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ABSTRACT

This thesis presents a method of generating neural-network based control systems 

for walking robots. A genetic learning rule is combined with a physics simulation 

and scoring system in order to find appropriate weights for these networks. This 

approach  produces  highly  robust  neural-network  control  mechanisms  that  are 

capable  of  handling  a  wide  variety  of  conditions,  such  as  rough  terrain  and 

randomly varying robot proportions. In each of two test runs, the system was able 

to  make  the  robot  walk  approximately  1.75  meters  (5.8  body  lengths)  in  the 

physics simulation,  over very rough terrain,  in 14 seconds of  simulation-world 

time.
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1. INTRODUCTION

This thesis describes a method for automatically generating complex 

control systems for walking robots. One of the most interesting research fields 

today is the development of robots that are able to perform complex and 

somewhat arbitrary actions with some degree of reliability. While robotics as a 

field of engineering has existed for quite some time now, and robots have been 

created which are capable of performing many tasks, it is still very difficult to 

create a robot which can effectively navigate complex terrain, or inside buildings. 

This is mostly due to the fact that the simple forms of mechanical movement, such 

as wheels, are only effective over a narrow range of conditions. A wheeled robot, 

for example, may be able to navigate a single floor of a building, or a landscaped 

outdoor area, but would normally be incapable of dealing with anything that its 

wheels cannot roll over, such as stairs, or rough terrain. For this reason, an 

effective walking-robot technology would be very useful.

Designing an effective walking robot is a difficult problem for two distinct 

reasons. First, it is actually quite challenging for engineers to design mechanical 

systems that exhibit anything close to the combination of speed, strength, size and 

weight that exist in biological organisms. This problem tends to either introduce 

severe limits on what can be done, or alternatively, cause the cost to construct a 

robot to be extremely high. Secondly, and somewhat relatedly, the control system 

for an effective walking robot is by necessity very complicated. This is because of 
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the wide variety of conditions under which such a robot must be able to operate; a 

simple pre-programmed sequence of movements is not sufficient to provide 

reliable walking.

There are many different methods which have been used to provide 

intelligent control of walking robots. One approach is the use of Central Pattern 

Generators (CPGs), which have been used to control biped robots [1, 2]. Like the 

biological systems that inspired this method, a robot using CPG motion control 

has a very small neural network in which groups of individual perceptrons behave 

like schmidt trigger oscillators. The currently-active perceptrons inihibit the others 

until their responses to the input vector override the inhibition. At this point, when 

the system begins to switch states, a positive-feedback condition is created which 

strongly attracts the system into its next state. These neuronal oscillators can be 

connected in a purely feed-forward layout, in which the neurons use only each 

other's outputs as inputs, or they can use feedback, in which the inputs to the 

neurons are sensor outputs from the controlled system[3]. The behavior of this 

system is normally hard-coded, and tends to suffer from most of the same 

drawbacks as a pre-programmed gait — it requires a human programmer to 

consider each possible situation that it may encounter.

Genetic algorithms have also been used to develop control systems in 

walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-

forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5] 
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combine a genetic algorithm with a CPG to produce walking behavior in a 

hexapod robot.

In this thesis, a new method is developed which works in a similar way to 

[5], in that a neuronal oscillator controller is trained with a genetic learning rule, 

but with several key differences. First, the new method uses a relatively large 

neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The 

network used in this thesis has dozens to hundreds of perceptrons and, in some 

cases, upwards of a half-million weights (see test runs in Chapter 5). These 

perceptrons are not connected together directly as they are in the CPG, but do 

have feedback from the aggregate (system) output. In addition, the system has 

some internal memory which stores a certain number of past inputs and outputs. 

Thus, the control system can not only “see” the current state of the robot, but also 

remembers what has been happening with the physical robot and what it has been 

doing. The length of this memory is a user-entered variable, which has been set at 

150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the 

scoring and selection algorithms used in this thesis are based only on walking 

performance; the first training steps used in [5] to initially produce oscillatory 

behavior is not present.

For purposes of training the neural network, software is created which 

combines a physics simulation with a scoring algorithm. Candidate control 

systems are scored on how far they can make a simulated robot walk over 

randomly-generated terrain in a given amount of time, and this information is 
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passed back to the genetic algorithm. After each neural network has had a turn, 

and received a score, the software ranks them and replaces the lower scorers with 

new networks that are created by combining pairs of high-scorers and applying 

random mutations. These steps are then repeated until the user decides that a 

sufficiently effective one has been produced, based on observation of the 3D-

rendered simulation or the figures of merit introduced in Chapter 5, and terminates 

the program.

When the program is first started, all of the neural network weights are 

random and the simulated robots are only able to move a very short distance. As 

time progresses, however, the robots begin to develop the ability to produce 

continuous motion in one direction. In the test runs, the robots began to show 

some walking ability within about two days, and were becoming quite effective at 

walking after about a week.

While this method still requires some forethought on what types of 

situation the robot will encounter, in order to create effective training simulations, 

it does not need any hard-coding to be performed. All that is necessary is to create 

a 3D “world” with any terrain that the robot might have to navigate, as the 

software will randomly place robots in the world and score the control systems on 

how well they perform. In addition, the neural networks produced by this software 

are not limited to a single type of walking — multiple methods of movement have 

been observed in individual networks — which simplifies their integration into a 

complete robot.
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This thesis is organized as follows: In Chapter 2, the neural network 

topology is described, as is the method for generating its input vector. There is a 

discussion on why it was chosen in section, and why it was expected to be 

effective, and its software implementation is described in detail. In Chapter 3, we 

discuss the genetic learning rule that is used with the neural network. The scoring 

rules that are used in the physics simulation are defined, as are the rules used for 

selection, crossover and mutation. Then, the software implementation of the 

genetic algorithm is described. In Chapter 4, the physics simulation in which the 

neural networks are trained is described, starting with the simulation “world”. 

Then, we discuss the quadruped robot body that is used in the simulations, its 

physics-engine implementation, and the geometrical parameters that describe 

individual robots. Finally, we describe the simulation loop in which the physics 

engine, the robot model, the neural network and the genetic algorithm come 

together. In Chapter 5, the performance of the software is evaluated. Figures of 

merit, collected from two test runs, are presented, and the results are discussed. In 

Chapter 6, we discuss our conclusions from this work, and propose some ideas for 

further research, as well as some potential applications.
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2. NEURAL NETWORK

 2.1 OVERVIEW

The neural network used in this project consists of a single layer of parallel 

perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but 

with an outboard genetic learning rule rather than the one described in that work. 

Each perceptron has a set of input weights that determines its response to a given 

set of inputs, an activation function which, in this thesis, is a unit-step function, 

and a set of output weights, which are multiplied by the output of the activation 

function (1 or 0) and added to the system output vector. This neural network 

operates in discrete time, evaluating sampled inputs and producing outputs at fixed 

time intervals. A block diagram of the neural network, and its associated memory 

stacks, is shown in Figure 2.1. 

Figure 2.1: Neural network block diagram
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2.2 INPUT VECTOR GENERATION

Inputs to the neural network come from three sources: body sensors, 

command and control signals, and previous inputs and system outputs. Past inputs 

and outputs come from a type of stack buffer where data travels down the stack 

and is discarded when it passes the last level. These historical data are used for 

two purposes: as inputs for the neural network, and as training data for a second 

learning rule that is implemented in the software, but not currently being used. 

The organization of this stack is shown in Figure 2.2.

Figure 2.2: Block Diagram of History Buffer Object
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2.3 OUTPUT VECTOR GENERATION

On each time step, the input vector to the neural network is generated by 

concatenating the body sensor and command inputs with the past inputs and 

outputs from the history buffer objects. This vector, I_sys, is multiplied (dot 

product) with each perceptron's input weight vector, W, to give the postsynaptic 

potential (PSP).  The output of the perceptron is the unit step function of the PSP, 

multiplied piecewise by the perceptron's output weights to give its contribution, 

Rn, to the system output vector, Rs. This may be expressed as follows:

Rn = u( I_sys • W ) (2.1)

Rs = Σ( Rn ) (2.2)

2.4 WHY THIS ALGORITHM

At this point, some information is given regarding why this system can 

work. First, due to the fact that the number of perceptrons is much larger than the 

number of outputs, this algorithm is a universal function approximator[6]. This 

means that it can implement an arbitrary bounded function given the correct 

weights, even when the network has only a single hidden layer. Because the 

outputs of this neural network determine the rate of change in the actuator 

positions on the robot, the result is a system of nonlinear partial differential 

equations which, depending on the weight vectors and the physical properties of 

the robot, are capable of producing an extremely wide variety of behaviors 
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(although not all behavior is technically possible, as there are physical limits on 

speed, force, and acceleration). Due to the way the data propagate through the 

history buffers, and thus constantly change position with respect to the input 

weights, it is relatively difficult for the system to reach a stable state where the 

robot does not move. Instead, this tends to encourage strange attractors, which 

produce repetitive, but not necessarily periodic, motion.

2.5 SOFTWARE IMPLEMENTATION

This neural network is implemented in C++ as the mcNeuron object class 

(in which the “mc” is short for “Motion Control”). It is organized in a linked list, 

where each instance represents one perceptron, and holds a pointer to the next 

perceptron in the chain. The advantage to this type of organization is that the 

source code can be kept short, as a large portion of the compiled machine code is 

automatically generated by the compiler itself. This also helps prevent errors by 

making the source code more readable, and relying on the very mature code-

generation algorithms used in the compiler. The source code for this object class is 

given in Appendix A, and its member functions are described below:

● void rnNet( float* inputs, historyBuffer* iHistory, historyBuffer* oHistory, 

      float* outputs)

This function multiplies the input weights of the perceptron (dot product) 

by the concatenation of inputs, iHistory, and oHistory, and if the result is 

positive, add its output weights to outputs. If there are more perceptrons in the 

chain, as indicated by a non-null “next” pointer, then this function is called in 
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the next node, with the same parameters. Thus, one call to the first perceptron 

in the chain propagates to all of them.

● void updateNet( float scale, historyBuffer* iHistory,

            historyBuffer* oHistory )

This function implements a second learning rule, which is not used in this 

project. It was replaced by the genetic algorithm very early in development. 

When called, it multiplies scale by values from iHistory and oHistory, and 

adds this to its input weights. Like rnNet, it propagates through all perceptrons 

in the chain.

● void iW_preset( float * newWeights )

This Function sets the input weights to the values stored in newWeights. This 

function is recursive, and if the perceptron has a non-null “next” pointer, will 

call the same function in the next perceptron. In this case, the pointer is 

advanced by the number of input weights, so that one large array can be used 

to set all of the input weights in a chain.

● void iW_preset_justOne( float * newWeights )

This function is the same as iW_preset(), but is not recursive.

● void oW_preset_justOne( float * newWeights )

This is the same as iW_preset_justOne(), but acts on the output weights instead 

of the input weights.
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● mcNeuron *getNext()

This function returns a pointer to the next perceptron in the chain, or NULL if 

a next node does not exist.

● mcNeuron *cutNth( int index )

This function cuts the chain at the Nth node, and returns a pointer to the 

removed segment. It works by recursively propagating down the chain while 

decrementing index, until index = 1. When this condition is true, the node sets 

its “next” pointer to NULL, and returns the value that was in that pointer. The 

returned pointer propagates back up the chain as the CPU falls down through 

the call stack, until the first called node finally returns it to the calling function.

● void setNext( mcNeuron * newNext )

This function sets the “next” pointer in the called node to newNext.

● void appendChain( mcNeuron * newSegment )

This function appends the chain specified by newSegment to the end of the 

called chain. It works by recursively propagating down the chain until it is 

called on a node whose “next” pointer is null, and setting that pointer to 

newSegment.

● float *getIWeights()

This function returns a pointer to the input weights for the called perceptron.

● float *getOWeights()

This function returns a pointer to the output weights for the called perceptron.

● void setRandomOWeights( float maxValue )
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This function sets the output weights of the perceptron to random numbers, 

varying from -maxValue to +maxValue. It is recursive, and operates on each 

node in the chain until a null “next” pointer is reached.

● void setRandomIWeights( float maxValue )

This function is the same as setRandomOWeights(), but operates on the 

input weights.

● void setCascadingOWeights( float weight, int oIndex )

This function sets the output weight specified by oIndex to weight, and sets all 

others to zero. If the “next” pointer is not null, it calls the same function on the 

next node, with the parameters set by the following two rules:

 If oIndex is less than the number of output weights, increment oIndex.

 If oIndex is equal to the number of output weights, then the next oIndex is 

zero, and the next weight is -weight.

Note that this function is not called in the final build of the software.

● void shakeIptWeights( float maxValue )

This function adds a random number, which varies from -maxValue to 

maxValue, to each of the input weights. It is recursive, and operates on all 

perceptrons in the chain. After the random values are added, the weight vector 

is normalized.

● void shakeOptWeights( float )

This function is the same as shakeIptWeights(), but operates on the output 

weights.
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● void mutateIptWeights( float maxValue )

This function selects a random, continuous segment of the input weights and 

replaces them with random numbers, which vary from –maxValue to 

maxValue. It is not recursive (it operates on only one perceptron), and is called 

by the much more extensive mutation function in the genetic algorithm class.

● void mutateOptWeights( float )

This is the same as mutateIptWeights(), but operates on the output weights.

● void svNet( ofstream * saveFile )

This function saves the input and output weights of a perceptron to the fstream 

object pointed to by saveFile. It is recursive, so the entire network will be 

saved when it is called on the first element in the chain. Note that the fstream 

object has an internal index that counts up as data are saved, so the function 

can be called on multiple chains with one open file, and they will all be saved 

in order.

● void ldNet( ifstream * loadFile )

This function loads the input and output weights stored in the fstream object 

pointed to by loadFile into the input and output weights. It is also recursive, 

and operates in the same way as svNet.
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3. GENETIC ALGORITHM

3.1 INTRODUCTION

The neural network described in Chapter 2 is trained using an outboard 

genetic search algorithm, which operates on the entire network, rather than 

individual perceptrons. Each candidate neural network is given a turn to control a 

randomly generated robot in a physics simulation, and scored based on its 

effectiveness at making the robot walk. Like all genetic algorithms, this one 

combines randomness, selection, crossover, and mutation to search the space of all 

possible input and output weight vectors. Due to the extremely large search space, 

and the fact that there are large clusters of viable solutions (different types of 

walking) with fitness functions that tend to be somewhat continuous, this problem 

should be particularly well-matched to the properties of a genetic algorithm [7].

Selection is based on a floating-point score that is generated by evaluating 

the network's efficacy in controlling a simulated robot. In order to function, a 

genetic algorithm must find a region in the search space where there exists a score 

gradient before it can begin to function as a genetic algorithm; before this happens 

it implements only a random search. As a result, the search must happen upon a 

region with a fitness gradient, by chance. If these regions fill too small a portion of 

the total search space, it can take a very long time for the search to locate one of 

them. For this reason, points must initially be awarded for results that are not 

directly useful, but which are likely to be connected to a useful region by a 

“bridge” of scores that are high for their particular region[7]. 
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3.2 SCORING

At the start of a turn, the software drops a robot into the “world” at a 

random position and begins stepping its neural network along with the physics 

engine. In order to reduce noise in the score due to a random bounce when the 

robot falls a short distance to the ground, and reduce the tendency for the system 

to waste time early on by simply making the robots lean forward, there is a delay 

of approximately two seconds in simulation time before the software records the 

robot's “start” position. At the end of the turn, the start position is subtracted from 

the ending position, and points are awarded according to the following five rules:

1. Score is awarded for any movement that occurs, regardless of direction. Early 

in the process, this causes the system to select the neural networks that cause 

the system to exhibit those attractors that produce constant motion. This causes 

oscillatory behavior to be learned early in the evolutionary process, and is what 

replaces the initial learning step used in [5], where fitness functions were 

assigned to per-leg oscillations.

2. The population member receives points a second time for movement in the 

desired direction, as determined by a dot product, but only if that number is 

positive — a negative score here is counted as zero. As a result, it is possible 

for an individual to receive up to two points per meter for moving in the 

correct direction. 

3. A two-point penalty is assessed if the robot is upside-down at the end of the 

turn, which can occur quite easily due to the physical characteristics of this 
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particular robot design. The purpose of this penalty is to avoid behavior that 

emerged in some of the earliest tests, where the robot would roll forward, and 

then hop along upside-down by kicking its legs.

4. A user-configurable penalty is assigned each time the robot chassis comes into 

contact with the ground. There is a delay of approximately 1 second in 

simulation time after a ground impact is registered, before the counter can be 

incremented again. This prevents large penalties from accruing quickly if the 

chassis remains in contact with the ground for a period of time. From the test 

runs that have been performed, it was found that this penalty needs to be very 

small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05 

was used. It may be effective to increase this penalty slowly after the system 

has learned to walk, but this has not yet been tested.

5. The population member retains half of the score it received in the previous 

generation, so that a single weak performance is not likely to “kill” a high-

scoring neural network. While this last rule can sometimes prevent a more-fit 

individual from displacing a less-fit one, the effect quickly fades away when 

an individual performs poorly for two or more generations. It also is not 

typically enough to prevent displacement in the case of a very low, or negative, 

score. For this reason, several replacements still occur in most generations.
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3.3 SELECTION

At the end of a generation, all members of the population are sorted by a 

ranking algorithm, so that those with the highest score appear in the earliest 

positions. In order to select each parent for the next generation, a random floating-

point number in the range [0, 1] is generated, and squared, so that the new 

probability distribution will tend toward zero. This new number still falls within 

the same range, but has an average value of ¼ instead of ½ — thus selecting 

higher-scoring individuals more often than low-scoring ones. This number is then 

multiplied by the size of the population, cast to an integer, and used to index a 

neural network that will be the “parent” of a new population member. Note that 

the random number could also be raised to any other positive power, or another 

function could be used to provide a different probability distribution, although 

these options have not been investigated. A second method which has been tested 

is to instead multiply the square by the maximum score in the population, and then 

take the weakest member above that score, but it appears to be too aggressive for 

the small populations that are feasible on a current PC, and was found to cause 

problems with early convergence. This cause of this problem is that the highest 

score in a generation tends to be much higher than the average score, or even the 

average of the top 5 scores, as shown in Chapter 5. The top scoring population 

member thus tends to be chosen as a parent very often by this rule, which causes 

the diversity in the population to disappear rapidly, leading to the early 

convergence problems that were observed.
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3.4 CROSSOVER AND MUTATION

After the two parent networks are selected, a new neural network is created 

by combining them. Each perceptron in the child is created by randomly selecting 

the perceptron at the same position from one of the parents, and occasionally 

introducing a random mutation. These mutations can take any of the forms 

outlined below:

● A random, continuous, segment of the perceptron's input weights is chosen, 

and replaced with a string of random numbers. This permits behavior to drift 

over time at the individual perceptron level.

● A perceptron's output weights are rotated, so that all of its effects are 

“mirrored” to the opposite side of the body (either side-side or front-back can 

occur). At the same time, the perceptron's response is time-delayed by a 

random amount by doing a circular shift on its input weights by an integer 

multiple of the number of inputs. The purpose of this mutation is to encourage 

symmetry in the robot's motion, and allow  effective behavior that evolves in 

one leg to eventually propagate to the other legs.

● At the population-member level, the software randomly selects a continuous 

group of perceptrons, and moves them to a new position in the list. This has no 

direct effect, but makes it possible for a new child to be created with multiple 

perceptrons that originally occurred at the same position. For example, the 

child could contain four nodes that were all at position 25 in its grandparents.

● After the new perceptron is generated, all of its weights (both input and 
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output) are randomly adjusted by a small amount, and the input weights vector 

is normalized.

3.5 SOFTWARE IMPLEMENTATION

The genetic algorithm is implemented by the mcEVO object class, which 

manages the population, and two helper functions, rankNodes() and breedNets(), 

which perform the genetic operations.

The mcEVO class encapsulates the neural network and its associated 

history buffers in such a way that the entire population can be accessed through 

one pointer. It also stores the geometry for the randomly generated robots. The 

source code for this class is given in Appendix B, and its member functions are 

described below:

● mcEVO( int popSize, mcEVO * previous, dReal * geomMin, dReal * 

geomMax )

This is a chain constructor which builds a population of popSize. It does not 

generate the neural networks (this is done in a separate call), but it does 

generate a random set of robot-body proportions for each element. The input 

variable geomMin should point to an array containing the lower limits for each 

body dimension, while geomMax should contain the upper limits. These 

parameters are described in detail in the simulation section of this thesis. 

Previous is used internally to this chain constructor, and should be set to 

NULL when it is called from outside.
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● ~mcEVO()

This destructor operates on the entire chain, deleting all nodes and any 

perceptron chains that were attached to them.

• mcEVO * getMax( mcEVO * curBest, float curMax )

This function returns a pointer to the node in the chain with the highest 

score value. The input variables curBest and curMax are used internally as 

the function recurses through the chain; it should thus be called with 

curBest = NULL and curMax set to a large negative number (-10 is 

sufficient in this case).

• void setPrevious( mcEVO * newPrevious )

This function sets the “previous” pointer for the called node to 

newPrevious.

• void setNext( mcEVO *)

This function sets the “next” pointer for the called node to newNext.

• void detach()

This function detaches the called node from the chain, calls 

previous->setNext( next ) and next->setPrevious( previous ), and sets its own 

previous and next pointers to NULL. Thus, the node is removed from the 

chain, and the chain is spliced back together.

• mcEVO *getNext()

This function returns the value in the “next” pointer of the called node.
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• mcEVO *getPrevious()

This function returns the value in the “previous” pointer of the called node.

• mcEVO *getFirst()

This recursive function can be called on any node in the chain. It calls 

previous->getfirst() until previous = NULL, then returns a pointer to that 

node.

• mcEVO *getLast()

This function works in the same way as getFirst(), but recurses down the 

chain instead of up, and returns a pointer to the last node.

• float getScore()

This function returns the score stored by the called node.

• mcEVO *getLastAbove( float minScore )

This function recurses up the chain until it reaches a node whose score is 

higher than minScore. It then returns a pointer to that node. Note that this 

function is called on the last node in the chain (rather than the first), and is 

intended to be used after the ranking operation is complete. See the section 

on the rankNodes() helper function below.

• mcEVO *getNth( int N )

This recursive function extracts a pointer to the Nth node in the chain. It 

works by calling itself on the next node in the chain, while decrementing N, 

until N = 0. It then returns a pointer to the node where this occurred. 
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• void insBefore( mcEVO * newNode )

This function inserts the node pointed to by newNode into the position 

preceding the called node. It sets its own “previous” pointer to newNode, and 

calls setPrevious() and setNext() on the new node, and setNext() on the 

current previous node, so that the chain is still continuous in both directions.

• void dumpScores()

This recursive debug function causes all nodes in the chain to send their 

scores to stdout.

• void dumpWeights()

This debug function causes all nodes in the chain to send their weights to 

stdout. Note that there can be many millions of weights, which can cause 

problems depending on the terminal program from which the software is run.

• void setScore( float newScore )

This function sets the score stored by the called node to newScore.

• dReal *getParams()

This function returns a pointer to the robot-body geometry parameters 

stored by the node.

• void appendChain( mcEVO * newSegment )

This function causes the chain starting at newSegment to be appended to the 

end of the chain holding the called node. It recurses down the chain 

until next = NULL, then sets next = newSegment and calls 
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newSegment->setNext( this ).

• int killLast( int numDeleted )

This function deletes the last numDeleted nodes in the chain. It works by 

recursively calling itself on the next node until next = NULL, then returning 

numDeleted. As the CPU falls back up through the call stack, each recursion 

subtracts one from the returned number and returns that, thus counting down 

toward zero. When the return value is zero, the node calls delete next, and sets 

next = NULL. All nodes below this point are then deleted by the chain 

destructor, as described above.

• void svBrains( ofstream * saveFile )

This recursive function saves all of the neural networks being managed by 

a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron 

chain pointed to by each node in the chain, and then calling itself on the next 

mcEVO node. Note that the fstream object class counts and records the current 

position within the file, which greatly simplifies this implementation.

• void ldBrains( ifstream * loadFile )

This function works in a similar way to svBrains(), but loads the neural 

network weights from a file into all of the mcNeuron objects being managed 

by the called mcEVO chain.

• void mkBrains( int numPerceptrons, int RHL, int THL )

This recursive function causes all nodes in the mcEVO chain to generate 
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neural networks and history buffer lists using the chain constructor for the 

mcNeuron class. The neural networks thus created have numPerceptrons 

perceptrons, and both history buffers (one for input variables, and one for 

output variables) have RHL + THL nodes. Note that this function, in its 

current implementation, assumes that each neural network has 34 inputs and 16 

outputs. This will change when the class is adapted away from this project for 

general-purpose use.

● void mkBrains_random( int numPerceptrons, int RHL, int THL, float * array )

This function works in the same way as mkBrains, but fills the input and 

output weight arrays with random numbers rather than leaving the memory 

uninitialized. Array points to an array of type float that is large enough to hold 

all input and output weights, which was used internally in a different version of 

this function. It has not been removed, because that version has not yet been 

fully evaluated at the time of this writing. For the version of the function used 

in this thesis, array can be set to NULL.

● mcNeuron *getBrain()

This function returns a pointer to the first node in the mcNeuron chain 

being managed by the called mcEVO node.

● historyBuffer *getIHist()

This function returns a pointer to the first node in the input history buffer 

chain being managed by the called mcEVO node.
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• historyBuffer *getOHist()

This function returns a pointer to the first node in the output history buffer 

chain being managed by the called mcEVO node.

• void setIHist( historyBuffer * )

This function sets the input history buffer chain to be used by the called 

node.

• void setOHist( historyBuffer * )

This function sets the output history buffer chain to be used by the called 

node.

The core features of the genetic algorithm, including selection, crossover, 

and mutation, are implemented in two helper functions that are written to operate 

on a mcEVO chain. These functions are:

● rankNodes( mcEVO * target )

This function performs a sorting operation on the mcEVO chain beginning 

at target. The nodes are ranked in order of descending score. Note that, after 

the ranking is complete, target is no longer the first node in the chain. 

However, the member function getFirst() can be called on target, and the first 

node will be returned.

● breedNets( mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin, 

dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut, 

float iRnd, float oRnd )
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This function implements almost all of the actual genetic algorithm, and is 

called after rankNodes(). Its arguments are as follows:

 thePopulation is a pointer to the mcEVO chain on which the function will 

operate.

 popSize is the size of the population.

 nReplaced is the number of population members that be replaced with 

newly created candidates. 

 pMin is a pointer to the array containing the lower limits for the robot body 

parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).

 pMax is a pointer to an array containing the upper limits for the robot body 

parameters.

 nNeurons is the number of perceptrons in each population member.

 RHL is the length of the history stack used by the neural networks as 

inputs.

 THL is the length of the history buffer used for an additional learning rule 

that is not used in this thesis, but is implemented in the mcNeuron class. 

