
A METHOD FOR GENERATING

ROBOT CONTROL SYSTEMS

by

Russell C. Bishop

Submitted in partial fulfillment of the requirements

for the degree of

Master of Science in Engineering

in the

Electrical and Computer Engineering

Program

YOUNGSTOWN STATE UNIVERSITY

Youngstown, Ohio

August 2008

A METHOD FOR GENERATING

ROBOT CONTROL SYSTEMS

I hereby release this thesis to the public. I understand that this thesis will be made
available from the OhioLINK ETD Center and the Maag Library circulation desk
for public access. I also authorize the University or other individuals to make
copies of this thesis as needed for scholarly research.

Signature:

Russell C. Bishop Date

Approvals:

Dr. Jalal Jalali, Thesis Advisor Date

Dr. Philip Munro, Committee Member Date

Dr. Frank Li, Committee Member Date

Dr. Peter Kasvinsky, Dean of Graduate Studies and Research Date

ABSTRACT

This thesis presents a method of generating neural-network based control systems

for walking robots. A genetic learning rule is combined with a physics simulation

and scoring system in order to find appropriate weights for these networks. This

approach produces highly robust neural-network control mechanisms that are

capable of handling a wide variety of conditions, such as rough terrain and

randomly varying robot proportions. In each of two test runs, the system was able

to make the robot walk approximately 1.75 meters (5.8 body lengths) in the

physics simulation, over very rough terrain, in 14 seconds of simulation-world

time.

iii

ACKNOWLEDGEMENTS

I would like to thank all of the faculty members in the Department of Electrical

and Computer Engineering at YSU, for helping me to develop the skills necessary

to solve complex engineering problems, and for all of the interesting things that

they have shown me during the past several years. In addition, I would like to

thank Dr. Russell Smith, the other contributors to the ODE project, and the open-

source software community as a whole for providing so many of the tools and

building blocks that helped to make this research possible. Finally, I would like to

thank my friends and family, who helped and supported me throughout my

graduate (and undergraduate) studies.

iv

TABLE OF CONTENTS

ABSTRACT...iii

ACKNOWLEDGEMENTS..iv

1. INTRODUCTION..1

2. NEURAL NETWORK...6
2.1 OVERVIEW..6
2.2 INPUT VECTOR GENERATION...7
2.3 OUTPUT VECTOR GENERATION...8
2.4 WHY THIS ALGORITHM..8
2.5 SOFTWARE IMPLEMENTATION..9

3. GENETIC ALGORITHM...14
3.1 INTRODUCTION..14
3.2 SCORING...15
3.3 SELECTION...17
3.4 CROSSOVER AND MUTATION...18
3.5 SOFTWARE IMPLEMENTATION..19

4. SIMULATION ENVIRONMENT..28
4.1 OVERVIEW..28
4.2 SIMULATION WORLD...28
4.3 QUADRUPED ROBOT BODY..29
4.4 ROBOT BODY OBJECT CLASS...33
4.5 HELPER FUNCTIONS..34
4.6 BODY GEOMETRY PARAMETERS..36
4.7 BODY PARAMETER LIMITS..37
4.8 SIMULATION LOOP...38

5. PERFORMANCE EVALUATION...40
5.1 OVERVIEW AND QUALITATIVE ANALYSIS.......................................40
5.2 QUANTITATIVE ANALYSIS..41
5.3 DISCUSSION OF RESULTS...46

6. CONCLUSIONS AND FURTHER RESEARCH..49
6.1 CONCLUSIONS...49
6.2 CONTINUED WORK WITH THIS BUILD..49

v

6.3 EXTENSION OF CONTROL SYSTEM..50
6.4 POTENTIAL APPLICATIONS...51

APPENDICES...53
APPENDIX A NEURAL NETWORK SOURCE CODE...........................54
APPENDIX B GENETIC ALGORITHM SOURCE CODE......................64
APPENDIX C ROBOT CLASS SOURCE CODE.....................................76

8. REFERENCES..104

vi

LIST OF FIGURES

Figure 2.1: Neural Network Block Diagram..6

Figure 2.2: Block diagram of history buffer object..7

Figure 4.1: Quadruped robot...30

Figure 4.2: Diagram of Single Leg Showing Actuator Indices..............................30

Figure 4.3: Robot Body Core (isometric view), Showing Dimensions..................31

Figure 4.4: Diagram of upper and lower chassis platforms....................................31

Figure 4.5: Diagram of a Leg, Showing Dimensions...32

Figure 4.6: 3D Rendering of the Robot Walking in the Simulation Environment.32

Figure 5.1: Scores Per-Generation for the 30-Perceptron Run...............................44

Figure 5.2: X and Y Displacement for the 30-Perceptron Run..............................44

Figure 5.3: Scores Per-Generation From the 150-Perceptron Run.........................45

Figure 5.4: X and Y Displacement for the 150-Perceptron Run............................45

vii

LIST OF TABLES

Table 4.1: Robot body parameters array...36

Table 4.2: Upper and Lower Robot Parameter Limits..37

viii

1. INTRODUCTION

This thesis describes a method for automatically generating complex

control systems for walking robots. One of the most interesting research fields

today is the development of robots that are able to perform complex and

somewhat arbitrary actions with some degree of reliability. While robotics as a

field of engineering has existed for quite some time now, and robots have been

created which are capable of performing many tasks, it is still very difficult to

create a robot which can effectively navigate complex terrain, or inside buildings.

This is mostly due to the fact that the simple forms of mechanical movement, such

as wheels, are only effective over a narrow range of conditions. A wheeled robot,

for example, may be able to navigate a single floor of a building, or a landscaped

outdoor area, but would normally be incapable of dealing with anything that its

wheels cannot roll over, such as stairs, or rough terrain. For this reason, an

effective walking-robot technology would be very useful.

Designing an effective walking robot is a difficult problem for two distinct

reasons. First, it is actually quite challenging for engineers to design mechanical

systems that exhibit anything close to the combination of speed, strength, size and

weight that exist in biological organisms. This problem tends to either introduce

severe limits on what can be done, or alternatively, cause the cost to construct a

robot to be extremely high. Secondly, and somewhat relatedly, the control system

for an effective walking robot is by necessity very complicated. This is because of

1

the wide variety of conditions under which such a robot must be able to operate; a

simple pre-programmed sequence of movements is not sufficient to provide

reliable walking.

There are many different methods which have been used to provide

intelligent control of walking robots. One approach is the use of Central Pattern

Generators (CPGs), which have been used to control biped robots [1, 2]. Like the

biological systems that inspired this method, a robot using CPG motion control

has a very small neural network in which groups of individual perceptrons behave

like schmidt trigger oscillators. The currently-active perceptrons inihibit the others

until their responses to the input vector override the inhibition. At this point, when

the system begins to switch states, a positive-feedback condition is created which

strongly attracts the system into its next state. These neuronal oscillators can be

connected in a purely feed-forward layout, in which the neurons use only each

other's outputs as inputs, or they can use feedback, in which the inputs to the

neurons are sensor outputs from the controlled system[3]. The behavior of this

system is normally hard-coded, and tends to suffer from most of the same

drawbacks as a pre-programmed gait — it requires a human programmer to

consider each possible situation that it may encounter.

Genetic algorithms have also been used to develop control systems in

walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-

forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5]

2

combine a genetic algorithm with a CPG to produce walking behavior in a

hexapod robot.

In this thesis, a new method is developed which works in a similar way to

[5], in that a neuronal oscillator controller is trained with a genetic learning rule,

but with several key differences. First, the new method uses a relatively large

neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The

network used in this thesis has dozens to hundreds of perceptrons and, in some

cases, upwards of a half-million weights (see test runs in Chapter 5). These

perceptrons are not connected together directly as they are in the CPG, but do

have feedback from the aggregate (system) output. In addition, the system has

some internal memory which stores a certain number of past inputs and outputs.

Thus, the control system can not only “see” the current state of the robot, but also

remembers what has been happening with the physical robot and what it has been

doing. The length of this memory is a user-entered variable, which has been set at

150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the

scoring and selection algorithms used in this thesis are based only on walking

performance; the first training steps used in [5] to initially produce oscillatory

behavior is not present.

For purposes of training the neural network, software is created which

combines a physics simulation with a scoring algorithm. Candidate control

systems are scored on how far they can make a simulated robot walk over

randomly-generated terrain in a given amount of time, and this information is

3

passed back to the genetic algorithm. After each neural network has had a turn,

and received a score, the software ranks them and replaces the lower scorers with

new networks that are created by combining pairs of high-scorers and applying

random mutations. These steps are then repeated until the user decides that a

sufficiently effective one has been produced, based on observation of the 3D-

rendered simulation or the figures of merit introduced in Chapter 5, and terminates

the program.

When the program is first started, all of the neural network weights are

random and the simulated robots are only able to move a very short distance. As

time progresses, however, the robots begin to develop the ability to produce

continuous motion in one direction. In the test runs, the robots began to show

some walking ability within about two days, and were becoming quite effective at

walking after about a week.

While this method still requires some forethought on what types of

situation the robot will encounter, in order to create effective training simulations,

it does not need any hard-coding to be performed. All that is necessary is to create

a 3D “world” with any terrain that the robot might have to navigate, as the

software will randomly place robots in the world and score the control systems on

how well they perform. In addition, the neural networks produced by this software

are not limited to a single type of walking — multiple methods of movement have

been observed in individual networks — which simplifies their integration into a

complete robot.

4

This thesis is organized as follows: In Chapter 2, the neural network

topology is described, as is the method for generating its input vector. There is a

discussion on why it was chosen in section, and why it was expected to be

effective, and its software implementation is described in detail. In Chapter 3, we

discuss the genetic learning rule that is used with the neural network. The scoring

rules that are used in the physics simulation are defined, as are the rules used for

selection, crossover and mutation. Then, the software implementation of the

genetic algorithm is described. In Chapter 4, the physics simulation in which the

neural networks are trained is described, starting with the simulation “world”.

Then, we discuss the quadruped robot body that is used in the simulations, its

physics-engine implementation, and the geometrical parameters that describe

individual robots. Finally, we describe the simulation loop in which the physics

engine, the robot model, the neural network and the genetic algorithm come

together. In Chapter 5, the performance of the software is evaluated. Figures of

merit, collected from two test runs, are presented, and the results are discussed. In

Chapter 6, we discuss our conclusions from this work, and propose some ideas for

further research, as well as some potential applications.

5

2. NEURAL NETWORK

 2.1 OVERVIEW

The neural network used in this project consists of a single layer of parallel

perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but

with an outboard genetic learning rule rather than the one described in that work.

Each perceptron has a set of input weights that determines its response to a given

set of inputs, an activation function which, in this thesis, is a unit-step function,

and a set of output weights, which are multiplied by the output of the activation

function (1 or 0) and added to the system output vector. This neural network

operates in discrete time, evaluating sampled inputs and producing outputs at fixed

time intervals. A block diagram of the neural network, and its associated memory

stacks, is shown in Figure 2.1.

Figure 2.1: Neural network block diagram

6

2.2 INPUT VECTOR GENERATION

Inputs to the neural network come from three sources: body sensors,

command and control signals, and previous inputs and system outputs. Past inputs

and outputs come from a type of stack buffer where data travels down the stack

and is discarded when it passes the last level. These historical data are used for

two purposes: as inputs for the neural network, and as training data for a second

learning rule that is implemented in the software, but not currently being used.

The organization of this stack is shown in Figure 2.2.

Figure 2.2: Block Diagram of History Buffer Object

7

2.3 OUTPUT VECTOR GENERATION

On each time step, the input vector to the neural network is generated by

concatenating the body sensor and command inputs with the past inputs and

outputs from the history buffer objects. This vector, I_sys, is multiplied (dot

product) with each perceptron's input weight vector, W, to give the postsynaptic

potential (PSP). The output of the perceptron is the unit step function of the PSP,

multiplied piecewise by the perceptron's output weights to give its contribution,

Rn, to the system output vector, Rs. This may be expressed as follows:

Rn = u(I_sys • W) (2.1)

Rs = Σ(Rn) (2.2)

2.4 WHY THIS ALGORITHM

At this point, some information is given regarding why this system can

work. First, due to the fact that the number of perceptrons is much larger than the

number of outputs, this algorithm is a universal function approximator[6]. This

means that it can implement an arbitrary bounded function given the correct

weights, even when the network has only a single hidden layer. Because the

outputs of this neural network determine the rate of change in the actuator

positions on the robot, the result is a system of nonlinear partial differential

equations which, depending on the weight vectors and the physical properties of

the robot, are capable of producing an extremely wide variety of behaviors

8

(although not all behavior is technically possible, as there are physical limits on

speed, force, and acceleration). Due to the way the data propagate through the

history buffers, and thus constantly change position with respect to the input

weights, it is relatively difficult for the system to reach a stable state where the

robot does not move. Instead, this tends to encourage strange attractors, which

produce repetitive, but not necessarily periodic, motion.

2.5 SOFTWARE IMPLEMENTATION

This neural network is implemented in C++ as the mcNeuron object class

(in which the “mc” is short for “Motion Control”). It is organized in a linked list,

where each instance represents one perceptron, and holds a pointer to the next

perceptron in the chain. The advantage to this type of organization is that the

source code can be kept short, as a large portion of the compiled machine code is

automatically generated by the compiler itself. This also helps prevent errors by

making the source code more readable, and relying on the very mature code-

generation algorithms used in the compiler. The source code for this object class is

given in Appendix A, and its member functions are described below:

● void rnNet(float* inputs, historyBuffer* iHistory, historyBuffer* oHistory,

 float* outputs)

This function multiplies the input weights of the perceptron (dot product)

by the concatenation of inputs, iHistory, and oHistory, and if the result is

positive, add its output weights to outputs. If there are more perceptrons in the

chain, as indicated by a non-null “next” pointer, then this function is called in

9

the next node, with the same parameters. Thus, one call to the first perceptron

in the chain propagates to all of them.

● void updateNet(float scale, historyBuffer* iHistory,

 historyBuffer* oHistory)

This function implements a second learning rule, which is not used in this

project. It was replaced by the genetic algorithm very early in development.

When called, it multiplies scale by values from iHistory and oHistory, and

adds this to its input weights. Like rnNet, it propagates through all perceptrons

in the chain.

● void iW_preset(float * newWeights)

This Function sets the input weights to the values stored in newWeights. This

function is recursive, and if the perceptron has a non-null “next” pointer, will

call the same function in the next perceptron. In this case, the pointer is

advanced by the number of input weights, so that one large array can be used

to set all of the input weights in a chain.

● void iW_preset_justOne(float * newWeights)

This function is the same as iW_preset(), but is not recursive.

● void oW_preset_justOne(float * newWeights)

This is the same as iW_preset_justOne(), but acts on the output weights instead

of the input weights.

10

● mcNeuron *getNext()

This function returns a pointer to the next perceptron in the chain, or NULL if

a next node does not exist.

● mcNeuron *cutNth(int index)

This function cuts the chain at the Nth node, and returns a pointer to the

removed segment. It works by recursively propagating down the chain while

decrementing index, until index = 1. When this condition is true, the node sets

its “next” pointer to NULL, and returns the value that was in that pointer. The

returned pointer propagates back up the chain as the CPU falls down through

the call stack, until the first called node finally returns it to the calling function.

● void setNext(mcNeuron * newNext)

This function sets the “next” pointer in the called node to newNext.

● void appendChain(mcNeuron * newSegment)

This function appends the chain specified by newSegment to the end of the

called chain. It works by recursively propagating down the chain until it is

called on a node whose “next” pointer is null, and setting that pointer to

newSegment.

● float *getIWeights()

This function returns a pointer to the input weights for the called perceptron.

● float *getOWeights()

This function returns a pointer to the output weights for the called perceptron.

● void setRandomOWeights(float maxValue)

11

This function sets the output weights of the perceptron to random numbers,

varying from -maxValue to +maxValue. It is recursive, and operates on each

node in the chain until a null “next” pointer is reached.

● void setRandomIWeights(float maxValue)

This function is the same as setRandomOWeights(), but operates on the

input weights.

● void setCascadingOWeights(float weight, int oIndex)

This function sets the output weight specified by oIndex to weight, and sets all

others to zero. If the “next” pointer is not null, it calls the same function on the

next node, with the parameters set by the following two rules:

 If oIndex is less than the number of output weights, increment oIndex.

 If oIndex is equal to the number of output weights, then the next oIndex is

zero, and the next weight is -weight.

Note that this function is not called in the final build of the software.

● void shakeIptWeights(float maxValue)

This function adds a random number, which varies from -maxValue to

maxValue, to each of the input weights. It is recursive, and operates on all

perceptrons in the chain. After the random values are added, the weight vector

is normalized.

● void shakeOptWeights(float)

This function is the same as shakeIptWeights(), but operates on the output

weights.

12

● void mutateIptWeights(float maxValue)

This function selects a random, continuous segment of the input weights and

replaces them with random numbers, which vary from –maxValue to

maxValue. It is not recursive (it operates on only one perceptron), and is called

by the much more extensive mutation function in the genetic algorithm class.

● void mutateOptWeights(float)

This is the same as mutateIptWeights(), but operates on the output weights.

● void svNet(ofstream * saveFile)

This function saves the input and output weights of a perceptron to the fstream

object pointed to by saveFile. It is recursive, so the entire network will be

saved when it is called on the first element in the chain. Note that the fstream

object has an internal index that counts up as data are saved, so the function

can be called on multiple chains with one open file, and they will all be saved

in order.

● void ldNet(ifstream * loadFile)

This function loads the input and output weights stored in the fstream object

pointed to by loadFile into the input and output weights. It is also recursive,

and operates in the same way as svNet.

13

3. GENETIC ALGORITHM

3.1 INTRODUCTION

The neural network described in Chapter 2 is trained using an outboard

genetic search algorithm, which operates on the entire network, rather than

individual perceptrons. Each candidate neural network is given a turn to control a

randomly generated robot in a physics simulation, and scored based on its

effectiveness at making the robot walk. Like all genetic algorithms, this one

combines randomness, selection, crossover, and mutation to search the space of all

possible input and output weight vectors. Due to the extremely large search space,

and the fact that there are large clusters of viable solutions (different types of

walking) with fitness functions that tend to be somewhat continuous, this problem

should be particularly well-matched to the properties of a genetic algorithm [7].

Selection is based on a floating-point score that is generated by evaluating

the network's efficacy in controlling a simulated robot. In order to function, a

genetic algorithm must find a region in the search space where there exists a score

gradient before it can begin to function as a genetic algorithm; before this happens

it implements only a random search. As a result, the search must happen upon a

region with a fitness gradient, by chance. If these regions fill too small a portion of

the total search space, it can take a very long time for the search to locate one of

them. For this reason, points must initially be awarded for results that are not

directly useful, but which are likely to be connected to a useful region by a

“bridge” of scores that are high for their particular region[7].

14

3.2 SCORING

At the start of a turn, the software drops a robot into the “world” at a

random position and begins stepping its neural network along with the physics

engine. In order to reduce noise in the score due to a random bounce when the

robot falls a short distance to the ground, and reduce the tendency for the system

to waste time early on by simply making the robots lean forward, there is a delay

of approximately two seconds in simulation time before the software records the

robot's “start” position. At the end of the turn, the start position is subtracted from

the ending position, and points are awarded according to the following five rules:

1. Score is awarded for any movement that occurs, regardless of direction. Early

in the process, this causes the system to select the neural networks that cause

the system to exhibit those attractors that produce constant motion. This causes

oscillatory behavior to be learned early in the evolutionary process, and is what

replaces the initial learning step used in [5], where fitness functions were

assigned to per-leg oscillations.

2. The population member receives points a second time for movement in the

desired direction, as determined by a dot product, but only if that number is

positive — a negative score here is counted as zero. As a result, it is possible

for an individual to receive up to two points per meter for moving in the

correct direction.

3. A two-point penalty is assessed if the robot is upside-down at the end of the

turn, which can occur quite easily due to the physical characteristics of this

15

particular robot design. The purpose of this penalty is to avoid behavior that

emerged in some of the earliest tests, where the robot would roll forward, and

then hop along upside-down by kicking its legs.

4. A user-configurable penalty is assigned each time the robot chassis comes into

contact with the ground. There is a delay of approximately 1 second in

simulation time after a ground impact is registered, before the counter can be

incremented again. This prevents large penalties from accruing quickly if the

chassis remains in contact with the ground for a period of time. From the test

runs that have been performed, it was found that this penalty needs to be very

small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05

was used. It may be effective to increase this penalty slowly after the system

has learned to walk, but this has not yet been tested.

5. The population member retains half of the score it received in the previous

generation, so that a single weak performance is not likely to “kill” a high-

scoring neural network. While this last rule can sometimes prevent a more-fit

individual from displacing a less-fit one, the effect quickly fades away when

an individual performs poorly for two or more generations. It also is not

typically enough to prevent displacement in the case of a very low, or negative,

score. For this reason, several replacements still occur in most generations.

16

3.3 SELECTION

At the end of a generation, all members of the population are sorted by a

ranking algorithm, so that those with the highest score appear in the earliest

positions. In order to select each parent for the next generation, a random floating-

point number in the range [0, 1] is generated, and squared, so that the new

probability distribution will tend toward zero. This new number still falls within

the same range, but has an average value of ¼ instead of ½ — thus selecting

higher-scoring individuals more often than low-scoring ones. This number is then

multiplied by the size of the population, cast to an integer, and used to index a

neural network that will be the “parent” of a new population member. Note that

the random number could also be raised to any other positive power, or another

function could be used to provide a different probability distribution, although

these options have not been investigated. A second method which has been tested

is to instead multiply the square by the maximum score in the population, and then

take the weakest member above that score, but it appears to be too aggressive for

the small populations that are feasible on a current PC, and was found to cause

problems with early convergence. This cause of this problem is that the highest

score in a generation tends to be much higher than the average score, or even the

average of the top 5 scores, as shown in Chapter 5. The top scoring population

member thus tends to be chosen as a parent very often by this rule, which causes

the diversity in the population to disappear rapidly, leading to the early

convergence problems that were observed.

17

3.4 CROSSOVER AND MUTATION

After the two parent networks are selected, a new neural network is created

by combining them. Each perceptron in the child is created by randomly selecting

the perceptron at the same position from one of the parents, and occasionally

introducing a random mutation. These mutations can take any of the forms

outlined below:

● A random, continuous, segment of the perceptron's input weights is chosen,

and replaced with a string of random numbers. This permits behavior to drift

over time at the individual perceptron level.

● A perceptron's output weights are rotated, so that all of its effects are

“mirrored” to the opposite side of the body (either side-side or front-back can

occur). At the same time, the perceptron's response is time-delayed by a

random amount by doing a circular shift on its input weights by an integer

multiple of the number of inputs. The purpose of this mutation is to encourage

symmetry in the robot's motion, and allow effective behavior that evolves in

one leg to eventually propagate to the other legs.

● At the population-member level, the software randomly selects a continuous

group of perceptrons, and moves them to a new position in the list. This has no

direct effect, but makes it possible for a new child to be created with multiple

perceptrons that originally occurred at the same position. For example, the

child could contain four nodes that were all at position 25 in its grandparents.

● After the new perceptron is generated, all of its weights (both input and

18

output) are randomly adjusted by a small amount, and the input weights vector

is normalized.

3.5 SOFTWARE IMPLEMENTATION

The genetic algorithm is implemented by the mcEVO object class, which

manages the population, and two helper functions, rankNodes() and breedNets(),

which perform the genetic operations.

The mcEVO class encapsulates the neural network and its associated

history buffers in such a way that the entire population can be accessed through

one pointer. It also stores the geometry for the randomly generated robots. The

source code for this class is given in Appendix B, and its member functions are

described below:

● mcEVO(int popSize, mcEVO * previous, dReal * geomMin, dReal *

geomMax)

This is a chain constructor which builds a population of popSize. It does not

generate the neural networks (this is done in a separate call), but it does

generate a random set of robot-body proportions for each element. The input

variable geomMin should point to an array containing the lower limits for each

body dimension, while geomMax should contain the upper limits. These

parameters are described in detail in the simulation section of this thesis.

Previous is used internally to this chain constructor, and should be set to

NULL when it is called from outside.

19

● ~mcEVO()

This destructor operates on the entire chain, deleting all nodes and any

perceptron chains that were attached to them.

• mcEVO * getMax(mcEVO * curBest, float curMax)

This function returns a pointer to the node in the chain with the highest

score value. The input variables curBest and curMax are used internally as

the function recurses through the chain; it should thus be called with

curBest = NULL and curMax set to a large negative number (-10 is

sufficient in this case).

• void setPrevious(mcEVO * newPrevious)

This function sets the “previous” pointer for the called node to

newPrevious.

• void setNext(mcEVO *)

This function sets the “next” pointer for the called node to newNext.

• void detach()

This function detaches the called node from the chain, calls

previous->setNext(next) and next->setPrevious(previous), and sets its own

previous and next pointers to NULL. Thus, the node is removed from the

chain, and the chain is spliced back together.

• mcEVO *getNext()

This function returns the value in the “next” pointer of the called node.

20

• mcEVO *getPrevious()

This function returns the value in the “previous” pointer of the called node.

• mcEVO *getFirst()

This recursive function can be called on any node in the chain. It calls

previous->getfirst() until previous = NULL, then returns a pointer to that

node.

• mcEVO *getLast()

This function works in the same way as getFirst(), but recurses down the

chain instead of up, and returns a pointer to the last node.

• float getScore()

This function returns the score stored by the called node.

• mcEVO *getLastAbove(float minScore)

This function recurses up the chain until it reaches a node whose score is

higher than minScore. It then returns a pointer to that node. Note that this

function is called on the last node in the chain (rather than the first), and is

intended to be used after the ranking operation is complete. See the section

on the rankNodes() helper function below.

• mcEVO *getNth(int N)

This recursive function extracts a pointer to the Nth node in the chain. It

works by calling itself on the next node in the chain, while decrementing N,

until N = 0. It then returns a pointer to the node where this occurred.

21

• void insBefore(mcEVO * newNode)

This function inserts the node pointed to by newNode into the position

preceding the called node. It sets its own “previous” pointer to newNode, and

calls setPrevious() and setNext() on the new node, and setNext() on the

current previous node, so that the chain is still continuous in both directions.

• void dumpScores()

This recursive debug function causes all nodes in the chain to send their

scores to stdout.

• void dumpWeights()

This debug function causes all nodes in the chain to send their weights to

stdout. Note that there can be many millions of weights, which can cause

problems depending on the terminal program from which the software is run.

• void setScore(float newScore)

This function sets the score stored by the called node to newScore.

• dReal *getParams()

This function returns a pointer to the robot-body geometry parameters

stored by the node.

• void appendChain(mcEVO * newSegment)

This function causes the chain starting at newSegment to be appended to the

end of the chain holding the called node. It recurses down the chain

until next = NULL, then sets next = newSegment and calls

22

newSegment->setNext(this).

• int killLast(int numDeleted)

This function deletes the last numDeleted nodes in the chain. It works by

recursively calling itself on the next node until next = NULL, then returning

numDeleted. As the CPU falls back up through the call stack, each recursion

subtracts one from the returned number and returns that, thus counting down

toward zero. When the return value is zero, the node calls delete next, and sets

next = NULL. All nodes below this point are then deleted by the chain

destructor, as described above.

• void svBrains(ofstream * saveFile)

This recursive function saves all of the neural networks being managed by

a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron

chain pointed to by each node in the chain, and then calling itself on the next

mcEVO node. Note that the fstream object class counts and records the current

position within the file, which greatly simplifies this implementation.

• void ldBrains(ifstream * loadFile)

This function works in a similar way to svBrains(), but loads the neural

network weights from a file into all of the mcNeuron objects being managed

by the called mcEVO chain.

• void mkBrains(int numPerceptrons, int RHL, int THL)

This recursive function causes all nodes in the mcEVO chain to generate

23

neural networks and history buffer lists using the chain constructor for the

mcNeuron class. The neural networks thus created have numPerceptrons

perceptrons, and both history buffers (one for input variables, and one for

output variables) have RHL + THL nodes. Note that this function, in its

current implementation, assumes that each neural network has 34 inputs and 16

outputs. This will change when the class is adapted away from this project for

general-purpose use.

● void mkBrains_random(int numPerceptrons, int RHL, int THL, float * array)

This function works in the same way as mkBrains, but fills the input and

output weight arrays with random numbers rather than leaving the memory

uninitialized. Array points to an array of type float that is large enough to hold

all input and output weights, which was used internally in a different version of

this function. It has not been removed, because that version has not yet been

fully evaluated at the time of this writing. For the version of the function used

in this thesis, array can be set to NULL.

● mcNeuron *getBrain()

This function returns a pointer to the first node in the mcNeuron chain

being managed by the called mcEVO node.

● historyBuffer *getIHist()

This function returns a pointer to the first node in the input history buffer

chain being managed by the called mcEVO node.

24

• historyBuffer *getOHist()

This function returns a pointer to the first node in the output history buffer

chain being managed by the called mcEVO node.

• void setIHist(historyBuffer *)

This function sets the input history buffer chain to be used by the called

node.

• void setOHist(historyBuffer *)

This function sets the output history buffer chain to be used by the called

node.

The core features of the genetic algorithm, including selection, crossover,

and mutation, are implemented in two helper functions that are written to operate

on a mcEVO chain. These functions are:

● rankNodes(mcEVO * target)

This function performs a sorting operation on the mcEVO chain beginning

at target. The nodes are ranked in order of descending score. Note that, after

the ranking is complete, target is no longer the first node in the chain.

However, the member function getFirst() can be called on target, and the first

node will be returned.

● breedNets(mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin,

dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut,

float iRnd, float oRnd)

25

This function implements almost all of the actual genetic algorithm, and is

called after rankNodes(). Its arguments are as follows:

 thePopulation is a pointer to the mcEVO chain on which the function will

operate.

 popSize is the size of the population.

 nReplaced is the number of population members that be replaced with

newly created candidates.

 pMin is a pointer to the array containing the lower limits for the robot body

parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).

 pMax is a pointer to an array containing the upper limits for the robot body

parameters.

 nNeurons is the number of perceptrons in each population member.

 RHL is the length of the history stack used by the neural networks as

inputs.

 THL is the length of the history buffer used for an additional learning rule

that is not used in this thesis, but is implemented in the mcNeuron class.

Note that the total length of the stacks is equal to RHL + THL.

 mutProb is the probability that a mutation will occur in any given

perceptron.

 maxMut is the maximum magnitude of the random numbers that a segment

of a perceptron's input weights will be replaced with, when this type of

mutation occurs (see section 3.4). The newly generated weights will thus

26

vary from -maxMut to maxMut. Note that this value should be chosen so

that its average magnitude is approximately equal to the average magnitude

in the input weight vector, so that the newly created weights do not swamp

the other weights. Because the input weights vector is normalized, the

value of maxMut used in this thesis is set to 2 * sqrt(1 /

number_of_input_weights).

 iRnd is the maximum magnitude of the random numbers that are added to

each input weight, after the perceptron is created and all mutations are

applied, and before the input weight vector is normalized.

 oRnd is the maximum magnitude of the random numbers that are added to

the output weights. Note that the output weights are never normalized.

27

4. SIMULATION ENVIRONMENT

4.1 OVERVIEW

The software in which the robot controllers are trained is based on a free

and open-source rigid body physics engine called OpenDE or ODE [8], which is

short for “Open Dynamics Engine”. This engine was orignally created by Russell

Smith, and is currently being maintained and extended by a community of

volunteers. It is distributed under two separate licenses — the GNU LGPL and a

BSD-style license — such that a user can choose either of them. Thus, it may be

used in free or commercial software, with very few restrictions. The most

significant restriction in the BSD-style license is that the original work must be

cited. This physics engine provides general-purpose simulation of articulated

bodies, in addition to collision detection, and is primarily intended for use in video

games. It has become popular enough in robot simulations, however, that there

have been robot-simulation software packages[9] created and even a book[10]

written about modeling robots in ODE.

4.2 SIMULATION WORLD

The simulation “world” consists of two parts — a randomly generated

height map (the “ground”), and a randomly proportioned robot model. The height

map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space.

At each grid point, the height is set to a random number so that all heights fall

within a 0.13m range.

28

The robot body is generated and inserted into the world by the spiderBody

object class (see section 4.4). A majority of the code in this class, about 1500

lines, comprises the constructor function, which performs the following steps:

● Create the core body of the robot, which consists of three ODE primitives, set

up its mass and inertia matrix, add its collision detection geometry, and insert it

into the world.

● Repeat the previous step for the upper legs and lower legs.

● Calculate the starting positions / rotations for the legs, and move them to those

locations.

● Attach the legs with the appropriate ODE joints (ball joints at the hips and

hinge joints at the knees).

● Calculate the base / tip positions of the actuators, and call genActuator() on

each one.

4.3 QUADRUPED ROBOT BODY

The robot body used in these simulations is shown in Figure 4.1. This robot

has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear

servos controlling a single leg are shown in Figure 4.2; their effects are as follows:

1. Works with Actuator 2 to control the direction of the axis of the upper leg.

2. Works with Actuator 1 to control the direction of the axis of the upper leg.

3. Controls the rotation of the upper leg about its axis. The effect of this actuator

is interdependent with Actuators 1 and 2.

4. Controls the bending angle of the knee joint.

29

Figure 4.1: Quadruped Robot

Figure 4.2: Diagram of a Single Leg Showing Actuator Indices

30

The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5.

These dimensions correspond to those shown in Table 4.1, and the upper and

lower limits given in Table 4.2.

Figure 4.3: Robot Body Core (isometric view), Showing Dimensions

Figure 4.4: Diagram of Upper and Lower Chassis Platforms

31

Figure 4.5: Diagram of a Leg, Showing Dimensions

Figure 4.6: 3D Rendering of the Robot Walking in the Simulation

Environment

32

Figure 4.6 shows a 3D-rendered example of the robot. This image was

made from a screenshot of the robot walking in the simulation software. The gray

actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators

correspond to Actuator 3, while Actuator 4 is not shown in this picture because it

is handled outside ODE, in order to increase the speed of the software, and not

drawn when the scene is rendered.

4.4 ROBOT BODY OBJECT CLASS

The ODE objects which model the robot body are created and manipulated

through the spiderBody object class. The source code for this class is given in

Appendix C. Aside from the constructor and destructor, the robot body class

implements the following member functions:

● dReal getPos(int index)

Returns the current length, in meters, of the linear actuator specified by index,

with respect to its starting length. Negative numbers indicate that the actuator

has retracted, while positive numbers indicate that it has extended.

● dReal getVel(int index)

Returns the linear speed, in meters per second, of the actuator specified by

index, where negative numbers indicate that the actuator is retracting and

positive numbers indicate that it is extending.

● void addForce(int index, dReal force)

Adds a 3rd law pair of forces of magnitude force to the two ends of the

actuator specified by index, which are directed along its axis. This is the

33

source of all of the driven motion in the physics simulation, except for the four

knee joints.

● void addKneeTorque(int index, dReal torque)

Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower

leg specified by index. This is the source of all driven motion at the knee

joints.

● dReal getKneeAngle(int index)

Returns the current angle, in radians, of the knee specified by index. This

angle is measured from the direction of the upper leg (if the knee is straight,

the angle is zero), and increases as the lower leg bends downward.

● dReal getKneeOmega(int index)

Returns the current angular speed, in radians per second, of the knee

specified by index.

● dBodyID getCore()

Returns the ODE body ID of the robot chassis. This is used in the collision

detection callback to count collisions between the chassis and ground

(which incurs a small score penalty).

4.5 HELPER FUNCTIONS

In addition, there are three helper functions that are not members of the

robot body class, but are used with it. All three of these functions relate to the

actuator that drives each knee, but is external to the ODE world in order to

34

increase processing speed. The source code for these helper functions is given in

Appendix C, and they are described below:

● dReal calcKneeActOffset(dReal angle, dReal KBR, dReal KLL)

Calculates the position of the knee actuator tip, in meters, with respect to the

knee joint. This position ranges from zero to the length of the upper leg. Angle

specifies the angle of the knee joint, in radians, as returned by

spiderBody::getKneeAngle(int), KBR is the distance between the knee

joint and the link attachment point on the lower leg, and KLL is the length

of the linkage itself.

● dReal calcKneeTorque(dReal Angle, dReal slidePos, dReal KBR,

dReal F)

Returns the torque applied to the knee joint by a force F in the knee actuator.

The input variable, slidePos, specifies the position of the knee actuator, as

defined above, while F is the linear force in the actuator. Angle and KBR are

the same variables described above.

● dReal calcKneeActVel(dReal Angle, dReal slidePos, dReal KBR,

dReal w)

Returns the linear speed of the knee actuator, in meters per second, given the

angular speed of the knee joint, in radians per second. The input variable w is

the angular speed; other inputs are the same as described above.

35

4.6 BODY GEOMETRY PARAMETERS

The body parameters, which are set at random by the software and passed

to the robot body constructor in a parameter array are listed in Table 4.1. These

parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index

column specifies the position in the array, while the Macro column gives the

three- or four-letter macro by which the variables are referenced in the source

code (see section 4.4 and Appendix C). Note that all linear dimensions are in

meters, while all mass parameters are in kilograms.

Table 4.1: Robot Body Parameters Array

Index Variable Macro

0 Upper platform (chassis) radius UCR
1 V actuator upper mount offset (from centers of UP) VAO
2 Distance between upper and lower platforms RISE
3 Lower platform radius LCR
4 Upper leg length ULL
5 Lower Leg Length LLL
6 Distance hip -> V ball on upper leg IBR
7 Hip rotation linkage length RBR
8 Knee link length (Obsolete; now set automatically) KLL
9 Distance knee -> knee link attachment KBR
10 Upper platform mass UPM
11 Lower platform mass LPM
12 Square tubing density (mass / unit length) LINDENS
13 Platform and Leg thickness THICK
14 Starting Position X POSX
15 Starting Position Y POSY
16 Starting Position Z POSZ
17 Upper leg zero angle ULZA
18 Leg rotation zero angle LRZA
19 Lower leg zero angle LLZA
20 Foot ball radius FBR
21 Foot ball mass FBM
22 V Actuator base mass VABM
23 V Actuator tip mass VATM
24 Rotational Actuator base mass RABM
25 Rotational Actuator tip mass RATM
26 Upper leg mass ULM

36

4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within

a set of upper and lower limits defined by two limit arrays. The purpose of this

variation is to train the neural networks to control a range of robots, rather than

just a single example, to increase their resistance to the effects of small changes

when going from the simulated robots to a physical one. The values used in the

lower and upper limit arrays are given in Table 4.2.

Table 4.2: Upper and Lower Robot Parameter Limits

Index Macro Variable Description Lower Limit Upper Limit

0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9 KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52

37

4.8 SIMULATION LOOP

On each step through the simulation loop, the inputs to the control system

are updated with the force and position values for all of the actuators. The position

values for the 12 upper leg actuators are obtained from ODE, using the getPos()

member function of the robot body class, while the motion speeds for these

actuators are obtained using getVel(). The knee actuator positions and speeds are

calculated from the knee angles and angular velocities, which are obtained from

ODE using the getKneeAngle() and getKneeOmega().

For all actuators, including the ones for the knees which are handled

externally to ODE, the position is zero as seen by its control-system input at

whatever position the actuators are created in. These zero positions are also used

to define the actuator position variables which are modified by the outputs of the

control system. The difference between these “set” position variables, and those

returned by ODE, or calculated from angular values, in the case of the knees, are

used to calculate the force in each actuator using a simple damped-spring

equation:

F = -ks * (actual position – set position) – kd * (actuator speed)

where ks is a spring constant, and kd is a damping coefficient.

The spring constant for knee actuators is 1500N/m; for other actuators it is

1100N/m, and the damping coefficient is 30N*s/m. These values are based on

measurements taken from a prototype linear actuator.

38

The calculated forces for all actuators except those in the knees are sent

back to ODE through the robot body class using the addForce(index, force)

member function, as well as to the control system as force-sensor inputs. The

forces for the knees are converted to torque values, and sent to ODE using the

addKneeTorque(index, torque) member function.

The actuator set positions are produced by the control system outputs

through a double integral. The control system is able to set acceleration values for

the actuators, up to a certain maximum acceleration, and these values change the

speed of the actuators (the rate of change of the set value), up to a certain

maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum

speed is 0.35m/s, both of which are based on measurements taken from a

prototype actuator.

In addition to position and force measurements, the control system also has

two other inputs that describe the desired direction of travel with respect to the

robot. These two values are dot products of a unit vector pointing in the desired

direction with the robot's local X and Y vectors. These are treated exactly the

same as the sensor inputs, and propagate through the history stack in the same

way.

39

5. PERFORMANCE EVALUATION

5.1 OVERVIEW AND QUALITATIVE ANALYSIS

For a system such as this, the most definitive performance criterion is

whether the robots begin walking in an effective way within a reasonable amount

of time, while operating on a computer which is economically feasible to the user.

During and after the development of this software, many test runs were performed,

using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In

eac test, the AI always either learned to walk, or found a way to work around the

rules and “cheat”, within a few days.

In the earliest runs, there was no penalty for being upside-down, which

resulted in the robots' bouncing and rolling forward as far as they could upon

dropping into the world, then kicking their legs and hopping forward while

upside-down. Some of them also managed to tilt 90 degrees to the side and roll a

good distance, effectively doing cartwheels, before falling down. When the

penalty was added and the software re-run, a population of robots was produced

fairly quickly that would hop forward, like frogs. At this point, a bug in the

physics simulation code was found and fixed, and the first population of actual

walkers was produced on the following run. For this test, the software was

allowed to run for a period of approximately three weeks in real-time, in which

time the it became very good at making the robots walk—at the end of this run,

the robots were moving about 16 body lengths in 14 seconds of simulation time,

which is quite fast given the physical characteristics of the robot and the limits that

40

were in place on how fast the actuators were allowed to move and accelerate (see

Chapter 4).

5.2 QUANTITATIVE ANALYSIS

In order to obtain a quantitative analysis of the performance of this system,

a pair of test runs was done, with different parameters for the neural network. A

special version of the software was created for these runs, which has the added

feature of creating the log files that are used in the analyses below. These log files

are formatted as plain text, with one line for each population member evaluated.

The entries on each line are as follows:

● The index of the current population member. This ranges from 0 – 39, as a

population size of 40 was used for all of the runs that used a log file.

● The score that the population member retained from the last generation,

according to scoring rule #5 (see section 3.2).

● The number of times the chassis came into contact with the ground, as

described in rule #4.

● The score given for any movement at all, as described in rule #1.

● The movement of the robot in the X direction.

● The movment of the robot in the Y direction.

● The final score passed back to the mcEVO node.

Results from two of these logged runs are included in this section. In these

runs, each neural network is given a turn of 2000 time steps in which to control its

robot. The starting positions are recorded after a delay of 250 time steps, which

41

gives an effective turn length of 1750 time steps. Each time step for the neural

network represents 0.012 seconds of simulation time, so there is a period of

approximately 21 seconds in simulation time for which movement is recorded.

Both tests are identical in all respects, except that one uses a neural network of 30

perceptrons, with a memory of 250 time-steps while the other uses 150

perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is

equivalent to approximately 3 seconds of simulation time, while 150 time-steps is

equivalent to about 1.8 seconds. For these runs, the desired direction is always

along the X axis, and the ground impact penalty is very small (0.05). Changes to

these rules can be implemented slowly through a modification to the software —

the desired direction will take random values that slowly drift away from the X

axis, while the ground-impact penalty will slowly increase. This is not done here

due to the length of time the software has to run before a new adaptation is made.

The results from the log files were post-processed using a second program,

which was written to parse the data from the logs and extract the following data

sets for each generation:

● The maximum score attained by any population member during the generation,

excluding any score carried over from the previous generations.

● The top 5 scores from the generation.

● The average value of the top five scores from the generation.

● The maximum score ever achieved, in the current or any previous generation.

42

● The total movement in the X and Y directions for the top 5 scorers in the

generation.

Figure 5.1 shows the top score results vs. generation from the 30-

perceptron test. There are three data sets on this plot: the top score attained during

the generation (orange), the average of the top five scores (purple), and the

running maximum score (black). These scores are a figure of merit which

represents the performance of the neural networks with respect to all of the

scoring rules that are discussed in Chapter 3. A plot of the total movement in the

X direction (orange) and the Y direction (purple) for the top scoring neural

network in each generation is given in Figure 5.2. Unlike the scores shown in

Figure 5.1, these movement figures provide concrete values that are relevant

outside the context of the genetic algorithm — they represent the actual distance

that the simulated robots were able to walk during the time allotted.

Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively,

but are taken from the 150-perceptron run. They show data taken from a smaller

number of generations, but the same amount of real-world run time. This is

because the software runs more slowly when a larger neural network is used.

43

Figure 5.1: Scores Per-Generation for the 30-Perceptron Run

Figure 5.2: X and Y Displacement for the 30-Perceptron Run

44

Figure 5.3: Scores Per-Generation From the 150-Perceptron Run

Figure 5.4: X and Y Displacement From 150-Perceptron Run

45

5.3 DISCUSSION OF RESULTS

Note that the first run (30-perceptrons) went for 405 generations, while the

second (150-perceptrons) run was only 240 generations. Both tests ran for

approximately 11 days in real-world time, each running on one core of the same

CPU, but the larger neural network slowed down the software considerably on the

second run. This is to be expected, as the neural networks from the first run

consume only 59MB of RAM, while those from the second run consume 179MB

—and all of these weights need to be processed 2,000 times per turn, and 160,000

times per generation.

Several other things are apparent from Figures 5.1-5.4. First, the data has

quite a bit of randomness in it—there is a large amount of inconsistency between

generations in both the scores and displacements. Secondly, while the scores are

generally rising as the generations progress, they do so in a very chaotic way, with

relatively flat periods and periods of rapid increase. There is even what appears to

be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show

the X component of motion increasing with the score, while the Y component

remains approximately centered at zero, but with steadily increasing random

variation.

The first observation can be explained by the fact that the robots the system

is being asked to control are randomly generated. Thus, a neural network that

performs well in one generation may be do poorly with the robot it is given in the

next generation. This is intentional, as the goal is to evolve a control system which

46

is effective in a wide variety of robots (thus increasing the chance that it will work

well with a physical robot in the real world). In addition, it is possible for an

otherwise strong-performing control system to flip its robot upside-down,

obtaining a very low (or negative) score in the process. This tends to be especially

likely with the very high scoring individuals in any generation, as they tend to be

the “risk takers”. This issue can be exacerbated by the randomness in the robot

parameters, as a behavior that is only slightly risky in one robot may be fatal in

another.

The chaotic nature of the increases in score over time can be explained by

the properties of the genetic algorithm. The software is continually recombining

the same characteristics into new population members, only occasionally

happening upon a new adaptation that results in significantly higher scores. It

takes time, however, for this adaptation to propagate through the population, and

be optimized to work in a consistent way. Thus, there can be a very large jump in

the running maximum, creating a “high score” that holds for quite some time. The

apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to

the “deaths” of several population members which, while high-scoring, were also

highly inconsistent. This is backed up by the fact that the randomness in the plot

drops off very quickly during the same few generations, and remains smaller than

before as the scores recover.

The movement in the X direction (which is always the “desired” direction

in these two runs, as explained above) behaves as one would expect; it appears to

47

increase along with the scores. The Y movement, however, remains approximately

centered at zero, but has a random noise in it that increases through the

generations. This can be explained by the fact that the control system is becoming

more effective at moving the robots in general, and because the population

members still receive points for moving along the Y axis. In later generations, this

movement is small compared to the motion in the X direction, as the control

system improves at directing the robot in the direction of maximum score. This

side movement could also be suppressed by slowly introducing a penalty for

movement in the Y direction, especially if an additional input was added to the

control system for current (absolute) position.

Finally, it is worth pointing out that the 30- and 150- perceptron tests were

only allowed to run for 860 and 485 generations, respectively, due to time

limitations. Previous runs that were much longer, including one that went into the

thousands of generations, showed a continued increase in performance, with the

longest run producing several scores between 8 and 9 on each generation. The

plots here are, however, sufficient to show that the ability of the AI to control a

robot is generally rising with time, and to show some of its characteristics.

48

6. CONCLUSIONS AND FURTHER RESEARCH

6.1 CONCLUSIONS

From the results given in section 5.2, as well as direct observation of the simulated

robots in the software, it is clear that this system is capable of generating effective

walking movement. In addition, the robot design used in this thesis is particularly

difficult to control, as its wide body does not permit the center of mass to remain

in a stable position. In quadruped animals, the body is long and narrow, so that

diagonal pairs of feet that are on the ground form a straight line that is always

beneath the center of mass. With a hexapod or octopod, the problem would be

even easier, as the feet on the ground at any given time form a triangle or a

trapezoid, respectively, that can always enclose the center of mass on the

horizontal plane. Thus, this method can be expected to produce better results than

those given here for these other body types.

6.2 CONTINUED WORK WITH THIS BUILD

The first step that should be taken in order to learn more about this system is to

perform more extensive testing than what was done for this thesis in order to

maximize the efficiency of the system with respect to CPU load and memory

usage. This will require a large number of test runs to be performed with many

different configurations, in order to optimize the following variables:

● Population size

● Number of perceptrons

49

● Memory length

● Probability of each type of mutation

● Scoring with respect to different criteria

● Selection rules

In order to perform a large number of tests in a reasonable amount of time, it

would be best to use a computer with a large number of processor cores, as this

software does not parallelize easily in its current form. Alternatively, the physics

engine could be replaced with one that runs on a stream processor, such as PhysX

from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the

neural network could be rewritten to run on a GPU.

6.3 EXTENSION OF CONTROL SYSTEM

It would also be good to extend the scope of the control systems that are produced

in a few different ways. First, multiple neural networks can be used, with each

trained to perform a different task. While individual networks have been observed

to produce multiple behaviors in this system, this would be a good way to separate

the desired behaviors. Also, it might be effective to have “nested” learning rules,

such that the neural network continues to learn on its own after it is produced by

the genetic algorithm. This could be done by adding some form of short-term

reinforcement learning, or by adding a classifier network to the inputs of the

control system that predicts the result of current behavior on the score and adjusts

the weights of the network, perhaps using the P-Delta learning rule[6] that

originally went with the parallel perceptron network that is used here. Another

50

option may be to add some outputs that do not control anything, but still act as

feedback loops. This would create a form of memory that permits state-space

orbits that last much longer than the history-buffer length, which the system would

use in whatever way happens to produce the highest scores.

6.4 POTENTIAL APPLICATIONS

In terms of applications, there are two things that would be very interesting to do.

One such idea is to create a CAD-style robot “editor” in which robots can be

designed in a quick and convenient way, instead of writing a 1500+ line

constructor, as was done with the spiderBody class used in this research. This

editor would allow one to create a robot using a library of predefined parts such as

the linear servos seen on the robot that this thesis deals with, and automatically

generate a bill of materials for its physical construction. After the robot is

designed, the software can then be used to create parts of its control system.

The second possibility is to modify the simulation and genetic algorithm

software to operate as a P2P application, in a similar way to the BitTorrent

network. A large number of users who want the same robot could download a task

file that specifies the robot that is to be controlled and points to an online

“tracker”. Having connected to the tracker, a user's client would join the “swarm”

of other users, and begin receiving population members to evaluate. Each user's

PC processes a small population, similar to the ones that were used in the two test

runs here, but downloads a few new neural networks from other users and

transmits a few on each generation. Depending on the number of users who want a

51

particular robot, this could permit effective population sizes in the tens of

thousands. Like the other possibilities mentioned above, this has not been

evaluated at this point, and it is unknown whether it would be an effective design.

It would, however, be very interesting to see what might come out of it.

52

APPENDICES

53

APPENDIX A: NEURAL NETWORK SOURCE CODE

This Appendix shows the source code that implements the neural network

used in this thesis. There are two sections to this source code: the mcNeuron

object class, and the historyBuffer object class.

The mcNeuron class implements the neural network itself. This class

functions as a linked list, where each instance manages a single perceptron, and

contains a pointer to the memory address of the next perceptron. Thus, the

perceptrons are organized in a chain structure, so that the software using this class

need only interact with the first instance in the chain. The member functions of

this class, and their calling conventions, are described in detail in section 2.5.

The historyBuffer object class implements the memory stack discussed in

Chapter 2. The source code for this class begins on the second page of this

appendix. The historyBuffer class is structured as a linked list, where each

instance of the class acts as one stack layer (see Figure 2.2). When a new vector is

to be added to the stack, a new historyBuffer object is created, and the previous

top layer is passed as an argument. To avoid creating a memory leak, the recursive

killOldest() member function is called on the top stack layer, which causes the last

layer in the stack to be deleted.

Note that this stack is managed externally to the mcNeuron class, so the

memory address of the top layer must be passed as an argument to several of the

mcNeuron member functions.

