the DNA extracts to be PCR amplified.

Interestingly, only fungal DNA was extracted and PCR amplified from the leaves of Ulmus americana (American elm) and Ulmus rubra (Slippery elm), while no plant sequences were obtained for the elms. Conversely, no fungal DNA was sequenced from the Juglans nigra (Black walnut) leaf samples. PCR reactions performed on elm-leaf DNA extracts favored amplification of fungal DNA, rather than elm DNA. It was decided to use the fungal sequences we obtained in a second project.

Table of Contents:

Chapter I: Identification and comparison of ribosomal DNA internal transcribed spacer sequences (rDNA ITS) isolated from Juglans nigra leaf tissue collected from Zoar Valley, NY
I. List of Figures, Tables, and Appendices vi
II. Background 1
III. Methods 6
IV. Results and Discussion 8
V. Conclusion 21
VI. Future Research Implications 22
VII. References 23

Chapter II: A molecular identification of fungal ribosomal DNA isolated from Ulmus americana and Ulmus rubra leaf tissue samples from Zoar Valley, NY using ribosomal DNA internal transcribed spacer sequences (rDNA ITS)
I. List of Figures and Tables vi
II. Background 26
III. Methods 29
IV. Results and Discussion 30
V. Conclusion 37
VII. References 37

Chapter I:

I. Table 1 8
II. Table II 10
III. Table III 11
IV. Table IV 13
V. Table V 15
VI. Table VI 16
VII. Table VII 17
VIII. Figure I 3
IX. Figure II 4
X. Figure III 7
XI. Figure IV 12
XII. Figure V 12
XIII. Figure VI 14
XIV. Figure VII 14
XV. Figure VIII 15
XVI. Figure IX 16
XVII. Figure X 17
XVIII. Figure XI 17
XIX. Figure XII 19
XX. Appendix I (Methods) 40
XXI. Appendix II 45
XXII. Appendix III 57
XXIII. Appendix IV 59
XXIV. Appendix V 62
XXV. Appendix VI 65
XXVI. Appendix VII 68
XXVII. Appendix VIII 71

Chapter II:

I. Table I 30
II. Table II 32

Identification and comparison of ribosomal DNA internal transcribed spacer sequences (rDNA ITS) isolated from Juglans nigra leaf tissue collected from Zoar Valley, NY

Background: The genomes of all living organisms contain certain genes responsible for fundamental biochemical functions. These genes can be sequenced, aligned, and analyzed to study phylogenetic relationships, even among morphologically indistinguishable but otherwise distinct species (Hillis and Moritz 1990). This level of genetic variability is central to population biology because the amount of variability directly influences the evolutionary potential for a species or populations (Shaal and Learn 1988).

Nuclear ribosomal DNA (nrDNA) is a strong tool because it is ubiquitous in all organisms. Also, it is in relatively high copy number to chromosomal DNA, making it more accessible. Ribosomal DNA has been used to systemically evaluate and construct genetic histories, known as phylogenies, through many taxonomically diverse groups of plants, fungi, and animals. The nrDNA can be viewed as units, the $18 \mathrm{~S}, 5.8 \mathrm{~S}$, and 26 S ribosomal genes, and the two internal transcribed spacers, ITS1 and ITS2, located between the 18 S and 26 S coding regions. The ribosomal genes have a much slower rate of sequence change than do the internal transcribed spacer regions (Suh et al. 1993).

Ribosomal DNA has been very useful in the study of plant evolutionary biology. The DNA conserved sequences that code for the $18 \mathrm{~S}, 5.8 \mathrm{~S}$, and 26 S ribosomal subunits have provided information on phylogenetic relationships among the species within a genus, and have also illuminated higher level relationships (Shaal and Learn 1988). The
intergenic spacer (ITS) regions of ribosomal DNA are highly variable, with variation occurring within populations and in individuals of the same population (Shaal and Learn 1988).

The internal transcribed spacers (ITS1 and ITS2) and 5.8S rRNA gene of nuclear ribosomal DNA were sequenced and analyzed to determine genetic heredity in the angiosperm species Juglans nigra. The ITS1-5.8S-ITS2 stretch of eukaryotic nrDNA (each $<300 \mathrm{bp}$) can be readily amplified by PCR and sequenced using universal primers (Baldwin et al 1995) (see Figure 1). The ITS region is known to undergo rapid concerted evolution (Linder et al. 2000). Differences in ITS sequence between species can mostly be attributed to point mutations acquired over evolutionary time (Baldwin et al 1995). The ITS sequences have proven to be useful determining taxonomic relationships among many species of angiosperms, and species can be readily distinguished through sequence variation (Jobes and Thien 1997, Baldwin et al 1995).

ITS primers

Figure 1. Ribosomal DNA amplified in this study with primer sites noted. Note ITS primer locations are found at the ends of each the highly conserved ribosomal genes

Previous studies (Gonzalez-Lamothe et al. 2002, Potter et al. 2001) have successfully utilized ribosomal DNA sequence, specifically the ITS1 and ITS2 spacer regions, to answer systematic questions and determine phylogenetic heredity. For example the $18 \mathrm{~S}, 28 \mathrm{~S}$ ribosomal genes, as well as the ITS1 -5.8 S - ITS2 region of the fungus Spilocaea oleagina (responsible for peacock leaf spot disease in olive trees) was sequenced to determine its identity. The phylogenetic classification of S. oleagina was previously undecided among mycologists. It was determined from nrDNA sequence data that S. oleagina belongs to the class Dothideomycetes, and is an anamorphic phase of a yet unidentified Venturia species (Gonzalez-Lamothe et al. 2002). In a plant example, ITS spacer sequences from the plant Arabidopsis suecica were PCR-amplified, cloned and sequenced, confirming that this allopolyploid species contains two distinct types of ITS sequences, one from A. thaliana and the other from C. arenosa, confirming they are the putative parents of A. suecica (O'Kane et al. 1996). In another landmark study, Paradox, a hybrid walnut cultivar [J. regia and J. californica] important to the California walnut industry, was analyzed for gene flow from other North American walnut species
[J. major, J. hindsii and J nigra]. ITS data showed that among various walnut industry sources of the Paradox strain, there was considerable genetic contribution from all North American species in at least some of these samples (Potter et al. 2001).

New Yok State's Zoar Valley was chosen for sampling due to its intact riparian ecosystem and healthy distribution of J. nigra (Black Walnut). The woodlands of Zoar Valley are highly varied and diverse, and collectively meet all objective criteria for eastern old growth forest (Diggins and Kershner 2005). Zoar Valley is the most intact forest-gorge landscape in the western New York region, having the largest area of virgin and secondary old growth forest, and contiguous climax forest. For these reasons and others, Zoar Valley has been studied scientifically and has become the subject of multiple conservation efforts.

A.

B.

Figure 2: Location of Zoar Valley in Western New York (A) and sample study areas within (B).
Juglans nigra [Black walnut, a dicotyledonous tree species of the family
Juglandaceae] is an important tree economically, for both its edible nut and in its use in commercial wood production (Stanford et al. 2000). Black walnut was chosen as the focus of this study because it is well established inside Zoar Valley, both in old growth stands and in younger forest. Minimal J. nigra population structure exists outside Zoar Valley due to heavy logging (Diggins and Kershner 2005). This made J. nigra an ideal species to analyze for genetic variation within an isolated population since it is safe to assume minimal gene flow between J. nigra populations inside of Zoar Valley with populations outside.

Within Zoar Valley, three sites were strategically selected for sampling. The first two sites, South Branch Floodplain and Lookout Point Terrace, lie within the undisturbed forested valley, and are separated geographically by about 1 kilometer. The third site, Valentine's Flats Plantation, lies along the western rim of Zoar Valley within a kilometer of South Branch Floodplain and Lookout Point Terrace and consists of Black Walnut trees planted by the State of New York in the late 1960s.

Genetic analysis of J. nigra between Zoar Valley's old growth stands, developing forests, and Valentine Flats Plantation was performed using gene sequence alignment. Using ITS sequence analysis enabled the comparison of multi-aged, spatially distant tree stands throughout Zoar Valley. This knowledge was applied to determine a preliminary colonial history of the J. nigra population in Zoar Valley, expose genetic identity or variation inside of each distinct population, and link trees in young forest with their parent trees in old growth if possible. In all, some insight into the population dynamics of this species in Zoar Valley was provided, yielding a glimpse into the history, heredity, and future implications for these species.

Methods: Samples were obtained from Zoar Valley on October $4^{\text {th }}$, 2005. Samples were collected from three distinct areas of Zoar Valley, Lookout Point Terrace, South Branch Floodplain, and Valentine Flats Plantation. Samples of J. nigra leaf tissue were first identified morphologically, then collected and stored in deep freeze at $-80 \mathrm{C}^{\circ}$ until DNA extraction was performed.

DNA extraction: Total DNA was extracted using a revised CTAB method of Doyle and Doyle (1987).

PCR: Extracted DNA was amplified with ITS specific primers. Forward primer used was ITS1 [TCCGTAGGTGAACCTGCGG] and the reverse primer used was ITS4 [TCCTCCGCTTATTGATATGC] of White et al. (1990). PCR performed on PTC-200 DNA engine.

Cloning: Purified PCR products were cloned using the TOPO TA Cloning Kit from Invitrogen (cat\# K4530-20) or StrataClone PCR cloning kit from Stratagene (cat\#240205)

Restriction Digest: A restriction digest using EcoR1 was used to screen clones before sequencing.

Figure 3: EcoR1 digest revealing restriction fragments of approximately 700bp, indicative of the PCR product generated using the universal primers ITS1 and ITS4 of White et al. (1990)

DNA Sequencing: Sequencing reactions were carried out on purified cloning extracts using Beckman Coulter Sequencing Kit, sequenced using primers M13 (-20, -47) Forward and M13 Reverse, with sites provided in the cloning vector.

Alignment: Sequences were aligned to determine identity or variation in ITS region of each species using computer programs. NCBI nucleotide BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) was used to identify sequenced DNA and

ClustalW (http://www.align.genome.jp/sit-bin/clustalw) was used to construct a multiple alignment of the sequences.

Results and Discussion: Identity of the sequenced DNA was assessed by sequence comparison within NCBI Genbank.

Table 1. List of single run DNA sequences from trees morphologically identified as J. nigra

Sample \# and primer set used (Forward or Reverse)	Collection Site within Zoar Valley	Closest match in NCBI Nucleotide Blast Search
1 (Forward)*	South Branch Floodplain	Juglans nigra
1 (Reverse)*	South Branch Floodplain	Juglans nigra
1 (Forward) (-47)**	South Branch Floodplain	Juglans nigra
3 (Forward)*	Lookout Point Terrace	Juglans major
3 (Reverse)*	Lookout Point Terrace	Juglans nigra
5 (Forward) (-47)**	Valentines Flat Plantation	Juglans microcarpa
5 (Reverse)*	Valentines Flat Plantation	Juglans nigra
11 (Forward)*	Lookout Point Terrace	Juglans major
11 (Reverse)*	Lookout Point Terrace	Juglans nigra
15 (Forward)*	South Branch Floodplain	Juglans nigra
15 (Reverse)*	South Branch Floodplain	Juglans nigra

* Forward or reverse primer supplied by Invitrogen cloning kit (cat\# K4530-20)
** - 47 sequencing primer supplied by Beckman Coulter Sequencing Kit

Sequence Identification of Single Run Forward and Reverse Reactions: Results from the Genbank sequence identity comparison (Table 1) showed that all single run sequence samples belonged to the Juglans genera. Samples \#3, 5, and 11 showed variation within
the same sample, identifying better with other Juglans $s p$. than J. nigra when sequenced using the forward primer. However when sequenced with the reverse primer, all were most identical to J. nigra sequences in NCBI Genbank.

A total of five plasmids, from five different trees, were successfully sequenced with the forward and reverse primers. The inconsistent species identity observed when comparing the forward and reverse sequence of samples \#3, 5 , and 11 cannot be interpreted as variation within the same sample, since both the forward and reverse sequencing reactions were run from plasmid DNA extracted from the same clone.

It has been shown that reforestation by planting within a species' native range is an example of human mediated gene transport, and if trees in off-site plantations cross with those in native populations, diversity may increase in the next generation, although with negative consequences for local adaptation (Ledig 1992). The possible transport of non-native genes occurred with the planting of Valentine's Flats Plantation, and this may have further increased any genetic diversity in the adjacent J. nigra populations in Zoar Valley. This explanation, again, however unlikely (due to the relatively short time period between the planting of Valentine's flats and the amount of genetic variation observed) could account for the variation observed in the Valentines Flats and Lookout Point samples. Juglans species are renowned for their ability to form hybrids (Potter et al. 2001).

Referring to Table 1, if J. microcarpa (5-Forward (-47)) or J. major (3-Forward and 11 -Forward), or perhaps a hybrid of these two species was introduced to Zoar

Valley in the past, then it is possible that these genes were introduced into the Zoar Valley J. nigra population. If this happened, hybridized walnut trees were then created. They might be morphologically identical to the native J. nigra population, however revealing their true identity only in DNA analysis. (J. microcarpa and J. major are native to the southwestern U.S.). This possibility of ITS hybrids allows for the discrepancy observed between the forward and reverse primers. For further study of this observed variation, we must construct consensus sequences from all sequencing reactions for each sample, and then compare these consensus sequences with others in the sample set and with those published in NCBI GENBANK. The consensus sequences help to rule out error as a cause of variation.

Assembling and Analyzing the Consensus Sequence: Consensus sequences were constructed from the multiple sequence alignment of all single runs for each sample. These consensus sequences were constructed to represent the most highly observed sequence configuration, after alignment and comparison, for all sequenced plasmids. The consensus sequence was then subjected to an NCBI BLAST assay and the results were as follows:

Table 2. Tree DNA samples with the number of sequencing runs and successful consensus sequence constructed

Tree DNA Sample	\# of Sequencing Runs	Consensus sequence constructed
1	3	yes
3	2	Yes
5	2	Yes

11	2	Yes
15	2	No

Consensus sequence nucleotides are listed either in capital letters ("A") or lowercase letters bracketed by parenthesis ("(a/t)"). Capital letters stand for undisputed consensus nucleotides, while lowercase letters are found where there is an inconsistency between the single run sequences, with both nucleotides listed.

Table 3. Consensus Sequence and NCBI Blast best match of sample 1, with highest identity segment
of overlap from Clustalw multiple alignment shown below

Sample 1 Consensus Sequence (799 bp)
CAACTTCGCCCTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCG
ATACCTGCCCAGCATGCTAACGACCTGTGAACATGTAATAATAACC
TTCTGGGTGGGGGTGTAATGCCCCCTCCCAGAAAACGG(t/g)GGGAG
GG(c/g)CAACGTTGAGATTGGCCCACTGCTC(c/t)TCGGTGTG(g/t)GGT
TGGGTCGATCCTCTCGTTCCCT(t/c)CCCGATCG(a/g)ACAATGAACCC
CCGGCGCGGTCTGCGCCAAGG(a/g)ACTTAAAACAAGGAGTAACCA
CGGGCGCCCCCGG(a/g/t)AAACGGTGTGCGTGTCGTTGGTGACGTCTT
TACCATGATACATAACGACTCTCGGCAACGGATATCTCGTGCTCTC
GCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTG
CAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAGTTGCGCCCGA
AGCCATTCGGCCGAGGGCCACGTC(t/c)TGGCCTGGGGTGTCACGCAT
CGTTGCCCCAACCCCAAACACTTCTTACGCTGTGCGGGGTGCGGGG
AAGACGCCACGACAATCGGTGGTTGAGAAACCCTCGTGACCCGTCG
TGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGACCCTATTGTGTCGT
TCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACCCGC
TGAATTTAAGCATATCAATAAGCGGAGGAAAGGGCGATTCGCGGCC
GCTAAATTCAATTCAGCCCTATAGTGAGTCGTATTACAATTCACTGG
CGTA
NCBI BLAST Best Match: Juglans nigra isolate 836 18S ribosomal RNA gene
E Value: 0.0

Identitiy: 95\%

Figure 4. Segment of consensus sequence from Sample 1 multiple alignment of single runs (from

```
Appendix )
1 \text { Reverse TTAAAACAAGGAGTAACCACGGG-CGCCCCCGGAAAACGGTGTGCGTGTC-GTTG 168}
1 TTAAA-CAAGGAGTAACCACGGG-CGCCCC--GGAAACGGTGTGCGTGTC-GTTG 290
1For GCCCGTCGCTGTGAAGGTGCTCCTCGACCCTATTGTGTCGTTCTTGCGACTGTAC 88
reverse GTGACGTCTTTACCATGATACATAACGACTCTCGGCAACGGATATCTCG-GCTCTCGCAT 227
1 GTGACGTCTTTACCATGATACATAACGACTCTCGGCAACGGATATCTCGTGCTCTCGCAT 350
1For CTGACGTCTTTACCATGAGACATAACGACTCTCGGCAACGGATATCTCG-GCTCTCGCAT 147
1 reverse CGATGA 233
1 CGATGA 356
1For CGATGA 153
    ******
```

The sample 1 consensus sequence is $95 \%(512 / 538 \mathrm{bp})$ identical to J. nigra. Three sequences were used to construct this consensus sequence, two forward and one reverse (Figure 4). This sequence was then assessed for matches in a BLAST assay (Figure 5).