Note that the total length of the stacks is equal to RHL + THL.

 mutProb is the probability that a mutation will occur in any given 

perceptron.

 maxMut is the maximum magnitude of the random numbers that a segment 

of a perceptron's input weights will be replaced with, when this type of 

mutation occurs (see section 3.4). The newly generated weights will thus 
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vary from -maxMut to maxMut. Note that this value should be chosen so 

that its average magnitude is approximately equal to the average magnitude 

in the input weight vector, so that the newly created weights do not swamp 

the other weights. Because the input weights vector is normalized, the 

value of maxMut used in this thesis is set to    2 * sqrt( 1 / 

number_of_input_weights ). 

 iRnd is the maximum magnitude of the random numbers that are added to 

each input weight, after the perceptron is created and all mutations are 

applied, and before the input weight vector is normalized.

 oRnd is the maximum magnitude of the random numbers that are added to 

the output weights. Note that the output weights are never normalized.
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4. SIMULATION ENVIRONMENT

4.1 OVERVIEW

The software in which the robot controllers are trained is based on a free 

and open-source rigid body physics engine called OpenDE or ODE [8], which is 

short for “Open Dynamics Engine”. This engine was orignally created by Russell 

Smith, and is currently being maintained and extended by a community of 

volunteers. It is distributed under two separate licenses — the GNU LGPL and a 

BSD-style license — such that a user can choose either of them. Thus, it may be 

used in free or commercial software, with very few restrictions. The most 

significant restriction in the BSD-style license is that the original work must be 

cited. This physics engine provides general-purpose simulation of articulated 

bodies, in addition to collision detection, and is primarily intended for use in video 

games. It has become popular enough in robot simulations, however, that there 

have been robot-simulation software packages[9] created and even a book[10] 

written about modeling robots in ODE.

4.2 SIMULATION WORLD

The simulation “world” consists of two parts — a randomly generated 

height map (the “ground”), and a randomly proportioned robot model. The height 

map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space. 

At each grid point, the height is set to a random number so that all heights fall 

within a 0.13m range.
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The robot body is generated and inserted into the world by the spiderBody 

object class (see section 4.4). A majority of the code in this class, about 1500 

lines, comprises the constructor function, which performs the following steps:

● Create the core body of the robot, which consists of three ODE primitives, set 

up its mass and inertia matrix, add its collision detection geometry, and insert it 

into the world.

● Repeat the previous step for the upper legs and lower legs.

● Calculate the starting positions / rotations for the legs, and move them to those 

locations.

● Attach the legs with the appropriate ODE joints (ball joints at the hips and 

hinge joints at the knees).

● Calculate the base / tip positions of the actuators, and call genActuator() on 

each one.

4.3 QUADRUPED ROBOT BODY

The robot body used in these simulations is shown in Figure 4.1. This robot 

has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear 

servos controlling a single leg are shown in Figure 4.2; their effects are as follows:

1. Works with Actuator 2 to control the direction of the axis of the upper leg.

2. Works with Actuator 1 to control the direction of the axis of the upper leg.

3. Controls the rotation of the upper leg about its axis. The effect of this actuator 

is interdependent with Actuators 1 and 2.

4. Controls the bending angle of the knee joint.
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Figure 4.1: Quadruped Robot

Figure 4.2: Diagram of a Single Leg Showing Actuator Indices
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The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5. 

These dimensions correspond to those shown in Table 4.1, and the upper and 

lower limits given in Table 4.2.

Figure 4.3: Robot Body Core (isometric view), Showing Dimensions

Figure 4.4: Diagram of Upper and Lower Chassis Platforms
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Figure 4.5: Diagram of a Leg, Showing Dimensions

Figure 4.6: 3D Rendering of the Robot Walking in the Simulation 

Environment
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Figure 4.6 shows a 3D-rendered example of the robot. This image was 

made from a screenshot of the robot walking in the simulation software. The gray 

actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators 

correspond to Actuator 3, while Actuator 4 is not shown in this picture because it 

is handled outside ODE, in order to increase the speed of the software, and not 

drawn when the scene is rendered.

4.4 ROBOT BODY OBJECT CLASS

The ODE objects which model the robot body are created and manipulated 

through the spiderBody object class. The source code for this class is given in 

Appendix C. Aside from the constructor and destructor, the robot body class 

implements the following member functions:

● dReal getPos( int index )

Returns the current length, in meters, of the linear actuator specified by index, 

with respect to its starting length. Negative numbers indicate that the actuator 

has retracted, while positive numbers indicate that it has extended.

● dReal getVel( int index )

Returns the linear speed, in meters per second, of the actuator specified by 

index, where negative numbers indicate that the actuator is retracting and 

positive numbers indicate that it is extending.

● void addForce( int index, dReal force )

Adds a 3rd law pair of forces of magnitude force to the two ends of the 

actuator specified by index,  which are directed along its axis. This is the 
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source of all of the driven motion in the physics simulation, except for the four 

knee joints.

● void addKneeTorque( int index, dReal torque)

Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower 

leg specified by index. This is the source of all driven motion at the knee 

joints.

● dReal getKneeAngle( int index )

Returns the current angle, in radians, of the knee specified by index. This 

angle is measured from the direction of the upper leg (if the knee is straight, 

the angle is zero), and increases as the lower leg bends downward.

● dReal getKneeOmega( int index )

Returns the current angular speed, in radians per second, of the knee 

specified by index.

● dBodyID getCore()

Returns the ODE body ID of the robot chassis. This is used in the collision 

detection callback to count collisions between the chassis and ground 

(which incurs a small score penalty).

4.5 HELPER FUNCTIONS

In addition, there are three helper functions that are not members of the 

robot body class, but are used with it. All three of these functions relate to the 

actuator that drives each knee, but is external to the ODE world in order to 
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increase processing speed. The source code for these helper functions is given in 

Appendix C, and they are described below:

● dReal calcKneeActOffset( dReal angle, dReal KBR, dReal KLL )

Calculates the position of the knee actuator tip, in meters, with respect to the 

knee joint. This position ranges from zero to the length of the upper leg. Angle 

specifies the angle of the knee joint, in radians, as returned by 

spiderBody::getKneeAngle( int ), KBR is the distance between the knee 

joint and the link attachment point on the lower leg, and KLL is the length 

of the linkage itself.

● dReal calcKneeTorque( dReal Angle, dReal slidePos, dReal KBR,

dReal F )

Returns the torque applied to the knee joint by a force F in the knee actuator. 

The input variable, slidePos, specifies the position of the knee actuator, as 

defined above, while F is the linear force in the actuator. Angle and KBR are 

the same variables described above.

● dReal calcKneeActVel( dReal Angle, dReal slidePos, dReal KBR,

dReal w )

Returns the linear speed of the knee actuator, in meters per second, given the 

angular speed of the knee joint, in radians per second. The input variable w is 

the angular speed; other inputs are the same as described above.
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4.6 BODY GEOMETRY PARAMETERS

The body parameters, which are set at random by the software and passed 

to the robot body constructor in a parameter array are listed in Table 4.1. These 

parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index 

column specifies the position in the array, while the Macro column gives the 

three- or four-letter macro by which the variables are referenced in the source 

code (see section 4.4 and Appendix C). Note that all linear dimensions are in 

meters, while all mass parameters are in kilograms.

Table 4.1: Robot Body Parameters Array

Index Variable     Macro

0 Upper platform (chassis) radius      UCR
1 V actuator upper mount offset (from centers of UP)      VAO
2 Distance between upper and lower platforms      RISE
3 Lower platform radius      LCR
4 Upper leg length      ULL
5 Lower Leg Length      LLL
6 Distance hip -> V ball on upper leg      IBR
7 Hip rotation linkage length      RBR
8 Knee link length (Obsolete; now set automatically)       KLL
9 Distance knee -> knee link attachment       KBR
10 Upper platform mass      UPM
11 Lower platform mass      LPM
12 Square tubing density (mass / unit length)       LINDENS
13 Platform and Leg thickness           THICK
14 Starting Position X      POSX
15 Starting Position Y      POSY
16 Starting Position Z      POSZ
17 Upper leg zero angle      ULZA
18 Leg rotation zero angle      LRZA
19 Lower leg zero angle      LLZA
20 Foot ball radius      FBR
21 Foot ball mass      FBM
22 V Actuator base mass              VABM
23 V Actuator tip mass              VATM
24 Rotational Actuator base mass            RABM
25 Rotational Actuator tip mass              RATM
26 Upper leg mass      ULM
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4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within 

a set of upper and lower limits defined by two limit arrays. The purpose of this 

variation is to train the neural networks to control a range of robots, rather than 

just a single example, to increase their resistance to the effects of small changes 

when going from the simulated robots to a physical one. The values used in the 

lower and upper limit arrays are given in Table 4.2.

Table 4.2: Upper and Lower Robot Parameter Limits

Index Macro Variable Description Lower Limit Upper Limit

0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9   KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52
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4.8 SIMULATION LOOP

On each step through the simulation loop, the inputs to the control system 

are updated with the force and position values for all of the actuators. The position 

values for the 12 upper leg actuators are obtained from ODE, using the getPos() 

member function of the robot body class, while the motion speeds for these 

actuators are obtained using getVel(). The knee actuator positions and speeds are 

calculated from the knee angles and angular velocities, which are obtained from 

ODE using the getKneeAngle() and getKneeOmega().

For all actuators, including the ones for the knees which are handled 

externally to ODE, the position is zero as seen by its control-system input at 

whatever position the actuators are created in. These zero positions are also used 

to define the actuator position variables which are modified by the outputs of the 

control system. The difference between these “set” position variables, and those 

returned by ODE, or calculated from angular values, in the case of the knees, are 

used to calculate the force in each actuator using a simple damped-spring 

equation:

F = -ks * (actual position – set position) – kd * ( actuator speed )

where ks is a spring constant, and kd is a damping coefficient.

The spring constant for knee actuators is 1500N/m; for other actuators it is 

1100N/m, and the damping coefficient is 30N*s/m. These values are based on 

measurements taken from a prototype linear actuator.
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The calculated forces for all actuators except those in the knees are sent 

back to ODE through the robot body class using the addForce( index, force ) 

member function, as well as to the control system as force-sensor inputs. The 

forces for the knees are converted to torque values, and sent to ODE using the 

addKneeTorque( index, torque ) member function.

The actuator set positions are produced by the control system outputs 

through a double integral. The control system is able to set acceleration values for 

the actuators, up to a certain maximum acceleration, and these values change the 

speed of the actuators (the rate of change of the set value), up to a certain 

maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum 

speed is 0.35m/s, both of which are based on measurements taken from a 

prototype actuator.

In addition to position and force measurements, the control system also has 

two other inputs that describe the desired direction of travel with respect to the 

robot. These two values are dot products of a unit vector pointing in the desired 

direction with the robot's local X and Y vectors. These are treated exactly the 

same as the sensor inputs, and propagate through the history stack in the same 

way.
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5. PERFORMANCE EVALUATION

5.1 OVERVIEW AND QUALITATIVE ANALYSIS

For a system such as this, the most definitive performance criterion is 

whether the robots begin walking in an effective way within a reasonable amount 

of time, while operating on a computer which is economically feasible to the user. 

During and after the development of this software, many test runs were performed, 

using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In 

eac test, the AI always either learned to walk, or found a way to work around the 

rules and “cheat”, within a few days.

In the earliest runs, there was no penalty for being upside-down, which 

resulted in the robots' bouncing and rolling forward as far as they could upon 

dropping into the world, then kicking their legs and hopping forward while 

upside-down. Some of them also managed to tilt 90 degrees to the side and roll a 

good distance, effectively doing cartwheels, before falling down. When the 

penalty was added and the software re-run, a population of robots was produced 

fairly quickly that would hop forward, like frogs. At this point, a bug in the 

physics simulation code was found and fixed, and the first population of actual 

walkers was produced on the following run. For this test, the software was 

allowed to run for a period of approximately three weeks in real-time, in which 

time the it became very good at making the robots walk—at the end of this run, 

the robots were moving about 16 body lengths in 14 seconds of simulation time, 

which is quite fast given the physical characteristics of the robot and the limits that 
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were in place on how fast the actuators were allowed to move and accelerate (see 

Chapter 4).

5.2 QUANTITATIVE ANALYSIS

In order to obtain a quantitative analysis of the performance of this system, 

a pair of test runs was done, with different parameters for the neural network. A 

special version of the software was created for these runs, which has the added 

feature of creating the log files that are used in the analyses below. These log files 

are formatted as plain text, with one line for each population member evaluated. 

The entries on each line are as follows:

● The index of the current population member. This ranges from 0 – 39, as a 

population size of 40 was used for all of the runs that used a log file.

● The score that the population member retained from the last generation, 

according to scoring rule #5 (see section 3.2).

● The number of times the chassis came into contact with the ground, as 

described in rule #4.

● The score given for any movement at all, as described in rule #1.

● The movement of the robot in the X direction.

● The movment of the robot in the Y direction.

● The final score passed back to the mcEVO node.

Results from two of these logged runs are included in this section. In these 

runs, each neural network is given a turn of 2000 time steps in which to control its 

robot. The starting positions are recorded after a delay of 250 time steps, which 
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gives an effective turn length of 1750 time steps. Each time step for the neural 

network represents 0.012 seconds of simulation time, so there is a period of 

approximately 21 seconds in simulation time for which movement is recorded. 

Both tests are identical in all respects, except that one uses a neural network of 30 

perceptrons, with a memory of 250 time-steps while the other uses 150 

perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is 

equivalent to approximately 3 seconds of simulation time, while 150 time-steps is 

equivalent to about 1.8 seconds. For these runs, the desired direction is always 

along the X axis, and the ground impact penalty is very small (0.05). Changes to 

these rules can be implemented slowly through a modification to the software — 

the desired direction will take random values that slowly drift away from the X 

axis, while the ground-impact penalty will slowly increase. This is not done here 

due to the length of time the software has to run before a new adaptation is made.

The results from the log files were post-processed using a second program, 

which was written to parse the data from the logs and extract the following data 

sets for each generation:

● The maximum score attained by any population member during the generation, 

excluding any score carried over from the previous generations.

● The top 5 scores from the generation.

● The average value of the top five scores from the generation.

● The maximum score ever achieved, in the current or any previous generation.
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● The total movement in the X and Y directions for the top 5 scorers in the 

generation.

Figure 5.1 shows the top score results vs. generation from the 30-

perceptron test. There are three data sets on this plot: the top score attained during 

the generation (orange), the average of the top five scores (purple), and the 

running maximum score (black). These scores are a figure of merit which 

represents the performance of the neural networks with respect to all of the 

scoring rules that are discussed in Chapter 3. A plot of the total movement in the 

X direction (orange) and the Y direction (purple) for the top scoring neural 

network in each generation is given in Figure 5.2. Unlike the scores shown in 

Figure 5.1, these movement figures provide concrete values that are relevant 

outside the context of the genetic algorithm — they represent the actual distance 

that the simulated robots were able to walk during the time allotted. 

Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively, 

but are taken from the 150-perceptron run. They show data taken from a smaller 

number of generations, but the same amount of real-world run time. This is 

because the software runs more slowly when a larger neural network is used.
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Figure 5.1: Scores Per-Generation for the 30-Perceptron Run

Figure 5.2: X and Y Displacement for the 30-Perceptron Run
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Figure 5.3: Scores Per-Generation From the 150-Perceptron Run

Figure 5.4: X and Y Displacement From 150-Perceptron Run
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5.3 DISCUSSION OF RESULTS

Note that the first run (30-perceptrons) went for 405 generations, while the 

second (150-perceptrons) run was only 240 generations. Both tests ran for 

approximately 11 days in real-world time, each running on one core of the same 

CPU, but the larger neural network slowed down the software considerably on the 

second run. This is to be expected, as the neural networks from the first run 

consume only 59MB of RAM, while those from the second run consume 179MB

—and all of these weights need to be processed 2,000 times per turn, and 160,000 

times per generation. 

Several other things are apparent from Figures 5.1-5.4. First, the data has 

quite a bit of randomness in it—there is a large amount of inconsistency between 

generations in both the scores and displacements. Secondly, while the scores are 

generally rising as the generations progress, they do so in a very chaotic way, with 

relatively flat periods and periods of rapid increase. There is even what appears to 

be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show 

the X component of motion increasing with the score, while the Y component 

remains approximately centered at zero, but with steadily increasing random 

variation.

The first observation can be explained by the fact that the robots the system 

is being asked to control are randomly generated. Thus, a neural network that 

performs well in one generation may be do poorly with the robot it is given in the 

next generation. This is intentional, as the goal is to evolve a control system which 
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is effective in a wide variety of robots (thus increasing the chance that it will work 

well with a physical robot in the real world). In addition, it is possible for an 

otherwise strong-performing control system to flip its robot upside-down, 

obtaining a very low (or negative) score in the process. This tends to be especially 

likely with the very high scoring individuals in any generation, as they tend to be 

the “risk takers”. This issue can be exacerbated by the randomness in the robot 

parameters, as a behavior that is only slightly risky in one robot may be fatal in 

another.

The chaotic nature of the increases in score over time can be explained by 

the properties of the genetic algorithm. The software is continually recombining 

the same characteristics into new population members, only occasionally 

happening upon a new adaptation that results in significantly higher scores. It 

takes time, however, for this adaptation to propagate through the population, and 

be optimized to work in a consistent way. Thus, there can be a very large jump in 

the running maximum, creating a “high score” that holds for quite some time. The 

apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to 

the “deaths” of several population members which, while high-scoring, were also 

highly inconsistent. This is backed up by the fact that the randomness in the plot 

drops off very quickly during the same few generations, and remains smaller than 

before as the scores recover.

The movement in the X direction (which is always the “desired” direction 

in these two runs, as explained above) behaves as one would expect; it appears to 
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increase along with the scores. The Y movement, however, remains approximately 

centered at zero, but has a random noise in it that increases through the 

generations. This can be explained by the fact that the control system is becoming 

more effective at moving the robots in general, and because the population 

members still receive points for moving along the Y axis. In later generations, this 

movement is small compared to the motion in the X direction, as the control 

system improves at directing the robot in the direction of maximum score. This 

side movement could also be suppressed by slowly introducing a penalty for 

movement in the Y direction, especially if an additional input was added to the 

control system for current (absolute) position.

Finally, it is worth pointing out that the 30- and 150- perceptron tests were 

only allowed to run for 860 and 485 generations, respectively, due to time 

limitations. Previous runs that were much longer, including one that went into the 

thousands of generations, showed a continued increase in performance, with the 

longest run producing several scores between 8 and 9 on each generation. The 

plots here are, however, sufficient to show that the ability of the AI to control a 

robot is generally rising with time, and to show some of its characteristics.
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6. CONCLUSIONS AND FURTHER RESEARCH

6.1 CONCLUSIONS

From the results given in section 5.2, as well as direct observation of the simulated 

robots in the software, it is clear that this system is capable of generating effective 

walking movement. In addition, the robot design used in this thesis is particularly 

difficult to control, as its wide body does not permit the center of mass to remain 

in a stable position. In quadruped animals, the body is long and narrow, so that 

diagonal pairs of feet that are on the ground form a straight line that is always 

beneath the center of mass. With a hexapod or octopod, the problem would be 

even easier, as the feet on the ground at any given time form a triangle or a 

trapezoid, respectively, that can always enclose the center of mass on the 

horizontal plane. Thus, this method can be expected to produce better results than 

those given here for these other body types.

6.2 CONTINUED WORK WITH THIS BUILD

The first step that should be taken in order to learn more about this system is to 

perform more extensive testing than what was done for this thesis in order to 

maximize the efficiency of the system with respect to CPU load and memory 

usage. This will require a large number of test runs to be performed with many 

different configurations, in order to optimize the following variables:

● Population size

● Number of perceptrons
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● Memory length

● Probability of each type of mutation

● Scoring with respect to different criteria

● Selection rules

In order to perform a large number of tests in a reasonable amount of time, it 

would be best to use a computer with a large number of processor cores, as this 

software does not parallelize easily in its current form. Alternatively, the physics 

engine could be replaced with one that runs on a stream processor, such as PhysX 

from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the 

neural network could be rewritten to run on a GPU.

6.3 EXTENSION OF CONTROL SYSTEM

It would also be good to extend the scope of the control systems that are produced 

in a few different ways. First, multiple neural networks can be used, with each 

trained to perform a different task. While individual networks have been observed 

to produce multiple behaviors in this system, this would be a good way to separate 

the desired behaviors. Also, it might be effective to have “nested” learning rules, 

such that the neural network continues to learn on its own after it is produced by 

the genetic algorithm. This could be done by adding some form of short-term 

reinforcement learning, or by adding a classifier network to the inputs of the 

control system that predicts the result of current behavior on the score and adjusts 

the weights of the network, perhaps using the P-Delta learning rule[6] that 

originally went with the parallel perceptron network that is used here. Another 
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option may be to add some outputs that do not control anything, but still act as 

feedback loops. This would create a form of memory that permits state-space 

orbits that last much longer than the history-buffer length, which the system would 

use in whatever way happens to produce the highest scores.

6.4 POTENTIAL APPLICATIONS

In terms of applications, there are two things that would be very interesting to do. 

One such idea is to create a CAD-style robot “editor” in which robots can be 

designed in a quick and convenient way, instead of writing a 1500+ line 

constructor, as was done with the spiderBody class used in this research. This 

editor would allow one to create a robot using a library of predefined parts such as 

the linear servos seen on the robot that this thesis deals with, and automatically 

generate a bill of materials for its physical construction. After the robot is 

designed, the software can then be used to create parts of its control system.

The second possibility is to modify the simulation and genetic algorithm 

software to operate as a P2P application, in a similar way to the BitTorrent 

network. A large number of users who want the same robot could download a task 

file that specifies the robot that is to be controlled and points to an online 

“tracker”. Having connected to the tracker, a user's client would join the “swarm” 

of other users, and begin receiving population members to evaluate. Each user's 

PC processes a small population, similar to the ones that were used in the two test 

runs here, but downloads a few new neural networks from other users and 

transmits a few on each generation. Depending on the number of users who want a 
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particular robot, this could permit effective population sizes in the tens of 

thousands. Like the other possibilities mentioned above, this has not been 

evaluated at this point, and it is unknown whether it would be an effective design. 

It would, however, be very interesting to see what might come out of it.
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APPENDIX A: NEURAL NETWORK SOURCE CODE

This Appendix shows the source code that implements the neural network 

used in this thesis. There are two sections to this source code: the mcNeuron 

object class, and the historyBuffer object class.

The mcNeuron class implements the neural network itself.  This class 

functions as a linked list, where each instance manages a single perceptron, and 

contains a pointer to the memory address of the next perceptron. Thus, the 

perceptrons are organized in a chain structure, so that the software using this class 

need only interact with the first instance in the chain. The member functions of 

this class, and their calling conventions, are described in detail in section 2.5.

The historyBuffer object class implements the memory stack discussed in 

Chapter 2. The source code for this class begins on the second page of this 

appendix. The historyBuffer class is structured as a linked list, where each 

instance of the class acts as one stack layer (see Figure 2.2). When a new vector is 

to be added to the stack, a new historyBuffer object is created, and the previous 

top layer is passed as an argument. To avoid creating a memory leak, the recursive 

killOldest() member function is called on the top stack layer, which causes the last 

layer in the stack to be deleted.

Note that this stack is managed externally to the mcNeuron class, so the 

memory address of the top layer must be passed as an argument to several of the 

mcNeuron member functions. 
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APPENDIX B: GENETIC ALGORITHM SOURCE CODE

This Appendix provides the source code for the genetic algorithm that was 

used in this thesis. This genetic algorithm is implemented by the mcEVO object 

class, in addition to the two helper functions, rankNodes() and breedNets().

The mcEVO class is structured as a linked list, and encapsulates the neural 

network, the memory stack, and the physical dimensions of the simulated robot to 

be controlled. It provides functions to load, save and manipulate the population of 

neural networks. The member functions of this class are described in detail in 

section 3.5.

The rankNodes() helper function implements a sorting algorithm that ranks 

a chain of mcEVO instances based on the score values stored in them, in 

descending order. Note that the instance passed to rankNodes() will be moved to a 

random location in the chain. Thus, the function mcEVO::getFirst() is used after 

the ranking to reacquire the beginning of the chain.

The breedNets() helper function comprises most of the actual genetic 

algorithm. Specifically, it implements the selection, crossover, and mutation 

operations that are discussed in sections 3.3 and 3.4.
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APPENDIX C: ROBOT CLASS SOURCE CODE

This Appendix provides the source code for the software library that creates 

and manipulates the simulated robot used in this thesis. This library consists of the 

spiderBody object class, and several helper functions that are used with it.

This source code is divided into three files. The first file (spider6.h) is a 

header file that is included in any program which uses this library. This header 

defines the macros referenced in Tables 4.1 and 4.2, and declares the spiderBody 

object class.

The second file (spider6.cpp) contains the member functions for the 

spiderBody object class and the helper functions that are used with it. These 

functions, and their usage, are discussed in detail in sections 4.4 and 4.5.

The third file (actuator.cpp) contains the code which is used to model the 

linear servos that are used by the spiderBody class. This file consists of three 

parts:

● Definition of typedef struct actuator{}, which encapsulates all of the ODE 

objects that are required to model the linear servo.

● Function genActuator(), which creates an ODE model of the actuator.

● Function delActuator(), which deletes all of the ODE objects that comprise 

an actuator.
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1. INTRODUCTION


This thesis describes a method for automatically generating complex 


control systems for walking robots. One of the most interesting research fields 


today is the development of robots that are able to perform complex and 


somewhat arbitrary actions with some degree of reliability. While robotics as a 


field of engineering has existed for quite some time now, and robots have been 


created which are capable of performing many tasks, it is still very difficult to 


create a robot which can effectively navigate complex terrain, or inside buildings. 


This is mostly due to the fact that the simple forms of mechanical movement, such 


as wheels, are only effective over a narrow range of conditions. A wheeled robot, 


for example, may be able to navigate a single floor of a building, or a landscaped 


outdoor area, but would normally be incapable of dealing with anything that its 


wheels cannot roll over, such as stairs, or rough terrain. For this reason, an 


effective walking-robot technology would be very useful.


Designing an effective walking robot is a difficult problem for two distinct 


reasons. First, it is actually quite challenging for engineers to design mechanical 


systems that exhibit anything close to the combination of speed, strength, size and 


weight that exist in biological organisms. This problem tends to either introduce 


severe limits on what can be done, or alternatively, cause the cost to construct a 


robot to be extremely high. Secondly, and somewhat relatedly, the control system 


for an effective walking robot is by necessity very complicated. This is because of 


1







the wide variety of conditions under which such a robot must be able to operate; a 


simple pre-programmed sequence of movements is not sufficient to provide 


reliable walking.


There are many different methods which have been used to provide 


intelligent control of walking robots. One approach is the use of Central Pattern 


Generators (CPGs), which have been used to control biped robots [1, 2]. Like the 


biological systems that inspired this method, a robot using CPG motion control 


has a very small neural network in which groups of individual perceptrons behave 


like schmidt trigger oscillators. The currently-active perceptrons inihibit the others 


until their responses to the input vector override the inhibition. At this point, when 


the system begins to switch states, a positive-feedback condition is created which 


strongly attracts the system into its next state. These neuronal oscillators can be 


connected in a purely feed-forward layout, in which the neurons use only each 


other's outputs as inputs, or they can use feedback, in which the inputs to the 


neurons are sensor outputs from the controlled system[3]. The behavior of this 


system is normally hard-coded, and tends to suffer from most of the same 


drawbacks as a pre-programmed gait — it requires a human programmer to 


consider each possible situation that it may encounter.


Genetic algorithms have also been used to develop control systems in 


walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-


forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5] 
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combine a genetic algorithm with a CPG to produce walking behavior in a 


hexapod robot.


In this thesis, a new method is developed which works in a similar way to 


[5], in that a neuronal oscillator controller is trained with a genetic learning rule, 


but with several key differences. First, the new method uses a relatively large 


neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The 


network used in this thesis has dozens to hundreds of perceptrons and, in some 


cases, upwards of a half-million weights (see test runs in Chapter 5). These 


perceptrons are not connected together directly as they are in the CPG, but do 


have feedback from the aggregate (system) output. In addition, the system has 


some internal memory which stores a certain number of past inputs and outputs. 