54

� � � � � � � � � � � � � � � � 	
 � � �
 � � �

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

� � � � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � � ! ! � � ! ! � � ! ! � � ! ! � � ! " # $ % & ' () * + + , ' - . / $ $! ! � � ! ! � � ! ! � � ! ! � � ! ! � � � � � � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � � 0 � �� � � 0 � 1 1 2 3 4 5 5 6 7 2 3 4 8 4 9 : ; < 1 1 � �� � = � �> ? @ A A B C D E F G H I J K K L G M � �� �N O P Q @ R S T � �B C D E F G H I J K K L G U V L W E X � �K Y F Z E U [Z E Z X � �C V E [Z E Z \ C] L X � �� �N ^ _ ? P > T � �B C D E F G H I J K K L G ` C V E a B C D E F G H I J K K L G U a K Y F Z E U b X � � $ # c , d e / ' , f % d g / % / � �B C D E F G H I J K K L G ` C V E a B C D E F G H I J K K L G U b X � � $ # c , d e / ' , f % � �h B C D E F G H I J K K L G ` b X � �K Y F Z E [F E i Z Y J L D ` K Y F Z E U a C V E a C V E b X � � g & % j # % " % " , + . & / % k � �l F F Y m C Y Y n Y [L D E ` b X � � o # . . $. / $ % , f % ' (# f . # $ % � �p F C [G F Y Y q F r L C s B E D ` K Y F Z E a K Y F Z E U a C V E a C V E b X � � 4 g g $ / $ - / . , g - & e (& + t) % & j , # u " % $ � �p F C [E L D E v C D E ` b X � �w X � �� � 0 � �� � � 0 � �� � � 0 � 2 & f $ % ' * - % & ' � �� � = � �B C D E F G H I J K K L G T T B C D E F G H I J K K L G ` C V E D C] L a B C D E F G H I J K K L G U V L W E x I a K Y F Z E U y H z Z E Z b M � �� �V L W E { V L W E x I X � �� �[Z E Z \ C] L { D C] L X � �[Z E Z { | S } K Y F Z E ~ D C] L � X � �� �� � O ` C V E C { � X C � D C] L X C � � b M � �[Z E Z ~ C � { y H z Z E Z ~ C � X � �w � �w � �� � 0 � �� � � 0 � �� � � 0 � 2 & f $ % ' * - % & ' � � . / f o � * + + , ' � � �� � = � �B C D E F G H I J K K L G T T B C D E F G H I J K K L G ` C V E D C] L a B C D E F G H I J K K L G U V L W E x I b M � �� �V L W E { V L W E x I X � �� �[Z E Z \ C] L { D C] L X � �[Z E Z { | S } K Y F Z E ~ D C] L � X � �� �� � O ` C V E C { � X C � D C] L X C � � b M � �[Z E Z ~ C � { � � � X � �w � �w � �� � 0 � �� � � 0 � �� � � 0 � 6 , $ % ' * - % & ' � �� � = � �B C D E F G H I J K K L G T T h B C D E F G H I J K K L G ` b M � �� k � & * - / f � % u , % � * - " $ # � e . , ' % " / f % " # $ � � � k � � �� S ? S R S ~ � [Z E Z X � �� �w � �� � 0 � �
55

� � � � � � � � � � � � � � � � 	
 � � �
 � � �

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

� � � 0 � �� � � 0 � g & % � / . * , $ � � � �� � = � �K Y F Z E B C D E F G H I J K K L G T T [F E i Z Y J L D ` K Y F Z E U C � E z Z E Z a C V E D E Z G E � G Z y L a C V E G J V � G Z y L D b M � �� �K Y F Z E � � Z � � J y { � � � X � �� k 2 & * f % $ % / ' % � ' / � , g & j f % & c , ' & � , + & ' , / - - * � k � � �P � ` D E Z G E � G Z y L � � b M � �O S R ^ O | ` V L W E � � [F E i Z Y J L D ` C � E z Z E Z a D E Z G E � G Z y L � � a G J V � G Z y L D b b X � �w � �� �� �� k 4 - - * � * . / % , & f & j f g / % / k � � �� � O ` C V E C { � X C � [Z E Z \ C] L X C � � b M � �� � Z � � J y � { C � E z Z E Z ~ C � U [Z E Z ~ C � X � �w � �� �� �P � ` G J V � G Z y L D � � b M � �� � Z � � J y � { V L W E � � [F E i Z Y J L D ` � C � E z Z E Z ~ [Z E Z \ C] L � a � a G J V � G Z y L D � � b X � �w � �� �O S R ^ O | ` � � Z � � J y b X � �� �w � �� � 0 � �� � � 0 � �� � � 0 � o # . . ; . g , $ % � � � �� � = � �l F F Y B C D E F G H I J K K L G T T m C Y Y n Y [L D E ` b M � �l F F Y C y v Z D E X � �� �P � ` V L W E { { � � v v b M O S R ^ O | ` R O ^ S b X w � �� �C y v Z D E { V L W E � � m C Y Y n Y [L D E ` b X � �� �P � ` C y v Z D E b M � �� S ? S R S V L W E X � �V L W E { � � v v X � �w � �� �O S R ^ O | ` � @ ? A S b X � �� �w � �� � 0 � �� � � 0 � �� � � 0 � ' & . . 9 & � , # u " % $ � � � �� � = � �p F C [B C D E F G H I J K K L G T T G F Y Y q F r L C s B E D ` K Y F Z E D � F G L a K Y F Z E U E Z G s L E a C V E D � G Z y L a C V E V � G Z y L D b M � �� k 4 g g $ / $ - / . , g - & e (& + t) % & % " , k � � �P � ` D � G Z y L � � b M � k u # � , f j , # u " % $ � / % ' # � d $ % / ' % # f u / % k � � �V L W E � � G F Y Y q F r L C s B E D ` D � F G L a E Z G s L E a D � G Z y L � � a V � G Z y L D b X � k $ % / ' % � ' / � , / f g u & # f u + & ' f � ' / � , $ k � � �O S R ^ O | X � k � k � � �w � k k � � �� k � � � � � � � � � � � � � � ' & � " , ' , g & j f d $ � ' / � , , ¡ * / . . , g ¢ k � � �� � O ` C V E C { � X C � [Z E Z \ C] L X C � � b M � k � � � � � � � � � � � � � g * , % & % " # $ � / g � & (' # u " % " , ' , k � � �E Z G s L E ~ C � � { D � F G L U [Z E Z ~ C � X � �w � �� �P � ` V � G Z y L D � � b M � �V L W E � � G F Y Y q F r L C s B E D ` D � F G L a � E Z G s L E ~ [Z E Z \ C] L � a � a V � G Z y L D � � b X � �w � �� �w � �
56

� � � � � � � � � � � � � � � � 	
 � � �
 � � £

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

� � 0 � �� � 9 7 5 9 2 ; 6 7 9 7 5 9 2 ; 6 7 9 7 5 9 2 ; 6 7� � 0p F C [B C D E F G H I J K K L G T T E L D E v C D E ` b M � �� �� � O ` C V E C { � X C � [Z E Z \ C] L X C � � b M � �� F J E � � [Z E Z ~ C � � � ¤ ¥ V ¤ X � �w � �� � 6 * � e $ % " , . # $ % % & % " , $ - ' , , fP � ` V L W E ¦ { � � v v b M � � % & � , ' # + (% " / % % " , - . / $ $ j & ' o $V L W E � � E L D E v C D E ` b X � �w � �� �w � �� �� �� � 0� � � � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � - < , * ' & f - . / $ $ � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � � � � � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � ! ! � � � 0 � �� � � 0 � 1 1 2 3 4 5 5 6 7 2 3 4 8 4 9 : ; < 1 1 � �� � = � �> ? @ A A y � � L J G F V M � �� �N O P Q @ R S T � �y � � L J G F V U V L W E X � k 9 " # $ * $, $ % " , $ / � , . # $ % / ' - " # % , - % * ' , / $ " # $ % & ' () * + + , ' k � � �K Y F Z E U C r L C s B E D X � k : f e * % j , # u " % $ � * $, g % & g , % , ' � # f , % " , f , * ' & f � $ f , � % $ % / % , � k � � �K Y F Z E U F r L C s B E D X � k ; * % e * % j , # u " % $ � % " , , + + , - % $ & + % " # $ f , * ' & f � $ / - % # & f � k � � �C V E V J y § V � J E D X � �C V E V J y r L C s B E D X � �C V E V J y n J E � J E D X � �C V E G J V x v X � k 8 * f " # $ % & ' (. , f u % " � $ " & ' % , ' % " / f % ' / # f # f u " # $ % & ' (. , f u % " k � � �C V E E G Z C V x v X � k 9 ' / # f # f u " # $ % & ' (. , f u % " k � � �� k ¨ © ª « ¬ % & % / . t 3 ­ % ' / # f t 3 � ' * f t 3 k � � �N ^ _ ? P > T � �y � � L J G F V ` C V E a C V E a C V E a C V E a C V E b X � k f * � < , * ' & f $ d f * � : f e * % $ d f * � ; * % e * % $ d 8 t 3 d 9 t 3 k � � �h y � � L J G F V ` b X � �� �� k : ® 9 5 : t : 5 9 ; 8 � ; t : 5 9 ; 8 � ; ® 9 5 k � � �p F C [G V � L E ` K Y F Z E U a B C D E F G H I J K K L G U a B C D E F G H I J K K L G U a K Y F Z E U b X � �� k 5 2 ; 8 7 : t : 5 9 ; 8 � ; t : 5 9 ; 8 � k � � �p F C [J � [Z E L � L E ` K Y F Z E a B C D E F G H I J K K L G U a B C D E F G H I J K K L G U b X � �� k f * � � , ' & + g # � , f $ # & f $ k � � �� �p F C [C r � � G L D L E ` K Y F Z E U b X � �p F C [C r � � G L D L E � ¯ J D E n V L ` K Y F Z E U b X � �p F C [F r � � G L D L E � ¯ J D E n V L ` K Y F Z E U b X � �y � � L J G F V U s L E � L W E ` b X � �y � � L J G F V U � J E � E B ` C V E b Xp F C [D L E � L W E ` y � � L J G F V U b X � �p F C [Z � � L V [° B Z C V ` y � � L J G F V U b X � �K Y F Z E U s L E § r L C s B E D ` b X � �K Y F Z E U s L E n r L C s B E D ` b X � �� �p F C [D L E ± Z V [F y n r L C s B E D ` K Y F Z E b X � �p F C [D L E ± Z V [F y § r L C s B E D ` K Y F Z E b X � �p F C [D L E ° Z D � Z [C V s n r L C s B E D ` K Y F Z E a C V E b X � �p F C [D B Z m L § � E r L C s B E D ` K Y F Z E b X � �p F C [D B Z m L n � E r L C s B E D ` K Y F Z E b X � �p F C [y J E Z E L § � E r L C s B E D ` K Y F Z E b X � �p F C [y J E Z E L n � E r L C s B E D ` K Y F Z E b X � �p F C [D p � L E ` F K D E G L Z y U b X � �p F C [Y [� L E ` C K D E G L Z y U b X � �
57

� � � � � � � � � � � � � � � � 	
 � � �
 � � �

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

� �� k 9 7 5 9 � 6 7) ² ³ � ² < 2 5 ¬ k � � �p F C [C r � [J y � ` b X � �p F C [F r � [J y � ` b X � �p F C [F r � F G E B F ` C V E b X � �w X � �� � 0 � �� � � 0 � �� � � 0 � 2 & f $ % ' * - % & ' � �� � = � �y � � L J G F V T T y � � L J G F V ` C V E V � L J G F V D a C V E V § V � J E D a C V E V n J E � J E D a C V E ± x v a C V E q x v b M � �� �V J y r L C s B E D { V § V � J E D U ` ± x v � � b � V n J E � J E D U ± x v X � �� �C r L C s B E D { | S } K Y F Z E ~ V J y r L C s B E D � X � �F r L C s B E D { | S } K Y F Z E ~ V n J E � J E D � X � �V J y § V � J E D { V § V � J E D X � �V J y n J E � J E D { V n J E � J E D X � �G J V x v { ± x v X � �E G Z C V x v { q x v X � �� �P � ` V � L J G F V D � � b M V L W E { | S } y � � L J G F V ` V � L J G F V D � � a V § V � J E D a V n J E � J E D a ± x v a q x v b X w � �S ? A S M V L W E { � � v v X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � 6 , $ % ' * - % & ' � �� � = � �y � � L J G F V T T h y � � L J G F V ` b M � �� �� S ? S R S ~ � C r L C s B E D X � �� S ? S R S ~ � F r L C s B E D X � �P � ` V L W E b M � S ? S R S V L W E X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � ' f < , % � � � �� � = � �p F C [y � � L J G F V T T G V � L E ` K Y F Z E U C I J K a B C D E F G H I J K K L G U C x C D E a B C D E F G H I J K K L G U F x C D E a K Y F Z E U F I J K b M � �� �K Y F Z E � � ´ � � J y { � � � X � �� �� k 4 - - * � * . / % , # f e * % j , # u " % $ k � � �� � O ` C V E C { � X C � V J y § V � J E D X C � � b M � �� � ´ � � J y � { C I J K ~ C � U C r L C s B E D ~ C � X � �w � �� �� k g & % � / . * , $ � # f e * % d $ % / ' % � ' / � , d ' * f � ' / � , $ � k � � �� � ´ � � J y � { C x C D E � � [F E i Z Y J L D ` � C r L C s B E D ~ V J y § V � J E D � a � a G J V x v b X � �� � ´ � � J y � { F x C D E � � [F E i Z Y J L D ` � C r L C s B E D ~ V J y § V � J E D U ` G J V x v � � b � a � a G J V x v b X � �� �P � ` � � ´ � � J y � � � � b M � k * f # % $ % , e / - % # � / % # & f + * f - % # & f � � / f (& % " , ' - & * . g � , * $, g / . $ & k � � �� � O ` C V E C { � X C � V J y n J E � J E D X C � � b M F I J K ~ C � � { F r L C s B E D ~ C � X w � �w � �� �P � ` V L W E b M V L W E � � G V � L E ` C I J K a C x C D E a F x C D E a F I J K b X w � �� �w � �� � 0 � �� � � 0 � �
58

� � � � � � � � � � � � � � � � 	
 � � �
 � � µ

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

� � � 0 � * e g / % , < , % � � � �� � = � �p F C [y � � L J G F V T T J � [Z E L � L E ` K Y F Z E y H \ � F G L a B C D E F G H I J K K L G U C x C D E a B C D E F G H I J K K L G U F x C D E b M � �� k : % $ % / ' % $ / + ' / � , f , j , ' j # % " % " , # e % j , # u " % $ % " / f % " , & * % e * % k � � �� k $ # f - , , / - " ' f < , % $, , $ # � , # u " % $ ¶ � # e % $ · # e % t # $ % · & e % t # $ % ¸ k � � �� �K Y F Z E [L Y E Z { y H \ � F G L U F x C D E � � [F E i Z Y J L D ` F r L C s B E D a � a � b X � �� �� � O ` C V E C { � X C � E G Z C V x v X C � � b M � �C x C D E � � G F Y Y q F r L C s B E D ` [L Y E Z a C r L C s B E D a C a G J V x v � � b X � �F x C D E � � G F Y Y q F r L C s B E D ` [L Y E Z a � C r L C s B E D ~ ` G J V x v � � b U V J y § V � J E D � a C � � a G J V x v b X � �w � �� �P � ` V L W E b M V L W E � � J � [Z E L � L E ` y H \ � F G L a C x C D E a F x C D E b X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � # � 0 e ' , $, % � � � �� � = � �� � ® ' , . & / g $ f , * ' & f $ j # % " j , # u " % $ + ' & � / f / ' ' / (& + + . & / % $ � �p F C [y � � L J G F V T T C r � � G L D L E ` K Y F Z E U y H � L ¹ r L C s B E D b M � �� �� � O ` C V E C { � X C � V J y r L C s B E D X C � � b M � �C r L C s B E D ~ C � { y H � L ¹ r L C s B E D ~ C � X � �w � �� �P � ` V L W E b M V L W E � � C r � � G L D L E ` � y H � L ¹ r L C s B E D ~ V J y r L C s B E D � b X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � # � 0 e ' , $, % 0 º * $ % ; f , � � � �� � = � �� � ® ' , . & / g $ º * $ % % " # $ f , * ' & f j # % " # f e * % j , # u " % $ + ' & � / f / ' ' / (& + + . & / % $ � �p F C [y � � L J G F V T T C r � � G L D L E � ¯ J D E n V L ` K Y F Z E U y H � L ¹ r L C s B E D b M � �� �� � O ` C V E C { � X C � V J y r L C s B E D X C � � b M � �C r L C s B E D ~ C � { y H � L ¹ r L C s B E D ~ C � X � �w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � & � 0 e ' , $, % 0 º * $ % ; f , � � � �� � = � �� � ® ' , . & / g $ º * $ % % " # $ f , * ' & f j # % " & * % e * % j , # u " % $ + ' & � / f / ' ' / (& + + . & / % $ � �p F C [y � � L J G F V T T F r � � G L D L E � ¯ J D E n V L ` K Y F Z E U y H � L ¹ r L C s B E D b M � �� �� � O ` C V E C { � X C � V J y n J E � J E D X C � � b M � �F r L C s B E D ~ C � { y H � L ¹ r L C s B E D ~ C � X � �w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � u , % < , � % � � � �� � = � �y � � L J G F V U y � � L J G F V T T s L E � L W E ` b M � �� �O S R ^ O | ` V L W E b X � �� �
59

� � � � � � � � � � � � � � � � 	
 � � �
 � � »

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

w � �� � 0 � �� � � 0 � �� � � 0 � - * % < % " � � � �� � = � �y � � L J G F V U y � � L J G F V T T � J E � E B ` C V E � b M � �� �y � � L J G F V U G L E i Z Y X � �P � ` � � � b M O S R ^ O | ` V L W E � � � J E � E B ` � � � b b X w � �S ? A S P � ` � { { � b MG L E i Z Y { V L W E � � � J E � E B ` � � � b XV L W E { � � v v XO S R ^ O | ` G L E i Z Y b XwS ? A S M O S R ^ O | ` R ¼ P A b X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � $, % < , � % � � � �� � = � �p F C [y � � L J G F V T T D L E � L W E ` y � � L J G F V U V L ¹ � L W E b M � �� �V L W E { V L ¹ � L W E X � �� �w � �� � 0 � �� � � 0 � �� � � 0 � / e e , f g 2 " / # f � � � �� � = � �p F C [y � � L J G F V T T Z � � L V [° B Z C V ` y � � L J G F V U V L ¹ ° B J V m b M � � 4 e e , f g $ f , j 2 " * f o % & % " , , f g & + % " , � �� � - * ' ' , f % - " / # f � �P � ` V L W E b M V L W E � � Z � � L V [° B Z C V ` V L ¹ ° B J V m b X w � �S ? A S M V L W E { V L ¹ ° B J V m X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � u , % : � , # u " % $ � � � �� � = � �K Y F Z E U y � � L J G F V T T s L E § r L C s B E D ` b M � �� �O S R ^ O | ` C r L C s B E D b X � �� �w � �� � 0 � �� � � 0 � �� � � 0 � u , % ; � , # u " % $ � � � �� � = � �K Y F Z E U y � � L J G F V T T s L E n r L C s B E D ` b M � �� �O S R ^ O | ` F r L C s B E D b X � �� �w � �� � 0 � �
60

� � � � � � � � � � � � � � � � 	
 � � �
 � � �

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

� � � 0 � �� � � 0 � $, % 8 / f g & � : � , # u " % $ � � � �� � = � �p F C [y � � L J G F V T T D L E ± Z V [F y § r L C s B E D ` K Y F Z E y Z W i Z Y b M � �� �� � O ` C V E C { � X C � V J y r L C s B E D X C � � b M C r L C s B E D ~ C � { G F Y Y � Y F Z E ` � y Z W i Z Y a y Z W i Z Y b X w � �P � ` V L W E b M V L W E � � D L E ± Z V [F y § r L C s B E D ` y Z W i Z Y b X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � $, % 8 / f g & � ; � , # u " % $ � � � �� � = � �p F C [y � � L J G F V T T D L E ± Z V [F y n r L C s B E D ` K Y F Z E y Z W i Z Y b M � �� �� � O ` C V E C { � X C � V J y n J E � J E D X C � � b M F r L C s B E D ~ C � { G F Y Y � Y F Z E ` � y Z W i Z Y a y Z W i Z Y b X w � �P � ` V L W E b M V L W E � � D L E ± Z V [F y n r L C s B E D ` y Z W i Z Y b X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � $, % 2 / $ - / g # f u ; � , # u " % $ � � � �� � = � �p F C [y � � L J G F V T T D L E ° Z D � Z [C V s n r L C s B E D ` K Y F Z E Z y F J V E a C V E F § V [L W b M � �� k 2 . # - o $ % " ' & * u " f , * ' & f $ d $, % % # f u & f , & * % e * % j , # u " % k � � �F r L C s B E D ~ F § V [L W � { Z y F J V E X � k % & � / � & * f % � � � " , f % " , . / $ % & * % e * % # $ e / $ $, g d % " , k � � �� k + * f - % # & f $ % / ' % $ � / - o / % c , ' & d � * % j # % " � � / � & * f % � k � � �P � ` V L W E � � F § V [L W � V J y n J E � J E D b M V L W E � � D L E ° Z D � Z [C V s n r L C s B E D ` Z y F J V E a F § V [L W � � b X w � �S ? A S P � ` V L W E b M V L W E � � D L E ° Z D � Z [C V s n r L C s B E D ` � Z y F J V E a � b X w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � $ " / o , : e % � , # u " % $ � � � �� � = � �p F C [y � � L J G F V T T D B Z m L § � E r L C s B E D ` K Y F Z E y Z W ´ y F J V E b M � �� �K Y F Z E � J G \ J y X � �� � O ` C V E C { � X C � V J y r L C s B E D X C � � b M � �C r L C s B E D ~ C � � { G F Y Y � Y F Z E ` � y Z W ´ y F J V E a y Z W ´ y F J V E b X � �� J G \ J y � { � F ¹ ` C r L C s B E D ~ C � a ½ � � b X � �w � �� J G \ J y { � � � ¾ D ¿ G E ` � J G \ J y b X � �� �� � O ` C V E C { � X C � V J y r L C s B E D X C � � b M � �C r L C s B E D ~ C � U { � J G \ J y X � �w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � $ " / o , ; e % � , # u " % $ � � � �� � = � �p F C [y � � L J G F V T T D B Z m L n � E r L C s B E D ` K Y F Z E y Z W ´ y F J V E b M � �� �� � O ` C V E C { � X C � V J y n J E � J E D X C � � b M � �F r L C s B E D ~ C � � { G F Y Y � Y F Z E ` � y Z W ´ y F J V E a y Z W ´ y F J V E b X � �w � �� �w � �� � 0 � �
61

� � � � � � � � � � � � � � � � 	
 � � �
 � � �

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

� � � 0 � �� � � 0 � � * % / % , : e % � , # u " % $ � � � �� � = � �p F C [y � � L J G F V T T y J E Z E L § � E r L C s B E D ` K Y F Z E ¹ À Z W b M � �� �C V E D E Z G E § V [L W { ` C V E b G F Y Y � Y F Z E ` � � � a ` K Y F Z E b V J y r L C s B E D b X � �C V E D E F � § V [L W { ` C V E b G F Y Y � Y F Z E ` ` K Y F Z E b D E Z G E § V [L W a ` K Y F Z E b V J y r L C s B E D b X � �� �� � O ` C V E C { D E Z G E § V [L W X C � D E F � § V [L W X C � � b M � �C r L C s B E D ~ C � { G F Y Y � Y F Z E ` � ¹ À Z W a ¹ À Z W b X � �w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � � * % / % , ; e % � , # u " % $ � � � �� � = � �p F C [y � � L J G F V T T y J E Z E L n � E r L C s B E D ` K Y F Z E ¹ À Z W b M � �� �C V E D E Z G E § V [L W { ` C V E b G F Y Y � Y F Z E ` � � � a ` K Y F Z E b V J y n J E � J E D b X � �C V E D E F � § V [L W { ` C V E b G F Y Y � Y F Z E ` ` K Y F Z E b D E Z G E § V [L W a ` K Y F Z E b V J y n J E � J E D b X � �� �� � O ` C V E C { D E Z G E § V [L W X C � D E F � § V [L W X C � � b M � �F r L C s B E D ~ C � { G F Y Y � Y F Z E ` � ¹ À Z W a ¹ À Z W b X � �w � �� �w � �� � 0 � �� � � 0 � �� � � 0 � $ � < , % � � � �� � = � �p F C [y � � L J G F V T T D p � L E ` F K D E G L Z y U D Z p L � C Y L b M � �� �D Z p L � C Y L � � ¹ G C E L ` ` � B Z G U b C r L C s B E D a V J y r L C s B E D U A P Á S � � ` K Y F Z E b b X � �D Z p L � C Y L � � ¹ G C E L ` ` � B Z G U b F r L C s B E D a V J y n J E � J E D U A P Á S � � ` K Y F Z E b b X � �P � ` V L W E ¦ { � � v v b M � �V L W E � � D p � L E ` D Z p L � C Y L b X � �w � �w � �� � 0 � �� � � 0 � �� � � 0 � . g < , % � � � �� � = � �p F C [y � � L J G F V T T Y [� L E ` C K D E G L Z y U Y F Z [� C Y L b M � �� �Y F Z [� C Y L � � G L Z [` ` � B Z G U b C r L C s B E D a V J y r L C s B E D U A P Á S � � ` K Y F Z E b b X � �Y F Z [� C Y L � � G L Z [` ` � B Z G U b F r L C s B E D a V J y n J E � J E D U A P Á S � � ` K Y F Z E b b X � �P � ` V L W E ¦ { � � v v b M � �V L W E � � Y [� L E ` Y F Z [� C Y L b X � �w � �w � �� � 0 � �� k' f < , % & ' g , ' ¬: e % # t # $ % & t # $ % ; e %Â < ² 3 3 < ² 3 3 ÂÃ Â Â ÃÄ Ã Ã Ä
62

� � � � � � � � � � � � � � � � 	
 � � �
 � � Å

�
 � � � � � � � � �
 	 � � � 	 � � �
 � � � � � � � �
 � � � 	 � � � � � � � � � � � 	
 � � �
 � �

" # $ % & ' ($ / � , & ' g , ' ¬# t # $ % & t # $ %0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0� � � � � � � f f � � � � � � � � f � Â f � Â � � � � � � f � 8 t 3 f � 8 t 3 � � � � � � � � � � � � � �Æ ÆÆ ÆÆ Æ0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k �� � � � 7 8 : � : 2 4 9 : ; < � 6 7) ² ³ 2 ; 6 7) 7 3 ; � 9 t : 5 3 : < 7 � 7 8 : � : 2 4 9 : ; < � 6 7) ² ³ 2 ; 6 7) 7 3 ; � 9 t : 5 3 : < 7� � � � 7 8 : � : 2 4 9 : ; < � 6 7) ² ³ 2 ; 6 7) 7 3 ; � 9 t : 5 3 : < 7 � 7 8 : � : 2 4 9 : ; < � 6 7) ² ³ 2 ; 6 7) 7 3 ; � 9 t : 5 3 : < 7� � � � 7 8 : � : 2 4 9 : ; < � 6 7) ² ³ 2 ; 6 7) 7 3 ; � 9 t : 5 3 : < 7 � 7 8 : � : 2 4 9 : ; < � 6 7) ² ³ 2 ; 6 7) 7 3 ; � 9 t : 5 3 : < 7� � � � 7 8 : � : 2 4 9 : ; < � 6 7) ² ³ 2 ; 6 7) 7 3 ; � 9 t : 5 3 : < 7 � 7 8 : � : 2 4 9 : ; < � 6 7) ² ³ 2 ; 6 7) 7 3 ; � 9 t : 5 3 : < 7� � & � 0 ; ' % " & � �� � Ç / o , $ & * % e * % j , # u " % $ & ' % " & u & f / . � & f , f , * ' & f � ¸ & f , & e % e & $ # % # & f � � �p F C [y � � L J G F V T T F r � F G E B F ` C V E V J y v L K E b M � �� �� � O ` C V E C { � X C � V J y n J E � J E D X C � � b M � �F r L C s B E D ~ C � { � � � X � �w � � 5 , % $ % " , & e % j , # u " % $� � $ & / $ # f u . , g # � , f $ # & fF r L C s B E D ~ V J y v L K E � � � { � � � X � � # $ Â � ¢ + & ' , / - " - , . .� �P � ` V L W E � � V J y v L K E � { � b M V L W E � � F r � F G E B F ` V J y v L K E � � b X w � �� �w � �� � 0� � # � 0 g * � e � �� � 6 * � e $ % " , j , # u " % / ' ' / ($ % & % " , $ - ' , , f � �p F C [y � � L J G F V T T C r � [J y � ` b M � �� �� � O ` C V E C { � X C � V J y r L C s B E D X C � � b M � �� F J E � � C r L C s B E D ~ C � � � ¤ ¥ V ¤ X � � 6 * � e $ j , # u " % $ % & $ % g & * %w � �� F J E � � ¤ { { { { { { { { { ¥ V ¤ X � �P � ` V L W E b M V L W E � � C r � [J y � ` b X w � �w � �� � 0� � # � 0 g * � e � �� � 6 * � e $ % " , j , # u " % / ' ' / ($ % & % " , $ - ' , , f � �p F C [y � � L J G F V T T F r � [J y � ` b M � �� �� � O ` C V E C { � X C � V J y n J E � J E D X C � � b M � �� F J E � � F r L C s B E D ~ C � � � ¤ ¥ V ¤ X � � 6 * � e $ j , # u " % $ % & $ % g & * %w � �� F J E � � ¤ { { { { { { { { { ¥ V ¤ X � �P � ` V L W E b M V L W E � � F r � [J y � ` b X w � �w � �� � 0
63

APPENDIX B: GENETIC ALGORITHM SOURCE CODE

This Appendix provides the source code for the genetic algorithm that was

used in this thesis. This genetic algorithm is implemented by the mcEVO object

class, in addition to the two helper functions, rankNodes() and breedNets().

The mcEVO class is structured as a linked list, and encapsulates the neural

network, the memory stack, and the physical dimensions of the simulated robot to

be controlled. It provides functions to load, save and manipulate the population of

neural networks. The member functions of this class are described in detail in

section 3.5.

The rankNodes() helper function implements a sorting algorithm that ranks

a chain of mcEVO instances based on the score values stored in them, in

descending order. Note that the instance passed to rankNodes() will be moved to a

random location in the chain. Thus, the function mcEVO::getFirst() is used after

the ranking to reacquire the beginning of the chain.

The breedNets() helper function comprises most of the actual genetic

algorithm. Specifically, it implements the selection, crossover, and mutation

operations that are discussed in sections 3.3 and 3.4.

64

� � � � � � � � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� ! " # " $ % & ' () * + % $, - ' . . / * # 0 * + - & 1 " 2 + * # & (' 3 34 5 6 % 3 , * 7 8 9 : 2 # " 8 ; ; < �� � � = � �� � � = � > > ? @ A B B C D ? @ A 4 A E F G 1 > > � �� � H � �I J K L L M N O P Q R � �� �S T U V K W X Y � �M N O P Q Z [\] ^ _ ` a b c � �M N O P Q Z d] e f c � �M N g] a \ ` d Z M h i \ j _ d c � �k _ b f ` \ h i a l l] \ Z M h m n _ b f ` \ h c � �k _ b f ` \ h i a l l] \ Z M h Q n _ b f ` \ h c � �l o ` j f M h p N ` \] c � �� �S q r J U I Y � �s t] j o M h p [_ s] \ u j \ j M b v w x y c � � E , % 3 % 3 # z $ % # , " + % $ " . { $, " | + ' % # - 2 3 $ (" ' + # $ * � �� � . + % } " . % 0 0 " + " # $ / 3 % ~ " . 3 7 % . " + | * $ 3 5 � �s t] j o M h p � � � c � � � # " " (% # � (" #) $, � % - 7 (% & % $ (�) " # " + ' $ " . � � �s t] j o M h p � i t c � � � # " " | ' ((+ ' . % 2 3 � # * $ 3 ' } " . " (3 " � , " + " � � �� � / � �M N O P Q � _ d f � M N O P Q Z � s t] j o Z � s t] j o Z � c � �� M N O P Q � � c � �M N O P Q Z �] f � j e � M N O P Q Z � l o ` j f � c � � + " $ 2 + # 3 - ' � 3 & * + % #) & , ' % # | " (* � $, % 3 � �^ ` _ s b] f u \] ^ _ ` a b � M N O P Q Z � c � � B " $ 3 $, % 3 - " - | " + z 3 7 + " } % * 2 3 / - " - | " + 7 * % # $ " + � �^ ` _ s b] f g] e f � M N O P Q Z � c � � B " $ 3 & ' ((" . - " - | " + z 3 # " � $ / - " - | " + 7 * % # $ " + � �^ ` _ s s] f j N k � � c � � ' $ $ ' & , " 3 7 + " } % * 2 3 $ * # " � $ � ' # . } % & " } " + 3 ' � �M N O P Q Z �] f g] e f � � c � � 4 " $ 2 + # 3 # " � $ % # & , ' % # � �M N O P Q Z �] f u \] ^ _ ` a b � � c � � 4 " $ 2 + # 3 7 + " } % * 2 3 % # & , ' % # � �M N O P Q Z �] f � _ \ b f � � c � � 4 " $ 2 + # 3 0 % + 3 $ % # & , ' % # � & ' # | " & ' ((" . * # ' # � - " - | " + � � �M N O P Q Z �] f � j b f � � c � � 4 " $ 2 + # 3 (' 3 $ % # & , ' % # � & ' # | " & ' ((" . * # ' # � - " - | " + � � �l o ` j f �] f p N ` \] � � c � � 4 " $ 2 + # 3 $, " 3 & * + " ' 3 3 %) # " . $ * $, % 3 - " - | " + � �M N O P Q Z �] f � j b f � � ` ^] � l o ` j f � c � � ! " $ 3 (' 3 $ % # & , ' % # ' | * } ") % } " # 3 & * + " � ' 0 $ " + + ' # � % #) � � �M N O P Q Z �] f g f k � _ d f � c � � 4 " $ 2 + # 3 1 $, % # & , ' % # ' 0 $ " + & ' ((" . - " - | " + � �^ ` _ s _ d b i] l ` \] � M N O P Q Z � c � � F # 3 " + $ 3) % } " # - & D � G | " 0 * + " $, " & ' ((" . - " - | " + � �^ ` _ s s a M [p N ` \] b � � c � � � � � � � � � � � � � � � � � E D B E ? G C D E D B E ? G C D E D B E ? G C D^ ` _ s s a M [�] _ � k f b � � c � � C 2 - 7 3 � " %) , $ 3 $ * 3 $. * 2 $ � C D 6 � ! & * . " � � �� �^ ` _ s b] f p N ` \] � l o ` j f � c � � B " $ 3 & ' ((" . - " - | " + z 3 3 & * + " � �� �s t] j o Z �] f u j \ j M b � � c � � 4 " $ 2 + # 3 7 * % # $ " + $ * $, % 3 - " - | " + z 3 3 7 % . " +) " * - " $ + � � �^ ` _ s j [[] d s � k j _ d � M N O P Q Z � c � � ' 7 7 " # . $ ' +) " $ $ * $, % 3 & , ' % # � �_ d f � _ o o � j b f � _ d f � c � � � % ((3 (' 3 $ 1 % # & , ' % # � �^ ` _ s b ^ i \ j _ d b � ` l b f \] j M Z � c � � B ' } " 3 - & 1 " 2 + * # & , ' % # $ * ' 0 % (" � �^ ` _ s o s i \ j _ d b � _ l b f \] j M Z � c � �^ ` _ s M � i \ j _ d b � _ d f � _ d f � _ d f � c � � ? + " ' $ " 3 ' - & 1 " 2 + * # & , ' % # $ * 2 3 " � �^ ` _ s M � i \ j _ d b � \ j d s ` M � _ d f � _ d f � _ d f � l o ` j f Z � c � � ? + " ' $ " 3 ' - & 1 " 2 + * # & , ' % # � � + ' # . * - � � �� # 2 - 1 " 2 + * # 3 � 4 � @ � E � @ � � �M N g] a \ ` d Z �] f i \ j _ d � � c � � + " $ 2 + # 3 $, % 3 # * . " z 3 - & 1 " 2 + * # & , ' % # � �k _ b f ` \ h i a l l] \ Z �] f m n _ b f � � c � � 4 " $ 2 + # 3 ' 7 * % # $ " + $ * $, % 3 - " - | " + z 3 % � % 3 $ * + � & , ' % # � �k _ b f ` \ h i a l l] \ Z �] f Q n _ b f � � c � � 4 " $ 2 + # 3 ' 7 * % # $ " + $ * $, % 3 - " - | " + z 3 * � % 3 $ * + � & , ' % # � �^ ` _ s b] f m n _ b f � k _ b f ` \ h i a l l] \ Z � c � � A 3 3 %) # 3 ' , % 3 $ * + � 6 2 0 0 " + & , ' % # $ * $, % 3 # * . " � �^ ` _ s b] f Q n _ b f � k _ b f ` \ h i a l l] \ Z � c � � A 3 3 %) # 3 ' # * 2 $ 7 2 $, % 3 $ * + � 6 2 0 0 " + & , ' % # $ * $, % 3 � �� c � �� � = � �� � � = � �� � � = � ? * # 3 $ + 2 & $ * + � �� � H � �M N O P Q Y Y M N O P Q � _ d f d a M g ` s] b � M N O P Q Z M h u j \] d f � s t] j o Z [j \ j M b � _ d � s t] j o Z [j \ j M b � j e � R � �� �M h p N ` \] � � � c � �M h i \ j _ d � g ¡ � � c � �� �[\] ^ _ ` a b � M h u j \] d f c � �
65

� � � � � � � � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� �U ¢ � d a M g ` s] b £ ¤ � R � �d] e f � ¥ X ¦ M N O P Q � d a M g ` s] b § ¤ � W ¨ U L � [j \ j M b � _ d � [j \ j M b � j e � c � �� � �� �X J L X R d] e f � g ¡ � � c � � �� �¢ © T � _ d f _ � � c _ ª w x c _ « « � R � �M h p [_ s] \ u j \ j M b v _ y � \ ` o o � o ` j f � [j \ j M b � _ d v _ y � [j \ j M b � j e v _ y � c � �� � �� �M h p � i t � M h p [_ s] \ u j \ j M b v ¬ y c � �� �� � �� � = � �� � � = � �� � � = � C " 3 $ + 2 & $ * + � �� � H � �M N O P Q Y Y � M N O P Q � � R � �� �­ X J X W X M h i \ j _ d c � �� �U ¢ � d] e f � R ­ X J X W X d] e f c � � �� �� � �� � = � �� � � = � �� � � = � 3 " $ ® + " } % * 2 3 � � � �� � H � �^ ` _ s M N O P Q Y Y b] f u \] ^ _ ` a b � M N O P Q Z d] ¯ u \] ^ _ ` a b � R � �� �[\] ^ _ ` a b � d] ¯ u \] ^ _ ` a b c � �� �� � �� � = � �� � � = � �� � � = � 3 " $ 1 " � $ � � � �� � H � �^ ` _ s M N O P Q Y Y b] f g] e f � M N O P Q Z d] ¯ g] e f � R � �� �d] e f � d] ¯ g] e f c � �� �� � �� � = � �� � � = � �� � � = � . " $ ' & , � � � �� � H � �^ ` _ s M N O P Q Y Y s] f j N k � � R � �� E , % 3 0 2 # & $ % * # . " $ ' & , " 3 $, % 3 0 + * - $, " & , ' % # � 3 * $, ' $ � � �� # " � $ ' # . 7 + " } % * 2 3 ' + " & * # $ % # 2 * 2 3 5 � � �U ¢ � d] e f � R � �d] e f § £ b] f u \] ^ _ ` a b � [\] ^ _ ` a b � c � �� � �� �U ¢ � [\] ^ _ ` a b � R � �[\] ^ _ ` a b § £ b] f g] e f � d] e f � c � �� � �� �d] e f � g ¡ � � c � �[\] ^ _ ` a b � g ¡ � � c � �� �� � �� � = � �
66

� � � � � � � � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� � � = � �� � � = �) " $ ° ' � � � � �� � H � �M N O P Q Z M N O P Q Y Y �] f � j e � M N O P Q Z N a \ � _ d d] \ � l o ` j f N a \ � j e � R � �� �U ¢ � M h p N ` \] £ N a \ � j e � R � �U ¢ � d] e f � R T X W q T ¥ � d] e f § £ �] f � j e � W ¨ U L � M h p N ` \] � � c � � �X J L X R T X W q T ¥ � W ¨ U L � c � � �� � �� �X J L X R � �U ¢ � d] e f � R T X W q T ¥ � d] e f § £ �] f � j e � N a \ � _ d d] \ � N a \ � j e � � c � � �X J L X R T X W q T ¥ � N a \ � _ d d] \ � c � � �� � �� �� � �� � = � �� � � = � �� � � = �) " $ 1 " � $ � � � �� � H � �M N O P Q Z M N O P Q Y Y �] f g] e f � � R � �� �T X W q T ¥ � d] e f � c � �� �� � �� � = � �� � � = � �� � � = �) " $ ® + " } % * 2 3 � � � �� � H � �M N O P Q Z M N O P Q Y Y �] f u \] ^ _ ` a b � � R � �� �T X W q T ¥ � [\] ^ _ ` a b � c � �� �� � �� � = � �� � � = � �� � � = �) " $ ± % + 3 $ � � � �� � H � �M N O P Q Z M N O P Q Y Y �] f � _ \ b f � � R � �� �U ¢ � [\] ^ _ ` a b � R T X W q T ¥ � [\] ^ _ ` a b § £ �] f � _ \ b f � � � c � � �X J L X R T X W q T ¥ � W ¨ U L � c � � �� �� � �� � = � �� � � = � �� � � = �) " $ @ ' 3 $ � � � �� � H � �M N O P Q Z M N O P Q Y Y �] f � j b f � � R � �� �U ¢ � d] e f � R T X W q T ¥ � d] e f § £ �] f � j b f � � � c � � �X J L X R T X W q T ¥ � W ¨ U L � c � � �� �� � �� � = � �� � � = � �� � � = �) " $ B & * + " � � � �� � H � �l o ` j f M N O P Q Y Y �] f p N ` \] � � R � �� �T X W q T ¥ � M h p N ` \] � c � �
67

� � � � � � � � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� �� � �� � = � �� � � = � �� � � = �) " $ @ ' 3 $ A | * } " � � � �� � H � �M N O P Q Z M N O P Q Y Y �] f � j b f � � ` ^] � l o ` j f M _ d p N ` \] � R � �� 4 " $ 2 + # 3 (' 3 $ # * . " ' | * } ") % } " # 3 & * + " 5 1 * $ " $, ' $ $, % 3 & ' ((% 3 3 " # $ $ * $, " @ A B E � � �� # * . " % # $, " & , ' % # � + ' $, " + $, ' # $, " 0 % + 3 $ ² � � �� �U ¢ � M h p N ` \] £ M _ d p N ` \] � R T X W q T ¥ � W ¨ U L � c � � �X J L X U ¢ � [\] ^ _ ` a b � R T X W q T ¥ � [\] ^ _ ` a b § £ �] f � j b f � � ` ^] � M _ d p N ` \] � � c � � �X J L X R T X W q T ¥ � W ¨ U L � c � � E , % 3 (% # " � % ((# " } " + | " + " ' & , " . ' 3 (* #) � � �� ' 3 $, " 7 + *) + ' - % 3 � * + � % #) + %) , $ 5 � � �� � �� � = � �� � � = � �� � � = �) " $ 1 $, � � � �� � H � �M N O P Q Z M N O P Q Y Y �] f g f k � _ d f g � R � �� 4 " $ 2 + # 3 1 $, ° ? D % # & , ' % # � � �U ¢ � g � R T X W q T ¥ � d] e f § £ �] f g f k � g § ¤ � � c � � � 0 % + 3 $ * # " % 3 ³ D 4 G � � � �X J L X R T X W q T ¥ � W ¨ U L � c � � �� �� � �� � = � �� � � = � �� � � = � % # 3 6 " 0 * + " � � � �� � H � �^ ` _ s M N O P Q Y Y _ d b i] l ` \] � M N O P Q Z f j \ �] f � R � �� �U ¢ � [\] ^ _ ` a b � R � �[\] ^ _ ` a b § £ b] f g] e f � f j \ �] f � c � �f j \ �] f § £ b] f u \] ^ _ ` a b � [\] ^ _ ` a b � c � �� �[\] ^ _ ` a b � f j \ �] f c � �f j \ �] f § £ b] f g] e f � W ¨ U L � c � �� � �� �X J L X R � �[\] ^ _ ` a b � f j \ �] f c � �f j \ �] f § £ b] f g] e f � W ¨ U L � c � �� � �� � �� � = � �� � � = � �� � � = � 3 " $ B & * + " � � � �� � H � �^ ` _ s M N O P Q Y Y b] f p N ` \] � l o ` j f d] ¯ p N ` \] � R � �� �M h p N ` \] Z � � w ´ c � �M h p N ` \] « � d] ¯ p N ` \] c � �� �� � �� � = � �� � � = � �� � � = �) " $ ® ' + ' - 3 � � � �� � H � �s t] j o Z M N O P Q Y Y �] f u j \ j M b � � R � �� �T X W q T ¥ � M h p [_ s] \ u j \ j M b � c � �� �� � �
68

� � � � � � � � � � � � � � � 	
 � �
 � � � � � µ

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� � = � �� � � = � �� � � = � ' 7 7 " # . ? , ' % # � � � �� � H � �^ ` _ s M N O P Q Y Y j [[] d s � k j _ d � M N O P Q Z j [[] d s _ e � R � �� �U ¢ � d] e f � R d] e f § £ j [[] d s � k j _ d � j [[] d s _ e � c � � A B B � ° ® E F G 1 ¶ � � �X J L X R � @ ' 3 $ " (" - " # $ % # & , ' % # $ * | " ' 7 7 " # . " . � � �d] e f � j [[] d s _ e c � , ' 3 # " � $ · 1 � @ @ � � �j [[] d s _ e § £ b] f u \] ^ _ ` a b � W ¨ U L � c � �� � �� �� � �� � = � �� � � = � �� � � = � � % ((@ ' 3 $ � � � �� � H � �_ d f M N O P Q Y Y � _ o o � j b f � _ d f d a M P _ N f _ M b � R � �� �_ d f j � d a M P _ N f _ M b c � E , % 3 0 2 # & $ % * # $ + ' # 3 - % $ 3 # 2 - � % & $ % - 3 � � �� . * � # $ * $, " (' 3 $ # * . " � ' # . $, " # � � �U ¢ � d] e f � R j � d] e f § £ � _ o o � j b f � d a M P _ N f _ M b � c � � . " & + " - " # $ 3 $, ' $ } ' (2 " ' 3 % $ + " $ 2 + # 3 5 � � �� ¸ , " # ' · ; � % $, ' 3 + " $ 2 + # " . # 2 - � % & $ % - 3 � � �U ¢ � j � � � � R � 3 $ " 7 3 0 + * - $, " 0 % # ' (# * . " � ' # . % 3 � � �­ X J X W X d] e f c � + " ' . � $ * . " (" $ " ' ((# * . " 3 ' 0 $ " + $, % 3 5 � � �d] e f � g ¡ � � c � �� � �� �T X W q T ¥ � j § ¤ � c � �� � �� � = � �� � � = � �� � � = � 3 } 6 + ' % # 3 � � � �� � H � �^ ` _ s M N O P Q Y Y b ^ i \ j _ d b � ` l b f \] j M Z ` [f � _ o] � R � B ' } " 3 ' (($, " - & 1 " 2 + * # & , ' % # 3 % # � � �� $, " - & D � G & , ' % # $ * * # " 0 % (" 5 E * 3 ' } " � � �M h i \ j _ d § £ b ^ g] f � ` [f � _ o] � c � ¹ 2 3 $ * # " � . * ') " $ 6 + ' % # � � ' # . & ' ((� � �U ¢ � d] e f � R d] e f § £ b ^ i \ j _ d b � ` [f � _ o] � c � � % $ 3 3 ' } " 0 2 # & $ % * # . % + " & $ (� � � �� �� � �� � = � �� � � = � �� � � = � (. 6 + ' % # 3 � � � �� � H � �^ ` _ s M N O P Q Y Y o s i \ j _ d b � _ l b f \] j M Z _ [f � _ o] � R � �� B " " & * - - " # $ 3 % # 3 } 6 + ' % # 3 � � ' | * } " � � �M h i \ j _ d § £ o s g] f � _ [f � _ o] � c � �U ¢ � d] e f K ¥ ­ º _ [f � _ o] § £] ` l � � � R d] e f § £ o s i \ j _ d b � _ [f � _ o] � c � � �� �� � �� � = � �� � � = � �� � � = � - � 6 + ' % # 3 � � � �� � H � �^ ` _ s M N O P Q Y Y M � i \ j _ d b � _ d f d g] a \ ` d b � _ d f t n �] d � f k � _ d f » n �] d � f k � R � �� � E , % 3 0 2 # & $ % * # & + " ' $ " 3 ' # " � " - 7 $ � - & 1 " 2 + * # & , ' % # � 2 3 " � , " # � * 2 � ' # $ $ * (* ' . ' � " %) , $ 3 0 % (" � � �� 1 * $ " $, ' $ # * $ ' (($, " | + ' % # & * # 3 $ + 2 & $ * + � � �� ' +) 3 ' + " 7 ' 3 3 " . $ * $, % 3 � 3 % # & " 3 * - " * 0 � � �� $, " - ' + " % - 7 (% " . | � $, % 3 ' 7 7 (% & ' $ % * # � � �M h i \ j _ d � ¥ X ¦ M N g] a \ ` d � d g] a \ ` d b � ¼ ´ � ¤ ½ � t n �] d � f k � » n �] d � f k � c � �M h m n _ b f ` \ h � ¥ X ¦ k _ b f ` \ h i a l l] \ � ¼ ´ � g ¡ � � � c � ? + " ' $ " | ' 3 " � 6 2 0 # * . " 3 � � �M h Q n _ b f ` \ h � ¥ X ¦ k _ b f ` \ h i a l l] \ � ¤ ½ � g ¡ � � � c � �
69

� � � � � � � � � � � � � � � 	
 � �
 � � � � � ¾

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� �� ® * 7 2 (' $ " $, " � 6 2 0 & , ' % # � % $, " - 7 $ � � � �¢ © T � _ d f _ � � c _ ª t n �] d � f k « » n �] d � f k c _ « « � R � | 2 0 0 " + 3 � 3 * # * $, % #) 3 ") 0 ' 2 ($ 3 5 5 5 � � �M h m n _ b f ` \ h � ¥ X ¦ k _ b f ` \ h i a l l] \ � ¼ ´ � M h m n _ b f ` \ h � c � �M h Q n _ b f ` \ h � ¥ X ¦ k _ b f ` \ h i a l l] \ � ¤ ½ � M h Q n _ b f ` \ h � c � �� � � � �U ¢ � d] e f � R d] e f § £ M � i \ j _ d b � d g] a \ ` d b � t n �] d � f k � » n �] d � f k � c � � �� �� � �� � = � �� � � = � �� � � = � - � 6 + ' % # 3 = + ' # . * - � � � �� � H � �^ ` _ s M N O P Q Y Y M � i \ j _ d b � \ j d s ` M � _ d f d g] a \ ` d b � _ d f t n �] d � f k � _ d f » n �] d � f k � l o ` j f Z a b j � o] � j \ \ j h � R � �� � E , % 3 0 2 # & $ % * #) " # " + ' $ " 3 ' # " � + ' # . * - - & 1 " 2 + * # & , ' % # 0 * + " ' & , D � G # * . " � �_ d f ¯] _ � k f � ` a d f � ´ ¤ Z d g] a \ ` d b Z � t n �] d � f k « » n �] d � f k � c � �� � 0 (* ' $. " 3 % + " . ¸ " %) , $ 3 ¿ � " %) , $? * 2 # $ À { � �� � 0 * + � % # $ % · ; { % Á 9 ; ; ; ; ; { % Â Â � Ã 2 3 ' | (" = ' + + ' � ¿ % À · + * ((± (* ' $ � / 9 5 ; � 9 5 ; � { Ä � �� 1 * $ " $, ' $ # * $ ' (($, " | + ' % # & * # 3 $ + 2 & $ * + � � �� ' +) 3 ' + " 7 ' 3 3 " . $ * $, % 3 � 3 % # & " 3 * - " * 0 � � �� $, " - ' + " % - 7 (% " . | � $, % 3 ' 7 7 (% & ' $ % * # � � �M h i \ j _ d � ¥ X ¦ M N g] a \ ` d � d g] a \ ` d b � ¼ ´ � ¤ ½ � t n �] d � f k � » n �] d � f k � c � �M h i \ j _ d § £ b] f t j d s ` M Q �] _ � k f b � � � � ¤ � c � �� � - � 6 + ' % # / Å 3 " $? ' 3 & ' . % #) G ¸ " %) , $ 3 � ; 5 ; ; 9 � ; � { � �� � - � 6 + ' % # / Å % ¸ = 7 + " 3 " $ � 2 3 ' | (" = ' + + ' � � { � �M h i \ j _ d § £ b] f t j d s ` M m �] _ � k f b � � ¤ � c � �� � - � 6 + ' % # / Å 3 , ' � " F 7 $ ¸ " %) , $ 3 � ; 5 9 � { � �� �M h m n _ b f ` \ h � ¥ X ¦ k _ b f ` \ h i a l l] \ � ¼ ´ � g ¡ � � � c � ? + " ' $ " | ' 3 " � 6 2 0 # * . " 3 � � �M h Q n _ b f ` \ h � ¥ X ¦ k _ b f ` \ h i a l l] \ � ¤ ½ � g ¡ � � � c � �� �� ® * 7 2 (' $ " $, " � 6 2 0 & , ' % # � % $, " - 7 $ � � � �¢ © T � _ d f _ � � c _ ª t n �] d � f k « » n �] d � f k c _ « « � R � | 2 0 0 " + 3 � 3 * # * $, % #) 3 ") 0 ' 2 ($ 3 5 5 5 � � �M h m n _ b f ` \ h � ¥ X ¦ k _ b f ` \ h i a l l] \ � ¼ ´ � M h m n _ b f ` \ h � c � �M h Q n _ b f ` \ h � ¥ X ¦ k _ b f ` \ h i a l l] \ � ¤ ½ � M h Q n _ b f ` \ h � c � �� � �� �U ¢ � d] e f � R d] e f § £ M � i \ j _ d b � \ j d s ` M � d g] a \ ` d b � t n �] d � f k � » n �] d � f k � a b j � o] � j \ \ j h � c � � �� �� � �� � = � �� � � = � �� � � = �) " $ 6 + ' % # � � � �� � H � �M N g] a \ ` d Z M N O P Q Y Y �] f i \ j _ d � � R � �� �T X W q T ¥ � M h i \ j _ d � c � �� �� � �� � = � �� � � = � �� � � = �) " $ F � % 3 $ � � � �� � H � �k _ b f ` \ h i a l l] \ Z M N O P Q Y Y �] f m n _ b f � � R � �� �T X W q T ¥ � M h m n _ b f ` \ h � c � �� �� � �� � = � �� � � = � �� � � = �) " $ G � % 3 $ � � � �� � H � �k _ b f ` \ h i a l l] \ Z M N O P Q Y Y �] f Q n _ b f � � R � �
70

� � � � � � � � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� �T X W q T ¥ � M h Q n _ b f ` \ h � c � �� �� � �� � = � �� � � = � �� � � = � 3 " $ F � % 3 $ � � � �� � H � �^ ` _ s M N O P Q Y Y b] f m n _ b f � k _ b f ` \ h i a l l] \ Z d] ¯ m n _ b f � R � �� �M h m n _ b f ` \ h � d] ¯ m n _ b f c � �� �� � �� � = � �� � � = � �� � � = � 3 " $ G � % 3 $ � � � �� � H � �^ ` _ s M N O P Q Y Y b] f Q n _ b f � k _ b f ` \ h i a l l] \ Z d] ¯ Q n _ b f � R � �� �M h Q n _ b f ` \ h � d] ¯ Q n _ b f c � �� �� � �� � = � �^ ` _ s M N O P Q Y Y s a M [�] _ � k f b � � RM h i \ j _ d § £ _ � � s a M [� � cM h i \ j _ d § £ ` � � s a M [� � c� � % 0 � # " � $ � Ã # " � $ / Å . 2 - 7 ¸ " %) , $ 3 � � { Ä�� � � Æ Ç Æ Ç Æ Ç Æ Ç Æ Ç Æ Ç Ç Æ Ç Æ Ç Æ Æ Ç Ç Æ Ç Æ Ç Ç Æ� � � Æ Ç Ç Æ Ç Æ Ç Æ Æ Ç Ç Æ Ç Æ Æ Ç Æ Ç Æ Ç Æ Æ Ç Ç Æ Ç� � � Æ Ç Â / Â Æ� � � Ç È 4 D @ A E D C ± � 1 ? E F G 1 B � # * $ - " - | " + 3 * 0 - & D � G & (' 3 3 � | 2 $ 2 3 " . � % $, % $ � È Ç� � � Â / Â Ç� � � Æ Ç Æ Ç Æ Ç Æ Ç Æ Ç Æ Ç Ç Æ Ç Æ Ç Æ Æ Ç Ç Æ Ç Æ Ç Ç Æ� � � Ç Æ Ç Ç Æ Ç Æ Ç Æ Æ Ç Ç Æ Ç Æ Ç Ç Æ Ç Æ Ç Æ Æ Ç Ç Æ Ç� � � = � �� � � = � + ' # � 1 * . " 3 � � � �� � H � �^ ` _ s \ j d � g ` s] b � M N O P Q Z M h � k j _ d � R � �M N O P Q Z l _ \ b f � M h � k j _ d c � �M N O P Q Z M j e c � �� �¦ ¨ U J X � l _ \ b f � R � �� �M j e � l _ \ b f § £ �] f � j e � g ¡ � � � § ¤ � � � � � c � �� �U ¢ � M j e º � l _ \ b f � R � �M j e § £ s] f j N k � � c � �l _ \ b f § £ _ d b i] l ` \] � M j e � c � �� � �� �X J L X R � �l _ \ b f � l _ \ b f § £ �] f g] e f � � c � �� � �� � �� �l _ \ b f � M j e § £ �] f � _ \ b f � � c � �
71

� � � � � � � � � � � � � � � 	
 � �
 � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� � �� � = � �� � - & D � G ¶ ¶ - & D � G � % # $ # 2 - 1 * . " 3 � - & D � G - � ® ' + " # $ � . 4 " ' (7 ' + ' - 3 ° % # � . 4 " ' (7 ' + ' - 3 ° ' � �� � } * % . - & D � G ¶ ¶ - � 6 + ' % # 3 � % # $ # 1 " 2 + * # 3 � % # $ 4 � @ " #) $, � % # $ E � @ " #) $, �� � - & 1 " 2 + * # - & D � G ¶ ¶) " $ 6 + ' % # � �� � } * % . ' 7 7 " # . ? , ' % # � - & D � G � Á / / & ' (($, % 3 * # $, " * # " , ' } % #) $, " # " � 3 $ 2 0 0 ' 7 7 " # . " . $ * % $� � � = � �� � � = � | + " " . 1 " $ 3 � � � �� � H � �^ ` _ s � \]] s g] f b � M N O P Q Z f k] u ` [a o j f _ ` d � _ d f [` [p _ É] � _ d f d t] [o j N] s � s t] j o Z [� _ d � s t] j o Z [� j e � � �_ d f d g] a \ ` d b � _ d f t n � � _ d f » n � � l o ` j f M a f u \ ` � � l o ` j f M j e � a f � l o ` j f _ t d s � l o ` j f ` t d s � R � �� �l o ` j f _ d s] e P j o � �] b f p N ` \] � b N j o] P j o c � �M N O P Q Z ¯ ` \ � _ d � � Z o j b f c � �_ d f N a \ g] a \ ` d � N [m d s] e � o] d ¤ � o] d w cM N g] a \ ` d Z M ` M � Z s j s � Z Ê a d _ ` \ � Z b] � M] d f ¤ � Z b] � M] d f w � Z b] � M] d f ¼ cl o ` j f d] ¯ Q [f b v ¤ ½ y cl o ` j f b f ` \] s m [f b v ¼ ´ Z t n � y cl o ` j f Z � \ j _ d Q [f b � Z � \ j _ d m [f b c� � B $ ' + $ | � & + " ' $ % #) $, " # " � ° ? D & , ' % # � �M N O P Q Z d] ¯ O P Q � ¥ X ¦ M N O P Q � d t] [o j N] s � g ¡ � � � [� _ d � [� j e � c � �M N O P Q Z d] ¯ � a d N k j d �] s � d] ¯ O P Q cd] ¯ O P Q § £ M � i \ j _ d b � d g] a \ ` d b � t n � � » n � � c � �� �o j b f � f k] u ` [a o j f _ ` d § £ �] f � j b f � � c¯ ` \ � _ d � � f k] u ` [a o j f _ ` d § £ �] f � j e � g ¡ � � � § ¤ � � � � � c � ! " $ $, " � % # # % #) 3 & * + " ��] b f p N ` \] � ¯ ` \ � _ d � § £ �] f p N ` \] � � c¢ © T � _ d f _ � � c _ ª d t] [o j N] s c _ « « � R � �� �� 1 D ¸ 3 " (" & $ % * # 3 � 3 $ " - ¶ �� � % # . " � � ' (· 9 5 ; / 7 * � � + * ((± (* ' $ � ; 5 ; � 9 5 ; � � 8 5 ; � {� � % # . " � � ' (· | " 3 $ B & * + " {� � � * + � % #) · (' 3 $ / Å) " $ @ ' 3 $ A | * } " � % # . " � � ' (� {� � - * - · � * + � % #) / Å) " $ 6 + ' % # � � {� � % # . " � � ' (· 9 5 ; / 7 * � � + * ((± (* ' $ � ; 5 ; � 9 5 ; � � 8 5 ; � {� � % # . " � � ' (· | " 3 $ B & * + " {� � � * + � % #) · (' 3 $ / Å) " $ @ ' 3 $ A | * } " � % # . " � � ' (� {� � . ' . · � * + � % #) / Å) " $ 6 + ' % # � � {� E , " # " � $ 3 " } " + ' ((% # " 3 + ' # . * - (� 3 " (" & $ $ � * 7 ' + " # $ # * . " 3 � 2 3 % #) ' # * # (% # " ' + � � Ë 8 � � � �� % # . " � % #) 0 2 # & $ % * # 5 E , " + " 3 2 ($ % 3 $, ' $ " ' + (� # * . " 3 � , %) , 3 & * + " + 3 � ' + " 2 3 2 ' ((� 7 % & � " . � � �_ d s] e P j o � [` ¯ � \ ` o o � o ` j f � � � � ¤ � � � w � � c � �_ d s] e P j o Z � � l o ` j f � [` [p _ É] c � �� �¯ ` \ � _ d � � f k] u ` [a o j f _ ` d § £ �] f g f k � � _ d f � _ d s] e P j o � c � �M ` M � ¯ ` \ � _ d � § £ �] f i \ j _ d � � c � �� �_ d s] e P j o � [` ¯ � \ ` o o � o ` j f � � � � ¤ � � � w � � c � �_ d s] e P j o Z � � l o ` j f � [` [p _ É] c � �� �¯ ` \ � _ d � � f k] u ` [a o j f _ ` d § £ �] f g f k � � _ d f � _ d s] e P j o � c � �s j s � ¯ ` \ � _ d � § £ �] f i \ j _ d � � c � �� �Ê a d _ ` \ � d] ¯ O P Q § £ �] f i \ j _ d � � c � �� �� 1 * � � � " , ' } " ' (($, + " " ° ? 1 & , ' % # 3 3 " (" & $ " . � � �� �N a \ g] a \ ` d � � c¦ ¨ U J X � M ` M � R � �U ¢ � \ ` o o � o ` j f � § ¤ � � ¤ � � £ � � � R � �Ê a d _ ` \ § £ _ � � [\] b] f � Ê a b f Q d] � M ` M § £ �] f m �] _ � k f b � � � c � �Ê a d _ ` \ § £ ` � � [\] b] f � Ê a b f Q d] � M ` M § £ �] f Q �] _ � k f b � � � c � �� � �� �
72

� � � � � � � � � � � � � � � 	
 � �
 � � � � � Ì

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

X J L X R � �Ê a d _ ` \ § £ _ � � [\] b] f � Ê a b f Q d] � s j s § £ �] f m �] _ � k f b � � � c � �Ê a d _ ` \ § £ ` � � [\] b] f � Ê a b f Q d] � s j s § £ �] f Q �] _ � k f b � � � c � �� � �� G & & ' 3 % * # ' ((� & + " ' $ " ' � � �� - ' ¹ * + - 2 $ ' $ % * # 5 G 7 $ % * # 3 � � �U ¢ � M a f u \ ` � £ \ ` o o � o ` j f � � � � ¤ � � � R � % # & (2 . " 7 * 3 % $ % * # 3 � ' 7 � � � �U ¢ � \ ` o o � o ` j f � § ¤ � � ¤ � � £ � w ´ � R � (") / 3 % . " + " } " + 3 ' (� ' # . � � �� ° " 3 3 � % $, $, " � Ê a d _ ` \ § £ M a f j f] m [f �] _ � k f b � M j e � a f � c � ' # " � � + ' # . * - � 3 ") - " # $ � � �� � " %) , $ 3 ' | % $ � Ê a d _ ` \ § £ M a f j f] Q [f �] _ � k f b � M j e � a f � c � * 0 % # 7 2 $ � " %) , $ 3 5 � � ��� 9 Í Î & , ' # & " * 0 ' 3 % . " + " } " + 3 ' (5 5 5 �U ¢ � \ ` o o � o ` j f � � � � ¤ � � £ � Ï ´ � R� \ j _ d Q [f b � Ê a d _ ` \ § £ �] f Q �] _ � k f b � � c� \ j _ d m [f b � Ê a d _ ` \ § £ �] f m �] _ � k f b � � c¢ © T � _ d f _ � � c _ ª ¤ ½ c _ « « � Rd] ¯ Q [f b v _ y � � \ j _ d Q [f b v _ y c�� \ j _ d Q [f b v � y � d] ¯ Q [f b v ¼ y c� \ j _ d Q [f b v ¼ y � d] ¯ Q [f b v � y c� \ j _ d Q [f b v ¤ y � d] ¯ Q [f b v w y c� \ j _ d Q [f b v w y � d] ¯ Q [f b v ¤ y c� \ j _ d Q [f b v ¤ w y � d] ¯ Q [f b v ¤ ¼ y c� \ j _ d Q [f b v ¤ ¼ y � d] ¯ Q [f b v ¤ w y c� \ j _ d Q [f b v Ï y � d] ¯ Q [f b v ¬ y c� \ j _ d Q [f b v ¬ y � d] ¯ Q [f b v Ï y c� \ j _ d Q [f b v Ð y � d] ¯ Q [f b v x y c� \ j _ d Q [f b v x y � d] ¯ Q [f b v Ð y c� \ j _ d Q [f b v ´ y � d] ¯ Q [f b v ½ y c� \ j _ d Q [f b v ½ y � d] ¯ Q [f b v ´ y c� \ j _ d Q [f b v ¤ � y � d] ¯ Q [f b v ¤ ¤ y c� \ j _ d Q [f b v ¤ ¤ y � d] ¯ Q [f b v ¤ � y c� \ j _ d Q [f b v ¤ Ð y � d] ¯ Q [f b v ¤ ´ y c� \ j _ d Q [f b v ¤ ´ y � d] ¯ Q [f b v ¤ Ð y c¢ © T � _ d f _ � � c _ ª ¼ ´ c _ « « � R� \ j _ d m [f b v _ y � § � \ j _ d m [f b v _ y c��� 9 Í Î & , ' # & " * 0 ' 0 + * # $ / | ' & � + " } " + 3 ' (5 5 5 �U ¢ � \ ` o o � o ` j f � � � � ¤ � � £ � Ï ´ � R� \ j _ d Q [f b � Ê a d _ ` \ § £ �] f Q �] _ � k f b � � c� \ j _ d m [f b � Ê a d _ ` \ § £ �] f m �] _ � k f b � � c¢ © T � _ d f _ � � c _ ª ¤ ½ c _ « « � Rd] ¯ Q [f b v _ y � � \ j _ d Q [f b v _ y c�� \ j _ d Q [f b v � y � d] ¯ Q [f b v x y c� \ j _ d Q [f b v x y � d] ¯ Q [f b v � y c� \ j _ d Q [f b v ¤ y � d] ¯ Q [f b v ½ y c� \ j _ d Q [f b v ½ y � d] ¯ Q [f b v ¤ y c� \ j _ d Q [f b v w y � d] ¯ Q [f b v ´ y c� \ j _ d Q [f b v ´ y � d] ¯ Q [f b v w y c� \ j _ d Q [f b v ¼ y � d] ¯ Q [f b v Ð y c� \ j _ d Q [f b v Ð y � d] ¯ Q [f b v ¼ y c
73