Figure 5. Sample 1 NCBI BLAST result (partial)

S1	252	TTAAAACAAGGAGTAACCACGGGCGCCCCCGGAGAAACGGTGTGCGTGTCGTTGGTGACG 											311	
Gen	242	TT-AAACAAGGAGTAACCACGGGCG-CCCC-G-GAAACGGTGTGCGTGTCGTTGGTGACG												297
S1	312	TCTTTACCATGATACATAACGACTCTCGGCAACGGATATCTCGTGCTCTCGCATCGATGA 												371
Gen	298	TCTTTACCATGATACATAACGACTCTCGGCAACGGATATCTCG-GCTCTCGCATCGATGA												356

The segment of the consensus sequence used in the BLAST assay shown in Figure 5 has also been highlighted in Table 3. Figure 5 shows five distinct differences between the consensus sequence and the GENBANK closest match. The differences
observed are all base additions to the consensus sequence. None of the single base additions are conserved in all three of the single run sequences, making it unlikely that this is real sequence variation (Figure 4). These extra bases may have been erroneously added to the sample DNA sequence during the editing of the sequence chromatograms, and therefore are a likely byproduct of this protocol.

Table 4. Consensus Sequence and NCBI Blast best match for sample 3, with highest identity segment of overlap from ClustalW multiple alignment shown below

Sample 3 Consensus Sequence (808 bp)
GTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCAG AACGACCTGTGAACATGTAATAACCTTCTGGGTGGGGGTGT AATGCCCCCTCCCAAAAAACGGTTGGGAGGGCACGTTGAGA TTTGCCCACTGCTCCTCGTGTGTGGTTGGTCGATCCTCTCGTT CCCTTCCCGATCGAACAACGAACCCCGGCGCGGTCTGCGCCA (a/g)GGAACTTAA(a/c)CA $(\mathrm{a} / \mathrm{g})$ GGAGGTAACCACGGGGCGCCCC CGGGAAACGGGTGGGCGGTGTCGGTTGG(g/t)GACGTCTTTAC CAAGATACATAACGACTCTCGGCAACGGATATCTCGGCTCTC GCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGGT(g/t) GAATTGCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAG GTTGCGCCCGAAGCCATTCGGCCGAGGGCACGCCTGCCTGGG TGTCACGCATCGTTGCCCCAACCCCAAACACTTCTTACGCTGT GC(g/c)(g/c)GGTGCGGG(a/g)(a/g)A(g/a)(a/t)ACATTGGCCTCCCGT GCGCTTTTGCTCGCGGTTAGCCTAAAAGTGAGTCCTAGGCGAC GAGCGCCACGACAATCGGTGGTTGAGAAACCCTCGTGACCCG TCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGACCCTATT GTGTCGTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCG GGATTACCCGCTGAATTTAAGCA TATCAATAAGCGGAGGAAA GGGCGAATTCGTTTAAACAATGCAG

NCBI Best Match: Juglans nigra isolate 836 18S ribosomal RNA gene
E Value: 0.0
Identitiy: 95\%

Figure 6. Segment of consensus sequence from Sample 3 multiple alignment of single runs

```
Reverse AAGCCATTCGGCCGAGGGCACGCCTGCCTGGGTGTCACGCATCGTTGCCCCAACCCCAAA 276
AAGCCATTCGGCCGAGGGCACGCCTGCCTGGGTGTCACGCATCGTTGCCCCAACCCCAAA 469
**************************************************************
Reverse CACTTCTTACGCTGTGC 293
CACTTCTTACGCTGTGC 486
```

The sample 3 consensus sequence is $95 \%(717 / 748 \mathrm{bp})$ identical to J. nigra. Two sequences were used to construct this consensus sequence, one forward and one reverse (Figure 6). This sequence was then assessed for matches in a BLAST assay (Figure 7).

Figure 7. Sample 3 NCBI BLAST result (partial)

The segment of the consensus sequence used in the BLAST assay shown in Figure 7 has also been highlighted in Table 4. Figure 7 shows one distinct difference between the consensus sequence and the GENBANK closest match. The variant observed in this segment is found in both the forward and reverse runs of this sequence, and is found in an otherwise highly conserved stretch of DNA sequence between the consensus sequence and the Genbank entry (Firgure 6). This single nucleotide difference has the possibility of being a true variation. More sequences must be processed for sample 3 to determine if this is in fact real.

Table 5. Consensus Sequence and NCBI Blast best match for sample 5, with highest identity segment
of overlap from Clustalw multiple alignment shown below

Sample 5 Consensus Sequence (833 bp)
TAGCGCACGTGGAATTGTAATACGACTCACTATAGGGTTCGAATTGAAT
TTAGCGGCCGC GAATTCGCCCTTTCCTCCGCTTATTGATATGCTTAAATT
CAGCGGGTAATCCCGCCTGAC CTGGGGTCGCGATGGTAGAGTCGCAAG
AACGACACAATAGGGTCGAGGAGCACCTTCACA GCGACGGGCGACACA
CGACGGGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTC GTCG
CCTAGGACTCACTTTTAGGCTAACCGCGAGCACAAGCGCACGGGAGGCC
AATGTCT TCCCCGCACCCCGCACAGCGTAAGAAGTGTTTGGGGTTGGGG
CAACGATGCGTGACACCC AGGCAGACGTGCCCTCGGCCGAATGGCTTCG
GGCGCAACTTGCGTTCAAAGACTCGATGATTCGCGGGGATT(c/t)(/t/c) TGC
a/g) ATTCA(a/c)(a/c)(a/c) C(a/c)A(g/a)GTATCGCATTTCGCTACGTTCTTCATC
GATGCGAGAGCCGAAATATCCGTTGCCGAGAGTCG(g/t) TATGTATCATGG
TAAAGACGTCACCAACGACACGCACACCGTTTCCGGGGCGCCCG(ta)GGT
$($ (g/t) ACTCC(c/t)TGGGTAAGTTCCTTGGCGCAGACCGCGC(c/g)GGGGTTCAT
TGTTCGATCGGGAAGGGAACGAGAGGATCGACCACCACACACGAGGGGC
AGGGGGCAAATCTCAACGTGC(c/t) TGGGA(a/g)GGGGCC(t/g)GTAC(a/c)CC
CCAGGAA(g/a)GGTATTATTACATGTTC(a/c) CAGGGTCGGTCT

NCBI Best Match: Juglans nigra isolate 834 18S ribosomal RNA gene E Value: 0.0

Identitiy: 96\%

Figure 8. Segment of consensus sequence from Sample 5 multiple alignment of single runs

	Reverse	CGAAATATCCGTTGCCGAGAGTCGGTATGTATCATGGTAAAGACGTCACCAA 125
5		CGAGATATCCGTTGCCGAGAGTCGTTATGTATCATGGTAAAGACGTCACCAA 538 *** ******************** *******************************)
5	Reverse	CGACACGCACACCGTTTCCGGGGCGCCCGA 155
5		$\begin{aligned} & \text { CGACACGCACACCGTTTCCGGGGCGCCCGT } 568 \\ & * \end{aligned}$

The sample 5 consensus sequence is $96 \%(604 / 627 \mathrm{bp})$ identical to J. nigra.
Two sequences were used to construct this consensus sequence, one forward and one reverse (Figure 8). This sequence was then assessed for matches in a BLAST assay (Figure 9).

Figure 9. Sample 5 NCBI BLAST result (partial)

The segment of the consensus sequence used in the BLAST assay shown in Figure 9 has also been highlighted in Table 5. Figure 9 shows two distinct differences between the consensus sequence and the GENBANK closest match. One difference observed was a base addition to the consensus sequence. This single base addition was not conserved in both of the single run sequences, making it unlikely that this is real sequence variation (Figure 8). The other difference is a substitution of an "A" for a "G". This substitution is observed in the reverse run but not in the forward, and therefore is likely an editing mistake or an incorrect call by the sequencer.

Table 6. Consensus Sequence and NCBI Blast best match for sample 11, with highest identity segment of overlap from Clustalw multiple alignment shown below

Sample 11 Consensus Sequence (796 bp)
TCCTCTGTTTAAACCAATTCGCCCTTTCCTCCAGCTTATTGATATGCTTAAATTCA GCGG GTAATCCCGCCTGACCTGGGGTCGCGATGGTAGAGTCGCAAGAACGACAC AATAGGGTCG AGGAGCACCTTCACAGCGACGGGCGACACACGACGGGNTCACGA GGGTTTCTCAACCACC GATTGTCGTGGCGCTCGTCGCCTAGGACTCACTTTTAGGC TAACCGCGAGCAAAAGCGCACGGGAGGCCAATGTCTTCCCCGCACCCCGCACAGC GTAAGAAGTGTT(t/g) GGGGTTGGGGC(a/g) ACGATGCGTGACACCCAGGCAGACGT GCCCTCGGCCGGAATGGCTTCGGGCGCAACTTGC GTTCAAAGACTC (g/t) TATGAT

TCGCGGGATTCTGCAATTCACACCAAGTATCGCATTT(t/c)(c/g)GCCTACGTTCTTCA TCGATGCGAGAGCCGAGATATCCGTTGCCGAGAGTCGTTATGTATCATGGTAAAG ACGT(c/t)ACCAACGACACGCACACCGTTTCCGGGGCGCCCGTGGTTACTCCTTGTTT AAGTTCCTTGGCGCA $(\mathrm{g} / \mathrm{a}) A C C(\mathrm{~g} / \mathrm{c})(\mathrm{g} / \mathrm{c})(\mathrm{g} / \mathrm{c})$ CCGGGGTTCATTGTTC $(\mathrm{g} / \mathrm{c})$ ATCGGGAA GGGAACGA(c/g)A(a/g)GATC $(\mathrm{g} / \mathrm{c}) A C C A(\mathrm{a} / \mathrm{c}) C C A C A C A C G A G G A G C A G T G G G C A A A T ~$ CTCAACGTGCCCTCCCAACCGTTGCTGGGCAGGTATCGACAATGATCCTTCCGCAG GTTCACCTACGGGAAGGCGAATTGCGG CCGCATATTCAATTGCC

NCBI Best Match: Juglans nigra isolate 836 18S ribosomal RNA gene E Value: 0.0

Identitiy: 96\%

Figure 10. Segment of consensus sequence from Sample 11 multiple alignment of single runs

11 Reverse	TGCAATTCACACCAAGTATCGCATTTCG-- 161
11	TGCAATTCACACCAAGTATCGCATTTTCGC 419 **************************
11 Reverse	CTACGTTCTTCATCGATGCGAGAGCCGAGATATCCGTTGCCGAGAGTCGTT-ATGTATCA 220
11	CTACGTTCTTCATCGATGCNAGAGCCGAGATATCCGTTGCCGAGAGTCGTTTATGTATCA 479 ******************* **)
11 Reverse	TGGTAAAGACGTCACCAACGACACGCA 247
11	$\begin{aligned} & \text { TGGTAAAGACGTTACCAACGACACGCA } 516 \\ & * \end{aligned}$

The sample 11 consensus sequence is $96 \%(629 / 653 \mathrm{bp})$ identical to J. nigra.
Two sequences were used to construct this consensus sequence, one forward and one reverse (Figure 10). The consensus sequence was then assessed for matches in a BLAST assay (Figure 11).

Figure 11. Sample 11 NCBI BLAST result (partial) (from Appendix)

The segment of the consensus sequence used in the BLAST assay shown in Figure 11 has also been highlighted in Table 6 . Figure 11 shows six distinct differences between the consensus sequence and the GENBANK closest match. All these differences can be attributed to the editing process and subsequent construction of the consensus sequence. They are all extra base additions (Figure 11) and are due to having mismatched bases between the two single run sequences (forward and reverse), and having to include both possibilities in the consensus. This problem may have been avoided had there been at least one more single run sequence, since there would be a greater number of sequences to draw the consensus from, thereby avoiding the problem of having to include two possible bases in the sequence. In the example shown in Figure 10 the 11 (reverse) sequence is identical to the Genbank acquired sequence shown in Figure 11. It is therefore the $\mathbf{1 1}$ (Forward) sequence that appears to have been inaccurate in this instance.

Table 7. Consensus Sequence and NCBI Blast best match for sample 15

Sample 15 Consensus Sequence

No significant similarity is observed in the multiple alignment of the Forward and reverse reactions of sample 15 (from Appendix)

The reason for the lack of similarity of sample 15 is not completely understood. It is likely that it is a combination of poor sequence quality to begin with, as well as editing error. Looking at the NCBI BLAST of both the forward and reverse reactions for sample 15 Appendix 2), it is apparent that this sample did not have the high sequence
resolution of the other samples. Contamination of the plasmid or during the sequencing of sample 15 may have also played a part.

Consensus Sequence Multiple Alignment

Figure 12. Partial multiple alignment for all sample consensus sequences with \mathbf{J}. nigra sequence from genbank included (from Appendix) [Additions (red)] [Substitutions (blue)] [Deletions (green)]

```
1 1 ~ G - T G T C G - T T G G T A G A C G T C T T T A C C A T G A T A C A T A A A C G A C T C T C G G C A A C G G A T A T C T ~ 3 0 0 ~
J.nigra GENBANK G-TGTCG-TTGGT-GACGTCTTTACCATGATACATAA-CGACTCTCGGCAACGGATATCT }33
    GGTGTCGGTTGGGTGACGTCTTTACCAAGATACATAA-CGACTCTCGGCAACGGATATCT }32
    G-TGTCG-TTGGT-GACGTCTTTACCATGATACATAAC-GACTCTCGGCAACGGATATCT }8
    G-TGTCG-TTGGT-GACGTCTTTACCATGATACATAACCGACTCTCGGCAACGGATATTT 274
    * ***** **** ************* ********** **********************
    CG-GCTCTCGCATCGATGAAGAACGTAGGCCGGAAAATGCGATACTTGGTG-------TGA 353
J.nigra GENBANK CG-GCTCTCGCATCGATGAAGAACGTAGC----GAAATGCGATACTTGGTG------TGA 387
3 CG-GCTCTCGCATCGATGAAGAACGTAGC---GAAAATGCGATACTTGGTGGTG---TGA 375
    CGTGCTCTCGCATCGATGAAGAACGTAGC----GAAATGCGATACTTGGTG------TGA 133
    CG-GCTCTCGCATCGATGAAGAACGTAGC----GAAATGCGATACTCTGTGGTGTGTTGA 329
1 1 ~ A T - T G C A G A A - - - - T C C C G C G A A T C A T A A C G A G T C T T T G A A C G C A A G - T T G C G C C C G A A G ~ 4 0 7 ~
J.nigra GENBANK AT-TGCAGAA----TCCCGCGAATCAT--CGAGTCTTTGAACGCAAG-TTGCGCCCGAAG 439
    AT-TGCAGAA----TCCCGCGAATCAT--CGAGTCTTTGAACGCAAGGTTGCGCCCGAAG 428
    AT-TGCAGAA----TCCCGCGAATCAT--CGAGTCTTTGAACGCAAG-TTGCGCCCGAAG 185
    ATCTGCAGAAGAATCCCCGCGAATCAT--CGAGTCTTTGAACGCAAG-TTGCGCCCGAAG 386
    ** ******* ************ ******************* *************
    CCATTCCGGCCGAGGGC-ACGTCT---GCCTGGG-TGTCACGCATCGTCTGCCCCAACCC 462
J.nigra GENBANK CCATTC-GGCCGAGGGC-ACGTCT---GCCTGGG-TGTCACGCATCGT-TGCCCCAACCC 492
    CCATTC-GGCCGAGGGC-ACGCCT---GCCTGGG-TGTCACGCATCGT-TGCCCCAACCC 481
    CCATTC-GGCCGAGGGCCACGTCTCTGGCCTGGGGTGTCACGCATCGT-TGCCCCAACCC 243
    CCATTC-GGCCGAGGGC-ACGTCT---GCCTGGG-TGTCACGCATCGT-TGCCCCAACCC 439
    ****** ********** *** ** ******* ************************
```

Figure 12 depicts the multiple alignment of the sample consensus sequences and J. nigra sequence taken from Genbank. Overall, the alignment pattern is comprised of short spans of high identity sequence of varying length, interrupted intermittently by sequence variation in one or more of the sample sequences, in the form of a nucleotide base addition, substitution, or deletion.