Thus, the control system can not only “see” the current state of the robot, but also 


remembers what has been happening with the physical robot and what it has been 


doing. The length of this memory is a user-entered variable, which has been set at 


150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the 


scoring and selection algorithms used in this thesis are based only on walking 


performance; the first training steps used in [5] to initially produce oscillatory 


behavior is not present.


For purposes of training the neural network, software is created which 


combines a physics simulation with a scoring algorithm. Candidate control 


systems are scored on how far they can make a simulated robot walk over 


randomly-generated terrain in a given amount of time, and this information is 
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passed back to the genetic algorithm. After each neural network has had a turn, 


and received a score, the software ranks them and replaces the lower scorers with 


new networks that are created by combining pairs of high-scorers and applying 


random mutations. These steps are then repeated until the user decides that a 


sufficiently effective one has been produced, based on observation of the 3D-


rendered simulation or the figures of merit introduced in Chapter 5, and terminates 


the program.


When the program is first started, all of the neural network weights are 


random and the simulated robots are only able to move a very short distance. As 


time progresses, however, the robots begin to develop the ability to produce 


continuous motion in one direction. In the test runs, the robots began to show 


some walking ability within about two days, and were becoming quite effective at 


walking after about a week.


While this method still requires some forethought on what types of 


situation the robot will encounter, in order to create effective training simulations, 


it does not need any hard-coding to be performed. All that is necessary is to create 


a 3D “world” with any terrain that the robot might have to navigate, as the 


software will randomly place robots in the world and score the control systems on 


how well they perform. In addition, the neural networks produced by this software 


are not limited to a single type of walking — multiple methods of movement have 


been observed in individual networks — which simplifies their integration into a 


complete robot.
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This thesis is organized as follows: In Chapter 2, the neural network 


topology is described, as is the method for generating its input vector. There is a 


discussion on why it was chosen in section, and why it was expected to be 


effective, and its software implementation is described in detail. In Chapter 3, we 


discuss the genetic learning rule that is used with the neural network. The scoring 


rules that are used in the physics simulation are defined, as are the rules used for 


selection, crossover and mutation. Then, the software implementation of the 


genetic algorithm is described. In Chapter 4, the physics simulation in which the 


neural networks are trained is described, starting with the simulation “world”. 


Then, we discuss the quadruped robot body that is used in the simulations, its 


physics-engine implementation, and the geometrical parameters that describe 


individual robots. Finally, we describe the simulation loop in which the physics 


engine, the robot model, the neural network and the genetic algorithm come 


together. In Chapter 5, the performance of the software is evaluated. Figures of 


merit, collected from two test runs, are presented, and the results are discussed. In 


Chapter 6, we discuss our conclusions from this work, and propose some ideas for 


further research, as well as some potential applications.
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2. NEURAL NETWORK


 2.1 OVERVIEW


The neural network used in this project consists of a single layer of parallel 


perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but 


with an outboard genetic learning rule rather than the one described in that work. 


Each perceptron has a set of input weights that determines its response to a given 


set of inputs, an activation function which, in this thesis, is a unit-step function, 


and a set of output weights, which are multiplied by the output of the activation 


function (1 or 0) and added to the system output vector. This neural network 


operates in discrete time, evaluating sampled inputs and producing outputs at fixed 


time intervals. A block diagram of the neural network, and its associated memory 


stacks, is shown in Figure 2.1. 


Figure 2.1: Neural network block diagram
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2.2 INPUT VECTOR GENERATION


Inputs to the neural network come from three sources: body sensors, 


command and control signals, and previous inputs and system outputs. Past inputs 


and outputs come from a type of stack buffer where data travels down the stack 


and is discarded when it passes the last level. These historical data are used for 


two purposes: as inputs for the neural network, and as training data for a second 


learning rule that is implemented in the software, but not currently being used. 


The organization of this stack is shown in Figure 2.2.


Figure 2.2: Block Diagram of History Buffer Object
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2.3 OUTPUT VECTOR GENERATION


On each time step, the input vector to the neural network is generated by 


concatenating the body sensor and command inputs with the past inputs and 


outputs from the history buffer objects. This vector, I_sys, is multiplied (dot 


product) with each perceptron's input weight vector, W, to give the postsynaptic 


potential (PSP).  The output of the perceptron is the unit step function of the PSP, 


multiplied piecewise by the perceptron's output weights to give its contribution, 


Rn, to the system output vector, Rs. This may be expressed as follows:


Rn = u( I_sys • W ) (2.1)


Rs = Σ( Rn ) (2.2)


2.4 WHY THIS ALGORITHM


At this point, some information is given regarding why this system can 


work. First, due to the fact that the number of perceptrons is much larger than the 


number of outputs, this algorithm is a universal function approximator[6]. This 


means that it can implement an arbitrary bounded function given the correct 


weights, even when the network has only a single hidden layer. Because the 


outputs of this neural network determine the rate of change in the actuator 


positions on the robot, the result is a system of nonlinear partial differential 


equations which, depending on the weight vectors and the physical properties of 


the robot, are capable of producing an extremely wide variety of behaviors 


8







(although not all behavior is technically possible, as there are physical limits on 


speed, force, and acceleration). Due to the way the data propagate through the 


history buffers, and thus constantly change position with respect to the input 


weights, it is relatively difficult for the system to reach a stable state where the 


robot does not move. Instead, this tends to encourage strange attractors, which 


produce repetitive, but not necessarily periodic, motion.


2.5 SOFTWARE IMPLEMENTATION


This neural network is implemented in C++ as the mcNeuron object class 


(in which the “mc” is short for “Motion Control”). It is organized in a linked list, 


where each instance represents one perceptron, and holds a pointer to the next 


perceptron in the chain. The advantage to this type of organization is that the 


source code can be kept short, as a large portion of the compiled machine code is 


automatically generated by the compiler itself. This also helps prevent errors by 


making the source code more readable, and relying on the very mature code-


generation algorithms used in the compiler. The source code for this object class is 


given in Appendix A, and its member functions are described below:


● void rnNet( float* inputs, historyBuffer* iHistory, historyBuffer* oHistory, 


      float* outputs)


This function multiplies the input weights of the perceptron (dot product) 


by the concatenation of inputs, iHistory, and oHistory, and if the result is 


positive, add its output weights to outputs. If there are more perceptrons in the 


chain, as indicated by a non-null “next” pointer, then this function is called in 
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the next node, with the same parameters. Thus, one call to the first perceptron 


in the chain propagates to all of them.


● void updateNet( float scale, historyBuffer* iHistory,


            historyBuffer* oHistory )


This function implements a second learning rule, which is not used in this 


project. It was replaced by the genetic algorithm very early in development. 


When called, it multiplies scale by values from iHistory and oHistory, and 


adds this to its input weights. Like rnNet, it propagates through all perceptrons 


in the chain.


● void iW_preset( float * newWeights )


This Function sets the input weights to the values stored in newWeights. This 


function is recursive, and if the perceptron has a non-null “next” pointer, will 


call the same function in the next perceptron. In this case, the pointer is 


advanced by the number of input weights, so that one large array can be used 


to set all of the input weights in a chain.


● void iW_preset_justOne( float * newWeights )


This function is the same as iW_preset(), but is not recursive.


● void oW_preset_justOne( float * newWeights )


This is the same as iW_preset_justOne(), but acts on the output weights instead 


of the input weights.
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● mcNeuron *getNext()


This function returns a pointer to the next perceptron in the chain, or NULL if 


a next node does not exist.


● mcNeuron *cutNth( int index )


This function cuts the chain at the Nth node, and returns a pointer to the 


removed segment. It works by recursively propagating down the chain while 


decrementing index, until index = 1. When this condition is true, the node sets 


its “next” pointer to NULL, and returns the value that was in that pointer. The 


returned pointer propagates back up the chain as the CPU falls down through 


the call stack, until the first called node finally returns it to the calling function.


● void setNext( mcNeuron * newNext )


This function sets the “next” pointer in the called node to newNext.


● void appendChain( mcNeuron * newSegment )


This function appends the chain specified by newSegment to the end of the 


called chain. It works by recursively propagating down the chain until it is 


called on a node whose “next” pointer is null, and setting that pointer to 


newSegment.


● float *getIWeights()


This function returns a pointer to the input weights for the called perceptron.


● float *getOWeights()


This function returns a pointer to the output weights for the called perceptron.


● void setRandomOWeights( float maxValue )
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This function sets the output weights of the perceptron to random numbers, 


varying from -maxValue to +maxValue. It is recursive, and operates on each 


node in the chain until a null “next” pointer is reached.


● void setRandomIWeights( float maxValue )


This function is the same as setRandomOWeights(), but operates on the 


input weights.


● void setCascadingOWeights( float weight, int oIndex )


This function sets the output weight specified by oIndex to weight, and sets all 


others to zero. If the “next” pointer is not null, it calls the same function on the 


next node, with the parameters set by the following two rules:


 If oIndex is less than the number of output weights, increment oIndex.


 If oIndex is equal to the number of output weights, then the next oIndex is 


zero, and the next weight is -weight.


Note that this function is not called in the final build of the software.


● void shakeIptWeights( float maxValue )


This function adds a random number, which varies from -maxValue to 


maxValue, to each of the input weights. It is recursive, and operates on all 


perceptrons in the chain. After the random values are added, the weight vector 


is normalized.


● void shakeOptWeights( float )


This function is the same as shakeIptWeights(), but operates on the output 


weights.
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● void mutateIptWeights( float maxValue )


This function selects a random, continuous segment of the input weights and 


replaces them with random numbers, which vary from –maxValue to 


maxValue. It is not recursive (it operates on only one perceptron), and is called 


by the much more extensive mutation function in the genetic algorithm class.


● void mutateOptWeights( float )


This is the same as mutateIptWeights(), but operates on the output weights.


● void svNet( ofstream * saveFile )


This function saves the input and output weights of a perceptron to the fstream 


object pointed to by saveFile. It is recursive, so the entire network will be 


saved when it is called on the first element in the chain. Note that the fstream 


object has an internal index that counts up as data are saved, so the function 


can be called on multiple chains with one open file, and they will all be saved 


in order.


● void ldNet( ifstream * loadFile )


This function loads the input and output weights stored in the fstream object 


pointed to by loadFile into the input and output weights. It is also recursive, 


and operates in the same way as svNet.
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3. GENETIC ALGORITHM


3.1 INTRODUCTION


The neural network described in Chapter 2 is trained using an outboard 


genetic search algorithm, which operates on the entire network, rather than 


individual perceptrons. Each candidate neural network is given a turn to control a 


randomly generated robot in a physics simulation, and scored based on its 


effectiveness at making the robot walk. Like all genetic algorithms, this one 


combines randomness, selection, crossover, and mutation to search the space of all 


possible input and output weight vectors. Due to the extremely large search space, 


and the fact that there are large clusters of viable solutions (different types of 


walking) with fitness functions that tend to be somewhat continuous, this problem 


should be particularly well-matched to the properties of a genetic algorithm [7].


Selection is based on a floating-point score that is generated by evaluating 


the network's efficacy in controlling a simulated robot. In order to function, a 


genetic algorithm must find a region in the search space where there exists a score 


gradient before it can begin to function as a genetic algorithm; before this happens 


it implements only a random search. As a result, the search must happen upon a 


region with a fitness gradient, by chance. If these regions fill too small a portion of 


the total search space, it can take a very long time for the search to locate one of 


them. For this reason, points must initially be awarded for results that are not 


directly useful, but which are likely to be connected to a useful region by a 


“bridge” of scores that are high for their particular region[7]. 
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3.2 SCORING


At the start of a turn, the software drops a robot into the “world” at a 


random position and begins stepping its neural network along with the physics 


engine. In order to reduce noise in the score due to a random bounce when the 


robot falls a short distance to the ground, and reduce the tendency for the system 


to waste time early on by simply making the robots lean forward, there is a delay 


of approximately two seconds in simulation time before the software records the 


robot's “start” position. At the end of the turn, the start position is subtracted from 


the ending position, and points are awarded according to the following five rules:


1. Score is awarded for any movement that occurs, regardless of direction. Early 


in the process, this causes the system to select the neural networks that cause 


the system to exhibit those attractors that produce constant motion. This causes 


oscillatory behavior to be learned early in the evolutionary process, and is what 


replaces the initial learning step used in [5], where fitness functions were 


assigned to per-leg oscillations.


2. The population member receives points a second time for movement in the 


desired direction, as determined by a dot product, but only if that number is 


positive — a negative score here is counted as zero. As a result, it is possible 


for an individual to receive up to two points per meter for moving in the 


correct direction. 


3. A two-point penalty is assessed if the robot is upside-down at the end of the 


turn, which can occur quite easily due to the physical characteristics of this 
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particular robot design. The purpose of this penalty is to avoid behavior that 


emerged in some of the earliest tests, where the robot would roll forward, and 


then hop along upside-down by kicking its legs.


4. A user-configurable penalty is assigned each time the robot chassis comes into 


contact with the ground. There is a delay of approximately 1 second in 


simulation time after a ground impact is registered, before the counter can be 


incremented again. This prevents large penalties from accruing quickly if the 


chassis remains in contact with the ground for a period of time. From the test 


runs that have been performed, it was found that this penalty needs to be very 


small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05 


was used. It may be effective to increase this penalty slowly after the system 


has learned to walk, but this has not yet been tested.


5. The population member retains half of the score it received in the previous 


generation, so that a single weak performance is not likely to “kill” a high-


scoring neural network. While this last rule can sometimes prevent a more-fit 


individual from displacing a less-fit one, the effect quickly fades away when 


an individual performs poorly for two or more generations. It also is not 


typically enough to prevent displacement in the case of a very low, or negative, 


score. For this reason, several replacements still occur in most generations.
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3.3 SELECTION


At the end of a generation, all members of the population are sorted by a 


ranking algorithm, so that those with the highest score appear in the earliest 


positions. In order to select each parent for the next generation, a random floating-


point number in the range [0, 1] is generated, and squared, so that the new 


probability distribution will tend toward zero. This new number still falls within 


the same range, but has an average value of ¼ instead of ½ — thus selecting 


higher-scoring individuals more often than low-scoring ones. This number is then 


multiplied by the size of the population, cast to an integer, and used to index a 


neural network that will be the “parent” of a new population member. Note that 


the random number could also be raised to any other positive power, or another 


function could be used to provide a different probability distribution, although 


these options have not been investigated. A second method which has been tested 


is to instead multiply the square by the maximum score in the population, and then 


take the weakest member above that score, but it appears to be too aggressive for 


the small populations that are feasible on a current PC, and was found to cause 


problems with early convergence. This cause of this problem is that the highest 


score in a generation tends to be much higher than the average score, or even the 


average of the top 5 scores, as shown in Chapter 5. The top scoring population 


member thus tends to be chosen as a parent very often by this rule, which causes 


the diversity in the population to disappear rapidly, leading to the early 


convergence problems that were observed.
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3.4 CROSSOVER AND MUTATION


After the two parent networks are selected, a new neural network is created 


by combining them. Each perceptron in the child is created by randomly selecting 


the perceptron at the same position from one of the parents, and occasionally 


introducing a random mutation. These mutations can take any of the forms 


outlined below:


● A random, continuous, segment of the perceptron's input weights is chosen, 


and replaced with a string of random numbers. This permits behavior to drift 


over time at the individual perceptron level.


● A perceptron's output weights are rotated, so that all of its effects are 


“mirrored” to the opposite side of the body (either side-side or front-back can 


occur). At the same time, the perceptron's response is time-delayed by a 


random amount by doing a circular shift on its input weights by an integer 


multiple of the number of inputs. The purpose of this mutation is to encourage 


symmetry in the robot's motion, and allow  effective behavior that evolves in 


one leg to eventually propagate to the other legs.


● At the population-member level, the software randomly selects a continuous 


group of perceptrons, and moves them to a new position in the list. This has no 


direct effect, but makes it possible for a new child to be created with multiple 


perceptrons that originally occurred at the same position. For example, the 


child could contain four nodes that were all at position 25 in its grandparents.


● After the new perceptron is generated, all of its weights (both input and 
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output) are randomly adjusted by a small amount, and the input weights vector 


is normalized.


3.5 SOFTWARE IMPLEMENTATION


The genetic algorithm is implemented by the mcEVO object class, which 


manages the population, and two helper functions, rankNodes() and breedNets(), 


which perform the genetic operations.


The mcEVO class encapsulates the neural network and its associated 


history buffers in such a way that the entire population can be accessed through 


one pointer. It also stores the geometry for the randomly generated robots. The 


source code for this class is given in Appendix B, and its member functions are 


described below:


● mcEVO( int popSize, mcEVO * previous, dReal * geomMin, dReal * 


geomMax )


This is a chain constructor which builds a population of popSize. It does not 


generate the neural networks (this is done in a separate call), but it does 


generate a random set of robot-body proportions for each element. The input 


variable geomMin should point to an array containing the lower limits for each 


body dimension, while geomMax should contain the upper limits. These 


parameters are described in detail in the simulation section of this thesis. 


Previous is used internally to this chain constructor, and should be set to 


NULL when it is called from outside.
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● ~mcEVO()


This destructor operates on the entire chain, deleting all nodes and any 


perceptron chains that were attached to them.


• mcEVO * getMax( mcEVO * curBest, float curMax )


This function returns a pointer to the node in the chain with the highest 


score value. The input variables curBest and curMax are used internally as 


the function recurses through the chain; it should thus be called with 


curBest = NULL and curMax set to a large negative number (-10 is 


sufficient in this case).


• void setPrevious( mcEVO * newPrevious )


This function sets the “previous” pointer for the called node to 


newPrevious.


• void setNext( mcEVO *)


This function sets the “next” pointer for the called node to newNext.


• void detach()


This function detaches the called node from the chain, calls 


previous->setNext( next ) and next->setPrevious( previous ), and sets its own 


previous and next pointers to NULL. Thus, the node is removed from the 


chain, and the chain is spliced back together.


• mcEVO *getNext()


This function returns the value in the “next” pointer of the called node.
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• mcEVO *getPrevious()


This function returns the value in the “previous” pointer of the called node.


• mcEVO *getFirst()


This recursive function can be called on any node in the chain. It calls 


previous->getfirst() until previous = NULL, then returns a pointer to that 


node.


• mcEVO *getLast()


This function works in the same way as getFirst(), but recurses down the 


chain instead of up, and returns a pointer to the last node.


• float getScore()


This function returns the score stored by the called node.


• mcEVO *getLastAbove( float minScore )


This function recurses up the chain until it reaches a node whose score is 


higher than minScore. It then returns a pointer to that node. Note that this 


function is called on the last node in the chain (rather than the first), and is 


intended to be used after the ranking operation is complete. See the section 


on the rankNodes() helper function below.


• mcEVO *getNth( int N )


This recursive function extracts a pointer to the Nth node in the chain. It 


works by calling itself on the next node in the chain, while decrementing N, 


until N = 0. It then returns a pointer to the node where this occurred. 
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• void insBefore( mcEVO * newNode )


This function inserts the node pointed to by newNode into the position 


preceding the called node. It sets its own “previous” pointer to newNode, and 


calls setPrevious() and setNext() on the new node, and setNext() on the 


current previous node, so that the chain is still continuous in both directions.


• void dumpScores()


This recursive debug function causes all nodes in the chain to send their 


scores to stdout.


• void dumpWeights()


This debug function causes all nodes in the chain to send their weights to 


stdout. Note that there can be many millions of weights, which can cause 


problems depending on the terminal program from which the software is run.


• void setScore( float newScore )


This function sets the score stored by the called node to newScore.


• dReal *getParams()


This function returns a pointer to the robot-body geometry parameters 


stored by the node.


• void appendChain( mcEVO * newSegment )


This function causes the chain starting at newSegment to be appended to the 


end of the chain holding the called node. It recurses down the chain 


until next = NULL, then sets next = newSegment and calls 
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newSegment->setNext( this ).


• int killLast( int numDeleted )


This function deletes the last numDeleted nodes in the chain. It works by 


recursively calling itself on the next node until next = NULL, then returning 


numDeleted. As the CPU falls back up through the call stack, each recursion 


subtracts one from the returned number and returns that, thus counting down 


toward zero. When the return value is zero, the node calls delete next, and sets 


next = NULL. All nodes below this point are then deleted by the chain 


destructor, as described above.


• void svBrains( ofstream * saveFile )


This recursive function saves all of the neural networks being managed by 


a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron 


chain pointed to by each node in the chain, and then calling itself on the next 


mcEVO node. Note that the fstream object class counts and records the current 


position within the file, which greatly simplifies this implementation.


• void ldBrains( ifstream * loadFile )


This function works in a similar way to svBrains(), but loads the neural 


network weights from a file into all of the mcNeuron objects being managed 


by the called mcEVO chain.


• void mkBrains( int numPerceptrons, int RHL, int THL )


This recursive function causes all nodes in the mcEVO chain to generate 
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neural networks and history buffer lists using the chain constructor for the 


mcNeuron class. The neural networks thus created have numPerceptrons 


perceptrons, and both history buffers (one for input variables, and one for 


output variables) have RHL + THL nodes. Note that this function, in its 


current implementation, assumes that each neural network has 34 inputs and 16 


outputs. This will change when the class is adapted away from this project for 


general-purpose use.


● void mkBrains_random( int numPerceptrons, int RHL, int THL, float * array )


This function works in the same way as mkBrains, but fills the input and 


output weight arrays with random numbers rather than leaving the memory 


uninitialized. Array points to an array of type float that is large enough to hold 


all input and output weights, which was used internally in a different version of 


this function. It has not been removed, because that version has not yet been 


fully evaluated at the time of this writing. For the version of the function used 


in this thesis, array can be set to NULL.


● mcNeuron *getBrain()


This function returns a pointer to the first node in the mcNeuron chain 


being managed by the called mcEVO node.


● historyBuffer *getIHist()


This function returns a pointer to the first node in the input history buffer 


chain being managed by the called mcEVO node.
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• historyBuffer *getOHist()


This function returns a pointer to the first node in the output history buffer 


chain being managed by the called mcEVO node.


• void setIHist( historyBuffer * )


This function sets the input history buffer chain to be used by the called 


node.


• void setOHist( historyBuffer * )


This function sets the output history buffer chain to be used by the called 


node.


The core features of the genetic algorithm, including selection, crossover, 


and mutation, are implemented in two helper functions that are written to operate 


on a mcEVO chain. These functions are:


● rankNodes( mcEVO * target )


This function performs a sorting operation on the mcEVO chain beginning 


at target. The nodes are ranked in order of descending score. Note that, after 


the ranking is complete, target is no longer the first node in the chain. 


However, the member function getFirst() can be called on target, and the first 


node will be returned.


● breedNets( mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin, 


dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut, 


float iRnd, float oRnd )
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This function implements almost all of the actual genetic algorithm, and is 


called after rankNodes(). Its arguments are as follows:


 thePopulation is a pointer to the mcEVO chain on which the function will 


operate.


 popSize is the size of the population.


 nReplaced is the number of population members that be replaced with 


newly created candidates. 


 pMin is a pointer to the array containing the lower limits for the robot body 


parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).


 pMax is a pointer to an array containing the upper limits for the robot body 


parameters.


 nNeurons is the number of perceptrons in each population member.


 RHL is the length of the history stack used by the neural networks as 


inputs.


 THL is the length of the history buffer used for an additional learning rule 


that is not used in this thesis, but is implemented in the mcNeuron class. 


Note that the total length of the stacks is equal to RHL + THL.


 mutProb is the probability that a mutation will occur in any given 


perceptron.


 maxMut is the maximum magnitude of the random numbers that a segment 


of a perceptron's input weights will be replaced with, when this type of 


mutation occurs (see section 3.4). The newly generated weights will thus 
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vary from -maxMut to maxMut. Note that this value should be chosen so 


that its average magnitude is approximately equal to the average magnitude 


in the input weight vector, so that the newly created weights do not swamp 


the other weights. Because the input weights vector is normalized, the 


value of maxMut used in this thesis is set to    2 * sqrt( 1 / 


number_of_input_weights ). 


 iRnd is the maximum magnitude of the random numbers that are added to 


each input weight, after the perceptron is created and all mutations are 


applied, and before the input weight vector is normalized.


 oRnd is the maximum magnitude of the random numbers that are added to 


the output weights. Note that the output weights are never normalized.
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4. SIMULATION ENVIRONMENT


4.1 OVERVIEW


The software in which the robot controllers are trained is based on a free 


and open-source rigid body physics engine called OpenDE or ODE [8], which is 


short for “Open Dynamics Engine”. This engine was orignally created by Russell 


Smith, and is currently being maintained and extended by a community of 


volunteers. It is distributed under two separate licenses — the GNU LGPL and a 


BSD-style license — such that a user can choose either of them. Thus, it may be 


used in free or commercial software, with very few restrictions. The most 


significant restriction in the BSD-style license is that the original work must be 


cited. This physics engine provides general-purpose simulation of articulated 


bodies, in addition to collision detection, and is primarily intended for use in video 


games. It has become popular enough in robot simulations, however, that there 


have been robot-simulation software packages[9] created and even a book[10] 


written about modeling robots in ODE.


4.2 SIMULATION WORLD


The simulation “world” consists of two parts — a randomly generated 


height map (the “ground”), and a randomly proportioned robot model. The height 


map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space. 


At each grid point, the height is set to a random number so that all heights fall 


within a 0.13m range.
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The robot body is generated and inserted into the world by the spiderBody 


object class (see section 4.4). A majority of the code in this class, about 1500 


lines, comprises the constructor function, which performs the following steps:


● Create the core body of the robot, which consists of three ODE primitives, set 


up its mass and inertia matrix, add its collision detection geometry, and insert it 


into the world.


● Repeat the previous step for the upper legs and lower legs.


● Calculate the starting positions / rotations for the legs, and move them to those 


locations.


● Attach the legs with the appropriate ODE joints (ball joints at the hips and 


hinge joints at the knees).


● Calculate the base / tip positions of the actuators, and call genActuator() on 


each one.


4.3 QUADRUPED ROBOT BODY


The robot body used in these simulations is shown in Figure 4.1. This robot 


has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear 


servos controlling a single leg are shown in Figure 4.2; their effects are as follows:


1. Works with Actuator 2 to control the direction of the axis of the upper leg.


2. Works with Actuator 1 to control the direction of the axis of the upper leg.


3. Controls the rotation of the upper leg about its axis. The effect of this actuator 


is interdependent with Actuators 1 and 2.


4. Controls the bending angle of the knee joint.
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Figure 4.1: Quadruped Robot


Figure 4.2: Diagram of a Single Leg Showing Actuator Indices
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The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5. 


These dimensions correspond to those shown in Table 4.1, and the upper and 


lower limits given in Table 4.2.


Figure 4.3: Robot Body Core (isometric view), Showing Dimensions


Figure 4.4: Diagram of Upper and Lower Chassis Platforms
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Figure 4.5: Diagram of a Leg, Showing Dimensions


Figure 4.6: 3D Rendering of the Robot Walking in the Simulation 


Environment
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Figure 4.6 shows a 3D-rendered example of the robot. This image was 


made from a screenshot of the robot walking in the simulation software. The gray 


actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators 


correspond to Actuator 3, while Actuator 4 is not shown in this picture because it 


is handled outside ODE, in order to increase the speed of the software, and not 


drawn when the scene is rendered.


4.4 ROBOT BODY OBJECT CLASS


The ODE objects which model the robot body are created and manipulated 


through the spiderBody object class. The source code for this class is given in 


Appendix C. Aside from the constructor and destructor, the robot body class 


implements the following member functions:


● dReal getPos( int index )


Returns the current length, in meters, of the linear actuator specified by index, 


with respect to its starting length. Negative numbers indicate that the actuator 


has retracted, while positive numbers indicate that it has extended.