� � � � � � � � � � � � � � � 	
 � �
 � � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

� \ j _ d Q [f b v Ï y � d] ¯ Q [f b v ¤ ¤ y c� \ j _ d Q [f b v ¤ ¤ y � d] ¯ Q [f b v Ï y c� \ j _ d Q [f b v ¬ y � d] ¯ Q [f b v ¤ � y c� \ j _ d Q [f b v ¤ � y � d] ¯ Q [f b v ¬ y c� \ j _ d Q [f b v ¤ w y � d] ¯ Q [f b v ¤ ´ y c� \ j _ d Q [f b v ¤ ´ y � d] ¯ Q [f b v ¤ w y c� \ j _ d Q [f b v ¤ ¼ y � d] ¯ Q [f b v ¤ Ð y c� \ j _ d Q [f b v ¤ Ð y � d] ¯ Q [f b v ¤ ¼ y c� / �� ¸ , " # - % + + * + % #) � ' . . ' � ¢ © T � _ d f _ � � c _ ª ¼ ´ Z t n � c _ « « � R� + ' # . * - $ % - " . " (' � 5 � b f ` \] s m [f b v _ y � � \ j _ d m [f b v _ y c�o] d ¤ � ¼ ´ Z � _ d f � \ ` o o � o ` j f � � � � � l o ` j f � t n � � cN [m d s] e � � c� E , % 3 $ % - " � % % # . " � " 3 � ¢ © T � _ d f _ � o] d ¤ c _ ª ¼ ´ Z t n � c _ « « � R� $, " 3 * 2 + & " � ' # . & 7 F # . " � � � \ j _ d m [f b v N [m d s] e y � b f ` \] s m [f b v _ y c� % # . " � " 3 $, " $ ' +) " $ 5 � N [m d s] e « « c�� E , " (' $ " + 3 $ ') " 3 (* * 7 � ¢ © T � _ d f _ � � c _ ª o] d ¤ c _ « « � R� | ' & � $ * $, " 3 $ ' + $ � $ * � � \ j _ d m [f b v N [m d s] e y � b f ` \] s m [f b v _ y c� " # & * 2 + ') " (% - % $ & � & (" 3 5 � �� / ��� Í ; Î & , ' # & " * 0 3 $ + " #) $, " # % #) � � " ' � " # % #) $, " * ¸ " %) , $ 3 ' | % $ �U ¢ � \ ` o o � o ` j f � � � � ¤ � � £ � ´ � R� \ j _ d Q [f b � Ê a d _ ` \ § £ �] f Q �] _ � k f b � � cb N j o] P j o � \ ` o o � o ` j f � � ¬ � ¤ ¤ � c¢ © T � _ d f _ � � c _ ª ¤ ½ c _ « « � R� \ j _ d Q [f b v _ y Z � b N j o] P j o c��� 8 Í Î & , ' # & " * 0 ' + ' # . * - $ % - " . " (' � � � % $, * 2 $ - % + + * + % #) � �U ¢ � \ ` o o � o ` j f � � � � ¤ � � £ � w ´ � R� \ j _ d m [f b � Ê a d _ ` \ § £ �] f m �] _ � k f b � � c¢ © T � _ d f _ � � c _ ª ¼ ´ Z t n � c _ « « � Rb f ` \] s m [f b v _ y � � \ j _ d m [f b v _ y c�o] d ¤ � ¼ ´ Z � _ d f � \ ` o o � o ` j f � � � � � l o ` j f � t n � � cN [m d s] e � � c� E , % 3 $ % - " � % % # . " � " 3 � ¢ © T � _ d f _ � o] d ¤ c _ ª ¼ ´ Z t n � c _ « « � R� $, " 3 * 2 + & " � ' # . & 7 F # . " � � � \ j _ d m [f b v N [m d s] e y � b f ` \] s m [f b v _ y c� % # . " � " 3 $, " $ ' +) " $ 5 � N [m d s] e « « c�� E , " (' $ " + 3 $ ') " 3 (* * 7 � ¢ © T � _ d f _ � � c _ ª o] d ¤ c _ « « � R� | ' & � $ * $, " 3 $ ' + $ � $ * � � \ j _ d m [f b v N [m d s] e y � b f ` \] s m [f b v _ y c� " # & * 2 + ') " (% - % $ & � & (" 3 5 � ��� � � Á / / / E , % 3 & 2 + (� | + ' & � " $ % 3 $, " " # . * 0 $, " - 2 $ ' $ % * # 3 " & $ % * # 5 � �� �Ê a d _ ` \ § £ b k j �] m [f �] _ � k f b � _ t d s � c � A . . ' 3 - ' ((| % $ * 0 + ' # . * - # " 3 3 $ * � � �Ê a d _ ` \ § £ b k j �] Q [f �] _ � k f b � ` t d s � c � ' (($, " % # 7 2 $ � * 2 $ 7 2 $ � " %) , $ 3 � � �� �M ` M � M ` M § £ �] f g] e f � � c � ° * } " ' (($, + " " * 0 $, " 3 " $ * $, " # " � $ � � �s j s � s j s § £ �] f g] e f � � c � - & 1 " 2 + * # % # $, % 3 - & D � G * | ¹ " & $ � � �Ê a d _ ` \ � Ê a d _ ` \ § £ �] f g] e f � � c � �
74

� � � � � � � � � � � � � � � 	
 � �
 � � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �
 � � � � �

N a \ g] a \ ` d « « c � � �Ê a d _ ` \ � d] ¯ O P Q § £ �] f i \ j _ d � � c � �� Í ; / Í ; & , ' # & " * 0 - * } % #) ' 3 ") - " # $ * 0 $, " # " 2 + * # & , ' % # 5 5 5 �U ¢ � \ ` o o � o ` j f � � � � ¤ � � £ M a f u \ ` � � R� ° * } " # " 2 + * # 3 � N [m d s] e � � _ d f � \ ` o o � o ` j f � ¤ � � d g] a \ ` d b § ¼ � c� � & * 2 $ Á Á Ñ ? ® % # . " � = 9 ¶ Ñ Á Á & 7 F # . " � Á Á Ñ Ò # Ñ {o] d ¤ � N [m d s] e c � � @ " #) $, | " 0 * + " & 2 $b] � M] d f ¤ � Ê a d _ ` \ § £ N a f g f k � N [m d s] e � cN [m d s] e � � _ d f � \ ` o o � o ` j f � ¤ � � � l o ` j f � � d g] a \ ` d b § o] d ¤ § ¼ � � c� � & * 2 $ Á Á Ñ ? ® % # . " � = 8 ¶ Ñ Á Á & 7 F # . " � Á Á Ñ Ò # Ñ {o] d w � d g] a \ ` d b § o] d ¤ § N [m d s] e c � � @ " #) $, * 0 (' 3 $ 3 ") � �� � & * 2 $ Á Á Ñ @ " # 8 ¶ Ñ Á Á (" # 8 Á Á Ñ Ò # Ñ {b] � M] d f w � b] � M] d f ¤ § £ N a f g f k � N [m d s] e � cÊ a d _ ` \ § £ j [[] d s � k j _ d � b] � M] d f w � c� � 1 * � 7 % & � 3 * - " � , " + " $ * 7 ' 3 $ " 3 ") - " # $ 9 � �N [m d s] e � � _ d f � \ ` o o � o ` j f � ¤ � � � l o ` j f � � o] d ¤ « o] d w � � c� � & * 2 $ Á Á Ñ ? ® % # . " � = Ó ¶ Ñ Á Á & 7 F # . " � Á Á Ñ Ò # Ñ {b] � M] d f w � Ê a d _ ` \ § £ N a f g f k � N [m d s] e � cÊ a d _ ` \ § £ j [[] d s � k j _ d � b] � M] d f ¤ � cÊ a d _ ` \ § £ j [[] d s � k j _ d � b] � M] d f w � c� � �d] ¯ O P Q � d] ¯ O P Q § £ �] f g] e f � � c � ° * } " * # $ * # " � $ ° ? D � � �� �� � �� �� 1 * � � + " 7 (' & " $, " (' 3 $ # 4 " 7 (' & " . " (" - " # $ 3 % # $, " ® * 7 2 (' $ % * # � % $, # " � D � G � � �f k] u ` [a o j f _ ` d § £ � _ o o � j b f � d t] [o j N] s � c � �f k] u ` [a o j f _ ` d § £ j [[] d s � k j _ d � d] ¯ � a d N k j d �] s � c � �� � �� � = � �� �^ ` _ s M N O P Q Y Y s a M [p N ` \] b � � R � �� �N ` a f ª ª M h p N ` \] ª ª Ô Õ d Ô c � �� � . 2 - 7 B & * + " 3 � �U ¢ � d] e f � R d] e f § £ s a M [p N ` \] b � � c � � �� �� � �� �

75

APPENDIX C: ROBOT CLASS SOURCE CODE

This Appendix provides the source code for the software library that creates

and manipulates the simulated robot used in this thesis. This library consists of the

spiderBody object class, and several helper functions that are used with it.

This source code is divided into three files. The first file (spider6.h) is a

header file that is included in any program which uses this library. This header

defines the macros referenced in Tables 4.1 and 4.2, and declares the spiderBody

object class.

The second file (spider6.cpp) contains the member functions for the

spiderBody object class and the helper functions that are used with it. These

functions, and their usage, are discussed in detail in sections 4.4 and 4.5.

The third file (actuator.cpp) contains the code which is used to model the

linear servos that are used by the spiderBody class. This file consists of three

parts:

● Definition of typedef struct actuator{}, which encapsulates all of the ODE

objects that are required to model the linear servo.

● Function genActuator(), which creates an ODE model of the actuator.

● Function delActuator(), which deletes all of the ODE objects that comprise

an actuator.

76

� � � � � � � � � � � � � � � 	
 � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �

� � � � ! " # $ % & � ' () *) * + ,))- . /) ' % � 0 1 2 , (3 4 4 5 � �6 7 8 9 : ; 8 < = > ? @ A @ B C D E F6 7 8 9 : ; 8 G H I ? @ A @ B C D J F6 7 8 9 : ; 8 > K L M ? @ A @ B C D N F6 7 8 9 : ; 8 O = > ? @ A @ B C D P F6 7 8 9 : ; 8 < O O ? @ A @ B C D Q F6 7 8 9 : ; 8 O O O ? @ A @ B C D R F6 7 8 9 : ; 8 K S > ? @ A @ B C D T F6 7 8 9 : ; 8 > S > ? @ A @ B C D U F� � V ! " W X " Y Z Z � , # , [) \ 5]6 7 8 9 : ; 8 ^ S > ? @ A @ B C D _ F6 7 8 9 : ; 8 < ` a ? @ A @ B C D J E F6 7 8 9 : ; 8 O ` a ? @ A @ B C D J J F6 7 8 9 : ; 8 O K b c M b L ? @ A @ B C D J N F6 7 8 9 : ; 8 d e K = ^ ? @ A @ B C D J P F6 7 8 9 : ; 8 ` I L f ? @ A @ B C D J Q F6 7 8 9 : ; 8 ` I L g ? @ A @ B C D J R F6 7 8 9 : ; 8 ` I L h ? @ A @ B C D J T F6 7 8 9 : ; 8 < O h H ? @ A @ B C D J U F6 7 8 9 : ; 8 O > h H ? @ A @ B C D J i F6 7 8 9 : ; 8 O O h H ? @ A @ B C D J _ F6 7 8 9 : ; 8 j S > ? @ A @ B C D N E F6 7 8 9 : ; 8 j S a ? @ A @ B C D N J F6 7 8 9 : ; 8 G H S a ? @ A @ B C D N N F6 7 8 9 : ; 8 G H d a ? @ A @ B C D N P F6 7 8 9 : ; 8 > H S a ? @ A @ B C D N Q F6 7 8 9 : ; 8 > H d a ? @ A @ B C D N R F6 7 8 9 : ; 8 < O a ? @ A @ B C D N T F6 : ; k l m 7 8 n B @ o p q p r6 : ; k l m 7 8 s @ k o m @ o t A P q k ? ? s� � V X * + u ! " v + X , + w . * � � v� � x " y z & & # $ u & " { # ! " # |� � 4 } � � " # � + , & W % # [# , ! u) } ~ -� � 0 � , * & u , & % # u � � " # [% u X & % W W) " & � W # % [* " X & " #) % W } � � � z {� � 3 �) & , X * " $ " & y " " X u � � " # , X ! + % y " # � + , & W % # [) - � � �� � � Z % y " # � + , & W % # [# , ! u) Z ~ -� � 1 } � � " # + " w + " X w & ' } Z Z� � � Z % y " # Z " w Z " X w & ' Z Z Z� � � �) & , X * " ' � � � � $, + + % X u � � " # + " w � / -� � � � � # % & , & % X + X � , w " + " X w & ' - / -� � 5 Y X " " + X � + " X w & ' Y Z Z� � � �) & , X * " � X " " � � � X " " + X � , & & , * ' [" X & Y / -� � 0 4 } � � " # � + , & W % # [[,)) } � 2� � 0 0 Z % y " # � + , & W % # [[,)) Z � 2� � 0 3 � � u , # " & u $ X w ! " X) & (� [,)) � u X & + " X w & ' � Z � x � � x �� � 0 � � + , & W % # [, X ! Z " w & ' * � X ")) � � � ~ Y� � 0 1 � & , # & X w � %) & % X � � { � �� � 0 � � & , # & X w � %) & % X � � { � �� � 0 � � & , # & X w � %) & % X � � { � �� � 0 � } � � " # + " w � " # % , X w + " } Z � z� � 0 5 Z " w # % & , & % X � " # % , X w + " Z - � z� � 0 � Z % y " # + " w � " # % , X w + " Z Z � z� � 3 4 � % % & $, + + # , ! u) � / -� � 3 0 � % % & $, + + [,)) � / 2� � 3 3 � z * & u , & % # $,) " [,)) � z / 2� � 3 � � z * & u , & % # & � [,)) � z � 2� � 3 1 - z * & u , & % # $,) " [,)) - z / 2� � 3 � - z * & u , & % # & � [,)) - z � 2� � 3 � } � � " # + " w [,)) } Z 2� � � � � C ? : 7 8 A S t 7 � �� �� � � � � ¡ ¢ 7 £ t A l 7 K c ¤ t A l 7 ¥ � � � % X & " # & % & ' " { � � v y % # + ! v
77

� � � � � � � � � � � � � � � 	
 � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �

7 L ? @ k 8 K c B � L ? @ k 8 ¥ � � � � , * " W % # & ')9 l t @ o o : B 8 L o 8 ? ¥ � � � [") & " � & % $ " u) " ! W % #) [u + , & % X)7 S t 7 � K c k t A 8 ¥ � � & ' " v * % # " v % W & ' " $ % ! (7 S t 7 � K c m ? ? 8 A O 8 ¦ C D Q F ¥ � � & ' " Z �) ' , � " ! u � � " # + " w)7 S t 7 � K c l t ¤ 8 A O 8 ¦ C D Q F ¥ � � & ' " + % y " # + " w) �) � u , # " $, # §) � ' " # " % X " X ! �7 ¨ t : ; o K c p : ? C D Q F ¥ � � / , + + © % X &) y ' " # " + " w) , & & , * ' & % $ % ! (7 ¨ t : ; o K c ª ; 8 8 C D Q F ¥ � � � X w " 0 © % X &) , & � X " ")7 a @ C C k t A 8 a @ C C ¥ � � - " � # ") " X &) & ' " * " X & # , + $ % ! (7 a @ C C m ? ? 8 A O 8 ¦ C a @ C C ¥ � � Z �) ' , � " ! u � � " # + " w)7 a @ C C l t ¤ 8 A O 8 ¦ C a @ C C ¥ � � Z % y " # + " w) , X ! W " " &7 « 8 t B K c k t A 8 « 8 t B D P F ¥ � � � ,) & ' # " " w " % [) � & % � ¬ #) " # ¬ $ % & & % [�7 « 8 t B K c m ? ? 8 A O 8 ¦ C « 8 t B D i F ¥ � � � ,) & y % w " % [) � + " w , X ! # % & , & % X $, # �7 « 8 t B K c l t ¤ 8 A O 8 ¦ C « 8 t B D i F ¥ � � � ,) & y % w " % [) � + " w , X ! W % % &) � ' " # " �7 > 8 @ l @ k o m @ o t A I 9 9 C 8 o C D J N F ¥ � � � X & " # X , + v ! ") # " ! v , * & u , & % # � %) & % X)@ k o m @ o t A B � H k o m @ o t A C D J N F ¥ � � { X + (0 3 � X % & 0 � � $ " * , u) " & ' " � X " ") , # " $ " X w� � [% ! " + " ! ,) � % y " # " ! ' X w ") ¬ y & ' " ­ & " # X , +� � W % # * " " � u , & % X) .7 > 8 @ l ¦ 8 o ^ O O ® ¯ ¥7 > 8 @ l ª ; 8 8 h 8 A t H ; ¦ l 8 ¥� �� ° ± � � � ¢ k t ; C o 7 > 8 @ l ² k t A 8 ` t C : o : t ; C D P F ¥k t ; C o 7 > 8 @ l ² k t A 8 > t o @ o : t ; C D P F ¥k t ; C o 7 > 8 @ l ² m ? ? 8 A O 8 ¦ ` t C : o : t ; C D Q F ¥k t ; C o 7 > 8 @ l ² m ? ? 8 A O 8 ¦ > t o @ o : t ; C D Q F ¥k t ; C o 7 > 8 @ l ² A t o O : ; ª ` t C : o : t ; C D Q F ¥k t ; C o 7 > 8 @ l ² A t o O : ; ª > t o @ o : t ; C D Q F ¥k t ; C o 7 > 8 @ l ² l t ¤ 8 A O 8 ¦ ` t C : o : t ; C D Q F ¥k t ; C o 7 > 8 @ l ² l t ¤ 8 A O 8 ¦ > t o @ o : t ; C D Q F ¥k t ; C o 7 > 8 @ l ² 9 t t o S @ l l ` t C : o : t ; C D Q F ¥� � � & ³)) & u � ! & % # % & , & " ,) � ' " # " W % # # " X ! " # X w . . .k t ; C o 7 > 8 @ l ² @ k o S @ C 8 ` t C : o : t ; C D J N F ¥k t ; C o 7 > 8 @ l ² @ k o S @ C 8 > t o @ o : t ; C D J N F ¥k t ; C o 7 > 8 @ l ² @ k o d : ? ` t C : o : t ; C D J N F ¥k t ; C o 7 > 8 @ l ² @ k o d : ? > t o @ o : t ; C D J N F ¥9 l t @ o m ? ? 8 A ` l @ o 9 t A B S t ´ D T F ¥9 l t @ o A : C 8 A S t ´ D T F ¥9 l t @ o l t ¤ 8 A ` l @ o 9 t A B S t ´ D T F ¥9 l t @ o m ? ? 8 A O 8 ¦ S t ´ D T F ¥9 l t @ o A t o O : ; ª S t ´ D T F ¥9 l t @ o l t ¤ 8 A O 8 ¦ S t ´ D T F ¥9 l t @ o µ @ k o S @ C 8 S t ´ D T F ¥9 l t @ o µ @ k o d : ? S t ´ D T F ¥9 l t @ o A @ k o S @ C 8 S t ´ D T F ¥9 l t @ o A @ k o d : ? S t ´ D T F ¥9 l t @ o 9 t t o S @ l l > @ 7 : m C ¥� � W + % , & � X " " Z X � / % ­ \ �] ¶� � ! - " , + � W " + & � % # * ") ¶ � � � " + & W % # * ") X , * & u , & % #)� � ! - " , + � , * & u , & % # � u & (~ (* + ") ¶ � � � ") # " ! ! u & (* (* + ") � y & ' " # # % # � # % & " * & % X �C ? : 7 8 A S t 7 � ® 7 £ t A l 7 K c · 7 L ? @ k 8 K c · 7 > 8 @ l ² ¯ ¥ � � ~ % X) & # u * & % #¸ C ? : 7 8 A S t 7 � ® ¯ ¥ � � � ") & # u * & % #� � ¹ % ! , ! ! � % # * " � ! - " , + ¬ ! - " , + ¬ ! - " , + � ¶7 > 8 @ l ¦ 8 o ` t C ® : ; o ¯ ¥7 > 8 @ l ¦ 8 o G 8 l ® : ; o ¯ ¥µ t : 7 @ 7 7 j t A k 8 ® : ; o · 7 > 8 @ l ¯ ¥
78

� � � � � � � � � � � � � � � 	
 � � º

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � �

µ t : 7 @ 7 7 ^ ; 8 8 d t A » m 8 ® : ; o · 7 > 8 @ l ¯ ¥7 > 8 @ l ¦ 8 o ^ ; 8 8 H ; ¦ l 8 ® : ; o ¯ ¥7 > 8 @ l ¦ 8 o ^ ; 8 8 I B 8 ¦ @ ® : ; o ¯ ¥7 > 8 @ l k @ l k ^ ; 8 8 H k o I 9 9 C 8 o ® 7 > 8 @ l · 7 > 8 @ l · 7 > 8 @ l ¯ ¥7 > 8 @ l k @ l k ^ ; 8 8 d t A » m 8 ® 7 > 8 @ l · 7 > 8 @ l · 7 > 8 @ l · 7 > 8 @ l ¯ ¥7 > 8 @ l k @ l k ^ ; 8 8 H k o G 8 l ® 7 > 8 @ l · 7 > 8 @ l · 7 > 8 @ l · 7 > 8 @ l ¯ ¥7 S t 7 � K c ¦ 8 o = t A 8 ® ¯ ¥7 > 8 @ l ^ O O ¥� � ¹ % ! u � ! , & " z * & u , & % #) � � ¶ � � } � ! , & ") , * & u , & % #) y & ' , * & u , & % # � u & (~ (* + ")¼ ¥� � z * & u , & % # % # ! " # � " # + " w |� � 2 0 ¬ 2 3 ¬ - % & , & % X ¬ Y X " "� � � 2 0 ¬ 2 3 * % u X & " # * + % * � y) " ¬ + % % � X w ! % y X W # % [, $ % ¹ " �� � Z " w % # ! " # |� � - � ¬ Z � ¬ Z - ¬ - -6 : ; k l m 7 8 s C ? : 7 8 A T q k ? ? s

79

� � � � � � � � � � � � � � � 	
 � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � ! " # $ � % ! & � ! '� � () * * � ! * + , - . ! / ! , & " $ 0) 1 2� � 3 4 , 5 $, . ! $ * * � ! / . $ 6 . - - 0 � 7 - ! . / 5 � 6 � ! 0 . -) 8 9 4 � %� � : ; " 0 , 6 5 � # � � � � 6 $ * * � ! , 6 & + . � � ! * + , - . ! / 0 2 < = >� � ? @ . � � ! * + , - . ! / ! , & " $ 0 @ 1 2� � A) * * � ! + � B + � 6 B C) @ @� � D @ . � � ! @ � B @ � 6 B C @ @ @� � E ; " 0 , 6 5 � C " * F G 4 # , + + . 6 $ * * � ! + � B < H 2� � I J " * ! . , " . 6 + " 6 K , B � + � 6 B C 2 H 2� � % H = % @ > L > M N 6 � � + " 6 K + � 6 B C N @ @� � O ; " 0 , 6 5 � K 6 � � F G K 6 � � + " 6 K , , 5 C / � 6 N H 2� � 3 () * * � ! * + , - . ! / / , 0 0) 8 P� � 3 3 @ . � � ! * + , - . ! / / , 0 0 @ 8 P� � 3 : = Q $, ! � $ # " 6 B & � 6 0 " R 7 / , 0 0 � $ 6 " + � 6 B C 9 @ < � ; > � =� � 3 ? 8 + , - . ! / , 6 & @ � B C " 5 K 6 � 0 0 L J < 1 N� � 3 A = , ! " 6 B 8 . 0 " " . 6 S 8 % = S� � 3 D = , ! " 6 B 8 . 0 " " . 6 T 8 % = T� � 3 E = , ! " 6 B 8 . 0 " " . 6 U 8 % = U� � 3 I) * * � ! + � B V � ! . , 6 B + �) @ U �� � 3 M @ � B ! . , " . 6 V � ! . , 6 B + � @ 2 U �� � 3 O @ . � � ! + � B V � ! . , 6 B + � @ @ U �� � : (W . . # , + + ! , & " $ 0 W H 2� � : 3 W . . # , + + / , 0 0 W H P� � : : 4 � 5 $, . ! # , 0 � / , 0 0 4 � H P� � : ? 4 � 5 $, . ! " * / , 0 0 4 � L P� � : A 2 � 5 $, . ! # , 0 � / , 0 0 2 � H P� � : D 2 � 5 $, . ! " * / , 0 0 2 � L P� � : E) * * � ! + � B / , 0 0) @ PX Y Z [\] ^ _ [` a a X Y Z [\] ^ _ [` b [c _] d [e f g h] i \ g c _] d [j [k Y h l \ e f g h] i \ g k Y h l \ j [m \ h d n Y h] h o X p q� � � r s r� � � t u u u u u u u u u 4 � 2 < � H @ > ; > 1 @ � 2 � L < % � = u u u u u u u u u u t� � � t u u u u u u u u u � � ; � = = < v � P > � L = u u u u u u u u u u t� � � r w r[m \ h d o h X X x y y X \ g z { | } � � ~ . ! K " 6 B � , ! " , # + � 0 $ 0 � & - . ![m \ h d g _ g h d � h X X } � � 0 � $ * . - � , ! " . $ 0 # . & R * , ! 0[m \ h d l �] � x � z { | } � � 1 $! ! � 6 1 . P 7 � . ! K " 6 B � , ! � 9[m \ h d � �] Z o \ z { | }[m \ h d ` �] Z o \ z { | }[m \ h d � �] Z o \ z { | }[m \ h d � m _ g z { | }[m \ h d ` m _ g z { | }[m \ h d � m _ g z { | }[m \ h d � � \ \ � �] Z o \ X z � | z { | } � � L C � 0 � , ! � C � + . 5 , + 5 . . ! & 0 C , , ! � $ 0 � &[m \ h d � � \ \ � �] Z o \ X z � | z { | } � � " 6 C � 5 ! � , " . 6 . - C � $ * * � ! , 6 & + . � � ![m \ h d � � \ \ � �] Z o \ X z � | z { | } � � + � B 0 � � . � C , K S 8 * . " 6 0 - ! . / C � C " *� � . � , ! & C � K 6 � � $ 6 " + � � ! � , 5 C C � + . � � !� � + � B * . ! " . 6 . - C � 5 . 6 0 ! $ 5 . ! � , 6 & C � 6� � C � R ! . , � 0 . K S 8 * . " 6 0 , C � - . . �[m \ h d � � \ \ � _ _] [X z � | z { | } � � 8 . 0 " " . 6 . - C � K 6 � � 0 � ! � 1 . P . - 5 . ! �[m \ h d] _ g ^ h d d X z � | z { | } � � 8 . 0 " " . 6 . - ! . , " . 6 # , + + � . " 6 0 7 � H = % @) L > 9[m \ h d � h l g ^ h d d X z � | z { | } � � 8 . 0 " " . 6 . - 4 , 5 $, . ! " * 0 7 � H = % @) L > 9[m \ h d � _] � Z � i � l g � h g _] z � � | } � � 8 , ! , / , ! ! , R C , � 0 - " + + � & . $ � � , 6 & 0 � 6 . B � 6 � 5 $, . ! 7 9[� h g] Z � {] _ g h g Z _ � }[m \ h d ^ � z | � q � � m � � � � � j � � m � � � � � j � m e k � n � � � � } � � 8 . 0 " " . 6 0 . - C � C " *[m \ h d ^ � z | � q � � � m � � � � � j � � m � � � � � j � m e k � n � � � � } � � � . " 6 0 � ! � + , " � � .[m \ h d ^ { z | � q � � � m � � � � � j � � � m � � � � � j � m e k � n � � � � } � � 1 . P . - 5 . ! �[m \ h d ^ � z | � q � � m � � � � � j � � � m � � � � � j � m e k � n � � � � }� _] d [� g h] i \ g c _] d [} � � & ~ . ! + & < ; . - � . ! + & . # $ " + & 0 * " & � ! " 6o ` k Y h l \ � g h] i \ g k Y h l \ } � � & = * , 5 � < ; . - 0 * , 5 � . # $ " + & 0 * " & � ! " 6[� h X X � _] � Z � i } � � ~ . ! K " 6 B & P , 0 0 . # � � 5 . # $ " + & + � B 0 � # . & R " 6
80

� � � � � � � � � � � � � � � 	
 � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � 1 2 > � L > # . � � 0 - . ! & ! , � # . � - . ! . * � 6 v @ & " 0 * + , R � �� � � �� �� Y Y \] � d h g y _] o ^ _ � z � | � � � � n ¡ � m } � �� Y Y \] � d h g y _] o ^ _ � z � | � � � � n ¡ � m } � �� Y Y \] � d h g y _] o ^ _ � z � | � ¢ £ e � ¤ } � �� Y Y \] � d h g y _] o ^ _ � z { | � � � ¥ } � � L C � / , " 6 # . & R , 6 & + � B 0 , ! � � �� Y Y \] � d h g y _] o ^ _ � z � | � � � � } � � ! � & � 0 . C � R 0 , 6 & . $ - ! . / � �� Y Y \] � d h g y _] o ^ _ � z � | � � � � } � � C � � ! ! , " 6 � �� �d _ � \] � d h g y _] o ^ _ � z � | � � � � n � � m } � �d _ � \] � d h g y _] o ^ _ � z � | � � � � n � � m } � �d _ � \] � d h g y _] o ^ _ � z � | � ¢ £ e � ¤ } � �d _ � \] � d h g y _] o ^ _ � z { | � � � ¥ } � �d _ � \] � d h g y _] o ^ _ � z � | � � � � } � �d _ � \] � d h g y _] o ^ _ � z � | � � � � } � �� �] Z X \] ^ _ � z � | � ¢ £ e � ¤ } � �] Z X \] ^ _ � z � | � ¢ £ e � ¤ } � �] Z X \] ^ _ � z � | � m e k � } � �] Z X \] ^ _ � z { | � � � ¥ } � �] Z X \] ^ _ � z � | � � � � } � �] Z X \] ^ _ � z � | � � � � } � �� �� Y Y \] � \ i ^ _ � z � | � ¡ � � } � �� Y Y \] � \ i ^ _ � z � | � ¢ £ e � ¤ } � �� Y Y \] � \ i ^ _ � z � | � ¢ £ e � ¤ } � �� Y Y \] � \ i ^ _ � z { | � � � ¦ } � �� Y Y \] � \ i ^ _ � z � | � � � � } � �� Y Y \] � \ i ^ _ � z � | � � � � } � �� �] _ g � Z � � ^ _ � z � | � ¢ £ e � ¤ � � � � � � } � �] _ g � Z � � ^ _ � z � | � ¢ £ e � ¤ � � � � � � } � �] _ g � Z � � ^ _ � z � | � m ^ m } � �] _ g � Z � � ^ _ � z { | � � � � } � � @ " 6 K , B � 0 , ! � # ! " B C # + $ � � �] _ g � Z � � ^ _ � z � | � � � � } � � 0 . C � R 5 , 6 # � 0 � � 6 � , 0 " + R � �] _ g � Z � � ^ _ � z � | � � � � } � �� �d _ � \] � \ i ^ _ � z � | � � � � } � �d _ � \] � \ i ^ _ � z � | � ¢ £ e � ¤ } � �d _ � \] � \ i ^ _ � z � | � ¢ £ e � ¤ } � �d _ � \] � \ i ^ _ � z { | � � � � } � �d _ � \] � \ i ^ _ � z � | � � � � { } � �d _ � \] � \ i ^ _ � z � | � � � � { } � �� �� � � , 5 H , 0 � ! H . � § (¨ © ª ª ª « F F F ~ � � + + B � C " 0 + , � ! � �� h l g ^ h X \ ^ _ � z � | � ¢ £ e � ¤ n � � � } � �� h l g ^ h X \ ^ _ � z � | � ¢ £ e � ¤ n � � � } � �� h l g ^ h X \ ^ _ � z { | � � � � } � �� h l g ^ h X \ ^ _ � z � | � � � � } � �� h l g ^ h X \ ^ _ � z � | � � � � } � �� �� � � , 5 L " * H . � § (¨ © ª ª ª « F F F ~ � � + + B � C " 0 + , � ! � �� h l g ¢ Z Y ^ _ � z � | � ¢ £ e � ¤ n � � ¥ ¥ } � �� h l g ¢ Z Y ^ _ � z � | � ¢ £ e � ¤ n � � ¥ ¥ } � �� h l g ¢ Z Y ^ _ � z { | � � � ¬ } � �� h l g ¢ Z Y ^ _ � z � | � � � ¬ } � �� h l g ¢ Z Y ^ _ � z � | � � � ¬ } � �� �� � ! , 5 H , 0 � H . � § (¨ © ª ª ª « F F F ~ � � + + B � C " 0 + , � ! � �] h l g ^ h X \ ^ _ � z � | � ¢ £ e � ¤ n � � � } � �] h l g ^ h X \ ^ _ � z � | � ¢ £ e � ¤ n � � � } � �] h l g ^ h X \ ^ _ � z { | � � � ¬ } � �] h l g ^ h X \ ^ _ � z � | � � � ¬ } � �] h l g ^ h X \ ^ _ � z � | � � � � } � �� �� � ! , 5 L " * H . � § (¨ © ª ª ª « F F F ~ � � + + B � C " 0 + , � ! � �] h l g ¢ Z Y ^ _ � z � | � ¢ £ e � ¤ n � � ¥ ¥ } � �] h l g ¢ Z Y ^ _ � z � | � ¢ £ e � ¤ n � � ¥ ¥ } � �] h l g ¢ Z Y ^ _ � z { | � � � � } � �] h l g ¢ Z Y ^ _ � z � | � � � � } � �] h l g ¢ Z Y ^ _ � z � | � � � � } � �
81

� � � � � � � � � � � � � � � 	
 � � � � ­

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� �� �� � � �� � � r s r� � � t u u u u u u u u u 1 2 > � L > 1 % 2 > H % ; T % H ® > 1 L u u u u u u u u u u t� � � r w rl _] \ � [^ _ [` �] \ h g \ b � _] d [p }[� h X X k \ g � \] _ b ¯ l _] \ � h X X p }� � � 5 5 $ / $ + , � C � # . & R / , 0 0 � 0 � �� � � �[� h X X k \ g ^ _ � ¢ _ g h d b ¯ � _] � Z � i j ¡ � � j � � � n ¡ � m j � � � n ¡ � m j ¢ £ e � ¤ p } � �[� h X X ¢] h � X d h g \ b ¯ � _] � Z � i j � � � j � � � j b m e k � � ¢ £ e � ¤ p n � � � p } � �[� h X X � [[b ¯ l _] \ � h X X j ¯ � _] � Z � i p } � �� �[� h X X k \ g ^ _ � ¢ _ g h d b ¯ � _] � Z � i j m e k � n � e ° f � ° k j ¢ £ e � ¤ j ¢ £ e � ¤ j m e k � p } � �[� h X X � [[b ¯ l _] \ � h X X j ¯ � _] � Z � i p } � �� �[� h X X k \ g ^ _ � ¢ _ g h d b ¯ � _] � Z � i j � � � j � � � n � � m j � � � n � � m j ¢ £ e � ¤ p } � �[� h X X ¢] h � X d h g \ b ¯ � _] � Z � i j � � � j � � � j b m e k � � ¢ £ e � ¤ p n � � � p } � �[� h X X � [[b ¯ l _] \ � h X X j ¯ � _] � Z � i p } � �� �� � 8 . 0 " " . 6 , 6 & , , 5 C C � 5 . ! � / , 0 0 � �� � � �� �� � = , � � C " 0 0 . � � 5 , 6 * . 0 " " . 6 C � 5 . ! � + , � ! � �o h X X x y y X \ g z � | � l _] \ � h X X � l z � | } � �o h X X x y y X \ g z � | � l _] \ � h X X � l z � | } � �o h X X x y y X \ g z � | � l _] \ � h X X � l z � | } � �� �� � P . � � C � / , 0 0 0 . " 0 1 . P " 0 , C � . ! " B " 6 � �[� h X X ¢] h � X d h g \ b ¯ l _] \ � h X X j � l _] \ � h X X � l z � | j � l _] \ � h X X � l z � | j � �� l _] \ � h X X � l z � | p } � �� �[^ _ [` k \ g � h X X b l _] \ j ¯ l _] \ � h X X p } � �� �� � P . � � " # , 5 K 6 . � C , " � 0 5 ! � , � & � �[^ _ [` k \ g � _ X Z g Z _ � b l _] \ j o h X X x y y X \ g z � | � � x k � j o h X X x y y X \ g z � | � � x k � j � �o h X X x y y X \ g z � | � � x k � p } � �� �� � � �� � 1 ! � , � , 6 & , , 5 C C � 5 . ! � B � . / 0 � �� � � �l _] \ ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¡ � m n � � � j ¡ � m n � � � j ¢ £ e � ¤ p } � �l _] \ ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¢ £ e � ¤ j ¢ £ e � ¤ j m e k � p } � �l _] \ ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j � � m n � � � j � � m n � � � j ¢ £ e � ¤ p } � �� �� � � , 5 C C � B � . / 0 . C � # . & " � 0 , 6 & 0 � C � " ! . - - 0 � * . 0 " " . 6 0 � �[± \ _ o k \ g ^ _ [` b l _] \ ± \ _ o z � | j l _] \ p } � �[± \ _ o k \ g ^ _ [` b l _] \ ± \ _ o z � | j l _] \ p } � �[± \ _ o k \ g ^ _ [` b l _] \ ± \ _ o z � | j l _] \ p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b l _] \ ± \ _ o z � | j � o h X X x y y X \ g z � | j � �� o h X X x y y X \ g z � | j b m e k � � ¢ £ e � ¤ p n � � � � o h X X x y y X \ g z � | p } � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b l _] \ ± \ _ o z � | j � o h X X x y y X \ g z � | j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b l _] \ ± \ _ o z � | j � o h X X x y y X \ g z � | j � �� o h X X x y y X \ g z � | j � b m e k � � ¢ £ e � ¤ p n � � � � o h X X x y y X \ g z � | p } � �� � � �l _] \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b l _] \ ± \ _ o z � | p } � �) * * � ! * + , - . ! /l _] \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b l _] \ ± \ _ o z � | p }
82

� � � � � � � � � � � � � � � 	
 � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

l _] \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b l _] \ ± \ _ o z � | p } � � 4 � ! " 5 , + # , !l _] \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b l _] \ ± \ _ o z � | p }l _] \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b l _] \ ± \ _ o z � | p } � � @ . � � ! * + , - . ! /l _] \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b l _] \ ± \ _ o z � | p }� � � r s r� � � t u u u u u u u u u u 1 2 > � L >) 8 8 > 2 @ > v = u u u u u u u u u u u t� � � r w r� Y Y \] � \ i X z � | � [^ _ [` �] \ h g \ b � _] d [p } � � + � B 3 ' - ! . 6 ! " B C � Y Y \] � \ i X z � | � [^ _ [` �] \ h g \ b � _] d [p } � � + � B : ' - ! . 6 + � - � Y Y \] � \ i X z � | � [^ _ [` �] \ h g \ b � _] d [p } � � + � B ? ' # , 5 K + � - � Y Y \] � \ i X z { | � [^ _ [` �] \ h g \ b � _] d [p } � � + � B A ' # , 5 K ! " B C [� h X X k \ g � \] _ b ¯ � Y Y \] � \ i X � h X X p } � �� � 1 ! � , � C � $ * * � ! + � B 0 � � H� � � �)� � <[� h X X k \ g � \] _ b ¯ � _] � Z � i p } � � @� � @ � B 0 , ! 0 . $, + " B 6 � & � " C S , � " 0 � � ;� � . , + P , 0 0 ©) @ @ ² @ < � ; > � = ³ � �[� h X X k \ g ^ _ � ¢ _ g h d b ¯ � _] � Z � i j ¡ � � j ¡ � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �)� � P . � � 0 . C , # , 0 � � 6 & " 0 , . ! " B " 6 � � 8[� h X X ¢] h � X d h g \ b ¯ � _] � Z � i j ¡ � � n � � � j � � � j � � � p } � � 8[� h X X � [[b ¯ � Y Y \] � \ i X � h X X j ¯ � _] � Z � i p } � � >� � � . � 5 ! � , � C � ! . , " . 6 , + * , ! � � 2g _ g h d � h X X � m ^ m n � e ° f � ° k } � �[� h X X k \ g ^ _ � ¢ _ g h d b ¯ � _] � Z � i j g _ g h d � h X X j � �¢ £ e � ¤ � � � � � � j ¢ £ e � ¤ � � � � � � j m ^ m p } � � @� � P . � � " " 6 . * . 0 " " . 6 � � >[� h X X ¢] h � X d h g \ b ¯ � _] � Z � i j ¢ £ e � ¤ n � � � j � � � j m ^ m n � � � � ¢ £ e � ¤ n � � � p } � � v[� h X X � [[b ¯ � Y Y \] � \ i X � h X X j ¯ � _] � Z � i p } � �� � = , � � C " 0 0 . � � 5 , 6 * . 0 " " . 6 C � 5 . ! � + , � ! � � 2o h X X x y y X \ g z � | � � Y Y \] � \ i X � h X X � l z � | } � � <o h X X x y y X \ g z � | � � Y Y \] � \ i X � h X X � l z � | } � � vo h X X x y y X \ g z � | � � Y Y \] � \ i X � h X X � l z � | } � � <� � P . � � C � / , 0 0 0 . " 0 1 . P " 0 , C � . ! " B " 6 � � ;[� h X X ¢] h � X d h g \ b ¯ � Y Y \] � \ i X � h X X j � � Y Y \] � \ i X � h X X � l z � | j � �� � Y Y \] � \ i X � h X X � l z � | j � � Y Y \] � \ i X � h X X � l z � | p } � � H� � L C � # . & " � 0 5 , 6 , + + 0 C , ! � . 6 � / , 0 0 . # � � 5 � 0 " 6 5 � " � 0 6 � � � ! � � %� � / . & " - " � & , - � ! # � " 6 B 5 ! � , � & � � � ;[^ _ [` k \ g � h X X b � Y Y \] � \ i X z � | j ¯ � Y Y \] � \ i X � h X X p } � � T[^ _ [` k \ g � h X X b � Y Y \] � \ i X z � | j ¯ � Y Y \] � \ i X � h X X p } � �[^ _ [` k \ g � h X X b � Y Y \] � \ i X z � | j ¯ � Y Y \] � \ i X � h X X p } � � %[^ _ [` k \ g � h X X b � Y Y \] � \ i X z { | j ¯ � Y Y \] � \ i X � h X X p } � � H� � P . � � " # , 5 K 6 . � C , " � 0 5 ! � , � & � � ®[^ _ [` k \ g � _ X Z g Z _ � b � Y Y \] � \ i X z � | j o h X X x y y X \ g z � | j o h X X x y y X \ g z � | j � � >o h X X x y y X \ g z � | p } � � 1[^ _ [` k \ g � _ X Z g Z _ � b � Y Y \] � \ i X z � | j o h X X x y y X \ g z � | j o h X X x y y X \ g z � | j � � Lo h X X x y y X \ g z � | p } � � =[^ _ [` k \ g � _ X Z g Z _ � b � Y Y \] � \ i X z � | j o h X X x y y X \ g z � | j o h X X x y y X \ g z � | j � �o h X X x y y X \ g z � | p } � �[^ _ [` k \ g � _ X Z g Z _ � b � Y Y \] � \ i X z { | j o h X X x y y X \ g z � | j o h X X x y y X \ g z � | j � �o h X X x y y X \ g z � | p } � �� �� � � �� � 1 ! � , � � , , 5 C $ * * � ! + � B , 6 & ! . , " . 6 , + + " 6 K B � . / 0 � �� � � �� � > 4 > � 6 $ / # � ! � & B � . / 0 , ! � C � $ * * � ! + � B 0 � �� � % ; ; 6 $ / # � ! � & B � . / 0 , ! � C � ! . , " . 6 , + + " 6 K , B � 0 � �� Y Y \] � \ i X ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¡ � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �� Y Y \] � \ i X ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¢ £ e � ¤ � � � � � � j � �¢ £ e � ¤ � � � � � � j m ^ m p } � �� Y Y \] � \ i X ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¡ � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �� Y Y \] � \ i X ± \ _ o z { | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¢ £ e � ¤ � � � � � � j � �¢ £ e � ¤ � � � � � � j m ^ m p } � �� Y Y \] � \ i X ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¡ � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �� Y Y \] � \ i X ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¢ £ e � ¤ � � � � � � j � �
83

� � � � � � � � � � � � � � � 	
 � � � � ´

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

¢ £ e � ¤ � � � � � � j m ^ m p } � �� Y Y \] � \ i X ± \ _ o z ¦ | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¡ � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �� Y Y \] � \ i X ± \ _ o z ¬ | � [�] \ h g \ ^ _ � b o ` k Y h l \ j ¢ £ e � ¤ � � � � � � j � �¢ £ e � ¤ � � � � � � j m ^ m p } � �� �[± \ _ o k \ g ^ _ [` b � Y Y \] � \ i X ± \ _ o z � | j � Y Y \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b � Y Y \] � \ i X ± \ _ o z � | j � Y Y \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b � Y Y \] � \ i X ± \ _ o z � | j � Y Y \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b � Y Y \] � \ i X ± \ _ o z { | j � Y Y \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b � Y Y \] � \ i X ± \ _ o z � | j � Y Y \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b � Y Y \] � \ i X ± \ _ o z � | j � Y Y \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b � Y Y \] � \ i X ± \ _ o z ¦ | j � Y Y \] � \ i X z { | p } � �[± \ _ o k \ g ^ _ [` b � Y Y \] � \ i X ± \ _ o z ¬ | j � Y Y \] � \ i X z { | p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � ¡ � � n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � ¢ £ e � ¤ n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | � b ¢ £ e � ¤ � m ^ m p n � � � p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � ¡ � � n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z { | j � o h X X x y y X \ g z � | � ¢ £ e � ¤ n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | � b ¢ £ e � ¤ � m ^ m p n � � � p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � ¡ � � n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � ¢ £ e � ¤ n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | � b ¢ £ e � ¤ � m ^ m p n � � � p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z ¦ | j � o h X X x y y X \ g z � | � ¡ � � n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z ¬ | j � o h X X x y y X \ g z � | � ¢ £ e � ¤ n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | � b ¢ £ e � ¤ � m ^ m p n � � � p } � �� �� �� � � �� � 8 . 0 " " . 6 C � $ * * � ! + � B 0 � �� � � �� � � @ > v 3 ' 2 < v J L W 2 % � L � �� �] Z o \ z � | � l _ X b ¡ � � � p } � �� �] Z o \ z � | � � � � } � �� �] Z o \ z � | � X Z � b ¡ � � � p } � �� �` �] Z o \ z � | � � � � } � �` �] Z o \ z � | � � � � } � �` �] Z o \ z � | � � � � } � �� �� �] Z o \ z � | � � X Z � b ¡ � � � p } � �� �] Z o \ z � | � � � � } � �� �] Z o \ z � | � l _ X b ¡ � � � p } } � �� � � 2 . , 6 & R 2 . , ! � $ 0 � & . ! . , � � , 5 C + � B " 6 . * + , 5 � , # U � �� m _ g z � | � � � ¬ � ¬ � } � �� m _ g z � | � � � ¬ � ¬ � } � �� m _ g z � | � � � � } � �� �` m _ g z � | � � � � ¬ � ¬ � } � �` m _ g z � | � � � ¬ � ¬ � } � �` m _ g z � | � � � � } � �� �� � 1 . * R C " 0 # � 5 , $ 0 � " � " + + B � ! . , � & , ! . $ 6 & - . ! , + + A + � B 0 � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �� � 2 . , � * ! " / � 5 . . ! & 0 , # . $ U , � " 0 � �] _ g � _ _] [X µ � ` b � �] Z o \ j ` �] Z o \ j � �] Z o \ j � m _ g j ` m _ g p } � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � = , � � C � 0 � - . ! C � � �
84

� � � � � � � � � � � � � � � 	
 � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � + . � � ! + � B 0 � � C � ! � � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � C � R � " + + # � 6 � � & � & � �� � , B , " 6 � � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �� �] _ g � � \ X b � �] Z o \ j ` �] Z o \ j � m � � p } � �� � � 8 ! " / � � R 8 ! " / � � , 6 & V 8 ! " / � 6 . � B " � � , + . 5 , + � �� � 5 . . ! & " 6 , � 0 R 0 � / - . ! C � $ * * � ! + � B � �] _ g ¶ µ � ` b l �] � x � j � �] Z o \ j ` �] Z o \ p } � �� � ~ " C / , 0 0 % - - 0 � ! . , � & , 6 & , & & � & . 8 % = � � �� � " B " � � 0 C � 1 . P - . ! C � ! . , � & � ! , 6 0 + , � & � �� � $ * * � ! + � B � � �[^ _ [` k \ g � _ X Z g Z _ � b � Y Y \] � \ i X z � | j � x k � � ^ � z � | � l �] � x � z � | j � �� x k � � ^ � z � | � l �] � x � z � | j � x k � � ^ � z � | � l �] � x � z � | p } � �� �[m ·] _ o � � � \ X b] _ g h g Z _ � j � �] Z o \ z � | j � �] Z o \ z � | j � �] Z o \ z � | j � �` �] Z o \ z � | j ` �] Z o \ z � | j ` �] Z o \ z � | p } � �� �[^ _ [` k \ g m _ g h g Z _ � b � Y Y \] � \ i X z � | j] _ g h g Z _ � p } � �� �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �� �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� �� � � @ > v : ' @ > W L W 2 % � L � �� � 2 � B � 6 � ! , � C � 0 � � 0 " 6 5 � C � R B � � , � 6 � , 5 C " / � � �� �] Z o \ z � | � l _ X b ¡ � � � p } � �� �] Z o \ z � | � � � � } � �� �] Z o \ z � | � X Z � b ¡ � � � p } � �� �` �] Z o \ z � | � � � � } � �` �] Z o \ z � | � � � � } � �` �] Z o \ z � | � � � � } � �� �� �] Z o \ z � | � � X Z � b ¡ � � � p } � �� �] Z o \ z � | � � � � } � �� �] Z o \ z � | � l _ X b ¡ � � � p } } � �� � � 2 . , 6 & R 2 . , ! � $ 0 � & . ! . , � � , 5 C + � B " 6 . * + , 5 � , # U � �� m _ g z � | � � � � ¬ � ¬ � } � �� m _ g z � | � � � ¬ � ¬ � } � �� m _ g z � | � � � � } � �� �` m _ g z � | � � � � ¬ � ¬ � } � �` m _ g z � | � � � � ¬ � ¬ � } � �` m _ g z � | � � � � } � �� �� � 1 . * R C " 0 # � 5 , $ 0 � " � " + + B � ! . , � & , ! . $ 6 & - . ! , + + A + � B 0 � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �� � 2 . , � * ! " / � 5 . . ! & 0 , # . $ U , � " 0 � �] _ g � _ _] [X µ � ` b � �] Z o \ j ` �] Z o \ j � �] Z o \ j � m _ g j ` m _ g p } � �� �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � = , � � C � 0 � - . ! C � � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � + . � � ! + � B 0 � � C � ! � � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � C � R � " + + # � 6 � � & � & � �� � , B , " 6 � � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �
85

� � � � � � � � � � � � � � � 	
 � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �] _ g � � \ X b � �] Z o \ j ` �] Z o \ j � m � � p } � �� � � 8 ! " / � � R 8 ! " / � � , 6 & V 8 ! " / � 6 . � B " � � , + . 5 , + � �� � 5 . . ! & " 6 , � 0 R 0 � / - . ! C � $ * * � ! + � B � �] _ g ¶ µ � ` b l �] � x � j � �] Z o \ j ` �] Z o \ p } � �� � ~ " C / , 0 0 % - - 0 � ! . , � & , 6 & , & & � & . 8 % = � � �� � " B " � � 0 C � 1 . P - . ! C � ! . , � & � ! , 6 0 + , � & � �� � $ * * � ! + � B � � �[^ _ [` k \ g � _ X Z g Z _ � b � Y Y \] � \ i X z � | j � x k � � ^ � z � | � l �] � x � z � | j � �� x k � � ^ � z � | � l �] � x � z � | j � x k � � ^ � z � | � l �] � x � z � | p } � �� �[m ·] _ o � � � \ X b] _ g h g Z _ � j � �] Z o \ z � | j � �] Z o \ z � | j � �] Z o \ z � | j � �` �] Z o \ z � | j ` �] Z o \ z � | j ` �] Z o \ z � | p } � �� �[^ _ [` k \ g m _ g h g Z _ � b � Y Y \] � \ i X z � | j] _ g h g Z _ � p } � �� �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �� �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� �� � � @ > v ? ' @ > W L 2 > � 2 � �� � 2 � B � 6 � ! , � C � 0 � � 0 " 6 5 � C � R B � � , � 6 � , 5 C " / � � �� �] Z o \ z � | � l _ X b ¡ � � � p } � �� �] Z o \ z � | � � � � } � �� �] Z o \ z � | � X Z � b ¡ � � � p } � �� �` �] Z o \ z � | � � � � } � �` �] Z o \ z � | � � � � } � �` �] Z o \ z � | � � � � } � �� �� �] Z o \ z � | � � X Z � b ¡ � � � p } � �� �] Z o \ z � | � � � � } � �� �] Z o \ z � | � l _ X b ¡ � � � p } } � �� � � 2 . , 6 & R 2 . , ! � $ 0 � & . ! . , � � , 5 C + � B " 6 . * + , 5 � , # U � �� m _ g z � | � � � � ¬ � ¬ � } � �� m _ g z � | � � � � ¬ � ¬ � } � �� m _ g z � | � � � � } � �� �` m _ g z � | � � � ¬ � ¬ � } � �` m _ g z � | � � � � ¬ � ¬ � } � �` m _ g z � | � � � � } � �� �� � 1 . * R C " 0 # � 5 , $ 0 � " � " + + B � ! . , � & , ! . $ 6 & - . ! , + + A + � B 0 � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �� � 2 . , � * ! " / � 5 . . ! & 0 , # . $ U , � " 0 � �] _ g � _ _] [X µ � ` b � �] Z o \ j ` �] Z o \ j � �] Z o \ j � m _ g j ` m _ g p } � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � = , � � C � 0 � - . ! C � � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � + . � � ! + � B 0 � � C � ! � � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � � C � R � " + + # � 6 � � & � & � �� � , B , " 6 � � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � ` �] Z o \ z � | } � �� �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �� � \ \ � �] Z o \ X z � | z � | � � �] Z o \ z � | } � �� �] _ g � � \ X b � �] Z o \ j ` �] Z o \ j � m � � p } � �� � � 8 ! " / � � R 8 ! " / � � , 6 & V 8 ! " / � 6 . � B " � � , + . 5 , + � �� � 5 . . ! & " 6 , � 0 R 0 � / - . ! C � $ * * � ! + � B � �] _ g ¶ µ � ` b l �] � x � j � �] Z o \ j ` �] Z o \ p } � �� � ~ " C / , 0 0 % - - 0 � ! . , � & , 6 & , & & � & . 8 % = � � �� � " B " � � 0 C � 1 . P - . ! C � ! . , � & � ! , 6 0 + , � & � �� � $ * * � ! + � B � � �
86

� � � � � � � � � � � � � � � 	
 � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

[^ _ [` k \ g � _ X Z g Z _ � b � Y Y \] � \ i X z � | j � x k � � ^ { z � | � l �] � x � z � | j � �� x k � � ^ { z � | � l �] � x � z � | j � x k � � ^ { z � | � l �] � x � z � | p } � �� �[m ·] _ o � � � \ X b] _ g h g Z _ � j � �] Z o \ z � | j � �] Z o \ z � | j � �] Z o \ z � | j � �` �] Z o \ z � | j ` �] Z o \ z � | j ` �] Z o \ z � | p } � �� �[^ _ [` k \ g m _ g h g Z _ � b � Y Y \] � \ i X z � | j] _ g h g Z _ � p } � �� �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ { z � | } � �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ { z � | } � �] _ g ^ h d d X z � | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ { z � | } � �� �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ { z � | } � �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ { z � | } � �� h l g ^ h d d X z � | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ { z � | } � �� �� � � @ > v A ' 2 < v J L 2 > � 2 � �� � 2 � B � 6 � ! , � C � 0 � � 0 " 6 5 � C � R B � � , � 6 � , 5 C " / � � �� �] Z o \ z � | � l _ X b ¡ � � � p } � �� �] Z o \ z � | � � � � } � �� �] Z o \ z � | � X Z � b ¡ � � � p } � �� �` �] Z o \ z � | � � � � } � �` �] Z o \ z � | � � � � } � �` �] Z o \ z � | � � � � } � �� �� �] Z o \ z � | � � X Z � b ¡ � � � p } � �� �] Z o \ z � | � � � � } � �� �] Z o \ z � | � l _ X b ¡ � � � p } } � �� � � 2 . , 6 & R 2 . , ! � $ 0 � & . ! . , � � , 5 C + � B " 6 . * + , 5 � , # U � �� m _ g z � | � � � ¬ � ¬ � } � �� m _ g z � | � � � � ¬ � ¬ � } � �� m _ g z � | � � � � } � �� �` m _ g z � | � � � ¬ � ¬ � } � �` m _ g z � | � � � ¬ � ¬ � } � �` m _ g z � | � � � � } � �� �� � 1 . * R C " 0 # � 5 , $ 0 � " � " + + B � ! . , � & , ! . $ 6 & - . ! , + + A + � B 0 � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �� � 2 . , � * ! " / � 5 . . ! & 0 , # . $ U , � " 0 � �] _ g � _ _] [X µ � ` b � �] Z o \ j ` �] Z o \ j � �] Z o \ j � m _ g j ` m _ g p } � �� �� � \ \ � �] Z o \ X z { | z � | � � �] Z o \ z � | } � � = , � � C � 0 � - . ! C � � �� � \ \ � �] Z o \ X z { | z � | � � �] Z o \ z � | } � � + . � � ! + � B 0 � � C � ! � � �� � \ \ � �] Z o \ X z { | z � | � � �] Z o \ z � | } � � C � R � " + + # � 6 � � & � & � �� � , B , " 6 � � �� � \ \ � �] Z o \ X z { | z � | � ` �] Z o \ z � | } � �� � \ \ � �] Z o \ X z { | z � | � ` �] Z o \ z � | } � �� � \ \ � �] Z o \ X z { | z � | � ` �] Z o \ z � | } � �� �� � \ \ � �] Z o \ X z { | z � | � � �] Z o \ z � | } � �� � \ \ � �] Z o \ X z { | z � | � � �] Z o \ z � | } � �� � \ \ � �] Z o \ X z { | z � | � � �] Z o \ z � | } � �] _ g � � \ X b � �] Z o \ j ` �] Z o \ j � m � � p } � �� � � 8 ! " / � � R 8 ! " / � � , 6 & V 8 ! " / � 6 . � B " � � , + . 5 , + � �� � 5 . . ! & " 6 , � 0 R 0 � / - . ! C � $ * * � ! + � B � �] _ g ¶ µ � ` b l �] � x � j � �] Z o \ j ` �] Z o \ p } � �� � ~ " C / , 0 0 % - - 0 � ! . , � & , 6 & , & & � & . 8 % = � � �� � " B " � � 0 C � 1 . P - . ! C � ! . , � & � ! , 6 0 + , � & � �� � $ * * � ! + � B � � �[^ _ [` k \ g � _ X Z g Z _ � b � Y Y \] � \ i X z { | j � x k � � ^ � z � | � l �] � x � z � | j � �� x k � � ^ � z � | � l �] � x � z � | j � x k � � ^ � z � | � l �] � x � z � | p } � �� �[m ·] _ o � � � \ X b] _ g h g Z _ � j � �] Z o \ z � | j � �] Z o \ z � | j � �] Z o \ z � | j � �` �] Z o \ z � | j ` �] Z o \ z � | j ` �] Z o \ z � | p } � �� �[^ _ [` k \ g m _ g h g Z _ � b � Y Y \] � \ i X z { | j] _ g h g Z _ � p } � �� �] _ g ^ h d d X z { | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �
87