The majority of the sequence discrepancy is in the form of additions. As mentioned earlier, the likely culprit for these additions is human error during the
sequence editing process, or sequencer error. This theory is supported in that most of these additions were only observed in one of the sample sequences at any certain point throughout the sequence. Looking at Figure 12, when additions did happen in more than one sample at the same time in that sequence, they were sometimes conserved. It is those base additions that are conserved in more than one sequence that hold the best chances of actually being sample variation, and should be further studied.

Nucleotide substitutions were less frequent in the multiple alignment. They can also be byproducts of the sequence editing process. Several substitutions were visible in the first and second lines of Figure 12. These divergences of sequence may be indicative of true variation since they were conserved in both the forward and reverse reactions that went into the consensus sequence, and therefore should be examined further in future studies.

Only one deletion was observed. Located in the first line of Figure 12, sample 1, it appears that the nucleotide base had been shifted to the left somehow, since the missing nucleotide was listed as an addition in the adjacent space.

Comparison by location within Zoar Valley: All samples sequenced were positively identified as being of the species Juglans nigra. No clear discrepancy or pattern of genetic variance was able to be discerned between sample locations.

Conclusion: The primary goals of this study- to sequence multiple J. nigra subjects within 3 distinct populations inside Zoar Valley, and identify these sequences utilizing examples published in Genbank- were accomplished.

The use of a consensus sequence is of the utmost importance when sequencing DNA because each single run sequencing run can yield slightly different results. An example of this phenomenon was observed in this study, using a consensus sequence allowed for more accurate DNA sequencing. In the initial NCBI BLAST of the single run sequences (Table 1), one sequence was most identical to J. microcarpa, 5 (Forward -47), and two were most identical to J. major 3 (Forward) and 11 (Forward), instead of all the sequences being most identical to J. nigra as assumed they would be. The results of the consensus sequence analysis however showed that although one of the single run sequences may have been more identical to another Juglans species, when these single runs were used to construct a consensus sequence, that sequence was most identical to the J. nigra sequences in a BLAST assay. All the consensus sequences were matched with J. nigra sequences that have been submitted to and published Genbank.

While these results are very descriptive of the rDNA ITS regions of the sampled trees, the number of single run sequences used to construct the consensus sequences was minimal, with three sequences for sample 1 and two for the remaining samples. An increased number of sequencing and identification trials should be conducted before placing any of the sampled trees definitively under the classification of J. nigra, and will help determine which, if any, sequence variations observed in this study are real.

The results fell short of answering questions in key areas, such as determining a preliminary colonial history of J. nigra in Zoar Valley, and identification of specific
inherited variations in sequence within populations. While variation was observed, the results remain inconclusive because the total number of sequences was low, therefore further analysis is needed.

Many samples were lost during their processing from leaf tissue to DNA sequences, particularly during the methods of PCR, cloning, and sequencing. Perhaps if more samples had been successfully sequenced, the results of this study would provide more powerful evidence for the possible variation observed in the sample sequences from this study.

Future Research Implications: Three persistently problematic methods were: the consistent production of PCR products, efficiency in manufacture of positive (containing PCR product insert) clones, and reliable sequencing reactions.

PCR product was not consistently produced from DNA extracts. Many samples were contaminated, resulting in the amplification of fungal DNA instead of plant DNA, because the ITS primers used are universal for eukaryotes. Therefore mixes of plant and fungi DNA resulted in competition for the primers, reducing the yield of the desired plant DNA PCR product. Increased vigilance and focus on detail during collection of samples seemed to prevent this problem. Also, it is theorized that many failed reactions were the result of the ITS1 and ITS4 primers themselves. These primers are fairly short, and had there been any variation between the primer sequence and target DNA sequence, steric hinderance may have prevented the reliable annealing of the primers.

During cloning, the primary problem experienced was in generation of clones that contained a complete insert. This was believed to be due to free nucleotides present in the PCR product that were being preferentially inserted into the plasmid, rendering
plenty of clones, but that when subjected to EcoR1 digest, showed no insert. PCR cleanup kits were tried and did not rectify the problem. Another possible cause of the problem was contamination of the cloning kit chemicals. Two cloning kits were used (see Methods), and fresh supplies were purchased, but the problem remained.

Sequencing problems were in two parts: reliably generating sequence, and generating full sequences. Generation of sequences required careful quantification of the concentration of plasmid DNA and primers, and many reactions likely failed early on during this research due to incorrect quantification of DNA concentrations. As to generating relatively lengthy sequences, it seemed that low resolution of sequencing reaction products by the sequencer may have, in part with slightly miscalculated reagents, contributed to the generation of short fragments. It is recommended for the future that smaller PCR fragments be generated. Use of the ITS2 and ITS3 primers (White et al. 1990), located on either end of the 5.8S ribosomal gene, along with the ITS1 and ITS4 primers, would produce such shorter PCR products.

References:

1. Andreasen, K., Baldwin, B.G. (2003) Reexamination of relationships, habital evolution, and phylogeography of checker mallows (Sidalcea; Malvaceae) based in molecular phylogenetic data. American Journal of Botany 90:436-444.
2. Baldwin, B.G., Sanderson, M.J., Porter, M.J., Wojciechowski, M.F., Martin, F.W., Campbell, C.S., Donoghue, M.J. (1995) The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82: 247-277.
3. Boyer, S.L., Flechtner, V.R., Johansen, J.R. (2001) Is the 16S-23S rRNA Internal Transcribed Spacer Region a good tool for use in molecular systermatics and population genetics? A case study in Cyanobacteria. Molecular Biology and Evolution 18:1057-1069.
4. Diggins, T.P., Kershner, B. (2005) Canopy and understory composition of old-growth riparian forest in Zoar Valley, NewYork, USA. Natural Areas Journal 25: 219-227.
5. Doyle, J.J, and Doyle, J.L. (1987) A rapid isolation procedure for small quantities of leaf tissue. Phytochemical Bulletin 19: 11-15.
6. Giavalisco, P., Wilson, D., Kreitler, T., Lehrach, H., Klose, J., Gobom, J., Fucini, P. (2005) High heterogeneity within the ribosomal proteins of the Aribidopsis thaliana 80 S ribosome. Plant Molecular Biology 57:577-591.
7. Gonzalez-Limothe, R., Segura, R., Trapero, A., Baldoni, L., Botella, M.A., Valpuesta, V. 2002. Phylogeny of the fungus Spilocaea oleagina, the causal agent of peacock leaf spot in olive. FEMS Microbiology Letters 210(1): 149-155
8. Hillis, D.M., and C. Moritz. 1990. An overview of applications of molecular sysetmatics. In D.M. Hillis and C. Moritz (eds.), Molecular Systematics 502-515
9. Hubbes, M. (1999) The American Elm and Dutch Elm Disease. The Elm Community Elmcare.com
10. Jobes, D.V., Thien, L.B. (1997) A conserved motif in the 5.8S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences. Plant Molecular Biology Reporter 15: 326-334
11. Ledig, F.T. (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63(1): 87-108
12. Li, J., Christophel, D.C., Conran, J.G., Li, H-W (2004) Phylogenetic relationships within the 'core' Laureae (Litsea complex, Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS region. Plant Syst. Evol. 246: 19-34.
13. Linder, C.R., Moore, L.A., Jackson, R.B. (2000) A universal molecular method for identifying underground plant parts to species. Molecular Ecology 9: 1549-1559
14. O'Kane, Jr., S.L Shaal, B.A., Al-Shehbaz, I.A. 1996. The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Systematic Botany 21(4): 559-566
15. Potter, D., Gao, F., Baggett, S., McKenna, J.R., McGranahan, G.S. 2001. Defining the sources of Paradox: DNA sequence markers for North American walnut (Juglans L.) species and hybrids. Scientia Horticulturae 94 (1-2): 157-170
16. Rossetto, M., McNally, J., Henry, R.J., Hunter, J., Matthes, M. (2000) Conservation genetics of an endangered rainforest tree (Fontainea oraria - Euphorbiaceae) and implications for closely related species. Conservation Genetics 1:217-219.
17. Shaal, B.A., Learn Jr., G.H. 1988. Ribosomal DNA variation within and among plant populations. Annals of the Missouri Botanical Garden 75(4): 1207-1216.
18. Stanford, A.M., Harden, R., Parks, C.R. (2000) Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. American Journal of Botany 87(6): 872882
19. White, T.J., Bruns, T., Lee, S., Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and

Applications (eds Innis MA, Gelfand DH, Sninsky JJ, White TJ), pp. 315-324. Academic Press, San Diego, CA.
20. Wei, X-X, Wang, X-Q, Hong, D-Y (2002) Marked intragenomic heterogeneity and geographical differentiation of nrDNA ITS in Larix potaninii (Pinaceae). J Mol Evol 57:623-635.
21. Suh, Y., Thien, L.B., Reeve, H.E., Zimmer, E.A. 1993. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. American Journal of Botany. 80(9): 1042-1055

Title: A molecular identification of fungal ribosomal DNA isolated from Ulmus americana and Ulmus rubra leaf tissue samples from Zoar Valley, NY using ribosomal DNA internal transcribed spacer sequences (rDNA ITS)

Background:

The entire, living plant leaf is known as the phyllosphere, and it includes the surface and interior. The plant leaf surface is a complex terrestrial habitat containing a wide variety of microorganisms including bacteria, filamentious fungi, and yeast (Carroll et al. 1977, Levetin \& Dorsey 2006). Fungal endophytes are fungi that inhabit the tissue of plants without causing visible disease symptoms (Schulz \& Boyle 2005). This is contrasted with the term "fungal epiphyte", which refers to organisms living on the outside of the plant (Wilson 1995). Phylloshpere fungi are those that found on the surface, and within living leaves (Petrini 1991).

In woody perennials, fungal endophytes are thought to protect the plants in which they live by one or more mechanisms (antibiosis, mycoparasitism, induced resistance, competitive exclusion), and are thought to develop from environmental and background inoculum, and are not transferred from generation to generation (Johnson \& Whitney 1989; Crozier et al. 2006). Some endophytic fungi have been shown to effectively antagonize herbivores and pathogenic fungi (Carroll, 1988; Clay, 1988). Defensive mutualisms involving the protection of host plants by animals, primarily ants, are well known but may be far less common than defensive mutualisms with fungi (Clay 1988).

New Yok State's Zoar Valley was chosen for sampling due to its intact riparian ecosystem healthy distribution of the two elm species of interest. The woodlands of Zoar

Valley are highly varied and diverse, and collectively meet all objective criteria for eastern old growth forest (Diggins and Kershner 2005). No known previous analysis of leaf-associated fungi has been conducted in these woodlands on any native tree species. This study represents a preliminary survey of the phyllospheric fungi associated with the native elm species of Zoar Valley, from several distinct woodland areas within. Little is known concerning the common fungal species inhabiting the phyllosphere of noneconomically important eastern woodland broadleaf tree species such as elms. A previous paper from Levetin and Dorsey (2006) analyzed the contribution of Ulmus americana leaf surface fungi to the air spora. Samples taken from leaves were cultured and identified morphologically and then compared with cultures grown from spores collected from the air.

Elms, in particular U. americana (American elm), have been an unmistakable landmark of culture in the North American continent. Elms are highly valued shade trees, once found lining city blocks from coast to coast (Hubbes 1999). Elm trees still thrive in Zoar Valley today, although their populations have been decimated elsewhere due to Dutch Elm Disease, a catastrophic infection caused by the fungus Ophiostoma ulmi, which usually results in death of the tree.

In 2003 the American Phytopathological society called for an increase in funding for research of many plant associated microbes, stating the importance of genetic screening and identification of plant-associated pathogenic microbes in disease prevention. Included in its list of "high priority species" for study were Ophiostoma novo-ulmi, as well as Candidatus phytoplasma ulmi, a phytoplasma that causes Elm Yellows. Analysis of phyllospheric communities may help identify endophytic
associations in elm trees in Zoar Valley, shedding light on the existence of certain colonizing fungi that help to prevent pathogenicity of other microbes.

Numerous studies analyzing temperate and tropical trees have showed that endophytes represent an important and quantifiable component of fungal biodiversity (Levetin and Dorsey 2006, Clay 1988, Arnold et al. 2001).

Methods: Samples were obtained from Zoar Valley over fall of 2005 and spring of 2006. Samples were collected from 5 distinct areas of Zoar Valley, Lookout Point Terrace, South Branch Floodplain, Burchfield Terrace, Skinny Dip Terrace, and Skinny Dip Streamside. Samples of U. Americana leaf tissue were first positively identified by analysis of leaf structures and bark, then collected and stored in deep freeze at -80 C° until DNA extraction was performed.

DNA extraction: Total DNA was extracted using a revised CTAB method of Doyle and Doyle (1987).

PCR: Extracted DNA is amplified with ITS specific primers. Primers used were ITS1 and ITS5 (forward) and ITS4 (reverse) of White et al. (1990). PCR performed on PTC200 DNA engine.

Cloning: Purified PCR products were cloned using the TOPO TA Cloning Kit from Invitrogen (cat\# K4530-20) or StrataClone PCR cloning kit from Stratagene (cat\#240205)

Restriction Digest: A restriction digest using EcoR1 was used to screen clones before sequencing.

Sequencing: Sequencing reactions were carried out on purified cloning extracts using Beckman Coulter Sequencing Kit, sequenced using primers M13 (-20, -47) Forward and M13 Reverse, with sites provided in the cloning vector. Other sequences were from purified plasmid generated in this lab and sequenced at the Ohio State University Plant Microbe genomics facility using the same technique. Sequencing reactions were conducted at Ohio State University on a 3730 DNA analyzer from Applied Biosystems, Inc.

Alignment: Sequences are aligned to determine identity or variation in ITS region of each species using computer programs, such as NCBI nucleotide BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and ClustalW (http://www.align.genome.jp/sitbin/clustalw)

Results and Discussion:

Ten fungal samples were recovered from Ulmus Americana and 15 from Ulmus rubra leaves. Multiple fungal species were recovered from the same leaf sample in several cases. Sample 43 yielded seven different species of fungus.

Table 1. Identification of fungi using PCR amplified DNA extracted from elm leaves within Zoar Valley
\(\left.\begin{array}{|l|l|l|l|}\hline Tree species fungal \& Sample \# and ITS

sample was isolated

from \& ribosomal primer

set used to sequence\end{array} \quad $$
\begin{array}{l}\text { Valley }\end{array}
$$\right]\)| Nucleotide Blast Search |
| :--- |
| And \% Identity |

U. americana	12 -Reverse	Lookout Point Terrace	Phoma sp. 90\%
U. americana	63 -Forward	South Branch Floodplain	Coprinellus sp. 97\%
U. rubra	50 -Forward	Skinny Dip Terrace	Uncultured leaf litter fungus $\mathbf{8 4 \%}$
U. americana	55 -Forward	Skinny Dip Streamside	Coprinellus sp. 82\%
U. americana	31D -Forward	Burchfield terrace	Coprinellus sp. 96\%
U. americana	31D -Reverse	Burchfield terrace	Coprinellus sp. 96\%
. U. americana	31E -Forward	Burchfield terrace	Coprinellus sp. 99\%
U. rubra	43 B \# -Forward	Skinny Dip Terrace	Colletotrichum truncatum 98\%
U. rubra	43 B \#5 -Forward	Skinny Dip Terrace	Colletotrichum truncatum 99\%
U. rubra	43s \#2 -Forward	Skinny Dip Terrace	Cryptococcus sp. 96\%
U. rubra	43s \#4 -Forward	Skinny Dip Terrace	Phaeosphaeria sp. 97\%
U. rubra	43s \#5 -Forward	Skinny Dip Terrace	Ampelomyces sp. 97\%
U. rubra	43s \#6 -Forward	Skinny Dip Terrace	Gyoerffyella sp. 94\%
U. rubra	43i\#4 -Reverse		Colletotrichum truncatum 96\%
U. rubra	$43 i$-Forward	Skinny Dip Terrace	Didymella bryoniae 97\%
U. rubra	43ii -Foreward	Skinny Dip Terrace	Phoma glomerata 100\%
U. rubra	43s\#2 -Reverse	Skinny Dip Terrace	Cryptococcus sp. 95\%
U. rubra	43s\#4 -Reverse	Skinny Dip Terrace	Colletotrichum truncatum 98\%
U. rubra	43s\#6 -Reverse	Skinny Dip Terrace	Colletotrichum truncatum 90\%
U. rubra	45\#1 -Forward	Skinny Dip Terrace	Ampelomyces humuli

			$\mathbf{9 5 \%}$
U. rubra	$\mathbf{4 5 \# 2}$-Forward	Skinny Dip Terrace	Phoma sp. 97\%
U. americana	$\mathbf{5 3 \# 1}$-Forward	Skinny Dip Streamside	Uncultured ectomycorrhiza 91\%
U. americana	$\mathbf{5 7 \# 1}$-Forward	Skinny Dip Streamside	Uncultured glomeraceous $\mathbf{9 7 \%}$

Table 2. Lineage of identified fungi and percentage variance with closest match in Genbank (Table 1)

Taxonomic Lineage of Closest Genabank Taxa			
		\% Difference between	\# of Unique ITS
Gentus	Phylum, Order, Family	sample and closest match	sequences
Phebia	Basidiomycota; Polyporales; Meruliaceae	4\%	1
Phoma	Ascomycota; Pleosporales;	0\%	3
Coprinellis	Basidiomycota; Agaricales; Psathyrellaceae	3\%	3
Colletotrichum	Ascomycota; Phyllachorales; Phyllachoraceae	1\%	1
Cryptococcus	Basidiomycota; Filobasidiales; Filobasidiaceae	4\%	2
Phaeosphaeria	Ascomycota; Pleosporales; Phaeosphaeriaceas	3\%	1
Ampelomyces	Ascomycota; incertae sedis	3\%	2
Gyoerffyella	Ascomycota; incertae sedis	6\%	1
Didymella	Ascomycota; Pleosporates; Incertae sedis	3\%	1

Background on genetically identified genera (Listed in order of highest to lowest \#

 unique sequences identified per genera):Phoma: In this study, we recovered three unique sequences identified from three different leaf samples (Table 1 and Table 2). Samples containing Phoma were from Lookout Point Terrace and Skinny Dip Terrace. Phoma is a large genus of anamorphic fungi in the form class Coelomycetes that is characterized by conidia formation in a
pycnidium, and their conidia are believed to be dispersed throughout a tree via a rain splash mechanism. Phoma species are documented endophytes, and have been frequently found in a wide array of plants species, including several types of cacti in Arizona, beech and giant dogwood in Japan, as well as American elm (Suryanarayanan et al. 2005, Osono and Mori 2003, Osono et al. 2004, Levetin and Dorsey 2006). Phoma species likely exist as endophytes in the trees sampled.