● dReal getVel( int index )


Returns the linear speed, in meters per second, of the actuator specified by 


index, where negative numbers indicate that the actuator is retracting and 


positive numbers indicate that it is extending.


● void addForce( int index, dReal force )


Adds a 3rd law pair of forces of magnitude force to the two ends of the 


actuator specified by index,  which are directed along its axis. This is the 
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source of all of the driven motion in the physics simulation, except for the four 


knee joints.


● void addKneeTorque( int index, dReal torque)


Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower 


leg specified by index. This is the source of all driven motion at the knee 


joints.


● dReal getKneeAngle( int index )


Returns the current angle, in radians, of the knee specified by index. This 


angle is measured from the direction of the upper leg (if the knee is straight, 


the angle is zero), and increases as the lower leg bends downward.


● dReal getKneeOmega( int index )


Returns the current angular speed, in radians per second, of the knee 


specified by index.


● dBodyID getCore()


Returns the ODE body ID of the robot chassis. This is used in the collision 


detection callback to count collisions between the chassis and ground 


(which incurs a small score penalty).


4.5 HELPER FUNCTIONS


In addition, there are three helper functions that are not members of the 


robot body class, but are used with it. All three of these functions relate to the 


actuator that drives each knee, but is external to the ODE world in order to 
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increase processing speed. The source code for these helper functions is given in 


Appendix C, and they are described below:


● dReal calcKneeActOffset( dReal angle, dReal KBR, dReal KLL )


Calculates the position of the knee actuator tip, in meters, with respect to the 


knee joint. This position ranges from zero to the length of the upper leg. Angle 


specifies the angle of the knee joint, in radians, as returned by 


spiderBody::getKneeAngle( int ), KBR is the distance between the knee 


joint and the link attachment point on the lower leg, and KLL is the length 


of the linkage itself.


● dReal calcKneeTorque( dReal Angle, dReal slidePos, dReal KBR,


dReal F )


Returns the torque applied to the knee joint by a force F in the knee actuator. 


The input variable, slidePos, specifies the position of the knee actuator, as 


defined above, while F is the linear force in the actuator. Angle and KBR are 


the same variables described above.


● dReal calcKneeActVel( dReal Angle, dReal slidePos, dReal KBR,


dReal w )


Returns the linear speed of the knee actuator, in meters per second, given the 


angular speed of the knee joint, in radians per second. The input variable w is 


the angular speed; other inputs are the same as described above.
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4.6 BODY GEOMETRY PARAMETERS


The body parameters, which are set at random by the software and passed 


to the robot body constructor in a parameter array are listed in Table 4.1. These 


parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index 


column specifies the position in the array, while the Macro column gives the 


three- or four-letter macro by which the variables are referenced in the source 


code (see section 4.4 and Appendix C). Note that all linear dimensions are in 


meters, while all mass parameters are in kilograms.


Table 4.1: Robot Body Parameters Array


Index Variable     Macro


0 Upper platform (chassis) radius      UCR
1 V actuator upper mount offset (from centers of UP)      VAO
2 Distance between upper and lower platforms      RISE
3 Lower platform radius      LCR
4 Upper leg length      ULL
5 Lower Leg Length      LLL
6 Distance hip -> V ball on upper leg      IBR
7 Hip rotation linkage length      RBR
8 Knee link length (Obsolete; now set automatically)       KLL
9 Distance knee -> knee link attachment       KBR
10 Upper platform mass      UPM
11 Lower platform mass      LPM
12 Square tubing density (mass / unit length)       LINDENS
13 Platform and Leg thickness           THICK
14 Starting Position X      POSX
15 Starting Position Y      POSY
16 Starting Position Z      POSZ
17 Upper leg zero angle      ULZA
18 Leg rotation zero angle      LRZA
19 Lower leg zero angle      LLZA
20 Foot ball radius      FBR
21 Foot ball mass      FBM
22 V Actuator base mass              VABM
23 V Actuator tip mass              VATM
24 Rotational Actuator base mass            RABM
25 Rotational Actuator tip mass              RATM
26 Upper leg mass      ULM
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4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within 


a set of upper and lower limits defined by two limit arrays. The purpose of this 


variation is to train the neural networks to control a range of robots, rather than 


just a single example, to increase their resistance to the effects of small changes 


when going from the simulated robots to a physical one. The values used in the 


lower and upper limit arrays are given in Table 4.2.


Table 4.2: Upper and Lower Robot Parameter Limits


Index Macro Variable Description Lower Limit Upper Limit


0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9   KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52
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4.8 SIMULATION LOOP


On each step through the simulation loop, the inputs to the control system 


are updated with the force and position values for all of the actuators. The position 


values for the 12 upper leg actuators are obtained from ODE, using the getPos() 


member function of the robot body class, while the motion speeds for these 


actuators are obtained using getVel(). The knee actuator positions and speeds are 


calculated from the knee angles and angular velocities, which are obtained from 


ODE using the getKneeAngle() and getKneeOmega().


For all actuators, including the ones for the knees which are handled 


externally to ODE, the position is zero as seen by its control-system input at 


whatever position the actuators are created in. These zero positions are also used 


to define the actuator position variables which are modified by the outputs of the 


control system. The difference between these “set” position variables, and those 


returned by ODE, or calculated from angular values, in the case of the knees, are 


used to calculate the force in each actuator using a simple damped-spring 


equation:


F = -ks * (actual position – set position) – kd * ( actuator speed )


where ks is a spring constant, and kd is a damping coefficient.


The spring constant for knee actuators is 1500N/m; for other actuators it is 


1100N/m, and the damping coefficient is 30N*s/m. These values are based on 


measurements taken from a prototype linear actuator.
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The calculated forces for all actuators except those in the knees are sent 


back to ODE through the robot body class using the addForce( index, force ) 


member function, as well as to the control system as force-sensor inputs. The 


forces for the knees are converted to torque values, and sent to ODE using the 


addKneeTorque( index, torque ) member function.


The actuator set positions are produced by the control system outputs 


through a double integral. The control system is able to set acceleration values for 


the actuators, up to a certain maximum acceleration, and these values change the 


speed of the actuators (the rate of change of the set value), up to a certain 


maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum 


speed is 0.35m/s, both of which are based on measurements taken from a 


prototype actuator.


In addition to position and force measurements, the control system also has 


two other inputs that describe the desired direction of travel with respect to the 


robot. These two values are dot products of a unit vector pointing in the desired 


direction with the robot's local X and Y vectors. These are treated exactly the 


same as the sensor inputs, and propagate through the history stack in the same 


way.
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5. PERFORMANCE EVALUATION


5.1 OVERVIEW AND QUALITATIVE ANALYSIS


For a system such as this, the most definitive performance criterion is 


whether the robots begin walking in an effective way within a reasonable amount 


of time, while operating on a computer which is economically feasible to the user. 


During and after the development of this software, many test runs were performed, 


using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In 


eac test, the AI always either learned to walk, or found a way to work around the 


rules and “cheat”, within a few days.


In the earliest runs, there was no penalty for being upside-down, which 


resulted in the robots' bouncing and rolling forward as far as they could upon 


dropping into the world, then kicking their legs and hopping forward while 


upside-down. Some of them also managed to tilt 90 degrees to the side and roll a 


good distance, effectively doing cartwheels, before falling down. When the 


penalty was added and the software re-run, a population of robots was produced 


fairly quickly that would hop forward, like frogs. At this point, a bug in the 


physics simulation code was found and fixed, and the first population of actual 


walkers was produced on the following run. For this test, the software was 


allowed to run for a period of approximately three weeks in real-time, in which 


time the it became very good at making the robots walk—at the end of this run, 


the robots were moving about 16 body lengths in 14 seconds of simulation time, 


which is quite fast given the physical characteristics of the robot and the limits that 
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were in place on how fast the actuators were allowed to move and accelerate (see 


Chapter 4).


5.2 QUANTITATIVE ANALYSIS


In order to obtain a quantitative analysis of the performance of this system, 


a pair of test runs was done, with different parameters for the neural network. A 


special version of the software was created for these runs, which has the added 


feature of creating the log files that are used in the analyses below. These log files 


are formatted as plain text, with one line for each population member evaluated. 


The entries on each line are as follows:


● The index of the current population member. This ranges from 0 – 39, as a 


population size of 40 was used for all of the runs that used a log file.


● The score that the population member retained from the last generation, 


according to scoring rule #5 (see section 3.2).


● The number of times the chassis came into contact with the ground, as 


described in rule #4.


● The score given for any movement at all, as described in rule #1.


● The movement of the robot in the X direction.


● The movment of the robot in the Y direction.


● The final score passed back to the mcEVO node.


Results from two of these logged runs are included in this section. In these 


runs, each neural network is given a turn of 2000 time steps in which to control its 


robot. The starting positions are recorded after a delay of 250 time steps, which 
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gives an effective turn length of 1750 time steps. Each time step for the neural 


network represents 0.012 seconds of simulation time, so there is a period of 


approximately 21 seconds in simulation time for which movement is recorded. 


Both tests are identical in all respects, except that one uses a neural network of 30 


perceptrons, with a memory of 250 time-steps while the other uses 150 


perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is 


equivalent to approximately 3 seconds of simulation time, while 150 time-steps is 


equivalent to about 1.8 seconds. For these runs, the desired direction is always 


along the X axis, and the ground impact penalty is very small (0.05). Changes to 


these rules can be implemented slowly through a modification to the software — 


the desired direction will take random values that slowly drift away from the X 


axis, while the ground-impact penalty will slowly increase. This is not done here 


due to the length of time the software has to run before a new adaptation is made.


The results from the log files were post-processed using a second program, 


which was written to parse the data from the logs and extract the following data 


sets for each generation:


● The maximum score attained by any population member during the generation, 


excluding any score carried over from the previous generations.


● The top 5 scores from the generation.


● The average value of the top five scores from the generation.


● The maximum score ever achieved, in the current or any previous generation.
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● The total movement in the X and Y directions for the top 5 scorers in the 


generation.


Figure 5.1 shows the top score results vs. generation from the 30-


perceptron test. There are three data sets on this plot: the top score attained during 


the generation (orange), the average of the top five scores (purple), and the 


running maximum score (black). These scores are a figure of merit which 


represents the performance of the neural networks with respect to all of the 


scoring rules that are discussed in Chapter 3. A plot of the total movement in the 


X direction (orange) and the Y direction (purple) for the top scoring neural 


network in each generation is given in Figure 5.2. Unlike the scores shown in 


Figure 5.1, these movement figures provide concrete values that are relevant 


outside the context of the genetic algorithm — they represent the actual distance 


that the simulated robots were able to walk during the time allotted. 


Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively, 


but are taken from the 150-perceptron run. They show data taken from a smaller 


number of generations, but the same amount of real-world run time. This is 


because the software runs more slowly when a larger neural network is used.
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Figure 5.1: Scores Per-Generation for the 30-Perceptron Run


Figure 5.2: X and Y Displacement for the 30-Perceptron Run
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Figure 5.3: Scores Per-Generation From the 150-Perceptron Run


Figure 5.4: X and Y Displacement From 150-Perceptron Run
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5.3 DISCUSSION OF RESULTS


Note that the first run (30-perceptrons) went for 405 generations, while the 


second (150-perceptrons) run was only 240 generations. Both tests ran for 


approximately 11 days in real-world time, each running on one core of the same 


CPU, but the larger neural network slowed down the software considerably on the 


second run. This is to be expected, as the neural networks from the first run 


consume only 59MB of RAM, while those from the second run consume 179MB


—and all of these weights need to be processed 2,000 times per turn, and 160,000 


times per generation. 


Several other things are apparent from Figures 5.1-5.4. First, the data has 


quite a bit of randomness in it—there is a large amount of inconsistency between 


generations in both the scores and displacements. Secondly, while the scores are 


generally rising as the generations progress, they do so in a very chaotic way, with 


relatively flat periods and periods of rapid increase. There is even what appears to 


be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show 


the X component of motion increasing with the score, while the Y component 


remains approximately centered at zero, but with steadily increasing random 


variation.


The first observation can be explained by the fact that the robots the system 


is being asked to control are randomly generated. Thus, a neural network that 


performs well in one generation may be do poorly with the robot it is given in the 


next generation. This is intentional, as the goal is to evolve a control system which 
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is effective in a wide variety of robots (thus increasing the chance that it will work 


well with a physical robot in the real world). In addition, it is possible for an 


otherwise strong-performing control system to flip its robot upside-down, 


obtaining a very low (or negative) score in the process. This tends to be especially 


likely with the very high scoring individuals in any generation, as they tend to be 


the “risk takers”. This issue can be exacerbated by the randomness in the robot 


parameters, as a behavior that is only slightly risky in one robot may be fatal in 


another.


The chaotic nature of the increases in score over time can be explained by 


the properties of the genetic algorithm. The software is continually recombining 


the same characteristics into new population members, only occasionally 


happening upon a new adaptation that results in significantly higher scores. It 


takes time, however, for this adaptation to propagate through the population, and 


be optimized to work in a consistent way. Thus, there can be a very large jump in 


the running maximum, creating a “high score” that holds for quite some time. The 


apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to 


the “deaths” of several population members which, while high-scoring, were also 


highly inconsistent. This is backed up by the fact that the randomness in the plot 


drops off very quickly during the same few generations, and remains smaller than 


before as the scores recover.


The movement in the X direction (which is always the “desired” direction 


in these two runs, as explained above) behaves as one would expect; it appears to 
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increase along with the scores. The Y movement, however, remains approximately 


centered at zero, but has a random noise in it that increases through the 


generations. This can be explained by the fact that the control system is becoming 


more effective at moving the robots in general, and because the population 


members still receive points for moving along the Y axis. In later generations, this 


movement is small compared to the motion in the X direction, as the control 


system improves at directing the robot in the direction of maximum score. This 


side movement could also be suppressed by slowly introducing a penalty for 


movement in the Y direction, especially if an additional input was added to the 


control system for current (absolute) position.


Finally, it is worth pointing out that the 30- and 150- perceptron tests were 


only allowed to run for 860 and 485 generations, respectively, due to time 


limitations. Previous runs that were much longer, including one that went into the 


thousands of generations, showed a continued increase in performance, with the 


longest run producing several scores between 8 and 9 on each generation. The 


plots here are, however, sufficient to show that the ability of the AI to control a 


robot is generally rising with time, and to show some of its characteristics.
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6. CONCLUSIONS AND FURTHER RESEARCH


6.1 CONCLUSIONS


From the results given in section 5.2, as well as direct observation of the simulated 


robots in the software, it is clear that this system is capable of generating effective 


walking movement. In addition, the robot design used in this thesis is particularly 


difficult to control, as its wide body does not permit the center of mass to remain 


in a stable position. In quadruped animals, the body is long and narrow, so that 


diagonal pairs of feet that are on the ground form a straight line that is always 


beneath the center of mass. With a hexapod or octopod, the problem would be 


even easier, as the feet on the ground at any given time form a triangle or a 


trapezoid, respectively, that can always enclose the center of mass on the 


horizontal plane. Thus, this method can be expected to produce better results than 


those given here for these other body types.


6.2 CONTINUED WORK WITH THIS BUILD


The first step that should be taken in order to learn more about this system is to 


perform more extensive testing than what was done for this thesis in order to 


maximize the efficiency of the system with respect to CPU load and memory 


usage. This will require a large number of test runs to be performed with many 


different configurations, in order to optimize the following variables:


● Population size


● Number of perceptrons
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● Memory length


● Probability of each type of mutation


● Scoring with respect to different criteria


● Selection rules


In order to perform a large number of tests in a reasonable amount of time, it 


would be best to use a computer with a large number of processor cores, as this 


software does not parallelize easily in its current form. Alternatively, the physics 


engine could be replaced with one that runs on a stream processor, such as PhysX 


from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the 


neural network could be rewritten to run on a GPU.


6.3 EXTENSION OF CONTROL SYSTEM


It would also be good to extend the scope of the control systems that are produced 


in a few different ways. First, multiple neural networks can be used, with each 


trained to perform a different task. While individual networks have been observed 


to produce multiple behaviors in this system, this would be a good way to separate 


the desired behaviors. Also, it might be effective to have “nested” learning rules, 


such that the neural network continues to learn on its own after it is produced by 


the genetic algorithm. This could be done by adding some form of short-term 


reinforcement learning, or by adding a classifier network to the inputs of the 


control system that predicts the result of current behavior on the score and adjusts 


the weights of the network, perhaps using the P-Delta learning rule[6] that 


originally went with the parallel perceptron network that is used here. Another 
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option may be to add some outputs that do not control anything, but still act as 


feedback loops. This would create a form of memory that permits state-space 


orbits that last much longer than the history-buffer length, which the system would 


use in whatever way happens to produce the highest scores.


6.4 POTENTIAL APPLICATIONS


In terms of applications, there are two things that would be very interesting to do. 


One such idea is to create a CAD-style robot “editor” in which robots can be 


designed in a quick and convenient way, instead of writing a 1500+ line 


constructor, as was done with the spiderBody class used in this research. This 


editor would allow one to create a robot using a library of predefined parts such as 


the linear servos seen on the robot that this thesis deals with, and automatically 


generate a bill of materials for its physical construction. After the robot is 


designed, the software can then be used to create parts of its control system.


The second possibility is to modify the simulation and genetic algorithm 


software to operate as a P2P application, in a similar way to the BitTorrent 


network. A large number of users who want the same robot could download a task 


file that specifies the robot that is to be controlled and points to an online 


“tracker”. Having connected to the tracker, a user's client would join the “swarm” 


of other users, and begin receiving population members to evaluate. Each user's 


PC processes a small population, similar to the ones that were used in the two test 


runs here, but downloads a few new neural networks from other users and 


transmits a few on each generation. Depending on the number of users who want a 
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particular robot, this could permit effective population sizes in the tens of 


thousands. Like the other possibilities mentioned above, this has not been 


evaluated at this point, and it is unknown whether it would be an effective design. 


It would, however, be very interesting to see what might come out of it.
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1. INTRODUCTION


This thesis describes a method for automatically generating complex 


control systems for walking robots. One of the most interesting research fields 


today is the development of robots that are able to perform complex and 


somewhat arbitrary actions with some degree of reliability. While robotics as a 


field of engineering has existed for quite some time now, and robots have been 


created which are capable of performing many tasks, it is still very difficult to 


create a robot which can effectively navigate complex terrain, or inside buildings. 


This is mostly due to the fact that the simple forms of mechanical movement, such 


as wheels, are only effective over a narrow range of conditions. A wheeled robot, 


for example, may be able to navigate a single floor of a building, or a landscaped 


outdoor area, but would normally be incapable of dealing with anything that its 


wheels cannot roll over, such as stairs, or rough terrain. For this reason, an 


effective walking-robot technology would be very useful.


Designing an effective walking robot is a difficult problem for two distinct 


reasons. First, it is actually quite challenging for engineers to design mechanical 


systems that exhibit anything close to the combination of speed, strength, size and 


weight that exist in biological organisms. This problem tends to either introduce 


severe limits on what can be done, or alternatively, cause the cost to construct a 


robot to be extremely high. Secondly, and somewhat relatedly, the control system 


for an effective walking robot is by necessity very complicated. This is because of 
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the wide variety of conditions under which such a robot must be able to operate; a 


simple pre-programmed sequence of movements is not sufficient to provide 


reliable walking.


There are many different methods which have been used to provide 


intelligent control of walking robots. One approach is the use of Central Pattern 


Generators (CPGs), which have been used to control biped robots [1, 2]. Like the 


biological systems that inspired this method, a robot using CPG motion control 


has a very small neural network in which groups of individual perceptrons behave 


like schmidt trigger oscillators. The currently-active perceptrons inihibit the others 


until their responses to the input vector override the inhibition. At this point, when 


the system begins to switch states, a positive-feedback condition is created which 


strongly attracts the system into its next state. These neuronal oscillators can be 


connected in a purely feed-forward layout, in which the neurons use only each 


other's outputs as inputs, or they can use feedback, in which the inputs to the 


neurons are sensor outputs from the controlled system[3]. The behavior of this 


system is normally hard-coded, and tends to suffer from most of the same 


drawbacks as a pre-programmed gait — it requires a human programmer to 


consider each possible situation that it may encounter.


Genetic algorithms have also been used to develop control systems in 


walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-


forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5] 
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combine a genetic algorithm with a CPG to produce walking behavior in a 


hexapod robot.


In this thesis, a new method is developed which works in a similar way to 


[5], in that a neuronal oscillator controller is trained with a genetic learning rule, 


but with several key differences. First, the new method uses a relatively large 


neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The 


network used in this thesis has dozens to hundreds of perceptrons and, in some 


cases, upwards of a half-million weights (see test runs in Chapter 5). These 


perceptrons are not connected together directly as they are in the CPG, but do 


have feedback from the aggregate (system) output. In addition, the system has 


some internal memory which stores a certain number of past inputs and outputs. 


Thus, the control system can not only “see” the current state of the robot, but also 


remembers what has been happening with the physical robot and what it has been 


doing. The length of this memory is a user-entered variable, which has been set at 


150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the 


scoring and selection algorithms used in this thesis are based only on walking 


performance; the first training steps used in [5] to initially produce oscillatory 


behavior is not present.


For purposes of training the neural network, software is created which 


combines a physics simulation with a scoring algorithm. Candidate control 


systems are scored on how far they can make a simulated robot walk over 


randomly-generated terrain in a given amount of time, and this information is 
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passed back to the genetic algorithm. After each neural network has had a turn, 


and received a score, the software ranks them and replaces the lower scorers with 


new networks that are created by combining pairs of high-scorers and applying 


random mutations. These steps are then repeated until the user decides that a 


sufficiently effective one has been produced, based on observation of the 3D-


rendered simulation or the figures of merit introduced in Chapter 5, and terminates 


the program.


When the program is first started, all of the neural network weights are 


random and the simulated robots are only able to move a very short distance. As 


time progresses, however, the robots begin to develop the ability to produce 


continuous motion in one direction. In the test runs, the robots began to show 


some walking ability within about two days, and were becoming quite effective at 


walking after about a week.


While this method still requires some forethought on what types of 


situation the robot will encounter, in order to create effective training simulations, 


it does not need any hard-coding to be performed. All that is necessary is to create 


a 3D “world” with any terrain that the robot might have to navigate, as the 


software will randomly place robots in the world and score the control systems on 


how well they perform. In addition, the neural networks produced by this software 


are not limited to a single type of walking — multiple methods of movement have 


been observed in individual networks — which simplifies their integration into a 


complete robot.
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This thesis is organized as follows: In Chapter 2, the neural network 


topology is described, as is the method for generating its input vector. There is a 


discussion on why it was chosen in section, and why it was expected to be 


effective, and its software implementation is described in detail. In Chapter 3, we 


discuss the genetic learning rule that is used with the neural network. The scoring 


rules that are used in the physics simulation are defined, as are the rules used for 


selection, crossover and mutation. Then, the software implementation of the 


genetic algorithm is described. In Chapter 4, the physics simulation in which the 


neural networks are trained is described, starting with the simulation “world”. 


Then, we discuss the quadruped robot body that is used in the simulations, its 


physics-engine implementation, and the geometrical parameters that describe 


individual robots. Finally, we describe the simulation loop in which the physics 


engine, the robot model, the neural network and the genetic algorithm come 


together. In Chapter 5, the performance of the software is evaluated. Figures of 


merit, collected from two test runs, are presented, and the results are discussed. In 


Chapter 6, we discuss our conclusions from this work, and propose some ideas for 


further research, as well as some potential applications.


5







2. NEURAL NETWORK


 2.1 OVERVIEW


The neural network used in this project consists of a single layer of parallel 


perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but 


with an outboard genetic learning rule rather than the one described in that work. 


Each perceptron has a set of input weights that determines its response to a given 


set of inputs, an activation function which, in this thesis, is a unit-step function, 


and a set of output weights, which are multiplied by the output of the activation 


function (1 or 0) and added to the system output vector. This neural network 


operates in discrete time, evaluating sampled inputs and producing outputs at fixed 


time intervals. A block diagram of the neural network, and its associated memory 


stacks, is shown in Figure 2.1. 


Figure 2.1: Neural network block diagram
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2.2 INPUT VECTOR GENERATION


Inputs to the neural network come from three sources: body sensors, 


command and control signals, and previous inputs and system outputs. Past inputs 


and outputs come from a type of stack buffer where data travels down the stack 


and is discarded when it passes the last level. These historical data are used for 


two purposes: as inputs for the neural network, and as training data for a second 


learning rule that is implemented in the software, but not currently being used. 


The organization of this stack is shown in Figure 2.2.


Figure 2.2: Block Diagram of History Buffer Object
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2.3 OUTPUT VECTOR GENERATION


On each time step, the input vector to the neural network is generated by 


concatenating the body sensor and command inputs with the past inputs and 


outputs from the history buffer objects. This vector, I_sys, is multiplied (dot 


product) with each perceptron's input weight vector, W, to give the postsynaptic 


potential (PSP).  The output of the perceptron is the unit step function of the PSP, 


multiplied piecewise by the perceptron's output weights to give its contribution, 


Rn, to the system output vector, Rs. This may be expressed as follows:


Rn = u( I_sys • W ) (2.1)


Rs = Σ( Rn ) (2.2)


2.4 WHY THIS ALGORITHM


At this point, some information is given regarding why this system can 


work. First, due to the fact that the number of perceptrons is much larger than the 


number of outputs, this algorithm is a universal function approximator[6]. This 


means that it can implement an arbitrary bounded function given the correct 


weights, even when the network has only a single hidden layer. Because the 


outputs of this neural network determine the rate of change in the actuator 


positions on the robot, the result is a system of nonlinear partial differential 


equations which, depending on the weight vectors and the physical properties of 


the robot, are capable of producing an extremely wide variety of behaviors 
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(although not all behavior is technically possible, as there are physical limits on 


speed, force, and acceleration). Due to the way the data propagate through the 


history buffers, and thus constantly change position with respect to the input 


weights, it is relatively difficult for the system to reach a stable state where the 


robot does not move. Instead, this tends to encourage strange attractors, which 


produce repetitive, but not necessarily periodic, motion.


2.5 SOFTWARE IMPLEMENTATION


This neural network is implemented in C++ as the mcNeuron object class 


(in which the “mc” is short for “Motion Control”). It is organized in a linked list, 


where each instance represents one perceptron, and holds a pointer to the next 


perceptron in the chain. The advantage to this type of organization is that the 


source code can be kept short, as a large portion of the compiled machine code is 


automatically generated by the compiler itself. This also helps prevent errors by 


making the source code more readable, and relying on the very mature code-


generation algorithms used in the compiler. The source code for this object class is 


given in Appendix A, and its member functions are described below:


● void rnNet( float* inputs, historyBuffer* iHistory, historyBuffer* oHistory, 


      float* outputs)


This function multiplies the input weights of the perceptron (dot product) 


by the concatenation of inputs, iHistory, and oHistory, and if the result is 


positive, add its output weights to outputs. If there are more perceptrons in the 


chain, as indicated by a non-null “next” pointer, then this function is called in 
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the next node, with the same parameters. Thus, one call to the first perceptron 


in the chain propagates to all of them.


● void updateNet( float scale, historyBuffer* iHistory,


            historyBuffer* oHistory )


This function implements a second learning rule, which is not used in this 


project. It was replaced by the genetic algorithm very early in development. 