� � � � � � � � � � � � � � � 	
 � � � � ¸

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

] _ g ^ h d d X z { | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �] _ g ^ h d d X z { | z � | � � �] Z o \ z � | n b m ^ m � ¢ £ e � ¤ n � � � p � � x k � � ^ � z � | } � �� �� h l g ^ h d d X z { | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� h l g ^ h d d X z { | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� h l g ^ h d d X z { | z � | � � �] Z o \ z � | n e ^ m � � x k � � ^ � z � | } � �� �� � � �� � v � * . 0 " " . 6 � ! . , " . 6 * . " 6 � ! 0 - . ! $ * * � ! + � B 0 � �� � � � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - $ * * � ! + � B � �� Y Y \] � \ i � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �� Y Y \] � \ i m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - ! . , " . 6 , + + " 6 K � �] _ g � Z � � � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �] _ g � Z � � m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - $ * * � ! + � B � �� Y Y \] � \ i � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �� Y Y \] � \ i m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - ! . , " . 6 , + + " 6 K � �] _ g � Z � � � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z { | p } � �] _ g � Z � � m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b � Y Y \] � \ i X ± \ _ o z { | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - $ * * � ! + � B � �� Y Y \] � \ i � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �� Y Y \] � \ i m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - ! . , " . 6 , + + " 6 K � �] _ g � Z � � � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �] _ g � Z � � m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b � Y Y \] � \ i X ± \ _ o z � | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - $ * * � ! + � B � �� Y Y \] � \ i � _ X Z g Z _ � X z { | � [± \ _ o ± \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z ¦ | p } � �� Y Y \] � \ i m _ g h g Z _ � X z { | � [± \ _ o ± \ g m _ g h g Z _ � b � Y Y \] � \ i X ± \ _ o z ¦ | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - ! . , " . 6 , + + " 6 K � �] _ g � Z � � � _ X Z g Z _ � X z { | � [± \ _ o ± \ g � _ X Z g Z _ � b � Y Y \] � \ i X ± \ _ o z ¬ | p } � �] _ g � Z � � m _ g h g Z _ � X z { | � [± \ _ o ± \ g m _ g h g Z _ � b � Y Y \] � \ i X ± \ _ o z ¬ | p } � �� �� �� � � �� � � r s r� � � t u u u u u u u u u u 1 2 > � L > @ % ~ > 2 @ > v = u u u u u u u u u u u t� � � r w rd _ � \] � \ i X z � | � [^ _ [` �] \ h g \ b � _] d [p } � � + � B 3 ' - ! . 6 ! " B C d _ � \] � \ i X z � | � [^ _ [` �] \ h g \ b � _] d [p } � � + � B : ' - ! . 6 + � - d _ � \] � \ i X z � | � [^ _ [` �] \ h g \ b � _] d [p } � � + � B ? ' # , 5 K + � - d _ � \] � \ i X z { | � [^ _ [` �] \ h g \ b � _] d [p } � � + � B A ' # , 5 K ! " B C [� h X X k \ g � \] _ b ¯ d _ � \] � \ i X � h X X p } � �� � 1 ! � , � C � + . � � ! + � B 0 � � H� � � �)� � <[� h X X k \ g � \] _ b ¯ � _] � Z � i p } � � @� � @ � B 0 , ! 0 . $, + " B 6 � & � " C S , � " 0 � � ;g _ g h d � h X X � � � � n � e ° f � ° k } � �[� h X X k \ g ^ _ � ¢ _ g h d b ¯ � _] � Z � i j g _ g h d � h X X j � � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � � @� � P . � � 0 . C , # , 0 � � 6 & " 0 , . ! " B " 6 � � %[� h X X ¢] h � X d h g \ b ¯ � _] � Z � i j � � � n � � � j � � � j � � � p } � � ~[� h X X � [[b ¯ d _ � \] � \ i X � h X X j ¯ � _] � Z � i p } � � >� � � . � , & & C � - . . 0 * C � ! � � � 2� �[� h X X k \ g k Y ¹ \] \ ¢ _ g h d b ¯ � _] � Z � i j · ^ � j · ^ m p } � � @� � P . � � " " 6 . * . 0 " " . 6 � � >[� h X X ¢] h � X d h g \ b ¯ � _] � Z � i j � � � j � � � j � � � p } � � v[� h X X � [[b ¯ d _ � \] � \ i X � h X X j ¯ � _] � Z � i p } � �� � = , � � C " 0 0 . � � 5 , 6 * . 0 " " . 6 C � 5 . ! � + , � ! � � 2o h X X x y y X \ g z � | � d _ � \] � \ i X � h X X � l z � | } � � <o h X X x y y X \ g z � | � d _ � \] � \ i X � h X X � l z � | } � � vo h X X x y y X \ g z � | � d _ � \] � \ i X � h X X � l z � | } � � <� � P . � � C � / , 0 0 0 . " 0 1 . P " 0 , C � . ! " B " 6 � � ;
88

� � � � � � � � � � � � � � � 	
 � � � �
 �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

[� h X X ¢] h � X d h g \ b ¯ d _ � \] � \ i X � h X X j � d _ � \] � \ i X � h X X � l z � | j � �� d _ � \] � \ i X � h X X � l z � | j � d _ � \] � \ i X � h X X � l z � | p } � � H� � L C � # . & " � 0 5 , 6 , + + 0 C , ! � . 6 � / , 0 0 . # � � 5 � 0 " 6 5 � " � 0 6 � � � ! � � %� � / . & " - " � & , - � ! # � " 6 B 5 ! � , � & � � � ;[^ _ [` k \ g � h X X b d _ � \] � \ i X z � | j ¯ d _ � \] � \ i X � h X X p } � � T[^ _ [` k \ g � h X X b d _ � \] � \ i X z � | j ¯ d _ � \] � \ i X � h X X p } � �[^ _ [` k \ g � h X X b d _ � \] � \ i X z � | j ¯ d _ � \] � \ i X � h X X p } � � %[^ _ [` k \ g � h X X b d _ � \] � \ i X z { | j ¯ d _ � \] � \ i X � h X X p } � � H� � P . � � " # , 5 K 6 . � C , " � 0 5 ! � , � & � � ®[^ _ [` k \ g � _ X Z g Z _ � b d _ � \] � \ i X z � | j o h X X x y y X \ g z � | j o h X X x y y X \ g z � | j � � >o h X X x y y X \ g z � | p } � � 1[^ _ [` k \ g � _ X Z g Z _ � b d _ � \] � \ i X z � | j o h X X x y y X \ g z � | j o h X X x y y X \ g z � | j � � Lo h X X x y y X \ g z � | p } � � =[^ _ [` k \ g � _ X Z g Z _ � b d _ � \] � \ i X z � | j o h X X x y y X \ g z � | j o h X X x y y X \ g z � | j � �o h X X x y y X \ g z � | p } � �[^ _ [` k \ g � _ X Z g Z _ � b d _ � \] � \ i X z { | j o h X X x y y X \ g z � | j o h X X x y y X \ g z � | j � �o h X X x y y X \ g z � | p } � �� �� � � �� � 1 ! � , � � , , 5 C + . � � ! + � B , 6 & - . . F # , + + B � . / 0 � �� � � �� � > 4 > � 6 $ / # � ! � & B � . / 0 , ! � C � $ * * � ! + � B 0 � �� � % ; ; 6 $ / # � ! � & B � . / 0 , ! � C � ! . , " . 6 , + + " 6 K , B � 0 � �d _ � \] � \ i X ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j � � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �d _ � \] � \ i X ± \ _ o z � | � [�] \ h g \ k Y ¹ \] \ b o ` k Y h l \ j · ^ m p } � �d _ � \] � \ i X ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j � � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �d _ � \] � \ i X ± \ _ o z { | � [�] \ h g \ k Y ¹ \] \ b o ` k Y h l \ j · ^ m p } � �d _ � \] � \ i X ± \ _ o z � | � [�] \ h g \ ^ _ � b o ` k Y h l \ j � � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �d _ � \] � \ i X ± \ _ o z � | � [�] \ h g \ k Y ¹ \] \ b o ` k Y h l \ j · ^ m p } � �d _ � \] � \ i X ± \ _ o z ¦ | � [�] \ h g \ ^ _ � b o ` k Y h l \ j � � � j ¢ £ e � ¤ j ¢ £ e � ¤ p } � �d _ � \] � \ i X ± \ _ o z ¬ | � [�] \ h g \ k Y ¹ \] \ b o ` k Y h l \ j · ^ m p } � �� �[± \ _ o k \ g ^ _ [` b d _ � \] � \ i X ± \ _ o z � | j d _ � \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b d _ � \] � \ i X ± \ _ o z � | j d _ � \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b d _ � \] � \ i X ± \ _ o z � | j d _ � \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b d _ � \] � \ i X ± \ _ o z { | j d _ � \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b d _ � \] � \ i X ± \ _ o z � | j d _ � \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b d _ � \] � \ i X ± \ _ o z � | j d _ � \] � \ i X z � | p } � �[± \ _ o k \ g ^ _ [` b d _ � \] � \ i X ± \ _ o z ¦ | j d _ � \] � \ i X z { | p } � �[± \ _ o k \ g ^ _ [` b d _ � \] � \ i X ± \ _ o z ¬ | j d _ � \] � \ i X z { | p } � �� � L C � + � B " 0 � + - � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � � � � n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� � L C � - . . � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� � L C � + � B " 0 � + - � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � � � � n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� � L C � - . . � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z { | j � o h X X x y y X \ g z � | � � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� � L C � + � B " 0 � + - � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � � � � n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� � L C � - . . � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | j � o h X X x y y X \ g z � | � � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� � L C � + � B " 0 � + - � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z ¦ | j � o h X X x y y X \ g z � | � � � � n � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� � L C � - . . � �[± \ _ o k \ g x y y X \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z ¬ | j � o h X X x y y X \ g z � | � � � � j � �� o h X X x y y X \ g z � | j � o h X X x y y X \ g z � | p } � �� �� �� � � �� � 8 . 0 " " . 6 + . � � ! + � B # . & " � 0 � �
89

� � � � � � � � � � � � � � � 	
 � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � � �� � = , ! # R B � " 6 B K 6 � � 5 . . ! & 0 , 6 & + . 5 , + , � � 0 � �� � � . � C , � , 5 C K 6 � � " 0 . - - 0 � - ! . / " 0 C " * # R , � �� � & " 0 , 6 5 � . -) @ @ � " 6 C � & " ! � 5 " . 6 . - K 6 � � S 8 ! " / � 0 § ¨ § ¨ � �� � � @ > v 3 ' 2 < v J L W 2 % � L � �� � \ \ � _ _] [X z � | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � \ \ � _ _] [X z � | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � \ \ � _ _] [X z � | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � � @ > v : ' @ > W L W 2 % � L � �� � \ \ � _ _] [X z � | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � \ \ � _ _] [X z � | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � \ \ � _ _] [X z � | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � � @ > v ? ' @ > W L 2 > � 2 � �� � \ \ � _ _] [X z � | z � | � ^ { z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � \ \ � _ _] [X z � | z � | � ^ { z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � \ \ � _ _] [X z � | z � | � ^ { z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z � | z � | } � �� � � @ > v A ' 2 < v J L 2 > � 2 � �� � \ \ � _ _] [X z { | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z { | z � | } � �� � \ \ � _ _] [X z { | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z { | z � | } � �� � \ \ � _ _] [X z { | z � | � ^ � z � | � b ¡ � � � � � � � p n � � \ \ � �] Z o \ X z { | z � | } � �� � 2 . , � C � 0 . ! � & $ * * � ! F + � B , � � 0 & . � 6 , C � K 6 � � # R � �� � C � , 6 B + � @ @ U � � �] _ g � � \ X b � � \ \ � �] Z o \ X z � | j � � \ \ � �] Z o \ X z � | j � � � � p } � �] _ g � � \ X b � � \ \ � �] Z o \ X z � | j � � \ \ � �] Z o \ X z � | j � � � � p } � �] _ g � � \ X b � � \ \ � �] Z o \ X z � | j � � \ \ � �] Z o \ X z � | j � � � � p } � �] _ g � � \ X b � � \ \ � �] Z o \ X z { | j � � \ \ � �] Z o \ X z { | j � � � � p } � �� � � @ > v 3 ' 2 < v J L W 2 % � L � �� � 1 . * R C " 0 # � 5 , $ 0 � " � " + + B � ! . , � & , ! . $ 6 & - . ! , + + A + � B 0 � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �] _ g ¶ µ � ` b l �] � x � j � � \ \ � �] Z o \ X z � | j � � \ \ � �] Z o \ X z � | p } � �� � ~ " C / , 0 0 % - - 0 � ! . , � & , 6 & , & & � & . 8 % = � � �� � " B " � � 0 C � 1 . P - . ! C � ! . , � & � ! , 6 0 + , � & � �� � + . � � ! + � B � � �[^ _ [` k \ g � _ X Z g Z _ � b d _ � \] � \ i X z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | p } � �[m ·] _ o � � � \ X b] _ g h g Z _ � j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | p } � �� �[^ _ [` k \ g m _ g h g Z _ � b d _ � \] � \ i X z � | j] _ g h g Z _ � p } � �� � � @ > v : ' @ > W L W 2 % � L � �� � 1 . * R C " 0 # � 5 , $ 0 � " � " + + B � ! . , � & , ! . $ 6 & - . ! , + + A + � B 0 � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �] _ g ¶ µ � ` b l �] � x � j � � \ \ � �] Z o \ X z � | j � � \ \ � �] Z o \ X z � | p } � �� � ~ " C / , 0 0 % - - 0 � ! . , � & , 6 & , & & � & . 8 % = � � �� � " B " � � 0 C � 1 . P - . ! C � ! . , � & � ! , 6 0 + , � & � �� � + . � � ! + � B � � �[^ _ [` k \ g � _ X Z g Z _ � b d _ � \] � \ i X z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | p } � �[m ·] _ o � � � \ X b] _ g h g Z _ � j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | p } � �� �[^ _ [` k \ g m _ g h g Z _ � b d _ � \] � \ i X z � | j] _ g h g Z _ � p } � �� � � @ > v ? ' @ > W L 2 > � 2 � �� � 1 . * R C " 0 # � 5 , $ 0 � " � " + + B � ! . , � & , ! . $ 6 & - . ! , + + A + � B 0 � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �] _ g ¶ µ � ` b l �] � x � j � � \ \ � �] Z o \ X z � | j � � \ \ � �] Z o \ X z � | p } � �� � ~ " C / , 0 0 % - - 0 � ! . , � & , 6 & , & & � & . 8 % = � � �� � " B " � � 0 C � 1 . P - . ! C � ! . , � & � ! , 6 0 + , � & � �
90

� � � � � � � � � � � � � � � 	
 � � � �
 �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � + . � � ! + � B � � �[^ _ [` k \ g � _ X Z g Z _ � b d _ � \] � \ i X z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z � | z � | p } � �[m ·] _ o � � � \ X b] _ g h g Z _ � j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | p } � �� �[^ _ [` k \ g m _ g h g Z _ � b d _ � \] � \ i X z � | j] _ g h g Z _ � p } � �� � � @ > v A ' 2 < v J L 2 > � 2 � �� � 1 . * R C " 0 # � 5 , $ 0 � " � " + + B � ! . , � & , ! . $ 6 & - . ! , + + A + � B 0 � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �l �] � x � z � | � o h X X x y y X \ g z � | } � �] _ g ¶ µ � ` b l �] � x � j � � \ \ � �] Z o \ X z { | j � � \ \ � �] Z o \ X z { | p } � �� � ~ " C / , 0 0 % - - 0 � ! . , � & , 6 & , & & � & . 8 % = � � �� � " B " � � 0 C � 1 . P - . ! C � ! . , � & � ! , 6 0 + , � & � �� � + . � � ! + � B � � �[^ _ [` k \ g � _ X Z g Z _ � b d _ � \] � \ i X z { | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z { | z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z { | z � | j � �� x k � � l �] � x � z � | � � � \ \ � _ _] [X z { | z � | p } � �[m ·] _ o � � � \ X b] _ g h g Z _ � j � � \ \ � �] Z o \ X z { | z � | j � �� � \ \ � �] Z o \ X z { | z � | j � � \ \ � �] Z o \ X z { | z � | j � �� � \ \ � �] Z o \ X z { | z � | j � � \ \ � �] Z o \ X z { | z � | j � �� � \ \ � �] Z o \ X z { | z � | p } � �� �[^ _ [` k \ g m _ g h g Z _ � b d _ � \] � \ i X z { | j] _ g h g Z _ � p } � �� �� � � �y _ _ g ^ h d d m h [Z � X � · ^ m }� � v � * . 0 " " . 6 � ! . , " . 6 * . " 6 � ! 0 - . ! + . � � ! + � B 0 � �� � � � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - $ * * � ! + � B � �d _ � \] � \ i � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | p } � �d _ � \] � \ i m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b d _ � \] � \ i X ± \ _ o z � | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - - . . 0 * C � ! � � �y _ _ g ^ h d d � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | p } � �� � - . . H , + + 2 . , " . 6 0 § (¨ © & v � . / v � 2 . , " . 6 7 + . � � ! @ � B 0 v � . / § 3 ¨ 9 ³ � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - + . � � ! + � B � �d _ � \] � \ i � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | p } � �d _ � \] � \ i m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b d _ � \] � \ i X ± \ _ o z � | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - - . . 0 * C � ! � � �y _ _ g ^ h d d � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z { | p } � �� � - . . H , + + 2 . , " . 6 0 § 3 ¨ © & v � . / v � 2 . , " . 6 7 + . � � ! @ � B 0 v � . / § ? ¨ 9 ³ � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - + . � � ! + � B � �d _ � \] � \ i � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | p } � �d _ � \] � \ i m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b d _ � \] � \ i X ± \ _ o z � | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - - . . 0 * C � ! � � �y _ _ g ^ h d d � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z � | p } � �� � - . . H , + + 2 . , " . 6 0 § : ¨ © & v � . / v � 2 . , " . 6 7 + . � � ! @ � B 0 v � . / § D ¨ 9 ³ � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - + . � � ! + � B � �d _ � \] � \ i � _ X Z g Z _ � X z { | � [± \ _ o ± \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z ¦ | p } � �d _ � \] � \ i m _ g h g Z _ � X z { | � [± \ _ o ± \ g m _ g h g Z _ � b d _ � \] � \ i X ± \ _ o z ¦ | p } � �� � 8 . 0 " " . 6 , 6 & ! . , " . 6 . - - . . 0 * C � ! � � �y _ _ g ^ h d d � _ X Z g Z _ � X z { | � [± \ _ o ± \ g � _ X Z g Z _ � b d _ � \] � \ i X ± \ _ o z ¬ | p } � �� � - . . H , + + 2 . , " . 6 0 § ? ¨ © & v � . / v � 2 . , " . 6 7 + . � � ! @ � B 0 v � . / § I ¨ 9 ³ � �� � � �� � � r s r� � � t u u u u u u u u u u u 8 @ � 1 > ® % < � L = u u u u u u u u u u u u t� � � r w r� � 1 2 > � L > , 6 & * + , 5 � C � C " * # , + + � . " 6 0 � �� � � �� � 1 ! � , � C � C " * � . " 6 0 � �
91

� � � � � � � � � � � � � � � 	
 � � � �
 ­

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

¹ Z Y X z � | � [º _ Z � g �] \ h g \ ^ h d d b � _] d [j � p } � �¹ Z Y X z � | � [º _ Z � g �] \ h g \ ^ h d d b � _] d [j � p } � �¹ Z Y X z � | � [º _ Z � g �] \ h g \ ^ h d d b � _] d [j � p } � �¹ Z Y X z { | � [º _ Z � g �] \ h g \ ^ h d d b � _] d [j � p } � �� � � , 5 C C � C " * � . " 6 0 . C � # . & R , 6 & + � B 0 � �[º _ Z � g � g g h l ¹ b ¹ Z Y X z � | j l _] \ j � Y Y \] � \ i X z � | p } � �[º _ Z � g � g g h l ¹ b ¹ Z Y X z � | j l _] \ j � Y Y \] � \ i X z � | p } � �[º _ Z � g � g g h l ¹ b ¹ Z Y X z � | j l _] \ j � Y Y \] � \ i X z � | p } � �[º _ Z � g � g g h l ¹ b ¹ Z Y X z { | j l _] \ j � Y Y \] � \ i X z { | p } � �� � = � C � # , + + � . " 6 0 . H 3 � H : � H ? � H A � �[º _ Z � g k \ g ^ h d d � � l ¹ _] b ¹ Z Y X z � | j ^ � z � | � � x k � j ^ � z � | � � x k � j ^ � z � | � � x k � p } � �[º _ Z � g k \ g ^ h d d � � l ¹ _] b ¹ Z Y X z � | j ^ � z � | � � x k � j ^ � z � | � � x k � j ^ � z � | � � x k � p } � �[º _ Z � g k \ g ^ h d d � � l ¹ _] b ¹ Z Y X z � | j ^ { z � | � � x k � j ^ { z � | � � x k � j ^ { z � | � � x k � p } � �[º _ Z � g k \ g ^ h d d � � l ¹ _] b ¹ Z Y X z { | j ^ � z � | � � x k � j ^ � z � | � � x k � j ^ � z � | � � x k � p } � �� �� � � �� � 1 2 > � L > , 6 & * + , 5 � C � K 6 � � C " 6 B � � . " 6 0 � �� � � �� � 1 ! � , � C � K 6 � � � . " 6 0 � �� � \ \ X z � | � [º _ Z � g �] \ h g \ £ Z � i \ b � _] d [j � p } � �� � \ \ X z � | � [º _ Z � g �] \ h g \ £ Z � i \ b � _] d [j � p } � �� � \ \ X z � | � [º _ Z � g �] \ h g \ £ Z � i \ b � _] d [j � p } � �� � \ \ X z { | � [º _ Z � g �] \ h g \ £ Z � i \ b � _] d [j � p } � �� � � , 5 C C � K 6 � � � . " 6 0 � �[º _ Z � g � g g h l ¹ b � � \ \ X z � | j � Y Y \] � \ i X z � | j d _ � \] � \ i X z � | p } � �[º _ Z � g � g g h l ¹ b � � \ \ X z � | j � Y Y \] � \ i X z � | j d _ � \] � \ i X z � | p } � �[º _ Z � g � g g h l ¹ b � � \ \ X z � | j � Y Y \] � \ i X z � | j d _ � \] � \ i X z � | p } � �[º _ Z � g � g g h l ¹ b � � \ \ X z { | j � Y Y \] � \ i X z { | j d _ � \] � \ i X z { | p } � �� � 8 . 0 " " . 6 C � K 6 � � � . " 6 0 � �[º _ Z � g k \ g £ Z � i \ � � l ¹ _] b � � \ \ X z � | j � � \ \ � _ _] [X z � | z � | � � x k � j � �� � \ \ � _ _] [X z � | z � | � � x k � j � � \ \ � _ _] [X z � | z � | � � x k � p } � �[º _ Z � g k \ g £ Z � i \ � � l ¹ _] b � � \ \ X z � | j � � \ \ � _ _] [X z � | z � | � � x k � j � �� � \ \ � _ _] [X z � | z � | � � x k � j � � \ \ � _ _] [X z � | z � | � � x k � p } � �[º _ Z � g k \ g £ Z � i \ � � l ¹ _] b � � \ \ X z � | j � � \ \ � _ _] [X z � | z � | � � x k � j � �� � \ \ � _ _] [X z � | z � | � � x k � j � � \ \ � _ _] [X z � | z � | � � x k � p } � �[º _ Z � g k \ g £ Z � i \ � � l ¹ _] b � � \ \ X z { | j � � \ \ � _ _] [X z { | z � | � � x k � j � �� � \ \ � _ _] [X z { | z � | � � x k � j � � \ \ � _ _] [X z { | z � | � � x k � p } � �� � = � C � C " 6 B � , � � 0 - . ! C � K 6 � � � . " 6 0 - ! . / C � K 6 � � � �� � * ! " / � 5 . . ! & 0 � � . � C , S � * . " 6 0 . � , ! & C � - . . � � �� � T � * . " 6 0 + � - , 6 & " 0 C � C " 6 B � , � " 0 � , 6 & U � * . " 6 0 � �� � $ * , 6 & . $. - C � K 6 � � � � �[º _ Z � g k \ g £ Z � i \ � � Z X b � � \ \ X z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | p } � �[º _ Z � g k \ g £ Z � i \ � � Z X b � � \ \ X z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | p } � �[º _ Z � g k \ g £ Z � i \ � � Z X b � � \ \ X z � | j � � \ \ � �] Z o \ X z � | z � | j � �� � \ \ � �] Z o \ X z � | z � | j � � \ \ � �] Z o \ X z � | z � | p } � �[º _ Z � g k \ g £ Z � i \ � � Z X b � � \ \ X z { | j � � \ \ � �] Z o \ X z { | z � | j � �� � \ \ � �] Z o \ X z { | z � | j � � \ \ � �] Z o \ X z { | z � | p } � �� �� � � �� � � r s r� � � t u u u u u u u u u u 1 2 > � L > � 1 L) � L % 2 = u u u u u u u u u u u t� � � r w r� � � �� � � 5 $, . ! 8 , ! , / . ! & � ! ' � �� � (' H , 0 � S � �� � 3 ' H , 0 � T � �� � : ' H , 0 � U � �� � ? ' L " * S � �� � A ' L " * T � �� � D ' L " * U � �� � E ' H , 0 � � . ! / , + S � �� � I ' H , 0 � � . ! / , + T � �� � M ' H , 0 � � . ! / , + U � �� � O ' H , 0 � 2 . � � " 0 3 S � �
92

� � � � � � � � � � � � � � � 	
 � � � �
 �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � 3 (' H , 0 � 2 . � � " 0 3 T � �� � 3 3 ' H , 0 � 2 . � � " 0 3 U � �� � 3 : ' P , � " / $ / % - - 0 � � �� � 3 ? ' H , 0 � / , 0 0 � �� � 3 A ' L " * / , 0 0 � �� � 3 D ' H , 0 � � " & C � �� � 3 E ' H , 0 � C � " B C � �� � 3 I ' L " * � " & C � �� � 3 M ' L " * C � " B C � �� � » ¼ ½ ¾ ' L C � + � 6 B C C � , 5 $, . ! ¿ 0 , ! 0 ¿ , " 0 * . 0 " " . 6 V � ! . À � �� � � �� � � �� � � 5 $, . ! " 0 5 ! � , � & " 6 C " 0 0 , � ' � �� � t F F F F F t F F F F F t F F F F F t 7 & " � " & � & " 6 . C " ! & 0 9 � �� � Á Á Á Á � �� � t t t L " * . - " 6 6 � ! 0 + " & � ! � �� � t t L " * . - . $ � ! 0 + � � � � � �� � t H , 0 � . - " 6 6 � ! 0 + " & � ! � �� � H , 0 � . - . $ � ! 0 + � � � � � �� � � �� � 1 2 > � L > C � , 5 $, . ! 0 " 6 F * + , 5 � � �� � � �� � � @ > v 3 ' 2 < v J L W 2 % � L � �� � H , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � ¡ � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � ¶ � x � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � L " * * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z { | � � h l g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | � � h l g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | � � h l g ^ h d d X z � | z � | } � �� � H , 0 � / . $ 6 6 . ! / , + � �� _] � Z � i � l g � h g _] z ¦ | � � � � } � �� _] � Z � i � l g � h g _] z ¬ | � � � � } � �� _] � Z � i � l g � h g _] z ¥ | � � � � � } � �� � H , 0 � ! . , � " 0 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � � } � � P , � % - - 0 � « (/ � , 6 0 , $. 0 � � �� _] � Z � i � l g � h g _] z � { | � ¶ � ^ � } � �� _] � Z � i � l g � h g _] z � � | � ¶ � ¢ � } � �� _] � Z � i � l g � h g _] z � � | � ¢ £ e � ¤ n � � � } � �� _] � Z � i � l g � h g _] z � ¦ | � ¢ £ e � ¤ n � � � } � �� _] � Z � i � l g � h g _] z � ¬ | � ¢ £ e � ¤ n � � � } � �� _] � Z � i � l g � h g _] z � ¥ | � ¢ £ e � ¤ n � � � } � �� �� h l g ^ h X \ ^ _ � z � | � � � ¦ ¦ ¦ n i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j � �¯ o ` � l g � h g _] X z � | j l _] \ j � Y Y \] � \ i X z � | j o ` k Y h l \ p } � �� � � . � C , C " 0 " 0 � C � ! � � �� h l g ¢ Z Y ^ _ � z � | � � h l g ^ h X \ ^ _ � z � | } � � C � � , 5 F # . � + � 6 B C 0 � �� � , ! � B � 6 � ! , � & � 0 . ! � & � �� � � � � # , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � ¶ � x � � x k � } � �� _] � Z � i � l g � h g _] z � | � ¡ � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � N � � * 0 , / � " * * . 0 " " . 6 � �� � � � � H 2 � 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z � | j l _] \ j � �� Y Y \] � \ i X z � | j o ` k Y h l \ p } � �� � � @ > v : ' @ > W L W 2 % � L � �� � H , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � � ¶ � x � � x k � } � �� _] � Z � i � l g � h g _] z � | � ¡ � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � L " * * . 0 " " . 6 � �
93

� � � � � � � � � � � � � � � 	
 � � � �
 ´

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� _] � Z � i � l g � h g _] z { | � � h l g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | � � h l g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | � � h l g ^ h d d X z � | z � | } � �� � � � � H 2 � 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z � | j l _] \ j � �� Y Y \] � \ i X z � | j o ` k Y h l \ p } � �� � � � � # , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � � ¡ � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � ¶ � x � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � � � � H 2 � 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z { | j l _] \ j � �� Y Y \] � \ i X z � | j o ` k Y h l \ p } � �� � � @ > v ? ' @ > W L 2 > � 2 � �� � H , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � � ¡ � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � � ¶ � x � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � L " * * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z { | � � h l g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | � � h l g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | � � h l g ^ h d d X z � | z � | } � �� � � � � H 2 � 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z � | j l _] \ j � �� Y Y \] � \ i X z � | j o ` k Y h l \ p } � �� � � � � # , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � � ¶ � x � � x k � } � �� _] � Z � i � l g � h g _] z � | � � ¡ � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � � � � H 2 � 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z � | j l _] \ j � �� Y Y \] � \ i X z � | j o ` k Y h l \ p } � �� � � @ > v A ' 2 < v J L 2 > � 2 � �� � H , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � ¶ � x � � x k � } � �� _] � Z � i � l g � h g _] z � | � � ¡ � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � L " * * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z { | � � h l g ^ h d d X z { | z � | } � �� _] � Z � i � l g � h g _] z � | � � h l g ^ h d d X z { | z � | } � �� _] � Z � i � l g � h g _] z � | � � h l g ^ h d d X z { | z � | } � �� � � � � H 2 � 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z ¦ | j l _] \ j � �� Y Y \] � \ i X z { | j o ` k Y h l \ p } � �� � � � � # , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � ¡ � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � � ¶ � x � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � � � � H 2 � 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �
94

� � � � � � � � � � � � � � � 	
 � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z ¬ | j l _] \ j � �� Y Y \] � \ i X z { | j o ` k Y h l \ p } � �� �� � � �� � v > L , 5 $, . ! B � . / * . 0 " " . 6 0 - . ! ! � 6 & � ! � �� � � �h l g ^ h X \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z { | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z { | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z { | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z { | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z ¦ | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z ¦ | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z ¦ | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z ¦ | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z ¬ | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z ¬ | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z ¬ | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z ¬ | � Â h X \ ± \ _ o p } � �� � L < 8 B � . / 0 � �h l g ¢ Z Y � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z { | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z { | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z { | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z { | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z ¦ | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z ¦ | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z ¦ | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z ¦ | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z ¬ | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z ¬ | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z ¬ | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z ¬ | � g Z Y ± \ _ o p } � �� �� � � �� � 1 2 > � L > 2 . , " . 6 , 5 $, . ! 0 � �� � � �� � � @ > v 3 ' 2 < v J L W 2 % � L � �� � H , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � � � � n � � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � L " * * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z { | �] _ g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | �] _ g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | �] _ g ^ h d d X z � | z � | } � �� � H , 0 � / . $ 6 6 . ! / , + � �� _] � Z � i � l g � h g _] z ¦ | � � � � } � �� _] � Z � i � l g � h g _] z ¬ | � � � � } � �� _] � Z � i � l g � h g _] z ¥ | � � � � � } � �� � H , 0 � ! . , � " 0 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � � } � � P , � % - - 0 � « (/ � , 6 0 , $. 0 � � �� _] � Z � i � l g � h g _] z � { | � m � ^ � } � �� _] � Z � i � l g � h g _] z � � | � m � ¢ � } � �� _] � Z � i � l g � h g _] z � � | � ¢ £ e � ¤ n � � � } � �� _] � Z � i � l g � h g _] z � ¦ | � ¢ £ e � ¤ n � � � } � �� _] � Z � i � l g � h g _] z � ¬ | � ¢ £ e � ¤ n � � � } � �� _] � Z � i � l g � h g _] z � ¥ | � ¢ £ e � ¤ n � � � } � �
95

� � � � � � � � � � � � � � � 	
 � � � �
 �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � v � 6 � ! , � C � , 5 $, . ! ' � �� � » ¼ ½ ¾ ' L C � ! , 5 H , 0 � H . � , 6 & ! , 5 L " * H . � + � 6 B C 0 , ! � � �� � # � " 6 B ! � $! 6 � & # R B � 6 � 5 $, . ! 7 9 C � ! � � � �] h l g ^ h X \ ^ _ � z � | � � � ¦ ¦ ¦ n i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j � �¯ o ` � l g � h g _] X z ¥ | j l _] \ j � Y Y \] � \ i X z � | j o ` k Y h l \ p } � �] h l g ¢ Z Y ^ _ � z � | �] h l g ^ h X \ ^ _ � z � | } � �� � � @ > v : ' @ > W L W 2 % � L � �� � H , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � � x k � } � �� _] � Z � i � l g � h g _] z � | � � � � n � � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � L " * * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z { | �] _ g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | �] _ g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | �] _ g ^ h d d X z � | z � | } � �� � H 2 � F 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� � v � 6 � ! , � C � , 5 $, . ! ' � �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z � | j l _] \ j � �� Y Y \] � \ i X z � | j o ` k Y h l \ p } � �� � � @ > v ? ' @ > W L 2 > � 2 � �� � H , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � � � � � n � � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � L " * * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z { | �] _ g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | �] _ g ^ h d d X z � | z � | } � �� _] � Z � i � l g � h g _] z � | �] _ g ^ h d d X z � | z � | } � �� � H 2 � F 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� � v � 6 � ! , � C � , 5 $, . ! ' � �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z � � | j l _] \ j � �� Y Y \] � \ i X z � | j o ` k Y h l \ p } � �� � � @ > v A ' 2 < v J L 2 > � 2 � �� � H , 0 � * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z � | � � x k � } � �� _] � Z � i � l g � h g _] z � | � � � � � n � � m � � x k � } � �� _] � Z � i � l g � h g _] z � | � m e k � n � � � � � x k � } � �� � L " * * . 0 " " . 6 � �� _] � Z � i � l g � h g _] z { | �] _ g ^ h d d X z { | z � | } � �� _] � Z � i � l g � h g _] z � | �] _ g ^ h d d X z { | z � | } � �� _] � Z � i � l g � h g _] z � | �] _ g ^ h d d X z { | z � | } � �� � H 2 � F 3 � �� _] � Z � i � l g � h g _] z � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� _] � Z � i � l g � h g _] z � � | � � � � } � �� � v � 6 � ! , � C � , 5 $, . ! ' � �i \ � � l g � h g _] b � _] � Z � i � l g � h g _] j � _] d [j ¯ o ` � l g � h g _] X z � � | j l _] \ j � �� Y Y \] � \ i X z { | j o ` k Y h l \ p } � �� �� � � �� � v > L 2 . , " . 6 , 5 $, . ! # . & R * . 0 " " . 6 0 � ! . , " . 6 0 � �� � � �h l g ^ h X \ � _ X Z g Z _ � X z ¥ | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z ¥ | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z ¥ | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z ¥ | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z � � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z � � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ � _ X Z g Z _ � X z � � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � � | � Â h X \ ± \ _ o p } � �h l g ^ h X \ m _ g h g Z _ � X z � � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � � | � Â h X \ ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z ¥ | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z ¥ | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z ¥ | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z ¥ | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � | � g Z Y ± \ _ o p } � �
96

� � � � � � � � � � � � � � � 	
 � � � �
 �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

h l g ¢ Z Y � _ X Z g Z _ � X z � � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z � � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y � _ X Z g Z _ � X z � � | � [± \ _ o ± \ g � _ X Z g Z _ � b o ` � l g � h g _] X z � � | � g Z Y ± \ _ o p } � �h l g ¢ Z Y m _ g h g Z _ � X z � � | � [± \ _ o ± \ g m _ g h g Z _ � b o ` � l g � h g _] X z � � | � g Z Y ± \ _ o p } � �� �� � � �� � 5 . $ « « ¿ N 6 � � 0 , ! " 6 B , 6 B + � 0 ' Ã 6 ¿ ³� � 5 . $ « « & ® . " 6 v � J " 6 B � � 6 B + � 7 K 6 � � 0 § (¨ 9 « « ¿ Ã 6 ¿ ³� � 5 . $ « « & ® . " 6 v � J " 6 B � � 6 B + � 7 K 6 � � 0 § 3 ¨ 9 « « ¿ Ã 6 ¿ ³� � 5 . $ « « & ® . " 6 v � J " 6 B � � 6 B + � 7 K 6 � � 0 § : ¨ 9 « « ¿ Ã 6 ¿ ³� � 5 . $ « « & ® . " 6 v � J " 6 B � � 6 B + � 7 K 6 � � 0 § ? ¨ 9 « « ¿ Ã 6 ¿ ³[º _ Z � g k \ g £ Z � i \ � h] h o b � � \ \ X z � | j [� h] h o � _ k g _ Y j � � � { p }[º _ Z � g k \ g £ Z � i \ � h] h o b � � \ \ X z � | j [� h] h o £ Z k g _ Y j � � { p }[º _ Z � g k \ g £ Z � i \ � h] h o b � � \ \ X z � | j [� h] h o � _ k g _ Y j � � � { p }[º _ Z � g k \ g £ Z � i \ � h] h o b � � \ \ X z � | j [� h] h o £ Z k g _ Y j � � { p }[º _ Z � g k \ g £ Z � i \ � h] h o b � � \ \ X z � | j [� h] h o � _ k g _ Y j � � � { p }[º _ Z � g k \ g £ Z � i \ � h] h o b � � \ \ X z � | j [� h] h o £ Z k g _ Y j � � { p }[º _ Z � g k \ g £ Z � i \ � h] h o b � � \ \ X z { | j [� h] h o � _ k g _ Y j � � � { p }[º _ Z � g k \ g £ Z � i \ � h] h o b � � \ \ X z { | j [� h] h o £ Z k g _ Y j � � { p }� � 5 . $ « « ¿ N 6 � � 0 , ! " 6 B , 6 B + � 0 , - � ! 0 . * 0 0 � ' Ã 6 ¿ ³� � 5 . $ « « & ® . " 6 v � J " 6 B � � 6 B + � 7 K 6 � � 0 § (¨ 9 « « ¿ Ã 6 ¿ ³� � 5 . $ « « & ® . " 6 v � J " 6 B � � 6 B + � 7 K 6 � � 0 § 3 ¨ 9 « « ¿ Ã 6 ¿ ³� � 5 . $ « « & ® . " 6 v � J " 6 B � � 6 B + � 7 K 6 � � 0 § : ¨ 9 « « ¿ Ã 6 ¿ ³� � 5 . $ « « & ® . " 6 v � J " 6 B � � 6 B + � 7 K 6 � � 0 § ? ¨ 9 « « ¿ Ã 6 ¿ ³� �] Z o \ z � | � ¤ ^ m n l _ X b � � � � p }� �] Z o \ z � | � � ¤ ^ m n X Z � b � � � � p }� �] Z o \ z � | � � � � }` �] Z o \ z � | � � �] Z o \ z � | � ¡ � � Ä � � � }` �] Z o \ z � | � � �] Z o \ z � | }` �] Z o \ z � | � � � � }¤ � � � i \ g � \ � i g ¹ b ` �] Z o \ p }� � \ \ � \] _ � � i d \ � � � � � }�� � � Å 0 * " & � ! H . & R� � � X Y Z [\] ^ _ [` a a Æ X Y Z [\] ^ _ [` b p q� � ; > = L 2 % T , 5 $, . ! 0 � �� � � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z � | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z � | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z � | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z { | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z � | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z � | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z ¦ | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z ¬ | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z ¥ | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z � | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z � � | p } � �[\ d � l g � h g _] b ¯ o ` � l g � h g _] X z � � | p } � �� � � �� � ; > = L 2 % T # . & R � . " 6 0 � �� � � �[º _ Z � g f \ X g] _ ` b ¹ Z Y X z � | p } � �[º _ Z � g f \ X g] _ ` b ¹ Z Y X z � | p } � �[º _ Z � g f \ X g] _ ` b ¹ Z Y X z � | p } � �
97

� � � � � � � � � � � � � � � 	
 � � � �
 ¸

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

[º _ Z � g f \ X g] _ ` b ¹ Z Y X z { | p } � �� �[º _ Z � g f \ X g] _ ` b � � \ \ X z � | p } � �[º _ Z � g f \ X g] _ ` b � � \ \ X z � | p } � �[º _ Z � g f \ X g] _ ` b � � \ \ X z � | p } � �[º _ Z � g f \ X g] _ ` b � � \ \ X z { | p } � �� � � �� � ; > = L 2 % T # . & R 5 . ! � � �� � � �[± \ _ o f \ X g] _ ` b l _] \ ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b l _] \ ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b l _] \ ± \ _ o z � | p } � �� �[^ _ [` f \ X g] _ ` b l _] \ p } � �� � � �� � ; > = L 2 % T $ * * � ! + � B 0 7 B � . / 0 C � 6 # . & " � 0 9 � �� � � �[± \ _ o f \ X g] _ ` b � Y Y \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b � Y Y \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b � Y Y \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b � Y Y \] � \ i X ± \ _ o z { | p } � �[± \ _ o f \ X g] _ ` b � Y Y \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b � Y Y \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b � Y Y \] � \ i X ± \ _ o z ¦ | p } � �[± \ _ o f \ X g] _ ` b � Y Y \] � \ i X ± \ _ o z ¬ | p } � �� �[^ _ [` f \ X g] _ ` b � Y Y \] � \ i X z � | p } � �[^ _ [` f \ X g] _ ` b � Y Y \] � \ i X z � | p } � �[^ _ [` f \ X g] _ ` b � Y Y \] � \ i X z � | p } � �[^ _ [` f \ X g] _ ` b � Y Y \] � \ i X z { | p } � �� � � �� � ; > = L 2 % T + . � � ! + � B 0 7 B � . / 0 C � 6 # . & " � 0 9 � �� � � �[± \ _ o f \ X g] _ ` b d _ � \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b d _ � \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b d _ � \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b d _ � \] � \ i X ± \ _ o z { | p } � �[± \ _ o f \ X g] _ ` b d _ � \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b d _ � \] � \ i X ± \ _ o z � | p } � �[± \ _ o f \ X g] _ ` b d _ � \] � \ i X ± \ _ o z ¦ | p } � �[± \ _ o f \ X g] _ ` b d _ � \] � \ i X ± \ _ o z ¬ | p } � �� �[^ _ [` f \ X g] _ ` b d _ � \] � \ i X z � | p } � �[^ _ [` f \ X g] _ ` b d _ � \] � \ i X z � | p } � �[^ _ [` f \ X g] _ ` b d _ � \] � \ i X z � | p } � �[^ _ [` f \ X g] _ ` b d _ � \] � \ i X z { | p } � �� � � ��� � � 0 * " & � ! H . & R ' ' , & & W . ! 5 � 7 9� � � � _ Z [X Y Z [\] ^ _ [` a a h [[· _] l \ b Z � g Z j [m \ h d y _] l \ p q[º _ Z � g � [[k d Z [\] · _] l \ b o ` � l g � h g _] X z Z | � X d Z [\] j y _] l \ p }�� � � 0 * " & � ! H . & R ' ' , & & N 6 � � L . ! Q $ � 7 9� � � � _ Z [X Y Z [\] ^ _ [` a a h [[¤ � \ \ ¢ _] Ç � \ b Z � g Z j [m \ h d g _] Ç � \ p q[º _ Z � g � [[£ Z � i \ ¢ _] Ç � \ b � � \ \ X z Z | j g _] Ç � \ p }�
98

� � � � � � � � � � � � � � � 	
 � � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

� � � 0 * " & � ! H . & R ' ' B � 8 . 0 7 9� � � [m \ h d X Y Z [\] ^ _ [` a a i \ g � _ X b Z � g Z p qÈ É Ê Ë È Ì b [º _ Z � g ± \ g k d Z [\] � _ X Z g Z _ � b o ` � l g � h g _] X z Z | � X d Z [\] p p }�� � � 0 * " & � ! H . & R ' ' B � 4 � + 7 9� � � [m \ h d X Y Z [\] ^ _ [` a a i \ g ¶ \ d b Z � g Z p qÈ É Ê Ë È Ì b [º _ Z � g ± \ g k d Z [\] � _ X Z g Z _ � m h g \ b o ` � l g � h g _] X z Z | � X d Z [\] p p }�� � � 0 * " & � ! H . & R ' ' B � N 6 � � � 6 B + � 7 9� � � [m \ h d X Y Z [\] ^ _ [` a a i \ g ¤ � \ \ � � i d \ b Z � g Z p qÈ É Ê Ë È Ì b [º _ Z � g ± \ g £ Z � i \ � � i d \ b � � \ \ X z Z | p � � � \ \ � \] _ � � i d \ p }�� � � 0 * " & � ! H . & R ' ' B � N 6 � � % / � B , 7 9� � � [m \ h d X Y Z [\] ^ _ [` a a i \ g ¤ � \ \ x o \ i h b Z � g Z p qÈ É Ê Ë È Ì b [º _ Z � g ± \ g £ Z � i \ � � i d \ m h g \ b � � \ \ X z Z | p p }�� � � 0 * " & � ! H . & R ' ' B � 1 . ! � 7 9� � � [^ _ [` e f X Y Z [\] ^ _ [` a a i \ g � _] \ b p qÈ É Ê Ë È Ì b l _] \ p }�� � � r� � � r� � � r� � � r� � � r� � � 5 , + 5 N 6 � � � 5 % - - 0 � 7 9� � � [m \ h d l h d l ¤ � \ \ � l g x y y X \ g b [m \ h d g ¹ \ g h j [m \ h d ¤ ^ m µ X j [m \ h d ¤ � � p q[m \ h d � z { | }[m \ h d Â j l } � � � , ³[m \ h d [j X _ d }� z � | � ¤ ^ m µ X n l _ X b g ¹ \ g h p }� z � | � � ¤ ^ m µ X n X Z � b g ¹ \ g h p }� z � | � � � � }� � , © 3 � (³Â � � � � � n � z � | }l � � z � | n � z � | � � z � | n � z � | � ¤ � � n ¤ � � }� � � © § F # r F 0 Q ! 7 # Á : F A ² , ² 5 9 ¨ � : ² ,[� X Ç] g b Â n Â � � � � n l p } � � , " 0 , + � , R 0 3 �X _ d � b � Â � [p n � � � }Í Î b X _ d Ï � � � p q È É Ê Ë È Ì b b � Â � [p n � � � p } �
99

� � � � � � � � � � � � � � � 	
 � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � 	
 � � � �

È É Ê Ë È Ì b X _ d p }�� � � 5 , + 5 N 6 � � L . ! Q $ � 7 9� � � � � L C " 0 - $ 6 5 " . 6 5 , + 5 $ + , � 0 C � . ! Q $ � , C � K 6 � � � . " 6 � B " � � 6 , - . ! 5 � " 6� � C � + " 6 � , ! , 5 $, . ! & ! " � " 6 B C � + " 6 K , B � �[m \ h d l h d l ¤ � \ \ ¢ _] Ç � \ b [m \ h d g ¹ \ g h j [m \ h d X d Z [\ � _ X j [m \ h d ¤ ^ m µ X j [m \ h d y p q[m \ h d � z � | }[m \ h d d Z � � ¶ \ l z { | }[m \ h d Y ¹ Z }[m \ h d y � Z � � z { | }[m \ h d y d � Â X }� z � | � ¤ ^ m µ X n l _ X b g ¹ \ g h p }� z � | � � ¤ ^ m µ X n X Z � b g ¹ \ g h p }� � 8 § : ¨ © (� (³Y ¹ Z � h g h � b � � z � | Ä b � z � | � X d Z [\ � _ X p p }d Z � � ¶ \ l z � | � � z � | � X d Z [\ � _ X }d Z � � ¶ \ l z � | � � � z � | }d Z � � ¶ \ l z � | � � � � }y d � Â X � y Ä l _ X b Y ¹ Z p }g _ ¡ ¶ \ l b d Z � � ¶ \ l p }y � Z � � z � | � y d � Â X n d Z � � ¶ \ l z � | }y � Z � � z � | � y d � Â X n d Z � � ¶ \ l z � | }y � Z � � z � | � y d � Â X n d Z � � ¶ \ l z � | }È É Ê Ë È Ì b y � Z � � z � | n � z � | � y � Z � � z � | n � z � | p }�� � � 5 , + 5 N 6 � � � 5 4 � + 7 9� � � [m \ h d l h d l ¤ � \ \ � l g ¶ \ d b [m \ h d g ¹ \ g h j [m \ h d X d Z [\ � _ X j [m \ h d ¤ ^ m µ X j [m \ h d _ o \ i h p q[m \ h d � z � | }[m \ h d � ^ z � | }[m \ h d d Z � � ¶ \ l z { | }[m \ h d Y ¹ Z j � � Z � � }� z � | � ¤ ^ m µ X n l _ X b g ¹ \ g h p }� z � | � � ¤ ^ m µ X n X Z � b g ¹ \ g h p }� ^ z � | � � _ o \ i h n ¤ ^ m µ X n X Z � b g ¹ \ g h p }� ^ z � | � � _ o \ i h n ¤ ^ m µ X n l _ X b g ¹ \ g h p }Y ¹ Z � h g h � b � � z � | Ä b � z � | � X d Z [\ � _ X p p }d Z � � ¶ \ l z � | � � z � | � X d Z [\ � _ X }d Z � � ¶ \ l z � | � � � z � | }d Z � � ¶ \ l z � | � � � � }g _ ¡ ¶ \ l b d Z � � ¶ \ l p }� � Z � � � � b � ^ z � | n d Z � � ¶ \ l z � | � � ^ z � | n d Z � � ¶ \ l z � | p }È É Ê Ë È Ì b � � Z � � Ä l _ X b Y ¹ Z p p }�
100

� � � � � � � � � � � � � � � � � 	
 � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	
 � � � �

� � � � � ! � " # � $ % $ � & ' (� � $ " ()* * + , (, # ! � ,) ! % $ (, ! #) , # - " � " . " # / . $ � 0 ! (1 2 3 . " # % 4 � �� � 5 !) , 6 !)) $) 7 !)) " ' 7 " � " # , (4 " ' ! � � ! � " #� � � $ 8 6 !)) $) 7 !)) " ' � $ 8 , (4 " ' ! � � ! � " #9 : ; < = > ; ? @ A ; B @ A A C @ D @ E F G H I9 : ; < = > ; J = C B @ A A C @ D @ E F G K I9 : ; < = > ; ? @ A ; L = : J M C @ D @ E F G N I9 : ; < = > ; ? @ A ; O ; = P M J C @ D @ E F G Q I9 : ; < = > ; J = C L = : J M C @ D @ E F G R I9 : ; < = > ; J = C O ; = P M J C @ D @ E F G S IT U V W X U @ Y J Z @ J [D \:] [: ^ _ ` ? @ A ; a ? [: ^ b:] [: ^ _ ` J = C a ? [: ^ b: c [= > J _ ` A d = : ; D b: c [= > J _ ` J = C a ? @ d d b: c [= > J _ ` ? @ A ; a Z e [= > J b: B @ A A E @ A A G f E @ A A g b: h ; [E _ ` ? @ A ; h ; [E b � � i " % % $) $ " (� ,) � $ (j � 0 ,) , � . " j , " 7) ! j ! $ () � , ! � 0 " � 0 , # . $ % %: h ; [E _ ` J = C h ; [E b � � # ,) % � $ (, 8 $ � ' ! $ % k) " 4 " (l � 4 " $ � m no b� � � j , (� � � ! � " # k m� � � p� � q ! # ! 7 " # 4 , # r� � s r t !) , u v� � w r t !) , u x� � y r t !) , u z� � { r | $ 8 u v� � } r | $ 8 u x� � ~ r | $ 8 u z� � � r t !) , u � " # 7 ! % u v� � � r t !) , u � " # 7 ! % u x� � � r t !) , u � " # 7 ! % u z� � � r t !) , u � " � u � � $) u w u v� � w s r t !) , u � " � u � � $) u w u x� � w w r t !) , u � " � u � � $) u w u z� � w y r 6 ! � $ 7 7 1 ' ') , �� � w { r t !) , 7 !))� � w } r | $ 8 7 !))� � w ~ r t !) , . $ 4 � 0� � w � r t !) , 0 , $ j 0 �� � w � r | $ 8 . $ 4 � 0� � w � r | $ 8 0 , $ j 0 �� � � � � � r | 0 , % , (j � 0 � 0 , ! � � ! � " # �) � ! # �) � ! � $) 8 ") $ � $ " (� , # " �� � � � � ! � " # $) � # , ! � , 4 $ (� 0 $)) � ! � , r� � � * * * * * � * * * * * � * * * * * � k 4 $ - $ 4 , 4 $ (� " � 0 $ # 4) m� � � � � �� � � � � | $ 8 " ' $ ((, #) % $ 4 , #� � � � | $ 8 " ' " � , #) % , , - ,� � � t !) , " ' $ ((, #) % $ 4 , #� � t !) , " ' " � , #) % , , - ,9 : ; < = > ; d [Y @ d � Z c [= > J � � = A g: � ; @ d P ; > � Y J Z @ J [D � : � ; @ d � C @ D @ E f : L [D d : _ ` � [D d : f @ Y J Z @ J [D � J @ D P ; J f :] [: ^ _ ` ? @ A ; B [Z > J f :] [: ^ _ ` J = C B [Z > J f: � C @ Y ; _ ` P � C @ Y ; � \: � ; @ d � ; D [� ; > P J M b: � ; @ d E @ = > � � = A F H I b: � ; @ d Z c [= > J � � = A g F H I b� � 4 � , ! % % " � ! % v � { � � � � | 0 $) $) � 0 ,) ! 7 , !) � " $ (� � � $) y: � ; @ d d [Y @ d � F H I b: � ; @ d ? @ A ; a ? [: ^ � [A F H I b: � ; @ d J = C a ? [: ^ � [A F H I b
101

� � � � � � � � � � � � � � � � � 	
 � � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	
 � � � �

: B @ J D = � H D [J @ J = [> b � � � " � ! � $ " (7 ! � # $ � ' " # 5 " 4 $,)� � i ! % � % ! � ,) " 7 ,) � ' ' � 0 ! � . $ % % 5 , (, , 4 , 4 % ! � , #E @ = > � � = A F I ¡ C @ D @ E F H I ¢ C @ D @ E F I b � � + , � 7 ! $ (! � $) " ' ! � � ! � " #E @ = > � � = A F G I ¡ C @ D @ E F K I ¢ C @ D @ E F G I bE @ = > � � = A F g I ¡ C @ D @ E F N I ¢ C @ D @ E F g I bA Y @ d ; £ ; Y � E @ = > � � = A f ¤ H H H H K f ? @ A ; a ? [: ^ � [A � bA Y @ d ; £ ; Y � E @ = > � � = A f ¤ Q Q Q Q R f J = C a ? [: ^ � [A � b? @ A ; a ? [: ^ � [A F I ¥ ¡ C @ D @ E F I b? @ A ; a ? [: ^ � [A F G I ¥ ¡ C @ D @ E F G I b? @ A ; a ? [: ^ � [A F g I ¥ ¡ C @ D @ E F g I bJ = C a ? [: ^ � [A F I ¥ ¡ C @ D @ E F I bJ = C a ? [: ^ � [A F G I ¥ ¡ C @ D @ E F G I bJ = C a ? [: ^ � [A F g I ¥ ¡ C @ D @ E F g I b� ; D [� ; > P J M ¡ P ; J � ; > P J M � E @ = > � � = A � b � � + , � � , # " % , (j � 0 " ' ! � � ! � " #J [¦ £ ; Y � E @ = > � � = A � b � � i " (- , # � � " ($ � - , � � " #� � D [: Z Y J � § C @ D @ E F Q I f § C @ D @ E F ¨ I f Z c [= > J � � = A g � b � � + , �) , � " (4 � " $ (� ! � $)� � D [: Z Y J � Z c [= > J � � = A g f E @ = > � � = A f d [Y @ d � � b: � © D [E g � � ; A � D [J @ J = [> f E @ = > � � = A F I f E @ = > � � = A F G I f E @ = > � � = A F g I f d [Y @ d � F I f d [Y @ d � F G I f d [Y @ d � F g I � b� � + , (, # ! � , � 0 , 7 !)) 7 " 4 , %) ' " # � 0 , � . " 5 " 4 $,): B @ A A � ; J] [� ª [J @ d � § � J @ D P ; J ¢ « E @ A A G � f ? @ A ; B @ A A f � ; D [� ; > P J M � ¤ Q Q R f ? @ A ; L = : J M f ? @ A ; O ; = P M J � b: B @ A A � ; J] [� ª [J @ d � § � J @ D P ; J ¢ « E @ A A g � f J = C B @ A A f � ; D [� ; > P J M � ¤ Q Q R f J = C L = : J M f J = C O ; = P M J � b� � + , (, # ! � , � 0 , � . " $ (� , # (! % 5 " 4 $,)J @ D P ; J ¢ « ? @ A ; a ? [: ^ ¡ :] [: ^ ¬ D ; @ J ; � � [D d : � bJ @ D P ; J ¢ « J = C a ? [: ^ ¡ :] [: ^ ¬ D ; @ J ; � � [D d : � b� � + , (, # ! � , � 0 , � " % % $) $ " (j , " 7) ! (4 ! � � ! � 0 � 0 , 7 � " � 0 , 5 " 4 $,)J @ D P ; J ¢ « ? @ A ; h ; [E ¡ : ¬ D ; @ J ;] [� � P � C @ Y ; f � ; D [� ; > P J M � ¤ Q Q R f ? @ A ; L = : J M f ? @ A ; O ; = P M J � bJ @ D P ; J ¢ « J = C h ; [E ¡ : ¬ D ; @ J ;] [� � P � C @ Y ; f � ; D [� ; > P J M � ¤ Q Q R f J = C L = : J M f J = C O ; = P M J � b: h ; [E � ; J] [: ^ � J @ D P ; J ¢ « ? @ A ; h ; [E f J @ D P ; J ¢ « ? @ A ; a ? [: ^ � b: h ; [E � ; J] [: ^ � J @ D P ; J ¢ « J = C h ; [E f J @ D P ; J ¢ « J = C a ? [: ^ � b� � � � � ! � 0 � 0 , 7 !)) ,) � " � 0 , 5 " 4 $,):] [: ^ � ; J B @ A A � J @ D P ; J ¢ « ? @ A ; a ? [: ^ f § � J @ D P ; J ¢ « E @ A A G � � b:] [: ^ � ; J B @ A A � J @ D P ; J ¢ « J = C a ? [: ^ f § � J @ D P ; J ¢ « E @ A A g � � b� � q ") $ � $ " (� 0 , 5 " 4 $,) . 0 , # , � 0 , & (, , 4 � " 5 ,:] [: ^ � ; J � [A = J = [> � J @ D P ; J ¢ « ? @ A ; a ? [: ^ f ? @ A ; a ? [: ^ � [A F I f ? @ A ; a ? [: ^ � [A F G I f ? @ A ; a ? [: ^ � [A F g I � b:] [: ^ � ; J � [A = J = [> � J @ D P ; J ¢ « J = C a ? [: ^ f J = C a ? [: ^ � [A F I f J = C a ? [: ^ � [A F G I f J = C a ? [: ^ � [A F g I � b:] [: ^ � ; J � [J @ J = [> � J @ D P ; J ¢ « ? @ A ; a ? [: ^ f D [J @ J = [> � b:] [: ^ � ; J � [J @ J = [> � J @ D P ; J ¢ « J = C a ? [: ^ f D [J @ J = [> � b� � + , (, # ! � , � 0 , � 0 # , , ­ " $ (�) ! (4 ! � � ! � 0 � 0 , 7� � + , (, # ! � $ " (J @ D P ; J ¢ « A d = : ; D ¡ : c [= > J ¬ D ; @ J ; � d = : ; D � � [D d : f � bJ @ D P ; J ¢ « ? @ A ; a Z e [= > J ¡ : c [= > J ¬ D ; @ J ; ¦ > = ® ; D A @ d � � [D d : f � bJ @ D P ; J ¢ « J = C a ? @ d d ¡ : c [= > J ¬ D ; @ J ;] @ d d � � [D d : f � b: c [= > J � J J @ Y M � J @ D P ; J ¢ « A d = : ; D f J @ D P ; J ¢ « ? @ A ; a ? [: ^ f J @ D P ; J ¢ « J = C a ? [: ^ � b: c [= > J � J J @ Y M � J @ D P ; J ¢ « ? @ A ; a Z e [= > J f ? @ A ; B [Z > J f J @ D P ; J ¢ « ? @ A ; a ? [: ^ � b: c [= > J � J J @ Y M � J @ D P ; J ¢ « J = C a ? @ d d f J @ D P ; J ¢ « J = C a ? [: ^ f J = C B [Z > J � b: c [= > J � ; J � d = : ; D � � = A � J @ D P ; J ¢ « A d = : ; D f E @ = > � � = A F I f E @ = > � � = A F G I f E @ = > � � = A F g I � b: c [= > J � ; J] @ d d � > Y M [D � J @ D P ; J ¢ « J = C a ? @ d d f C @ D @ E F H I f C @ D @ E F K I f C @ D @ E F N I � b: c [= > J � ; J ¦ > = ® ; D A @ d � > Y M [D � J @ D P ; J ¢ « ? @ A ; a Z e [= > J f C @ D @ E F I f C @ D @ E F G I f C @ D @ E F g I � b: c [= > J � ; J ¦ > = ® ; D A @ d � � = A G � J @ D P ; J ¢ « ? @ A ; a Z e [= > J f C @ D @ E F ¨ I f C @ D @ E F G I f C @ D @ E F G G I � b: c [= > J � ; J ¦ > = ® ; D A @ d � � = A g � J @ D P ; J ¢ « ? @ A ; a Z e [= > J f Z c [= > J � � = A g F I f Z c [= > J � � = A g F G I f Z c [= > J � � = A g F g I � b� � � � � ! � 0 � 0 , ­ " $ (�) � " � 0 , $ # # ,) 8 , � � $ - , 5 " 4 $,)¯ ° � C @ D @ E F G g I ± ¤ � \� � ² ' 7 ! � " ' ') , � k 8 ! # ! 7 w y m $) (, j ! � $ - , ³ � 0 , (! � " *) , � $ � � " 5 , w � { " ' % , (j � 0: c [= > J � ; J � d = : ; D � @ D @ E � J @ D P ; J ¢ « A d = : ; D f : � @ D @ E � [� J [C f ¢ ¤ H H H � � ; D [� ; > P J M � b: c [= > J � ; J � d = : ; D � @ D @ E � J @ D P ; J ¢ « A d = : ; D f : � @ D @ E O = � J [C f ¤ H H H � � ; D [� ; > P J M � bo
102

� � � � � � � � � � � � � � � � � 	
 � � � �

� � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � 	 � � � � � � � � � 	
 � � � �

´ µ T ´ \ : c [= > J � ; J � d = : ; D � @ D @ E � J @ D P ; J ¢ « A d = : ; D f : � @ D @ E � [� J [C f ¢ C @ D @ E F G g I � b: c [= > J � ; J � d = : ; D � @ D @ E � J @ D P ; J ¢ « A d = : ; D f : � @ D @ E O = � J [C f C @ D @ E F G g I � bo� � 4 � " $ (� ¶ , � ¶ % $ 4 , # q ! # ! 7 k � ! # j , � * ·) % $ 4 , # ³ 4 q ! # ! 7 ¸ , % ³ s n s m �� � 4 � " $ (� ¶ , � ¶ % $ 4 , # q ! # ! 7 k � ! # j , � * ·) % $ 4 , # ³ 4 q ! # ! 7 ¹ 6 ! � ³ � s s n s m �V ´ U W V º � � ; D [� ; > P J M � bo � � q ") $ � $ " ($ (j� � 4 + , " 7 ¶ , � q ") $ � $ " (k � ! # j , � n 5 !) , + , " 7 ³ 5 !) , u 5 " 4 & q ") � s � ³ 5 !) , u 5 " 4 & q ") � w � ³ 5 !) , u 5 " 4 & q ") � y � m �� � 4 + , " 7 ¶ , � q ") $ � $ " (k � ! # j , � n � $ 8 + , " 7 ³ � $ 8 u 5 " 4 & q ") � s � ³ � $ 8 u 5 " 4 & q ") � w � ³ � $ 8 u 5 " 4 & q ") � y � m �� � 4 + , " 7 ¶ , � � " � ! � $ " (k � ! # j , � n 5 !) , + , " 7 ³ # " � ! � $ " (m �� � 4 + , " 7 ¶ , � � " � ! � $ " (k � ! # j , � n � $ 8 + , " 7 ³ # " � ! � $ " (m �� � � � � ! � 0 7 , (�� � � 4 , % � � � ! � " # k m� � � p® [= : : ; d � Y J Z @ J [D � @ Y J Z @ J [D � J @ D P ; J � \: h ; [E ` ; A J D [^ � J @ D P ; J ¢ « ? @ A ; h ; [E � b: h ; [E ` ; A J D [^ � J @ D P ; J ¢ « J = C h ; [E � b: c [= > J ` ; A J D [^ � J @ D P ; J ¢ « A d = : ; D � b: c [= > J ` ; A J D [^ � J @ D P ; J ¢ « ? @ A ; a Z e [= > J � b: c [= > J ` ; A J D [^ � J @ D P ; J ¢ « J = C a ? @ d d � b:] [: ^ ` ; A J D [^ � J @ D P ; J ¢ « ? @ A ; a ? [: ^ � b:] [: ^ ` ; A J D [^ � J @ D P ; J ¢ « J = C a ? [: ^ � bo

103

REFERENCES

[1] G. Liu, M. Habib, K. Watanabe. “Central Pattern Generators Based on

Matsuoka Oscillators For the Locomotion of Biped Robots.” Artificial Life

and Robotics, vol. 12, issue 1-2, pp. 264-269, Mar 2008.