Coprinellus: Three unique sequences were detected in 3 different leaf tissue samples (Table 1 and Table 2). Coprinellus was found to be well distributed throughout the sampled areas of this study, with samples from South Branch Floodplain, Skinny Dip Streamside, and Birchfield Terrace (Figure 1). Species of this Basidiomycete genus have shown to be common endophytes in the stems and pods of agriculturally grown Theobroma cacao, the tree whose fermented and dried beans are used to produce chocolate (Crozier et al. (2006). Coprinellus has also shown promise as an agricultural agent in Chinese cabbage, effective for suppressing soil-borne pathogens, presenting new possibilities for biological control of vegetable diseases (Nakasaki et al. 2007). It is probable that Coprinellus exists in Ulmus sp. of Zoar Valley as an endophyte, but further studies would be needed to confirm.

Cryptococcus: Two unique samples of Cryptococcus were found in one geographic area, Skinny Dip Terrace. One species, C. neoformans, is a pathogenic yeast, and the most common fungal cause of meningitis in patients with AIDS (Litvinseva et al. 2007). This yeast opportunistically infects humans and other animals. Cryptococcus species have
been associated with soil, animal droppings, and other organic materials. Endophytic or pyllospheric colonization is unlikely. Presence of Cryptococcus in leaf samples is probably from an animal source.

Ampelomyces: Two unique sequences identified as Ampelomyces were detected in two samples from Skinny Dip Terrace. This genus includes many species of mycoparasitic fungi that cause powdery mildews. The typical Ampelomyces fungus infects and forms pycnidia inside of fungal hyphae of other fungi. Cells of this parasite therefore grow inside of the host, causing pathogenesis and death (Rotem et al. 1999). Ampelomyces species have been closely associated with apple shoots and aerial parts of 13 other flowering plant species. Ampelomyces has been shown to play an integral role in "bud bursting" of certain plants, such as apple trees in Holland (Szentivanyi and Kiss 2003). The presence of Ampelomyces in Ulmus samples likely indicates infection of a separate host fungus present in the leaf sample.

Colletotrichum: One unique sequence identified as Colletotrichum was isolated from Skinny Dip Terrace. Species of this genus have been observed to exist in the phyllosphere of giant dogwood trees in Japan (Osono et al. 2004) Colletotrichum species have caused increasing numbers of opportunistic human infections in recent years, usually in the immunocompromised HIV and transplant patients. The genus Colletotrichum is one of the most important genera of plant pathogens because of the diverse variety of economically important plants it colonizes (Cano et al. 2004). Colletotrichum species cause economically significant diseases of plants (generally
known as anthracnoses) that affect cereals and grasses, legumes, vegetables, and perennial crops, including fruit trees. Colletotrichum likely existed as a pathogen in the Ulmus sp. samples from Zoar Valley.

Phlebia: Phlebia was found to exist in one sample from South Branch Floodplain. It is classified within class Basidiomycota, which is known for its abilities to degrade lignin. It has been found that proteosomal degradation upon nitrogen and carbon starvation is possibly involved in the regulation of ligninolytic activities in these wood decaying fungi (Staszczak 2007). These fungi are currently the subject of numerous microbial ecology studies for their lignin degrading abilities. Phlebia is not known for endophytic relationships and may be associated with soil contamination of specimens.

Phaeosphaeria: One sequence identified as Phaeosphaeria was isolated from Skinny Dip Terrace. Many fungi placed taxonomically in the genus Phaeosphaeria were once found in the genus Leptosphaeria, and morphological distinctions of classification between these genera are often blurry. Some characteristics of Phaeosphaeria are production of ascospores with a distinguishing perispore, and the induction of Stagonospora leaf blotch diseases in cereals (Ueng et al. 2003). Phaeosphaeria exhibit pathogenesis of certain plants, and it is possible that it was existing parasitically with elm samples.

Gyoerffyella: One Gyoerffyella sequence was isolated from Skinny Dip Terrace. This genus of fungi is hypothesized to be a colonizer of the leaf phyllosphere. Species of this hyphomycete genus have been observed in rainwater collected after draining from forest
canopies in British Columbia (Gonczol and Revay 2006). Not much information is available on the species of this genus, although they are found extensively throughout North America and Europe. It is probable that Gyoerffyella colonized the phyllosphere of elm samples from Zoar Valley as an epiphyte, evidenced by its documented presence in rainwater collections .

Didymella: One Didymella sequence was detected in a sample from Skinny Dip Terrace. Species of this genus, such as D. bryoniae, are known plant pathogens. Plants affected by Didymella infection are wide ranging and include many economically important species, such as wheat, watermelon, pumpkin, cucumber and squash. One associated disease is Gummy Stem Blight. Appearance of spots on the leaves, petioles and stems are a typical sign of infection which usually become pale brown or gray in color. Gummy exudates may occur from cracks, especially in watermelon and pumpkin. Severe infection often results in death of the plant (Ferreira and Boley 1992). Didymella therefore may have existed as a pathogen in Ulmus species.

Skinny Dip Terrace showed the greatest variety of genera in our samples, with 7 of 9 total genera identified in this location. This resulted because sample 43, from Skinny Dip Terrace, was sequenced 12 times. 7 genera of fungi were detected in sample 43 alone. Most of the fungi implicated as pathogenic were taken from this sample.

Phoma and Coprinellus, the most likely of all genera detected to exist as endophytes, were relatively well dispersed in sampling areas, identified in 2 and 3 out of
five sample sites respectively. This finding supports the idea that these fungi are endophytes within elm species, since they were present in multiple samples and areas.

Conclusion:

This study represents a preliminary survey of phyllosphere fungi associated with U. americana and U. rubra in Zoar Valley. Genera detected were wide ranging and likely occupy various roles in their association with the trees they inhabit.

Future research should utilize a method of extraction to distinguish between endophytes and epiphytes, such as washing the leaf surface, then separately identifying fungi found in the wash from those isolated in leaf tissue. This will improve the understanding of how a fungus is associated with the plant, and enable the researcher to better hypothesize a plant-fungus relationship scenario.

Another improvement would be to increase the sample size. This would not only yield more genera of leaf-associated fungi for all locations, but would better characterize the phyllospheric ecosystems of Ulmus $s p$. within each location. This information could be vital in diagnosis and prevention of plant pathogens in the future.

References:

1. Arnold, E.A., Maynard, Z., Gilbert, G.S. (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycology Research 12: 1502-1507
2. Cano, J., Guarro, J., Gene, J. (2004) Molecular and morphological identification of Colletotrichum species of clinical interest. Journal of Clinical Microbiology 42(6): 2450-2454
3. Carroll, G.,C. (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69: 2-9
4. Carroll, F.E., Muller, E., Sutton, B.C. (1977) Preliminary studies on the incidence of needle endophytes in some European conifers. Sydowia 29: 87-103
5. Clay, K. (1988) Fungal endophytes of grasses: A defensive Mutualism between plants and fungi. Ecology 69;1: 10-16
6. Crozier, J., Thomas, S.E., Aime, M.C., Evans, H.C., Holmes, K.A. (2006) Molecular characterization of fungal endophytic morphospecies isolated from stems and pods of Theobroma cacao. Plant Pathology 55: 783-791
7. Diggins, T.P., Kershner, B. (2005) Canopy and understory composition of old-growth riparian forest in Zoar Valley, NewYork, USA. Natural Areas Journal 25: 219-227
8. Ferreira, S.A., Boley, R.A. (1992) Didymella bryoniae. University of Hawaii Dept. of Plant Pathology http://www.extento.hawaii.edu/Kbase/Crop/Type/d bryon.htm
9. Gonczol, J., Revay, A. (2006) Species diversity of rainborne hyphomycete conidia from living trees. Fungal Diversity 22: 37-54
10. Hubbes, M. (1999) The American Elm and Dutch Elm Disease. The Elm Community Elmcare.com
11. Hudson, H.J. (1968) The ecology of fungi on plant remains above the soil. New Phytol 67: 837874
12. Johnson, J.A., Whitney, N.J. (1989) A study of fungal endophytes on needles of balsam fir (Abies balsamea) and red spruce (Picea rubens) in New Brunswick, Canada, using culture and electron microscope techniques. Canadian Journal of Botany 67: 3513-3516
13. Levetin, E., Dorsey, K. (2006) Contribution of leaf surface fungi to the air spora. Aerobiologia 22 : 3-12.
14. Litvinseva, A.P., Xiaorong, L., Templeton, I., Heitman, J., Mitchell, T. (2007) Many globally isolated AD hybrid strains of Cryptococcus neoformans originated in Africa. PLoS Pathog 8: e114
15. Nakasaki, K., Saito, M., Suzuki, N. (2007) Coprinellus curtus (Hitoyo-take) prevents disease of vegetables caused by pathogenic fungi. FEMS Microbiol Lett 275(2): 286-291
16. Osono, T., Bhatta, B.K., Hiroshi, T. (2004) Phyllosphere fungi on living and decomposing leaves of giant dogwood. Mycoscience 45: 35-41 \backslash
17. Osono, T., Mori, A. (2003) Colonization of Japanese beech leaves by phyllosphere fungi. Mycoscience 44:437-441
18. Petrini, O. (1991) Fungal endophytes of tree leaves. In: Osono, T., Mori, A. (2003) Colonization of Japanese beech leaves by phyllosphere fungi. Mycoscience 44: 437-441
19. Schulz, B., Boyle, C. (2005) The endophytic continuum. Mycological Research 109: 661-686
20. Staszczak, M. (2007) The 26S proteosome of the lignin-degrading Basidiomycete Phlebia radiata. Enzyme and Microbial Technology 40: 347-353
21. Suryanarayanan, T.S., Wittlinger, S.K., Faeth, S.H. (2005) Endophytic fungi associated with cacti in Arizona. Mycol. Res. 109(5): 635-639
22. Szentivanyi, O., Kiss, L. (2003) Overwintering of Ampelomyces mycoparasites on apple and other plants infected with powdery mildews. Plant pathology 52(6): 737-746
23. Ueng, P., Reszka, E., Chung, K., Arseniuk, E., Krupinsky, J. (2003) Comparison of glycealdehyde-3-phosphate dehydrogenase genes in Phaeosphaeria nodorum and P. avenaria species. Plant Pathology 12: 255-268
24. Wilson, D. (1995) Endophyte: The evolution of a term, and clarification of its use and definition. Oikos 73;2: 274-276

Appendix 1: Methods

DNA Extraction:
Johnston Lab CTAB DNA Extraction Protocol (Reference: Doyle and Doyle, 1987; and Cullings 1992)
Revised December $11^{\text {th }}, 2006$

1. Final preparation of CTAB buffer. Must use within 5-7 days. Add
polyvinylpyrrolidone (PVP) and B-mercaptoethanol in 0.04 and 0.005 volumes
respectively. Stir gently to dissolve.

CTAB Buffer	PVP	B-merc
0.5 ml	0.02 g	2.5 ul
5 ml	0.2 g	25 ul

2. Weigh out 40 mg of frozen plant tissue. Avoid using tissue samples that are discolored or show obvious freeze-thaw damage.
3. Grind tissue with glass pestle in liquid nitrogen cooled mortar
a. Pestles must be acid-washed and rinsed well with DI water before reuse.
b. Nitrogen gas will condense into liquid in the mortar. Allow sample to dry of liquid nitrogen, before adding CTAB, by removing the mortar from its base and placing on lab bench for several minutes.
4. Place freshly ground tissue in sterile microfuge tubes and add 500 ul of CTAB buffer.
5. Invert tube 5-10 times and incubate samples at 55 degrees C overnight.
6. Add 500 ul of $24: 1$ Chloroform: Iso Amyl Alcohol and mix well by shaking tubes.
7. Centrifuge 10 minutes at 13,000 RPM.
a. Following centrifugation should have 3 layers in tube: top: aqueous phase, middle: protein debri, and bottom: chloroform.
b. Aqueous phase contains DNA, pipette off quickly into a fresh microfuge tube.
8. Estimate the volume of the collected aqueous phase.
9. Add 0.1 volumes of cold 7.5 M ammonium acetate and 0.6 volumes of cold isopropanol (using combined volumes of aqueous layer + ammonium acetate).
Ammonium acetate and isopropanol should be kept in the -20 freezer just prior to use.
10. Mix well. Place in -20 degrees C freezer for one hour to overnight.
11. Centrifuge for 3 minutes at 13,000 RPM
12. DNA pellet should be visible. Pour or pipette off supernatant, careful not to lose pellet. Pellet may vary in color from light brown to creamy white.
13. Add 700 ul of cold 70% ethanol and mix. Centrifuge at 13,000 RPM for one minute.
14. Pour off liquid. Add 700 ul of cold 95% ethanol and mix. Centrifuge one minute.
15. Carefully pour of liquid, being sure not to lose pellet.
16. Dry pellet by inverting on Kim-wipe for an hour or until dry.
17. Re-suspend sample in 100 ul of TE Buffer. Place in freezer -20 degrees C to store.

Stock Solutions:
CTAB Buffer: for 1 liter
100 ml of 1 M Tris, pH 8.0
280 ml of 5 M NaCl
40 ml of 0.5 M EDTA
20 g of CTAB (Cetyltrimethyl ammonium bromide)
1 M Tris, pH 8.0: 1 liter
121.1 g Tris

700 ml mqH 2 O
Dissolve Tris, bring volume to 900 ml
pH to 8.0 with concentrated $\mathrm{HCl}(\sim 50 \mathrm{ml})$
Bring to 1 liter
0.5 M EDTA, pH 8.0: 1 liter
186.12 g of EDTA

750 ml mqH 2 O
Add approximately 20 g of NaOH pellets until EDTA dissolves $(\sim \mathrm{pH} 8.0)$
$5 \mathrm{M} \mathrm{NaCl}: 1$ liter
292.2 g of NaCl

700 ml of mqH 2 O
Dissolve and bring volume to 1 L
TE Buffer: 1 liter $10 \mathrm{mM} \quad 10 \mathrm{ml}$ of 1 M Tris, pH 8.0 $1 \mathrm{mM} \quad 2 \mathrm{ml}$ of 0.5 M EDTA

Cullings, K.W. 1992. Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Molecular Ecology 1:233-240

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin 19:11-15

Generating PCR Fragments

Johnston Lab - PCR protocol for nrDNA Internal Transcribed Spacer (ITS) sequence amplification using primers ITS1 and ITS4 of White et al, 1990.