When called, it multiplies scale by values from iHistory and oHistory, and 


adds this to its input weights. Like rnNet, it propagates through all perceptrons 


in the chain.


● void iW_preset( float * newWeights )


This Function sets the input weights to the values stored in newWeights. This 


function is recursive, and if the perceptron has a non-null “next” pointer, will 


call the same function in the next perceptron. In this case, the pointer is 


advanced by the number of input weights, so that one large array can be used 


to set all of the input weights in a chain.


● void iW_preset_justOne( float * newWeights )


This function is the same as iW_preset(), but is not recursive.


● void oW_preset_justOne( float * newWeights )


This is the same as iW_preset_justOne(), but acts on the output weights instead 


of the input weights.
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● mcNeuron *getNext()


This function returns a pointer to the next perceptron in the chain, or NULL if 


a next node does not exist.


● mcNeuron *cutNth( int index )


This function cuts the chain at the Nth node, and returns a pointer to the 


removed segment. It works by recursively propagating down the chain while 


decrementing index, until index = 1. When this condition is true, the node sets 


its “next” pointer to NULL, and returns the value that was in that pointer. The 


returned pointer propagates back up the chain as the CPU falls down through 


the call stack, until the first called node finally returns it to the calling function.


● void setNext( mcNeuron * newNext )


This function sets the “next” pointer in the called node to newNext.


● void appendChain( mcNeuron * newSegment )


This function appends the chain specified by newSegment to the end of the 


called chain. It works by recursively propagating down the chain until it is 


called on a node whose “next” pointer is null, and setting that pointer to 


newSegment.


● float *getIWeights()


This function returns a pointer to the input weights for the called perceptron.


● float *getOWeights()


This function returns a pointer to the output weights for the called perceptron.


● void setRandomOWeights( float maxValue )
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This function sets the output weights of the perceptron to random numbers, 


varying from -maxValue to +maxValue. It is recursive, and operates on each 


node in the chain until a null “next” pointer is reached.


● void setRandomIWeights( float maxValue )


This function is the same as setRandomOWeights(), but operates on the 


input weights.


● void setCascadingOWeights( float weight, int oIndex )


This function sets the output weight specified by oIndex to weight, and sets all 


others to zero. If the “next” pointer is not null, it calls the same function on the 


next node, with the parameters set by the following two rules:


 If oIndex is less than the number of output weights, increment oIndex.


 If oIndex is equal to the number of output weights, then the next oIndex is 


zero, and the next weight is -weight.


Note that this function is not called in the final build of the software.


● void shakeIptWeights( float maxValue )


This function adds a random number, which varies from -maxValue to 


maxValue, to each of the input weights. It is recursive, and operates on all 


perceptrons in the chain. After the random values are added, the weight vector 


is normalized.


● void shakeOptWeights( float )


This function is the same as shakeIptWeights(), but operates on the output 


weights.
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● void mutateIptWeights( float maxValue )


This function selects a random, continuous segment of the input weights and 


replaces them with random numbers, which vary from –maxValue to 


maxValue. It is not recursive (it operates on only one perceptron), and is called 


by the much more extensive mutation function in the genetic algorithm class.


● void mutateOptWeights( float )


This is the same as mutateIptWeights(), but operates on the output weights.


● void svNet( ofstream * saveFile )


This function saves the input and output weights of a perceptron to the fstream 


object pointed to by saveFile. It is recursive, so the entire network will be 


saved when it is called on the first element in the chain. Note that the fstream 


object has an internal index that counts up as data are saved, so the function 


can be called on multiple chains with one open file, and they will all be saved 


in order.


● void ldNet( ifstream * loadFile )


This function loads the input and output weights stored in the fstream object 


pointed to by loadFile into the input and output weights. It is also recursive, 


and operates in the same way as svNet.
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3. GENETIC ALGORITHM


3.1 INTRODUCTION


The neural network described in Chapter 2 is trained using an outboard 


genetic search algorithm, which operates on the entire network, rather than 


individual perceptrons. Each candidate neural network is given a turn to control a 


randomly generated robot in a physics simulation, and scored based on its 


effectiveness at making the robot walk. Like all genetic algorithms, this one 


combines randomness, selection, crossover, and mutation to search the space of all 


possible input and output weight vectors. Due to the extremely large search space, 


and the fact that there are large clusters of viable solutions (different types of 


walking) with fitness functions that tend to be somewhat continuous, this problem 


should be particularly well-matched to the properties of a genetic algorithm [7].


Selection is based on a floating-point score that is generated by evaluating 


the network's efficacy in controlling a simulated robot. In order to function, a 


genetic algorithm must find a region in the search space where there exists a score 


gradient before it can begin to function as a genetic algorithm; before this happens 


it implements only a random search. As a result, the search must happen upon a 


region with a fitness gradient, by chance. If these regions fill too small a portion of 


the total search space, it can take a very long time for the search to locate one of 


them. For this reason, points must initially be awarded for results that are not 


directly useful, but which are likely to be connected to a useful region by a 


“bridge” of scores that are high for their particular region[7]. 


14







3.2 SCORING


At the start of a turn, the software drops a robot into the “world” at a 


random position and begins stepping its neural network along with the physics 


engine. In order to reduce noise in the score due to a random bounce when the 


robot falls a short distance to the ground, and reduce the tendency for the system 


to waste time early on by simply making the robots lean forward, there is a delay 


of approximately two seconds in simulation time before the software records the 


robot's “start” position. At the end of the turn, the start position is subtracted from 


the ending position, and points are awarded according to the following five rules:


1. Score is awarded for any movement that occurs, regardless of direction. Early 


in the process, this causes the system to select the neural networks that cause 


the system to exhibit those attractors that produce constant motion. This causes 


oscillatory behavior to be learned early in the evolutionary process, and is what 


replaces the initial learning step used in [5], where fitness functions were 


assigned to per-leg oscillations.


2. The population member receives points a second time for movement in the 


desired direction, as determined by a dot product, but only if that number is 


positive — a negative score here is counted as zero. As a result, it is possible 


for an individual to receive up to two points per meter for moving in the 


correct direction. 


3. A two-point penalty is assessed if the robot is upside-down at the end of the 


turn, which can occur quite easily due to the physical characteristics of this 
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particular robot design. The purpose of this penalty is to avoid behavior that 


emerged in some of the earliest tests, where the robot would roll forward, and 


then hop along upside-down by kicking its legs.


4. A user-configurable penalty is assigned each time the robot chassis comes into 


contact with the ground. There is a delay of approximately 1 second in 


simulation time after a ground impact is registered, before the counter can be 


incremented again. This prevents large penalties from accruing quickly if the 


chassis remains in contact with the ground for a period of time. From the test 


runs that have been performed, it was found that this penalty needs to be very 


small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05 


was used. It may be effective to increase this penalty slowly after the system 


has learned to walk, but this has not yet been tested.


5. The population member retains half of the score it received in the previous 


generation, so that a single weak performance is not likely to “kill” a high-


scoring neural network. While this last rule can sometimes prevent a more-fit 


individual from displacing a less-fit one, the effect quickly fades away when 


an individual performs poorly for two or more generations. It also is not 


typically enough to prevent displacement in the case of a very low, or negative, 


score. For this reason, several replacements still occur in most generations.
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3.3 SELECTION


At the end of a generation, all members of the population are sorted by a 


ranking algorithm, so that those with the highest score appear in the earliest 


positions. In order to select each parent for the next generation, a random floating-


point number in the range [0, 1] is generated, and squared, so that the new 


probability distribution will tend toward zero. This new number still falls within 


the same range, but has an average value of ¼ instead of ½ — thus selecting 


higher-scoring individuals more often than low-scoring ones. This number is then 


multiplied by the size of the population, cast to an integer, and used to index a 


neural network that will be the “parent” of a new population member. Note that 


the random number could also be raised to any other positive power, or another 


function could be used to provide a different probability distribution, although 


these options have not been investigated. A second method which has been tested 


is to instead multiply the square by the maximum score in the population, and then 


take the weakest member above that score, but it appears to be too aggressive for 


the small populations that are feasible on a current PC, and was found to cause 


problems with early convergence. This cause of this problem is that the highest 


score in a generation tends to be much higher than the average score, or even the 


average of the top 5 scores, as shown in Chapter 5. The top scoring population 


member thus tends to be chosen as a parent very often by this rule, which causes 


the diversity in the population to disappear rapidly, leading to the early 


convergence problems that were observed.
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3.4 CROSSOVER AND MUTATION


After the two parent networks are selected, a new neural network is created 


by combining them. Each perceptron in the child is created by randomly selecting 


the perceptron at the same position from one of the parents, and occasionally 


introducing a random mutation. These mutations can take any of the forms 


outlined below:


● A random, continuous, segment of the perceptron's input weights is chosen, 


and replaced with a string of random numbers. This permits behavior to drift 


over time at the individual perceptron level.


● A perceptron's output weights are rotated, so that all of its effects are 


“mirrored” to the opposite side of the body (either side-side or front-back can 


occur). At the same time, the perceptron's response is time-delayed by a 


random amount by doing a circular shift on its input weights by an integer 


multiple of the number of inputs. The purpose of this mutation is to encourage 


symmetry in the robot's motion, and allow  effective behavior that evolves in 


one leg to eventually propagate to the other legs.


● At the population-member level, the software randomly selects a continuous 


group of perceptrons, and moves them to a new position in the list. This has no 


direct effect, but makes it possible for a new child to be created with multiple 


perceptrons that originally occurred at the same position. For example, the 


child could contain four nodes that were all at position 25 in its grandparents.


● After the new perceptron is generated, all of its weights (both input and 
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output) are randomly adjusted by a small amount, and the input weights vector 


is normalized.


3.5 SOFTWARE IMPLEMENTATION


The genetic algorithm is implemented by the mcEVO object class, which 


manages the population, and two helper functions, rankNodes() and breedNets(), 


which perform the genetic operations.


The mcEVO class encapsulates the neural network and its associated 


history buffers in such a way that the entire population can be accessed through 


one pointer. It also stores the geometry for the randomly generated robots. The 


source code for this class is given in Appendix B, and its member functions are 


described below:


● mcEVO( int popSize, mcEVO * previous, dReal * geomMin, dReal * 


geomMax )


This is a chain constructor which builds a population of popSize. It does not 


generate the neural networks (this is done in a separate call), but it does 


generate a random set of robot-body proportions for each element. The input 


variable geomMin should point to an array containing the lower limits for each 


body dimension, while geomMax should contain the upper limits. These 


parameters are described in detail in the simulation section of this thesis. 


Previous is used internally to this chain constructor, and should be set to 


NULL when it is called from outside.
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● ~mcEVO()


This destructor operates on the entire chain, deleting all nodes and any 


perceptron chains that were attached to them.


• mcEVO * getMax( mcEVO * curBest, float curMax )


This function returns a pointer to the node in the chain with the highest 


score value. The input variables curBest and curMax are used internally as 


the function recurses through the chain; it should thus be called with 


curBest = NULL and curMax set to a large negative number (-10 is 


sufficient in this case).


• void setPrevious( mcEVO * newPrevious )


This function sets the “previous” pointer for the called node to 


newPrevious.


• void setNext( mcEVO *)


This function sets the “next” pointer for the called node to newNext.


• void detach()


This function detaches the called node from the chain, calls 


previous->setNext( next ) and next->setPrevious( previous ), and sets its own 


previous and next pointers to NULL. Thus, the node is removed from the 


chain, and the chain is spliced back together.


• mcEVO *getNext()


This function returns the value in the “next” pointer of the called node.
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• mcEVO *getPrevious()


This function returns the value in the “previous” pointer of the called node.


• mcEVO *getFirst()


This recursive function can be called on any node in the chain. It calls 


previous->getfirst() until previous = NULL, then returns a pointer to that 


node.


• mcEVO *getLast()


This function works in the same way as getFirst(), but recurses down the 


chain instead of up, and returns a pointer to the last node.


• float getScore()


This function returns the score stored by the called node.


• mcEVO *getLastAbove( float minScore )


This function recurses up the chain until it reaches a node whose score is 


higher than minScore. It then returns a pointer to that node. Note that this 


function is called on the last node in the chain (rather than the first), and is 


intended to be used after the ranking operation is complete. See the section 


on the rankNodes() helper function below.


• mcEVO *getNth( int N )


This recursive function extracts a pointer to the Nth node in the chain. It 


works by calling itself on the next node in the chain, while decrementing N, 


until N = 0. It then returns a pointer to the node where this occurred. 
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• void insBefore( mcEVO * newNode )


This function inserts the node pointed to by newNode into the position 


preceding the called node. It sets its own “previous” pointer to newNode, and 


calls setPrevious() and setNext() on the new node, and setNext() on the 


current previous node, so that the chain is still continuous in both directions.


• void dumpScores()


This recursive debug function causes all nodes in the chain to send their 


scores to stdout.


• void dumpWeights()


This debug function causes all nodes in the chain to send their weights to 


stdout. Note that there can be many millions of weights, which can cause 


problems depending on the terminal program from which the software is run.


• void setScore( float newScore )


This function sets the score stored by the called node to newScore.


• dReal *getParams()


This function returns a pointer to the robot-body geometry parameters 


stored by the node.


• void appendChain( mcEVO * newSegment )


This function causes the chain starting at newSegment to be appended to the 


end of the chain holding the called node. It recurses down the chain 


until next = NULL, then sets next = newSegment and calls 
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newSegment->setNext( this ).


• int killLast( int numDeleted )


This function deletes the last numDeleted nodes in the chain. It works by 


recursively calling itself on the next node until next = NULL, then returning 


numDeleted. As the CPU falls back up through the call stack, each recursion 


subtracts one from the returned number and returns that, thus counting down 


toward zero. When the return value is zero, the node calls delete next, and sets 


next = NULL. All nodes below this point are then deleted by the chain 


destructor, as described above.


• void svBrains( ofstream * saveFile )


This recursive function saves all of the neural networks being managed by 


a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron 


chain pointed to by each node in the chain, and then calling itself on the next 


mcEVO node. Note that the fstream object class counts and records the current 


position within the file, which greatly simplifies this implementation.


• void ldBrains( ifstream * loadFile )


This function works in a similar way to svBrains(), but loads the neural 


network weights from a file into all of the mcNeuron objects being managed 


by the called mcEVO chain.


• void mkBrains( int numPerceptrons, int RHL, int THL )


This recursive function causes all nodes in the mcEVO chain to generate 
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neural networks and history buffer lists using the chain constructor for the 


mcNeuron class. The neural networks thus created have numPerceptrons 


perceptrons, and both history buffers (one for input variables, and one for 


output variables) have RHL + THL nodes. Note that this function, in its 


current implementation, assumes that each neural network has 34 inputs and 16 


outputs. This will change when the class is adapted away from this project for 


general-purpose use.


● void mkBrains_random( int numPerceptrons, int RHL, int THL, float * array )


This function works in the same way as mkBrains, but fills the input and 


output weight arrays with random numbers rather than leaving the memory 


uninitialized. Array points to an array of type float that is large enough to hold 


all input and output weights, which was used internally in a different version of 


this function. It has not been removed, because that version has not yet been 


fully evaluated at the time of this writing. For the version of the function used 


in this thesis, array can be set to NULL.


● mcNeuron *getBrain()


This function returns a pointer to the first node in the mcNeuron chain 


being managed by the called mcEVO node.


● historyBuffer *getIHist()


This function returns a pointer to the first node in the input history buffer 


chain being managed by the called mcEVO node.


24







• historyBuffer *getOHist()


This function returns a pointer to the first node in the output history buffer 


chain being managed by the called mcEVO node.


• void setIHist( historyBuffer * )


This function sets the input history buffer chain to be used by the called 


node.


• void setOHist( historyBuffer * )


This function sets the output history buffer chain to be used by the called 


node.


The core features of the genetic algorithm, including selection, crossover, 


and mutation, are implemented in two helper functions that are written to operate 


on a mcEVO chain. These functions are:


● rankNodes( mcEVO * target )


This function performs a sorting operation on the mcEVO chain beginning 


at target. The nodes are ranked in order of descending score. Note that, after 


the ranking is complete, target is no longer the first node in the chain. 


However, the member function getFirst() can be called on target, and the first 


node will be returned.


● breedNets( mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin, 


dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut, 


float iRnd, float oRnd )
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This function implements almost all of the actual genetic algorithm, and is 


called after rankNodes(). Its arguments are as follows:


 thePopulation is a pointer to the mcEVO chain on which the function will 


operate.


 popSize is the size of the population.


 nReplaced is the number of population members that be replaced with 


newly created candidates. 


 pMin is a pointer to the array containing the lower limits for the robot body 


parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).


 pMax is a pointer to an array containing the upper limits for the robot body 


parameters.


 nNeurons is the number of perceptrons in each population member.


 RHL is the length of the history stack used by the neural networks as 


inputs.


 THL is the length of the history buffer used for an additional learning rule 


that is not used in this thesis, but is implemented in the mcNeuron class. 


Note that the total length of the stacks is equal to RHL + THL.


 mutProb is the probability that a mutation will occur in any given 


perceptron.


 maxMut is the maximum magnitude of the random numbers that a segment 


of a perceptron's input weights will be replaced with, when this type of 


mutation occurs (see section 3.4). The newly generated weights will thus 
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vary from -maxMut to maxMut. Note that this value should be chosen so 


that its average magnitude is approximately equal to the average magnitude 


in the input weight vector, so that the newly created weights do not swamp 


the other weights. Because the input weights vector is normalized, the 


value of maxMut used in this thesis is set to    2 * sqrt( 1 / 


number_of_input_weights ). 


 iRnd is the maximum magnitude of the random numbers that are added to 


each input weight, after the perceptron is created and all mutations are 


applied, and before the input weight vector is normalized.


 oRnd is the maximum magnitude of the random numbers that are added to 


the output weights. Note that the output weights are never normalized.
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4. SIMULATION ENVIRONMENT


4.1 OVERVIEW


The software in which the robot controllers are trained is based on a free 


and open-source rigid body physics engine called OpenDE or ODE [8], which is 


short for “Open Dynamics Engine”. This engine was orignally created by Russell 


Smith, and is currently being maintained and extended by a community of 


volunteers. It is distributed under two separate licenses — the GNU LGPL and a 


BSD-style license — such that a user can choose either of them. Thus, it may be 


used in free or commercial software, with very few restrictions. The most 


significant restriction in the BSD-style license is that the original work must be 


cited. This physics engine provides general-purpose simulation of articulated 


bodies, in addition to collision detection, and is primarily intended for use in video 


games. It has become popular enough in robot simulations, however, that there 


have been robot-simulation software packages[9] created and even a book[10] 


written about modeling robots in ODE.


4.2 SIMULATION WORLD


The simulation “world” consists of two parts — a randomly generated 


height map (the “ground”), and a randomly proportioned robot model. The height 


map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space. 


At each grid point, the height is set to a random number so that all heights fall 


within a 0.13m range.
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The robot body is generated and inserted into the world by the spiderBody 


object class (see section 4.4). A majority of the code in this class, about 1500 


lines, comprises the constructor function, which performs the following steps:


● Create the core body of the robot, which consists of three ODE primitives, set 


up its mass and inertia matrix, add its collision detection geometry, and insert it 


into the world.


● Repeat the previous step for the upper legs and lower legs.


● Calculate the starting positions / rotations for the legs, and move them to those 


locations.


● Attach the legs with the appropriate ODE joints (ball joints at the hips and 


hinge joints at the knees).


● Calculate the base / tip positions of the actuators, and call genActuator() on 


each one.


4.3 QUADRUPED ROBOT BODY


The robot body used in these simulations is shown in Figure 4.1. This robot 


has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear 


servos controlling a single leg are shown in Figure 4.2; their effects are as follows:


1. Works with Actuator 2 to control the direction of the axis of the upper leg.


2. Works with Actuator 1 to control the direction of the axis of the upper leg.


3. Controls the rotation of the upper leg about its axis. The effect of this actuator 


is interdependent with Actuators 1 and 2.


4. Controls the bending angle of the knee joint.
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Figure 4.1: Quadruped Robot


Figure 4.2: Diagram of a Single Leg Showing Actuator Indices
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The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5. 


These dimensions correspond to those shown in Table 4.1, and the upper and 


lower limits given in Table 4.2.


Figure 4.3: Robot Body Core (isometric view), Showing Dimensions


Figure 4.4: Diagram of Upper and Lower Chassis Platforms
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Figure 4.5: Diagram of a Leg, Showing Dimensions


Figure 4.6: 3D Rendering of the Robot Walking in the Simulation 


Environment
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Figure 4.6 shows a 3D-rendered example of the robot. This image was 


made from a screenshot of the robot walking in the simulation software. The gray 


actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators 


correspond to Actuator 3, while Actuator 4 is not shown in this picture because it 


is handled outside ODE, in order to increase the speed of the software, and not 


drawn when the scene is rendered.


4.4 ROBOT BODY OBJECT CLASS


The ODE objects which model the robot body are created and manipulated 


through the spiderBody object class. The source code for this class is given in 


Appendix C. Aside from the constructor and destructor, the robot body class 


implements the following member functions:


● dReal getPos( int index )


Returns the current length, in meters, of the linear actuator specified by index, 


with respect to its starting length. Negative numbers indicate that the actuator 


has retracted, while positive numbers indicate that it has extended.


● dReal getVel( int index )


Returns the linear speed, in meters per second, of the actuator specified by 


index, where negative numbers indicate that the actuator is retracting and 


positive numbers indicate that it is extending.


● void addForce( int index, dReal force )


Adds a 3rd law pair of forces of magnitude force to the two ends of the 


actuator specified by index,  which are directed along its axis. This is the 
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source of all of the driven motion in the physics simulation, except for the four 


knee joints.


● void addKneeTorque( int index, dReal torque)


Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower 


leg specified by index. This is the source of all driven motion at the knee 


joints.


● dReal getKneeAngle( int index )


Returns the current angle, in radians, of the knee specified by index. This 


angle is measured from the direction of the upper leg (if the knee is straight, 


the angle is zero), and increases as the lower leg bends downward.


● dReal getKneeOmega( int index )


Returns the current angular speed, in radians per second, of the knee 


specified by index.


● dBodyID getCore()


Returns the ODE body ID of the robot chassis. This is used in the collision 


detection callback to count collisions between the chassis and ground 


(which incurs a small score penalty).


4.5 HELPER FUNCTIONS


In addition, there are three helper functions that are not members of the 


robot body class, but are used with it. All three of these functions relate to the 


actuator that drives each knee, but is external to the ODE world in order to 
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increase processing speed. The source code for these helper functions is given in 


Appendix C, and they are described below:


● dReal calcKneeActOffset( dReal angle, dReal KBR, dReal KLL )


Calculates the position of the knee actuator tip, in meters, with respect to the 


knee joint. This position ranges from zero to the length of the upper leg. Angle 


specifies the angle of the knee joint, in radians, as returned by 


spiderBody::getKneeAngle( int ), KBR is the distance between the knee 


joint and the link attachment point on the lower leg, and KLL is the length 


of the linkage itself.


● dReal calcKneeTorque( dReal Angle, dReal slidePos, dReal KBR,


dReal F )


Returns the torque applied to the knee joint by a force F in the knee actuator. 


The input variable, slidePos, specifies the position of the knee actuator, as 


defined above, while F is the linear force in the actuator. Angle and KBR are 


the same variables described above.


● dReal calcKneeActVel( dReal Angle, dReal slidePos, dReal KBR,


dReal w )


Returns the linear speed of the knee actuator, in meters per second, given the 


angular speed of the knee joint, in radians per second. The input variable w is 


the angular speed; other inputs are the same as described above.
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4.6 BODY GEOMETRY PARAMETERS


The body parameters, which are set at random by the software and passed 


to the robot body constructor in a parameter array are listed in Table 4.1. These 


parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index 


column specifies the position in the array, while the Macro column gives the 


three- or four-letter macro by which the variables are referenced in the source 


code (see section 4.4 and Appendix C). Note that all linear dimensions are in 


meters, while all mass parameters are in kilograms.


Table 4.1: Robot Body Parameters Array


Index Variable     Macro


0 Upper platform (chassis) radius      UCR
1 V actuator upper mount offset (from centers of UP)      VAO
2 Distance between upper and lower platforms      RISE
3 Lower platform radius      LCR
4 Upper leg length      ULL
5 Lower Leg Length      LLL
6 Distance hip -> V ball on upper leg      IBR
7 Hip rotation linkage length      RBR
8 Knee link length (Obsolete; now set automatically)       KLL
9 Distance knee -> knee link attachment       KBR
10 Upper platform mass      UPM
11 Lower platform mass      LPM
12 Square tubing density (mass / unit length)       LINDENS
13 Platform and Leg thickness           THICK
14 Starting Position X      POSX
15 Starting Position Y      POSY
16 Starting Position Z      POSZ
17 Upper leg zero angle      ULZA
18 Leg rotation zero angle      LRZA
19 Lower leg zero angle      LLZA
20 Foot ball radius      FBR
21 Foot ball mass      FBM
22 V Actuator base mass              VABM
23 V Actuator tip mass              VATM
24 Rotational Actuator base mass            RABM
25 Rotational Actuator tip mass              RATM
26 Upper leg mass      ULM
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4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within 


a set of upper and lower limits defined by two limit arrays. The purpose of this 


variation is to train the neural networks to control a range of robots, rather than 


just a single example, to increase their resistance to the effects of small changes 


when going from the simulated robots to a physical one. The values used in the 


lower and upper limit arrays are given in Table 4.2.


Table 4.2: Upper and Lower Robot Parameter Limits


Index Macro Variable Description Lower Limit Upper Limit


0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9   KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52
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4.8 SIMULATION LOOP


On each step through the simulation loop, the inputs to the control system 


are updated with the force and position values for all of the actuators. The position 


values for the 12 upper leg actuators are obtained from ODE, using the getPos() 


member function of the robot body class, while the motion speeds for these 


actuators are obtained using getVel(). The knee actuator positions and speeds are 


calculated from the knee angles and angular velocities, which are obtained from 


ODE using the getKneeAngle() and getKneeOmega().


For all actuators, including the ones for the knees which are handled 


externally to ODE, the position is zero as seen by its control-system input at 


whatever position the actuators are created in. These zero positions are also used 


to define the actuator position variables which are modified by the outputs of the 


control system. The difference between these “set” position variables, and those 


returned by ODE, or calculated from angular values, in the case of the knees, are 


used to calculate the force in each actuator using a simple damped-spring 


equation:


F = -ks * (actual position – set position) – kd * ( actuator speed )


where ks is a spring constant, and kd is a damping coefficient.


The spring constant for knee actuators is 1500N/m; for other actuators it is 


1100N/m, and the damping coefficient is 30N*s/m. These values are based on 


measurements taken from a prototype linear actuator.
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The calculated forces for all actuators except those in the knees are sent 


back to ODE through the robot body class using the addForce( index, force ) 


member function, as well as to the control system as force-sensor inputs. The 


forces for the knees are converted to torque values, and sent to ODE using the 


addKneeTorque( index, torque ) member function.


The actuator set positions are produced by the control system outputs 


through a double integral. The control system is able to set acceleration values for 


the actuators, up to a certain maximum acceleration, and these values change the 


speed of the actuators (the rate of change of the set value), up to a certain 


maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum 


speed is 0.35m/s, both of which are based on measurements taken from a 


prototype actuator.


In addition to position and force measurements, the control system also has 


two other inputs that describe the desired direction of travel with respect to the 


robot. These two values are dot products of a unit vector pointing in the desired 


direction with the robot's local X and Y vectors. These are treated exactly the 


same as the sensor inputs, and propagate through the history stack in the same 


way.
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5. PERFORMANCE EVALUATION


5.1 OVERVIEW AND QUALITATIVE ANALYSIS


For a system such as this, the most definitive performance criterion is 


whether the robots begin walking in an effective way within a reasonable amount 


of time, while operating on a computer which is economically feasible to the user. 