[2] H. Inada and K. Ishii. “Bipedal Walk Using a Central Pattern Generator.”

International Congress Series, Vol. 1269-complete, August 2004.

[3] A. Kuo. “The Relative Roles of Feedforward and Feedback in the Control

of Rhythmic Movements”. Motor Control. Vol. 6, 2002.

[4] Luk, B. L., S. Galt and S. Chen. “Using Genetic Algorithms to Establish

Efficient Walking Gaits for an Eight-Legged Robot.” International Journal

of Systems Science. Vol. 32, Issue: 6, pp. 703-713, 2001.

[5] A. Lewis, A. Fagg and G. Bekey. “Genetic Algorithms for Gait Synthesis in

a Hexapod Robot.” In Y.F. Zheng, editor, Recent trends in mobile robots.

World Scientific, 1993.

[6] Auer, P., Burgsteiner, H., and Maass, W. (2001). “A Learning Rule for

Very Simple Universal Approximators Consisting of a Single Layer of

Perceptrons.”Neural Networks. vol. 21, Issue 5, pp. 786-795, June, 2008.

[7] T. Weise. (June, 2008) Global Optimization Algorithms Theory and

Application, 2nd ed. [online] http://www.it-weise.de

[8] R. Smith. (June, 2008) Open Dynamics Engine. Vers. 0.9x [online]

https://opende.svn.sourceforge.net/svnroot/opende/trunk

(SVN Checkout, accessed 06 Jun. 2008)
104

[9] ---. Gazebo. Vers. 0.8-pre2, 05 Mar. 2008 [online]

http://sourceforge.net/project/showfiles.php

?group_id=42445&package_id=90519&release_id=581798

[10] K. Demura. Robot Simulation — Robot Programming With Open

Dynamics Engine. Morikita Publishing Co., Ltd., Tokyo, 2007.

105

http://sourceforge.net/project/showfiles.php
http://sourceforge.net/project/showfiles.php
http://sourceforge.net/project/showfiles.php

	Bishop thesis assembled.pdf
	body7
	Bishop thesis assembled
	PDNN
	Bishop thesis assembled
	EVO
	Bishop thesis assembled
	spider_h
	spider_cpp
	actuator
	Bishop thesis assembled

1. INTRODUCTION

This thesis describes a method for automatically generating complex

control systems for walking robots. One of the most interesting research fields

today is the development of robots that are able to perform complex and

somewhat arbitrary actions with some degree of reliability. While robotics as a

field of engineering has existed for quite some time now, and robots have been

created which are capable of performing many tasks, it is still very difficult to

create a robot which can effectively navigate complex terrain, or inside buildings.

This is mostly due to the fact that the simple forms of mechanical movement, such

as wheels, are only effective over a narrow range of conditions. A wheeled robot,

for example, may be able to navigate a single floor of a building, or a landscaped

outdoor area, but would normally be incapable of dealing with anything that its

wheels cannot roll over, such as stairs, or rough terrain. For this reason, an

effective walking-robot technology would be very useful.

Designing an effective walking robot is a difficult problem for two distinct

reasons. First, it is actually quite challenging for engineers to design mechanical

systems that exhibit anything close to the combination of speed, strength, size and

weight that exist in biological organisms. This problem tends to either introduce

severe limits on what can be done, or alternatively, cause the cost to construct a

robot to be extremely high. Secondly, and somewhat relatedly, the control system

for an effective walking robot is by necessity very complicated. This is because of

1

the wide variety of conditions under which such a robot must be able to operate; a

simple pre-programmed sequence of movements is not sufficient to provide

reliable walking.

There are many different methods which have been used to provide

intelligent control of walking robots. One approach is the use of Central Pattern

Generators (CPGs), which have been used to control biped robots [1, 2]. Like the

biological systems that inspired this method, a robot using CPG motion control

has a very small neural network in which groups of individual perceptrons behave

like schmidt trigger oscillators. The currently-active perceptrons inihibit the others

until their responses to the input vector override the inhibition. At this point, when

the system begins to switch states, a positive-feedback condition is created which

strongly attracts the system into its next state. These neuronal oscillators can be

connected in a purely feed-forward layout, in which the neurons use only each

other's outputs as inputs, or they can use feedback, in which the inputs to the

neurons are sensor outputs from the controlled system[3]. The behavior of this

system is normally hard-coded, and tends to suffer from most of the same

drawbacks as a pre-programmed gait — it requires a human programmer to

consider each possible situation that it may encounter.

Genetic algorithms have also been used to develop control systems in

walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-

forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5]

2

combine a genetic algorithm with a CPG to produce walking behavior in a

hexapod robot.

In this thesis, a new method is developed which works in a similar way to

[5], in that a neuronal oscillator controller is trained with a genetic learning rule,

but with several key differences. First, the new method uses a relatively large

neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The

network used in this thesis has dozens to hundreds of perceptrons and, in some

cases, upwards of a half-million weights (see test runs in Chapter 5). These

perceptrons are not connected together directly as they are in the CPG, but do

have feedback from the aggregate (system) output. In addition, the system has

some internal memory which stores a certain number of past inputs and outputs.

Thus, the control system can not only “see” the current state of the robot, but also

remembers what has been happening with the physical robot and what it has been

doing. The length of this memory is a user-entered variable, which has been set at

150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the

scoring and selection algorithms used in this thesis are based only on walking

performance; the first training steps used in [5] to initially produce oscillatory

behavior is not present.

For purposes of training the neural network, software is created which

combines a physics simulation with a scoring algorithm. Candidate control

systems are scored on how far they can make a simulated robot walk over

randomly-generated terrain in a given amount of time, and this information is

3

passed back to the genetic algorithm. After each neural network has had a turn,

and received a score, the software ranks them and replaces the lower scorers with

new networks that are created by combining pairs of high-scorers and applying

random mutations. These steps are then repeated until the user decides that a

sufficiently effective one has been produced, based on observation of the 3D-

rendered simulation or the figures of merit introduced in Chapter 5, and terminates

the program.

When the program is first started, all of the neural network weights are

random and the simulated robots are only able to move a very short distance. As

time progresses, however, the robots begin to develop the ability to produce

continuous motion in one direction. In the test runs, the robots began to show

some walking ability within about two days, and were becoming quite effective at

walking after about a week.

While this method still requires some forethought on what types of

situation the robot will encounter, in order to create effective training simulations,

it does not need any hard-coding to be performed. All that is necessary is to create

a 3D “world” with any terrain that the robot might have to navigate, as the

software will randomly place robots in the world and score the control systems on

how well they perform. In addition, the neural networks produced by this software

are not limited to a single type of walking — multiple methods of movement have

been observed in individual networks — which simplifies their integration into a

complete robot.

4

This thesis is organized as follows: In Chapter 2, the neural network

topology is described, as is the method for generating its input vector. There is a

discussion on why it was chosen in section, and why it was expected to be

effective, and its software implementation is described in detail. In Chapter 3, we

discuss the genetic learning rule that is used with the neural network. The scoring

rules that are used in the physics simulation are defined, as are the rules used for

selection, crossover and mutation. Then, the software implementation of the

genetic algorithm is described. In Chapter 4, the physics simulation in which the

neural networks are trained is described, starting with the simulation “world”.

Then, we discuss the quadruped robot body that is used in the simulations, its

physics-engine implementation, and the geometrical parameters that describe

individual robots. Finally, we describe the simulation loop in which the physics

engine, the robot model, the neural network and the genetic algorithm come

together. In Chapter 5, the performance of the software is evaluated. Figures of

merit, collected from two test runs, are presented, and the results are discussed. In

Chapter 6, we discuss our conclusions from this work, and propose some ideas for

further research, as well as some potential applications.

5

2. NEURAL NETWORK

 2.1 OVERVIEW

The neural network used in this project consists of a single layer of parallel

perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but

with an outboard genetic learning rule rather than the one described in that work.

Each perceptron has a set of input weights that determines its response to a given

set of inputs, an activation function which, in this thesis, is a unit-step function,

and a set of output weights, which are multiplied by the output of the activation

function (1 or 0) and added to the system output vector. This neural network

operates in discrete time, evaluating sampled inputs and producing outputs at fixed

time intervals. A block diagram of the neural network, and its associated memory

stacks, is shown in Figure 2.1.

Figure 2.1: Neural network block diagram

6

2.2 INPUT VECTOR GENERATION

Inputs to the neural network come from three sources: body sensors,

command and control signals, and previous inputs and system outputs. Past inputs

and outputs come from a type of stack buffer where data travels down the stack

and is discarded when it passes the last level. These historical data are used for

two purposes: as inputs for the neural network, and as training data for a second

learning rule that is implemented in the software, but not currently being used.

The organization of this stack is shown in Figure 2.2.

Figure 2.2: Block Diagram of History Buffer Object

7

2.3 OUTPUT VECTOR GENERATION

On each time step, the input vector to the neural network is generated by

concatenating the body sensor and command inputs with the past inputs and

outputs from the history buffer objects. This vector, I_sys, is multiplied (dot

product) with each perceptron's input weight vector, W, to give the postsynaptic

potential (PSP). The output of the perceptron is the unit step function of the PSP,

multiplied piecewise by the perceptron's output weights to give its contribution,

Rn, to the system output vector, Rs. This may be expressed as follows:

Rn = u(I_sys • W) (2.1)

Rs = Σ(Rn) (2.2)

2.4 WHY THIS ALGORITHM

At this point, some information is given regarding why this system can

work. First, due to the fact that the number of perceptrons is much larger than the

number of outputs, this algorithm is a universal function approximator[6]. This

means that it can implement an arbitrary bounded function given the correct

weights, even when the network has only a single hidden layer. Because the

outputs of this neural network determine the rate of change in the actuator

positions on the robot, the result is a system of nonlinear partial differential

equations which, depending on the weight vectors and the physical properties of

the robot, are capable of producing an extremely wide variety of behaviors

8

(although not all behavior is technically possible, as there are physical limits on

speed, force, and acceleration). Due to the way the data propagate through the

history buffers, and thus constantly change position with respect to the input

weights, it is relatively difficult for the system to reach a stable state where the

robot does not move. Instead, this tends to encourage strange attractors, which

produce repetitive, but not necessarily periodic, motion.

2.5 SOFTWARE IMPLEMENTATION

This neural network is implemented in C++ as the mcNeuron object class

(in which the “mc” is short for “Motion Control”). It is organized in a linked list,

where each instance represents one perceptron, and holds a pointer to the next

perceptron in the chain. The advantage to this type of organization is that the

source code can be kept short, as a large portion of the compiled machine code is

automatically generated by the compiler itself. This also helps prevent errors by

making the source code more readable, and relying on the very mature code-

generation algorithms used in the compiler. The source code for this object class is

given in Appendix A, and its member functions are described below:

● void rnNet(float* inputs, historyBuffer* iHistory, historyBuffer* oHistory,

 float* outputs)

This function multiplies the input weights of the perceptron (dot product)

by the concatenation of inputs, iHistory, and oHistory, and if the result is

positive, add its output weights to outputs. If there are more perceptrons in the

chain, as indicated by a non-null “next” pointer, then this function is called in

9

the next node, with the same parameters. Thus, one call to the first perceptron

in the chain propagates to all of them.

● void updateNet(float scale, historyBuffer* iHistory,

 historyBuffer* oHistory)

This function implements a second learning rule, which is not used in this

project. It was replaced by the genetic algorithm very early in development.

When called, it multiplies scale by values from iHistory and oHistory, and

adds this to its input weights. Like rnNet, it propagates through all perceptrons

in the chain.

● void iW_preset(float * newWeights)

This Function sets the input weights to the values stored in newWeights. This

function is recursive, and if the perceptron has a non-null “next” pointer, will

call the same function in the next perceptron. In this case, the pointer is

advanced by the number of input weights, so that one large array can be used

to set all of the input weights in a chain.

● void iW_preset_justOne(float * newWeights)

This function is the same as iW_preset(), but is not recursive.

● void oW_preset_justOne(float * newWeights)

This is the same as iW_preset_justOne(), but acts on the output weights instead

of the input weights.

10

● mcNeuron *getNext()

This function returns a pointer to the next perceptron in the chain, or NULL if

a next node does not exist.

● mcNeuron *cutNth(int index)

This function cuts the chain at the Nth node, and returns a pointer to the

removed segment. It works by recursively propagating down the chain while

decrementing index, until index = 1. When this condition is true, the node sets

its “next” pointer to NULL, and returns the value that was in that pointer. The

returned pointer propagates back up the chain as the CPU falls down through

the call stack, until the first called node finally returns it to the calling function.

● void setNext(mcNeuron * newNext)

This function sets the “next” pointer in the called node to newNext.

● void appendChain(mcNeuron * newSegment)

This function appends the chain specified by newSegment to the end of the

called chain. It works by recursively propagating down the chain until it is

called on a node whose “next” pointer is null, and setting that pointer to

newSegment.

● float *getIWeights()

This function returns a pointer to the input weights for the called perceptron.

● float *getOWeights()

This function returns a pointer to the output weights for the called perceptron.

● void setRandomOWeights(float maxValue)

11

This function sets the output weights of the perceptron to random numbers,

varying from -maxValue to +maxValue. It is recursive, and operates on each

node in the chain until a null “next” pointer is reached.

● void setRandomIWeights(float maxValue)

This function is the same as setRandomOWeights(), but operates on the

input weights.

● void setCascadingOWeights(float weight, int oIndex)

This function sets the output weight specified by oIndex to weight, and sets all

others to zero. If the “next” pointer is not null, it calls the same function on the

next node, with the parameters set by the following two rules:

 If oIndex is less than the number of output weights, increment oIndex.

 If oIndex is equal to the number of output weights, then the next oIndex is

zero, and the next weight is -weight.

Note that this function is not called in the final build of the software.

● void shakeIptWeights(float maxValue)

This function adds a random number, which varies from -maxValue to

maxValue, to each of the input weights. It is recursive, and operates on all

perceptrons in the chain. After the random values are added, the weight vector

is normalized.

● void shakeOptWeights(float)

This function is the same as shakeIptWeights(), but operates on the output

weights.

12

● void mutateIptWeights(float maxValue)

This function selects a random, continuous segment of the input weights and

replaces them with random numbers, which vary from –maxValue to

maxValue. It is not recursive (it operates on only one perceptron), and is called

by the much more extensive mutation function in the genetic algorithm class.

● void mutateOptWeights(float)

This is the same as mutateIptWeights(), but operates on the output weights.

● void svNet(ofstream * saveFile)

This function saves the input and output weights of a perceptron to the fstream

object pointed to by saveFile. It is recursive, so the entire network will be

saved when it is called on the first element in the chain. Note that the fstream

object has an internal index that counts up as data are saved, so the function

can be called on multiple chains with one open file, and they will all be saved

in order.

● void ldNet(ifstream * loadFile)

This function loads the input and output weights stored in the fstream object

pointed to by loadFile into the input and output weights. It is also recursive,

and operates in the same way as svNet.

13

3. GENETIC ALGORITHM

3.1 INTRODUCTION

The neural network described in Chapter 2 is trained using an outboard

genetic search algorithm, which operates on the entire network, rather than

individual perceptrons. Each candidate neural network is given a turn to control a

randomly generated robot in a physics simulation, and scored based on its

effectiveness at making the robot walk. Like all genetic algorithms, this one

combines randomness, selection, crossover, and mutation to search the space of all

possible input and output weight vectors. Due to the extremely large search space,

and the fact that there are large clusters of viable solutions (different types of

walking) with fitness functions that tend to be somewhat continuous, this problem

should be particularly well-matched to the properties of a genetic algorithm [7].

Selection is based on a floating-point score that is generated by evaluating

the network's efficacy in controlling a simulated robot. In order to function, a

genetic algorithm must find a region in the search space where there exists a score

gradient before it can begin to function as a genetic algorithm; before this happens

it implements only a random search. As a result, the search must happen upon a

region with a fitness gradient, by chance. If these regions fill too small a portion of

the total search space, it can take a very long time for the search to locate one of

them. For this reason, points must initially be awarded for results that are not

directly useful, but which are likely to be connected to a useful region by a

“bridge” of scores that are high for their particular region[7].

14

3.2 SCORING

At the start of a turn, the software drops a robot into the “world” at a

random position and begins stepping its neural network along with the physics

engine. In order to reduce noise in the score due to a random bounce when the

robot falls a short distance to the ground, and reduce the tendency for the system

to waste time early on by simply making the robots lean forward, there is a delay

of approximately two seconds in simulation time before the software records the

robot's “start” position. At the end of the turn, the start position is subtracted from

the ending position, and points are awarded according to the following five rules:

1. Score is awarded for any movement that occurs, regardless of direction. Early

in the process, this causes the system to select the neural networks that cause

the system to exhibit those attractors that produce constant motion. This causes

oscillatory behavior to be learned early in the evolutionary process, and is what

replaces the initial learning step used in [5], where fitness functions were

assigned to per-leg oscillations.

2. The population member receives points a second time for movement in the

desired direction, as determined by a dot product, but only if that number is

positive — a negative score here is counted as zero. As a result, it is possible

for an individual to receive up to two points per meter for moving in the

correct direction.

3. A two-point penalty is assessed if the robot is upside-down at the end of the

turn, which can occur quite easily due to the physical characteristics of this

15

particular robot design. The purpose of this penalty is to avoid behavior that

emerged in some of the earliest tests, where the robot would roll forward, and

then hop along upside-down by kicking its legs.

4. A user-configurable penalty is assigned each time the robot chassis comes into

contact with the ground. There is a delay of approximately 1 second in

simulation time after a ground impact is registered, before the counter can be

incremented again. This prevents large penalties from accruing quickly if the

chassis remains in contact with the ground for a period of time. From the test

runs that have been performed, it was found that this penalty needs to be very

small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05

was used. It may be effective to increase this penalty slowly after the system

has learned to walk, but this has not yet been tested.

5. The population member retains half of the score it received in the previous

generation, so that a single weak performance is not likely to “kill” a high-

scoring neural network. While this last rule can sometimes prevent a more-fit

individual from displacing a less-fit one, the effect quickly fades away when

an individual performs poorly for two or more generations. It also is not

typically enough to prevent displacement in the case of a very low, or negative,

score. For this reason, several replacements still occur in most generations.

16

3.3 SELECTION

At the end of a generation, all members of the population are sorted by a

ranking algorithm, so that those with the highest score appear in the earliest

positions. In order to select each parent for the next generation, a random floating-

point number in the range [0, 1] is generated, and squared, so that the new

probability distribution will tend toward zero. This new number still falls within

the same range, but has an average value of ¼ instead of ½ — thus selecting

higher-scoring individuals more often than low-scoring ones. This number is then

multiplied by the size of the population, cast to an integer, and used to index a

neural network that will be the “parent” of a new population member. Note that

the random number could also be raised to any other positive power, or another

function could be used to provide a different probability distribution, although

these options have not been investigated. A second method which has been tested

is to instead multiply the square by the maximum score in the population, and then

take the weakest member above that score, but it appears to be too aggressive for

the small populations that are feasible on a current PC, and was found to cause

problems with early convergence. This cause of this problem is that the highest

score in a generation tends to be much higher than the average score, or even the

average of the top 5 scores, as shown in Chapter 5. The top scoring population

member thus tends to be chosen as a parent very often by this rule, which causes

the diversity in the population to disappear rapidly, leading to the early

convergence problems that were observed.

17

3.4 CROSSOVER AND MUTATION

After the two parent networks are selected, a new neural network is created

by combining them. Each perceptron in the child is created by randomly selecting

the perceptron at the same position from one of the parents, and occasionally

introducing a random mutation. These mutations can take any of the forms

outlined below:

● A random, continuous, segment of the perceptron's input weights is chosen,

and replaced with a string of random numbers. This permits behavior to drift

over time at the individual perceptron level.

● A perceptron's output weights are rotated, so that all of its effects are

“mirrored” to the opposite side of the body (either side-side or front-back can

occur). At the same time, the perceptron's response is time-delayed by a

random amount by doing a circular shift on its input weights by an integer

multiple of the number of inputs. The purpose of this mutation is to encourage

symmetry in the robot's motion, and allow effective behavior that evolves in

one leg to eventually propagate to the other legs.

● At the population-member level, the software randomly selects a continuous

group of perceptrons, and moves them to a new position in the list. This has no

direct effect, but makes it possible for a new child to be created with multiple

perceptrons that originally occurred at the same position. For example, the

child could contain four nodes that were all at position 25 in its grandparents.

● After the new perceptron is generated, all of its weights (both input and

18

output) are randomly adjusted by a small amount, and the input weights vector

is normalized.

3.5 SOFTWARE IMPLEMENTATION

The genetic algorithm is implemented by the mcEVO object class, which

manages the population, and two helper functions, rankNodes() and breedNets(),

which perform the genetic operations.

The mcEVO class encapsulates the neural network and its associated

history buffers in such a way that the entire population can be accessed through

one pointer. It also stores the geometry for the randomly generated robots. The

source code for this class is given in Appendix B, and its member functions are

described below:

● mcEVO(int popSize, mcEVO * previous, dReal * geomMin, dReal *

geomMax)

This is a chain constructor which builds a population of popSize. It does not

generate the neural networks (this is done in a separate call), but it does

generate a random set of robot-body proportions for each element. The input

variable geomMin should point to an array containing the lower limits for each

body dimension, while geomMax should contain the upper limits. These

parameters are described in detail in the simulation section of this thesis.

Previous is used internally to this chain constructor, and should be set to

NULL when it is called from outside.

19

● ~mcEVO()

This destructor operates on the entire chain, deleting all nodes and any

perceptron chains that were attached to them.

• mcEVO * getMax(mcEVO * curBest, float curMax)

This function returns a pointer to the node in the chain with the highest

score value. The input variables curBest and curMax are used internally as

the function recurses through the chain; it should thus be called with

curBest = NULL and curMax set to a large negative number (-10 is

sufficient in this case).

• void setPrevious(mcEVO * newPrevious)

This function sets the “previous” pointer for the called node to

newPrevious.

• void setNext(mcEVO *)

This function sets the “next” pointer for the called node to newNext.

• void detach()

This function detaches the called node from the chain, calls

previous->setNext(next) and next->setPrevious(previous), and sets its own

previous and next pointers to NULL. Thus, the node is removed from the

chain, and the chain is spliced back together.

• mcEVO *getNext()

This function returns the value in the “next” pointer of the called node.

20

• mcEVO *getPrevious()

This function returns the value in the “previous” pointer of the called node.

• mcEVO *getFirst()

This recursive function can be called on any node in the chain. It calls

previous->getfirst() until previous = NULL, then returns a pointer to that

node.

• mcEVO *getLast()

This function works in the same way as getFirst(), but recurses down the

chain instead of up, and returns a pointer to the last node.

• float getScore()

This function returns the score stored by the called node.

• mcEVO *getLastAbove(float minScore)

This function recurses up the chain until it reaches a node whose score is

higher than minScore. It then returns a pointer to that node. Note that this

function is called on the last node in the chain (rather than the first), and is

intended to be used after the ranking operation is complete. See the section

on the rankNodes() helper function below.

• mcEVO *getNth(int N)

This recursive function extracts a pointer to the Nth node in the chain. It

works by calling itself on the next node in the chain, while decrementing N,

until N = 0. It then returns a pointer to the node where this occurred.

21

• void insBefore(mcEVO * newNode)

This function inserts the node pointed to by newNode into the position

preceding the called node. It sets its own “previous” pointer to newNode, and

calls setPrevious() and setNext() on the new node, and setNext() on the

current previous node, so that the chain is still continuous in both directions.

• void dumpScores()

This recursive debug function causes all nodes in the chain to send their

scores to stdout.

• void dumpWeights()

This debug function causes all nodes in the chain to send their weights to

stdout. Note that there can be many millions of weights, which can cause

problems depending on the terminal program from which the software is run.

• void setScore(float newScore)

This function sets the score stored by the called node to newScore.

• dReal *getParams()

This function returns a pointer to the robot-body geometry parameters

stored by the node.

• void appendChain(mcEVO * newSegment)

This function causes the chain starting at newSegment to be appended to the

end of the chain holding the called node. It recurses down the chain

until next = NULL, then sets next = newSegment and calls

22

newSegment->setNext(this).

• int killLast(int numDeleted)

This function deletes the last numDeleted nodes in the chain. It works by

recursively calling itself on the next node until next = NULL, then returning

numDeleted. As the CPU falls back up through the call stack, each recursion

subtracts one from the returned number and returns that, thus counting down

toward zero. When the return value is zero, the node calls delete next, and sets

next = NULL. All nodes below this point are then deleted by the chain

destructor, as described above.

• void svBrains(ofstream * saveFile)

This recursive function saves all of the neural networks being managed by

a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron

chain pointed to by each node in the chain, and then calling itself on the next

mcEVO node. Note that the fstream object class counts and records the current

position within the file, which greatly simplifies this implementation.

• void ldBrains(ifstream * loadFile)

This function works in a similar way to svBrains(), but loads the neural

network weights from a file into all of the mcNeuron objects being managed

by the called mcEVO chain.

• void mkBrains(int numPerceptrons, int RHL, int THL)

This recursive function causes all nodes in the mcEVO chain to generate

23

neural networks and history buffer lists using the chain constructor for the

mcNeuron class. The neural networks thus created have numPerceptrons

perceptrons, and both history buffers (one for input variables, and one for

output variables) have RHL + THL nodes. Note that this function, in its

current implementation, assumes that each neural network has 34 inputs and 16

outputs. This will change when the class is adapted away from this project for

general-purpose use.

● void mkBrains_random(int numPerceptrons, int RHL, int THL, float * array)

This function works in the same way as mkBrains, but fills the input and

output weight arrays with random numbers rather than leaving the memory

uninitialized. Array points to an array of type float that is large enough to hold

all input and output weights, which was used internally in a different version of

this function. It has not been removed, because that version has not yet been

fully evaluated at the time of this writing. For the version of the function used

in this thesis, array can be set to NULL.

● mcNeuron *getBrain()

This function returns a pointer to the first node in the mcNeuron chain

being managed by the called mcEVO node.

● historyBuffer *getIHist()

This function returns a pointer to the first node in the input history buffer

chain being managed by the called mcEVO node.

24

• historyBuffer *getOHist()

This function returns a pointer to the first node in the output history buffer

chain being managed by the called mcEVO node.

• void setIHist(historyBuffer *)

This function sets the input history buffer chain to be used by the called

node.

• void setOHist(historyBuffer *)

This function sets the output history buffer chain to be used by the called

node.

The core features of the genetic algorithm, including selection, crossover,

and mutation, are implemented in two helper functions that are written to operate

on a mcEVO chain. These functions are:

● rankNodes(mcEVO * target)

This function performs a sorting operation on the mcEVO chain beginning

at target. The nodes are ranked in order of descending score. Note that, after

the ranking is complete, target is no longer the first node in the chain.

However, the member function getFirst() can be called on target, and the first

node will be returned.

● breedNets(mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin,

dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut,

float iRnd, float oRnd)

25

This function implements almost all of the actual genetic algorithm, and is

called after rankNodes(). Its arguments are as follows:

 thePopulation is a pointer to the mcEVO chain on which the function will

operate.

 popSize is the size of the population.

 nReplaced is the number of population members that be replaced with

newly created candidates.

 pMin is a pointer to the array containing the lower limits for the robot body

parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).

 pMax is a pointer to an array containing the upper limits for the robot body

parameters.

 nNeurons is the number of perceptrons in each population member.

 RHL is the length of the history stack used by the neural networks as

inputs.

 THL is the length of the history buffer used for an additional learning rule

that is not used in this thesis, but is implemented in the mcNeuron class.

Note that the total length of the stacks is equal to RHL + THL.

 mutProb is the probability that a mutation will occur in any given

perceptron.

 maxMut is the maximum magnitude of the random numbers that a segment

of a perceptron's input weights will be replaced with, when this type of

mutation occurs (see section 3.4). The newly generated weights will thus

26

vary from -maxMut to maxMut. Note that this value should be chosen so

that its average magnitude is approximately equal to the average magnitude

in the input weight vector, so that the newly created weights do not swamp

the other weights. Because the input weights vector is normalized, the

value of maxMut used in this thesis is set to 2 * sqrt(1 /

number_of_input_weights).

 iRnd is the maximum magnitude of the random numbers that are added to

each input weight, after the perceptron is created and all mutations are

applied, and before the input weight vector is normalized.

 oRnd is the maximum magnitude of the random numbers that are added to

the output weights. Note that the output weights are never normalized.

27

4. SIMULATION ENVIRONMENT

4.1 OVERVIEW

The software in which the robot controllers are trained is based on a free

and open-source rigid body physics engine called OpenDE or ODE [8], which is

short for “Open Dynamics Engine”. This engine was orignally created by Russell

Smith, and is currently being maintained and extended by a community of

volunteers. It is distributed under two separate licenses — the GNU LGPL and a

BSD-style license — such that a user can choose either of them. Thus, it may be

used in free or commercial software, with very few restrictions. The most

significant restriction in the BSD-style license is that the original work must be

cited. This physics engine provides general-purpose simulation of articulated

bodies, in addition to collision detection, and is primarily intended for use in video

games. It has become popular enough in robot simulations, however, that there

have been robot-simulation software packages[9] created and even a book[10]

written about modeling robots in ODE.

4.2 SIMULATION WORLD

The simulation “world” consists of two parts — a randomly generated

height map (the “ground”), and a randomly proportioned robot model. The height

map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space.

At each grid point, the height is set to a random number so that all heights fall

within a 0.13m range.

28

The robot body is generated and inserted into the world by the spiderBody

object class (see section 4.4). A majority of the code in this class, about 1500

lines, comprises the constructor function, which performs the following steps:

● Create the core body of the robot, which consists of three ODE primitives, set

up its mass and inertia matrix, add its collision detection geometry, and insert it

into the world.

● Repeat the previous step for the upper legs and lower legs.

● Calculate the starting positions / rotations for the legs, and move them to those

locations.

● Attach the legs with the appropriate ODE joints (ball joints at the hips and

hinge joints at the knees).

● Calculate the base / tip positions of the actuators, and call genActuator() on

each one.

4.3 QUADRUPED ROBOT BODY

The robot body used in these simulations is shown in Figure 4.1. This robot

has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear

servos controlling a single leg are shown in Figure 4.2; their effects are as follows:

1. Works with Actuator 2 to control the direction of the axis of the upper leg.

2. Works with Actuator 1 to control the direction of the axis of the upper leg.

3. Controls the rotation of the upper leg about its axis. The effect of this actuator

is interdependent with Actuators 1 and 2.

4. Controls the bending angle of the knee joint.

29

Figure 4.1: Quadruped Robot

Figure 4.2: Diagram of a Single Leg Showing Actuator Indices

30

The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5.

These dimensions correspond to those shown in Table 4.1, and the upper and

lower limits given in Table 4.2.

Figure 4.3: Robot Body Core (isometric view), Showing Dimensions

Figure 4.4: Diagram of Upper and Lower Chassis Platforms

31

Figure 4.5: Diagram of a Leg, Showing Dimensions

Figure 4.6: 3D Rendering of the Robot Walking in the Simulation

Environment

32

Figure 4.6 shows a 3D-rendered example of the robot. This image was

made from a screenshot of the robot walking in the simulation software. The gray

actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators

correspond to Actuator 3, while Actuator 4 is not shown in this picture because it

is handled outside ODE, in order to increase the speed of the software, and not

drawn when the scene is rendered.

4.4 ROBOT BODY OBJECT CLASS

The ODE objects which model the robot body are created and manipulated

through the spiderBody object class. The source code for this class is given in

Appendix C. Aside from the constructor and destructor, the robot body class

implements the following member functions:

● dReal getPos(int index)

Returns the current length, in meters, of the linear actuator specified by index,

with respect to its starting length. Negative numbers indicate that the actuator

has retracted, while positive numbers indicate that it has extended.

● dReal getVel(int index)

Returns the linear speed, in meters per second, of the actuator specified by

index, where negative numbers indicate that the actuator is retracting and

positive numbers indicate that it is extending.

● void addForce(int index, dReal force)

Adds a 3rd law pair of forces of magnitude force to the two ends of the

actuator specified by index, which are directed along its axis. This is the

33

source of all of the driven motion in the physics simulation, except for the four

knee joints.

● void addKneeTorque(int index, dReal torque)

Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower

leg specified by index. This is the source of all driven motion at the knee

joints.

● dReal getKneeAngle(int index)

Returns the current angle, in radians, of the knee specified by index. This

angle is measured from the direction of the upper leg (if the knee is straight,

the angle is zero), and increases as the lower leg bends downward.

● dReal getKneeOmega(int index)

Returns the current angular speed, in radians per second, of the knee

specified by index.

● dBodyID getCore()

Returns the ODE body ID of the robot chassis. This is used in the collision

detection callback to count collisions between the chassis and ground

(which incurs a small score penalty).

4.5 HELPER FUNCTIONS

In addition, there are three helper functions that are not members of the

robot body class, but are used with it. All three of these functions relate to the

actuator that drives each knee, but is external to the ODE world in order to

34

increase processing speed. The source code for these helper functions is given in

Appendix C, and they are described below:

● dReal calcKneeActOffset(dReal angle, dReal KBR, dReal KLL)

Calculates the position of the knee actuator tip, in meters, with respect to the

knee joint. This position ranges from zero to the length of the upper leg. Angle

specifies the angle of the knee joint, in radians, as returned by

spiderBody::getKneeAngle(int), KBR is the distance between the knee

joint and the link attachment point on the lower leg, and KLL is the length

of the linkage itself.

● dReal calcKneeTorque(dReal Angle, dReal slidePos, dReal KBR,

dReal F)

Returns the torque applied to the knee joint by a force F in the knee actuator.

The input variable, slidePos, specifies the position of the knee actuator, as

defined above, while F is the linear force in the actuator. Angle and KBR are

the same variables described above.

● dReal calcKneeActVel(dReal Angle, dReal slidePos, dReal KBR,

dReal w)

Returns the linear speed of the knee actuator, in meters per second, given the

angular speed of the knee joint, in radians per second. The input variable w is

the angular speed; other inputs are the same as described above.

35

4.6 BODY GEOMETRY PARAMETERS

The body parameters, which are set at random by the software and passed

to the robot body constructor in a parameter array are listed in Table 4.1. These

parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index

column specifies the position in the array, while the Macro column gives the

three- or four-letter macro by which the variables are referenced in the source

code (see section 4.4 and Appendix C). Note that all linear dimensions are in

meters, while all mass parameters are in kilograms.

Table 4.1: Robot Body Parameters Array

Index Variable Macro

0 Upper platform (chassis) radius UCR
1 V actuator upper mount offset (from centers of UP) VAO
2 Distance between upper and lower platforms RISE
3 Lower platform radius LCR
4 Upper leg length ULL
5 Lower Leg Length LLL
6 Distance hip -> V ball on upper leg IBR
7 Hip rotation linkage length RBR
8 Knee link length (Obsolete; now set automatically) KLL
9 Distance knee -> knee link attachment KBR
10 Upper platform mass UPM
11 Lower platform mass LPM
12 Square tubing density (mass / unit length) LINDENS
13 Platform and Leg thickness THICK
14 Starting Position X POSX
15 Starting Position Y POSY
16 Starting Position Z POSZ
17 Upper leg zero angle ULZA
18 Leg rotation zero angle LRZA
19 Lower leg zero angle LLZA
20 Foot ball radius FBR
21 Foot ball mass FBM
22 V Actuator base mass VABM
23 V Actuator tip mass VATM
24 Rotational Actuator base mass RABM
25 Rotational Actuator tip mass RATM
26 Upper leg mass ULM

36

4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within

a set of upper and lower limits defined by two limit arrays. The purpose of this

variation is to train the neural networks to control a range of robots, rather than

just a single example, to increase their resistance to the effects of small changes

when going from the simulated robots to a physical one. The values used in the

lower and upper limit arrays are given in Table 4.2.

Table 4.2: Upper and Lower Robot Parameter Limits

Index Macro Variable Description Lower Limit Upper Limit

0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9 KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52

37

4.8 SIMULATION LOOP

On each step through the simulation loop, the inputs to the control system

are updated with the force and position values for all of the actuators. The position

values for the 12 upper leg actuators are obtained from ODE, using the getPos()

member function of the robot body class, while the motion speeds for these

actuators are obtained using getVel(). The knee actuator positions and speeds are

calculated from the knee angles and angular velocities, which are obtained from

ODE using the getKneeAngle() and getKneeOmega().

For all actuators, including the ones for the knees which are handled

externally to ODE, the position is zero as seen by its control-system input at

whatever position the actuators are created in. These zero positions are also used

to define the actuator position variables which are modified by the outputs of the

control system. The difference between these “set” position variables, and those

returned by ODE, or calculated from angular values, in the case of the knees, are

used to calculate the force in each actuator using a simple damped-spring

equation:

F = -ks * (actual position – set position) – kd * (actuator speed)

where ks is a spring constant, and kd is a damping coefficient.

The spring constant for knee actuators is 1500N/m; for other actuators it is

1100N/m, and the damping coefficient is 30N*s/m. These values are based on

measurements taken from a prototype linear actuator.

38

The calculated forces for all actuators except those in the knees are sent

back to ODE through the robot body class using the addForce(index, force)

member function, as well as to the control system as force-sensor inputs. The

forces for the knees are converted to torque values, and sent to ODE using the

addKneeTorque(index, torque) member function.

The actuator set positions are produced by the control system outputs

through a double integral. The control system is able to set acceleration values for

the actuators, up to a certain maximum acceleration, and these values change the

speed of the actuators (the rate of change of the set value), up to a certain

maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum

speed is 0.35m/s, both of which are based on measurements taken from a

prototype actuator.

In addition to position and force measurements, the control system also has

two other inputs that describe the desired direction of travel with respect to the

robot. These two values are dot products of a unit vector pointing in the desired

direction with the robot's local X and Y vectors. These are treated exactly the

same as the sensor inputs, and propagate through the history stack in the same

way.

39

5. PERFORMANCE EVALUATION

5.1 OVERVIEW AND QUALITATIVE ANALYSIS

For a system such as this, the most definitive performance criterion is

whether the robots begin walking in an effective way within a reasonable amount

of time, while operating on a computer which is economically feasible to the user.

During and after the development of this software, many test runs were performed,

using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In

eac test, the AI always either learned to walk, or found a way to work around the

rules and “cheat”, within a few days.

In the earliest runs, there was no penalty for being upside-down, which

resulted in the robots' bouncing and rolling forward as far as they could upon

dropping into the world, then kicking their legs and hopping forward while

upside-down. Some of them also managed to tilt 90 degrees to the side and roll a

good distance, effectively doing cartwheels, before falling down. When the

penalty was added and the software re-run, a population of robots was produced

fairly quickly that would hop forward, like frogs. At this point, a bug in the

physics simulation code was found and fixed, and the first population of actual

walkers was produced on the following run. For this test, the software was

allowed to run for a period of approximately three weeks in real-time, in which

time the it became very good at making the robots walk—at the end of this run,

the robots were moving about 16 body lengths in 14 seconds of simulation time,

which is quite fast given the physical characteristics of the robot and the limits that

40

were in place on how fast the actuators were allowed to move and accelerate (see

Chapter 4).

5.2 QUANTITATIVE ANALYSIS

In order to obtain a quantitative analysis of the performance of this system,

a pair of test runs was done, with different parameters for the neural network. A

special version of the software was created for these runs, which has the added

feature of creating the log files that are used in the analyses below. These log files

are formatted as plain text, with one line for each population member evaluated.

The entries on each line are as follows:

● The index of the current population member. This ranges from 0 – 39, as a

population size of 40 was used for all of the runs that used a log file.

● The score that the population member retained from the last generation,

according to scoring rule #5 (see section 3.2).

● The number of times the chassis came into contact with the ground, as

described in rule #4.

● The score given for any movement at all, as described in rule #1.

● The movement of the robot in the X direction.

● The movment of the robot in the Y direction.

● The final score passed back to the mcEVO node.

Results from two of these logged runs are included in this section. In these

runs, each neural network is given a turn of 2000 time steps in which to control its

robot. The starting positions are recorded after a delay of 250 time steps, which

41

gives an effective turn length of 1750 time steps. Each time step for the neural

network represents 0.012 seconds of simulation time, so there is a period of

approximately 21 seconds in simulation time for which movement is recorded.

Both tests are identical in all respects, except that one uses a neural network of 30

perceptrons, with a memory of 250 time-steps while the other uses 150

perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is

equivalent to approximately 3 seconds of simulation time, while 150 time-steps is

equivalent to about 1.8 seconds. For these runs, the desired direction is always

along the X axis, and the ground impact penalty is very small (0.05). Changes to

these rules can be implemented slowly through a modification to the software —

the desired direction will take random values that slowly drift away from the X

axis, while the ground-impact penalty will slowly increase. This is not done here

due to the length of time the software has to run before a new adaptation is made.

The results from the log files were post-processed using a second program,

which was written to parse the data from the logs and extract the following data

sets for each generation:

● The maximum score attained by any population member during the generation,

excluding any score carried over from the previous generations.

● The top 5 scores from the generation.

● The average value of the top five scores from the generation.

● The maximum score ever achieved, in the current or any previous generation.

42

● The total movement in the X and Y directions for the top 5 scorers in the

generation.

Figure 5.1 shows the top score results vs. generation from the 30-

perceptron test. There are three data sets on this plot: the top score attained during

the generation (orange), the average of the top five scores (purple), and the

running maximum score (black). These scores are a figure of merit which

represents the performance of the neural networks with respect to all of the

scoring rules that are discussed in Chapter 3. A plot of the total movement in the

X direction (orange) and the Y direction (purple) for the top scoring neural

network in each generation is given in Figure 5.2. Unlike the scores shown in

Figure 5.1, these movement figures provide concrete values that are relevant

outside the context of the genetic algorithm — they represent the actual distance

that the simulated robots were able to walk during the time allotted.

Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively,

but are taken from the 150-perceptron run. They show data taken from a smaller

number of generations, but the same amount of real-world run time. This is

because the software runs more slowly when a larger neural network is used.

43

Figure 5.1: Scores Per-Generation for the 30-Perceptron Run

Figure 5.2: X and Y Displacement for the 30-Perceptron Run

44

Figure 5.3: Scores Per-Generation From the 150-Perceptron Run

Figure 5.4: X and Y Displacement From 150-Perceptron Run

45

5.3 DISCUSSION OF RESULTS

Note that the first run (30-perceptrons) went for 405 generations, while the

second (150-perceptrons) run was only 240 generations. Both tests ran for

approximately 11 days in real-world time, each running on one core of the same

CPU, but the larger neural network slowed down the software considerably on the

second run. This is to be expected, as the neural networks from the first run

consume only 59MB of RAM, while those from the second run consume 179MB

—and all of these weights need to be processed 2,000 times per turn, and 160,000

times per generation.

Several other things are apparent from Figures 5.1-5.4. First, the data has

quite a bit of randomness in it—there is a large amount of inconsistency between

generations in both the scores and displacements. Secondly, while the scores are

generally rising as the generations progress, they do so in a very chaotic way, with

relatively flat periods and periods of rapid increase. There is even what appears to

be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show

the X component of motion increasing with the score, while the Y component

remains approximately centered at zero, but with steadily increasing random

variation.

The first observation can be explained by the fact that the robots the system

is being asked to control are randomly generated. Thus, a neural network that

performs well in one generation may be do poorly with the robot it is given in the

next generation. This is intentional, as the goal is to evolve a control system which

46

is effective in a wide variety of robots (thus increasing the chance that it will work

well with a physical robot in the real world). In addition, it is possible for an

otherwise strong-performing control system to flip its robot upside-down,

obtaining a very low (or negative) score in the process. This tends to be especially

likely with the very high scoring individuals in any generation, as they tend to be

the “risk takers”. This issue can be exacerbated by the randomness in the robot

parameters, as a behavior that is only slightly risky in one robot may be fatal in

another.

The chaotic nature of the increases in score over time can be explained by

the properties of the genetic algorithm. The software is continually recombining

the same characteristics into new population members, only occasionally

happening upon a new adaptation that results in significantly higher scores. It

takes time, however, for this adaptation to propagate through the population, and

be optimized to work in a consistent way. Thus, there can be a very large jump in

the running maximum, creating a “high score” that holds for quite some time. The

apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to

the “deaths” of several population members which, while high-scoring, were also

highly inconsistent. This is backed up by the fact that the randomness in the plot

drops off very quickly during the same few generations, and remains smaller than

before as the scores recover.

The movement in the X direction (which is always the “desired” direction

in these two runs, as explained above) behaves as one would expect; it appears to

47

increase along with the scores. The Y movement, however, remains approximately

centered at zero, but has a random noise in it that increases through the

generations. This can be explained by the fact that the control system is becoming

more effective at moving the robots in general, and because the population

members still receive points for moving along the Y axis. In later generations, this

movement is small compared to the motion in the X direction, as the control

system improves at directing the robot in the direction of maximum score. This

side movement could also be suppressed by slowly introducing a penalty for

movement in the Y direction, especially if an additional input was added to the

control system for current (absolute) position.

Finally, it is worth pointing out that the 30- and 150- perceptron tests were

only allowed to run for 860 and 485 generations, respectively, due to time

limitations. Previous runs that were much longer, including one that went into the

thousands of generations, showed a continued increase in performance, with the

longest run producing several scores between 8 and 9 on each generation. The

plots here are, however, sufficient to show that the ability of the AI to control a

robot is generally rising with time, and to show some of its characteristics.

48

6. CONCLUSIONS AND FURTHER RESEARCH

6.1 CONCLUSIONS

From the results given in section 5.2, as well as direct observation of the simulated

robots in the software, it is clear that this system is capable of generating effective

walking movement. In addition, the robot design used in this thesis is particularly

difficult to control, as its wide body does not permit the center of mass to remain

in a stable position. In quadruped animals, the body is long and narrow, so that

diagonal pairs of feet that are on the ground form a straight line that is always

beneath the center of mass. With a hexapod or octopod, the problem would be

even easier, as the feet on the ground at any given time form a triangle or a

trapezoid, respectively, that can always enclose the center of mass on the

horizontal plane. Thus, this method can be expected to produce better results than

those given here for these other body types.

6.2 CONTINUED WORK WITH THIS BUILD

The first step that should be taken in order to learn more about this system is to

perform more extensive testing than what was done for this thesis in order to

maximize the efficiency of the system with respect to CPU load and memory

usage. This will require a large number of test runs to be performed with many

different configurations, in order to optimize the following variables:

● Population size

● Number of perceptrons

49

● Memory length

● Probability of each type of mutation

● Scoring with respect to different criteria

● Selection rules

In order to perform a large number of tests in a reasonable amount of time, it

would be best to use a computer with a large number of processor cores, as this

software does not parallelize easily in its current form. Alternatively, the physics

engine could be replaced with one that runs on a stream processor, such as PhysX

from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the

neural network could be rewritten to run on a GPU.

6.3 EXTENSION OF CONTROL SYSTEM

It would also be good to extend the scope of the control systems that are produced

in a few different ways. First, multiple neural networks can be used, with each

trained to perform a different task. While individual networks have been observed

to produce multiple behaviors in this system, this would be a good way to separate

the desired behaviors. Also, it might be effective to have “nested” learning rules,

such that the neural network continues to learn on its own after it is produced by

the genetic algorithm. This could be done by adding some form of short-term

reinforcement learning, or by adding a classifier network to the inputs of the

control system that predicts the result of current behavior on the score and adjusts

the weights of the network, perhaps using the P-Delta learning rule[6] that

originally went with the parallel perceptron network that is used here. Another

50

option may be to add some outputs that do not control anything, but still act as

feedback loops. This would create a form of memory that permits state-space

orbits that last much longer than the history-buffer length, which the system would

use in whatever way happens to produce the highest scores.

6.4 POTENTIAL APPLICATIONS

In terms of applications, there are two things that would be very interesting to do.

One such idea is to create a CAD-style robot “editor” in which robots can be

designed in a quick and convenient way, instead of writing a 1500+ line

constructor, as was done with the spiderBody class used in this research. This

editor would allow one to create a robot using a library of predefined parts such as

the linear servos seen on the robot that this thesis deals with, and automatically

generate a bill of materials for its physical construction. After the robot is

designed, the software can then be used to create parts of its control system.

The second possibility is to modify the simulation and genetic algorithm

software to operate as a P2P application, in a similar way to the BitTorrent

network. A large number of users who want the same robot could download a task

file that specifies the robot that is to be controlled and points to an online

“tracker”. Having connected to the tracker, a user's client would join the “swarm”

of other users, and begin receiving population members to evaluate. Each user's

PC processes a small population, similar to the ones that were used in the two test

runs here, but downloads a few new neural networks from other users and

transmits a few on each generation. Depending on the number of users who want a

51

particular robot, this could permit effective population sizes in the tens of

thousands. Like the other possibilities mentioned above, this has not been

evaluated at this point, and it is unknown whether it would be an effective design.

It would, however, be very interesting to see what might come out of it.

52

1. INTRODUCTION

This thesis describes a method for automatically generating complex

control systems for walking robots. One of the most interesting research fields

today is the development of robots that are able to perform complex and

somewhat arbitrary actions with some degree of reliability. While robotics as a

field of engineering has existed for quite some time now, and robots have been

created which are capable of performing many tasks, it is still very difficult to

create a robot which can effectively navigate complex terrain, or inside buildings.

This is mostly due to the fact that the simple forms of mechanical movement, such

as wheels, are only effective over a narrow range of conditions. A wheeled robot,

for example, may be able to navigate a single floor of a building, or a landscaped

outdoor area, but would normally be incapable of dealing with anything that its

wheels cannot roll over, such as stairs, or rough terrain. For this reason, an

effective walking-robot technology would be very useful.

Designing an effective walking robot is a difficult problem for two distinct

reasons. First, it is actually quite challenging for engineers to design mechanical

systems that exhibit anything close to the combination of speed, strength, size and

weight that exist in biological organisms. This problem tends to either introduce

severe limits on what can be done, or alternatively, cause the cost to construct a

robot to be extremely high. Secondly, and somewhat relatedly, the control system

for an effective walking robot is by necessity very complicated. This is because of

1

the wide variety of conditions under which such a robot must be able to operate; a

simple pre-programmed sequence of movements is not sufficient to provide

reliable walking.

There are many different methods which have been used to provide

intelligent control of walking robots. One approach is the use of Central Pattern

Generators (CPGs), which have been used to control biped robots [1, 2]. Like the

biological systems that inspired this method, a robot using CPG motion control

has a very small neural network in which groups of individual perceptrons behave

like schmidt trigger oscillators. The currently-active perceptrons inihibit the others

until their responses to the input vector override the inhibition. At this point, when

the system begins to switch states, a positive-feedback condition is created which

strongly attracts the system into its next state. These neuronal oscillators can be

connected in a purely feed-forward layout, in which the neurons use only each

other's outputs as inputs, or they can use feedback, in which the inputs to the

neurons are sensor outputs from the controlled system[3]. The behavior of this

system is normally hard-coded, and tends to suffer from most of the same

drawbacks as a pre-programmed gait — it requires a human programmer to

consider each possible situation that it may encounter.

Genetic algorithms have also been used to develop control systems in

walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-

forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5]

2

combine a genetic algorithm with a CPG to produce walking behavior in a

hexapod robot.

In this thesis, a new method is developed which works in a similar way to

[5], in that a neuronal oscillator controller is trained with a genetic learning rule,

but with several key differences. First, the new method uses a relatively large

neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The

network used in this thesis has dozens to hundreds of perceptrons and, in some

cases, upwards of a half-million weights (see test runs in Chapter 5). These

perceptrons are not connected together directly as they are in the CPG, but do

have feedback from the aggregate (system) output. In addition, the system has

some internal memory which stores a certain number of past inputs and outputs.

Thus, the control system can not only “see” the current state of the robot, but also

remembers what has been happening with the physical robot and what it has been

doing. The length of this memory is a user-entered variable, which has been set at

150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the

scoring and selection algorithms used in this thesis are based only on walking

performance; the first training steps used in [5] to initially produce oscillatory

behavior is not present.

For purposes of training the neural network, software is created which

combines a physics simulation with a scoring algorithm. Candidate control

systems are scored on how far they can make a simulated robot walk over

randomly-generated terrain in a given amount of time, and this information is

3

passed back to the genetic algorithm. After each neural network has had a turn,

and received a score, the software ranks them and replaces the lower scorers with

new networks that are created by combining pairs of high-scorers and applying

random mutations. These steps are then repeated until the user decides that a

sufficiently effective one has been produced, based on observation of the 3D-

rendered simulation or the figures of merit introduced in Chapter 5, and terminates

the program.

When the program is first started, all of the neural network weights are

random and the simulated robots are only able to move a very short distance. As

time progresses, however, the robots begin to develop the ability to produce

continuous motion in one direction. In the test runs, the robots began to show

some walking ability within about two days, and were becoming quite effective at

walking after about a week.

While this method still requires some forethought on what types of

situation the robot will encounter, in order to create effective training simulations,

it does not need any hard-coding to be performed. All that is necessary is to create

a 3D “world” with any terrain that the robot might have to navigate, as the

software will randomly place robots in the world and score the control systems on

how well they perform. In addition, the neural networks produced by this software

are not limited to a single type of walking — multiple methods of movement have

been observed in individual networks — which simplifies their integration into a

complete robot.

4

This thesis is organized as follows: In Chapter 2, the neural network

topology is described, as is the method for generating its input vector. There is a

discussion on why it was chosen in section, and why it was expected to be

effective, and its software implementation is described in detail. In Chapter 3, we

discuss the genetic learning rule that is used with the neural network. The scoring

rules that are used in the physics simulation are defined, as are the rules used for

selection, crossover and mutation. Then, the software implementation of the

genetic algorithm is described. In Chapter 4, the physics simulation in which the

neural networks are trained is described, starting with the simulation “world”.