Plant DNA extracted and stored -20 degrees C in TE buffer until PCR set-up
Following Ingredient list is for a 50 ul PCR reaction

Ingredient	Conc. Used	Volume Used
Sterile water	-	34.25 ul
Immobuffer	10 X	5 ul
MgCl2	50 mM	2.5 ul
ITS1	25 X	2 ul
ITS4	25 x	2 ul
dNTPs	40 mM	1.25 ul
Immolase (Taq)	5 Units/ul	0.5 ul
DNA	$1 / 100$ dil.	2.5 ul
TOTAL		$\mathbf{5 0 u l}$

PCR cycle "IT" program:

1. 95 C for 7 min .
2. 94 C for 20 s
3. 54.9 C for 30 s
4. 72 C for 30 s
5. Repeat 2-4 40 times
6. 72 C for 5 min .

Gels run on Agarose, 1.5\% in TAE buffer

Cloning of fresh PCR product:
TOPO TA Cloning Kit for Sequencing (Invitrogen cat. No. K4530-20)
Recombinant colonies are analyzed with EcoRI restriction digest and selected for sequencing. Requires fresh PCR product with A-overhangs for the Topoisomerase-1 enzyme to efficiently ligate the PCR product. Non-recombinant colonies are selected through life cycle termination protein integrated into the vector, only activated during ligation of the vector without an insert.

StrataClone PCR cloning kit from Stratagene (Stratagene cat. No. 240206)

Uses the Topoisomerase-1 enzyme therefore requires fresh PCR product with Aoverhangs. Cre recombinase gene in activated in vectors that ligate without the insert, therefore clones must be plated on X-gal/ampicillin plates ($50 \mathrm{ug} / \mathrm{ml}$), and blue/white selection for recombinant clones.

Plasmid Isolation:

Plasmids are isolated from the cloned cells using the alkaline plasmid screen. Plasmid DNA is isolated from an overnight culture of Luria Broth plus $50 \mathrm{ug} / \mathrm{ml}$ of Ampicillin. The plasmid DNA was eluted into sterile water instead of TE buffer in preparation for sequencing.

1. Inoculate using a flame sterilized needle, 5 ml of LB broth with antibiotics in a sterile culture tube with a single recombinant colony. For quick screening, grow cells in 1.5 ml eppendorf tube. (plasmid must be high copy \#)
2. Grow cells in $37^{\circ} \mathrm{C}$ incubator overnight with shaking (200 rpm)
3. For culture tubes, spin down at $3,000 \mathrm{rpm}$ for 5 minutes, for eppendorf tubes 1 minute. Pour off the supernatant.
4. Resuspend cells in 150 ul of $\mathrm{P} 1(15 \mathrm{mM}$ Tris $\mathrm{pH} 8,10 \mathrm{mM}$ EDTA $)+10 \mathrm{ug} / \mathrm{ml}$ RNAse A.
5. Add 150 ul of $\mathrm{P} 2(0.2 \mathrm{~N} \mathrm{NaOH} 1 \% \mathrm{SDS})$. Mix genly by inverting 3 times.
6. Add 150 ul of P 3 (3 M KOAc pH 5.5). Mix by gently inverting tube $5-10$ times.
7. Remove white precipitate by centrifugation at $12,000 \mathrm{rpm}$ for 10 minutes.
8. Carefully transfer the supernatant to a fresh 1.5 ml eppendorf tube.
9. Add an equal volume of cold phenol:chloroform:isoamyl alcohol (25:24:1). Mix well, and centrifuge for 10 minutes.
10. Remove the aqueous phase (top) to a new 1.5 ml eppendorf tube. This phase contains plasmid DNA.
11. Add two volumes of 95% ethanol. Incubate for 30 minutes at $-20^{\circ} \mathrm{C}$.
12. Spin in the microcentrifuge for 10 minutes at $12,000 \mathrm{rpm}$. Decant the supernatant and wash the pellet once with cold 70% ethanol.
13. Air dry the pellet by inverting the tube over a Kimwipe. Resuspend in 30 ul of TE buffer and store at $-20^{\circ} \mathrm{C}$. The plasmid DNA is now ready for downstream applications like EcoR1 digestion and sequencing.

EcoR1 digestion of cloned DNA
Per single reaction:
Water 6.8ul
EcoR1 buffer 1ul
EcoR1 0.2ul
Miniprep 2ul

Combine in tube, being sure to keep enzyme at $-20^{\circ} \mathrm{C}$ while out of freezer, and add the enzyme to the tube last. Next incubate for two hours at $37^{\circ} \mathrm{C}$.
*For double digests (2 enzymes at once) use 0.2 ul of each enzyme and 6.6 ul of sterile water.

Sequencing:

Beckman Coulter sequencing protocol were followed in use of GenomeLab Dye Terminator Cycle sequencing with Quick Start Kit. Following the generation of nested DNA fragments, precipitation, and pellet formation, the pellets were left dry overnight until sequencing on the next morning. This was to avoid freeze-thaw complications regarding the sample loading solution (SLS).

Appendix 2: Sequence Data Comparison with Nucleotide Analysis Via Genbank

The following sequences are those of the Zoar Valley J. nigra samples specified in the title, underscored by their closest match, as determined through utilization the NCBI BLAST tool (see Methods). Sample \#1 Forward has been labeled \{ \} with the intention of using it as a key to interpreting the BLAST data.
SAMPLE \#1 Forward \{SAMPLE\}
$>$ gi|18028823|gb|AF338492.1|AF338492 \{ACCESSION \#\} Juglans nigra
isolate 836 18S ribosomal RNA gene, partial sequence;
internal transcribed spacer $1,5.8 \mathrm{~S}$ ribosomal RNA gene
and internal transcribed spacer 2, complete sequence; and
26S ribosomal RNA gene, partial sequence \{PUBLISHED SEQUENCE
IDENTITY\}
Length=750
Score $=1026$ bits (555), Expect $=0.0$
Identities $=604 / 631$ (95\%) , Gaps $=11 / 631$ (1%)
Strand=Plus/Minus
*\{for the purpose of this paper, the only identity value
was utilized.Query represents the research derived sample
DNA, while Sbjct (Subject) represents the Genbank published
DNA sequence. Dots in the sbjct represent identical
nucleotide match with the Query\}
Query 82
CCGCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGT 141
Sbjct 749
Query 142
AGAGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACAGCGACGGGCGACACAC 201
Sbjct 689
Query 202
GACGGGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTCGTCGCCTAGGACTCAC 261
Sbjct 629
Query 262
TTTTAGGCTAACCGCGAGCAAAAGCGCACGGGAGGCCAATGTCTTCCCCGCACCCCGCAC 321
Sbjct 569
Query 322
AGCGTAAGAAGTGTTTGGGGTTGGGGCAACGATGCGTGACACCCAGGCAGACGTGCCCTC 381
Sbjct 509

```
Query 382
GGCCGAATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCGATGATTCGCGGGATTCTGCA
Sbjct 449
.............................................................. . . . . . 390
Query 442
ATTCACACCAAGTATCGCATTTCGCTACGTTCTTCATCGATGCGAGAGCCGAGATATCCG 501
Sbjct 389
............................................................ . . . . 330
Query 502
TTGCCGAGAGTCGTTATGTATCATGGTAAAGACGTCACCAACGACACGCACACCGTTTTC 561
Sbjct 329
. }27
Query 562
CGGGGGCGCCCGTGGTTACTCCTTGTTTTAAGTNCCCTTGGCGCAGACCGCNNCNGNGGT }62
Sbjct 270
.....-.....................-....T..-................GC.G.-. . . }21
Query 622
NCATTNGTNCGATCGGGGANNGGANCGAGANGATCGACCCAACCCCACACCGAAGANCAG 681
Sbjct 214
T....-..T.......A.G-...A.....G........-....A.....-..G..G... 159
Query 682
TNGGCCAATCTCAACGNTGCCCCTCCCCACC }71
Sbjct }15
    .G...A........-....-....A... }13
```


SAMPLE \#1 Reverse

```
> gi| 18028823|gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S
ribosomal RNA gene, partial sequence;
internal transcribed spacer 1, 5.8S ribosomal RNA gene
and internal transcribed spacer 2, complete sequence; and
26S ribosomal RNA gene, partial sequence
Length=750
    Score = 780 bits (422), Expect = 0.0
    Identities = 448/461 (97%), Gaps = 8/461 (1%)
    Strand=Plus/Plus
Query }7
TTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCATNTAACGACCT 135
Sbjct 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .G-- 
........ }7
Query 136
GTGAACATGTAATAATAACCTTCTGGGTGGGGGTGTAATGCCCCCTCCCAGAAAACGGTT 195
Sbjct }7
Query 196
GGGAGGGCACGTTGAGATTTGCCCACTGCTCCTCGTGTGTGGTTGGTCGATCCTCTCGTT 255
```

```
Sbjct 134
Query }25
CCCTTCCCGATCGAACAATGAACCCCGGCGCGGTCTGCGCCAAGGAACTTAAACAAGGAG 315
Sbjct 194
Query 316
TAACCACGGGCGCCCCGGAAACGGTGTGCGTGTCGTTGGTGACGTCTTTACCATGATACA 375
Sbjct 254
Query }37
TAACGACTCTCGGCAACGGATATCTNNNNGCTCTCGCATCGATGAAGAACGTAGCGAAAT 435
Sbjct 314
. . . . . . . . . . . . . . . . . . . . .CG-- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . }37
Query 436
GCGATACTTGGTGTGAATTGCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAGTTGC 495
Sbjct }37
.............................................................. . . . 4 4 
Query 496 GCCCGAAGCCATTNCGGCCGANNGNCACGTNCTGNCCTGGG 536
Sbjct 432 ............-......GG.-.....-...-...... }46
```


SAMPLE \#5 Foreward

```
> gi|18028818|gb|AF338487.1|AF338487 Juglans microcarpa isolate 108
```

> gi|18028818|gb|AF338487.1|AF338487 Juglans microcarpa isolate 108
18S ribosomal RNA gene, partial
18S ribosomal RNA gene, partial
sequence; internal transcribed spacer 1, 5.8S ribosomal RNA
sequence; internal transcribed spacer 1, 5.8S ribosomal RNA
gene and internal transcribed spacer 2, complete sequence;
gene and internal transcribed spacer 2, complete sequence;
and 26S ribosomal RNA gene, partial sequence
and 26S ribosomal RNA gene, partial sequence
Length=735
Length=735
Score = 1094 bits (592), Expect = 0.0
Score = 1094 bits (592), Expect = 0.0
Identities = 690/749 (92%), Gaps = 21/749 (2%)
Identities = 690/749 (92%), Gaps = 21/749 (2%)
Strand=Plus/Minus
Strand=Plus/Minus
Query 90
Query 90
CCGCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGT 149
CCGCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGT 149
Sbjct 734
Sbjct 734
Query 150
Query 150
AGAGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACAGCGACGGGCGACACAC }20
AGAGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACAGCGACGGGCGACACAC }20
Sbjct 674
Sbjct 674
... }61
... }61
Query 210
Query 210
GACGGGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTCGTCGCCTAGGACTCAC 269
GACGGGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTCGTCGCCTAGGACTCAC 269
Sbjct 614

```
Sbjct 614
```

```
Query 270
TTTTAGGCTAACCGCGAGCACAAGCGCACGGGAGGCCAATGTCTTCCCCGCACCCCGCAC
Sbjct 554
........................
4 9 5
Query 330
AGCGTAAGAAGTGTTTGGGGTTGGGGCAACGATGCGTGACACCCAGGCAGACGTGCCCTC 389
Sbjct 494
Query }39
GGCCGAATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCGATGATTCGCGGGATTCTGCA 449
Sbjct 434
.............................................................. . . . . . 375
Query 450
ATTCNACACCAAGTATCGCATTTCGCTACGTTCTTCATCGATGCGAGAGCCGAGATATCC 509
Sbjct 374 ....-
......................................................... }31
Query 510
GTTGCCGAGAGTCGTTATGTATCATGGTAAAGACGTCACCAACGACACGCACACCGTTTC 569
Sbjct 315
................................................................ . . . . . 256
Query 570
CNGGGCGCCCGTGGTTACTCCTNGTNTAAGTNCCTTGGCGCAGACCGCGCNNNNNTTCAT }62
Sbjct 255
.G. . . . . . . . . . . . . . . .T. .T. . . . .T. . . . . . . . . . . . . . . .CGGGG . . . . . }19
Query 630
TGTTCGATCNGGANGGGAACGAGAGGATCGACCA-CCACACACNANGN-CA-TGGGNCAA }68
Sbjct 195
.........G...A....................A........G.G.AG..G.....-. . . }13
Query 687
NNTTTCAACGTGCCTTCCNAAC-GTTTTTTGGGNANGGGNCNT-AC-CCCNNCNNCCNAN }74
Sbjct 136
A-.C.........C...C...C.........-.G...G.A.T..A...C-.AC..-.G }8
Query 744
AAAGGTTATNATAACATGTTCCCANGGTCGGTCTGCCGGGGCAANGTNTNNACCAATGAN }80
Sbjct 80 ..-......T..T........A..-.....T.....T...-..G-..A.CG..-
.....- 27
Query 804 TCCTTCCCNCANGNTTCNCCCTACGGAAA 832
Sbjct 26 .......G-..G.-...A..-........ 1
```


SAMPLE \#5 Reverse

$>$ gi|18028823|gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S ribosomal RNA gene, partial sequence; internal transcribed spacer $1,5.8$ ribosomal RNA gene and internal transcribed spacer 2 , complete sequence; and 26S ribosomal RNA gene, partial sequence

```
Length=750
```

```
    Score = 507 bits (274), Expect = 3e-140
    Identities = 323/349 (92%), Gaps = 7/349 (2%)
    Strand=Plus/Plus
Query 145
CGACCTGTGAACATGTANTNATACCCTTCCTGGGTGGGGGTGTACCTGCCCCCTCCCAGA204
Sbjct 68
...............A.A...A.....-..............A-............... }12
Query 205
AAACGGTTGGGAGGGCACGTTGAGATTTGCCCCCTGCCCCTCGTGTGTGGTCGGTCGATC 264
Sbjct 126
.................................T..............T......... }18
Query 265
CTCTCGTTCCCTTCCCGATCGAACNATGANCCCCGGCGCGGTCTGCGCCAAGGAACTTAC 324
Sbjct 186
```



```
Query 325
CCNGGGAGTNACCTCGGGCGCCCCGGAAACGGTGTGCGTGTCGTTGGTGACGTCTTTACC 384
Sbjct 246
A.AA.....A...A................................................... . . . . . 305
Query 385
ATGATACATACCGACTCTCGGCANCGGATATTTCGGCTCTCGCATCGATGAAGAACGTAG 444
Sbjct 306
.........A...........A.......C................................ . . . . . 365
Query 445 CGAAATGCGATACCTTGGTGTGAATCGCAAGAATCCCCGCGNAATTCAT 493
Sbjct 366 ...........-..........T...-.......-...-...-... }40
```


SAMPLE \#11 Forward

```
> gi| 18028815|gb|AF338484.1|AF338484 Juglans major isolate 870 18S
ribosomal RNA gene, partial sequence;
internal transcribed spacer 1, 5.8S ribosomal RNA gene
and internal transcribed spacer 2, complete sequence; and
26S ribosomal RNA gene, partial sequence
Length=747
    Score = 870 bits (471), Expect = 0.0
    Identities = 480/484 (99%), Gaps = 1/484 (0%)
    Strand=Plus/Plus
Query 45
CCGTAGGTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCAGAACGACCTGTGAA 104
Sbjct 19
Query 105
CATGTAATAACCTTCTGGGTGGGGGTGTAATGCCCCCTCCCAAAAAACGGTTGGGAGGGC 164
```

```
Sbjct 79
Query 165
ACGTTGAGATTTGCCCACTGCTCCTCGTGTGTGGTTGGTCGATCCTCTCGTTCCCTTCCC 224
Sbjct 139
Query 225
GATCGAACAATGAACCCCGGCGCGGTCTGCGCCAAGGAACTTAAACAAGGAGTAACCACG 284
Sbjct 199
Query 285
GGCGCCCCGGAAACGGTGTGCGTGTCGTTGGTGACGTCTTTACCATGATACATAACGACT 344
Sbjct 259
Query 345
CTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTG 404
Sbjct 319
Query 405
GTGTGAATTGCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCC 464
Sbjct 379
Query 465
ATTCCGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATCGTCGCCCCAACCCCCAACACT 524
Sbjct 439 ....-
...................................T............A...... }49
Query 525 TCTT 528
Sbjct 498 .... 501
```