During and after the development of this software, many test runs were performed, 


using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In 


eac test, the AI always either learned to walk, or found a way to work around the 


rules and “cheat”, within a few days.


In the earliest runs, there was no penalty for being upside-down, which 


resulted in the robots' bouncing and rolling forward as far as they could upon 


dropping into the world, then kicking their legs and hopping forward while 


upside-down. Some of them also managed to tilt 90 degrees to the side and roll a 


good distance, effectively doing cartwheels, before falling down. When the 


penalty was added and the software re-run, a population of robots was produced 


fairly quickly that would hop forward, like frogs. At this point, a bug in the 


physics simulation code was found and fixed, and the first population of actual 


walkers was produced on the following run. For this test, the software was 


allowed to run for a period of approximately three weeks in real-time, in which 


time the it became very good at making the robots walk—at the end of this run, 


the robots were moving about 16 body lengths in 14 seconds of simulation time, 


which is quite fast given the physical characteristics of the robot and the limits that 
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were in place on how fast the actuators were allowed to move and accelerate (see 


Chapter 4).


5.2 QUANTITATIVE ANALYSIS


In order to obtain a quantitative analysis of the performance of this system, 


a pair of test runs was done, with different parameters for the neural network. A 


special version of the software was created for these runs, which has the added 


feature of creating the log files that are used in the analyses below. These log files 


are formatted as plain text, with one line for each population member evaluated. 


The entries on each line are as follows:


● The index of the current population member. This ranges from 0 – 39, as a 


population size of 40 was used for all of the runs that used a log file.


● The score that the population member retained from the last generation, 


according to scoring rule #5 (see section 3.2).


● The number of times the chassis came into contact with the ground, as 


described in rule #4.


● The score given for any movement at all, as described in rule #1.


● The movement of the robot in the X direction.


● The movment of the robot in the Y direction.


● The final score passed back to the mcEVO node.


Results from two of these logged runs are included in this section. In these 


runs, each neural network is given a turn of 2000 time steps in which to control its 


robot. The starting positions are recorded after a delay of 250 time steps, which 
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gives an effective turn length of 1750 time steps. Each time step for the neural 


network represents 0.012 seconds of simulation time, so there is a period of 


approximately 21 seconds in simulation time for which movement is recorded. 


Both tests are identical in all respects, except that one uses a neural network of 30 


perceptrons, with a memory of 250 time-steps while the other uses 150 


perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is 


equivalent to approximately 3 seconds of simulation time, while 150 time-steps is 


equivalent to about 1.8 seconds. For these runs, the desired direction is always 


along the X axis, and the ground impact penalty is very small (0.05). Changes to 


these rules can be implemented slowly through a modification to the software — 


the desired direction will take random values that slowly drift away from the X 


axis, while the ground-impact penalty will slowly increase. This is not done here 


due to the length of time the software has to run before a new adaptation is made.


The results from the log files were post-processed using a second program, 


which was written to parse the data from the logs and extract the following data 


sets for each generation:


● The maximum score attained by any population member during the generation, 


excluding any score carried over from the previous generations.


● The top 5 scores from the generation.


● The average value of the top five scores from the generation.


● The maximum score ever achieved, in the current or any previous generation.
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● The total movement in the X and Y directions for the top 5 scorers in the 


generation.


Figure 5.1 shows the top score results vs. generation from the 30-


perceptron test. There are three data sets on this plot: the top score attained during 


the generation (orange), the average of the top five scores (purple), and the 


running maximum score (black). These scores are a figure of merit which 


represents the performance of the neural networks with respect to all of the 


scoring rules that are discussed in Chapter 3. A plot of the total movement in the 


X direction (orange) and the Y direction (purple) for the top scoring neural 


network in each generation is given in Figure 5.2. Unlike the scores shown in 


Figure 5.1, these movement figures provide concrete values that are relevant 


outside the context of the genetic algorithm — they represent the actual distance 


that the simulated robots were able to walk during the time allotted. 


Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively, 


but are taken from the 150-perceptron run. They show data taken from a smaller 


number of generations, but the same amount of real-world run time. This is 


because the software runs more slowly when a larger neural network is used.
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Figure 5.1: Scores Per-Generation for the 30-Perceptron Run


Figure 5.2: X and Y Displacement for the 30-Perceptron Run
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Figure 5.3: Scores Per-Generation From the 150-Perceptron Run


Figure 5.4: X and Y Displacement From 150-Perceptron Run
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5.3 DISCUSSION OF RESULTS


Note that the first run (30-perceptrons) went for 405 generations, while the 


second (150-perceptrons) run was only 240 generations. Both tests ran for 


approximately 11 days in real-world time, each running on one core of the same 


CPU, but the larger neural network slowed down the software considerably on the 


second run. This is to be expected, as the neural networks from the first run 


consume only 59MB of RAM, while those from the second run consume 179MB


—and all of these weights need to be processed 2,000 times per turn, and 160,000 


times per generation. 


Several other things are apparent from Figures 5.1-5.4. First, the data has 


quite a bit of randomness in it—there is a large amount of inconsistency between 


generations in both the scores and displacements. Secondly, while the scores are 


generally rising as the generations progress, they do so in a very chaotic way, with 


relatively flat periods and periods of rapid increase. There is even what appears to 


be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show 


the X component of motion increasing with the score, while the Y component 


remains approximately centered at zero, but with steadily increasing random 


variation.


The first observation can be explained by the fact that the robots the system 


is being asked to control are randomly generated. Thus, a neural network that 


performs well in one generation may be do poorly with the robot it is given in the 


next generation. This is intentional, as the goal is to evolve a control system which 
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is effective in a wide variety of robots (thus increasing the chance that it will work 


well with a physical robot in the real world). In addition, it is possible for an 


otherwise strong-performing control system to flip its robot upside-down, 


obtaining a very low (or negative) score in the process. This tends to be especially 


likely with the very high scoring individuals in any generation, as they tend to be 


the “risk takers”. This issue can be exacerbated by the randomness in the robot 


parameters, as a behavior that is only slightly risky in one robot may be fatal in 


another.


The chaotic nature of the increases in score over time can be explained by 


the properties of the genetic algorithm. The software is continually recombining 


the same characteristics into new population members, only occasionally 


happening upon a new adaptation that results in significantly higher scores. It 


takes time, however, for this adaptation to propagate through the population, and 


be optimized to work in a consistent way. Thus, there can be a very large jump in 


the running maximum, creating a “high score” that holds for quite some time. The 


apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to 


the “deaths” of several population members which, while high-scoring, were also 


highly inconsistent. This is backed up by the fact that the randomness in the plot 


drops off very quickly during the same few generations, and remains smaller than 


before as the scores recover.


The movement in the X direction (which is always the “desired” direction 


in these two runs, as explained above) behaves as one would expect; it appears to 
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increase along with the scores. The Y movement, however, remains approximately 


centered at zero, but has a random noise in it that increases through the 


generations. This can be explained by the fact that the control system is becoming 


more effective at moving the robots in general, and because the population 


members still receive points for moving along the Y axis. In later generations, this 


movement is small compared to the motion in the X direction, as the control 


system improves at directing the robot in the direction of maximum score. This 


side movement could also be suppressed by slowly introducing a penalty for 


movement in the Y direction, especially if an additional input was added to the 


control system for current (absolute) position.


Finally, it is worth pointing out that the 30- and 150- perceptron tests were 


only allowed to run for 860 and 485 generations, respectively, due to time 


limitations. Previous runs that were much longer, including one that went into the 


thousands of generations, showed a continued increase in performance, with the 


longest run producing several scores between 8 and 9 on each generation. The 


plots here are, however, sufficient to show that the ability of the AI to control a 


robot is generally rising with time, and to show some of its characteristics.
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6. CONCLUSIONS AND FURTHER RESEARCH


6.1 CONCLUSIONS


From the results given in section 5.2, as well as direct observation of the simulated 


robots in the software, it is clear that this system is capable of generating effective 


walking movement. In addition, the robot design used in this thesis is particularly 


difficult to control, as its wide body does not permit the center of mass to remain 


in a stable position. In quadruped animals, the body is long and narrow, so that 


diagonal pairs of feet that are on the ground form a straight line that is always 


beneath the center of mass. With a hexapod or octopod, the problem would be 


even easier, as the feet on the ground at any given time form a triangle or a 


trapezoid, respectively, that can always enclose the center of mass on the 


horizontal plane. Thus, this method can be expected to produce better results than 


those given here for these other body types.


6.2 CONTINUED WORK WITH THIS BUILD


The first step that should be taken in order to learn more about this system is to 


perform more extensive testing than what was done for this thesis in order to 


maximize the efficiency of the system with respect to CPU load and memory 


usage. This will require a large number of test runs to be performed with many 


different configurations, in order to optimize the following variables:


● Population size


● Number of perceptrons
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● Memory length


● Probability of each type of mutation


● Scoring with respect to different criteria


● Selection rules


In order to perform a large number of tests in a reasonable amount of time, it 


would be best to use a computer with a large number of processor cores, as this 


software does not parallelize easily in its current form. Alternatively, the physics 


engine could be replaced with one that runs on a stream processor, such as PhysX 


from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the 


neural network could be rewritten to run on a GPU.


6.3 EXTENSION OF CONTROL SYSTEM


It would also be good to extend the scope of the control systems that are produced 


in a few different ways. First, multiple neural networks can be used, with each 


trained to perform a different task. While individual networks have been observed 


to produce multiple behaviors in this system, this would be a good way to separate 


the desired behaviors. Also, it might be effective to have “nested” learning rules, 


such that the neural network continues to learn on its own after it is produced by 


the genetic algorithm. This could be done by adding some form of short-term 


reinforcement learning, or by adding a classifier network to the inputs of the 


control system that predicts the result of current behavior on the score and adjusts 


the weights of the network, perhaps using the P-Delta learning rule[6] that 


originally went with the parallel perceptron network that is used here. Another 
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option may be to add some outputs that do not control anything, but still act as 


feedback loops. This would create a form of memory that permits state-space 


orbits that last much longer than the history-buffer length, which the system would 


use in whatever way happens to produce the highest scores.


6.4 POTENTIAL APPLICATIONS


In terms of applications, there are two things that would be very interesting to do. 


One such idea is to create a CAD-style robot “editor” in which robots can be 


designed in a quick and convenient way, instead of writing a 1500+ line 


constructor, as was done with the spiderBody class used in this research. This 


editor would allow one to create a robot using a library of predefined parts such as 


the linear servos seen on the robot that this thesis deals with, and automatically 


generate a bill of materials for its physical construction. After the robot is 


designed, the software can then be used to create parts of its control system.


The second possibility is to modify the simulation and genetic algorithm 


software to operate as a P2P application, in a similar way to the BitTorrent 


network. A large number of users who want the same robot could download a task 


file that specifies the robot that is to be controlled and points to an online 


“tracker”. Having connected to the tracker, a user's client would join the “swarm” 


of other users, and begin receiving population members to evaluate. Each user's 


PC processes a small population, similar to the ones that were used in the two test 


runs here, but downloads a few new neural networks from other users and 


transmits a few on each generation. Depending on the number of users who want a 
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particular robot, this could permit effective population sizes in the tens of 


thousands. Like the other possibilities mentioned above, this has not been 


evaluated at this point, and it is unknown whether it would be an effective design. 


It would, however, be very interesting to see what might come out of it.
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1. INTRODUCTION


This thesis describes a method for automatically generating complex 


control systems for walking robots. One of the most interesting research fields 


today is the development of robots that are able to perform complex and 


somewhat arbitrary actions with some degree of reliability. While robotics as a 


field of engineering has existed for quite some time now, and robots have been 


created which are capable of performing many tasks, it is still very difficult to 


create a robot which can effectively navigate complex terrain, or inside buildings. 


This is mostly due to the fact that the simple forms of mechanical movement, such 


as wheels, are only effective over a narrow range of conditions. A wheeled robot, 


for example, may be able to navigate a single floor of a building, or a landscaped 


outdoor area, but would normally be incapable of dealing with anything that its 


wheels cannot roll over, such as stairs, or rough terrain. For this reason, an 


effective walking-robot technology would be very useful.


Designing an effective walking robot is a difficult problem for two distinct 


reasons. First, it is actually quite challenging for engineers to design mechanical 


systems that exhibit anything close to the combination of speed, strength, size and 


weight that exist in biological organisms. This problem tends to either introduce 


severe limits on what can be done, or alternatively, cause the cost to construct a 


robot to be extremely high. Secondly, and somewhat relatedly, the control system 


for an effective walking robot is by necessity very complicated. This is because of 
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the wide variety of conditions under which such a robot must be able to operate; a 


simple pre-programmed sequence of movements is not sufficient to provide 


reliable walking.


There are many different methods which have been used to provide 


intelligent control of walking robots. One approach is the use of Central Pattern 


Generators (CPGs), which have been used to control biped robots [1, 2]. Like the 


biological systems that inspired this method, a robot using CPG motion control 


has a very small neural network in which groups of individual perceptrons behave 


like schmidt trigger oscillators. The currently-active perceptrons inihibit the others 


until their responses to the input vector override the inhibition. At this point, when 


the system begins to switch states, a positive-feedback condition is created which 


strongly attracts the system into its next state. These neuronal oscillators can be 


connected in a purely feed-forward layout, in which the neurons use only each 


other's outputs as inputs, or they can use feedback, in which the inputs to the 


neurons are sensor outputs from the controlled system[3]. The behavior of this 


system is normally hard-coded, and tends to suffer from most of the same 


drawbacks as a pre-programmed gait — it requires a human programmer to 


consider each possible situation that it may encounter.


Genetic algorithms have also been used to develop control systems in 


walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-


forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5] 


2







combine a genetic algorithm with a CPG to produce walking behavior in a 


hexapod robot.


In this thesis, a new method is developed which works in a similar way to 


[5], in that a neuronal oscillator controller is trained with a genetic learning rule, 


but with several key differences. First, the new method uses a relatively large 


neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The 


network used in this thesis has dozens to hundreds of perceptrons and, in some 


cases, upwards of a half-million weights (see test runs in Chapter 5). These 


perceptrons are not connected together directly as they are in the CPG, but do 


have feedback from the aggregate (system) output. In addition, the system has 


some internal memory which stores a certain number of past inputs and outputs. 


Thus, the control system can not only “see” the current state of the robot, but also 


remembers what has been happening with the physical robot and what it has been 


doing. The length of this memory is a user-entered variable, which has been set at 


150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the 


scoring and selection algorithms used in this thesis are based only on walking 


performance; the first training steps used in [5] to initially produce oscillatory 


behavior is not present.


For purposes of training the neural network, software is created which 


combines a physics simulation with a scoring algorithm. Candidate control 


systems are scored on how far they can make a simulated robot walk over 


randomly-generated terrain in a given amount of time, and this information is 
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passed back to the genetic algorithm. After each neural network has had a turn, 


and received a score, the software ranks them and replaces the lower scorers with 


new networks that are created by combining pairs of high-scorers and applying 


random mutations. These steps are then repeated until the user decides that a 


sufficiently effective one has been produced, based on observation of the 3D-


rendered simulation or the figures of merit introduced in Chapter 5, and terminates 


the program.


When the program is first started, all of the neural network weights are 


random and the simulated robots are only able to move a very short distance. As 


time progresses, however, the robots begin to develop the ability to produce 


continuous motion in one direction. In the test runs, the robots began to show 


some walking ability within about two days, and were becoming quite effective at 


walking after about a week.


While this method still requires some forethought on what types of 


situation the robot will encounter, in order to create effective training simulations, 


it does not need any hard-coding to be performed. All that is necessary is to create 


a 3D “world” with any terrain that the robot might have to navigate, as the 


software will randomly place robots in the world and score the control systems on 


how well they perform. In addition, the neural networks produced by this software 


are not limited to a single type of walking — multiple methods of movement have 


been observed in individual networks — which simplifies their integration into a 


complete robot.
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This thesis is organized as follows: In Chapter 2, the neural network 


topology is described, as is the method for generating its input vector. There is a 


discussion on why it was chosen in section, and why it was expected to be 


effective, and its software implementation is described in detail. In Chapter 3, we 


discuss the genetic learning rule that is used with the neural network. The scoring 


rules that are used in the physics simulation are defined, as are the rules used for 


selection, crossover and mutation. Then, the software implementation of the 


genetic algorithm is described. In Chapter 4, the physics simulation in which the 


neural networks are trained is described, starting with the simulation “world”. 


Then, we discuss the quadruped robot body that is used in the simulations, its 


physics-engine implementation, and the geometrical parameters that describe 


individual robots. Finally, we describe the simulation loop in which the physics 


engine, the robot model, the neural network and the genetic algorithm come 


together. In Chapter 5, the performance of the software is evaluated. Figures of 


merit, collected from two test runs, are presented, and the results are discussed. In 


Chapter 6, we discuss our conclusions from this work, and propose some ideas for 


further research, as well as some potential applications.
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2. NEURAL NETWORK


 2.1 OVERVIEW


The neural network used in this project consists of a single layer of parallel 


perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but 


with an outboard genetic learning rule rather than the one described in that work. 


Each perceptron has a set of input weights that determines its response to a given 


set of inputs, an activation function which, in this thesis, is a unit-step function, 


and a set of output weights, which are multiplied by the output of the activation 


function (1 or 0) and added to the system output vector. This neural network 


operates in discrete time, evaluating sampled inputs and producing outputs at fixed 


time intervals. A block diagram of the neural network, and its associated memory 


stacks, is shown in Figure 2.1. 


Figure 2.1: Neural network block diagram
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2.2 INPUT VECTOR GENERATION


Inputs to the neural network come from three sources: body sensors, 


command and control signals, and previous inputs and system outputs. Past inputs 


and outputs come from a type of stack buffer where data travels down the stack 


and is discarded when it passes the last level. These historical data are used for 


two purposes: as inputs for the neural network, and as training data for a second 


learning rule that is implemented in the software, but not currently being used. 


The organization of this stack is shown in Figure 2.2.


Figure 2.2: Block Diagram of History Buffer Object
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2.3 OUTPUT VECTOR GENERATION


On each time step, the input vector to the neural network is generated by 


concatenating the body sensor and command inputs with the past inputs and 


outputs from the history buffer objects. This vector, I_sys, is multiplied (dot 


product) with each perceptron's input weight vector, W, to give the postsynaptic 


potential (PSP).  The output of the perceptron is the unit step function of the PSP, 


multiplied piecewise by the perceptron's output weights to give its contribution, 


Rn, to the system output vector, Rs. This may be expressed as follows:


Rn = u( I_sys • W ) (2.1)


Rs = Σ( Rn ) (2.2)


2.4 WHY THIS ALGORITHM


At this point, some information is given regarding why this system can 


work. First, due to the fact that the number of perceptrons is much larger than the 


number of outputs, this algorithm is a universal function approximator[6]. This 


means that it can implement an arbitrary bounded function given the correct 


weights, even when the network has only a single hidden layer. Because the 


outputs of this neural network determine the rate of change in the actuator 


positions on the robot, the result is a system of nonlinear partial differential 


equations which, depending on the weight vectors and the physical properties of 


the robot, are capable of producing an extremely wide variety of behaviors 
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(although not all behavior is technically possible, as there are physical limits on 


speed, force, and acceleration). Due to the way the data propagate through the 


history buffers, and thus constantly change position with respect to the input 


weights, it is relatively difficult for the system to reach a stable state where the 


robot does not move. Instead, this tends to encourage strange attractors, which 


produce repetitive, but not necessarily periodic, motion.


2.5 SOFTWARE IMPLEMENTATION


This neural network is implemented in C++ as the mcNeuron object class 


(in which the “mc” is short for “Motion Control”). It is organized in a linked list, 


where each instance represents one perceptron, and holds a pointer to the next 


perceptron in the chain. The advantage to this type of organization is that the 


source code can be kept short, as a large portion of the compiled machine code is 


automatically generated by the compiler itself. This also helps prevent errors by 


making the source code more readable, and relying on the very mature code-


generation algorithms used in the compiler. The source code for this object class is 


given in Appendix A, and its member functions are described below:


● void rnNet( float* inputs, historyBuffer* iHistory, historyBuffer* oHistory, 


      float* outputs)


This function multiplies the input weights of the perceptron (dot product) 


by the concatenation of inputs, iHistory, and oHistory, and if the result is 


positive, add its output weights to outputs. If there are more perceptrons in the 


chain, as indicated by a non-null “next” pointer, then this function is called in 
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the next node, with the same parameters. Thus, one call to the first perceptron 


in the chain propagates to all of them.


● void updateNet( float scale, historyBuffer* iHistory,


            historyBuffer* oHistory )


This function implements a second learning rule, which is not used in this 


project. It was replaced by the genetic algorithm very early in development. 


When called, it multiplies scale by values from iHistory and oHistory, and 


adds this to its input weights. Like rnNet, it propagates through all perceptrons 


in the chain.


● void iW_preset( float * newWeights )


This Function sets the input weights to the values stored in newWeights. This 


function is recursive, and if the perceptron has a non-null “next” pointer, will 


call the same function in the next perceptron. In this case, the pointer is 


advanced by the number of input weights, so that one large array can be used 


to set all of the input weights in a chain.


● void iW_preset_justOne( float * newWeights )


This function is the same as iW_preset(), but is not recursive.


● void oW_preset_justOne( float * newWeights )


This is the same as iW_preset_justOne(), but acts on the output weights instead 


of the input weights.
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● mcNeuron *getNext()


This function returns a pointer to the next perceptron in the chain, or NULL if 


a next node does not exist.


● mcNeuron *cutNth( int index )


This function cuts the chain at the Nth node, and returns a pointer to the 


removed segment. It works by recursively propagating down the chain while 


decrementing index, until index = 1. When this condition is true, the node sets 


its “next” pointer to NULL, and returns the value that was in that pointer. The 


returned pointer propagates back up the chain as the CPU falls down through 


the call stack, until the first called node finally returns it to the calling function.


● void setNext( mcNeuron * newNext )


This function sets the “next” pointer in the called node to newNext.


● void appendChain( mcNeuron * newSegment )


This function appends the chain specified by newSegment to the end of the 


called chain. It works by recursively propagating down the chain until it is 


called on a node whose “next” pointer is null, and setting that pointer to 


newSegment.


● float *getIWeights()


This function returns a pointer to the input weights for the called perceptron.


● float *getOWeights()


This function returns a pointer to the output weights for the called perceptron.


● void setRandomOWeights( float maxValue )
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This function sets the output weights of the perceptron to random numbers, 


varying from -maxValue to +maxValue. It is recursive, and operates on each 


node in the chain until a null “next” pointer is reached.


● void setRandomIWeights( float maxValue )


This function is the same as setRandomOWeights(), but operates on the 


input weights.


● void setCascadingOWeights( float weight, int oIndex )


This function sets the output weight specified by oIndex to weight, and sets all 


others to zero. If the “next” pointer is not null, it calls the same function on the 


next node, with the parameters set by the following two rules:


 If oIndex is less than the number of output weights, increment oIndex.


 If oIndex is equal to the number of output weights, then the next oIndex is 


zero, and the next weight is -weight.


Note that this function is not called in the final build of the software.


● void shakeIptWeights( float maxValue )


This function adds a random number, which varies from -maxValue to 


maxValue, to each of the input weights. It is recursive, and operates on all 


perceptrons in the chain. After the random values are added, the weight vector 


is normalized.


● void shakeOptWeights( float )


This function is the same as shakeIptWeights(), but operates on the output 


weights.
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● void mutateIptWeights( float maxValue )


This function selects a random, continuous segment of the input weights and 


replaces them with random numbers, which vary from –maxValue to 


maxValue. It is not recursive (it operates on only one perceptron), and is called 


by the much more extensive mutation function in the genetic algorithm class.


● void mutateOptWeights( float )


This is the same as mutateIptWeights(), but operates on the output weights.


● void svNet( ofstream * saveFile )


This function saves the input and output weights of a perceptron to the fstream 


object pointed to by saveFile. It is recursive, so the entire network will be 


saved when it is called on the first element in the chain. Note that the fstream 


object has an internal index that counts up as data are saved, so the function 


can be called on multiple chains with one open file, and they will all be saved 


in order.


● void ldNet( ifstream * loadFile )


This function loads the input and output weights stored in the fstream object 


pointed to by loadFile into the input and output weights. It is also recursive, 


and operates in the same way as svNet.
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3. GENETIC ALGORITHM


3.1 INTRODUCTION


The neural network described in Chapter 2 is trained using an outboard 


genetic search algorithm, which operates on the entire network, rather than 


individual perceptrons. Each candidate neural network is given a turn to control a 


randomly generated robot in a physics simulation, and scored based on its 


effectiveness at making the robot walk. Like all genetic algorithms, this one 


combines randomness, selection, crossover, and mutation to search the space of all 


possible input and output weight vectors. Due to the extremely large search space, 


and the fact that there are large clusters of viable solutions (different types of 


walking) with fitness functions that tend to be somewhat continuous, this problem 


should be particularly well-matched to the properties of a genetic algorithm [7].


Selection is based on a floating-point score that is generated by evaluating 


the network's efficacy in controlling a simulated robot. In order to function, a 


genetic algorithm must find a region in the search space where there exists a score 


gradient before it can begin to function as a genetic algorithm; before this happens 


it implements only a random search. As a result, the search must happen upon a 


region with a fitness gradient, by chance. If these regions fill too small a portion of 


the total search space, it can take a very long time for the search to locate one of 


them. For this reason, points must initially be awarded for results that are not 


directly useful, but which are likely to be connected to a useful region by a 


“bridge” of scores that are high for their particular region[7]. 
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3.2 SCORING


At the start of a turn, the software drops a robot into the “world” at a 


random position and begins stepping its neural network along with the physics 


engine. In order to reduce noise in the score due to a random bounce when the 


robot falls a short distance to the ground, and reduce the tendency for the system 


to waste time early on by simply making the robots lean forward, there is a delay 


of approximately two seconds in simulation time before the software records the 


robot's “start” position. At the end of the turn, the start position is subtracted from 


the ending position, and points are awarded according to the following five rules:


1. Score is awarded for any movement that occurs, regardless of direction. Early 


in the process, this causes the system to select the neural networks that cause 


the system to exhibit those attractors that produce constant motion. This causes 


oscillatory behavior to be learned early in the evolutionary process, and is what 


replaces the initial learning step used in [5], where fitness functions were 


assigned to per-leg oscillations.


2. The population member receives points a second time for movement in the 


desired direction, as determined by a dot product, but only if that number is 


positive — a negative score here is counted as zero. As a result, it is possible 


for an individual to receive up to two points per meter for moving in the 


correct direction. 


3. A two-point penalty is assessed if the robot is upside-down at the end of the 


turn, which can occur quite easily due to the physical characteristics of this 
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particular robot design. The purpose of this penalty is to avoid behavior that 


emerged in some of the earliest tests, where the robot would roll forward, and 


then hop along upside-down by kicking its legs.


4. A user-configurable penalty is assigned each time the robot chassis comes into 


contact with the ground. There is a delay of approximately 1 second in 


simulation time after a ground impact is registered, before the counter can be 


incremented again. This prevents large penalties from accruing quickly if the 


chassis remains in contact with the ground for a period of time. From the test 


runs that have been performed, it was found that this penalty needs to be very 


small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05 


was used. It may be effective to increase this penalty slowly after the system 


has learned to walk, but this has not yet been tested.