Then, we discuss the quadruped robot body that is used in the simulations, its

physics-engine implementation, and the geometrical parameters that describe

individual robots. Finally, we describe the simulation loop in which the physics

engine, the robot model, the neural network and the genetic algorithm come

together. In Chapter 5, the performance of the software is evaluated. Figures of

merit, collected from two test runs, are presented, and the results are discussed. In

Chapter 6, we discuss our conclusions from this work, and propose some ideas for

further research, as well as some potential applications.

5

2. NEURAL NETWORK

 2.1 OVERVIEW

The neural network used in this project consists of a single layer of parallel

perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but

with an outboard genetic learning rule rather than the one described in that work.

Each perceptron has a set of input weights that determines its response to a given

set of inputs, an activation function which, in this thesis, is a unit-step function,

and a set of output weights, which are multiplied by the output of the activation

function (1 or 0) and added to the system output vector. This neural network

operates in discrete time, evaluating sampled inputs and producing outputs at fixed

time intervals. A block diagram of the neural network, and its associated memory

stacks, is shown in Figure 2.1.

Figure 2.1: Neural network block diagram

6

2.2 INPUT VECTOR GENERATION

Inputs to the neural network come from three sources: body sensors,

command and control signals, and previous inputs and system outputs. Past inputs

and outputs come from a type of stack buffer where data travels down the stack

and is discarded when it passes the last level. These historical data are used for

two purposes: as inputs for the neural network, and as training data for a second

learning rule that is implemented in the software, but not currently being used.

The organization of this stack is shown in Figure 2.2.

Figure 2.2: Block Diagram of History Buffer Object

7

2.3 OUTPUT VECTOR GENERATION

On each time step, the input vector to the neural network is generated by

concatenating the body sensor and command inputs with the past inputs and

outputs from the history buffer objects. This vector, I_sys, is multiplied (dot

product) with each perceptron's input weight vector, W, to give the postsynaptic

potential (PSP). The output of the perceptron is the unit step function of the PSP,

multiplied piecewise by the perceptron's output weights to give its contribution,

Rn, to the system output vector, Rs. This may be expressed as follows:

Rn = u(I_sys • W) (2.1)

Rs = Σ(Rn) (2.2)

2.4 WHY THIS ALGORITHM

At this point, some information is given regarding why this system can

work. First, due to the fact that the number of perceptrons is much larger than the

number of outputs, this algorithm is a universal function approximator[6]. This

means that it can implement an arbitrary bounded function given the correct

weights, even when the network has only a single hidden layer. Because the

outputs of this neural network determine the rate of change in the actuator

positions on the robot, the result is a system of nonlinear partial differential

equations which, depending on the weight vectors and the physical properties of

the robot, are capable of producing an extremely wide variety of behaviors

8

(although not all behavior is technically possible, as there are physical limits on

speed, force, and acceleration). Due to the way the data propagate through the

history buffers, and thus constantly change position with respect to the input

weights, it is relatively difficult for the system to reach a stable state where the

robot does not move. Instead, this tends to encourage strange attractors, which

produce repetitive, but not necessarily periodic, motion.

2.5 SOFTWARE IMPLEMENTATION

This neural network is implemented in C++ as the mcNeuron object class

(in which the “mc” is short for “Motion Control”). It is organized in a linked list,

where each instance represents one perceptron, and holds a pointer to the next

perceptron in the chain. The advantage to this type of organization is that the

source code can be kept short, as a large portion of the compiled machine code is

automatically generated by the compiler itself. This also helps prevent errors by

making the source code more readable, and relying on the very mature code-

generation algorithms used in the compiler. The source code for this object class is

given in Appendix A, and its member functions are described below:

● void rnNet(float* inputs, historyBuffer* iHistory, historyBuffer* oHistory,

 float* outputs)

This function multiplies the input weights of the perceptron (dot product)

by the concatenation of inputs, iHistory, and oHistory, and if the result is

positive, add its output weights to outputs. If there are more perceptrons in the

chain, as indicated by a non-null “next” pointer, then this function is called in

9

the next node, with the same parameters. Thus, one call to the first perceptron

in the chain propagates to all of them.

● void updateNet(float scale, historyBuffer* iHistory,

 historyBuffer* oHistory)

This function implements a second learning rule, which is not used in this

project. It was replaced by the genetic algorithm very early in development.

When called, it multiplies scale by values from iHistory and oHistory, and

adds this to its input weights. Like rnNet, it propagates through all perceptrons

in the chain.

● void iW_preset(float * newWeights)

This Function sets the input weights to the values stored in newWeights. This

function is recursive, and if the perceptron has a non-null “next” pointer, will

call the same function in the next perceptron. In this case, the pointer is

advanced by the number of input weights, so that one large array can be used

to set all of the input weights in a chain.

● void iW_preset_justOne(float * newWeights)

This function is the same as iW_preset(), but is not recursive.

● void oW_preset_justOne(float * newWeights)

This is the same as iW_preset_justOne(), but acts on the output weights instead

of the input weights.

10

● mcNeuron *getNext()

This function returns a pointer to the next perceptron in the chain, or NULL if

a next node does not exist.

● mcNeuron *cutNth(int index)

This function cuts the chain at the Nth node, and returns a pointer to the

removed segment. It works by recursively propagating down the chain while

decrementing index, until index = 1. When this condition is true, the node sets

its “next” pointer to NULL, and returns the value that was in that pointer. The

returned pointer propagates back up the chain as the CPU falls down through

the call stack, until the first called node finally returns it to the calling function.

● void setNext(mcNeuron * newNext)

This function sets the “next” pointer in the called node to newNext.

● void appendChain(mcNeuron * newSegment)

This function appends the chain specified by newSegment to the end of the

called chain. It works by recursively propagating down the chain until it is

called on a node whose “next” pointer is null, and setting that pointer to

newSegment.

● float *getIWeights()

This function returns a pointer to the input weights for the called perceptron.

● float *getOWeights()

This function returns a pointer to the output weights for the called perceptron.

● void setRandomOWeights(float maxValue)

11

This function sets the output weights of the perceptron to random numbers,

varying from -maxValue to +maxValue. It is recursive, and operates on each

node in the chain until a null “next” pointer is reached.

● void setRandomIWeights(float maxValue)

This function is the same as setRandomOWeights(), but operates on the

input weights.

● void setCascadingOWeights(float weight, int oIndex)

This function sets the output weight specified by oIndex to weight, and sets all

others to zero. If the “next” pointer is not null, it calls the same function on the

next node, with the parameters set by the following two rules:

 If oIndex is less than the number of output weights, increment oIndex.

 If oIndex is equal to the number of output weights, then the next oIndex is

zero, and the next weight is -weight.

Note that this function is not called in the final build of the software.

● void shakeIptWeights(float maxValue)

This function adds a random number, which varies from -maxValue to

maxValue, to each of the input weights. It is recursive, and operates on all

perceptrons in the chain. After the random values are added, the weight vector

is normalized.

● void shakeOptWeights(float)

This function is the same as shakeIptWeights(), but operates on the output

weights.

12

● void mutateIptWeights(float maxValue)

This function selects a random, continuous segment of the input weights and

replaces them with random numbers, which vary from –maxValue to

maxValue. It is not recursive (it operates on only one perceptron), and is called

by the much more extensive mutation function in the genetic algorithm class.

● void mutateOptWeights(float)

This is the same as mutateIptWeights(), but operates on the output weights.

● void svNet(ofstream * saveFile)

This function saves the input and output weights of a perceptron to the fstream

object pointed to by saveFile. It is recursive, so the entire network will be

saved when it is called on the first element in the chain. Note that the fstream

object has an internal index that counts up as data are saved, so the function

can be called on multiple chains with one open file, and they will all be saved

in order.

● void ldNet(ifstream * loadFile)

This function loads the input and output weights stored in the fstream object

pointed to by loadFile into the input and output weights. It is also recursive,

and operates in the same way as svNet.

13

3. GENETIC ALGORITHM

3.1 INTRODUCTION

The neural network described in Chapter 2 is trained using an outboard

genetic search algorithm, which operates on the entire network, rather than

individual perceptrons. Each candidate neural network is given a turn to control a

randomly generated robot in a physics simulation, and scored based on its

effectiveness at making the robot walk. Like all genetic algorithms, this one

combines randomness, selection, crossover, and mutation to search the space of all

possible input and output weight vectors. Due to the extremely large search space,

and the fact that there are large clusters of viable solutions (different types of

walking) with fitness functions that tend to be somewhat continuous, this problem

should be particularly well-matched to the properties of a genetic algorithm [7].

Selection is based on a floating-point score that is generated by evaluating

the network's efficacy in controlling a simulated robot. In order to function, a

genetic algorithm must find a region in the search space where there exists a score

gradient before it can begin to function as a genetic algorithm; before this happens

it implements only a random search. As a result, the search must happen upon a

region with a fitness gradient, by chance. If these regions fill too small a portion of

the total search space, it can take a very long time for the search to locate one of

them. For this reason, points must initially be awarded for results that are not

directly useful, but which are likely to be connected to a useful region by a

“bridge” of scores that are high for their particular region[7].

14

3.2 SCORING

At the start of a turn, the software drops a robot into the “world” at a

random position and begins stepping its neural network along with the physics

engine. In order to reduce noise in the score due to a random bounce when the

robot falls a short distance to the ground, and reduce the tendency for the system

to waste time early on by simply making the robots lean forward, there is a delay

of approximately two seconds in simulation time before the software records the

robot's “start” position. At the end of the turn, the start position is subtracted from

the ending position, and points are awarded according to the following five rules:

1. Score is awarded for any movement that occurs, regardless of direction. Early

in the process, this causes the system to select the neural networks that cause

the system to exhibit those attractors that produce constant motion. This causes

oscillatory behavior to be learned early in the evolutionary process, and is what

replaces the initial learning step used in [5], where fitness functions were

assigned to per-leg oscillations.

2. The population member receives points a second time for movement in the

desired direction, as determined by a dot product, but only if that number is

positive — a negative score here is counted as zero. As a result, it is possible

for an individual to receive up to two points per meter for moving in the

correct direction.

3. A two-point penalty is assessed if the robot is upside-down at the end of the

turn, which can occur quite easily due to the physical characteristics of this

15

particular robot design. The purpose of this penalty is to avoid behavior that

emerged in some of the earliest tests, where the robot would roll forward, and

then hop along upside-down by kicking its legs.

4. A user-configurable penalty is assigned each time the robot chassis comes into

contact with the ground. There is a delay of approximately 1 second in

simulation time after a ground impact is registered, before the counter can be

incremented again. This prevents large penalties from accruing quickly if the

chassis remains in contact with the ground for a period of time. From the test

runs that have been performed, it was found that this penalty needs to be very

small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05

was used. It may be effective to increase this penalty slowly after the system

has learned to walk, but this has not yet been tested.

5. The population member retains half of the score it received in the previous

generation, so that a single weak performance is not likely to “kill” a high-

scoring neural network. While this last rule can sometimes prevent a more-fit

individual from displacing a less-fit one, the effect quickly fades away when

an individual performs poorly for two or more generations. It also is not

typically enough to prevent displacement in the case of a very low, or negative,

score. For this reason, several replacements still occur in most generations.

16

3.3 SELECTION

At the end of a generation, all members of the population are sorted by a

ranking algorithm, so that those with the highest score appear in the earliest

positions. In order to select each parent for the next generation, a random floating-

point number in the range [0, 1] is generated, and squared, so that the new

probability distribution will tend toward zero. This new number still falls within

the same range, but has an average value of ¼ instead of ½ — thus selecting

higher-scoring individuals more often than low-scoring ones. This number is then

multiplied by the size of the population, cast to an integer, and used to index a

neural network that will be the “parent” of a new population member. Note that

the random number could also be raised to any other positive power, or another

function could be used to provide a different probability distribution, although

these options have not been investigated. A second method which has been tested

is to instead multiply the square by the maximum score in the population, and then

take the weakest member above that score, but it appears to be too aggressive for

the small populations that are feasible on a current PC, and was found to cause

problems with early convergence. This cause of this problem is that the highest

score in a generation tends to be much higher than the average score, or even the

average of the top 5 scores, as shown in Chapter 5. The top scoring population

member thus tends to be chosen as a parent very often by this rule, which causes

the diversity in the population to disappear rapidly, leading to the early

convergence problems that were observed.

17

3.4 CROSSOVER AND MUTATION

After the two parent networks are selected, a new neural network is created

by combining them. Each perceptron in the child is created by randomly selecting

the perceptron at the same position from one of the parents, and occasionally

introducing a random mutation. These mutations can take any of the forms

outlined below:

● A random, continuous, segment of the perceptron's input weights is chosen,

and replaced with a string of random numbers. This permits behavior to drift

over time at the individual perceptron level.

● A perceptron's output weights are rotated, so that all of its effects are

“mirrored” to the opposite side of the body (either side-side or front-back can

occur). At the same time, the perceptron's response is time-delayed by a

random amount by doing a circular shift on its input weights by an integer

multiple of the number of inputs. The purpose of this mutation is to encourage

symmetry in the robot's motion, and allow effective behavior that evolves in

one leg to eventually propagate to the other legs.

● At the population-member level, the software randomly selects a continuous

group of perceptrons, and moves them to a new position in the list. This has no

direct effect, but makes it possible for a new child to be created with multiple

perceptrons that originally occurred at the same position. For example, the

child could contain four nodes that were all at position 25 in its grandparents.

● After the new perceptron is generated, all of its weights (both input and

18

output) are randomly adjusted by a small amount, and the input weights vector

is normalized.

3.5 SOFTWARE IMPLEMENTATION

The genetic algorithm is implemented by the mcEVO object class, which

manages the population, and two helper functions, rankNodes() and breedNets(),

which perform the genetic operations.

The mcEVO class encapsulates the neural network and its associated

history buffers in such a way that the entire population can be accessed through

one pointer. It also stores the geometry for the randomly generated robots. The

source code for this class is given in Appendix B, and its member functions are

described below:

● mcEVO(int popSize, mcEVO * previous, dReal * geomMin, dReal *

geomMax)

This is a chain constructor which builds a population of popSize. It does not

generate the neural networks (this is done in a separate call), but it does

generate a random set of robot-body proportions for each element. The input

variable geomMin should point to an array containing the lower limits for each

body dimension, while geomMax should contain the upper limits. These

parameters are described in detail in the simulation section of this thesis.

Previous is used internally to this chain constructor, and should be set to

NULL when it is called from outside.

19

● ~mcEVO()

This destructor operates on the entire chain, deleting all nodes and any

perceptron chains that were attached to them.

• mcEVO * getMax(mcEVO * curBest, float curMax)

This function returns a pointer to the node in the chain with the highest

score value. The input variables curBest and curMax are used internally as

the function recurses through the chain; it should thus be called with

curBest = NULL and curMax set to a large negative number (-10 is

sufficient in this case).

• void setPrevious(mcEVO * newPrevious)

This function sets the “previous” pointer for the called node to

newPrevious.

• void setNext(mcEVO *)

This function sets the “next” pointer for the called node to newNext.

• void detach()

This function detaches the called node from the chain, calls

previous->setNext(next) and next->setPrevious(previous), and sets its own

previous and next pointers to NULL. Thus, the node is removed from the

chain, and the chain is spliced back together.

• mcEVO *getNext()

This function returns the value in the “next” pointer of the called node.

20

• mcEVO *getPrevious()

This function returns the value in the “previous” pointer of the called node.

• mcEVO *getFirst()

This recursive function can be called on any node in the chain. It calls

previous->getfirst() until previous = NULL, then returns a pointer to that

node.

• mcEVO *getLast()

This function works in the same way as getFirst(), but recurses down the

chain instead of up, and returns a pointer to the last node.

• float getScore()

This function returns the score stored by the called node.

• mcEVO *getLastAbove(float minScore)

This function recurses up the chain until it reaches a node whose score is

higher than minScore. It then returns a pointer to that node. Note that this

function is called on the last node in the chain (rather than the first), and is

intended to be used after the ranking operation is complete. See the section

on the rankNodes() helper function below.

• mcEVO *getNth(int N)

This recursive function extracts a pointer to the Nth node in the chain. It

works by calling itself on the next node in the chain, while decrementing N,

until N = 0. It then returns a pointer to the node where this occurred.

21

• void insBefore(mcEVO * newNode)

This function inserts the node pointed to by newNode into the position

preceding the called node. It sets its own “previous” pointer to newNode, and

calls setPrevious() and setNext() on the new node, and setNext() on the

current previous node, so that the chain is still continuous in both directions.

• void dumpScores()

This recursive debug function causes all nodes in the chain to send their

scores to stdout.

• void dumpWeights()

This debug function causes all nodes in the chain to send their weights to

stdout. Note that there can be many millions of weights, which can cause

problems depending on the terminal program from which the software is run.

• void setScore(float newScore)

This function sets the score stored by the called node to newScore.

• dReal *getParams()

This function returns a pointer to the robot-body geometry parameters

stored by the node.

• void appendChain(mcEVO * newSegment)

This function causes the chain starting at newSegment to be appended to the

end of the chain holding the called node. It recurses down the chain

until next = NULL, then sets next = newSegment and calls

22

newSegment->setNext(this).

• int killLast(int numDeleted)

This function deletes the last numDeleted nodes in the chain. It works by

recursively calling itself on the next node until next = NULL, then returning

numDeleted. As the CPU falls back up through the call stack, each recursion

subtracts one from the returned number and returns that, thus counting down

toward zero. When the return value is zero, the node calls delete next, and sets

next = NULL. All nodes below this point are then deleted by the chain

destructor, as described above.

• void svBrains(ofstream * saveFile)

This recursive function saves all of the neural networks being managed by

a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron

chain pointed to by each node in the chain, and then calling itself on the next

mcEVO node. Note that the fstream object class counts and records the current

position within the file, which greatly simplifies this implementation.

• void ldBrains(ifstream * loadFile)

This function works in a similar way to svBrains(), but loads the neural

network weights from a file into all of the mcNeuron objects being managed

by the called mcEVO chain.

• void mkBrains(int numPerceptrons, int RHL, int THL)

This recursive function causes all nodes in the mcEVO chain to generate

23

neural networks and history buffer lists using the chain constructor for the

mcNeuron class. The neural networks thus created have numPerceptrons

perceptrons, and both history buffers (one for input variables, and one for

output variables) have RHL + THL nodes. Note that this function, in its

current implementation, assumes that each neural network has 34 inputs and 16

outputs. This will change when the class is adapted away from this project for

general-purpose use.

● void mkBrains_random(int numPerceptrons, int RHL, int THL, float * array)

This function works in the same way as mkBrains, but fills the input and

output weight arrays with random numbers rather than leaving the memory

uninitialized. Array points to an array of type float that is large enough to hold

all input and output weights, which was used internally in a different version of

this function. It has not been removed, because that version has not yet been

fully evaluated at the time of this writing. For the version of the function used

in this thesis, array can be set to NULL.

● mcNeuron *getBrain()

This function returns a pointer to the first node in the mcNeuron chain

being managed by the called mcEVO node.

● historyBuffer *getIHist()

This function returns a pointer to the first node in the input history buffer

chain being managed by the called mcEVO node.

24

• historyBuffer *getOHist()

This function returns a pointer to the first node in the output history buffer

chain being managed by the called mcEVO node.

• void setIHist(historyBuffer *)

This function sets the input history buffer chain to be used by the called

node.

• void setOHist(historyBuffer *)

This function sets the output history buffer chain to be used by the called

node.

The core features of the genetic algorithm, including selection, crossover,

and mutation, are implemented in two helper functions that are written to operate

on a mcEVO chain. These functions are:

● rankNodes(mcEVO * target)

This function performs a sorting operation on the mcEVO chain beginning

at target. The nodes are ranked in order of descending score. Note that, after

the ranking is complete, target is no longer the first node in the chain.

However, the member function getFirst() can be called on target, and the first

node will be returned.

● breedNets(mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin,

dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut,

float iRnd, float oRnd)

25

This function implements almost all of the actual genetic algorithm, and is

called after rankNodes(). Its arguments are as follows:

 thePopulation is a pointer to the mcEVO chain on which the function will

operate.

 popSize is the size of the population.

 nReplaced is the number of population members that be replaced with

newly created candidates.

 pMin is a pointer to the array containing the lower limits for the robot body

parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).

 pMax is a pointer to an array containing the upper limits for the robot body

parameters.

 nNeurons is the number of perceptrons in each population member.

 RHL is the length of the history stack used by the neural networks as

inputs.

 THL is the length of the history buffer used for an additional learning rule

that is not used in this thesis, but is implemented in the mcNeuron class.

Note that the total length of the stacks is equal to RHL + THL.

 mutProb is the probability that a mutation will occur in any given

perceptron.

 maxMut is the maximum magnitude of the random numbers that a segment

of a perceptron's input weights will be replaced with, when this type of

mutation occurs (see section 3.4). The newly generated weights will thus

26

vary from -maxMut to maxMut. Note that this value should be chosen so

that its average magnitude is approximately equal to the average magnitude

in the input weight vector, so that the newly created weights do not swamp

the other weights. Because the input weights vector is normalized, the

value of maxMut used in this thesis is set to 2 * sqrt(1 /

number_of_input_weights).

 iRnd is the maximum magnitude of the random numbers that are added to

each input weight, after the perceptron is created and all mutations are

applied, and before the input weight vector is normalized.

 oRnd is the maximum magnitude of the random numbers that are added to

the output weights. Note that the output weights are never normalized.

27

4. SIMULATION ENVIRONMENT

4.1 OVERVIEW

The software in which the robot controllers are trained is based on a free

and open-source rigid body physics engine called OpenDE or ODE [8], which is

short for “Open Dynamics Engine”. This engine was orignally created by Russell

Smith, and is currently being maintained and extended by a community of

volunteers. It is distributed under two separate licenses — the GNU LGPL and a

BSD-style license — such that a user can choose either of them. Thus, it may be

used in free or commercial software, with very few restrictions. The most

significant restriction in the BSD-style license is that the original work must be

cited. This physics engine provides general-purpose simulation of articulated

bodies, in addition to collision detection, and is primarily intended for use in video

games. It has become popular enough in robot simulations, however, that there

have been robot-simulation software packages[9] created and even a book[10]

written about modeling robots in ODE.

4.2 SIMULATION WORLD

The simulation “world” consists of two parts — a randomly generated

height map (the “ground”), and a randomly proportioned robot model. The height

map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space.

At each grid point, the height is set to a random number so that all heights fall

within a 0.13m range.

28

The robot body is generated and inserted into the world by the spiderBody

object class (see section 4.4). A majority of the code in this class, about 1500

lines, comprises the constructor function, which performs the following steps:

● Create the core body of the robot, which consists of three ODE primitives, set

up its mass and inertia matrix, add its collision detection geometry, and insert it

into the world.

● Repeat the previous step for the upper legs and lower legs.

● Calculate the starting positions / rotations for the legs, and move them to those

locations.

● Attach the legs with the appropriate ODE joints (ball joints at the hips and

hinge joints at the knees).

● Calculate the base / tip positions of the actuators, and call genActuator() on

each one.

4.3 QUADRUPED ROBOT BODY

The robot body used in these simulations is shown in Figure 4.1. This robot

has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear

servos controlling a single leg are shown in Figure 4.2; their effects are as follows:

1. Works with Actuator 2 to control the direction of the axis of the upper leg.

2. Works with Actuator 1 to control the direction of the axis of the upper leg.

3. Controls the rotation of the upper leg about its axis. The effect of this actuator

is interdependent with Actuators 1 and 2.

4. Controls the bending angle of the knee joint.

29

Figure 4.1: Quadruped Robot

Figure 4.2: Diagram of a Single Leg Showing Actuator Indices

30

The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5.

These dimensions correspond to those shown in Table 4.1, and the upper and

lower limits given in Table 4.2.

Figure 4.3: Robot Body Core (isometric view), Showing Dimensions

Figure 4.4: Diagram of Upper and Lower Chassis Platforms

31

Figure 4.5: Diagram of a Leg, Showing Dimensions

Figure 4.6: 3D Rendering of the Robot Walking in the Simulation

Environment

32

Figure 4.6 shows a 3D-rendered example of the robot. This image was

made from a screenshot of the robot walking in the simulation software. The gray

actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators

correspond to Actuator 3, while Actuator 4 is not shown in this picture because it

is handled outside ODE, in order to increase the speed of the software, and not

drawn when the scene is rendered.

4.4 ROBOT BODY OBJECT CLASS

The ODE objects which model the robot body are created and manipulated

through the spiderBody object class. The source code for this class is given in

Appendix C. Aside from the constructor and destructor, the robot body class

implements the following member functions:

● dReal getPos(int index)

Returns the current length, in meters, of the linear actuator specified by index,

with respect to its starting length. Negative numbers indicate that the actuator

has retracted, while positive numbers indicate that it has extended.

● dReal getVel(int index)

Returns the linear speed, in meters per second, of the actuator specified by

index, where negative numbers indicate that the actuator is retracting and

positive numbers indicate that it is extending.

● void addForce(int index, dReal force)

Adds a 3rd law pair of forces of magnitude force to the two ends of the

actuator specified by index, which are directed along its axis. This is the

33

source of all of the driven motion in the physics simulation, except for the four

knee joints.

● void addKneeTorque(int index, dReal torque)

Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower

leg specified by index. This is the source of all driven motion at the knee

joints.

● dReal getKneeAngle(int index)

Returns the current angle, in radians, of the knee specified by index. This

angle is measured from the direction of the upper leg (if the knee is straight,

the angle is zero), and increases as the lower leg bends downward.

● dReal getKneeOmega(int index)

Returns the current angular speed, in radians per second, of the knee

specified by index.

● dBodyID getCore()

Returns the ODE body ID of the robot chassis. This is used in the collision

detection callback to count collisions between the chassis and ground

(which incurs a small score penalty).

4.5 HELPER FUNCTIONS

In addition, there are three helper functions that are not members of the

robot body class, but are used with it. All three of these functions relate to the

actuator that drives each knee, but is external to the ODE world in order to

34

increase processing speed. The source code for these helper functions is given in

Appendix C, and they are described below:

● dReal calcKneeActOffset(dReal angle, dReal KBR, dReal KLL)

Calculates the position of the knee actuator tip, in meters, with respect to the

knee joint. This position ranges from zero to the length of the upper leg. Angle

specifies the angle of the knee joint, in radians, as returned by

spiderBody::getKneeAngle(int), KBR is the distance between the knee

joint and the link attachment point on the lower leg, and KLL is the length

of the linkage itself.

● dReal calcKneeTorque(dReal Angle, dReal slidePos, dReal KBR,

dReal F)

Returns the torque applied to the knee joint by a force F in the knee actuator.

The input variable, slidePos, specifies the position of the knee actuator, as

defined above, while F is the linear force in the actuator. Angle and KBR are

the same variables described above.

● dReal calcKneeActVel(dReal Angle, dReal slidePos, dReal KBR,

dReal w)

Returns the linear speed of the knee actuator, in meters per second, given the

angular speed of the knee joint, in radians per second. The input variable w is

the angular speed; other inputs are the same as described above.

35

4.6 BODY GEOMETRY PARAMETERS

The body parameters, which are set at random by the software and passed

to the robot body constructor in a parameter array are listed in Table 4.1. These

parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index

column specifies the position in the array, while the Macro column gives the

three- or four-letter macro by which the variables are referenced in the source

code (see section 4.4 and Appendix C). Note that all linear dimensions are in

meters, while all mass parameters are in kilograms.

Table 4.1: Robot Body Parameters Array

Index Variable Macro

0 Upper platform (chassis) radius UCR
1 V actuator upper mount offset (from centers of UP) VAO
2 Distance between upper and lower platforms RISE
3 Lower platform radius LCR
4 Upper leg length ULL
5 Lower Leg Length LLL
6 Distance hip -> V ball on upper leg IBR
7 Hip rotation linkage length RBR
8 Knee link length (Obsolete; now set automatically) KLL
9 Distance knee -> knee link attachment KBR
10 Upper platform mass UPM
11 Lower platform mass LPM
12 Square tubing density (mass / unit length) LINDENS
13 Platform and Leg thickness THICK
14 Starting Position X POSX
15 Starting Position Y POSY
16 Starting Position Z POSZ
17 Upper leg zero angle ULZA
18 Leg rotation zero angle LRZA
19 Lower leg zero angle LLZA
20 Foot ball radius FBR
21 Foot ball mass FBM
22 V Actuator base mass VABM
23 V Actuator tip mass VATM
24 Rotational Actuator base mass RABM
25 Rotational Actuator tip mass RATM
26 Upper leg mass ULM

36

4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within

a set of upper and lower limits defined by two limit arrays. The purpose of this

variation is to train the neural networks to control a range of robots, rather than

just a single example, to increase their resistance to the effects of small changes

when going from the simulated robots to a physical one. The values used in the

lower and upper limit arrays are given in Table 4.2.

Table 4.2: Upper and Lower Robot Parameter Limits

Index Macro Variable Description Lower Limit Upper Limit

0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9 KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52

37

4.8 SIMULATION LOOP

On each step through the simulation loop, the inputs to the control system

are updated with the force and position values for all of the actuators. The position

values for the 12 upper leg actuators are obtained from ODE, using the getPos()

member function of the robot body class, while the motion speeds for these

actuators are obtained using getVel(). The knee actuator positions and speeds are

calculated from the knee angles and angular velocities, which are obtained from

ODE using the getKneeAngle() and getKneeOmega().

For all actuators, including the ones for the knees which are handled

externally to ODE, the position is zero as seen by its control-system input at

whatever position the actuators are created in. These zero positions are also used

to define the actuator position variables which are modified by the outputs of the

control system. The difference between these “set” position variables, and those

returned by ODE, or calculated from angular values, in the case of the knees, are

used to calculate the force in each actuator using a simple damped-spring

equation:

F = -ks * (actual position – set position) – kd * (actuator speed)

where ks is a spring constant, and kd is a damping coefficient.

The spring constant for knee actuators is 1500N/m; for other actuators it is

1100N/m, and the damping coefficient is 30N*s/m. These values are based on

measurements taken from a prototype linear actuator.

38

The calculated forces for all actuators except those in the knees are sent

back to ODE through the robot body class using the addForce(index, force)

member function, as well as to the control system as force-sensor inputs. The

forces for the knees are converted to torque values, and sent to ODE using the

addKneeTorque(index, torque) member function.

The actuator set positions are produced by the control system outputs

through a double integral. The control system is able to set acceleration values for

the actuators, up to a certain maximum acceleration, and these values change the

speed of the actuators (the rate of change of the set value), up to a certain

maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum

speed is 0.35m/s, both of which are based on measurements taken from a

prototype actuator.

In addition to position and force measurements, the control system also has

two other inputs that describe the desired direction of travel with respect to the

robot. These two values are dot products of a unit vector pointing in the desired

direction with the robot's local X and Y vectors. These are treated exactly the

same as the sensor inputs, and propagate through the history stack in the same

way.

39

5. PERFORMANCE EVALUATION

5.1 OVERVIEW AND QUALITATIVE ANALYSIS

For a system such as this, the most definitive performance criterion is

whether the robots begin walking in an effective way within a reasonable amount

of time, while operating on a computer which is economically feasible to the user.

During and after the development of this software, many test runs were performed,

using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In

eac test, the AI always either learned to walk, or found a way to work around the

rules and “cheat”, within a few days.

In the earliest runs, there was no penalty for being upside-down, which

resulted in the robots' bouncing and rolling forward as far as they could upon

dropping into the world, then kicking their legs and hopping forward while

upside-down. Some of them also managed to tilt 90 degrees to the side and roll a

good distance, effectively doing cartwheels, before falling down. When the

penalty was added and the software re-run, a population of robots was produced

fairly quickly that would hop forward, like frogs. At this point, a bug in the

physics simulation code was found and fixed, and the first population of actual

walkers was produced on the following run. For this test, the software was

allowed to run for a period of approximately three weeks in real-time, in which

time the it became very good at making the robots walk—at the end of this run,

the robots were moving about 16 body lengths in 14 seconds of simulation time,

which is quite fast given the physical characteristics of the robot and the limits that

40

were in place on how fast the actuators were allowed to move and accelerate (see

Chapter 4).

5.2 QUANTITATIVE ANALYSIS

In order to obtain a quantitative analysis of the performance of this system,

a pair of test runs was done, with different parameters for the neural network. A

special version of the software was created for these runs, which has the added

feature of creating the log files that are used in the analyses below. These log files

are formatted as plain text, with one line for each population member evaluated.

The entries on each line are as follows:

● The index of the current population member. This ranges from 0 – 39, as a

population size of 40 was used for all of the runs that used a log file.

● The score that the population member retained from the last generation,

according to scoring rule #5 (see section 3.2).

● The number of times the chassis came into contact with the ground, as

described in rule #4.

● The score given for any movement at all, as described in rule #1.

● The movement of the robot in the X direction.

● The movment of the robot in the Y direction.

● The final score passed back to the mcEVO node.

Results from two of these logged runs are included in this section. In these

runs, each neural network is given a turn of 2000 time steps in which to control its

robot. The starting positions are recorded after a delay of 250 time steps, which

41

gives an effective turn length of 1750 time steps. Each time step for the neural

network represents 0.012 seconds of simulation time, so there is a period of

approximately 21 seconds in simulation time for which movement is recorded.

Both tests are identical in all respects, except that one uses a neural network of 30

perceptrons, with a memory of 250 time-steps while the other uses 150

perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is

equivalent to approximately 3 seconds of simulation time, while 150 time-steps is

equivalent to about 1.8 seconds. For these runs, the desired direction is always

along the X axis, and the ground impact penalty is very small (0.05). Changes to

these rules can be implemented slowly through a modification to the software —

the desired direction will take random values that slowly drift away from the X

axis, while the ground-impact penalty will slowly increase. This is not done here

due to the length of time the software has to run before a new adaptation is made.

The results from the log files were post-processed using a second program,

which was written to parse the data from the logs and extract the following data

sets for each generation:

● The maximum score attained by any population member during the generation,

excluding any score carried over from the previous generations.

● The top 5 scores from the generation.

● The average value of the top five scores from the generation.

● The maximum score ever achieved, in the current or any previous generation.

42

● The total movement in the X and Y directions for the top 5 scorers in the

generation.

Figure 5.1 shows the top score results vs. generation from the 30-

perceptron test. There are three data sets on this plot: the top score attained during

the generation (orange), the average of the top five scores (purple), and the

running maximum score (black). These scores are a figure of merit which

represents the performance of the neural networks with respect to all of the

scoring rules that are discussed in Chapter 3. A plot of the total movement in the

X direction (orange) and the Y direction (purple) for the top scoring neural

network in each generation is given in Figure 5.2. Unlike the scores shown in

Figure 5.1, these movement figures provide concrete values that are relevant

outside the context of the genetic algorithm — they represent the actual distance

that the simulated robots were able to walk during the time allotted.

Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively,

but are taken from the 150-perceptron run. They show data taken from a smaller

number of generations, but the same amount of real-world run time. This is

because the software runs more slowly when a larger neural network is used.

43

Figure 5.1: Scores Per-Generation for the 30-Perceptron Run

Figure 5.2: X and Y Displacement for the 30-Perceptron Run

44

Figure 5.3: Scores Per-Generation From the 150-Perceptron Run

Figure 5.4: X and Y Displacement From 150-Perceptron Run

45

5.3 DISCUSSION OF RESULTS

Note that the first run (30-perceptrons) went for 405 generations, while the

second (150-perceptrons) run was only 240 generations. Both tests ran for

approximately 11 days in real-world time, each running on one core of the same

CPU, but the larger neural network slowed down the software considerably on the

second run. This is to be expected, as the neural networks from the first run

consume only 59MB of RAM, while those from the second run consume 179MB

—and all of these weights need to be processed 2,000 times per turn, and 160,000

times per generation.

Several other things are apparent from Figures 5.1-5.4. First, the data has

quite a bit of randomness in it—there is a large amount of inconsistency between

generations in both the scores and displacements. Secondly, while the scores are

generally rising as the generations progress, they do so in a very chaotic way, with

relatively flat periods and periods of rapid increase. There is even what appears to

be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show

the X component of motion increasing with the score, while the Y component

remains approximately centered at zero, but with steadily increasing random

variation.

The first observation can be explained by the fact that the robots the system

is being asked to control are randomly generated. Thus, a neural network that

performs well in one generation may be do poorly with the robot it is given in the

next generation. This is intentional, as the goal is to evolve a control system which

46

is effective in a wide variety of robots (thus increasing the chance that it will work

well with a physical robot in the real world). In addition, it is possible for an

otherwise strong-performing control system to flip its robot upside-down,

obtaining a very low (or negative) score in the process. This tends to be especially

likely with the very high scoring individuals in any generation, as they tend to be

the “risk takers”. This issue can be exacerbated by the randomness in the robot

parameters, as a behavior that is only slightly risky in one robot may be fatal in

another.

The chaotic nature of the increases in score over time can be explained by

the properties of the genetic algorithm. The software is continually recombining

the same characteristics into new population members, only occasionally

happening upon a new adaptation that results in significantly higher scores. It

takes time, however, for this adaptation to propagate through the population, and

be optimized to work in a consistent way. Thus, there can be a very large jump in

the running maximum, creating a “high score” that holds for quite some time. The

apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to

the “deaths” of several population members which, while high-scoring, were also

highly inconsistent. This is backed up by the fact that the randomness in the plot

drops off very quickly during the same few generations, and remains smaller than

before as the scores recover.

The movement in the X direction (which is always the “desired” direction

in these two runs, as explained above) behaves as one would expect; it appears to

47

increase along with the scores. The Y movement, however, remains approximately

centered at zero, but has a random noise in it that increases through the

generations. This can be explained by the fact that the control system is becoming

more effective at moving the robots in general, and because the population

members still receive points for moving along the Y axis. In later generations, this

movement is small compared to the motion in the X direction, as the control

system improves at directing the robot in the direction of maximum score. This

side movement could also be suppressed by slowly introducing a penalty for

movement in the Y direction, especially if an additional input was added to the

control system for current (absolute) position.

Finally, it is worth pointing out that the 30- and 150- perceptron tests were

only allowed to run for 860 and 485 generations, respectively, due to time

limitations. Previous runs that were much longer, including one that went into the

thousands of generations, showed a continued increase in performance, with the

longest run producing several scores between 8 and 9 on each generation. The

plots here are, however, sufficient to show that the ability of the AI to control a

robot is generally rising with time, and to show some of its characteristics.

48

6. CONCLUSIONS AND FURTHER RESEARCH

6.1 CONCLUSIONS

From the results given in section 5.2, as well as direct observation of the simulated

robots in the software, it is clear that this system is capable of generating effective

walking movement. In addition, the robot design used in this thesis is particularly

difficult to control, as its wide body does not permit the center of mass to remain

in a stable position. In quadruped animals, the body is long and narrow, so that

diagonal pairs of feet that are on the ground form a straight line that is always

beneath the center of mass. With a hexapod or octopod, the problem would be

even easier, as the feet on the ground at any given time form a triangle or a

trapezoid, respectively, that can always enclose the center of mass on the

horizontal plane. Thus, this method can be expected to produce better results than

those given here for these other body types.

6.2 CONTINUED WORK WITH THIS BUILD

The first step that should be taken in order to learn more about this system is to

perform more extensive testing than what was done for this thesis in order to

maximize the efficiency of the system with respect to CPU load and memory

usage. This will require a large number of test runs to be performed with many

different configurations, in order to optimize the following variables:

● Population size

● Number of perceptrons

49

● Memory length

● Probability of each type of mutation

● Scoring with respect to different criteria

● Selection rules

In order to perform a large number of tests in a reasonable amount of time, it

would be best to use a computer with a large number of processor cores, as this

software does not parallelize easily in its current form. Alternatively, the physics

engine could be replaced with one that runs on a stream processor, such as PhysX

from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the

neural network could be rewritten to run on a GPU.

6.3 EXTENSION OF CONTROL SYSTEM

It would also be good to extend the scope of the control systems that are produced

in a few different ways. First, multiple neural networks can be used, with each

trained to perform a different task. While individual networks have been observed

to produce multiple behaviors in this system, this would be a good way to separate

the desired behaviors. Also, it might be effective to have “nested” learning rules,

such that the neural network continues to learn on its own after it is produced by

the genetic algorithm. This could be done by adding some form of short-term

reinforcement learning, or by adding a classifier network to the inputs of the

control system that predicts the result of current behavior on the score and adjusts

the weights of the network, perhaps using the P-Delta learning rule[6] that

originally went with the parallel perceptron network that is used here. Another

50

option may be to add some outputs that do not control anything, but still act as

feedback loops. This would create a form of memory that permits state-space

orbits that last much longer than the history-buffer length, which the system would

use in whatever way happens to produce the highest scores.

6.4 POTENTIAL APPLICATIONS

In terms of applications, there are two things that would be very interesting to do.

One such idea is to create a CAD-style robot “editor” in which robots can be

designed in a quick and convenient way, instead of writing a 1500+ line

constructor, as was done with the spiderBody class used in this research. This

editor would allow one to create a robot using a library of predefined parts such as

the linear servos seen on the robot that this thesis deals with, and automatically

generate a bill of materials for its physical construction. After the robot is

designed, the software can then be used to create parts of its control system.

The second possibility is to modify the simulation and genetic algorithm

software to operate as a P2P application, in a similar way to the BitTorrent

network. A large number of users who want the same robot could download a task

file that specifies the robot that is to be controlled and points to an online

“tracker”. Having connected to the tracker, a user's client would join the “swarm”

of other users, and begin receiving population members to evaluate. Each user's

PC processes a small population, similar to the ones that were used in the two test

runs here, but downloads a few new neural networks from other users and

transmits a few on each generation. Depending on the number of users who want a

51

particular robot, this could permit effective population sizes in the tens of

thousands. Like the other possibilities mentioned above, this has not been

evaluated at this point, and it is unknown whether it would be an effective design.

It would, however, be very interesting to see what might come out of it.

52

1. INTRODUCTION

This thesis describes a method for automatically generating complex

control systems for walking robots. One of the most interesting research fields

today is the development of robots that are able to perform complex and

somewhat arbitrary actions with some degree of reliability. While robotics as a

field of engineering has existed for quite some time now, and robots have been

created which are capable of performing many tasks, it is still very difficult to

create a robot which can effectively navigate complex terrain, or inside buildings.

This is mostly due to the fact that the simple forms of mechanical movement, such

as wheels, are only effective over a narrow range of conditions. A wheeled robot,

for example, may be able to navigate a single floor of a building, or a landscaped

outdoor area, but would normally be incapable of dealing with anything that its

wheels cannot roll over, such as stairs, or rough terrain. For this reason, an

effective walking-robot technology would be very useful.

Designing an effective walking robot is a difficult problem for two distinct

reasons. First, it is actually quite challenging for engineers to design mechanical

systems that exhibit anything close to the combination of speed, strength, size and

weight that exist in biological organisms. This problem tends to either introduce

severe limits on what can be done, or alternatively, cause the cost to construct a

robot to be extremely high. Secondly, and somewhat relatedly, the control system

for an effective walking robot is by necessity very complicated. This is because of

1

the wide variety of conditions under which such a robot must be able to operate; a

simple pre-programmed sequence of movements is not sufficient to provide

reliable walking.

There are many different methods which have been used to provide

intelligent control of walking robots. One approach is the use of Central Pattern

Generators (CPGs), which have been used to control biped robots [1, 2]. Like the

biological systems that inspired this method, a robot using CPG motion control

has a very small neural network in which groups of individual perceptrons behave

like schmidt trigger oscillators. The currently-active perceptrons inihibit the others

until their responses to the input vector override the inhibition. At this point, when

the system begins to switch states, a positive-feedback condition is created which

strongly attracts the system into its next state. These neuronal oscillators can be

connected in a purely feed-forward layout, in which the neurons use only each

other's outputs as inputs, or they can use feedback, in which the inputs to the

neurons are sensor outputs from the controlled system[3]. The behavior of this

system is normally hard-coded, and tends to suffer from most of the same

drawbacks as a pre-programmed gait — it requires a human programmer to

consider each possible situation that it may encounter.

Genetic algorithms have also been used to develop control systems in

walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-

forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5]

2

combine a genetic algorithm with a CPG to produce walking behavior in a

hexapod robot.

In this thesis, a new method is developed which works in a similar way to

[5], in that a neuronal oscillator controller is trained with a genetic learning rule,

but with several key differences. First, the new method uses a relatively large

neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The

network used in this thesis has dozens to hundreds of perceptrons and, in some

cases, upwards of a half-million weights (see test runs in Chapter 5). These

perceptrons are not connected together directly as they are in the CPG, but do

have feedback from the aggregate (system) output. In addition, the system has

some internal memory which stores a certain number of past inputs and outputs.

Thus, the control system can not only “see” the current state of the robot, but also

remembers what has been happening with the physical robot and what it has been

doing. The length of this memory is a user-entered variable, which has been set at

150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the

scoring and selection algorithms used in this thesis are based only on walking

performance; the first training steps used in [5] to initially produce oscillatory

behavior is not present.

For purposes of training the neural network, software is created which

combines a physics simulation with a scoring algorithm. Candidate control

systems are scored on how far they can make a simulated robot walk over

randomly-generated terrain in a given amount of time, and this information is

3

passed back to the genetic algorithm. After each neural network has had a turn,

and received a score, the software ranks them and replaces the lower scorers with

new networks that are created by combining pairs of high-scorers and applying

random mutations. These steps are then repeated until the user decides that a

sufficiently effective one has been produced, based on observation of the 3D-

rendered simulation or the figures of merit introduced in Chapter 5, and terminates

the program.

When the program is first started, all of the neural network weights are

random and the simulated robots are only able to move a very short distance. As

time progresses, however, the robots begin to develop the ability to produce

continuous motion in one direction. In the test runs, the robots began to show

some walking ability within about two days, and were becoming quite effective at

walking after about a week.

While this method still requires some forethought on what types of

situation the robot will encounter, in order to create effective training simulations,

it does not need any hard-coding to be performed. All that is necessary is to create

a 3D “world” with any terrain that the robot might have to navigate, as the

software will randomly place robots in the world and score the control systems on

how well they perform. In addition, the neural networks produced by this software

are not limited to a single type of walking — multiple methods of movement have

been observed in individual networks — which simplifies their integration into a

complete robot.

4

This thesis is organized as follows: In Chapter 2, the neural network

topology is described, as is the method for generating its input vector. There is a

discussion on why it was chosen in section, and why it was expected to be

effective, and its software implementation is described in detail. In Chapter 3, we

discuss the genetic learning rule that is used with the neural network. The scoring

rules that are used in the physics simulation are defined, as are the rules used for

selection, crossover and mutation. Then, the software implementation of the

genetic algorithm is described. In Chapter 4, the physics simulation in which the

neural networks are trained is described, starting with the simulation “world”.

Then, we discuss the quadruped robot body that is used in the simulations, its

physics-engine implementation, and the geometrical parameters that describe

individual robots. Finally, we describe the simulation loop in which the physics

engine, the robot model, the neural network and the genetic algorithm come

together. In Chapter 5, the performance of the software is evaluated. Figures of

merit, collected from two test runs, are presented, and the results are discussed. In

Chapter 6, we discuss our conclusions from this work, and propose some ideas for

further research, as well as some potential applications.

5

2. NEURAL NETWORK

 2.1 OVERVIEW

The neural network used in this project consists of a single layer of parallel

perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but

with an outboard genetic learning rule rather than the one described in that work.

Each perceptron has a set of input weights that determines its response to a given

set of inputs, an activation function which, in this thesis, is a unit-step function,

and a set of output weights, which are multiplied by the output of the activation

function (1 or 0) and added to the system output vector. This neural network

operates in discrete time, evaluating sampled inputs and producing outputs at fixed

time intervals. A block diagram of the neural network, and its associated memory

stacks, is shown in Figure 2.1.

Figure 2.1: Neural network block diagram

6

2.2 INPUT VECTOR GENERATION

Inputs to the neural network come from three sources: body sensors,

command and control signals, and previous inputs and system outputs. Past inputs

and outputs come from a type of stack buffer where data travels down the stack

and is discarded when it passes the last level. These historical data are used for

two purposes: as inputs for the neural network, and as training data for a second

learning rule that is implemented in the software, but not currently being used.

The organization of this stack is shown in Figure 2.2.

Figure 2.2: Block Diagram of History Buffer Object

7

2.3 OUTPUT VECTOR GENERATION

On each time step, the input vector to the neural network is generated by

concatenating the body sensor and command inputs with the past inputs and

outputs from the history buffer objects. This vector, I_sys, is multiplied (dot

product) with each perceptron's input weight vector, W, to give the postsynaptic

potential (PSP). The output of the perceptron is the unit step function of the PSP,

multiplied piecewise by the perceptron's output weights to give its contribution,

Rn, to the system output vector, Rs. This may be expressed as follows:

Rn = u(I_sys • W) (2.1)

Rs = Σ(Rn) (2.2)

2.4 WHY THIS ALGORITHM

At this point, some information is given regarding why this system can

work. First, due to the fact that the number of perceptrons is much larger than the

number of outputs, this algorithm is a universal function approximator[6]. This

means that it can implement an arbitrary bounded function given the correct

weights, even when the network has only a single hidden layer. Because the

outputs of this neural network determine the rate of change in the actuator

positions on the robot, the result is a system of nonlinear partial differential

equations which, depending on the weight vectors and the physical properties of

the robot, are capable of producing an extremely wide variety of behaviors

8

(although not all behavior is technically possible, as there are physical limits on

speed, force, and acceleration). Due to the way the data propagate through the

history buffers, and thus constantly change position with respect to the input

weights, it is relatively difficult for the system to reach a stable state where the

robot does not move. Instead, this tends to encourage strange attractors, which

produce repetitive, but not necessarily periodic, motion.

2.5 SOFTWARE IMPLEMENTATION

This neural network is implemented in C++ as the mcNeuron object class

(in which the “mc” is short for “Motion Control”). It is organized in a linked list,

where each instance represents one perceptron, and holds a pointer to the next

perceptron in the chain. The advantage to this type of organization is that the

source code can be kept short, as a large portion of the compiled machine code is

automatically generated by the compiler itself. This also helps prevent errors by

making the source code more readable, and relying on the very mature code-

generation algorithms used in the compiler. The source code for this object class is

given in Appendix A, and its member functions are described below:

● void rnNet(float* inputs, historyBuffer* iHistory, historyBuffer* oHistory,

 float* outputs)

This function multiplies the input weights of the perceptron (dot product)

by the concatenation of inputs, iHistory, and oHistory, and if the result is

positive, add its output weights to outputs. If there are more perceptrons in the

chain, as indicated by a non-null “next” pointer, then this function is called in

9

the next node, with the same parameters. Thus, one call to the first perceptron

in the chain propagates to all of them.

● void updateNet(float scale, historyBuffer* iHistory,

 historyBuffer* oHistory)

This function implements a second learning rule, which is not used in this

project. It was replaced by the genetic algorithm very early in development.

When called, it multiplies scale by values from iHistory and oHistory, and

adds this to its input weights. Like rnNet, it propagates through all perceptrons

in the chain.

● void iW_preset(float * newWeights)

This Function sets the input weights to the values stored in newWeights. This

function is recursive, and if the perceptron has a non-null “next” pointer, will

call the same function in the next perceptron. In this case, the pointer is

advanced by the number of input weights, so that one large array can be used

to set all of the input weights in a chain.

● void iW_preset_justOne(float * newWeights)

This function is the same as iW_preset(), but is not recursive.

● void oW_preset_justOne(float * newWeights)

This is the same as iW_preset_justOne(), but acts on the output weights instead

of the input weights.

10

● mcNeuron *getNext()

This function returns a pointer to the next perceptron in the chain, or NULL if

a next node does not exist.

● mcNeuron *cutNth(int index)

This function cuts the chain at the Nth node, and returns a pointer to the

removed segment. It works by recursively propagating down the chain while

decrementing index, until index = 1. When this condition is true, the node sets

its “next” pointer to NULL, and returns the value that was in that pointer. The

returned pointer propagates back up the chain as the CPU falls down through

the call stack, until the first called node finally returns it to the calling function.

● void setNext(mcNeuron * newNext)

This function sets the “next” pointer in the called node to newNext.

● void appendChain(mcNeuron * newSegment)

This function appends the chain specified by newSegment to the end of the

called chain. It works by recursively propagating down the chain until it is

called on a node whose “next” pointer is null, and setting that pointer to

newSegment.

● float *getIWeights()

This function returns a pointer to the input weights for the called perceptron.

● float *getOWeights()

This function returns a pointer to the output weights for the called perceptron.

● void setRandomOWeights(float maxValue)

11

This function sets the output weights of the perceptron to random numbers,

varying from -maxValue to +maxValue. It is recursive, and operates on each

node in the chain until a null “next” pointer is reached.

● void setRandomIWeights(float maxValue)

This function is the same as setRandomOWeights(), but operates on the

input weights.

● void setCascadingOWeights(float weight, int oIndex)

This function sets the output weight specified by oIndex to weight, and sets all

others to zero. If the “next” pointer is not null, it calls the same function on the

next node, with the parameters set by the following two rules:

 If oIndex is less than the number of output weights, increment oIndex.

 If oIndex is equal to the number of output weights, then the next oIndex is

zero, and the next weight is -weight.

Note that this function is not called in the final build of the software.

● void shakeIptWeights(float maxValue)

This function adds a random number, which varies from -maxValue to

maxValue, to each of the input weights. It is recursive, and operates on all

perceptrons in the chain. After the random values are added, the weight vector

is normalized.

● void shakeOptWeights(float)

This function is the same as shakeIptWeights(), but operates on the output

weights.

12

● void mutateIptWeights(float maxValue)

This function selects a random, continuous segment of the input weights and

replaces them with random numbers, which vary from –maxValue to

maxValue. It is not recursive (it operates on only one perceptron), and is called

by the much more extensive mutation function in the genetic algorithm class.

● void mutateOptWeights(float)

This is the same as mutateIptWeights(), but operates on the output weights.

● void svNet(ofstream * saveFile)

This function saves the input and output weights of a perceptron to the fstream

object pointed to by saveFile. It is recursive, so the entire network will be

saved when it is called on the first element in the chain. Note that the fstream

object has an internal index that counts up as data are saved, so the function

can be called on multiple chains with one open file, and they will all be saved

in order.

● void ldNet(ifstream * loadFile)

This function loads the input and output weights stored in the fstream object

pointed to by loadFile into the input and output weights. It is also recursive,

and operates in the same way as svNet.

13

3. GENETIC ALGORITHM

3.1 INTRODUCTION

The neural network described in Chapter 2 is trained using an outboard

genetic search algorithm, which operates on the entire network, rather than

individual perceptrons. Each candidate neural network is given a turn to control a

randomly generated robot in a physics simulation, and scored based on its

effectiveness at making the robot walk. Like all genetic algorithms, this one

combines randomness, selection, crossover, and mutation to search the space of all

possible input and output weight vectors. Due to the extremely large search space,

and the fact that there are large clusters of viable solutions (different types of

walking) with fitness functions that tend to be somewhat continuous, this problem

should be particularly well-matched to the properties of a genetic algorithm [7].

Selection is based on a floating-point score that is generated by evaluating

the network's efficacy in controlling a simulated robot. In order to function, a

genetic algorithm must find a region in the search space where there exists a score

gradient before it can begin to function as a genetic algorithm; before this happens

it implements only a random search. As a result, the search must happen upon a

region with a fitness gradient, by chance. If these regions fill too small a portion of

the total search space, it can take a very long time for the search to locate one of

them. For this reason, points must initially be awarded for results that are not

directly useful, but which are likely to be connected to a useful region by a

“bridge” of scores that are high for their particular region[7].

14

3.2 SCORING

At the start of a turn, the software drops a robot into the “world” at a

random position and begins stepping its neural network along with the physics

engine. In order to reduce noise in the score due to a random bounce when the

robot falls a short distance to the ground, and reduce the tendency for the system

to waste time early on by simply making the robots lean forward, there is a delay

of approximately two seconds in simulation time before the software records the

robot's “start” position. At the end of the turn, the start position is subtracted from

the ending position, and points are awarded according to the following five rules:

1. Score is awarded for any movement that occurs, regardless of direction. Early

in the process, this causes the system to select the neural networks that cause

the system to exhibit those attractors that produce constant motion. This causes

oscillatory behavior to be learned early in the evolutionary process, and is what

replaces the initial learning step used in [5], where fitness functions were

assigned to per-leg oscillations.

2. The population member receives points a second time for movement in the

desired direction, as determined by a dot product, but only if that number is

positive — a negative score here is counted as zero. As a result, it is possible

for an individual to receive up to two points per meter for moving in the

correct direction.

3. A two-point penalty is assessed if the robot is upside-down at the end of the

turn, which can occur quite easily due to the physical characteristics of this

15

particular robot design. The purpose of this penalty is to avoid behavior that

emerged in some of the earliest tests, where the robot would roll forward, and

then hop along upside-down by kicking its legs.

4. A user-configurable penalty is assigned each time the robot chassis comes into

contact with the ground. There is a delay of approximately 1 second in

simulation time after a ground impact is registered, before the counter can be

incremented again. This prevents large penalties from accruing quickly if the

chassis remains in contact with the ground for a period of time. From the test

runs that have been performed, it was found that this penalty needs to be very

small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05

was used. It may be effective to increase this penalty slowly after the system

has learned to walk, but this has not yet been tested.

5. The population member retains half of the score it received in the previous

generation, so that a single weak performance is not likely to “kill” a high-

scoring neural network. While this last rule can sometimes prevent a more-fit

individual from displacing a less-fit one, the effect quickly fades away when

an individual performs poorly for two or more generations. It also is not

typically enough to prevent displacement in the case of a very low, or negative,

score. For this reason, several replacements still occur in most generations.

16

3.3 SELECTION

At the end of a generation, all members of the population are sorted by a

ranking algorithm, so that those with the highest score appear in the earliest

positions. In order to select each parent for the next generation, a random floating-

point number in the range [0, 1] is generated, and squared, so that the new

probability distribution will tend toward zero. This new number still falls within

the same range, but has an average value of ¼ instead of ½ — thus selecting

higher-scoring individuals more often than low-scoring ones. This number is then

multiplied by the size of the population, cast to an integer, and used to index a

neural network that will be the “parent” of a new population member. Note that

the random number could also be raised to any other positive power, or another

function could be used to provide a different probability distribution, although

these options have not been investigated. A second method which has been tested

is to instead multiply the square by the maximum score in the population, and then

take the weakest member above that score, but it appears to be too aggressive for

the small populations that are feasible on a current PC, and was found to cause

problems with early convergence. This cause of this problem is that the highest

score in a generation tends to be much higher than the average score, or even the

average of the top 5 scores, as shown in Chapter 5. The top scoring population

member thus tends to be chosen as a parent very often by this rule, which causes

the diversity in the population to disappear rapidly, leading to the early

convergence problems that were observed.

17

3.4 CROSSOVER AND MUTATION

After the two parent networks are selected, a new neural network is created

by combining them. Each perceptron in the child is created by randomly selecting

the perceptron at the same position from one of the parents, and occasionally

introducing a random mutation. These mutations can take any of the forms

outlined below:

● A random, continuous, segment of the perceptron's input weights is chosen,

and replaced with a string of random numbers. This permits behavior to drift

over time at the individual perceptron level.

● A perceptron's output weights are rotated, so that all of its effects are

“mirrored” to the opposite side of the body (either side-side or front-back can

occur). At the same time, the perceptron's response is time-delayed by a

random amount by doing a circular shift on its input weights by an integer

multiple of the number of inputs. The purpose of this mutation is to encourage

symmetry in the robot's motion, and allow effective behavior that evolves in

one leg to eventually propagate to the other legs.

● At the population-member level, the software randomly selects a continuous

group of perceptrons, and moves them to a new position in the list. This has no

direct effect, but makes it possible for a new child to be created with multiple

perceptrons that originally occurred at the same position. For example, the

child could contain four nodes that were all at position 25 in its grandparents.

● After the new perceptron is generated, all of its weights (both input and

18

output) are randomly adjusted by a small amount, and the input weights vector

is normalized.

3.5 SOFTWARE IMPLEMENTATION

The genetic algorithm is implemented by the mcEVO object class, which

manages the population, and two helper functions, rankNodes() and breedNets(),

which perform the genetic operations.

The mcEVO class encapsulates the neural network and its associated

history buffers in such a way that the entire population can be accessed through

one pointer. It also stores the geometry for the randomly generated robots. The

source code for this class is given in Appendix B, and its member functions are

described below:

● mcEVO(int popSize, mcEVO * previous, dReal * geomMin, dReal *

geomMax)

This is a chain constructor which builds a population of popSize. It does not

generate the neural networks (this is done in a separate call), but it does

generate a random set of robot-body proportions for each element. The input

variable geomMin should point to an array containing the lower limits for each

body dimension, while geomMax should contain the upper limits. These

parameters are described in detail in the simulation section of this thesis.