SAMPLE \#11 Reverse

```
gi|18028823|gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S
```

gi|18028823|gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S
ribosomal RNA gene, partial sequence;
ribosomal RNA gene, partial sequence;
internal transcribed spacer 1, 5.8S ribosomal RNA gene
internal transcribed spacer 1, 5.8S ribosomal RNA gene
and internal transcribed spacer 2, complete sequence; and
and internal transcribed spacer 2, complete sequence; and
26S ribosomal RNA gene, partial sequence
26S ribosomal RNA gene, partial sequence
Length=750
Length=750
Score = 968 bits (524), Expect = 0.0
Score = 968 bits (524), Expect = 0.0
Identities = 537/545 (98%), Gaps = 3/545 (0%)
Identities = 537/545 (98%), Gaps = 3/545 (0%)
Strand=Plus/Minus
Strand=Plus/Minus
Query }7
Query }7
TTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGTAGAG 131
TTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGTAGAG 131
Sbjct 745

```
Sbjct 745
```

```
Query 132
TCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACAGCGACGGGCGACACACGACG }19
Sbjct 685
```



```
Query 192
GGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTCGTCGCCTAGGACTCACTTTT 251
Sbjct 625
............................................................. }56
Query 252
AGGCTAACCGCGAGCAAAAGCGCACGGGAGGCCAATGTCTTCCCCGCACCCCGCACAGCG 311
Sbjct 565
............................................................. . . . . 506
Query 312
TAAGAAGTGTTTGGGGTTGGGGCAACGATGCGTGACACCCAGGCAGACGTGCCCTCGGCC 371
Sbjct 505
............................................................. .... 446
Query 372
GAATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCGATGATTCGCGGGATTCTGCAATTC 431
Sbjct 445
.............................................................. . . . . . 386
Query 432
ACACCAAGTATCGCATTTCGCTACGTTCTTCATCGATGCGAGAGCCGAGATATCCGTTGC 491
Sbjct 385
Query 492
CGAGAGTCGTTATGTATCATGGTAAAGACGTCACCAACGACACGCACACCGTTTCCGGGG 551
Sbjct 325
Query 552
CGCCCGTGGTTACTCCTNGTTTAAGTTNCTNGGCGCAGACCGCGCCGNG-TN-ATTGT-C 608
Sbjct 265
.................T.........C..T.................G.G.TC.....T.T. }20
Query 609 GATCG 613
Sbjct 205 ..... 201
```


SAMPLE \#11 Reverse II

```
\(>\) gi|18028823|gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S
ribosomal RNA gene, partial sequence;
internal transcribed spacer \(1,5.8 \mathrm{~S}\) ribosomal RNA gene and internal transcribed spacer 2 , complete sequence; and 26 S ribosomal RNA gene, partial sequence
Length=750
Score \(=926\) bits (501), Expect \(=0.0\)
Identities \(=537 / 559\) (96\%), Gaps \(=7 / 559\) (1\%)
Strand=Plus/Minus
```

```
Query 70
GCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGTAG
1 2 9
Sbjct }74
```



```
Query 130
AGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACAGCGACGGGCGACACACGA189
Sbjct 687
.............................................................. . . . . . }62
Query 190
CGGGNTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTCGTCGCCTAGGACTCACT 249
Sbjct 627
....-......................................................... }56
Query 250
TTTAGGCTAACCGCGAGCAAAAGCGCACGGGAGGCCAATGTCTTCCCCGCACCCCNNACA 309
Sbjct 568
........................................................GC.... }50
Query 310
GCGTAAGAAGTGTTTGGGGTTGGGGCAACGATGCGTGACACCCAGGCAGACGTGCCCTCG 369
Sbjct 508
.............................................................. . . . . 449
Query 370
GCCGAATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCTNATGATTCGCGGGATTCTGCA 429
Sbjct 448
...................................-G...................... }39
Query 430
ATTCACACCAAGTATCGCATTTTCGCCTACGTTCTTCATCGATGCNAGAGCCGAGATATC 489
Sbjct 389
.................-....-...................G................ }33
Query 490
CGTTGCCGAGAGTCGTTTATGTATCATGGTAAAGACGTTACCAACGACACGCACACCGTT 549
Sbjct 331
..............-......................C....................... . . . 273
Query 550
TCCGGGNNGCCCGTGGTTACTCCTTGTTTAAGTTCCTTNNCGCANACC-CGCCCNNGGTT 608
Sbjct }27
......GC................................GG.....G...G.....GG-. . . . }21
Query 609 CATTGTNCCATCGGNAAGG 627
Sbjct 213 ......T.G.....G.... }19
```


SAMPLE \#3 Forward

$\Gamma \quad$ gi| $18028815 \mid$ gb|AF338484.1| AF338484
ribosomal RNA gene, partial sequence;
internal transcribed spacer $1,5.8 \mathrm{~S}$ ribosomal RNA gene isolate 870 18S
and internal transcribed spacer 2, complete sequence; and

```
26S ribosomal RNA gene, partial sequence
Length=747
    Score = 850 bits (460), Expect = 0.0
    Identities = 479/491 (97%), Gaps = 1/491 (0%)
    Strand=Plus/Plus
Query 2
AACCNGCGGAAGGATCATTGTCGATACCTGCCCAGCAGAACGACCTGTGAACATGTAATA 61
Sbjct 28
....T........................................................... . . }8
Query 62
ACCTTCTGGGTGGGGGTGTAATGCCCCCTCCCAAAAAACGGTTGGGAGGGCACGTTGAGA 121
Sbjct 88
Query 122
TTTGCCCACTGCTCCTCGTGTGTGGTTGGTCGATCCTCTCGTTCCCTTCCCGATCGAACA 181
Sbjct 148
...............................A.............................. . }20
Query 182
ACGAACCCCGGCGCGGTCTGCGCCAAGGAACTTAAACAAGGAGTAACCACGGGCGCCCCG }24
Sbjct 208
.T............................................................. . . . . 267
Query }24
GAAACGGTGTGCGTGTCGTTGGTGACGTCTTTACCAAGATACATAACGACTCTCGGCAAC 301
Sbjct 268
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
3 2 7
Query 302
GGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATT 361
Sbjct 328
.............................................................. }38
Query 362
GCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCG 421
Sbjct 388
Query 422
AGGGCACGCCTGCCTGGGTGTCACGCATCGTTGCCCCAANNCCAAACACTTCTTACGCNG 481
Sbjct 448
........т.............................CC...................T. }50
Query 482 TNCNCGGGTGC 492
Sbjct 508 .G.G-...... 517
```


SAMPLE \#3 Reverse

```
> gi| 18028823|gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S
ribosomal RNA gene, partial sequence;
internal transcribed spacer 1, 5.8S ribosomal RNA gene
```

```
and internal transcribed spacer 2, complete sequence; and
26S ribosomal RNA gene, partial sequence
Length=750
    Score = 824 bits (446), Expect = 0.0
    Identities = 481/498 (96%), Gaps = 9/498 (1%)
    Strand=Plus/Minus
Query 31
CCGCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGT 90
Sbjct 749
Query }9
AGAGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACAGCGACGGGCGACACAC 150
Sbjct 689
Query 151
GACGGGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTCGTCGCCTAGGACTCAC 210
Sbjct 629
Query }21
TTTTAGGCTAACCGCGAGCAAAAGCGCACGGGAGGCCAATGTCTTCCCCGCACCCCGCAC270
Sbjct 569
Query 271
AGCGTAAGAAGTGTTTGGGGTTGGGGCAACGATGCGTGACACCCAGGCAGGCGTGCCCTC 330
Sbjct 509
Query 331
GGCCGAATGGCTTCGGGCGCAACCTTGCGTTCAAAGACTCGATGATTCGCGGGATTCTGC 390
Sbjct 449
....................-.......................................... . . . . . 391
Query }39
AANNCNACCACCAAGTATCGCATTTTCGCTACGTTCTTNATCGATGCGAGAGCCGAGATA 450
Sbjct 390
..тт.-.-.............-..............C...................... }33
Query 451
TCCGTTGCCGAGAGTCGTTATGTATCTTGGTAAAGACGTCCCCAANCGACACCGCCCACC 510
Sbjct 333
......................A.............A....-......-......... }27
Query 511 CGTTTCNCNNGGGCGCCC 528
Sbjct 275 -.....-.G-....... 261
```


SAMPLE \#6 Forward

[^0]```
2 (ITS2)
Length=686
```

```
 Score = 756 bits (409), Expect = 0.0
```

    Score = 756 bits (409), Expect = 0.0
    Identities = 451/471 (95%), Gaps = 9/471 (1%)
    Identities = 451/471 (95%), Gaps = 9/471 (1%)
    Strand=Plus/Minus
    Query 79
GCTTAAATTCAGCGGGTAGTCCAGCCTGACCTGGGGTCGCGTTGGAAGCGTCGCTGGCGC138
Sbjct 686
....................C......................................... . . . . . }62
Query 139
GACACAGCAGGGTCAAAGAGCACACGATGAGCGACGCGGCACGCACGACGGGACACGAGG 198
Sbjct 626
Query 199
GTTTGTCAACCACCGATTGTCGTGGCGCGCGTCGCCGAGGACTCGCTTTTGGGCCAACCG 258
Sbjct 566
.....A.............................................A.......... . . . 507
Query 259
CATGCATGAGCTCACGGGAGGCCAATTTCTGCCCCACAGGCCCCCTCGTCCCTTTGCAAG318
Sbjct 506
............................................................. . . . 4 4 }4
Query 319
GAGATGGGGTTGGGGGCAACGATGCGTGACACCCAGGCAGACGTGCCCTCGGCCAGGTGG 378
Sbjct 446
.............................................................. }38
Query 379
CTNCGGGCGCAACTTGCGTTCAAAGACTNCGATGATTCGCGGGATTCTGCAATTCACACC 438
Sbjct 386
..т.......................-................................. }32
Query 439
AAGTATCCGCATTTNCGCTACGTTNCTTCATCGATGCGAGAGCCGAGATATCCGTTTGGC 498
Sbjct 327
......-......-........-............................-..-... }27
Query 499
CGAGAGNNGTGGTGGGTTCTAGACAAGATTCCGCCTCCCGCACGGCACACC 549
Sbjct 272
......TC..TA.-...............-.A..........-....... }22

```

\section*{15 Forward}
```

> gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S ribosomal RNA
gene, partial sequence;
internal transcribed spacer 1, 5.8S ribosomal RNA gene
and internal transcribed spacer 2, complete sequence; and

```
```

26S ribosomal RNA gene, partial sequence

```
Length=750
```

Score = 617 bits (334), Expect = 1e-173
Identities = 510/581 (87%), Gaps = 67/581 (11%)
Strand=Plus/Minus

```


Query 478 AGTATTCGCATTTCGCTACGTTCTTCATTCGATGCGAGAGC-GAAGATATTCCCGTTGCC 536
Sbjet 379 AGTAT-CGCATTTCGCTACGTTCTTCAT-CGATGCGAGAGCCGA-GATAT-CC-GTTGCC 325
Query 537 GAGAGTCGTTAATGCATCATGGTAAAGAACGTCACCCAACGAACACGCCACCACCGTTTC 596

 GAGAGTCGTTA-TGTATCATGGTAAAGA-CGTCACC-AACGA-CACGC-AC-ACCGTTTC 271
Query 597 CCGGGCGCC-GTGGGTAACTCCTTGGTTAAGT-CCT-GGCG 634

\section*{15 Reverse}
```

> gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S ribosomal RNA gene,
partial sequence;
internal transcribed spacer 1, 5.8S ribosomal RNA gene
and internal transcribed spacer 2, complete sequence; and
26S ribosomal RNA gene, partial sequence
Length=750
Score = 558 bits (302), Expect = 6e-156
Identities = 371/399 (92%), Gaps = 25/399 (6%)
Strand=Plus/Plus
Query 51 TTTCCGTAGGTGAACCTGCGGAAGGATC-TTGTCGATACCTGCCCAGACAGAACGACCTG 109

```


\section*{Appendix 3: Consensus sequence multiple alignment with J. nigra sequence acquired from Genbank}

j
3
1
5
 --GGCAATTG--AATATGCGGCC19 19
 -------------------------GTGAACCTGCGGAAGGATCATTGTCGATACCTGCCC 36

 -GCAATTCGCCTT-----CCCGTAG--GTGAACCTGCGGAAGGATCATTGTCGATACCTG 71
 AGCAGAACGACCTGTGAACATGTAATAATAACCTTCTGGGTGGGGGTGTAATGCCCCCTC 120
 AGCAGAACGACCTGTGAACATGTAA---TAACCTTCTGGGTGGGGGTGTAATGCCCCCTC 93
 ------------------AGACCGACCCTGGTGAACATGTAATAATACCTCTTCCTGGTG 42
 CCCAGCAACGGTTGGGAGGGCACGTTGAGATTTGCCCACTGCTCCTCGTGTGTGGGTTGG 131
 CCAGAAAACGGTTGGGAGGGCACGTTGAGATTTGCCCACTGCTCCTCGTGTGTGG-TTGG 179
 CCAAAAAACGGTTGGGAGGGCACGTTGAGATTTGCCCACTGCTCCTCGTGTGTGG-TTGG 152
 TGGGGGGTGTACCAGGCCCCCTTCCCAAGGCACGTTGAGATTTGCCCCCTGCCCCTCGTG 102
 TGCGATCCTTCGTCGTTCCCTTCCCGATGCGAACAATGAACCCCGGGCGCGCGGTTCTGC 191
 T-CGATCCTC--TCGTTCCCTTCCCGAT-CGAACAATGAACCCCGG---CGCGGT-CTGC 231
 T-CGATCCTC--TCGTTCCCTTCCCGAT-CGAACAACGAACCCCGG---CGCGGT-CTGC 204
 TGTGGTGGTCGATCCTCTCGTTCCCTTCCCGATCGAACAATGAACCCCCGGCGCGGTCTG 162
 GCCAAGG-AACTTAAACAAGGAG---TAACCACGGG-CGCCCC---GGAAACGG-TGTGC 242
 GCCAAGG-AACTTAAACAAGGAG---TAACCACGGG-CGCCCC---GGAAACGG-TGTGC 282

GCCAAGGGAACTTAAACCAAGGGAGGTAACCACGGGGCGCCCCCG-GGAAACGGGTGGGC 263 --------------------------------ACGGG-CGCCCCCGGAGAAACGG-TGTGC 27 CGCCAAGGAACTTACCCAAGGGAGTACACCTACGGG-CGCCCC---GGAAACGG-TGTGC 217 \(\star \star \star \star * \quad \star \star \star * * * \quad \star * * * * * * * * * *\)
G-TGTCG-TTGGTAGACGTCTTTACCATGATACATAAACGACTCTCGGCAACGGATATCT 300
G-TGTCG-TTGGT-GACGTCTTTACCATGATACATAA-CGACTCTCGGCAACGGATATCT 338
GGTGTCGGTTGGGTGACGTCTTTACCAAGATACATAA-CGACTCTCGGCAACGGATATCT 322
G-TGTCG-TTGGT-GACGTCTTTACCATGATACATAAC-GACTCTCGGCAACGGATATCTG-TGTCG-TTGGT-GACGTCTTTACCATGATACATAACCGACTCTCGGCAACGGATATTT 274
 \(\star \quad \star \star \star \star \star * * * * \quad * \quad *\)
 CG-GCTCTCGCATCGATGAAGAACGTAGGCCGGAAAATGCGATACTTGGTG------TGA 353
 CG-GCTCTCGCATCGATGAAGAACGTAGC----GAAATGCGATACTTGGTG------TGA 387
 CG-GCTCTCGCATCGATGAAGAACGTAGC---GAAAATGCGATACTTGGTGGTG---TGA 375
 CGTGCTCTCGCATCGATGAAGAACGTAGC----GAAATGCGATACTTGGTG------TGA 133
 CG-GCTCTCGCATCGATGAAGAACGTAGC----GAAATGCGATACTCTGTGGTGTGTTGA 329

AT-TGCAGAA----TCCCGCGAATCATAACGAGTCTTTGAACGCAAG-TTGCGCCCGAAG 407 AT-TGCAGAA----TCCCGCGAATCAT--CGAGTCTTTGAACGCAAG-TTGCGCCCGAAG 439 AT-TGCAGAA----TCCCGCGAATCAT--CGAGTCTTTGAACGCAAGGTTGCGCCCGAAG 428 AT-TGCAGAA----TCCCGCGAATCAT--CGAGTCTTTGAACGCAAG-TTGCGCCCGAAG 185 ATCTGCAGAAGAATCCCCGCGAATCAT--CGAGTCTTTGAACGCAAG-TTGCGCCCGAAG 386