5. The population member retains half of the score it received in the previous 


generation, so that a single weak performance is not likely to “kill” a high-


scoring neural network. While this last rule can sometimes prevent a more-fit 


individual from displacing a less-fit one, the effect quickly fades away when 


an individual performs poorly for two or more generations. It also is not 


typically enough to prevent displacement in the case of a very low, or negative, 


score. For this reason, several replacements still occur in most generations.
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3.3 SELECTION


At the end of a generation, all members of the population are sorted by a 


ranking algorithm, so that those with the highest score appear in the earliest 


positions. In order to select each parent for the next generation, a random floating-


point number in the range [0, 1] is generated, and squared, so that the new 


probability distribution will tend toward zero. This new number still falls within 


the same range, but has an average value of ¼ instead of ½ — thus selecting 


higher-scoring individuals more often than low-scoring ones. This number is then 


multiplied by the size of the population, cast to an integer, and used to index a 


neural network that will be the “parent” of a new population member. Note that 


the random number could also be raised to any other positive power, or another 


function could be used to provide a different probability distribution, although 


these options have not been investigated. A second method which has been tested 


is to instead multiply the square by the maximum score in the population, and then 


take the weakest member above that score, but it appears to be too aggressive for 


the small populations that are feasible on a current PC, and was found to cause 


problems with early convergence. This cause of this problem is that the highest 


score in a generation tends to be much higher than the average score, or even the 


average of the top 5 scores, as shown in Chapter 5. The top scoring population 


member thus tends to be chosen as a parent very often by this rule, which causes 


the diversity in the population to disappear rapidly, leading to the early 


convergence problems that were observed.
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3.4 CROSSOVER AND MUTATION


After the two parent networks are selected, a new neural network is created 


by combining them. Each perceptron in the child is created by randomly selecting 


the perceptron at the same position from one of the parents, and occasionally 


introducing a random mutation. These mutations can take any of the forms 


outlined below:


● A random, continuous, segment of the perceptron's input weights is chosen, 


and replaced with a string of random numbers. This permits behavior to drift 


over time at the individual perceptron level.


● A perceptron's output weights are rotated, so that all of its effects are 


“mirrored” to the opposite side of the body (either side-side or front-back can 


occur). At the same time, the perceptron's response is time-delayed by a 


random amount by doing a circular shift on its input weights by an integer 


multiple of the number of inputs. The purpose of this mutation is to encourage 


symmetry in the robot's motion, and allow  effective behavior that evolves in 


one leg to eventually propagate to the other legs.


● At the population-member level, the software randomly selects a continuous 


group of perceptrons, and moves them to a new position in the list. This has no 


direct effect, but makes it possible for a new child to be created with multiple 


perceptrons that originally occurred at the same position. For example, the 


child could contain four nodes that were all at position 25 in its grandparents.


● After the new perceptron is generated, all of its weights (both input and 
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output) are randomly adjusted by a small amount, and the input weights vector 


is normalized.


3.5 SOFTWARE IMPLEMENTATION


The genetic algorithm is implemented by the mcEVO object class, which 


manages the population, and two helper functions, rankNodes() and breedNets(), 


which perform the genetic operations.


The mcEVO class encapsulates the neural network and its associated 


history buffers in such a way that the entire population can be accessed through 


one pointer. It also stores the geometry for the randomly generated robots. The 


source code for this class is given in Appendix B, and its member functions are 


described below:


● mcEVO( int popSize, mcEVO * previous, dReal * geomMin, dReal * 


geomMax )


This is a chain constructor which builds a population of popSize. It does not 


generate the neural networks (this is done in a separate call), but it does 


generate a random set of robot-body proportions for each element. The input 


variable geomMin should point to an array containing the lower limits for each 


body dimension, while geomMax should contain the upper limits. These 


parameters are described in detail in the simulation section of this thesis. 


Previous is used internally to this chain constructor, and should be set to 


NULL when it is called from outside.
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● ~mcEVO()


This destructor operates on the entire chain, deleting all nodes and any 


perceptron chains that were attached to them.


• mcEVO * getMax( mcEVO * curBest, float curMax )


This function returns a pointer to the node in the chain with the highest 


score value. The input variables curBest and curMax are used internally as 


the function recurses through the chain; it should thus be called with 


curBest = NULL and curMax set to a large negative number (-10 is 


sufficient in this case).


• void setPrevious( mcEVO * newPrevious )


This function sets the “previous” pointer for the called node to 


newPrevious.


• void setNext( mcEVO *)


This function sets the “next” pointer for the called node to newNext.


• void detach()


This function detaches the called node from the chain, calls 


previous->setNext( next ) and next->setPrevious( previous ), and sets its own 


previous and next pointers to NULL. Thus, the node is removed from the 


chain, and the chain is spliced back together.


• mcEVO *getNext()


This function returns the value in the “next” pointer of the called node.
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• mcEVO *getPrevious()


This function returns the value in the “previous” pointer of the called node.


• mcEVO *getFirst()


This recursive function can be called on any node in the chain. It calls 


previous->getfirst() until previous = NULL, then returns a pointer to that 


node.


• mcEVO *getLast()


This function works in the same way as getFirst(), but recurses down the 


chain instead of up, and returns a pointer to the last node.


• float getScore()


This function returns the score stored by the called node.


• mcEVO *getLastAbove( float minScore )


This function recurses up the chain until it reaches a node whose score is 


higher than minScore. It then returns a pointer to that node. Note that this 


function is called on the last node in the chain (rather than the first), and is 


intended to be used after the ranking operation is complete. See the section 


on the rankNodes() helper function below.


• mcEVO *getNth( int N )


This recursive function extracts a pointer to the Nth node in the chain. It 


works by calling itself on the next node in the chain, while decrementing N, 


until N = 0. It then returns a pointer to the node where this occurred. 
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• void insBefore( mcEVO * newNode )


This function inserts the node pointed to by newNode into the position 


preceding the called node. It sets its own “previous” pointer to newNode, and 


calls setPrevious() and setNext() on the new node, and setNext() on the 


current previous node, so that the chain is still continuous in both directions.


• void dumpScores()


This recursive debug function causes all nodes in the chain to send their 


scores to stdout.


• void dumpWeights()


This debug function causes all nodes in the chain to send their weights to 


stdout. Note that there can be many millions of weights, which can cause 


problems depending on the terminal program from which the software is run.


• void setScore( float newScore )


This function sets the score stored by the called node to newScore.


• dReal *getParams()


This function returns a pointer to the robot-body geometry parameters 


stored by the node.


• void appendChain( mcEVO * newSegment )


This function causes the chain starting at newSegment to be appended to the 


end of the chain holding the called node. It recurses down the chain 


until next = NULL, then sets next = newSegment and calls 
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newSegment->setNext( this ).


• int killLast( int numDeleted )


This function deletes the last numDeleted nodes in the chain. It works by 


recursively calling itself on the next node until next = NULL, then returning 


numDeleted. As the CPU falls back up through the call stack, each recursion 


subtracts one from the returned number and returns that, thus counting down 


toward zero. When the return value is zero, the node calls delete next, and sets 


next = NULL. All nodes below this point are then deleted by the chain 


destructor, as described above.


• void svBrains( ofstream * saveFile )


This recursive function saves all of the neural networks being managed by 


a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron 


chain pointed to by each node in the chain, and then calling itself on the next 


mcEVO node. Note that the fstream object class counts and records the current 


position within the file, which greatly simplifies this implementation.


• void ldBrains( ifstream * loadFile )


This function works in a similar way to svBrains(), but loads the neural 


network weights from a file into all of the mcNeuron objects being managed 


by the called mcEVO chain.


• void mkBrains( int numPerceptrons, int RHL, int THL )


This recursive function causes all nodes in the mcEVO chain to generate 
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neural networks and history buffer lists using the chain constructor for the 


mcNeuron class. The neural networks thus created have numPerceptrons 


perceptrons, and both history buffers (one for input variables, and one for 


output variables) have RHL + THL nodes. Note that this function, in its 


current implementation, assumes that each neural network has 34 inputs and 16 


outputs. This will change when the class is adapted away from this project for 


general-purpose use.


● void mkBrains_random( int numPerceptrons, int RHL, int THL, float * array )


This function works in the same way as mkBrains, but fills the input and 


output weight arrays with random numbers rather than leaving the memory 


uninitialized. Array points to an array of type float that is large enough to hold 


all input and output weights, which was used internally in a different version of 


this function. It has not been removed, because that version has not yet been 


fully evaluated at the time of this writing. For the version of the function used 


in this thesis, array can be set to NULL.


● mcNeuron *getBrain()


This function returns a pointer to the first node in the mcNeuron chain 


being managed by the called mcEVO node.


● historyBuffer *getIHist()


This function returns a pointer to the first node in the input history buffer 


chain being managed by the called mcEVO node.
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• historyBuffer *getOHist()


This function returns a pointer to the first node in the output history buffer 


chain being managed by the called mcEVO node.


• void setIHist( historyBuffer * )


This function sets the input history buffer chain to be used by the called 


node.


• void setOHist( historyBuffer * )


This function sets the output history buffer chain to be used by the called 


node.


The core features of the genetic algorithm, including selection, crossover, 


and mutation, are implemented in two helper functions that are written to operate 


on a mcEVO chain. These functions are:


● rankNodes( mcEVO * target )


This function performs a sorting operation on the mcEVO chain beginning 


at target. The nodes are ranked in order of descending score. Note that, after 


the ranking is complete, target is no longer the first node in the chain. 


However, the member function getFirst() can be called on target, and the first 


node will be returned.


● breedNets( mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin, 


dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut, 


float iRnd, float oRnd )
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This function implements almost all of the actual genetic algorithm, and is 


called after rankNodes(). Its arguments are as follows:


 thePopulation is a pointer to the mcEVO chain on which the function will 


operate.


 popSize is the size of the population.


 nReplaced is the number of population members that be replaced with 


newly created candidates. 


 pMin is a pointer to the array containing the lower limits for the robot body 


parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).


 pMax is a pointer to an array containing the upper limits for the robot body 


parameters.


 nNeurons is the number of perceptrons in each population member.


 RHL is the length of the history stack used by the neural networks as 


inputs.


 THL is the length of the history buffer used for an additional learning rule 


that is not used in this thesis, but is implemented in the mcNeuron class. 


Note that the total length of the stacks is equal to RHL + THL.


 mutProb is the probability that a mutation will occur in any given 


perceptron.


 maxMut is the maximum magnitude of the random numbers that a segment 


of a perceptron's input weights will be replaced with, when this type of 


mutation occurs (see section 3.4). The newly generated weights will thus 
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vary from -maxMut to maxMut. Note that this value should be chosen so 


that its average magnitude is approximately equal to the average magnitude 


in the input weight vector, so that the newly created weights do not swamp 


the other weights. Because the input weights vector is normalized, the 


value of maxMut used in this thesis is set to    2 * sqrt( 1 / 


number_of_input_weights ). 


 iRnd is the maximum magnitude of the random numbers that are added to 


each input weight, after the perceptron is created and all mutations are 


applied, and before the input weight vector is normalized.


 oRnd is the maximum magnitude of the random numbers that are added to 


the output weights. Note that the output weights are never normalized.


27







4. SIMULATION ENVIRONMENT


4.1 OVERVIEW


The software in which the robot controllers are trained is based on a free 


and open-source rigid body physics engine called OpenDE or ODE [8], which is 


short for “Open Dynamics Engine”. This engine was orignally created by Russell 


Smith, and is currently being maintained and extended by a community of 


volunteers. It is distributed under two separate licenses — the GNU LGPL and a 


BSD-style license — such that a user can choose either of them. Thus, it may be 


used in free or commercial software, with very few restrictions. The most 


significant restriction in the BSD-style license is that the original work must be 


cited. This physics engine provides general-purpose simulation of articulated 


bodies, in addition to collision detection, and is primarily intended for use in video 


games. It has become popular enough in robot simulations, however, that there 


have been robot-simulation software packages[9] created and even a book[10] 


written about modeling robots in ODE.


4.2 SIMULATION WORLD


The simulation “world” consists of two parts — a randomly generated 


height map (the “ground”), and a randomly proportioned robot model. The height 


map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space. 


At each grid point, the height is set to a random number so that all heights fall 


within a 0.13m range.
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The robot body is generated and inserted into the world by the spiderBody 


object class (see section 4.4). A majority of the code in this class, about 1500 


lines, comprises the constructor function, which performs the following steps:


● Create the core body of the robot, which consists of three ODE primitives, set 


up its mass and inertia matrix, add its collision detection geometry, and insert it 


into the world.


● Repeat the previous step for the upper legs and lower legs.


● Calculate the starting positions / rotations for the legs, and move them to those 


locations.


● Attach the legs with the appropriate ODE joints (ball joints at the hips and 


hinge joints at the knees).


● Calculate the base / tip positions of the actuators, and call genActuator() on 


each one.


4.3 QUADRUPED ROBOT BODY


The robot body used in these simulations is shown in Figure 4.1. This robot 


has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear 


servos controlling a single leg are shown in Figure 4.2; their effects are as follows:


1. Works with Actuator 2 to control the direction of the axis of the upper leg.


2. Works with Actuator 1 to control the direction of the axis of the upper leg.


3. Controls the rotation of the upper leg about its axis. The effect of this actuator 


is interdependent with Actuators 1 and 2.


4. Controls the bending angle of the knee joint.
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Figure 4.1: Quadruped Robot


Figure 4.2: Diagram of a Single Leg Showing Actuator Indices
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The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5. 


These dimensions correspond to those shown in Table 4.1, and the upper and 


lower limits given in Table 4.2.


Figure 4.3: Robot Body Core (isometric view), Showing Dimensions


Figure 4.4: Diagram of Upper and Lower Chassis Platforms
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Figure 4.5: Diagram of a Leg, Showing Dimensions


Figure 4.6: 3D Rendering of the Robot Walking in the Simulation 


Environment
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Figure 4.6 shows a 3D-rendered example of the robot. This image was 


made from a screenshot of the robot walking in the simulation software. The gray 


actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators 


correspond to Actuator 3, while Actuator 4 is not shown in this picture because it 


is handled outside ODE, in order to increase the speed of the software, and not 


drawn when the scene is rendered.


4.4 ROBOT BODY OBJECT CLASS


The ODE objects which model the robot body are created and manipulated 


through the spiderBody object class. The source code for this class is given in 


Appendix C. Aside from the constructor and destructor, the robot body class 


implements the following member functions:


● dReal getPos( int index )


Returns the current length, in meters, of the linear actuator specified by index, 


with respect to its starting length. Negative numbers indicate that the actuator 


has retracted, while positive numbers indicate that it has extended.


● dReal getVel( int index )


Returns the linear speed, in meters per second, of the actuator specified by 


index, where negative numbers indicate that the actuator is retracting and 


positive numbers indicate that it is extending.


● void addForce( int index, dReal force )


Adds a 3rd law pair of forces of magnitude force to the two ends of the 


actuator specified by index,  which are directed along its axis. This is the 
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source of all of the driven motion in the physics simulation, except for the four 


knee joints.


● void addKneeTorque( int index, dReal torque)


Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower 


leg specified by index. This is the source of all driven motion at the knee 


joints.


● dReal getKneeAngle( int index )


Returns the current angle, in radians, of the knee specified by index. This 


angle is measured from the direction of the upper leg (if the knee is straight, 


the angle is zero), and increases as the lower leg bends downward.


● dReal getKneeOmega( int index )


Returns the current angular speed, in radians per second, of the knee 


specified by index.


● dBodyID getCore()


Returns the ODE body ID of the robot chassis. This is used in the collision 


detection callback to count collisions between the chassis and ground 


(which incurs a small score penalty).


4.5 HELPER FUNCTIONS


In addition, there are three helper functions that are not members of the 


robot body class, but are used with it. All three of these functions relate to the 


actuator that drives each knee, but is external to the ODE world in order to 
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increase processing speed. The source code for these helper functions is given in 


Appendix C, and they are described below:


● dReal calcKneeActOffset( dReal angle, dReal KBR, dReal KLL )


Calculates the position of the knee actuator tip, in meters, with respect to the 


knee joint. This position ranges from zero to the length of the upper leg. Angle 


specifies the angle of the knee joint, in radians, as returned by 


spiderBody::getKneeAngle( int ), KBR is the distance between the knee 


joint and the link attachment point on the lower leg, and KLL is the length 


of the linkage itself.


● dReal calcKneeTorque( dReal Angle, dReal slidePos, dReal KBR,


dReal F )


Returns the torque applied to the knee joint by a force F in the knee actuator. 


The input variable, slidePos, specifies the position of the knee actuator, as 


defined above, while F is the linear force in the actuator. Angle and KBR are 


the same variables described above.


● dReal calcKneeActVel( dReal Angle, dReal slidePos, dReal KBR,


dReal w )


Returns the linear speed of the knee actuator, in meters per second, given the 


angular speed of the knee joint, in radians per second. The input variable w is 


the angular speed; other inputs are the same as described above.
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4.6 BODY GEOMETRY PARAMETERS


The body parameters, which are set at random by the software and passed 


to the robot body constructor in a parameter array are listed in Table 4.1. These 


parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index 


column specifies the position in the array, while the Macro column gives the 


three- or four-letter macro by which the variables are referenced in the source 


code (see section 4.4 and Appendix C). Note that all linear dimensions are in 


meters, while all mass parameters are in kilograms.


Table 4.1: Robot Body Parameters Array


Index Variable     Macro


0 Upper platform (chassis) radius      UCR
1 V actuator upper mount offset (from centers of UP)      VAO
2 Distance between upper and lower platforms      RISE
3 Lower platform radius      LCR
4 Upper leg length      ULL
5 Lower Leg Length      LLL
6 Distance hip -> V ball on upper leg      IBR
7 Hip rotation linkage length      RBR
8 Knee link length (Obsolete; now set automatically)       KLL
9 Distance knee -> knee link attachment       KBR
10 Upper platform mass      UPM
11 Lower platform mass      LPM
12 Square tubing density (mass / unit length)       LINDENS
13 Platform and Leg thickness           THICK
14 Starting Position X      POSX
15 Starting Position Y      POSY
16 Starting Position Z      POSZ
17 Upper leg zero angle      ULZA
18 Leg rotation zero angle      LRZA
19 Lower leg zero angle      LLZA
20 Foot ball radius      FBR
21 Foot ball mass      FBM
22 V Actuator base mass              VABM
23 V Actuator tip mass              VATM
24 Rotational Actuator base mass            RABM
25 Rotational Actuator tip mass              RATM
26 Upper leg mass      ULM
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4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within 


a set of upper and lower limits defined by two limit arrays. The purpose of this 


variation is to train the neural networks to control a range of robots, rather than 


just a single example, to increase their resistance to the effects of small changes 


when going from the simulated robots to a physical one. The values used in the 


lower and upper limit arrays are given in Table 4.2.


Table 4.2: Upper and Lower Robot Parameter Limits


Index Macro Variable Description Lower Limit Upper Limit


0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9   KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52
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4.8 SIMULATION LOOP


On each step through the simulation loop, the inputs to the control system 


are updated with the force and position values for all of the actuators. The position 


values for the 12 upper leg actuators are obtained from ODE, using the getPos() 


member function of the robot body class, while the motion speeds for these 


actuators are obtained using getVel(). The knee actuator positions and speeds are 


calculated from the knee angles and angular velocities, which are obtained from 


ODE using the getKneeAngle() and getKneeOmega().


For all actuators, including the ones for the knees which are handled 


externally to ODE, the position is zero as seen by its control-system input at 


whatever position the actuators are created in. These zero positions are also used 


to define the actuator position variables which are modified by the outputs of the 


control system. The difference between these “set” position variables, and those 


returned by ODE, or calculated from angular values, in the case of the knees, are 


used to calculate the force in each actuator using a simple damped-spring 


equation:


F = -ks * (actual position – set position) – kd * ( actuator speed )


where ks is a spring constant, and kd is a damping coefficient.


The spring constant for knee actuators is 1500N/m; for other actuators it is 


1100N/m, and the damping coefficient is 30N*s/m. These values are based on 


measurements taken from a prototype linear actuator.
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The calculated forces for all actuators except those in the knees are sent 


back to ODE through the robot body class using the addForce( index, force ) 


member function, as well as to the control system as force-sensor inputs. The 


forces for the knees are converted to torque values, and sent to ODE using the 


addKneeTorque( index, torque ) member function.


The actuator set positions are produced by the control system outputs 


through a double integral. The control system is able to set acceleration values for 


the actuators, up to a certain maximum acceleration, and these values change the 


speed of the actuators (the rate of change of the set value), up to a certain 


maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum 


speed is 0.35m/s, both of which are based on measurements taken from a 


prototype actuator.


In addition to position and force measurements, the control system also has 


two other inputs that describe the desired direction of travel with respect to the 


robot. These two values are dot products of a unit vector pointing in the desired 


direction with the robot's local X and Y vectors. These are treated exactly the 


same as the sensor inputs, and propagate through the history stack in the same 


way.
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5. PERFORMANCE EVALUATION


5.1 OVERVIEW AND QUALITATIVE ANALYSIS


For a system such as this, the most definitive performance criterion is 


whether the robots begin walking in an effective way within a reasonable amount 


of time, while operating on a computer which is economically feasible to the user. 


During and after the development of this software, many test runs were performed, 


using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In 


eac test, the AI always either learned to walk, or found a way to work around the 


rules and “cheat”, within a few days.


In the earliest runs, there was no penalty for being upside-down, which 


resulted in the robots' bouncing and rolling forward as far as they could upon 


dropping into the world, then kicking their legs and hopping forward while 


upside-down. Some of them also managed to tilt 90 degrees to the side and roll a 


good distance, effectively doing cartwheels, before falling down. When the 


penalty was added and the software re-run, a population of robots was produced 


fairly quickly that would hop forward, like frogs. At this point, a bug in the 


physics simulation code was found and fixed, and the first population of actual 


walkers was produced on the following run. For this test, the software was 


allowed to run for a period of approximately three weeks in real-time, in which 


time the it became very good at making the robots walk—at the end of this run, 


the robots were moving about 16 body lengths in 14 seconds of simulation time, 


which is quite fast given the physical characteristics of the robot and the limits that 
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were in place on how fast the actuators were allowed to move and accelerate (see 


Chapter 4).


5.2 QUANTITATIVE ANALYSIS


In order to obtain a quantitative analysis of the performance of this system, 


a pair of test runs was done, with different parameters for the neural network. A 


special version of the software was created for these runs, which has the added 


feature of creating the log files that are used in the analyses below. These log files 


are formatted as plain text, with one line for each population member evaluated. 


The entries on each line are as follows:


● The index of the current population member. This ranges from 0 – 39, as a 


population size of 40 was used for all of the runs that used a log file.


● The score that the population member retained from the last generation, 


according to scoring rule #5 (see section 3.2).


● The number of times the chassis came into contact with the ground, as 


described in rule #4.


● The score given for any movement at all, as described in rule #1.


● The movement of the robot in the X direction.


● The movment of the robot in the Y direction.


● The final score passed back to the mcEVO node.


Results from two of these logged runs are included in this section. In these 


runs, each neural network is given a turn of 2000 time steps in which to control its 


robot. The starting positions are recorded after a delay of 250 time steps, which 
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gives an effective turn length of 1750 time steps. Each time step for the neural 


network represents 0.012 seconds of simulation time, so there is a period of 


approximately 21 seconds in simulation time for which movement is recorded. 


Both tests are identical in all respects, except that one uses a neural network of 30 


perceptrons, with a memory of 250 time-steps while the other uses 150 


perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is 


equivalent to approximately 3 seconds of simulation time, while 150 time-steps is 


equivalent to about 1.8 seconds. For these runs, the desired direction is always 


along the X axis, and the ground impact penalty is very small (0.05). Changes to 


these rules can be implemented slowly through a modification to the software — 


the desired direction will take random values that slowly drift away from the X 


axis, while the ground-impact penalty will slowly increase. This is not done here 


due to the length of time the software has to run before a new adaptation is made.


The results from the log files were post-processed using a second program, 


which was written to parse the data from the logs and extract the following data 


sets for each generation:


● The maximum score attained by any population member during the generation, 


excluding any score carried over from the previous generations.


● The top 5 scores from the generation.


● The average value of the top five scores from the generation.


● The maximum score ever achieved, in the current or any previous generation.
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● The total movement in the X and Y directions for the top 5 scorers in the 


generation.


Figure 5.1 shows the top score results vs. generation from the 30-


perceptron test. There are three data sets on this plot: the top score attained during 


the generation (orange), the average of the top five scores (purple), and the 


running maximum score (black). These scores are a figure of merit which 


represents the performance of the neural networks with respect to all of the 


scoring rules that are discussed in Chapter 3. A plot of the total movement in the 


X direction (orange) and the Y direction (purple) for the top scoring neural 


network in each generation is given in Figure 5.2. Unlike the scores shown in 


Figure 5.1, these movement figures provide concrete values that are relevant 


outside the context of the genetic algorithm — they represent the actual distance 


that the simulated robots were able to walk during the time allotted. 


Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively, 


but are taken from the 150-perceptron run. They show data taken from a smaller 


number of generations, but the same amount of real-world run time. This is 


because the software runs more slowly when a larger neural network is used.
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Figure 5.1: Scores Per-Generation for the 30-Perceptron Run


Figure 5.2: X and Y Displacement for the 30-Perceptron Run


44







Figure 5.3: Scores Per-Generation From the 150-Perceptron Run


Figure 5.4: X and Y Displacement From 150-Perceptron Run
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5.3 DISCUSSION OF RESULTS


Note that the first run (30-perceptrons) went for 405 generations, while the 


second (150-perceptrons) run was only 240 generations. Both tests ran for 


approximately 11 days in real-world time, each running on one core of the same 


CPU, but the larger neural network slowed down the software considerably on the 


second run. This is to be expected, as the neural networks from the first run 


consume only 59MB of RAM, while those from the second run consume 179MB


—and all of these weights need to be processed 2,000 times per turn, and 160,000 


times per generation. 


Several other things are apparent from Figures 5.1-5.4. First, the data has 


quite a bit of randomness in it—there is a large amount of inconsistency between 


generations in both the scores and displacements. Secondly, while the scores are 


generally rising as the generations progress, they do so in a very chaotic way, with 


relatively flat periods and periods of rapid increase. There is even what appears to 


be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show 


the X component of motion increasing with the score, while the Y component 


remains approximately centered at zero, but with steadily increasing random 


variation.


The first observation can be explained by the fact that the robots the system 


is being asked to control are randomly generated. Thus, a neural network that 


performs well in one generation may be do poorly with the robot it is given in the 


next generation. This is intentional, as the goal is to evolve a control system which 
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is effective in a wide variety of robots (thus increasing the chance that it will work 


well with a physical robot in the real world). In addition, it is possible for an 


otherwise strong-performing control system to flip its robot upside-down, 


obtaining a very low (or negative) score in the process. This tends to be especially 


likely with the very high scoring individuals in any generation, as they tend to be 


the “risk takers”. This issue can be exacerbated by the randomness in the robot 


parameters, as a behavior that is only slightly risky in one robot may be fatal in 


another.


The chaotic nature of the increases in score over time can be explained by 


the properties of the genetic algorithm. The software is continually recombining 


the same characteristics into new population members, only occasionally 


happening upon a new adaptation that results in significantly higher scores. It 


takes time, however, for this adaptation to propagate through the population, and 


be optimized to work in a consistent way. Thus, there can be a very large jump in 


the running maximum, creating a “high score” that holds for quite some time. The 


apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to 


the “deaths” of several population members which, while high-scoring, were also 


highly inconsistent. This is backed up by the fact that the randomness in the plot 


drops off very quickly during the same few generations, and remains smaller than 


before as the scores recover.