Previous is used internally to this chain constructor, and should be set to

NULL when it is called from outside.

19

● ~mcEVO()

This destructor operates on the entire chain, deleting all nodes and any

perceptron chains that were attached to them.

• mcEVO * getMax(mcEVO * curBest, float curMax)

This function returns a pointer to the node in the chain with the highest

score value. The input variables curBest and curMax are used internally as

the function recurses through the chain; it should thus be called with

curBest = NULL and curMax set to a large negative number (-10 is

sufficient in this case).

• void setPrevious(mcEVO * newPrevious)

This function sets the “previous” pointer for the called node to

newPrevious.

• void setNext(mcEVO *)

This function sets the “next” pointer for the called node to newNext.

• void detach()

This function detaches the called node from the chain, calls

previous->setNext(next) and next->setPrevious(previous), and sets its own

previous and next pointers to NULL. Thus, the node is removed from the

chain, and the chain is spliced back together.

• mcEVO *getNext()

This function returns the value in the “next” pointer of the called node.

20

• mcEVO *getPrevious()

This function returns the value in the “previous” pointer of the called node.

• mcEVO *getFirst()

This recursive function can be called on any node in the chain. It calls

previous->getfirst() until previous = NULL, then returns a pointer to that

node.

• mcEVO *getLast()

This function works in the same way as getFirst(), but recurses down the

chain instead of up, and returns a pointer to the last node.

• float getScore()

This function returns the score stored by the called node.

• mcEVO *getLastAbove(float minScore)

This function recurses up the chain until it reaches a node whose score is

higher than minScore. It then returns a pointer to that node. Note that this

function is called on the last node in the chain (rather than the first), and is

intended to be used after the ranking operation is complete. See the section

on the rankNodes() helper function below.

• mcEVO *getNth(int N)

This recursive function extracts a pointer to the Nth node in the chain. It

works by calling itself on the next node in the chain, while decrementing N,

until N = 0. It then returns a pointer to the node where this occurred.

21

• void insBefore(mcEVO * newNode)

This function inserts the node pointed to by newNode into the position

preceding the called node. It sets its own “previous” pointer to newNode, and

calls setPrevious() and setNext() on the new node, and setNext() on the

current previous node, so that the chain is still continuous in both directions.

• void dumpScores()

This recursive debug function causes all nodes in the chain to send their

scores to stdout.

• void dumpWeights()

This debug function causes all nodes in the chain to send their weights to

stdout. Note that there can be many millions of weights, which can cause

problems depending on the terminal program from which the software is run.

• void setScore(float newScore)

This function sets the score stored by the called node to newScore.

• dReal *getParams()

This function returns a pointer to the robot-body geometry parameters

stored by the node.

• void appendChain(mcEVO * newSegment)

This function causes the chain starting at newSegment to be appended to the

end of the chain holding the called node. It recurses down the chain

until next = NULL, then sets next = newSegment and calls

22

newSegment->setNext(this).

• int killLast(int numDeleted)

This function deletes the last numDeleted nodes in the chain. It works by

recursively calling itself on the next node until next = NULL, then returning

numDeleted. As the CPU falls back up through the call stack, each recursion

subtracts one from the returned number and returns that, thus counting down

toward zero. When the return value is zero, the node calls delete next, and sets

next = NULL. All nodes below this point are then deleted by the chain

destructor, as described above.

• void svBrains(ofstream * saveFile)

This recursive function saves all of the neural networks being managed by

a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron

chain pointed to by each node in the chain, and then calling itself on the next

mcEVO node. Note that the fstream object class counts and records the current

position within the file, which greatly simplifies this implementation.

• void ldBrains(ifstream * loadFile)

This function works in a similar way to svBrains(), but loads the neural

network weights from a file into all of the mcNeuron objects being managed

by the called mcEVO chain.

• void mkBrains(int numPerceptrons, int RHL, int THL)

This recursive function causes all nodes in the mcEVO chain to generate

23

neural networks and history buffer lists using the chain constructor for the

mcNeuron class. The neural networks thus created have numPerceptrons

perceptrons, and both history buffers (one for input variables, and one for

output variables) have RHL + THL nodes. Note that this function, in its

current implementation, assumes that each neural network has 34 inputs and 16

outputs. This will change when the class is adapted away from this project for

general-purpose use.

● void mkBrains_random(int numPerceptrons, int RHL, int THL, float * array)

This function works in the same way as mkBrains, but fills the input and

output weight arrays with random numbers rather than leaving the memory

uninitialized. Array points to an array of type float that is large enough to hold

all input and output weights, which was used internally in a different version of

this function. It has not been removed, because that version has not yet been

fully evaluated at the time of this writing. For the version of the function used

in this thesis, array can be set to NULL.

● mcNeuron *getBrain()

This function returns a pointer to the first node in the mcNeuron chain

being managed by the called mcEVO node.

● historyBuffer *getIHist()

This function returns a pointer to the first node in the input history buffer

chain being managed by the called mcEVO node.

24

• historyBuffer *getOHist()

This function returns a pointer to the first node in the output history buffer

chain being managed by the called mcEVO node.

• void setIHist(historyBuffer *)

This function sets the input history buffer chain to be used by the called

node.

• void setOHist(historyBuffer *)

This function sets the output history buffer chain to be used by the called

node.

The core features of the genetic algorithm, including selection, crossover,

and mutation, are implemented in two helper functions that are written to operate

on a mcEVO chain. These functions are:

● rankNodes(mcEVO * target)

This function performs a sorting operation on the mcEVO chain beginning

at target. The nodes are ranked in order of descending score. Note that, after

the ranking is complete, target is no longer the first node in the chain.

However, the member function getFirst() can be called on target, and the first

node will be returned.

● breedNets(mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin,

dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut,

float iRnd, float oRnd)

25

This function implements almost all of the actual genetic algorithm, and is

called after rankNodes(). Its arguments are as follows:

 thePopulation is a pointer to the mcEVO chain on which the function will

operate.

 popSize is the size of the population.

 nReplaced is the number of population members that be replaced with

newly created candidates.

 pMin is a pointer to the array containing the lower limits for the robot body

parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).

 pMax is a pointer to an array containing the upper limits for the robot body

parameters.

 nNeurons is the number of perceptrons in each population member.

 RHL is the length of the history stack used by the neural networks as

inputs.

 THL is the length of the history buffer used for an additional learning rule

that is not used in this thesis, but is implemented in the mcNeuron class.

Note that the total length of the stacks is equal to RHL + THL.

 mutProb is the probability that a mutation will occur in any given

perceptron.

 maxMut is the maximum magnitude of the random numbers that a segment

of a perceptron's input weights will be replaced with, when this type of

mutation occurs (see section 3.4). The newly generated weights will thus

26

vary from -maxMut to maxMut. Note that this value should be chosen so

that its average magnitude is approximately equal to the average magnitude

in the input weight vector, so that the newly created weights do not swamp

the other weights. Because the input weights vector is normalized, the

value of maxMut used in this thesis is set to 2 * sqrt(1 /

number_of_input_weights).

 iRnd is the maximum magnitude of the random numbers that are added to

each input weight, after the perceptron is created and all mutations are

applied, and before the input weight vector is normalized.

 oRnd is the maximum magnitude of the random numbers that are added to

the output weights. Note that the output weights are never normalized.

27

4. SIMULATION ENVIRONMENT

4.1 OVERVIEW

The software in which the robot controllers are trained is based on a free

and open-source rigid body physics engine called OpenDE or ODE [8], which is

short for “Open Dynamics Engine”. This engine was orignally created by Russell

Smith, and is currently being maintained and extended by a community of

volunteers. It is distributed under two separate licenses — the GNU LGPL and a

BSD-style license — such that a user can choose either of them. Thus, it may be

used in free or commercial software, with very few restrictions. The most

significant restriction in the BSD-style license is that the original work must be

cited. This physics engine provides general-purpose simulation of articulated

bodies, in addition to collision detection, and is primarily intended for use in video

games. It has become popular enough in robot simulations, however, that there

have been robot-simulation software packages[9] created and even a book[10]

written about modeling robots in ODE.

4.2 SIMULATION WORLD

The simulation “world” consists of two parts — a randomly generated

height map (the “ground”), and a randomly proportioned robot model. The height

map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space.

At each grid point, the height is set to a random number so that all heights fall

within a 0.13m range.

28

The robot body is generated and inserted into the world by the spiderBody

object class (see section 4.4). A majority of the code in this class, about 1500

lines, comprises the constructor function, which performs the following steps:

● Create the core body of the robot, which consists of three ODE primitives, set

up its mass and inertia matrix, add its collision detection geometry, and insert it

into the world.

● Repeat the previous step for the upper legs and lower legs.

● Calculate the starting positions / rotations for the legs, and move them to those

locations.

● Attach the legs with the appropriate ODE joints (ball joints at the hips and

hinge joints at the knees).

● Calculate the base / tip positions of the actuators, and call genActuator() on

each one.

4.3 QUADRUPED ROBOT BODY

The robot body used in these simulations is shown in Figure 4.1. This robot

has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear

servos controlling a single leg are shown in Figure 4.2; their effects are as follows:

1. Works with Actuator 2 to control the direction of the axis of the upper leg.

2. Works with Actuator 1 to control the direction of the axis of the upper leg.

3. Controls the rotation of the upper leg about its axis. The effect of this actuator

is interdependent with Actuators 1 and 2.

4. Controls the bending angle of the knee joint.

29

Figure 4.1: Quadruped Robot

Figure 4.2: Diagram of a Single Leg Showing Actuator Indices

30

The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5.

These dimensions correspond to those shown in Table 4.1, and the upper and

lower limits given in Table 4.2.

Figure 4.3: Robot Body Core (isometric view), Showing Dimensions

Figure 4.4: Diagram of Upper and Lower Chassis Platforms

31

Figure 4.5: Diagram of a Leg, Showing Dimensions

Figure 4.6: 3D Rendering of the Robot Walking in the Simulation

Environment

32

Figure 4.6 shows a 3D-rendered example of the robot. This image was

made from a screenshot of the robot walking in the simulation software. The gray

actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators

correspond to Actuator 3, while Actuator 4 is not shown in this picture because it

is handled outside ODE, in order to increase the speed of the software, and not

drawn when the scene is rendered.

4.4 ROBOT BODY OBJECT CLASS

The ODE objects which model the robot body are created and manipulated

through the spiderBody object class. The source code for this class is given in

Appendix C. Aside from the constructor and destructor, the robot body class

implements the following member functions:

● dReal getPos(int index)

Returns the current length, in meters, of the linear actuator specified by index,

with respect to its starting length. Negative numbers indicate that the actuator

has retracted, while positive numbers indicate that it has extended.

● dReal getVel(int index)

Returns the linear speed, in meters per second, of the actuator specified by

index, where negative numbers indicate that the actuator is retracting and

positive numbers indicate that it is extending.

● void addForce(int index, dReal force)

Adds a 3rd law pair of forces of magnitude force to the two ends of the

actuator specified by index, which are directed along its axis. This is the

33

source of all of the driven motion in the physics simulation, except for the four

knee joints.

● void addKneeTorque(int index, dReal torque)

Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower

leg specified by index. This is the source of all driven motion at the knee

joints.

● dReal getKneeAngle(int index)

Returns the current angle, in radians, of the knee specified by index. This

angle is measured from the direction of the upper leg (if the knee is straight,

the angle is zero), and increases as the lower leg bends downward.

● dReal getKneeOmega(int index)

Returns the current angular speed, in radians per second, of the knee

specified by index.

● dBodyID getCore()

Returns the ODE body ID of the robot chassis. This is used in the collision

detection callback to count collisions between the chassis and ground

(which incurs a small score penalty).

4.5 HELPER FUNCTIONS

In addition, there are three helper functions that are not members of the

robot body class, but are used with it. All three of these functions relate to the

actuator that drives each knee, but is external to the ODE world in order to

34

increase processing speed. The source code for these helper functions is given in

Appendix C, and they are described below:

● dReal calcKneeActOffset(dReal angle, dReal KBR, dReal KLL)

Calculates the position of the knee actuator tip, in meters, with respect to the

knee joint. This position ranges from zero to the length of the upper leg. Angle

specifies the angle of the knee joint, in radians, as returned by

spiderBody::getKneeAngle(int), KBR is the distance between the knee

joint and the link attachment point on the lower leg, and KLL is the length

of the linkage itself.

● dReal calcKneeTorque(dReal Angle, dReal slidePos, dReal KBR,

dReal F)

Returns the torque applied to the knee joint by a force F in the knee actuator.

The input variable, slidePos, specifies the position of the knee actuator, as

defined above, while F is the linear force in the actuator. Angle and KBR are

the same variables described above.

● dReal calcKneeActVel(dReal Angle, dReal slidePos, dReal KBR,

dReal w)

Returns the linear speed of the knee actuator, in meters per second, given the

angular speed of the knee joint, in radians per second. The input variable w is

the angular speed; other inputs are the same as described above.

35

4.6 BODY GEOMETRY PARAMETERS

The body parameters, which are set at random by the software and passed

to the robot body constructor in a parameter array are listed in Table 4.1. These

parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index

column specifies the position in the array, while the Macro column gives the

three- or four-letter macro by which the variables are referenced in the source

code (see section 4.4 and Appendix C). Note that all linear dimensions are in

meters, while all mass parameters are in kilograms.

Table 4.1: Robot Body Parameters Array

Index Variable Macro

0 Upper platform (chassis) radius UCR
1 V actuator upper mount offset (from centers of UP) VAO
2 Distance between upper and lower platforms RISE
3 Lower platform radius LCR
4 Upper leg length ULL
5 Lower Leg Length LLL
6 Distance hip -> V ball on upper leg IBR
7 Hip rotation linkage length RBR
8 Knee link length (Obsolete; now set automatically) KLL
9 Distance knee -> knee link attachment KBR
10 Upper platform mass UPM
11 Lower platform mass LPM
12 Square tubing density (mass / unit length) LINDENS
13 Platform and Leg thickness THICK
14 Starting Position X POSX
15 Starting Position Y POSY
16 Starting Position Z POSZ
17 Upper leg zero angle ULZA
18 Leg rotation zero angle LRZA
19 Lower leg zero angle LLZA
20 Foot ball radius FBR
21 Foot ball mass FBM
22 V Actuator base mass VABM
23 V Actuator tip mass VATM
24 Rotational Actuator base mass RABM
25 Rotational Actuator tip mass RATM
26 Upper leg mass ULM

36

4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within

a set of upper and lower limits defined by two limit arrays. The purpose of this

variation is to train the neural networks to control a range of robots, rather than

just a single example, to increase their resistance to the effects of small changes

when going from the simulated robots to a physical one. The values used in the

lower and upper limit arrays are given in Table 4.2.

Table 4.2: Upper and Lower Robot Parameter Limits

Index Macro Variable Description Lower Limit Upper Limit

0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9 KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52

37

4.8 SIMULATION LOOP

On each step through the simulation loop, the inputs to the control system

are updated with the force and position values for all of the actuators. The position

values for the 12 upper leg actuators are obtained from ODE, using the getPos()

member function of the robot body class, while the motion speeds for these

actuators are obtained using getVel(). The knee actuator positions and speeds are

calculated from the knee angles and angular velocities, which are obtained from

ODE using the getKneeAngle() and getKneeOmega().

For all actuators, including the ones for the knees which are handled

externally to ODE, the position is zero as seen by its control-system input at

whatever position the actuators are created in. These zero positions are also used

to define the actuator position variables which are modified by the outputs of the

control system. The difference between these “set” position variables, and those

returned by ODE, or calculated from angular values, in the case of the knees, are

used to calculate the force in each actuator using a simple damped-spring

equation:

F = -ks * (actual position – set position) – kd * (actuator speed)

where ks is a spring constant, and kd is a damping coefficient.

The spring constant for knee actuators is 1500N/m; for other actuators it is

1100N/m, and the damping coefficient is 30N*s/m. These values are based on

measurements taken from a prototype linear actuator.

38

The calculated forces for all actuators except those in the knees are sent

back to ODE through the robot body class using the addForce(index, force)

member function, as well as to the control system as force-sensor inputs. The

forces for the knees are converted to torque values, and sent to ODE using the

addKneeTorque(index, torque) member function.

The actuator set positions are produced by the control system outputs

through a double integral. The control system is able to set acceleration values for

the actuators, up to a certain maximum acceleration, and these values change the

speed of the actuators (the rate of change of the set value), up to a certain

maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum

speed is 0.35m/s, both of which are based on measurements taken from a

prototype actuator.

In addition to position and force measurements, the control system also has

two other inputs that describe the desired direction of travel with respect to the

robot. These two values are dot products of a unit vector pointing in the desired

direction with the robot's local X and Y vectors. These are treated exactly the

same as the sensor inputs, and propagate through the history stack in the same

way.

39

5. PERFORMANCE EVALUATION

5.1 OVERVIEW AND QUALITATIVE ANALYSIS

For a system such as this, the most definitive performance criterion is

whether the robots begin walking in an effective way within a reasonable amount

of time, while operating on a computer which is economically feasible to the user.

During and after the development of this software, many test runs were performed,

using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In

eac test, the AI always either learned to walk, or found a way to work around the

rules and “cheat”, within a few days.

In the earliest runs, there was no penalty for being upside-down, which

resulted in the robots' bouncing and rolling forward as far as they could upon

dropping into the world, then kicking their legs and hopping forward while

upside-down. Some of them also managed to tilt 90 degrees to the side and roll a

good distance, effectively doing cartwheels, before falling down. When the

penalty was added and the software re-run, a population of robots was produced

fairly quickly that would hop forward, like frogs. At this point, a bug in the

physics simulation code was found and fixed, and the first population of actual

walkers was produced on the following run. For this test, the software was

allowed to run for a period of approximately three weeks in real-time, in which

time the it became very good at making the robots walk—at the end of this run,

the robots were moving about 16 body lengths in 14 seconds of simulation time,

which is quite fast given the physical characteristics of the robot and the limits that

40

were in place on how fast the actuators were allowed to move and accelerate (see

Chapter 4).

5.2 QUANTITATIVE ANALYSIS

In order to obtain a quantitative analysis of the performance of this system,

a pair of test runs was done, with different parameters for the neural network. A

special version of the software was created for these runs, which has the added

feature of creating the log files that are used in the analyses below. These log files

are formatted as plain text, with one line for each population member evaluated.

The entries on each line are as follows:

● The index of the current population member. This ranges from 0 – 39, as a

population size of 40 was used for all of the runs that used a log file.

● The score that the population member retained from the last generation,

according to scoring rule #5 (see section 3.2).

● The number of times the chassis came into contact with the ground, as

described in rule #4.

● The score given for any movement at all, as described in rule #1.

● The movement of the robot in the X direction.

● The movment of the robot in the Y direction.

● The final score passed back to the mcEVO node.

Results from two of these logged runs are included in this section. In these

runs, each neural network is given a turn of 2000 time steps in which to control its

robot. The starting positions are recorded after a delay of 250 time steps, which

41

gives an effective turn length of 1750 time steps. Each time step for the neural

network represents 0.012 seconds of simulation time, so there is a period of

approximately 21 seconds in simulation time for which movement is recorded.

Both tests are identical in all respects, except that one uses a neural network of 30

perceptrons, with a memory of 250 time-steps while the other uses 150

perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is

equivalent to approximately 3 seconds of simulation time, while 150 time-steps is

equivalent to about 1.8 seconds. For these runs, the desired direction is always

along the X axis, and the ground impact penalty is very small (0.05). Changes to

these rules can be implemented slowly through a modification to the software —

the desired direction will take random values that slowly drift away from the X

axis, while the ground-impact penalty will slowly increase. This is not done here

due to the length of time the software has to run before a new adaptation is made.

The results from the log files were post-processed using a second program,

which was written to parse the data from the logs and extract the following data

sets for each generation:

● The maximum score attained by any population member during the generation,

excluding any score carried over from the previous generations.

● The top 5 scores from the generation.

● The average value of the top five scores from the generation.

● The maximum score ever achieved, in the current or any previous generation.

42

● The total movement in the X and Y directions for the top 5 scorers in the

generation.

Figure 5.1 shows the top score results vs. generation from the 30-

perceptron test. There are three data sets on this plot: the top score attained during

the generation (orange), the average of the top five scores (purple), and the

running maximum score (black). These scores are a figure of merit which

represents the performance of the neural networks with respect to all of the

scoring rules that are discussed in Chapter 3. A plot of the total movement in the

X direction (orange) and the Y direction (purple) for the top scoring neural

network in each generation is given in Figure 5.2. Unlike the scores shown in

Figure 5.1, these movement figures provide concrete values that are relevant

outside the context of the genetic algorithm — they represent the actual distance

that the simulated robots were able to walk during the time allotted.

Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively,

but are taken from the 150-perceptron run. They show data taken from a smaller

number of generations, but the same amount of real-world run time. This is

because the software runs more slowly when a larger neural network is used.

43

Figure 5.1: Scores Per-Generation for the 30-Perceptron Run

Figure 5.2: X and Y Displacement for the 30-Perceptron Run

44

Figure 5.3: Scores Per-Generation From the 150-Perceptron Run

Figure 5.4: X and Y Displacement From 150-Perceptron Run

45

5.3 DISCUSSION OF RESULTS

Note that the first run (30-perceptrons) went for 405 generations, while the

second (150-perceptrons) run was only 240 generations. Both tests ran for

approximately 11 days in real-world time, each running on one core of the same

CPU, but the larger neural network slowed down the software considerably on the

second run. This is to be expected, as the neural networks from the first run

consume only 59MB of RAM, while those from the second run consume 179MB

—and all of these weights need to be processed 2,000 times per turn, and 160,000

times per generation.

Several other things are apparent from Figures 5.1-5.4. First, the data has

quite a bit of randomness in it—there is a large amount of inconsistency between

generations in both the scores and displacements. Secondly, while the scores are

generally rising as the generations progress, they do so in a very chaotic way, with

relatively flat periods and periods of rapid increase. There is even what appears to

be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show

the X component of motion increasing with the score, while the Y component

remains approximately centered at zero, but with steadily increasing random

variation.

The first observation can be explained by the fact that the robots the system

is being asked to control are randomly generated. Thus, a neural network that

performs well in one generation may be do poorly with the robot it is given in the

next generation. This is intentional, as the goal is to evolve a control system which

46

is effective in a wide variety of robots (thus increasing the chance that it will work

well with a physical robot in the real world). In addition, it is possible for an

otherwise strong-performing control system to flip its robot upside-down,

obtaining a very low (or negative) score in the process. This tends to be especially

likely with the very high scoring individuals in any generation, as they tend to be

the “risk takers”. This issue can be exacerbated by the randomness in the robot

parameters, as a behavior that is only slightly risky in one robot may be fatal in

another.

The chaotic nature of the increases in score over time can be explained by

the properties of the genetic algorithm. The software is continually recombining

the same characteristics into new population members, only occasionally

happening upon a new adaptation that results in significantly higher scores. It

takes time, however, for this adaptation to propagate through the population, and

be optimized to work in a consistent way. Thus, there can be a very large jump in

the running maximum, creating a “high score” that holds for quite some time. The

apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to

the “deaths” of several population members which, while high-scoring, were also

highly inconsistent. This is backed up by the fact that the randomness in the plot

drops off very quickly during the same few generations, and remains smaller than

before as the scores recover.

The movement in the X direction (which is always the “desired” direction

in these two runs, as explained above) behaves as one would expect; it appears to

47

increase along with the scores. The Y movement, however, remains approximately

centered at zero, but has a random noise in it that increases through the

generations. This can be explained by the fact that the control system is becoming

more effective at moving the robots in general, and because the population

members still receive points for moving along the Y axis. In later generations, this

movement is small compared to the motion in the X direction, as the control

system improves at directing the robot in the direction of maximum score. This

side movement could also be suppressed by slowly introducing a penalty for

movement in the Y direction, especially if an additional input was added to the

control system for current (absolute) position.

Finally, it is worth pointing out that the 30- and 150- perceptron tests were

only allowed to run for 860 and 485 generations, respectively, due to time

limitations. Previous runs that were much longer, including one that went into the

thousands of generations, showed a continued increase in performance, with the

longest run producing several scores between 8 and 9 on each generation. The

plots here are, however, sufficient to show that the ability of the AI to control a

robot is generally rising with time, and to show some of its characteristics.

48

6. CONCLUSIONS AND FURTHER RESEARCH

6.1 CONCLUSIONS

From the results given in section 5.2, as well as direct observation of the simulated

robots in the software, it is clear that this system is capable of generating effective

walking movement. In addition, the robot design used in this thesis is particularly

difficult to control, as its wide body does not permit the center of mass to remain

in a stable position. In quadruped animals, the body is long and narrow, so that

diagonal pairs of feet that are on the ground form a straight line that is always

beneath the center of mass. With a hexapod or octopod, the problem would be

even easier, as the feet on the ground at any given time form a triangle or a

trapezoid, respectively, that can always enclose the center of mass on the

horizontal plane. Thus, this method can be expected to produce better results than

those given here for these other body types.

6.2 CONTINUED WORK WITH THIS BUILD

The first step that should be taken in order to learn more about this system is to

perform more extensive testing than what was done for this thesis in order to

maximize the efficiency of the system with respect to CPU load and memory

usage. This will require a large number of test runs to be performed with many

different configurations, in order to optimize the following variables:

● Population size

● Number of perceptrons

49

● Memory length

● Probability of each type of mutation

● Scoring with respect to different criteria

● Selection rules

In order to perform a large number of tests in a reasonable amount of time, it

would be best to use a computer with a large number of processor cores, as this

software does not parallelize easily in its current form. Alternatively, the physics

engine could be replaced with one that runs on a stream processor, such as PhysX

from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the

neural network could be rewritten to run on a GPU.

6.3 EXTENSION OF CONTROL SYSTEM

It would also be good to extend the scope of the control systems that are produced

in a few different ways. First, multiple neural networks can be used, with each

trained to perform a different task. While individual networks have been observed

to produce multiple behaviors in this system, this would be a good way to separate

the desired behaviors. Also, it might be effective to have “nested” learning rules,

such that the neural network continues to learn on its own after it is produced by

the genetic algorithm. This could be done by adding some form of short-term

reinforcement learning, or by adding a classifier network to the inputs of the

control system that predicts the result of current behavior on the score and adjusts

the weights of the network, perhaps using the P-Delta learning rule[6] that

originally went with the parallel perceptron network that is used here. Another

50

option may be to add some outputs that do not control anything, but still act as

feedback loops. This would create a form of memory that permits state-space

orbits that last much longer than the history-buffer length, which the system would

use in whatever way happens to produce the highest scores.

6.4 POTENTIAL APPLICATIONS

In terms of applications, there are two things that would be very interesting to do.

One such idea is to create a CAD-style robot “editor” in which robots can be

designed in a quick and convenient way, instead of writing a 1500+ line

constructor, as was done with the spiderBody class used in this research. This

editor would allow one to create a robot using a library of predefined parts such as

the linear servos seen on the robot that this thesis deals with, and automatically

generate a bill of materials for its physical construction. After the robot is

designed, the software can then be used to create parts of its control system.

The second possibility is to modify the simulation and genetic algorithm

software to operate as a P2P application, in a similar way to the BitTorrent

network. A large number of users who want the same robot could download a task

file that specifies the robot that is to be controlled and points to an online

“tracker”. Having connected to the tracker, a user's client would join the “swarm”

of other users, and begin receiving population members to evaluate. Each user's

PC processes a small population, similar to the ones that were used in the two test

runs here, but downloads a few new neural networks from other users and

transmits a few on each generation. Depending on the number of users who want a

51

particular robot, this could permit effective population sizes in the tens of

thousands. Like the other possibilities mentioned above, this has not been

evaluated at this point, and it is unknown whether it would be an effective design.

It would, however, be very interesting to see what might come out of it.

52

1. INTRODUCTION

This thesis describes a method for automatically generating complex

control systems for walking robots. One of the most interesting research fields

today is the development of robots that are able to perform complex and

somewhat arbitrary actions with some degree of reliability. While robotics as a

field of engineering has existed for quite some time now, and robots have been

created which are capable of performing many tasks, it is still very difficult to

create a robot which can effectively navigate complex terrain, or inside buildings.

This is mostly due to the fact that the simple forms of mechanical movement, such

as wheels, are only effective over a narrow range of conditions. A wheeled robot,

for example, may be able to navigate a single floor of a building, or a landscaped

outdoor area, but would normally be incapable of dealing with anything that its

wheels cannot roll over, such as stairs, or rough terrain. For this reason, an

effective walking-robot technology would be very useful.

Designing an effective walking robot is a difficult problem for two distinct

reasons. First, it is actually quite challenging for engineers to design mechanical

systems that exhibit anything close to the combination of speed, strength, size and

weight that exist in biological organisms. This problem tends to either introduce

severe limits on what can be done, or alternatively, cause the cost to construct a

robot to be extremely high. Secondly, and somewhat relatedly, the control system

for an effective walking robot is by necessity very complicated. This is because of

1

the wide variety of conditions under which such a robot must be able to operate; a

simple pre-programmed sequence of movements is not sufficient to provide

reliable walking.

There are many different methods which have been used to provide

intelligent control of walking robots. One approach is the use of Central Pattern

Generators (CPGs), which have been used to control biped robots [1, 2]. Like the

biological systems that inspired this method, a robot using CPG motion control

has a very small neural network in which groups of individual perceptrons behave

like schmidt trigger oscillators. The currently-active perceptrons inihibit the others

until their responses to the input vector override the inhibition. At this point, when

the system begins to switch states, a positive-feedback condition is created which

strongly attracts the system into its next state. These neuronal oscillators can be

connected in a purely feed-forward layout, in which the neurons use only each

other's outputs as inputs, or they can use feedback, in which the inputs to the

neurons are sensor outputs from the controlled system[3]. The behavior of this

system is normally hard-coded, and tends to suffer from most of the same

drawbacks as a pre-programmed gait — it requires a human programmer to

consider each possible situation that it may encounter.

Genetic algorithms have also been used to develop control systems in

walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-

forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5]

2

combine a genetic algorithm with a CPG to produce walking behavior in a

hexapod robot.

In this thesis, a new method is developed which works in a similar way to

[5], in that a neuronal oscillator controller is trained with a genetic learning rule,

but with several key differences. First, the new method uses a relatively large

neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The

network used in this thesis has dozens to hundreds of perceptrons and, in some

cases, upwards of a half-million weights (see test runs in Chapter 5). These

perceptrons are not connected together directly as they are in the CPG, but do

have feedback from the aggregate (system) output. In addition, the system has

some internal memory which stores a certain number of past inputs and outputs.

Thus, the control system can not only “see” the current state of the robot, but also

remembers what has been happening with the physical robot and what it has been

doing. The length of this memory is a user-entered variable, which has been set at

150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the

scoring and selection algorithms used in this thesis are based only on walking

performance; the first training steps used in [5] to initially produce oscillatory

behavior is not present.

For purposes of training the neural network, software is created which

combines a physics simulation with a scoring algorithm. Candidate control

systems are scored on how far they can make a simulated robot walk over

randomly-generated terrain in a given amount of time, and this information is

3

passed back to the genetic algorithm. After each neural network has had a turn,

and received a score, the software ranks them and replaces the lower scorers with

new networks that are created by combining pairs of high-scorers and applying

random mutations. These steps are then repeated until the user decides that a

sufficiently effective one has been produced, based on observation of the 3D-

rendered simulation or the figures of merit introduced in Chapter 5, and terminates

the program.

When the program is first started, all of the neural network weights are

random and the simulated robots are only able to move a very short distance. As

time progresses, however, the robots begin to develop the ability to produce

continuous motion in one direction. In the test runs, the robots began to show

some walking ability within about two days, and were becoming quite effective at

walking after about a week.

While this method still requires some forethought on what types of

situation the robot will encounter, in order to create effective training simulations,

it does not need any hard-coding to be performed. All that is necessary is to create

a 3D “world” with any terrain that the robot might have to navigate, as the

software will randomly place robots in the world and score the control systems on

how well they perform. In addition, the neural networks produced by this software

are not limited to a single type of walking — multiple methods of movement have

been observed in individual networks — which simplifies their integration into a

complete robot.

4

This thesis is organized as follows: In Chapter 2, the neural network

topology is described, as is the method for generating its input vector. There is a

discussion on why it was chosen in section, and why it was expected to be

effective, and its software implementation is described in detail. In Chapter 3, we

discuss the genetic learning rule that is used with the neural network. The scoring

rules that are used in the physics simulation are defined, as are the rules used for

selection, crossover and mutation. Then, the software implementation of the

genetic algorithm is described. In Chapter 4, the physics simulation in which the

neural networks are trained is described, starting with the simulation “world”.

Then, we discuss the quadruped robot body that is used in the simulations, its

physics-engine implementation, and the geometrical parameters that describe

individual robots. Finally, we describe the simulation loop in which the physics

engine, the robot model, the neural network and the genetic algorithm come

together. In Chapter 5, the performance of the software is evaluated. Figures of

merit, collected from two test runs, are presented, and the results are discussed. In

Chapter 6, we discuss our conclusions from this work, and propose some ideas for

further research, as well as some potential applications.

5

2. NEURAL NETWORK

 2.1 OVERVIEW

The neural network used in this project consists of a single layer of parallel

perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but

with an outboard genetic learning rule rather than the one described in that work.

Each perceptron has a set of input weights that determines its response to a given

set of inputs, an activation function which, in this thesis, is a unit-step function,

and a set of output weights, which are multiplied by the output of the activation

function (1 or 0) and added to the system output vector. This neural network

operates in discrete time, evaluating sampled inputs and producing outputs at fixed

time intervals. A block diagram of the neural network, and its associated memory

stacks, is shown in Figure 2.1.

Figure 2.1: Neural network block diagram

6

2.2 INPUT VECTOR GENERATION

Inputs to the neural network come from three sources: body sensors,

command and control signals, and previous inputs and system outputs. Past inputs

and outputs come from a type of stack buffer where data travels down the stack

and is discarded when it passes the last level. These historical data are used for

two purposes: as inputs for the neural network, and as training data for a second

learning rule that is implemented in the software, but not currently being used.

The organization of this stack is shown in Figure 2.2.

Figure 2.2: Block Diagram of History Buffer Object

7

2.3 OUTPUT VECTOR GENERATION

On each time step, the input vector to the neural network is generated by

concatenating the body sensor and command inputs with the past inputs and

outputs from the history buffer objects. This vector, I_sys, is multiplied (dot

product) with each perceptron's input weight vector, W, to give the postsynaptic

potential (PSP). The output of the perceptron is the unit step function of the PSP,

multiplied piecewise by the perceptron's output weights to give its contribution,

Rn, to the system output vector, Rs. This may be expressed as follows:

Rn = u(I_sys • W) (2.1)

Rs = Σ(Rn) (2.2)

2.4 WHY THIS ALGORITHM

At this point, some information is given regarding why this system can

work. First, due to the fact that the number of perceptrons is much larger than the

number of outputs, this algorithm is a universal function approximator[6]. This

means that it can implement an arbitrary bounded function given the correct

weights, even when the network has only a single hidden layer. Because the

outputs of this neural network determine the rate of change in the actuator

positions on the robot, the result is a system of nonlinear partial differential

equations which, depending on the weight vectors and the physical properties of

the robot, are capable of producing an extremely wide variety of behaviors

8

(although not all behavior is technically possible, as there are physical limits on

speed, force, and acceleration). Due to the way the data propagate through the

history buffers, and thus constantly change position with respect to the input

weights, it is relatively difficult for the system to reach a stable state where the

robot does not move. Instead, this tends to encourage strange attractors, which

produce repetitive, but not necessarily periodic, motion.

2.5 SOFTWARE IMPLEMENTATION

This neural network is implemented in C++ as the mcNeuron object class

(in which the “mc” is short for “Motion Control”). It is organized in a linked list,

where each instance represents one perceptron, and holds a pointer to the next

perceptron in the chain. The advantage to this type of organization is that the

source code can be kept short, as a large portion of the compiled machine code is

automatically generated by the compiler itself. This also helps prevent errors by

making the source code more readable, and relying on the very mature code-

generation algorithms used in the compiler. The source code for this object class is

given in Appendix A, and its member functions are described below:

● void rnNet(float* inputs, historyBuffer* iHistory, historyBuffer* oHistory,

 float* outputs)

This function multiplies the input weights of the perceptron (dot product)

by the concatenation of inputs, iHistory, and oHistory, and if the result is

positive, add its output weights to outputs. If there are more perceptrons in the

chain, as indicated by a non-null “next” pointer, then this function is called in

9

the next node, with the same parameters. Thus, one call to the first perceptron

in the chain propagates to all of them.

● void updateNet(float scale, historyBuffer* iHistory,

 historyBuffer* oHistory)

This function implements a second learning rule, which is not used in this

project. It was replaced by the genetic algorithm very early in development.

When called, it multiplies scale by values from iHistory and oHistory, and

adds this to its input weights. Like rnNet, it propagates through all perceptrons

in the chain.

● void iW_preset(float * newWeights)

This Function sets the input weights to the values stored in newWeights. This

function is recursive, and if the perceptron has a non-null “next” pointer, will

call the same function in the next perceptron. In this case, the pointer is

advanced by the number of input weights, so that one large array can be used

to set all of the input weights in a chain.

● void iW_preset_justOne(float * newWeights)

This function is the same as iW_preset(), but is not recursive.

● void oW_preset_justOne(float * newWeights)

This is the same as iW_preset_justOne(), but acts on the output weights instead

of the input weights.

10

● mcNeuron *getNext()

This function returns a pointer to the next perceptron in the chain, or NULL if

a next node does not exist.

● mcNeuron *cutNth(int index)

This function cuts the chain at the Nth node, and returns a pointer to the

removed segment. It works by recursively propagating down the chain while

decrementing index, until index = 1. When this condition is true, the node sets

its “next” pointer to NULL, and returns the value that was in that pointer. The

returned pointer propagates back up the chain as the CPU falls down through

the call stack, until the first called node finally returns it to the calling function.

● void setNext(mcNeuron * newNext)

This function sets the “next” pointer in the called node to newNext.

● void appendChain(mcNeuron * newSegment)

This function appends the chain specified by newSegment to the end of the

called chain. It works by recursively propagating down the chain until it is

called on a node whose “next” pointer is null, and setting that pointer to

newSegment.

● float *getIWeights()

This function returns a pointer to the input weights for the called perceptron.

● float *getOWeights()

This function returns a pointer to the output weights for the called perceptron.

● void setRandomOWeights(float maxValue)

11

This function sets the output weights of the perceptron to random numbers,

varying from -maxValue to +maxValue. It is recursive, and operates on each

node in the chain until a null “next” pointer is reached.

● void setRandomIWeights(float maxValue)

This function is the same as setRandomOWeights(), but operates on the

input weights.

● void setCascadingOWeights(float weight, int oIndex)

This function sets the output weight specified by oIndex to weight, and sets all

others to zero. If the “next” pointer is not null, it calls the same function on the

next node, with the parameters set by the following two rules:

 If oIndex is less than the number of output weights, increment oIndex.

 If oIndex is equal to the number of output weights, then the next oIndex is

zero, and the next weight is -weight.

Note that this function is not called in the final build of the software.

● void shakeIptWeights(float maxValue)

This function adds a random number, which varies from -maxValue to

maxValue, to each of the input weights. It is recursive, and operates on all

perceptrons in the chain. After the random values are added, the weight vector

is normalized.

● void shakeOptWeights(float)

This function is the same as shakeIptWeights(), but operates on the output

weights.

12

● void mutateIptWeights(float maxValue)

This function selects a random, continuous segment of the input weights and

replaces them with random numbers, which vary from –maxValue to

maxValue. It is not recursive (it operates on only one perceptron), and is called

by the much more extensive mutation function in the genetic algorithm class.

● void mutateOptWeights(float)

This is the same as mutateIptWeights(), but operates on the output weights.

● void svNet(ofstream * saveFile)

This function saves the input and output weights of a perceptron to the fstream

object pointed to by saveFile. It is recursive, so the entire network will be

saved when it is called on the first element in the chain. Note that the fstream

object has an internal index that counts up as data are saved, so the function

can be called on multiple chains with one open file, and they will all be saved

in order.

● void ldNet(ifstream * loadFile)

This function loads the input and output weights stored in the fstream object

pointed to by loadFile into the input and output weights. It is also recursive,

and operates in the same way as svNet.

13

3. GENETIC ALGORITHM

3.1 INTRODUCTION

The neural network described in Chapter 2 is trained using an outboard

genetic search algorithm, which operates on the entire network, rather than

individual perceptrons. Each candidate neural network is given a turn to control a

randomly generated robot in a physics simulation, and scored based on its

effectiveness at making the robot walk. Like all genetic algorithms, this one

combines randomness, selection, crossover, and mutation to search the space of all

possible input and output weight vectors. Due to the extremely large search space,

and the fact that there are large clusters of viable solutions (different types of

walking) with fitness functions that tend to be somewhat continuous, this problem

should be particularly well-matched to the properties of a genetic algorithm [7].

Selection is based on a floating-point score that is generated by evaluating

the network's efficacy in controlling a simulated robot. In order to function, a

genetic algorithm must find a region in the search space where there exists a score

gradient before it can begin to function as a genetic algorithm; before this happens

it implements only a random search. As a result, the search must happen upon a

region with a fitness gradient, by chance. If these regions fill too small a portion of

the total search space, it can take a very long time for the search to locate one of

them. For this reason, points must initially be awarded for results that are not

directly useful, but which are likely to be connected to a useful region by a

“bridge” of scores that are high for their particular region[7].

14

3.2 SCORING

At the start of a turn, the software drops a robot into the “world” at a

random position and begins stepping its neural network along with the physics

engine. In order to reduce noise in the score due to a random bounce when the

robot falls a short distance to the ground, and reduce the tendency for the system

to waste time early on by simply making the robots lean forward, there is a delay

of approximately two seconds in simulation time before the software records the

robot's “start” position. At the end of the turn, the start position is subtracted from

the ending position, and points are awarded according to the following five rules:

1. Score is awarded for any movement that occurs, regardless of direction. Early

in the process, this causes the system to select the neural networks that cause

the system to exhibit those attractors that produce constant motion. This causes

oscillatory behavior to be learned early in the evolutionary process, and is what

replaces the initial learning step used in [5], where fitness functions were

assigned to per-leg oscillations.

2. The population member receives points a second time for movement in the

desired direction, as determined by a dot product, but only if that number is

positive — a negative score here is counted as zero. As a result, it is possible

for an individual to receive up to two points per meter for moving in the

correct direction.

3. A two-point penalty is assessed if the robot is upside-down at the end of the

turn, which can occur quite easily due to the physical characteristics of this

15

particular robot design. The purpose of this penalty is to avoid behavior that

emerged in some of the earliest tests, where the robot would roll forward, and

then hop along upside-down by kicking its legs.

4. A user-configurable penalty is assigned each time the robot chassis comes into

contact with the ground. There is a delay of approximately 1 second in

simulation time after a ground impact is registered, before the counter can be

incremented again. This prevents large penalties from accruing quickly if the

chassis remains in contact with the ground for a period of time. From the test

runs that have been performed, it was found that this penalty needs to be very

small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05

was used. It may be effective to increase this penalty slowly after the system

has learned to walk, but this has not yet been tested.

5. The population member retains half of the score it received in the previous

generation, so that a single weak performance is not likely to “kill” a high-

scoring neural network. While this last rule can sometimes prevent a more-fit

individual from displacing a less-fit one, the effect quickly fades away when

an individual performs poorly for two or more generations. It also is not

typically enough to prevent displacement in the case of a very low, or negative,

score. For this reason, several replacements still occur in most generations.

16

3.3 SELECTION

At the end of a generation, all members of the population are sorted by a

ranking algorithm, so that those with the highest score appear in the earliest

positions. In order to select each parent for the next generation, a random floating-

point number in the range [0, 1] is generated, and squared, so that the new

probability distribution will tend toward zero. This new number still falls within

the same range, but has an average value of ¼ instead of ½ — thus selecting

higher-scoring individuals more often than low-scoring ones. This number is then

multiplied by the size of the population, cast to an integer, and used to index a

neural network that will be the “parent” of a new population member. Note that

the random number could also be raised to any other positive power, or another

function could be used to provide a different probability distribution, although

these options have not been investigated. A second method which has been tested

is to instead multiply the square by the maximum score in the population, and then

take the weakest member above that score, but it appears to be too aggressive for

the small populations that are feasible on a current PC, and was found to cause

problems with early convergence. This cause of this problem is that the highest

score in a generation tends to be much higher than the average score, or even the

average of the top 5 scores, as shown in Chapter 5. The top scoring population

member thus tends to be chosen as a parent very often by this rule, which causes

the diversity in the population to disappear rapidly, leading to the early

convergence problems that were observed.

17

3.4 CROSSOVER AND MUTATION

After the two parent networks are selected, a new neural network is created

by combining them. Each perceptron in the child is created by randomly selecting

the perceptron at the same position from one of the parents, and occasionally

introducing a random mutation. These mutations can take any of the forms

outlined below:

● A random, continuous, segment of the perceptron's input weights is chosen,

and replaced with a string of random numbers. This permits behavior to drift

over time at the individual perceptron level.

● A perceptron's output weights are rotated, so that all of its effects are

“mirrored” to the opposite side of the body (either side-side or front-back can

occur). At the same time, the perceptron's response is time-delayed by a

random amount by doing a circular shift on its input weights by an integer

multiple of the number of inputs. The purpose of this mutation is to encourage

symmetry in the robot's motion, and allow effective behavior that evolves in

one leg to eventually propagate to the other legs.

● At the population-member level, the software randomly selects a continuous

group of perceptrons, and moves them to a new position in the list. This has no

direct effect, but makes it possible for a new child to be created with multiple

perceptrons that originally occurred at the same position. For example, the

child could contain four nodes that were all at position 25 in its grandparents.

● After the new perceptron is generated, all of its weights (both input and

18

output) are randomly adjusted by a small amount, and the input weights vector

is normalized.

3.5 SOFTWARE IMPLEMENTATION

The genetic algorithm is implemented by the mcEVO object class, which

manages the population, and two helper functions, rankNodes() and breedNets(),

which perform the genetic operations.

The mcEVO class encapsulates the neural network and its associated

history buffers in such a way that the entire population can be accessed through

one pointer. It also stores the geometry for the randomly generated robots. The

source code for this class is given in Appendix B, and its member functions are

described below:

● mcEVO(int popSize, mcEVO * previous, dReal * geomMin, dReal *

geomMax)

This is a chain constructor which builds a population of popSize. It does not

generate the neural networks (this is done in a separate call), but it does

generate a random set of robot-body proportions for each element. The input

variable geomMin should point to an array containing the lower limits for each

body dimension, while geomMax should contain the upper limits. These

parameters are described in detail in the simulation section of this thesis.

Previous is used internally to this chain constructor, and should be set to

NULL when it is called from outside.

19

● ~mcEVO()

This destructor operates on the entire chain, deleting all nodes and any

perceptron chains that were attached to them.

• mcEVO * getMax(mcEVO * curBest, float curMax)

This function returns a pointer to the node in the chain with the highest

score value. The input variables curBest and curMax are used internally as

the function recurses through the chain; it should thus be called with

curBest = NULL and curMax set to a large negative number (-10 is

sufficient in this case).

• void setPrevious(mcEVO * newPrevious)

This function sets the “previous” pointer for the called node to

newPrevious.

• void setNext(mcEVO *)

This function sets the “next” pointer for the called node to newNext.

• void detach()

This function detaches the called node from the chain, calls

previous->setNext(next) and next->setPrevious(previous), and sets its own

previous and next pointers to NULL. Thus, the node is removed from the

chain, and the chain is spliced back together.

• mcEVO *getNext()

This function returns the value in the “next” pointer of the called node.

20

• mcEVO *getPrevious()

This function returns the value in the “previous” pointer of the called node.

• mcEVO *getFirst()

This recursive function can be called on any node in the chain. It calls

previous->getfirst() until previous = NULL, then returns a pointer to that

node.

• mcEVO *getLast()

This function works in the same way as getFirst(), but recurses down the

chain instead of up, and returns a pointer to the last node.

• float getScore()

This function returns the score stored by the called node.

• mcEVO *getLastAbove(float minScore)

This function recurses up the chain until it reaches a node whose score is

higher than minScore. It then returns a pointer to that node. Note that this

function is called on the last node in the chain (rather than the first), and is

intended to be used after the ranking operation is complete. See the section

on the rankNodes() helper function below.

• mcEVO *getNth(int N)

This recursive function extracts a pointer to the Nth node in the chain. It

works by calling itself on the next node in the chain, while decrementing N,

until N = 0. It then returns a pointer to the node where this occurred.

21

• void insBefore(mcEVO * newNode)

This function inserts the node pointed to by newNode into the position

preceding the called node. It sets its own “previous” pointer to newNode, and

calls setPrevious() and setNext() on the new node, and setNext() on the

current previous node, so that the chain is still continuous in both directions.

• void dumpScores()

This recursive debug function causes all nodes in the chain to send their

scores to stdout.

• void dumpWeights()

This debug function causes all nodes in the chain to send their weights to

stdout. Note that there can be many millions of weights, which can cause

problems depending on the terminal program from which the software is run.

• void setScore(float newScore)

This function sets the score stored by the called node to newScore.

• dReal *getParams()

This function returns a pointer to the robot-body geometry parameters

stored by the node.

• void appendChain(mcEVO * newSegment)

This function causes the chain starting at newSegment to be appended to the

end of the chain holding the called node. It recurses down the chain

until next = NULL, then sets next = newSegment and calls

22

newSegment->setNext(this).

• int killLast(int numDeleted)

This function deletes the last numDeleted nodes in the chain. It works by

recursively calling itself on the next node until next = NULL, then returning

numDeleted. As the CPU falls back up through the call stack, each recursion

subtracts one from the returned number and returns that, thus counting down

toward zero. When the return value is zero, the node calls delete next, and sets

next = NULL. All nodes below this point are then deleted by the chain

destructor, as described above.

• void svBrains(ofstream * saveFile)

This recursive function saves all of the neural networks being managed by

a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron

chain pointed to by each node in the chain, and then calling itself on the next

mcEVO node. Note that the fstream object class counts and records the current

position within the file, which greatly simplifies this implementation.

• void ldBrains(ifstream * loadFile)

This function works in a similar way to svBrains(), but loads the neural

network weights from a file into all of the mcNeuron objects being managed

by the called mcEVO chain.

• void mkBrains(int numPerceptrons, int RHL, int THL)

This recursive function causes all nodes in the mcEVO chain to generate

23

neural networks and history buffer lists using the chain constructor for the

mcNeuron class. The neural networks thus created have numPerceptrons

perceptrons, and both history buffers (one for input variables, and one for

output variables) have RHL + THL nodes. Note that this function, in its

current implementation, assumes that each neural network has 34 inputs and 16

outputs. This will change when the class is adapted away from this project for

general-purpose use.

● void mkBrains_random(int numPerceptrons, int RHL, int THL, float * array)

This function works in the same way as mkBrains, but fills the input and

output weight arrays with random numbers rather than leaving the memory

uninitialized. Array points to an array of type float that is large enough to hold

all input and output weights, which was used internally in a different version of

this function. It has not been removed, because that version has not yet been

fully evaluated at the time of this writing. For the version of the function used

in this thesis, array can be set to NULL.

● mcNeuron *getBrain()

This function returns a pointer to the first node in the mcNeuron chain

being managed by the called mcEVO node.

● historyBuffer *getIHist()

This function returns a pointer to the first node in the input history buffer

chain being managed by the called mcEVO node.

24

• historyBuffer *getOHist()

This function returns a pointer to the first node in the output history buffer

chain being managed by the called mcEVO node.

• void setIHist(historyBuffer *)

This function sets the input history buffer chain to be used by the called

node.

• void setOHist(historyBuffer *)

This function sets the output history buffer chain to be used by the called

node.

The core features of the genetic algorithm, including selection, crossover,

and mutation, are implemented in two helper functions that are written to operate

on a mcEVO chain. These functions are:

● rankNodes(mcEVO * target)

This function performs a sorting operation on the mcEVO chain beginning

at target. The nodes are ranked in order of descending score. Note that, after

the ranking is complete, target is no longer the first node in the chain.

However, the member function getFirst() can be called on target, and the first

node will be returned.

● breedNets(mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin,

dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut,

float iRnd, float oRnd)

25

This function implements almost all of the actual genetic algorithm, and is

called after rankNodes(). Its arguments are as follows:

 thePopulation is a pointer to the mcEVO chain on which the function will

operate.

 popSize is the size of the population.

 nReplaced is the number of population members that be replaced with

newly created candidates.

 pMin is a pointer to the array containing the lower limits for the robot body

parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).

 pMax is a pointer to an array containing the upper limits for the robot body

parameters.

 nNeurons is the number of perceptrons in each population member.

 RHL is the length of the history stack used by the neural networks as

inputs.

 THL is the length of the history buffer used for an additional learning rule

that is not used in this thesis, but is implemented in the mcNeuron class.

Note that the total length of the stacks is equal to RHL + THL.

 mutProb is the probability that a mutation will occur in any given

perceptron.

 maxMut is the maximum magnitude of the random numbers that a segment

of a perceptron's input weights will be replaced with, when this type of

mutation occurs (see section 3.4). The newly generated weights will thus

26

vary from -maxMut to maxMut. Note that this value should be chosen so

that its average magnitude is approximately equal to the average magnitude

in the input weight vector, so that the newly created weights do not swamp

the other weights. Because the input weights vector is normalized, the

value of maxMut used in this thesis is set to 2 * sqrt(1 /

number_of_input_weights).

 iRnd is the maximum magnitude of the random numbers that are added to

each input weight, after the perceptron is created and all mutations are

applied, and before the input weight vector is normalized.

 oRnd is the maximum magnitude of the random numbers that are added to

the output weights. Note that the output weights are never normalized.

27

4. SIMULATION ENVIRONMENT

4.1 OVERVIEW

The software in which the robot controllers are trained is based on a free

and open-source rigid body physics engine called OpenDE or ODE [8], which is

short for “Open Dynamics Engine”. This engine was orignally created by Russell

Smith, and is currently being maintained and extended by a community of

volunteers. It is distributed under two separate licenses — the GNU LGPL and a

BSD-style license — such that a user can choose either of them. Thus, it may be

used in free or commercial software, with very few restrictions. The most

significant restriction in the BSD-style license is that the original work must be

cited. This physics engine provides general-purpose simulation of articulated

bodies, in addition to collision detection, and is primarily intended for use in video

games. It has become popular enough in robot simulations, however, that there

have been robot-simulation software packages[9] created and even a book[10]

written about modeling robots in ODE.

4.2 SIMULATION WORLD

The simulation “world” consists of two parts — a randomly generated

height map (the “ground”), and a randomly proportioned robot model. The height

map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space.

At each grid point, the height is set to a random number so that all heights fall

within a 0.13m range.

28

The robot body is generated and inserted into the world by the spiderBody

object class (see section 4.4). A majority of the code in this class, about 1500

lines, comprises the constructor function, which performs the following steps:

● Create the core body of the robot, which consists of three ODE primitives, set

up its mass and inertia matrix, add its collision detection geometry, and insert it

into the world.

● Repeat the previous step for the upper legs and lower legs.

● Calculate the starting positions / rotations for the legs, and move them to those

locations.

● Attach the legs with the appropriate ODE joints (ball joints at the hips and

hinge joints at the knees).

● Calculate the base / tip positions of the actuators, and call genActuator() on

each one.

4.3 QUADRUPED ROBOT BODY

The robot body used in these simulations is shown in Figure 4.1. This robot

has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear

servos controlling a single leg are shown in Figure 4.2; their effects are as follows:

1. Works with Actuator 2 to control the direction of the axis of the upper leg.

2. Works with Actuator 1 to control the direction of the axis of the upper leg.

3. Controls the rotation of the upper leg about its axis. The effect of this actuator

is interdependent with Actuators 1 and 2.

4. Controls the bending angle of the knee joint.

29

Figure 4.1: Quadruped Robot

Figure 4.2: Diagram of a Single Leg Showing Actuator Indices

30

The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5.

These dimensions correspond to those shown in Table 4.1, and the upper and

lower limits given in Table 4.2.

Figure 4.3: Robot Body Core (isometric view), Showing Dimensions

Figure 4.4: Diagram of Upper and Lower Chassis Platforms

31

Figure 4.5: Diagram of a Leg, Showing Dimensions

Figure 4.6: 3D Rendering of the Robot Walking in the Simulation

Environment

32

Figure 4.6 shows a 3D-rendered example of the robot. This image was

made from a screenshot of the robot walking in the simulation software. The gray

actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators

correspond to Actuator 3, while Actuator 4 is not shown in this picture because it

is handled outside ODE, in order to increase the speed of the software, and not

drawn when the scene is rendered.

4.4 ROBOT BODY OBJECT CLASS

The ODE objects which model the robot body are created and manipulated

through the spiderBody object class. The source code for this class is given in

Appendix C. Aside from the constructor and destructor, the robot body class

implements the following member functions:

● dReal getPos(int index)

Returns the current length, in meters, of the linear actuator specified by index,

with respect to its starting length. Negative numbers indicate that the actuator

has retracted, while positive numbers indicate that it has extended.

● dReal getVel(int index)

Returns the linear speed, in meters per second, of the actuator specified by

index, where negative numbers indicate that the actuator is retracting and

positive numbers indicate that it is extending.

● void addForce(int index, dReal force)

Adds a 3rd law pair of forces of magnitude force to the two ends of the

actuator specified by index, which are directed along its axis. This is the

33

source of all of the driven motion in the physics simulation, except for the four

knee joints.

● void addKneeTorque(int index, dReal torque)

Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower

leg specified by index. This is the source of all driven motion at the knee

joints.

● dReal getKneeAngle(int index)

Returns the current angle, in radians, of the knee specified by index. This

angle is measured from the direction of the upper leg (if the knee is straight,

the angle is zero), and increases as the lower leg bends downward.

● dReal getKneeOmega(int index)

Returns the current angular speed, in radians per second, of the knee

specified by index.

● dBodyID getCore()

Returns the ODE body ID of the robot chassis. This is used in the collision

detection callback to count collisions between the chassis and ground

(which incurs a small score penalty).

4.5 HELPER FUNCTIONS

In addition, there are three helper functions that are not members of the

robot body class, but are used with it. All three of these functions relate to the

actuator that drives each knee, but is external to the ODE world in order to

34

increase processing speed. The source code for these helper functions is given in

Appendix C, and they are described below:

● dReal calcKneeActOffset(dReal angle, dReal KBR, dReal KLL)

Calculates the position of the knee actuator tip, in meters, with respect to the

knee joint. This position ranges from zero to the length of the upper leg. Angle

specifies the angle of the knee joint, in radians, as returned by

spiderBody::getKneeAngle(int), KBR is the distance between the knee

joint and the link attachment point on the lower leg, and KLL is the length

of the linkage itself.

● dReal calcKneeTorque(dReal Angle, dReal slidePos, dReal KBR,

dReal F)

Returns the torque applied to the knee joint by a force F in the knee actuator.

The input variable, slidePos, specifies the position of the knee actuator, as

defined above, while F is the linear force in the actuator. Angle and KBR are

the same variables described above.

● dReal calcKneeActVel(dReal Angle, dReal slidePos, dReal KBR,

dReal w)

Returns the linear speed of the knee actuator, in meters per second, given the

angular speed of the knee joint, in radians per second. The input variable w is

the angular speed; other inputs are the same as described above.

35

4.6 BODY GEOMETRY PARAMETERS

The body parameters, which are set at random by the software and passed

to the robot body constructor in a parameter array are listed in Table 4.1. These

parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index

column specifies the position in the array, while the Macro column gives the

three- or four-letter macro by which the variables are referenced in the source

code (see section 4.4 and Appendix C). Note that all linear dimensions are in

meters, while all mass parameters are in kilograms.