CCATTCCGGCCGAGGGC-ACGTCT---GCCTGGG-TGTCACGCATCGTCTGCCCCAACCC 462
CCATTC-GGCCGAGGGC-ACGTCT---GCCTGGG-TGTCACGCATCGT-TGCCCCAACCC 492
CCATTC-GGCCGAGGGC-ACGCCT---GCCTGGG-TGTCACGCATCGT-TGCCCCAACCC 481
CCATTC-GGCCGAGGGCCACGTCTCTGGCCTGGGGTGTCACGCATCGT-TGCCCCAACCC 243
CCATTC-GGCCGAGGGC-ACGTCT---GCCTGGG-TGTCACGCATCGT-TGCCCCAACCC 439
****** *********** *** ** ******* ************* ****************

C-AAACACTTCTTACGCTGTGCGGGGTGCGGGGAAGACATTGGCCTCCCGTGCGCTTTTG 551
C-AAACACTTCTTACGCTGTGCGCGCGGTGCGGGAGAGAGAATACATTGGCCTCCCGTGC 540
C-AAACACTTCTTACGCTGTGCGGGGTGCGGGGAAGAC--------------------------180 280
C-AAACACTTCTTACGCTGTGCGGGGTGCGGGGAAGACATTGGCCTCCCGTGCGCTTGTG 498
* *************

CTCGCGGTTAGCCTAAAAGTGAGTCCTAGGCGACGAGCGCCACGACAATCGGTGGTTGAG 611 GCTITTGCTCGCGGTTAGCCTAAAAGTGAGTCCTAGGCGACGAGCGCCACGACAATCGGT 600 --GCCACGACAATCGGT 295 CTCGCGGTTAGCCTAAAAGTGAGTCCTAGGCGACG-------AGCGCCACGACAATCGGT 551

AAACCCTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGACCCTATTG 671 GGTTGAGAAACCCTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGAC 660 GGTTGAGAAACCCTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGAC 355 GGTTGAGAAACCCTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGAC 611

TGTCGTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACCCGCTGAATTT 731 CCTATTGTGTCGTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACCCGC 720 CCTATTGTGTCGTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACCCGC 415 CCTATTGTGTCGTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACCCGC 671

\title{
TGAATTTAAGCATATCAATAAGCGGAGGAAAGGGCGAATTCGCGGCCGCTAAATTCAATT 731
}

\section*{Appendix 4: Sample 1 consensus sequence and BLAST result}
\begin{tabular}{|c|c|c|}
\hline \[
1
\] & CAACTTCGCCCTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCA & 60 \\
\hline \multicolumn{3}{|l|}{1For} \\
\hline \multicolumn{3}{|l|}{reverse} \\
\hline 1 & TGCTAACGACCTGTGAACATGTAATAATAACCTTCTGGGTGGGGGTGTAATGCCCCCTCC & 120 \\
\hline \multicolumn{3}{|l|}{1For} \\
\hline reverse & -------GGTGGGGAGGGGCAACGTTGAGATTGGCCCACTGCTCTTCGGTGTGGGGTTG & 52 \\
\hline 1 & CAGAAAACGGTTGGGAGGGC--ACGTTGAGATTTGCCCACTGCTCCTCG-TGTGTGGTTG & 177 \\
\hline \multicolumn{3}{|l|}{1For} \\
\hline reverse & GGTCGATCCTCTCGT--CCTCCCCGATCGGACAATGAACCCCCGGCGCGGTCTGCGCCAA & 110 \\
\hline 1 & G-TCGATCCTCTCGTTCCCTTCCCGATCGAACAATGAACCCC-GGCGCGGTCTGCGCCAA & 235 \\
\hline 1For & \(\qquad\) & 28 \\
\hline reverse & GGGACTTAAAACAAGGAGTAACCACGGG-CGCCCCCGGAAAACGGTGTGCGTGTC-GTTG & 168 \\
\hline 1 & GGAACTTAAA-CAAGGAGTAACCACGGG-CGCCCC--GGAAACGGTGTGCGTGTC-GTTG & 290 \\
\hline 1For & & 88 \\
\hline reverse & GTGACGTCTTTACCATGATACATAACGACTCTCGGCAACGGATATCTCG-GCTCTCGCAT & 227 \\
\hline 1 & GTGACGTCTTTACCATGATACATAACGACTCTCGGCAACGGATATCTCGTGCTCTCGCAT & 350 \\
\hline 1For & \begin{tabular}{l}
CTGACGTCTTTACCATGAGACATAACGACTCTCGGCAACGGATATCTCG-GCTCTCGCAT \\
***************** ****************************** ***************
\end{tabular} & 147 \\
\hline reverse & CGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGCGAATCATC & 287 \\
\hline 1 & CGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGCGAATCATC & 410 \\
\hline 1For & CGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGCGAATCATC & 207 \\
\hline reverse & GAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGC-ACGTCT--GCCTGG & 344 \\
\hline 1 & GAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCCACGTCCTGGCCTGG & 470 \\
\hline 1For & GAGTCTTTGTACGCAAGTTGCGCCCGAAGCCAA--AAACGAGGGC-ACGTCT--GCCTGG & 262 \\
\hline & & \\
\hline reverse & G-TGTCACGCATCGTTGCCCCAACCCCAAACACTTCTTACGCTGTGCGGGGTGCGGGGAA & 403 \\
\hline 1 & & 488 \\
\hline 1For & \begin{tabular}{l}
G-TGTCACGCATCGTTGCCCCAACCCCAAACACTTCTTACCGTCTGTGGCGGGGGTTGGC \\
* ****************
\end{tabular} & 321 \\
\hline reverse & GACATTGGCCTCCCGTGCGCTTTTGCTCGCGGTTAGCCTAAAAGTGAGTCCTAGGCGACG & 463 \\
\hline \multicolumn{3}{|l|}{1} \\
\hline 1For & GGGGGAAAGACCAATTG- & 338 \\
\hline
\end{tabular}

>Sample 1 consensus
CAACTTCGCCCTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCGATACCTG CCCAGCATGCTAACGACCTGTGAACATGTAATAATAACCTTCTGGGTGGGGG TGTAATGCCCCCTCCCAGAAAACGG(t/g)GGGAGGG(c/g)CAACGTTGAGATTG GCCCACTGCTC(c/t)TCGGTGTG(g/t)GGTTGGGTCGATCCTCTCGTTCCCT(t/c)CC CGATCG(a/g)ACAATGAACCCCCGGCGCGGTCTGCGCCAAGG(a/g)ACTTAAAA CAAGGAGTAACCACGGGCGCCCCCGG(a/g)AAACGGTGTGCGTGTCGTTGGTG ACGTCTTTACCATGATACATAACGACTCTCGGCAACGGATATCTCGTGCTCTC GCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATC CCGCGAATCATCGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCG AGGGCCACGTC(t/c)TGGCCTGGGGTGTCACGCATCGTTGCCCCAACCCCAAAC ACTTCTTACGCTGTGCGGGGTGCGGGGAAGACGCCACGACAATCGGTGGTTG AGAAACCCTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCG ACCCTATTGTGTCGTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGG ATTACCCGCTGAATTTAAGCATATCAATAAGCGGAGGAAAGGGCGATTCGCG GCCGCTAAATTCAATTCAGCCCTATAGTGAGTCGTATTACAATTCACTGGCGT A
>Sample 1 consensus Fasta
CAACTTCGCCCTTTCCGTAGGTGAACCTGCGGAAGGATCATTGTCGATACCTG CCCAGCATGCTAACGACCTGTGAACATGTAATAATAACCTTCTGGGTGGGGG TGTAATGCCCCCTCCCAGAAAACGGtgGGGAGGGcgCAACGTTGAGATTGGCC CACTGCTCctTCGGTGTGgtGGTTGGGTCGATCCTCTCGTTCCCTtcCCCGATCGag ACAATGAACCCCCGGCGCGGTCTGCGCCAAGGagACTTAAAACAAGGAGTAA CCACGGGCGCCCCCGGagAAACGGTGTGCGTGTCGTTGGTGACGTCTTTACCA TGATACATAACGACTCTCGGCAACGGATATCTCGTGCTCTCGCATCGATGAA

GAACGTAGCGAAATGCGATACTTGGTGTGAATTGCAGAATCCCGCGAATCAT CGAGTCTTTGAACGCAAGTTGCGCCCGAAGCCATTCGGCCGAGGGCCACGTCt cTGGCCTGGGGTGTCACGCATCGTTGCCCCAACCCCAAACACTTCTTACGCTG TGCGGGGTGCGGGGAAGACGCCACGACAATCGGTGGTTGAGAAACCCTCGTG ACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGACCCTATTGTGTC GTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACCCGCTGA ATTTAAGCATATCAATAAGCGGAGGAAAGGGCGATTCGCGGCCGCTAAATTC AATTCAGCCCTATAGTGAGTCGTATTACAATTCACTGGCGTA

Closest Genbank match
\(>\) gb|AF338492.1|AF338492 Juglans nigra isolate 836 18S ribosomal RNA gene, partial sequence;
internal transcribed spacer 1, 5.8 S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and 26 S ribosomal RNA gene, partial sequence
Length=750
Sort alignments for
this subject sequence by:
E value Score
Percent identity
Query start position
Subject start position
```

    Score = 828 bits (448), Expect = 0.0
    Identities = 512/538 (95%), Gaps = 24/538 (4%)
    Strand=Plus/Plus
    ```


\section*{Appendix 5: Sample 3 consensus sequence and BLAST result}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Reverse
\[
3
\]} & ------------------------- & \\
\hline & GTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCAGAACGACCTGTGAACATGTA & 60 \\
\hline \multicolumn{3}{|l|}{Reverse} \\
\hline 3 & ATAACCTTCTGGGTGGGGGTGTAATGCCCCCTCCCAAAAAACGGTTGGGAGGGCACGTTG & 120 \\
\hline \multicolumn{3}{|l|}{Reverse} \\
\hline 3 & AGATTTGCCCACTGCTCCTCGTGTGTGGTTGGTCGATCCTCTCGTTCCCTTCCCGATCGA & 180 \\
\hline Reverse & -----GCCAGGGAACTTAACCAGGGAGGTAACCACGGGGCG & 36 \\
\hline 3 & ACAACGAACCCCGGCGCGGTCTGCGCCAAGGAACTTAAACAAGGAG-TAACCACGGG-CG
\(* *)\) & 238 \\
\hline Reverse & CCCCCGGGAAACGGGTGGGCGGTGTCGGTTGGGGACGTCTTTACCAAGATACATAACGAC & 96 \\
\hline 3 & & 293 \\
\hline Reverse & TCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAAATGCGATACT & 156 \\
\hline 3 & \begin{tabular}{l}
TCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAA-TGCGATACT \\

\end{tabular} & 352 \\
\hline Reverse & TGGTGGTGGAATTGCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAGGTTGCGCCCG & 216 \\
\hline 3 & & 409 \\
\hline Reverse & AAGCCATTCGGCCGAGGGCACGCCTGCCTGGGTGTCACGCATCGTTGCCCCAACCCCAAA & 276 \\
\hline 3 & \begin{tabular}{l}
AAGCCATTCGGCCGAGGGCACGCCTGCCTGGGTGTCACGCATCGTTGCCCCAACCCCAAA \\
***)
\end{tabular} & 469 \\
\hline
\end{tabular}
```

Reverse CACTTCTTACGCTGTGCGGGGTGCGGGGAAGACATTGGCCTCCCGTGCGCTTTTGCTCGC 336
3
CACTTCTTACGCTGTGCCCGGTGCGGGAGAAT--------------------------------}50
***************** ******** *
Reverse
GGTTAGCCTAAAAGTGAGTCCTAGGCGACGAGCGCCACGACAATCGGTGGTTGAGAAACC396
3
CTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGACCCTATTGTGTCG 456
Reverse
3
*)
Reverse
TTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACCCGCTGAATTTAAGCA
5 1 6
3
----------------------------------------------------------------
Reverse TATCAATAAGCGGAGGAAAGGGCGAATTCGTTTAAACAATGCAG 560

```

Sample 3 consensus sequence for Thesis
GTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCAG AACGACCTGTGAACATGTAATAACCTTCTGGGTGGGGGTGT AATGCCCCCTCCCAAAAAACGGTTGGGAGGGCACGTTGAGA TTTGCCCACTGCTCCTCGTGTGTGGTTGGTCGATCCTCTCGTT CCCTTCCCGATCGAACAACGAACCCCGGCGCGGTCTGCGCCA (a/g)GGAACTTAA(a/c)CA(a/g)GGAGGTAACCACGGGGCGCCCC CGGGAAACGGGTGGGCGGTGTCGGTTGG(g/t)GACGTCTTTAC CAAGATACATAACGACTCTCGGCAACGGATATCTCGGCTCTC GCATCGATGAAGAACGTAGCGAAATGCGATACTTGGTGGT(g/t) GAATTGCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAG GTTGCGCCCGAAGCCATTCGGCCGAGGGCACGCCTGCCTGGG TGTCACGCATCGTTGCCCCAACCCCAAACACTTCTTACGCTGT GC \((\mathrm{g} / \mathrm{c})(\mathrm{g} / \mathrm{c})\) GGTGCGGG \((\mathrm{a} / \mathrm{g})(\mathrm{a} / \mathrm{g}) \mathrm{A}(\mathrm{g} / \mathrm{a})(\mathrm{a} / \mathrm{t})\) ACATTGGCCTCCCGT GCGCTTTTGCTCGCGGTTAGCCTAAAAGTGAGTCCTAGGCGAC GAGCGCCACGACAATCGGTGGTTGAGAAACCCTCGTGACCCG TCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGACCCTATT GTGTCGTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCG GGATTACCCGCTGAATTTAAGCA TATCAATAAGCGGAGGAAA GGGCGAATTCGTTTAAACAATGCAG

Fasta:
>sample 3 consensus
GTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCAGAACGACCTGTGAACATGTA ATAACCTTCTGGGTGGGGGTGTAATGCCCCCTCCCAAAAAACGGTTGGGAGGGCACGTTG AGATTTGCCCACTGCTCCTCGTGTGTGGTTGGTCGATCCTCTCGTTCCCTTCCCGATCGAACA ACGAACCCCGGCGCGGTCTGCGCCAagGGAACTTAAacCAagGGAGGTAACCACGGGGCGCCC CCGGGAAACGGGTGGGCGGTGTCGGTTGGgt GACGTCTTTACCAAGATACATAACGAC TCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAAATGCGATACT TGGTGGTgtGAATTGCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAGGTTGCGCCCG AAGCCATTCGGCCGAGGGCACGCCTGCCTGGGTGTCACGCATCGTTGCCCCAACCCCAAAC ACTTCTTACGCTGTGCgcgcGGTGCGGGagagAgaatACATTGGCCTCCCGTGCGCTTTTGCTCGC GGTTAGCCTAAAAGTGAGTCCTAGGCGACGAGCGCCACGACAATCGGTGGTTGAGAAACC CTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTCGACCCTATTGTGTCG

TTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACCCGCTGAATTTAAGCA TATCAATAAGCGGAGGAAAGGGCGAATTCGTTTAAACAATGCAG

\section*{Closest Genbank Match}
\(>\quad\) gb|AF338487.1|AF338487 Juglans microcarpa isolate 10818 s ribosomal RNA gene, partial
sequence; internal transcribed spacer 1, 5.8S ribosomal RNA
gene and internal transcribed spacer 2, complete sequence;
and 26 S ribosomal RNA gene, partial sequence
Length \(=735\)
 Score \(=1190\) bits (644), Expect \(=0.0\)
 Identities \(=717 / 748\) (95\%), Gaps \(=26 / 748\) (3\%)
 Strand=Plus/Plus
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{8}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
GTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCAGAACGACCTGTGAACATG-- \\
 GTGAACCTGCGGAAGGATCATTGTCGATACCTGCCCAGCAGAACGACCTGTGAACATGTA
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}
Query 59 -TAATAACCTTCTGGGTGGGGGTGTAATGCCCCCTCCCAAAAAACGGTTGGGAGGGCACG 117

sbjet 70 ATAATAACCTTCTGGGTGGGGGTGTAATGCCCCCTCCCAAAAAACGGTTGGGAGGGCACG

 TTGAGATTTGCCCACTGCTCCTCGTGTGTGGTTGGTCGATCCTCTCGTTCCCTTCCCGAT 189

Query 238 GGGGCGCCCCCGGGAAACGGGTGGGCGGTGTCGGTTGGGTGACGTCTTTACCAAGATACA 297
Sbjct 246 -GGGCG-CCCC-GGAAAC-GGTGTGC-GTGTC-GTT-GGTGACGTCTTTACCATGATACA 298
Query 298 TAACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAAATG 357

Query 358 CGATACTTGGTGGTGTGAATTGCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAAGGT 41
 CGATAC-T--TGGTGTGAATTGCAGAATCCCGCGAATCATCGAGTCTTTGAACGCAA-GT 413
Query 418 TGCGCCCGAAGCCATTCGGCCGAGGGCACGCCTGCCTGGGTGTCACGCATCGTTGCCCCA 477

Sbjct 414 TGCGCCCGAAGCCATTCGGCCGAGGGCACGTCTGCCTGGGTGTCACGCATCGTTGCCCCA 473
Query 478 ACCCCAAACACTTCTTACGCTGTGCGCGCGGTGCGGGAGAGAGAATACATTGGCCTCCCG 537
Sbjet 474 ACCCCAAACACTTCTTACGCTGTGCG-G-GGTGCGGG-GA-AG---ACATTGGCCTCCCG 526
Query 538 TGCGCTTTTGCTCGCGGTTAGCCTAAAAGTGAGTCCTAGGCGACGAGCGCCACGACAATC 597
Sbjet 527 TGCGCTTKTGCTCGCGGTTAGCCTAAAAGTGAGTCCTAGGCGACGAGCGCCACGACAATC 586
Query 598 GGTGGTTGAGAAACCCTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTC 657
Sbjct 587 GGTGGTTGAGAAACCCTCGTGACCCGTCGTGTGTCGCCCGTCGCTGTGAAGGTGCTCCTC 646
Query 658 GACCCTATTGTGTCGTTCTTGCGACTCTACCATCGCGACCCCAGGTCAGGCGGGATTACC 717

\section*{Appendix 6: Sample 5 consensus sequence and BLAST result}
\begin{tabular}{|c|c|c|}
\hline \[
5
\] & TAGCGCACGTGGAATTGTAATACGACTCACTATAGGGTTCGAATTGAATTTAGCGGCCGC & 60 \\
\hline \multicolumn{3}{|l|}{reverse} \\
\hline 5 & GAATTCGCCCTTTCCTCCGCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGAC & 120 \\
\hline \multicolumn{3}{|l|}{reverse} \\
\hline 5 & CTGGGGTCGCGATGGTAGAGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACA & 180 \\
\hline \multicolumn{3}{|l|}{reverse} \\
\hline 5 & GCGACGGGCGACACACGACGGGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTC & 240 \\
\hline \multicolumn{3}{|l|}{reverse} \\
\hline 5 & GTCGCCTAGGACTCACTTTTAGGCTAACCGCGAGCACAAGCGCACGGGAGGCCAATGTCT & 300 \\
\hline \multicolumn{3}{|l|}{reverse} \\
\hline 5 & TCCCCGCACCCCGCACAGCGTAAGAAGTGTTTGGGGTTGGGGCAACGATGCGTGACACCC & 360 \\
\hline \multicolumn{3}{|l|}{reverse} \\
\hline 5 & AGGCAGACGTGCCCTCGGCCGAATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCGATGA & 420 \\
\hline \multirow[t]{2}{*}{reverse
5} & TTCGCGGGGATTCTTGCGATTCACACCAAGGTATCGCATTTCGCTACGTTCTTCATCGAT & 65 \\
\hline & TTCGCGGGA--TTCTGCAATTCNACACCAAGTATCGCATTTCGCTACGTTCTTCATCGAT & 478 \\
\hline \multirow[t]{2}{*}{reverse 5} & GCGAGAGCCGAAATATCCGTTGCCGAGAGTCGGTATGTATCATGGTAAAGACGTCACCAA & 125 \\
\hline & \begin{tabular}{l}
GCGAGAGCCGAGATATCCGTTGCCGAGAGTCGTTATGTATCATGGTAAAGACGTCACCAA \\
*********** ******************** ********************************)
\end{tabular} & 538 \\
\hline \multirow[t]{2}{*}{reverse 5} & CGACACGCACACCGTTTCCGGGGCGCCCGAGGTGACTCCCTGGGTAAGTTCCTTGGCGCA & 185 \\
\hline & & 597 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
reverse \\
5
\end{tabular}} & GACCGCGCCGGGGTTCATTGTTCGATCGGGAAGGGAACGAGAGGATCGACCGACCACACA & 245 \\
\hline & & 656 \\
\hline \multirow[t]{2}{*}{reverse 5} & CGAGGGGCAGGGGGCAAATCTCAACGTGCCCTCCCAACCGTTTTCTGGGAGGGGGCAGGT & 305 \\
\hline & & 711 \\
\hline \multirow[t]{3}{*}{reverse 5} & ACACCCCCACCCAGGAAGGGTATTATTACATGTTCACAGG-TCGTTCTAAATGGGTCAGG & 364 \\
\hline & AСССССССАAССА--AAAGGTTATATAACATGTTCCCAGGGTCGGTCTGCCGGGGCAAGG & 769 \\
\hline & ** ****** *** ** *** *** ******** **** *** *** *** *** & \\
\hline
\end{tabular}

\title{
Sample 5 consensus sequence \\ TAGCGCACGTGGAATTGTAATACGACTCACTATAGGGTTCGAATTGAATTTAGCGGCCGC GAATTCGCCCTTTCCTCCGCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGAC CTGGGGTCGCGATGGTAGAGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACA GCGACGGGCGACACACGACGGGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTC GTCGCCTAGGACTCACTTTTAGGCTAACCGCGAGCACAAGCGCACGGGAGGCCAATGTCT TCCCCGCACCCCGCACAGCGTAAGAAGTGTTTGGGGTTGGGGCAACGATGCGTGACACCC AGGCAGACGTGCCCTCGGCCGAATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCGATGATTCGCGGGGAT T(c/t)(/t/c) TGC(a/g) ATTCA(a/c)(a/c)(a/c) C(a/c)A(g/a) GTATCGCATTTCGCTACGTTCTTCATCGATGCGAGAGCCGAAATATCCGTTGCCGAGAGTCG(g/t) TATGTATCATGGTAAAGACGTCACCAACGACACGCACACCGTTTCCGGGGCGCCCG(t/a)GGT(g/t) ACTCC(c/t)TGGGTAAGTTCCTTGGCGCAGACCGCGC(c/g)GGGGTTCATTGTTCGATCGGGAAGGGAACGAGA GGATCGACCACCACACACGAGGGGCAGGGGGCAAATCTCAACGTGC(c/t) \\ TGGGA(a/g)GGGGCC(t/g)GTAC(a/c)CCCCCA(c/a) CCAGGAA(g/a)GGTATTATTACATGTTC(a/c) CAGGGTCGGTCT
}

\begin{abstract}
>sample 5 consensus Fasta
TAGCGCACGTGGAATTGTAATACGACTCACTATAGGGTTCGAATTGAATTTAGCGGCCGC GAATTCGCCCTTTCCTCCGCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGAC CTGGGGTCGCGATGGTAGAGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACA GCGACGGGCGACACACGACGGGTCACGAGGGTTTCTCAACCACCGATTGTCGTGGCGCTC GTCGCCTAGGACTCACTTTTAGGCTAACCGCGAGCACAAGCGCACGGGAGGCCAATGTCT TCCCCGCACCCCGCACAGCGTAAGAAGTGTTTGGGGTTGGGGCAACGATGCGTGACACCC AGGCAGACGTGCCCTCGGCCGAATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCGATGATTCGCGGGGAT TcttcTGCagATTCAacacacCacAgaGTATCGCATTTCGCTACGTTCTTCATCGATGCGAGAGCCGAAATATCCGTT GCCGAGAGTCGgtTATGTATCATGGTAAAGACGTCACCAACGACACGCACACCGTTTCCGGGGCGCCCGtaGG TgtACTCCctTGGGTAAGTTCCTTGGCGCAGACCGCGCcgGGGGTTCATTGTTCGATCGGGAAGGGAACGAGA GGATCGACCACCACACACGAGGGGCAGGGGGCAAATCTCAACGTGCetTGGGAagGGGGCCtgGTACacCCCC CAcaCCAGGAAgaGGTATTATTACATGTTCacCAGGGTCGGTCT
\end{abstract}

Closest Genbank Match
> gb|AF338491.1|AF338491 Juglans nigra isolate 834 18S ribosomal RNA gene,
partial sequence;
internal transcribed spacer \(1,5.8\) ribosomal RNA gene
and internal transcribed spacer 2 , complete sequence; and
26S ribosomal RNA gene, partial sequence
Length=750
Score \(=1018\) bits (551), Expect \(=0.0\)
Identities \(=604 / 627\) (96\%), Gaps \(=17 / 627\) (2\%)
Strand=Plus/Minus
Query \(77 \quad\) CCGCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGT

\section*{Appendix 7: Sample 11 consensus sequence and BLAST result}

Sample 11 consensus for thesis:
TCCTCTGTTTAAACCAATTCGCCCTTTCCTCCAGCTTATTGATATGCTTAAATTCAGCGG GTAATCCCGCCTGACCTGGGGTCGCGATGGTAGAGTCGCAAGAACGACACAATAGGGTCG AGGAGCACCTTCACAGCGACGGGCGACACACGACGGGNTCACGAGGGTTTCTCAACCACC
GATTGTCGTGGCGCTCGTCGCCTAGGACTCACTTTTAGGCTAACCGCGAGCAAAAGCGCACGGGAGGCCAATGTCTTCC CCGCACCCCGCACAGCGTAAGAAGTGTT (t/g) GGGGTTGGGGC(\(\mathrm{a} / \mathrm{g}\))
ACGATGCGTGACACCCAGGCAGACGTGCCCTCGGCCGGAATGGCTTCGGGCGCAACTTGC GTTCAAAGACTC(g/t) TATGATTCGCGGGATTCTGCAATTCACACCAAGTATCGCATTT(t/c)(c/g)GC
CTACGTTCTTCATCGATGCGAGAGCCGAGATATCCGTTGCCGAGAGTCGTTtATGTATCATGGTAAAGACGT(c/t)ACCAA CGACACGCACACCGTTTCCGGGGCGCCCGTGGTTACTCCTTGTTTAAGTTCCTTGGCGCA \((\mathrm{g} / \mathrm{a})\) ACC \((\mathrm{g} / \mathrm{c})(\mathrm{g} / \mathrm{c})(\mathrm{g} / \mathrm{c})\) CCGGGGTTCATTGTTC (g/c) ATCGGGAAGGGAACGA(c/g)A(a/g) GATC (g/c)ACCA(a/c) CCACACACGAGGAGCAGTGGGCAAATCTCAACGTGCCCTCCCAACCGTT GCTGGGCAGGTATCGACAATGATCCTTCCGCAGGTTCACCTACGGGAAGGCGAATTGCGG CCGCATATTCAATTGCC

\begin{abstract}
>Sample 11 Fasta
TCCTCTGTTTAAACCAATTCGCCCTTTCCTCCAGCTTATTGATATGCTTAAATTCAGCGG GTAATCCCGCCTGACCTGGGGTCGCGATGGTAGAGTCGCAAGAACGACACAATAGGGTCG AGGAGCACCTTCACAGCGACGGGCGACACACGACGGGNTCACGAGGGTTTCTCAACCACC GATTGTCGTGGCGCTCGTCGCCTAGGACTCACTTTTAGGCTAACCGCGAGCAAAAGCGCACGGGAGGCCAATGTCTTCC CCGCACCCCGCACAGCGTAAGAAGTGTTtg
GGGGTTGGGGCagACGATGCGTGACACCCAGGCAGACGTGCCCTCGGCCGGAATGGCTTCGGGCGCAACTTGCGTTCAA AGACTCgtTATGATTCGCGGGATTCTGCAATTCACACCAAGTATCGCATTTtccgGCCTACGTTCTTCATCGATGCGAGAGC CGAGATATCCGTTGCCGAGAGTCGTTtATGTATCATGGTAAAGACGTctACCAACGACACGCACACCGTTTCCGGGGCGC CCGTGGTTACTCCTTGTTTAAGTTCCTTGGCGCAgaACCgcgcgcCCGGGGTTCATTGTTCgcATCGGGAAGGGAACGAcgAag GATCgcACCAac CCACACACGAGGAGCAGTGGGCAAATCTCAACGTGCCCTCCCAACCGTT
GCTGGGCAGGTATCGACAATGATCCTTCCGCAGGTTCACCTACGGGAAGGCGAATTGCGG CCGCATATTCAATTGCC
\end{abstract}

Closest Genbank Match:
s gb|AF338492.1|AF338492 Juglans nigra isolate 83618 S ribosomal RNA gene, partial
sequence;
internal transcribed spacer 1, 5.8 S ribosomal RNA gene
and internal transcribed spacer 2, complete sequence; and
26 ribosomal RNA gene, partial sequence
Length=750
start position
Score \(=1051\) bits (569), Expect \(=0.0\)
Identities \(=629 / 653\) (96\%), Gaps \(=23 / 653\) (3\%)
Strand=Plus/Minus
\begin{tabular}{llll}
Query & 34 & GCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGTAG \\
Sbjct & 747 & GCTTATTGATATGCTTAAATTCAGCGGGTAATCCCGCCTGACCTGGGGTCGCGATGGTAG & 688 \\
Query & 94 & AGTCGCAAGAACGACACAATAGGGTCGAGGAGCACCTTCACAGCGACGGGCGACACACGA
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sbjct & 508 & \multicolumn{3}{|l|}{GCGTAAGAAGTGTTTGGGG-TTGGGGCA-ACGATGCGTGACACCCAGGCAGACGTGCCCT} & 451 \\
\hline Query & 334 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{CGGCCGGAATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCGTTATGATTCGCGGGATTC}} & 393 \\
\hline & & & & & \\
\hline Sbjct & 450 & \multicolumn{3}{|l|}{CGGCCG-AATGGCTTCGGGCGCAACTTGCGTTCAAAGACTCG--ATGATTCGCGGGATTC} & 394 \\
\hline Query & 394 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TGCAATTCACACCAAGTATCGCATTTTCCGGCCTACGTTCTTCATCGATGCGAGAGCCGA \\

\end{tabular}}} & 453 \\
\hline & & & & & \\
\hline Sbjct & 393 & \multicolumn{3}{|l|}{TGCAATTCACACCAAGTATCGCATTT-C-G-C-TACGTTCTTCATCGATGCGAGAGCCGA} & 338 \\
\hline Query & 454 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
GATATCCGTTGCCGAGAGTCGTTTATGTATCATGGTAAAGACGTCTACCAACGACACGCA \\

\end{tabular}}} & 513 \\
\hline & & & & & \\
\hline Sbjct & 337 & \multicolumn{3}{|l|}{GATATCCGTTGCCGAGAGTCGTT-ATGTATCATGGTAAAGACGTC-ACCAACGACACGCA} & 280 \\
\hline Query & 514 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{CACCGTTTCCGGGGCGCCCGTGGTTACTCCTTGTTTAAGTTCCTTGGCGCAGAACCGCGC
\(\qquad\)}} & 573 \\
\hline & & & & & \\
\hline Sbjct & 279 & \multicolumn{3}{|l|}{CACCGTTTCCGGGGCGCCCGTGGTTACTCCTTGTTTAAGTTCCTTGGCGCAGA-CCGCGC} & 221 \\
\hline Query & 574 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{GCCCGGGGTTCATTGTTCGCATCGGGAAGGGAACGACGAAGGATCGCACCAACCCACACA}} & 633 \\
\hline & & & & & \\
\hline Sbjct & 220 & \multicolumn{3}{|l|}{-C--GGGGTTCATTGTTCG-ATCGGGAAGGGAACGA-GA-GGATCG-ACCAACC-ACACA} & 169 \\
\hline Query & 634 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multirow[t]{2}{*}{685} & \\
\hline & & & & & \\
\hline Sbjct & 168 & & & 117 & \\
\hline \multicolumn{5}{|l|}{Score \(=86.1\) bits (46), Expect \(=2 \mathrm{e}-13\)} & \\
\hline \multicolumn{5}{|l|}{Identities \(=46 / 46\) (100\%), Gaps \(=0 / 46\) (0\%)} & \\
\hline \multicolumn{5}{|l|}{Strand=Plus/Minus} & \\
\hline Query & 675 & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{TGCTGGGCAGGTATCGACAATGATCCTTCCGCAGGTTCACCTACGG 720}} & \\
\hline & & & & & \\
\hline Sbjct & 64 & \multicolumn{3}{|l|}{TGCTGGGCAGGTATCGACAATGATCCTTCCGCAGGTTCACCTACGG 19} & \\
\hline
\end{tabular}

\section*{Appendix 8: Sample 15 consensus sequence and BLAST result}

No significant similarity```

[^0]: $>\quad$ gi $|17065874| \mathrm{emb} \mid$ AJ251683.1|BAL251683 Betula alba 18 S rRNA gene, 5.8 S rRNA gene, 25 S rRNA gene, internal
 transcribed spacer 1 (ITS1) and internal transcribed spacer