Table 4.1: Robot Body Parameters Array

Index Variable Macro

0 Upper platform (chassis) radius UCR
1 V actuator upper mount offset (from centers of UP) VAO
2 Distance between upper and lower platforms RISE
3 Lower platform radius LCR
4 Upper leg length ULL
5 Lower Leg Length LLL
6 Distance hip -> V ball on upper leg IBR
7 Hip rotation linkage length RBR
8 Knee link length (Obsolete; now set automatically) KLL
9 Distance knee -> knee link attachment KBR
10 Upper platform mass UPM
11 Lower platform mass LPM
12 Square tubing density (mass / unit length) LINDENS
13 Platform and Leg thickness THICK
14 Starting Position X POSX
15 Starting Position Y POSY
16 Starting Position Z POSZ
17 Upper leg zero angle ULZA
18 Leg rotation zero angle LRZA
19 Lower leg zero angle LLZA
20 Foot ball radius FBR
21 Foot ball mass FBM
22 V Actuator base mass VABM
23 V Actuator tip mass VATM
24 Rotational Actuator base mass RABM
25 Rotational Actuator tip mass RATM
26 Upper leg mass ULM

36

4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within

a set of upper and lower limits defined by two limit arrays. The purpose of this

variation is to train the neural networks to control a range of robots, rather than

just a single example, to increase their resistance to the effects of small changes

when going from the simulated robots to a physical one. The values used in the

lower and upper limit arrays are given in Table 4.2.

Table 4.2: Upper and Lower Robot Parameter Limits

Index Macro Variable Description Lower Limit Upper Limit

0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9 KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52

37

4.8 SIMULATION LOOP

On each step through the simulation loop, the inputs to the control system

are updated with the force and position values for all of the actuators. The position

values for the 12 upper leg actuators are obtained from ODE, using the getPos()

member function of the robot body class, while the motion speeds for these

actuators are obtained using getVel(). The knee actuator positions and speeds are

calculated from the knee angles and angular velocities, which are obtained from

ODE using the getKneeAngle() and getKneeOmega().

For all actuators, including the ones for the knees which are handled

externally to ODE, the position is zero as seen by its control-system input at

whatever position the actuators are created in. These zero positions are also used

to define the actuator position variables which are modified by the outputs of the

control system. The difference between these “set” position variables, and those

returned by ODE, or calculated from angular values, in the case of the knees, are

used to calculate the force in each actuator using a simple damped-spring

equation:

F = -ks * (actual position – set position) – kd * (actuator speed)

where ks is a spring constant, and kd is a damping coefficient.

The spring constant for knee actuators is 1500N/m; for other actuators it is

1100N/m, and the damping coefficient is 30N*s/m. These values are based on

measurements taken from a prototype linear actuator.

38

The calculated forces for all actuators except those in the knees are sent

back to ODE through the robot body class using the addForce(index, force)

member function, as well as to the control system as force-sensor inputs. The

forces for the knees are converted to torque values, and sent to ODE using the

addKneeTorque(index, torque) member function.

The actuator set positions are produced by the control system outputs

through a double integral. The control system is able to set acceleration values for

the actuators, up to a certain maximum acceleration, and these values change the

speed of the actuators (the rate of change of the set value), up to a certain

maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum

speed is 0.35m/s, both of which are based on measurements taken from a

prototype actuator.

In addition to position and force measurements, the control system also has

two other inputs that describe the desired direction of travel with respect to the

robot. These two values are dot products of a unit vector pointing in the desired

direction with the robot's local X and Y vectors. These are treated exactly the

same as the sensor inputs, and propagate through the history stack in the same

way.

39

5. PERFORMANCE EVALUATION

5.1 OVERVIEW AND QUALITATIVE ANALYSIS

For a system such as this, the most definitive performance criterion is

whether the robots begin walking in an effective way within a reasonable amount

of time, while operating on a computer which is economically feasible to the user.

During and after the development of this software, many test runs were performed,

using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In

eac test, the AI always either learned to walk, or found a way to work around the

rules and “cheat”, within a few days.

In the earliest runs, there was no penalty for being upside-down, which

resulted in the robots' bouncing and rolling forward as far as they could upon

dropping into the world, then kicking their legs and hopping forward while

upside-down. Some of them also managed to tilt 90 degrees to the side and roll a

good distance, effectively doing cartwheels, before falling down. When the

penalty was added and the software re-run, a population of robots was produced

fairly quickly that would hop forward, like frogs. At this point, a bug in the

physics simulation code was found and fixed, and the first population of actual

walkers was produced on the following run. For this test, the software was

allowed to run for a period of approximately three weeks in real-time, in which

time the it became very good at making the robots walk—at the end of this run,

the robots were moving about 16 body lengths in 14 seconds of simulation time,

which is quite fast given the physical characteristics of the robot and the limits that

40

were in place on how fast the actuators were allowed to move and accelerate (see

Chapter 4).

5.2 QUANTITATIVE ANALYSIS

In order to obtain a quantitative analysis of the performance of this system,

a pair of test runs was done, with different parameters for the neural network. A

special version of the software was created for these runs, which has the added

feature of creating the log files that are used in the analyses below. These log files

are formatted as plain text, with one line for each population member evaluated.

The entries on each line are as follows:

● The index of the current population member. This ranges from 0 – 39, as a

population size of 40 was used for all of the runs that used a log file.

● The score that the population member retained from the last generation,

according to scoring rule #5 (see section 3.2).

● The number of times the chassis came into contact with the ground, as

described in rule #4.

● The score given for any movement at all, as described in rule #1.

● The movement of the robot in the X direction.

● The movment of the robot in the Y direction.

● The final score passed back to the mcEVO node.

Results from two of these logged runs are included in this section. In these

runs, each neural network is given a turn of 2000 time steps in which to control its

robot. The starting positions are recorded after a delay of 250 time steps, which

41

gives an effective turn length of 1750 time steps. Each time step for the neural

network represents 0.012 seconds of simulation time, so there is a period of

approximately 21 seconds in simulation time for which movement is recorded.

Both tests are identical in all respects, except that one uses a neural network of 30

perceptrons, with a memory of 250 time-steps while the other uses 150

perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is

equivalent to approximately 3 seconds of simulation time, while 150 time-steps is

equivalent to about 1.8 seconds. For these runs, the desired direction is always

along the X axis, and the ground impact penalty is very small (0.05). Changes to

these rules can be implemented slowly through a modification to the software —

the desired direction will take random values that slowly drift away from the X

axis, while the ground-impact penalty will slowly increase. This is not done here

due to the length of time the software has to run before a new adaptation is made.

The results from the log files were post-processed using a second program,

which was written to parse the data from the logs and extract the following data

sets for each generation:

● The maximum score attained by any population member during the generation,

excluding any score carried over from the previous generations.

● The top 5 scores from the generation.

● The average value of the top five scores from the generation.

● The maximum score ever achieved, in the current or any previous generation.

42

● The total movement in the X and Y directions for the top 5 scorers in the

generation.

Figure 5.1 shows the top score results vs. generation from the 30-

perceptron test. There are three data sets on this plot: the top score attained during

the generation (orange), the average of the top five scores (purple), and the

running maximum score (black). These scores are a figure of merit which

represents the performance of the neural networks with respect to all of the

scoring rules that are discussed in Chapter 3. A plot of the total movement in the

X direction (orange) and the Y direction (purple) for the top scoring neural

network in each generation is given in Figure 5.2. Unlike the scores shown in

Figure 5.1, these movement figures provide concrete values that are relevant

outside the context of the genetic algorithm — they represent the actual distance

that the simulated robots were able to walk during the time allotted.

Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively,

but are taken from the 150-perceptron run. They show data taken from a smaller

number of generations, but the same amount of real-world run time. This is

because the software runs more slowly when a larger neural network is used.

43

Figure 5.1: Scores Per-Generation for the 30-Perceptron Run

Figure 5.2: X and Y Displacement for the 30-Perceptron Run

44

Figure 5.3: Scores Per-Generation From the 150-Perceptron Run

Figure 5.4: X and Y Displacement From 150-Perceptron Run

45

5.3 DISCUSSION OF RESULTS

Note that the first run (30-perceptrons) went for 405 generations, while the

second (150-perceptrons) run was only 240 generations. Both tests ran for

approximately 11 days in real-world time, each running on one core of the same

CPU, but the larger neural network slowed down the software considerably on the

second run. This is to be expected, as the neural networks from the first run

consume only 59MB of RAM, while those from the second run consume 179MB

—and all of these weights need to be processed 2,000 times per turn, and 160,000

times per generation.

Several other things are apparent from Figures 5.1-5.4. First, the data has

quite a bit of randomness in it—there is a large amount of inconsistency between

generations in both the scores and displacements. Secondly, while the scores are

generally rising as the generations progress, they do so in a very chaotic way, with

relatively flat periods and periods of rapid increase. There is even what appears to

be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show

the X component of motion increasing with the score, while the Y component

remains approximately centered at zero, but with steadily increasing random

variation.

The first observation can be explained by the fact that the robots the system

is being asked to control are randomly generated. Thus, a neural network that

performs well in one generation may be do poorly with the robot it is given in the

next generation. This is intentional, as the goal is to evolve a control system which

46

is effective in a wide variety of robots (thus increasing the chance that it will work

well with a physical robot in the real world). In addition, it is possible for an

otherwise strong-performing control system to flip its robot upside-down,

obtaining a very low (or negative) score in the process. This tends to be especially

likely with the very high scoring individuals in any generation, as they tend to be

the “risk takers”. This issue can be exacerbated by the randomness in the robot

parameters, as a behavior that is only slightly risky in one robot may be fatal in

another.

The chaotic nature of the increases in score over time can be explained by

the properties of the genetic algorithm. The software is continually recombining

the same characteristics into new population members, only occasionally

happening upon a new adaptation that results in significantly higher scores. It

takes time, however, for this adaptation to propagate through the population, and

be optimized to work in a consistent way. Thus, there can be a very large jump in

the running maximum, creating a “high score” that holds for quite some time. The

apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to

the “deaths” of several population members which, while high-scoring, were also

highly inconsistent. This is backed up by the fact that the randomness in the plot

drops off very quickly during the same few generations, and remains smaller than

before as the scores recover.

The movement in the X direction (which is always the “desired” direction

in these two runs, as explained above) behaves as one would expect; it appears to

47

increase along with the scores. The Y movement, however, remains approximately

centered at zero, but has a random noise in it that increases through the

generations. This can be explained by the fact that the control system is becoming

more effective at moving the robots in general, and because the population

members still receive points for moving along the Y axis. In later generations, this

movement is small compared to the motion in the X direction, as the control

system improves at directing the robot in the direction of maximum score. This

side movement could also be suppressed by slowly introducing a penalty for

movement in the Y direction, especially if an additional input was added to the

control system for current (absolute) position.

Finally, it is worth pointing out that the 30- and 150- perceptron tests were

only allowed to run for 860 and 485 generations, respectively, due to time

limitations. Previous runs that were much longer, including one that went into the

thousands of generations, showed a continued increase in performance, with the

longest run producing several scores between 8 and 9 on each generation. The

plots here are, however, sufficient to show that the ability of the AI to control a

robot is generally rising with time, and to show some of its characteristics.

48

6. CONCLUSIONS AND FURTHER RESEARCH

6.1 CONCLUSIONS

From the results given in section 5.2, as well as direct observation of the simulated

robots in the software, it is clear that this system is capable of generating effective

walking movement. In addition, the robot design used in this thesis is particularly

difficult to control, as its wide body does not permit the center of mass to remain

in a stable position. In quadruped animals, the body is long and narrow, so that

diagonal pairs of feet that are on the ground form a straight line that is always

beneath the center of mass. With a hexapod or octopod, the problem would be

even easier, as the feet on the ground at any given time form a triangle or a

trapezoid, respectively, that can always enclose the center of mass on the

horizontal plane. Thus, this method can be expected to produce better results than

those given here for these other body types.

6.2 CONTINUED WORK WITH THIS BUILD

The first step that should be taken in order to learn more about this system is to

perform more extensive testing than what was done for this thesis in order to

maximize the efficiency of the system with respect to CPU load and memory

usage. This will require a large number of test runs to be performed with many

different configurations, in order to optimize the following variables:

● Population size

● Number of perceptrons

49

● Memory length

● Probability of each type of mutation

● Scoring with respect to different criteria

● Selection rules

In order to perform a large number of tests in a reasonable amount of time, it

would be best to use a computer with a large number of processor cores, as this

software does not parallelize easily in its current form. Alternatively, the physics

engine could be replaced with one that runs on a stream processor, such as PhysX

from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the

neural network could be rewritten to run on a GPU.

6.3 EXTENSION OF CONTROL SYSTEM

It would also be good to extend the scope of the control systems that are produced

in a few different ways. First, multiple neural networks can be used, with each

trained to perform a different task. While individual networks have been observed

to produce multiple behaviors in this system, this would be a good way to separate

the desired behaviors. Also, it might be effective to have “nested” learning rules,

such that the neural network continues to learn on its own after it is produced by

the genetic algorithm. This could be done by adding some form of short-term

reinforcement learning, or by adding a classifier network to the inputs of the

control system that predicts the result of current behavior on the score and adjusts

the weights of the network, perhaps using the P-Delta learning rule[6] that

originally went with the parallel perceptron network that is used here. Another

50

option may be to add some outputs that do not control anything, but still act as

feedback loops. This would create a form of memory that permits state-space

orbits that last much longer than the history-buffer length, which the system would

use in whatever way happens to produce the highest scores.

6.4 POTENTIAL APPLICATIONS

In terms of applications, there are two things that would be very interesting to do.

One such idea is to create a CAD-style robot “editor” in which robots can be

designed in a quick and convenient way, instead of writing a 1500+ line

constructor, as was done with the spiderBody class used in this research. This

editor would allow one to create a robot using a library of predefined parts such as

the linear servos seen on the robot that this thesis deals with, and automatically

generate a bill of materials for its physical construction. After the robot is

designed, the software can then be used to create parts of its control system.

The second possibility is to modify the simulation and genetic algorithm

software to operate as a P2P application, in a similar way to the BitTorrent

network. A large number of users who want the same robot could download a task

file that specifies the robot that is to be controlled and points to an online

“tracker”. Having connected to the tracker, a user's client would join the “swarm”

of other users, and begin receiving population members to evaluate. Each user's

PC processes a small population, similar to the ones that were used in the two test

runs here, but downloads a few new neural networks from other users and

transmits a few on each generation. Depending on the number of users who want a

51

particular robot, this could permit effective population sizes in the tens of

thousands. Like the other possibilities mentioned above, this has not been

evaluated at this point, and it is unknown whether it would be an effective design.

It would, however, be very interesting to see what might come out of it.

52

1. INTRODUCTION

This thesis describes a method for automatically generating complex

control systems for walking robots. One of the most interesting research fields

today is the development of robots that are able to perform complex and

somewhat arbitrary actions with some degree of reliability. While robotics as a

field of engineering has existed for quite some time now, and robots have been

created which are capable of performing many tasks, it is still very difficult to

create a robot which can effectively navigate complex terrain, or inside buildings.

This is mostly due to the fact that the simple forms of mechanical movement, such

as wheels, are only effective over a narrow range of conditions. A wheeled robot,

for example, may be able to navigate a single floor of a building, or a landscaped

outdoor area, but would normally be incapable of dealing with anything that its

wheels cannot roll over, such as stairs, or rough terrain. For this reason, an

effective walking-robot technology would be very useful.

Designing an effective walking robot is a difficult problem for two distinct

reasons. First, it is actually quite challenging for engineers to design mechanical

systems that exhibit anything close to the combination of speed, strength, size and

weight that exist in biological organisms. This problem tends to either introduce

severe limits on what can be done, or alternatively, cause the cost to construct a

robot to be extremely high. Secondly, and somewhat relatedly, the control system

for an effective walking robot is by necessity very complicated. This is because of

1

the wide variety of conditions under which such a robot must be able to operate; a

simple pre-programmed sequence of movements is not sufficient to provide

reliable walking.

There are many different methods which have been used to provide

intelligent control of walking robots. One approach is the use of Central Pattern

Generators (CPGs), which have been used to control biped robots [1, 2]. Like the

biological systems that inspired this method, a robot using CPG motion control

has a very small neural network in which groups of individual perceptrons behave

like schmidt trigger oscillators. The currently-active perceptrons inihibit the others

until their responses to the input vector override the inhibition. At this point, when

the system begins to switch states, a positive-feedback condition is created which

strongly attracts the system into its next state. These neuronal oscillators can be

connected in a purely feed-forward layout, in which the neurons use only each

other's outputs as inputs, or they can use feedback, in which the inputs to the

neurons are sensor outputs from the controlled system[3]. The behavior of this

system is normally hard-coded, and tends to suffer from most of the same

drawbacks as a pre-programmed gait — it requires a human programmer to

consider each possible situation that it may encounter.

Genetic algorithms have also been used to develop control systems in

walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-

forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5]

2

combine a genetic algorithm with a CPG to produce walking behavior in a

hexapod robot.

In this thesis, a new method is developed which works in a similar way to

[5], in that a neuronal oscillator controller is trained with a genetic learning rule,

but with several key differences. First, the new method uses a relatively large

neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The

network used in this thesis has dozens to hundreds of perceptrons and, in some

cases, upwards of a half-million weights (see test runs in Chapter 5). These

perceptrons are not connected together directly as they are in the CPG, but do

have feedback from the aggregate (system) output. In addition, the system has

some internal memory which stores a certain number of past inputs and outputs.

Thus, the control system can not only “see” the current state of the robot, but also

remembers what has been happening with the physical robot and what it has been

doing. The length of this memory is a user-entered variable, which has been set at

150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the

scoring and selection algorithms used in this thesis are based only on walking

performance; the first training steps used in [5] to initially produce oscillatory

behavior is not present.

For purposes of training the neural network, software is created which

combines a physics simulation with a scoring algorithm. Candidate control

systems are scored on how far they can make a simulated robot walk over

randomly-generated terrain in a given amount of time, and this information is

3

passed back to the genetic algorithm. After each neural network has had a turn,

and received a score, the software ranks them and replaces the lower scorers with

new networks that are created by combining pairs of high-scorers and applying

random mutations. These steps are then repeated until the user decides that a

sufficiently effective one has been produced, based on observation of the 3D-

rendered simulation or the figures of merit introduced in Chapter 5, and terminates

the program.

When the program is first started, all of the neural network weights are

random and the simulated robots are only able to move a very short distance. As

time progresses, however, the robots begin to develop the ability to produce

continuous motion in one direction. In the test runs, the robots began to show

some walking ability within about two days, and were becoming quite effective at

walking after about a week.

While this method still requires some forethought on what types of

situation the robot will encounter, in order to create effective training simulations,

it does not need any hard-coding to be performed. All that is necessary is to create

a 3D “world” with any terrain that the robot might have to navigate, as the

software will randomly place robots in the world and score the control systems on

how well they perform. In addition, the neural networks produced by this software

are not limited to a single type of walking — multiple methods of movement have

been observed in individual networks — which simplifies their integration into a

complete robot.

4

This thesis is organized as follows: In Chapter 2, the neural network

topology is described, as is the method for generating its input vector. There is a

discussion on why it was chosen in section, and why it was expected to be

effective, and its software implementation is described in detail. In Chapter 3, we

discuss the genetic learning rule that is used with the neural network. The scoring

rules that are used in the physics simulation are defined, as are the rules used for

selection, crossover and mutation. Then, the software implementation of the

genetic algorithm is described. In Chapter 4, the physics simulation in which the

neural networks are trained is described, starting with the simulation “world”.

Then, we discuss the quadruped robot body that is used in the simulations, its

physics-engine implementation, and the geometrical parameters that describe

individual robots. Finally, we describe the simulation loop in which the physics

engine, the robot model, the neural network and the genetic algorithm come

together. In Chapter 5, the performance of the software is evaluated. Figures of

merit, collected from two test runs, are presented, and the results are discussed. In

Chapter 6, we discuss our conclusions from this work, and propose some ideas for

further research, as well as some potential applications.

5

2. NEURAL NETWORK

 2.1 OVERVIEW

The neural network used in this project consists of a single layer of parallel

perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but

with an outboard genetic learning rule rather than the one described in that work.

Each perceptron has a set of input weights that determines its response to a given

set of inputs, an activation function which, in this thesis, is a unit-step function,

and a set of output weights, which are multiplied by the output of the activation

function (1 or 0) and added to the system output vector. This neural network

operates in discrete time, evaluating sampled inputs and producing outputs at fixed

time intervals. A block diagram of the neural network, and its associated memory

stacks, is shown in Figure 2.1.

Figure 2.1: Neural network block diagram

6

2.2 INPUT VECTOR GENERATION

Inputs to the neural network come from three sources: body sensors,

command and control signals, and previous inputs and system outputs. Past inputs

and outputs come from a type of stack buffer where data travels down the stack

and is discarded when it passes the last level. These historical data are used for

two purposes: as inputs for the neural network, and as training data for a second

learning rule that is implemented in the software, but not currently being used.

The organization of this stack is shown in Figure 2.2.

Figure 2.2: Block Diagram of History Buffer Object

7

2.3 OUTPUT VECTOR GENERATION

On each time step, the input vector to the neural network is generated by

concatenating the body sensor and command inputs with the past inputs and

outputs from the history buffer objects. This vector, I_sys, is multiplied (dot

product) with each perceptron's input weight vector, W, to give the postsynaptic

potential (PSP). The output of the perceptron is the unit step function of the PSP,

multiplied piecewise by the perceptron's output weights to give its contribution,

Rn, to the system output vector, Rs. This may be expressed as follows:

Rn = u(I_sys • W) (2.1)

Rs = Σ(Rn) (2.2)

2.4 WHY THIS ALGORITHM

At this point, some information is given regarding why this system can

work. First, due to the fact that the number of perceptrons is much larger than the

number of outputs, this algorithm is a universal function approximator[6]. This

means that it can implement an arbitrary bounded function given the correct

weights, even when the network has only a single hidden layer. Because the

outputs of this neural network determine the rate of change in the actuator

positions on the robot, the result is a system of nonlinear partial differential

equations which, depending on the weight vectors and the physical properties of

the robot, are capable of producing an extremely wide variety of behaviors

8

(although not all behavior is technically possible, as there are physical limits on

speed, force, and acceleration). Due to the way the data propagate through the

history buffers, and thus constantly change position with respect to the input

weights, it is relatively difficult for the system to reach a stable state where the

robot does not move. Instead, this tends to encourage strange attractors, which

produce repetitive, but not necessarily periodic, motion.

2.5 SOFTWARE IMPLEMENTATION

This neural network is implemented in C++ as the mcNeuron object class

(in which the “mc” is short for “Motion Control”). It is organized in a linked list,

where each instance represents one perceptron, and holds a pointer to the next

perceptron in the chain. The advantage to this type of organization is that the

source code can be kept short, as a large portion of the compiled machine code is

automatically generated by the compiler itself. This also helps prevent errors by

making the source code more readable, and relying on the very mature code-

generation algorithms used in the compiler. The source code for this object class is

given in Appendix A, and its member functions are described below:

● void rnNet(float* inputs, historyBuffer* iHistory, historyBuffer* oHistory,

 float* outputs)

This function multiplies the input weights of the perceptron (dot product)

by the concatenation of inputs, iHistory, and oHistory, and if the result is

positive, add its output weights to outputs. If there are more perceptrons in the

chain, as indicated by a non-null “next” pointer, then this function is called in

9

the next node, with the same parameters. Thus, one call to the first perceptron

in the chain propagates to all of them.

● void updateNet(float scale, historyBuffer* iHistory,

 historyBuffer* oHistory)

This function implements a second learning rule, which is not used in this

project. It was replaced by the genetic algorithm very early in development.

When called, it multiplies scale by values from iHistory and oHistory, and

adds this to its input weights. Like rnNet, it propagates through all perceptrons

in the chain.

● void iW_preset(float * newWeights)

This Function sets the input weights to the values stored in newWeights. This

function is recursive, and if the perceptron has a non-null “next” pointer, will

call the same function in the next perceptron. In this case, the pointer is

advanced by the number of input weights, so that one large array can be used

to set all of the input weights in a chain.

● void iW_preset_justOne(float * newWeights)

This function is the same as iW_preset(), but is not recursive.

● void oW_preset_justOne(float * newWeights)

This is the same as iW_preset_justOne(), but acts on the output weights instead

of the input weights.

10

● mcNeuron *getNext()

This function returns a pointer to the next perceptron in the chain, or NULL if

a next node does not exist.

● mcNeuron *cutNth(int index)

This function cuts the chain at the Nth node, and returns a pointer to the

removed segment. It works by recursively propagating down the chain while

decrementing index, until index = 1. When this condition is true, the node sets

its “next” pointer to NULL, and returns the value that was in that pointer. The

returned pointer propagates back up the chain as the CPU falls down through

the call stack, until the first called node finally returns it to the calling function.

● void setNext(mcNeuron * newNext)

This function sets the “next” pointer in the called node to newNext.

● void appendChain(mcNeuron * newSegment)

This function appends the chain specified by newSegment to the end of the

called chain. It works by recursively propagating down the chain until it is

called on a node whose “next” pointer is null, and setting that pointer to

newSegment.

● float *getIWeights()

This function returns a pointer to the input weights for the called perceptron.

● float *getOWeights()

This function returns a pointer to the output weights for the called perceptron.

● void setRandomOWeights(float maxValue)

11

This function sets the output weights of the perceptron to random numbers,

varying from -maxValue to +maxValue. It is recursive, and operates on each

node in the chain until a null “next” pointer is reached.

● void setRandomIWeights(float maxValue)

This function is the same as setRandomOWeights(), but operates on the

input weights.

● void setCascadingOWeights(float weight, int oIndex)

This function sets the output weight specified by oIndex to weight, and sets all

others to zero. If the “next” pointer is not null, it calls the same function on the

next node, with the parameters set by the following two rules:

 If oIndex is less than the number of output weights, increment oIndex.

 If oIndex is equal to the number of output weights, then the next oIndex is

zero, and the next weight is -weight.

Note that this function is not called in the final build of the software.

● void shakeIptWeights(float maxValue)

This function adds a random number, which varies from -maxValue to

maxValue, to each of the input weights. It is recursive, and operates on all

perceptrons in the chain. After the random values are added, the weight vector

is normalized.

● void shakeOptWeights(float)

This function is the same as shakeIptWeights(), but operates on the output

weights.

12

● void mutateIptWeights(float maxValue)

This function selects a random, continuous segment of the input weights and

replaces them with random numbers, which vary from –maxValue to

maxValue. It is not recursive (it operates on only one perceptron), and is called

by the much more extensive mutation function in the genetic algorithm class.

● void mutateOptWeights(float)

This is the same as mutateIptWeights(), but operates on the output weights.

● void svNet(ofstream * saveFile)

This function saves the input and output weights of a perceptron to the fstream

object pointed to by saveFile. It is recursive, so the entire network will be

saved when it is called on the first element in the chain. Note that the fstream

object has an internal index that counts up as data are saved, so the function

can be called on multiple chains with one open file, and they will all be saved

in order.

● void ldNet(ifstream * loadFile)

This function loads the input and output weights stored in the fstream object

pointed to by loadFile into the input and output weights. It is also recursive,

and operates in the same way as svNet.

13

3. GENETIC ALGORITHM

3.1 INTRODUCTION

The neural network described in Chapter 2 is trained using an outboard

genetic search algorithm, which operates on the entire network, rather than

individual perceptrons. Each candidate neural network is given a turn to control a

randomly generated robot in a physics simulation, and scored based on its

effectiveness at making the robot walk. Like all genetic algorithms, this one

combines randomness, selection, crossover, and mutation to search the space of all

possible input and output weight vectors. Due to the extremely large search space,

and the fact that there are large clusters of viable solutions (different types of

walking) with fitness functions that tend to be somewhat continuous, this problem

should be particularly well-matched to the properties of a genetic algorithm [7].

Selection is based on a floating-point score that is generated by evaluating

the network's efficacy in controlling a simulated robot. In order to function, a

genetic algorithm must find a region in the search space where there exists a score

gradient before it can begin to function as a genetic algorithm; before this happens

it implements only a random search. As a result, the search must happen upon a

region with a fitness gradient, by chance. If these regions fill too small a portion of

the total search space, it can take a very long time for the search to locate one of

them. For this reason, points must initially be awarded for results that are not

directly useful, but which are likely to be connected to a useful region by a

“bridge” of scores that are high for their particular region[7].

14

3.2 SCORING

At the start of a turn, the software drops a robot into the “world” at a

random position and begins stepping its neural network along with the physics

engine. In order to reduce noise in the score due to a random bounce when the

robot falls a short distance to the ground, and reduce the tendency for the system

to waste time early on by simply making the robots lean forward, there is a delay

of approximately two seconds in simulation time before the software records the

robot's “start” position. At the end of the turn, the start position is subtracted from

the ending position, and points are awarded according to the following five rules:

1. Score is awarded for any movement that occurs, regardless of direction. Early

in the process, this causes the system to select the neural networks that cause

the system to exhibit those attractors that produce constant motion. This causes

oscillatory behavior to be learned early in the evolutionary process, and is what

replaces the initial learning step used in [5], where fitness functions were

assigned to per-leg oscillations.

2. The population member receives points a second time for movement in the

desired direction, as determined by a dot product, but only if that number is

positive — a negative score here is counted as zero. As a result, it is possible

for an individual to receive up to two points per meter for moving in the

correct direction.

3. A two-point penalty is assessed if the robot is upside-down at the end of the

turn, which can occur quite easily due to the physical characteristics of this

15

particular robot design. The purpose of this penalty is to avoid behavior that

emerged in some of the earliest tests, where the robot would roll forward, and

then hop along upside-down by kicking its legs.

4. A user-configurable penalty is assigned each time the robot chassis comes into

contact with the ground. There is a delay of approximately 1 second in

simulation time after a ground impact is registered, before the counter can be

incremented again. This prevents large penalties from accruing quickly if the

chassis remains in contact with the ground for a period of time. From the test

runs that have been performed, it was found that this penalty needs to be very

small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05

was used. It may be effective to increase this penalty slowly after the system

has learned to walk, but this has not yet been tested.

5. The population member retains half of the score it received in the previous

generation, so that a single weak performance is not likely to “kill” a high-

scoring neural network. While this last rule can sometimes prevent a more-fit

individual from displacing a less-fit one, the effect quickly fades away when

an individual performs poorly for two or more generations. It also is not

typically enough to prevent displacement in the case of a very low, or negative,

score. For this reason, several replacements still occur in most generations.

16

3.3 SELECTION

At the end of a generation, all members of the population are sorted by a

ranking algorithm, so that those with the highest score appear in the earliest

positions. In order to select each parent for the next generation, a random floating-

point number in the range [0, 1] is generated, and squared, so that the new

probability distribution will tend toward zero. This new number still falls within

the same range, but has an average value of ¼ instead of ½ — thus selecting

higher-scoring individuals more often than low-scoring ones. This number is then

multiplied by the size of the population, cast to an integer, and used to index a

neural network that will be the “parent” of a new population member. Note that

the random number could also be raised to any other positive power, or another

function could be used to provide a different probability distribution, although

these options have not been investigated. A second method which has been tested

is to instead multiply the square by the maximum score in the population, and then

take the weakest member above that score, but it appears to be too aggressive for

the small populations that are feasible on a current PC, and was found to cause

problems with early convergence. This cause of this problem is that the highest

score in a generation tends to be much higher than the average score, or even the

average of the top 5 scores, as shown in Chapter 5. The top scoring population

member thus tends to be chosen as a parent very often by this rule, which causes

the diversity in the population to disappear rapidly, leading to the early

convergence problems that were observed.

17

3.4 CROSSOVER AND MUTATION

After the two parent networks are selected, a new neural network is created

by combining them. Each perceptron in the child is created by randomly selecting

the perceptron at the same position from one of the parents, and occasionally

introducing a random mutation. These mutations can take any of the forms

outlined below:

● A random, continuous, segment of the perceptron's input weights is chosen,

and replaced with a string of random numbers. This permits behavior to drift

over time at the individual perceptron level.

● A perceptron's output weights are rotated, so that all of its effects are

“mirrored” to the opposite side of the body (either side-side or front-back can

occur). At the same time, the perceptron's response is time-delayed by a

random amount by doing a circular shift on its input weights by an integer

multiple of the number of inputs. The purpose of this mutation is to encourage

symmetry in the robot's motion, and allow effective behavior that evolves in

one leg to eventually propagate to the other legs.

● At the population-member level, the software randomly selects a continuous

group of perceptrons, and moves them to a new position in the list. This has no

direct effect, but makes it possible for a new child to be created with multiple

perceptrons that originally occurred at the same position. For example, the

child could contain four nodes that were all at position 25 in its grandparents.

● After the new perceptron is generated, all of its weights (both input and

18

output) are randomly adjusted by a small amount, and the input weights vector

is normalized.

3.5 SOFTWARE IMPLEMENTATION

The genetic algorithm is implemented by the mcEVO object class, which

manages the population, and two helper functions, rankNodes() and breedNets(),

which perform the genetic operations.

The mcEVO class encapsulates the neural network and its associated

history buffers in such a way that the entire population can be accessed through

one pointer. It also stores the geometry for the randomly generated robots. The

source code for this class is given in Appendix B, and its member functions are

described below:

● mcEVO(int popSize, mcEVO * previous, dReal * geomMin, dReal *

geomMax)

This is a chain constructor which builds a population of popSize. It does not

generate the neural networks (this is done in a separate call), but it does

generate a random set of robot-body proportions for each element. The input

variable geomMin should point to an array containing the lower limits for each

body dimension, while geomMax should contain the upper limits. These

parameters are described in detail in the simulation section of this thesis.

Previous is used internally to this chain constructor, and should be set to

NULL when it is called from outside.

19

● ~mcEVO()

This destructor operates on the entire chain, deleting all nodes and any

perceptron chains that were attached to them.

• mcEVO * getMax(mcEVO * curBest, float curMax)

This function returns a pointer to the node in the chain with the highest

score value. The input variables curBest and curMax are used internally as

the function recurses through the chain; it should thus be called with

curBest = NULL and curMax set to a large negative number (-10 is

sufficient in this case).

• void setPrevious(mcEVO * newPrevious)

This function sets the “previous” pointer for the called node to

newPrevious.

• void setNext(mcEVO *)

This function sets the “next” pointer for the called node to newNext.

• void detach()

This function detaches the called node from the chain, calls

previous->setNext(next) and next->setPrevious(previous), and sets its own

previous and next pointers to NULL. Thus, the node is removed from the

chain, and the chain is spliced back together.

• mcEVO *getNext()

This function returns the value in the “next” pointer of the called node.

20

• mcEVO *getPrevious()

This function returns the value in the “previous” pointer of the called node.

• mcEVO *getFirst()

This recursive function can be called on any node in the chain. It calls

previous->getfirst() until previous = NULL, then returns a pointer to that

node.

• mcEVO *getLast()

This function works in the same way as getFirst(), but recurses down the

chain instead of up, and returns a pointer to the last node.

• float getScore()

This function returns the score stored by the called node.

• mcEVO *getLastAbove(float minScore)

This function recurses up the chain until it reaches a node whose score is

higher than minScore. It then returns a pointer to that node. Note that this

function is called on the last node in the chain (rather than the first), and is

intended to be used after the ranking operation is complete. See the section

on the rankNodes() helper function below.

• mcEVO *getNth(int N)

This recursive function extracts a pointer to the Nth node in the chain. It

works by calling itself on the next node in the chain, while decrementing N,

until N = 0. It then returns a pointer to the node where this occurred.

21

• void insBefore(mcEVO * newNode)

This function inserts the node pointed to by newNode into the position

preceding the called node. It sets its own “previous” pointer to newNode, and

calls setPrevious() and setNext() on the new node, and setNext() on the

current previous node, so that the chain is still continuous in both directions.

• void dumpScores()

This recursive debug function causes all nodes in the chain to send their

scores to stdout.

• void dumpWeights()

This debug function causes all nodes in the chain to send their weights to

stdout. Note that there can be many millions of weights, which can cause

problems depending on the terminal program from which the software is run.

• void setScore(float newScore)

This function sets the score stored by the called node to newScore.

• dReal *getParams()

This function returns a pointer to the robot-body geometry parameters

stored by the node.

• void appendChain(mcEVO * newSegment)

This function causes the chain starting at newSegment to be appended to the

end of the chain holding the called node. It recurses down the chain

until next = NULL, then sets next = newSegment and calls

22

newSegment->setNext(this).

• int killLast(int numDeleted)

This function deletes the last numDeleted nodes in the chain. It works by

recursively calling itself on the next node until next = NULL, then returning

numDeleted. As the CPU falls back up through the call stack, each recursion

subtracts one from the returned number and returns that, thus counting down

toward zero. When the return value is zero, the node calls delete next, and sets

next = NULL. All nodes below this point are then deleted by the chain

destructor, as described above.

• void svBrains(ofstream * saveFile)

This recursive function saves all of the neural networks being managed by

a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron

chain pointed to by each node in the chain, and then calling itself on the next

mcEVO node. Note that the fstream object class counts and records the current

position within the file, which greatly simplifies this implementation.

• void ldBrains(ifstream * loadFile)

This function works in a similar way to svBrains(), but loads the neural

network weights from a file into all of the mcNeuron objects being managed

by the called mcEVO chain.

• void mkBrains(int numPerceptrons, int RHL, int THL)

This recursive function causes all nodes in the mcEVO chain to generate

23

neural networks and history buffer lists using the chain constructor for the

mcNeuron class. The neural networks thus created have numPerceptrons

perceptrons, and both history buffers (one for input variables, and one for

output variables) have RHL + THL nodes. Note that this function, in its

current implementation, assumes that each neural network has 34 inputs and 16

outputs. This will change when the class is adapted away from this project for

general-purpose use.

● void mkBrains_random(int numPerceptrons, int RHL, int THL, float * array)

This function works in the same way as mkBrains, but fills the input and

output weight arrays with random numbers rather than leaving the memory

uninitialized. Array points to an array of type float that is large enough to hold

all input and output weights, which was used internally in a different version of

this function. It has not been removed, because that version has not yet been

fully evaluated at the time of this writing. For the version of the function used

in this thesis, array can be set to NULL.

● mcNeuron *getBrain()

This function returns a pointer to the first node in the mcNeuron chain

being managed by the called mcEVO node.

● historyBuffer *getIHist()

This function returns a pointer to the first node in the input history buffer

chain being managed by the called mcEVO node.

24

• historyBuffer *getOHist()

This function returns a pointer to the first node in the output history buffer

chain being managed by the called mcEVO node.

• void setIHist(historyBuffer *)

This function sets the input history buffer chain to be used by the called

node.

• void setOHist(historyBuffer *)

This function sets the output history buffer chain to be used by the called

node.

The core features of the genetic algorithm, including selection, crossover,

and mutation, are implemented in two helper functions that are written to operate

on a mcEVO chain. These functions are:

● rankNodes(mcEVO * target)

This function performs a sorting operation on the mcEVO chain beginning

at target. The nodes are ranked in order of descending score. Note that, after

the ranking is complete, target is no longer the first node in the chain.

However, the member function getFirst() can be called on target, and the first

node will be returned.

● breedNets(mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin,

dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut,

float iRnd, float oRnd)

25

This function implements almost all of the actual genetic algorithm, and is

called after rankNodes(). Its arguments are as follows:

 thePopulation is a pointer to the mcEVO chain on which the function will

operate.

 popSize is the size of the population.

 nReplaced is the number of population members that be replaced with

newly created candidates.

 pMin is a pointer to the array containing the lower limits for the robot body

parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).

 pMax is a pointer to an array containing the upper limits for the robot body

parameters.

 nNeurons is the number of perceptrons in each population member.

 RHL is the length of the history stack used by the neural networks as

inputs.

 THL is the length of the history buffer used for an additional learning rule

that is not used in this thesis, but is implemented in the mcNeuron class.

Note that the total length of the stacks is equal to RHL + THL.

 mutProb is the probability that a mutation will occur in any given

perceptron.

 maxMut is the maximum magnitude of the random numbers that a segment

of a perceptron's input weights will be replaced with, when this type of

mutation occurs (see section 3.4). The newly generated weights will thus

26

vary from -maxMut to maxMut. Note that this value should be chosen so

that its average magnitude is approximately equal to the average magnitude

in the input weight vector, so that the newly created weights do not swamp

the other weights. Because the input weights vector is normalized, the

value of maxMut used in this thesis is set to 2 * sqrt(1 /

number_of_input_weights).

 iRnd is the maximum magnitude of the random numbers that are added to

each input weight, after the perceptron is created and all mutations are

applied, and before the input weight vector is normalized.

 oRnd is the maximum magnitude of the random numbers that are added to

the output weights. Note that the output weights are never normalized.

27

4. SIMULATION ENVIRONMENT

4.1 OVERVIEW

The software in which the robot controllers are trained is based on a free

and open-source rigid body physics engine called OpenDE or ODE [8], which is

short for “Open Dynamics Engine”. This engine was orignally created by Russell

Smith, and is currently being maintained and extended by a community of

volunteers. It is distributed under two separate licenses — the GNU LGPL and a

BSD-style license — such that a user can choose either of them. Thus, it may be

used in free or commercial software, with very few restrictions. The most

significant restriction in the BSD-style license is that the original work must be

cited. This physics engine provides general-purpose simulation of articulated

bodies, in addition to collision detection, and is primarily intended for use in video

games. It has become popular enough in robot simulations, however, that there

have been robot-simulation software packages[9] created and even a book[10]

written about modeling robots in ODE.

4.2 SIMULATION WORLD

The simulation “world” consists of two parts — a randomly generated

height map (the “ground”), and a randomly proportioned robot model. The height

map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space.

At each grid point, the height is set to a random number so that all heights fall

within a 0.13m range.

28

The robot body is generated and inserted into the world by the spiderBody

object class (see section 4.4). A majority of the code in this class, about 1500

lines, comprises the constructor function, which performs the following steps:

● Create the core body of the robot, which consists of three ODE primitives, set

up its mass and inertia matrix, add its collision detection geometry, and insert it

into the world.

● Repeat the previous step for the upper legs and lower legs.

● Calculate the starting positions / rotations for the legs, and move them to those

locations.

● Attach the legs with the appropriate ODE joints (ball joints at the hips and

hinge joints at the knees).

● Calculate the base / tip positions of the actuators, and call genActuator() on

each one.

4.3 QUADRUPED ROBOT BODY

The robot body used in these simulations is shown in Figure 4.1. This robot

has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear

servos controlling a single leg are shown in Figure 4.2; their effects are as follows:

1. Works with Actuator 2 to control the direction of the axis of the upper leg.

2. Works with Actuator 1 to control the direction of the axis of the upper leg.

3. Controls the rotation of the upper leg about its axis. The effect of this actuator

is interdependent with Actuators 1 and 2.

4. Controls the bending angle of the knee joint.

29

Figure 4.1: Quadruped Robot

Figure 4.2: Diagram of a Single Leg Showing Actuator Indices

30

The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5.

These dimensions correspond to those shown in Table 4.1, and the upper and

lower limits given in Table 4.2.

Figure 4.3: Robot Body Core (isometric view), Showing Dimensions

Figure 4.4: Diagram of Upper and Lower Chassis Platforms

31

Figure 4.5: Diagram of a Leg, Showing Dimensions

Figure 4.6: 3D Rendering of the Robot Walking in the Simulation

Environment

32

Figure 4.6 shows a 3D-rendered example of the robot. This image was

made from a screenshot of the robot walking in the simulation software. The gray

actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators

correspond to Actuator 3, while Actuator 4 is not shown in this picture because it

is handled outside ODE, in order to increase the speed of the software, and not

drawn when the scene is rendered.

4.4 ROBOT BODY OBJECT CLASS

The ODE objects which model the robot body are created and manipulated

through the spiderBody object class. The source code for this class is given in

Appendix C. Aside from the constructor and destructor, the robot body class

implements the following member functions:

● dReal getPos(int index)

Returns the current length, in meters, of the linear actuator specified by index,

with respect to its starting length. Negative numbers indicate that the actuator

has retracted, while positive numbers indicate that it has extended.

● dReal getVel(int index)

Returns the linear speed, in meters per second, of the actuator specified by

index, where negative numbers indicate that the actuator is retracting and

positive numbers indicate that it is extending.

● void addForce(int index, dReal force)

Adds a 3rd law pair of forces of magnitude force to the two ends of the

actuator specified by index, which are directed along its axis. This is the

33

source of all of the driven motion in the physics simulation, except for the four

knee joints.

● void addKneeTorque(int index, dReal torque)

Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower

leg specified by index. This is the source of all driven motion at the knee

joints.

● dReal getKneeAngle(int index)

Returns the current angle, in radians, of the knee specified by index. This

angle is measured from the direction of the upper leg (if the knee is straight,

the angle is zero), and increases as the lower leg bends downward.

● dReal getKneeOmega(int index)

Returns the current angular speed, in radians per second, of the knee

specified by index.

● dBodyID getCore()

Returns the ODE body ID of the robot chassis. This is used in the collision

detection callback to count collisions between the chassis and ground

(which incurs a small score penalty).

4.5 HELPER FUNCTIONS

In addition, there are three helper functions that are not members of the

robot body class, but are used with it. All three of these functions relate to the

actuator that drives each knee, but is external to the ODE world in order to

34

increase processing speed. The source code for these helper functions is given in

Appendix C, and they are described below:

● dReal calcKneeActOffset(dReal angle, dReal KBR, dReal KLL)

Calculates the position of the knee actuator tip, in meters, with respect to the

knee joint. This position ranges from zero to the length of the upper leg. Angle

specifies the angle of the knee joint, in radians, as returned by

spiderBody::getKneeAngle(int), KBR is the distance between the knee

joint and the link attachment point on the lower leg, and KLL is the length

of the linkage itself.

● dReal calcKneeTorque(dReal Angle, dReal slidePos, dReal KBR,

dReal F)

Returns the torque applied to the knee joint by a force F in the knee actuator.

The input variable, slidePos, specifies the position of the knee actuator, as

defined above, while F is the linear force in the actuator. Angle and KBR are

the same variables described above.

● dReal calcKneeActVel(dReal Angle, dReal slidePos, dReal KBR,

dReal w)

Returns the linear speed of the knee actuator, in meters per second, given the

angular speed of the knee joint, in radians per second. The input variable w is

the angular speed; other inputs are the same as described above.

35

4.6 BODY GEOMETRY PARAMETERS

The body parameters, which are set at random by the software and passed

to the robot body constructor in a parameter array are listed in Table 4.1. These

parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index

column specifies the position in the array, while the Macro column gives the

three- or four-letter macro by which the variables are referenced in the source

code (see section 4.4 and Appendix C). Note that all linear dimensions are in

meters, while all mass parameters are in kilograms.

Table 4.1: Robot Body Parameters Array

Index Variable Macro

0 Upper platform (chassis) radius UCR
1 V actuator upper mount offset (from centers of UP) VAO
2 Distance between upper and lower platforms RISE
3 Lower platform radius LCR
4 Upper leg length ULL
5 Lower Leg Length LLL
6 Distance hip -> V ball on upper leg IBR
7 Hip rotation linkage length RBR
8 Knee link length (Obsolete; now set automatically) KLL
9 Distance knee -> knee link attachment KBR
10 Upper platform mass UPM
11 Lower platform mass LPM
12 Square tubing density (mass / unit length) LINDENS
13 Platform and Leg thickness THICK
14 Starting Position X POSX
15 Starting Position Y POSY
16 Starting Position Z POSZ
17 Upper leg zero angle ULZA
18 Leg rotation zero angle LRZA
19 Lower leg zero angle LLZA
20 Foot ball radius FBR
21 Foot ball mass FBM
22 V Actuator base mass VABM
23 V Actuator tip mass VATM
24 Rotational Actuator base mass RABM
25 Rotational Actuator tip mass RATM
26 Upper leg mass ULM

36

4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within

a set of upper and lower limits defined by two limit arrays. The purpose of this

variation is to train the neural networks to control a range of robots, rather than

just a single example, to increase their resistance to the effects of small changes

when going from the simulated robots to a physical one. The values used in the

lower and upper limit arrays are given in Table 4.2.

Table 4.2: Upper and Lower Robot Parameter Limits

Index Macro Variable Description Lower Limit Upper Limit

0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9 KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52

37

4.8 SIMULATION LOOP

On each step through the simulation loop, the inputs to the control system

are updated with the force and position values for all of the actuators. The position

values for the 12 upper leg actuators are obtained from ODE, using the getPos()

member function of the robot body class, while the motion speeds for these

actuators are obtained using getVel(). The knee actuator positions and speeds are

calculated from the knee angles and angular velocities, which are obtained from

ODE using the getKneeAngle() and getKneeOmega().

For all actuators, including the ones for the knees which are handled

externally to ODE, the position is zero as seen by its control-system input at

whatever position the actuators are created in. These zero positions are also used

to define the actuator position variables which are modified by the outputs of the

control system. The difference between these “set” position variables, and those

returned by ODE, or calculated from angular values, in the case of the knees, are

used to calculate the force in each actuator using a simple damped-spring

equation:

F = -ks * (actual position – set position) – kd * (actuator speed)

where ks is a spring constant, and kd is a damping coefficient.

The spring constant for knee actuators is 1500N/m; for other actuators it is

1100N/m, and the damping coefficient is 30N*s/m. These values are based on

measurements taken from a prototype linear actuator.

38

The calculated forces for all actuators except those in the knees are sent

back to ODE through the robot body class using the addForce(index, force)

member function, as well as to the control system as force-sensor inputs. The

forces for the knees are converted to torque values, and sent to ODE using the

addKneeTorque(index, torque) member function.

The actuator set positions are produced by the control system outputs

through a double integral. The control system is able to set acceleration values for

the actuators, up to a certain maximum acceleration, and these values change the

speed of the actuators (the rate of change of the set value), up to a certain

maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum

speed is 0.35m/s, both of which are based on measurements taken from a

prototype actuator.

In addition to position and force measurements, the control system also has

two other inputs that describe the desired direction of travel with respect to the

robot. These two values are dot products of a unit vector pointing in the desired

direction with the robot's local X and Y vectors. These are treated exactly the

same as the sensor inputs, and propagate through the history stack in the same

way.

39

5. PERFORMANCE EVALUATION

5.1 OVERVIEW AND QUALITATIVE ANALYSIS

For a system such as this, the most definitive performance criterion is

whether the robots begin walking in an effective way within a reasonable amount

of time, while operating on a computer which is economically feasible to the user.

During and after the development of this software, many test runs were performed,

using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In

eac test, the AI always either learned to walk, or found a way to work around the

rules and “cheat”, within a few days.

In the earliest runs, there was no penalty for being upside-down, which

resulted in the robots' bouncing and rolling forward as far as they could upon

dropping into the world, then kicking their legs and hopping forward while

upside-down. Some of them also managed to tilt 90 degrees to the side and roll a

good distance, effectively doing cartwheels, before falling down. When the

penalty was added and the software re-run, a population of robots was produced

fairly quickly that would hop forward, like frogs. At this point, a bug in the

physics simulation code was found and fixed, and the first population of actual

walkers was produced on the following run. For this test, the software was

allowed to run for a period of approximately three weeks in real-time, in which

time the it became very good at making the robots walk—at the end of this run,

the robots were moving about 16 body lengths in 14 seconds of simulation time,

which is quite fast given the physical characteristics of the robot and the limits that

40

were in place on how fast the actuators were allowed to move and accelerate (see

Chapter 4).

5.2 QUANTITATIVE ANALYSIS

In order to obtain a quantitative analysis of the performance of this system,

a pair of test runs was done, with different parameters for the neural network. A

special version of the software was created for these runs, which has the added

feature of creating the log files that are used in the analyses below. These log files

are formatted as plain text, with one line for each population member evaluated.

The entries on each line are as follows:

● The index of the current population member. This ranges from 0 – 39, as a

population size of 40 was used for all of the runs that used a log file.

● The score that the population member retained from the last generation,

according to scoring rule #5 (see section 3.2).

● The number of times the chassis came into contact with the ground, as

described in rule #4.

● The score given for any movement at all, as described in rule #1.

● The movement of the robot in the X direction.

● The movment of the robot in the Y direction.

● The final score passed back to the mcEVO node.

Results from two of these logged runs are included in this section. In these

runs, each neural network is given a turn of 2000 time steps in which to control its

robot. The starting positions are recorded after a delay of 250 time steps, which

41

gives an effective turn length of 1750 time steps. Each time step for the neural

network represents 0.012 seconds of simulation time, so there is a period of

approximately 21 seconds in simulation time for which movement is recorded.

Both tests are identical in all respects, except that one uses a neural network of 30

perceptrons, with a memory of 250 time-steps while the other uses 150

perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is

equivalent to approximately 3 seconds of simulation time, while 150 time-steps is

equivalent to about 1.8 seconds. For these runs, the desired direction is always

along the X axis, and the ground impact penalty is very small (0.05). Changes to

these rules can be implemented slowly through a modification to the software —

the desired direction will take random values that slowly drift away from the X

axis, while the ground-impact penalty will slowly increase. This is not done here

due to the length of time the software has to run before a new adaptation is made.

The results from the log files were post-processed using a second program,

which was written to parse the data from the logs and extract the following data

sets for each generation:

● The maximum score attained by any population member during the generation,

excluding any score carried over from the previous generations.

● The top 5 scores from the generation.

● The average value of the top five scores from the generation.

● The maximum score ever achieved, in the current or any previous generation.

42

● The total movement in the X and Y directions for the top 5 scorers in the

generation.

Figure 5.1 shows the top score results vs. generation from the 30-

perceptron test. There are three data sets on this plot: the top score attained during

the generation (orange), the average of the top five scores (purple), and the

running maximum score (black). These scores are a figure of merit which

represents the performance of the neural networks with respect to all of the

scoring rules that are discussed in Chapter 3. A plot of the total movement in the

X direction (orange) and the Y direction (purple) for the top scoring neural

network in each generation is given in Figure 5.2. Unlike the scores shown in

Figure 5.1, these movement figures provide concrete values that are relevant

outside the context of the genetic algorithm — they represent the actual distance

that the simulated robots were able to walk during the time allotted.

Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively,

but are taken from the 150-perceptron run. They show data taken from a smaller

number of generations, but the same amount of real-world run time. This is

because the software runs more slowly when a larger neural network is used.

43

Figure 5.1: Scores Per-Generation for the 30-Perceptron Run

Figure 5.2: X and Y Displacement for the 30-Perceptron Run

44

Figure 5.3: Scores Per-Generation From the 150-Perceptron Run

Figure 5.4: X and Y Displacement From 150-Perceptron Run

45

5.3 DISCUSSION OF RESULTS

Note that the first run (30-perceptrons) went for 405 generations, while the

second (150-perceptrons) run was only 240 generations. Both tests ran for

approximately 11 days in real-world time, each running on one core of the same

CPU, but the larger neural network slowed down the software considerably on the

second run. This is to be expected, as the neural networks from the first run

consume only 59MB of RAM, while those from the second run consume 179MB

—and all of these weights need to be processed 2,000 times per turn, and 160,000

times per generation.

Several other things are apparent from Figures 5.1-5.4. First, the data has

quite a bit of randomness in it—there is a large amount of inconsistency between

generations in both the scores and displacements. Secondly, while the scores are

generally rising as the generations progress, they do so in a very chaotic way, with

relatively flat periods and periods of rapid increase. There is even what appears to

be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show

the X component of motion increasing with the score, while the Y component

remains approximately centered at zero, but with steadily increasing random

variation.

The first observation can be explained by the fact that the robots the system

is being asked to control are randomly generated. Thus, a neural network that

performs well in one generation may be do poorly with the robot it is given in the

next generation. This is intentional, as the goal is to evolve a control system which

46

is effective in a wide variety of robots (thus increasing the chance that it will work

well with a physical robot in the real world). In addition, it is possible for an

otherwise strong-performing control system to flip its robot upside-down,

obtaining a very low (or negative) score in the process. This tends to be especially

likely with the very high scoring individuals in any generation, as they tend to be

the “risk takers”. This issue can be exacerbated by the randomness in the robot

parameters, as a behavior that is only slightly risky in one robot may be fatal in

another.

The chaotic nature of the increases in score over time can be explained by

the properties of the genetic algorithm. The software is continually recombining

the same characteristics into new population members, only occasionally

happening upon a new adaptation that results in significantly higher scores. It

takes time, however, for this adaptation to propagate through the population, and

be optimized to work in a consistent way. Thus, there can be a very large jump in

the running maximum, creating a “high score” that holds for quite some time. The

apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to

the “deaths” of several population members which, while high-scoring, were also

highly inconsistent. This is backed up by the fact that the randomness in the plot

drops off very quickly during the same few generations, and remains smaller than

before as the scores recover.

The movement in the X direction (which is always the “desired” direction

in these two runs, as explained above) behaves as one would expect; it appears to

47

increase along with the scores. The Y movement, however, remains approximately

centered at zero, but has a random noise in it that increases through the

generations. This can be explained by the fact that the control system is becoming

more effective at moving the robots in general, and because the population

members still receive points for moving along the Y axis. In later generations, this

movement is small compared to the motion in the X direction, as the control

system improves at directing the robot in the direction of maximum score. This

side movement could also be suppressed by slowly introducing a penalty for

movement in the Y direction, especially if an additional input was added to the

control system for current (absolute) position.

Finally, it is worth pointing out that the 30- and 150- perceptron tests were

only allowed to run for 860 and 485 generations, respectively, due to time

limitations. Previous runs that were much longer, including one that went into the

thousands of generations, showed a continued increase in performance, with the

longest run producing several scores between 8 and 9 on each generation. The

plots here are, however, sufficient to show that the ability of the AI to control a

robot is generally rising with time, and to show some of its characteristics.

48

6. CONCLUSIONS AND FURTHER RESEARCH

6.1 CONCLUSIONS

From the results given in section 5.2, as well as direct observation of the simulated

robots in the software, it is clear that this system is capable of generating effective

walking movement. In addition, the robot design used in this thesis is particularly

difficult to control, as its wide body does not permit the center of mass to remain

in a stable position. In quadruped animals, the body is long and narrow, so that

diagonal pairs of feet that are on the ground form a straight line that is always

beneath the center of mass. With a hexapod or octopod, the problem would be

even easier, as the feet on the ground at any given time form a triangle or a

trapezoid, respectively, that can always enclose the center of mass on the

horizontal plane. Thus, this method can be expected to produce better results than

those given here for these other body types.

6.2 CONTINUED WORK WITH THIS BUILD

The first step that should be taken in order to learn more about this system is to

perform more extensive testing than what was done for this thesis in order to

maximize the efficiency of the system with respect to CPU load and memory

usage. This will require a large number of test runs to be performed with many

different configurations, in order to optimize the following variables:

● Population size

● Number of perceptrons

49

● Memory length

● Probability of each type of mutation

● Scoring with respect to different criteria

● Selection rules

In order to perform a large number of tests in a reasonable amount of time, it

would be best to use a computer with a large number of processor cores, as this

software does not parallelize easily in its current form. Alternatively, the physics

engine could be replaced with one that runs on a stream processor, such as PhysX

from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the

neural network could be rewritten to run on a GPU.

6.3 EXTENSION OF CONTROL SYSTEM

It would also be good to extend the scope of the control systems that are produced

in a few different ways. First, multiple neural networks can be used, with each

trained to perform a different task. While individual networks have been observed

to produce multiple behaviors in this system, this would be a good way to separate

the desired behaviors. Also, it might be effective to have “nested” learning rules,

such that the neural network continues to learn on its own after it is produced by

the genetic algorithm. This could be done by adding some form of short-term

reinforcement learning, or by adding a classifier network to the inputs of the

control system that predicts the result of current behavior on the score and adjusts

the weights of the network, perhaps using the P-Delta learning rule[6] that

originally went with the parallel perceptron network that is used here. Another

50

option may be to add some outputs that do not control anything, but still act as

feedback loops. This would create a form of memory that permits state-space

orbits that last much longer than the history-buffer length, which the system would

use in whatever way happens to produce the highest scores.

6.4 POTENTIAL APPLICATIONS

In terms of applications, there are two things that would be very interesting to do.

One such idea is to create a CAD-style robot “editor” in which robots can be

designed in a quick and convenient way, instead of writing a 1500+ line

constructor, as was done with the spiderBody class used in this research. This

editor would allow one to create a robot using a library of predefined parts such as

the linear servos seen on the robot that this thesis deals with, and automatically

generate a bill of materials for its physical construction. After the robot is

designed, the software can then be used to create parts of its control system.

The second possibility is to modify the simulation and genetic algorithm

software to operate as a P2P application, in a similar way to the BitTorrent

network. A large number of users who want the same robot could download a task

file that specifies the robot that is to be controlled and points to an online

“tracker”. Having connected to the tracker, a user's client would join the “swarm”

of other users, and begin receiving population members to evaluate. Each user's

PC processes a small population, similar to the ones that were used in the two test

runs here, but downloads a few new neural networks from other users and

transmits a few on each generation. Depending on the number of users who want a

51

particular robot, this could permit effective population sizes in the tens of

thousands. Like the other possibilities mentioned above, this has not been

evaluated at this point, and it is unknown whether it would be an effective design.

It would, however, be very interesting to see what might come out of it.

52

		2008-09-24T11:31:39-0400
	ETD Program