The movement in the X direction (which is always the “desired” direction 


in these two runs, as explained above) behaves as one would expect; it appears to 
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increase along with the scores. The Y movement, however, remains approximately 


centered at zero, but has a random noise in it that increases through the 


generations. This can be explained by the fact that the control system is becoming 


more effective at moving the robots in general, and because the population 


members still receive points for moving along the Y axis. In later generations, this 


movement is small compared to the motion in the X direction, as the control 


system improves at directing the robot in the direction of maximum score. This 


side movement could also be suppressed by slowly introducing a penalty for 


movement in the Y direction, especially if an additional input was added to the 


control system for current (absolute) position.


Finally, it is worth pointing out that the 30- and 150- perceptron tests were 


only allowed to run for 860 and 485 generations, respectively, due to time 


limitations. Previous runs that were much longer, including one that went into the 


thousands of generations, showed a continued increase in performance, with the 


longest run producing several scores between 8 and 9 on each generation. The 


plots here are, however, sufficient to show that the ability of the AI to control a 


robot is generally rising with time, and to show some of its characteristics.
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6. CONCLUSIONS AND FURTHER RESEARCH


6.1 CONCLUSIONS


From the results given in section 5.2, as well as direct observation of the simulated 


robots in the software, it is clear that this system is capable of generating effective 


walking movement. In addition, the robot design used in this thesis is particularly 


difficult to control, as its wide body does not permit the center of mass to remain 


in a stable position. In quadruped animals, the body is long and narrow, so that 


diagonal pairs of feet that are on the ground form a straight line that is always 


beneath the center of mass. With a hexapod or octopod, the problem would be 


even easier, as the feet on the ground at any given time form a triangle or a 


trapezoid, respectively, that can always enclose the center of mass on the 


horizontal plane. Thus, this method can be expected to produce better results than 


those given here for these other body types.


6.2 CONTINUED WORK WITH THIS BUILD


The first step that should be taken in order to learn more about this system is to 


perform more extensive testing than what was done for this thesis in order to 


maximize the efficiency of the system with respect to CPU load and memory 


usage. This will require a large number of test runs to be performed with many 


different configurations, in order to optimize the following variables:


● Population size


● Number of perceptrons
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● Memory length


● Probability of each type of mutation


● Scoring with respect to different criteria


● Selection rules


In order to perform a large number of tests in a reasonable amount of time, it 


would be best to use a computer with a large number of processor cores, as this 


software does not parallelize easily in its current form. Alternatively, the physics 


engine could be replaced with one that runs on a stream processor, such as PhysX 


from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the 


neural network could be rewritten to run on a GPU.


6.3 EXTENSION OF CONTROL SYSTEM


It would also be good to extend the scope of the control systems that are produced 


in a few different ways. First, multiple neural networks can be used, with each 


trained to perform a different task. While individual networks have been observed 


to produce multiple behaviors in this system, this would be a good way to separate 


the desired behaviors. Also, it might be effective to have “nested” learning rules, 


such that the neural network continues to learn on its own after it is produced by 


the genetic algorithm. This could be done by adding some form of short-term 


reinforcement learning, or by adding a classifier network to the inputs of the 


control system that predicts the result of current behavior on the score and adjusts 


the weights of the network, perhaps using the P-Delta learning rule[6] that 


originally went with the parallel perceptron network that is used here. Another 
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option may be to add some outputs that do not control anything, but still act as 


feedback loops. This would create a form of memory that permits state-space 


orbits that last much longer than the history-buffer length, which the system would 


use in whatever way happens to produce the highest scores.


6.4 POTENTIAL APPLICATIONS


In terms of applications, there are two things that would be very interesting to do. 


One such idea is to create a CAD-style robot “editor” in which robots can be 


designed in a quick and convenient way, instead of writing a 1500+ line 


constructor, as was done with the spiderBody class used in this research. This 


editor would allow one to create a robot using a library of predefined parts such as 


the linear servos seen on the robot that this thesis deals with, and automatically 


generate a bill of materials for its physical construction. After the robot is 


designed, the software can then be used to create parts of its control system.


The second possibility is to modify the simulation and genetic algorithm 


software to operate as a P2P application, in a similar way to the BitTorrent 


network. A large number of users who want the same robot could download a task 


file that specifies the robot that is to be controlled and points to an online 


“tracker”. Having connected to the tracker, a user's client would join the “swarm” 


of other users, and begin receiving population members to evaluate. Each user's 


PC processes a small population, similar to the ones that were used in the two test 


runs here, but downloads a few new neural networks from other users and 


transmits a few on each generation. Depending on the number of users who want a 
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particular robot, this could permit effective population sizes in the tens of 


thousands. Like the other possibilities mentioned above, this has not been 


evaluated at this point, and it is unknown whether it would be an effective design. 


It would, however, be very interesting to see what might come out of it.
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1. INTRODUCTION


This thesis describes a method for automatically generating complex 


control systems for walking robots. One of the most interesting research fields 


today is the development of robots that are able to perform complex and 


somewhat arbitrary actions with some degree of reliability. While robotics as a 


field of engineering has existed for quite some time now, and robots have been 


created which are capable of performing many tasks, it is still very difficult to 


create a robot which can effectively navigate complex terrain, or inside buildings. 


This is mostly due to the fact that the simple forms of mechanical movement, such 


as wheels, are only effective over a narrow range of conditions. A wheeled robot, 


for example, may be able to navigate a single floor of a building, or a landscaped 


outdoor area, but would normally be incapable of dealing with anything that its 


wheels cannot roll over, such as stairs, or rough terrain. For this reason, an 


effective walking-robot technology would be very useful.


Designing an effective walking robot is a difficult problem for two distinct 


reasons. First, it is actually quite challenging for engineers to design mechanical 


systems that exhibit anything close to the combination of speed, strength, size and 


weight that exist in biological organisms. This problem tends to either introduce 


severe limits on what can be done, or alternatively, cause the cost to construct a 


robot to be extremely high. Secondly, and somewhat relatedly, the control system 


for an effective walking robot is by necessity very complicated. This is because of 
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the wide variety of conditions under which such a robot must be able to operate; a 


simple pre-programmed sequence of movements is not sufficient to provide 


reliable walking.


There are many different methods which have been used to provide 


intelligent control of walking robots. One approach is the use of Central Pattern 


Generators (CPGs), which have been used to control biped robots [1, 2]. Like the 


biological systems that inspired this method, a robot using CPG motion control 


has a very small neural network in which groups of individual perceptrons behave 


like schmidt trigger oscillators. The currently-active perceptrons inihibit the others 


until their responses to the input vector override the inhibition. At this point, when 


the system begins to switch states, a positive-feedback condition is created which 


strongly attracts the system into its next state. These neuronal oscillators can be 


connected in a purely feed-forward layout, in which the neurons use only each 


other's outputs as inputs, or they can use feedback, in which the inputs to the 


neurons are sensor outputs from the controlled system[3]. The behavior of this 


system is normally hard-coded, and tends to suffer from most of the same 


drawbacks as a pre-programmed gait — it requires a human programmer to 


consider each possible situation that it may encounter.


Genetic algorithms have also been used to develop control systems in 


walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-


forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5] 
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combine a genetic algorithm with a CPG to produce walking behavior in a 


hexapod robot.


In this thesis, a new method is developed which works in a similar way to 


[5], in that a neuronal oscillator controller is trained with a genetic learning rule, 


but with several key differences. First, the new method uses a relatively large 


neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The 


network used in this thesis has dozens to hundreds of perceptrons and, in some 


cases, upwards of a half-million weights (see test runs in Chapter 5). These 


perceptrons are not connected together directly as they are in the CPG, but do 


have feedback from the aggregate (system) output. In addition, the system has 


some internal memory which stores a certain number of past inputs and outputs. 


Thus, the control system can not only “see” the current state of the robot, but also 


remembers what has been happening with the physical robot and what it has been 


doing. The length of this memory is a user-entered variable, which has been set at 


150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the 


scoring and selection algorithms used in this thesis are based only on walking 


performance; the first training steps used in [5] to initially produce oscillatory 


behavior is not present.


For purposes of training the neural network, software is created which 


combines a physics simulation with a scoring algorithm. Candidate control 


systems are scored on how far they can make a simulated robot walk over 


randomly-generated terrain in a given amount of time, and this information is 
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passed back to the genetic algorithm. After each neural network has had a turn, 


and received a score, the software ranks them and replaces the lower scorers with 


new networks that are created by combining pairs of high-scorers and applying 


random mutations. These steps are then repeated until the user decides that a 


sufficiently effective one has been produced, based on observation of the 3D-


rendered simulation or the figures of merit introduced in Chapter 5, and terminates 


the program.


When the program is first started, all of the neural network weights are 


random and the simulated robots are only able to move a very short distance. As 


time progresses, however, the robots begin to develop the ability to produce 


continuous motion in one direction. In the test runs, the robots began to show 


some walking ability within about two days, and were becoming quite effective at 


walking after about a week.


While this method still requires some forethought on what types of 


situation the robot will encounter, in order to create effective training simulations, 


it does not need any hard-coding to be performed. All that is necessary is to create 


a 3D “world” with any terrain that the robot might have to navigate, as the 


software will randomly place robots in the world and score the control systems on 


how well they perform. In addition, the neural networks produced by this software 


are not limited to a single type of walking — multiple methods of movement have 


been observed in individual networks — which simplifies their integration into a 


complete robot.
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This thesis is organized as follows: In Chapter 2, the neural network 


topology is described, as is the method for generating its input vector. There is a 


discussion on why it was chosen in section, and why it was expected to be 


effective, and its software implementation is described in detail. In Chapter 3, we 


discuss the genetic learning rule that is used with the neural network. The scoring 


rules that are used in the physics simulation are defined, as are the rules used for 


selection, crossover and mutation. Then, the software implementation of the 


genetic algorithm is described. In Chapter 4, the physics simulation in which the 


neural networks are trained is described, starting with the simulation “world”. 


Then, we discuss the quadruped robot body that is used in the simulations, its 


physics-engine implementation, and the geometrical parameters that describe 


individual robots. Finally, we describe the simulation loop in which the physics 


engine, the robot model, the neural network and the genetic algorithm come 


together. In Chapter 5, the performance of the software is evaluated. Figures of 


merit, collected from two test runs, are presented, and the results are discussed. In 


Chapter 6, we discuss our conclusions from this work, and propose some ideas for 


further research, as well as some potential applications.
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2. NEURAL NETWORK


 2.1 OVERVIEW


The neural network used in this project consists of a single layer of parallel 


perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but 


with an outboard genetic learning rule rather than the one described in that work. 


Each perceptron has a set of input weights that determines its response to a given 


set of inputs, an activation function which, in this thesis, is a unit-step function, 


and a set of output weights, which are multiplied by the output of the activation 


function (1 or 0) and added to the system output vector. This neural network 


operates in discrete time, evaluating sampled inputs and producing outputs at fixed 


time intervals. A block diagram of the neural network, and its associated memory 


stacks, is shown in Figure 2.1. 


Figure 2.1: Neural network block diagram
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2.2 INPUT VECTOR GENERATION


Inputs to the neural network come from three sources: body sensors, 


command and control signals, and previous inputs and system outputs. Past inputs 


and outputs come from a type of stack buffer where data travels down the stack 


and is discarded when it passes the last level. These historical data are used for 


two purposes: as inputs for the neural network, and as training data for a second 


learning rule that is implemented in the software, but not currently being used. 


The organization of this stack is shown in Figure 2.2.


Figure 2.2: Block Diagram of History Buffer Object
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2.3 OUTPUT VECTOR GENERATION


On each time step, the input vector to the neural network is generated by 


concatenating the body sensor and command inputs with the past inputs and 


outputs from the history buffer objects. This vector, I_sys, is multiplied (dot 


product) with each perceptron's input weight vector, W, to give the postsynaptic 


potential (PSP).  The output of the perceptron is the unit step function of the PSP, 


multiplied piecewise by the perceptron's output weights to give its contribution, 


Rn, to the system output vector, Rs. This may be expressed as follows:


Rn = u( I_sys • W ) (2.1)


Rs = Σ( Rn ) (2.2)


2.4 WHY THIS ALGORITHM


At this point, some information is given regarding why this system can 


work. First, due to the fact that the number of perceptrons is much larger than the 


number of outputs, this algorithm is a universal function approximator[6]. This 


means that it can implement an arbitrary bounded function given the correct 


weights, even when the network has only a single hidden layer. Because the 


outputs of this neural network determine the rate of change in the actuator 


positions on the robot, the result is a system of nonlinear partial differential 


equations which, depending on the weight vectors and the physical properties of 


the robot, are capable of producing an extremely wide variety of behaviors 
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(although not all behavior is technically possible, as there are physical limits on 


speed, force, and acceleration). Due to the way the data propagate through the 


history buffers, and thus constantly change position with respect to the input 


weights, it is relatively difficult for the system to reach a stable state where the 


robot does not move. Instead, this tends to encourage strange attractors, which 


produce repetitive, but not necessarily periodic, motion.


2.5 SOFTWARE IMPLEMENTATION


This neural network is implemented in C++ as the mcNeuron object class 


(in which the “mc” is short for “Motion Control”). It is organized in a linked list, 


where each instance represents one perceptron, and holds a pointer to the next 


perceptron in the chain. The advantage to this type of organization is that the 


source code can be kept short, as a large portion of the compiled machine code is 


automatically generated by the compiler itself. This also helps prevent errors by 


making the source code more readable, and relying on the very mature code-


generation algorithms used in the compiler. The source code for this object class is 


given in Appendix A, and its member functions are described below:


● void rnNet( float* inputs, historyBuffer* iHistory, historyBuffer* oHistory, 


      float* outputs)


This function multiplies the input weights of the perceptron (dot product) 


by the concatenation of inputs, iHistory, and oHistory, and if the result is 


positive, add its output weights to outputs. If there are more perceptrons in the 


chain, as indicated by a non-null “next” pointer, then this function is called in 
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the next node, with the same parameters. Thus, one call to the first perceptron 


in the chain propagates to all of them.


● void updateNet( float scale, historyBuffer* iHistory,


            historyBuffer* oHistory )


This function implements a second learning rule, which is not used in this 


project. It was replaced by the genetic algorithm very early in development. 


When called, it multiplies scale by values from iHistory and oHistory, and 


adds this to its input weights. Like rnNet, it propagates through all perceptrons 


in the chain.


● void iW_preset( float * newWeights )


This Function sets the input weights to the values stored in newWeights. This 


function is recursive, and if the perceptron has a non-null “next” pointer, will 


call the same function in the next perceptron. In this case, the pointer is 


advanced by the number of input weights, so that one large array can be used 


to set all of the input weights in a chain.


● void iW_preset_justOne( float * newWeights )


This function is the same as iW_preset(), but is not recursive.


● void oW_preset_justOne( float * newWeights )


This is the same as iW_preset_justOne(), but acts on the output weights instead 


of the input weights.
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● mcNeuron *getNext()


This function returns a pointer to the next perceptron in the chain, or NULL if 


a next node does not exist.


● mcNeuron *cutNth( int index )


This function cuts the chain at the Nth node, and returns a pointer to the 


removed segment. It works by recursively propagating down the chain while 


decrementing index, until index = 1. When this condition is true, the node sets 


its “next” pointer to NULL, and returns the value that was in that pointer. The 


returned pointer propagates back up the chain as the CPU falls down through 


the call stack, until the first called node finally returns it to the calling function.


● void setNext( mcNeuron * newNext )


This function sets the “next” pointer in the called node to newNext.


● void appendChain( mcNeuron * newSegment )


This function appends the chain specified by newSegment to the end of the 


called chain. It works by recursively propagating down the chain until it is 


called on a node whose “next” pointer is null, and setting that pointer to 


newSegment.


● float *getIWeights()


This function returns a pointer to the input weights for the called perceptron.


● float *getOWeights()


This function returns a pointer to the output weights for the called perceptron.


● void setRandomOWeights( float maxValue )
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This function sets the output weights of the perceptron to random numbers, 


varying from -maxValue to +maxValue. It is recursive, and operates on each 


node in the chain until a null “next” pointer is reached.


● void setRandomIWeights( float maxValue )


This function is the same as setRandomOWeights(), but operates on the 


input weights.


● void setCascadingOWeights( float weight, int oIndex )


This function sets the output weight specified by oIndex to weight, and sets all 


others to zero. If the “next” pointer is not null, it calls the same function on the 


next node, with the parameters set by the following two rules:


 If oIndex is less than the number of output weights, increment oIndex.


 If oIndex is equal to the number of output weights, then the next oIndex is 


zero, and the next weight is -weight.


Note that this function is not called in the final build of the software.


● void shakeIptWeights( float maxValue )


This function adds a random number, which varies from -maxValue to 


maxValue, to each of the input weights. It is recursive, and operates on all 


perceptrons in the chain. After the random values are added, the weight vector 


is normalized.


● void shakeOptWeights( float )


This function is the same as shakeIptWeights(), but operates on the output 


weights.
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● void mutateIptWeights( float maxValue )


This function selects a random, continuous segment of the input weights and 


replaces them with random numbers, which vary from –maxValue to 


maxValue. It is not recursive (it operates on only one perceptron), and is called 


by the much more extensive mutation function in the genetic algorithm class.


● void mutateOptWeights( float )


This is the same as mutateIptWeights(), but operates on the output weights.


● void svNet( ofstream * saveFile )


This function saves the input and output weights of a perceptron to the fstream 


object pointed to by saveFile. It is recursive, so the entire network will be 


saved when it is called on the first element in the chain. Note that the fstream 


object has an internal index that counts up as data are saved, so the function 


can be called on multiple chains with one open file, and they will all be saved 


in order.


● void ldNet( ifstream * loadFile )


This function loads the input and output weights stored in the fstream object 


pointed to by loadFile into the input and output weights. It is also recursive, 


and operates in the same way as svNet.
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3. GENETIC ALGORITHM


3.1 INTRODUCTION


The neural network described in Chapter 2 is trained using an outboard 


genetic search algorithm, which operates on the entire network, rather than 


individual perceptrons. Each candidate neural network is given a turn to control a 


randomly generated robot in a physics simulation, and scored based on its 


effectiveness at making the robot walk. Like all genetic algorithms, this one 


combines randomness, selection, crossover, and mutation to search the space of all 


possible input and output weight vectors. Due to the extremely large search space, 


and the fact that there are large clusters of viable solutions (different types of 


walking) with fitness functions that tend to be somewhat continuous, this problem 


should be particularly well-matched to the properties of a genetic algorithm [7].


Selection is based on a floating-point score that is generated by evaluating 


the network's efficacy in controlling a simulated robot. In order to function, a 


genetic algorithm must find a region in the search space where there exists a score 


gradient before it can begin to function as a genetic algorithm; before this happens 


it implements only a random search. As a result, the search must happen upon a 


region with a fitness gradient, by chance. If these regions fill too small a portion of 


the total search space, it can take a very long time for the search to locate one of 


them. For this reason, points must initially be awarded for results that are not 


directly useful, but which are likely to be connected to a useful region by a 


“bridge” of scores that are high for their particular region[7]. 
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3.2 SCORING


At the start of a turn, the software drops a robot into the “world” at a 


random position and begins stepping its neural network along with the physics 


engine. In order to reduce noise in the score due to a random bounce when the 


robot falls a short distance to the ground, and reduce the tendency for the system 


to waste time early on by simply making the robots lean forward, there is a delay 


of approximately two seconds in simulation time before the software records the 


robot's “start” position. At the end of the turn, the start position is subtracted from 


the ending position, and points are awarded according to the following five rules:


1. Score is awarded for any movement that occurs, regardless of direction. Early 


in the process, this causes the system to select the neural networks that cause 


the system to exhibit those attractors that produce constant motion. This causes 


oscillatory behavior to be learned early in the evolutionary process, and is what 


replaces the initial learning step used in [5], where fitness functions were 


assigned to per-leg oscillations.


2. The population member receives points a second time for movement in the 


desired direction, as determined by a dot product, but only if that number is 


positive — a negative score here is counted as zero. As a result, it is possible 


for an individual to receive up to two points per meter for moving in the 


correct direction. 


3. A two-point penalty is assessed if the robot is upside-down at the end of the 


turn, which can occur quite easily due to the physical characteristics of this 
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particular robot design. The purpose of this penalty is to avoid behavior that 


emerged in some of the earliest tests, where the robot would roll forward, and 


then hop along upside-down by kicking its legs.


4. A user-configurable penalty is assigned each time the robot chassis comes into 


contact with the ground. There is a delay of approximately 1 second in 


simulation time after a ground impact is registered, before the counter can be 


incremented again. This prevents large penalties from accruing quickly if the 


chassis remains in contact with the ground for a period of time. From the test 


runs that have been performed, it was found that this penalty needs to be very 


small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05 


was used. It may be effective to increase this penalty slowly after the system 


has learned to walk, but this has not yet been tested.


5. The population member retains half of the score it received in the previous 


generation, so that a single weak performance is not likely to “kill” a high-


scoring neural network. While this last rule can sometimes prevent a more-fit 


individual from displacing a less-fit one, the effect quickly fades away when 


an individual performs poorly for two or more generations. It also is not 


typically enough to prevent displacement in the case of a very low, or negative, 


score. For this reason, several replacements still occur in most generations.
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3.3 SELECTION


At the end of a generation, all members of the population are sorted by a 


ranking algorithm, so that those with the highest score appear in the earliest 


positions. In order to select each parent for the next generation, a random floating-


point number in the range [0, 1] is generated, and squared, so that the new 


probability distribution will tend toward zero. This new number still falls within 


the same range, but has an average value of ¼ instead of ½ — thus selecting 


higher-scoring individuals more often than low-scoring ones. This number is then 


multiplied by the size of the population, cast to an integer, and used to index a 


neural network that will be the “parent” of a new population member. Note that 


the random number could also be raised to any other positive power, or another 


function could be used to provide a different probability distribution, although 


these options have not been investigated. A second method which has been tested 


is to instead multiply the square by the maximum score in the population, and then 


take the weakest member above that score, but it appears to be too aggressive for 


the small populations that are feasible on a current PC, and was found to cause 


problems with early convergence. This cause of this problem is that the highest 


score in a generation tends to be much higher than the average score, or even the 


average of the top 5 scores, as shown in Chapter 5. The top scoring population 


member thus tends to be chosen as a parent very often by this rule, which causes 


the diversity in the population to disappear rapidly, leading to the early 


convergence problems that were observed.
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3.4 CROSSOVER AND MUTATION


After the two parent networks are selected, a new neural network is created 


by combining them. Each perceptron in the child is created by randomly selecting 


the perceptron at the same position from one of the parents, and occasionally 


introducing a random mutation. These mutations can take any of the forms 


outlined below:


● A random, continuous, segment of the perceptron's input weights is chosen, 


and replaced with a string of random numbers. This permits behavior to drift 


over time at the individual perceptron level.


● A perceptron's output weights are rotated, so that all of its effects are 


“mirrored” to the opposite side of the body (either side-side or front-back can 


occur). At the same time, the perceptron's response is time-delayed by a 


random amount by doing a circular shift on its input weights by an integer 


multiple of the number of inputs. The purpose of this mutation is to encourage 


symmetry in the robot's motion, and allow  effective behavior that evolves in 


one leg to eventually propagate to the other legs.


● At the population-member level, the software randomly selects a continuous 


group of perceptrons, and moves them to a new position in the list. This has no 


direct effect, but makes it possible for a new child to be created with multiple 


perceptrons that originally occurred at the same position. For example, the 


child could contain four nodes that were all at position 25 in its grandparents.


● After the new perceptron is generated, all of its weights (both input and 
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output) are randomly adjusted by a small amount, and the input weights vector 


is normalized.


3.5 SOFTWARE IMPLEMENTATION


The genetic algorithm is implemented by the mcEVO object class, which 


manages the population, and two helper functions, rankNodes() and breedNets(), 


which perform the genetic operations.


The mcEVO class encapsulates the neural network and its associated 


history buffers in such a way that the entire population can be accessed through 


one pointer. It also stores the geometry for the randomly generated robots. The 


source code for this class is given in Appendix B, and its member functions are 


described below:


● mcEVO( int popSize, mcEVO * previous, dReal * geomMin, dReal * 


geomMax )


This is a chain constructor which builds a population of popSize. It does not 


generate the neural networks (this is done in a separate call), but it does 


generate a random set of robot-body proportions for each element. The input 


variable geomMin should point to an array containing the lower limits for each 


body dimension, while geomMax should contain the upper limits. These 


parameters are described in detail in the simulation section of this thesis. 


Previous is used internally to this chain constructor, and should be set to 


NULL when it is called from outside.
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● ~mcEVO()


This destructor operates on the entire chain, deleting all nodes and any 


perceptron chains that were attached to them.


• mcEVO * getMax( mcEVO * curBest, float curMax )


This function returns a pointer to the node in the chain with the highest 


score value. The input variables curBest and curMax are used internally as 


the function recurses through the chain; it should thus be called with 


curBest = NULL and curMax set to a large negative number (-10 is 


sufficient in this case).


• void setPrevious( mcEVO * newPrevious )


This function sets the “previous” pointer for the called node to 


newPrevious.


• void setNext( mcEVO *)


This function sets the “next” pointer for the called node to newNext.


• void detach()


This function detaches the called node from the chain, calls 


previous->setNext( next ) and next->setPrevious( previous ), and sets its own 


previous and next pointers to NULL. Thus, the node is removed from the 


chain, and the chain is spliced back together.


• mcEVO *getNext()


This function returns the value in the “next” pointer of the called node.
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• mcEVO *getPrevious()


This function returns the value in the “previous” pointer of the called node.


• mcEVO *getFirst()


This recursive function can be called on any node in the chain. It calls 


previous->getfirst() until previous = NULL, then returns a pointer to that 


node.


• mcEVO *getLast()


This function works in the same way as getFirst(), but recurses down the 


chain instead of up, and returns a pointer to the last node.


• float getScore()


This function returns the score stored by the called node.


• mcEVO *getLastAbove( float minScore )


This function recurses up the chain until it reaches a node whose score is 


higher than minScore. It then returns a pointer to that node. Note that this 


function is called on the last node in the chain (rather than the first), and is 


intended to be used after the ranking operation is complete. See the section 


on the rankNodes() helper function below.


• mcEVO *getNth( int N )


This recursive function extracts a pointer to the Nth node in the chain. It 


works by calling itself on the next node in the chain, while decrementing N, 


until N = 0. It then returns a pointer to the node where this occurred. 
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• void insBefore( mcEVO * newNode )


This function inserts the node pointed to by newNode into the position 


preceding the called node. It sets its own “previous” pointer to newNode, and 


calls setPrevious() and setNext() on the new node, and setNext() on the 


current previous node, so that the chain is still continuous in both directions.


• void dumpScores()


This recursive debug function causes all nodes in the chain to send their 


scores to stdout.


• void dumpWeights()


This debug function causes all nodes in the chain to send their weights to 


stdout. Note that there can be many millions of weights, which can cause 


problems depending on the terminal program from which the software is run.


• void setScore( float newScore )


This function sets the score stored by the called node to newScore.


• dReal *getParams()


This function returns a pointer to the robot-body geometry parameters 


stored by the node.


• void appendChain( mcEVO * newSegment )


This function causes the chain starting at newSegment to be appended to the 


end of the chain holding the called node. It recurses down the chain 


until next = NULL, then sets next = newSegment and calls 
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newSegment->setNext( this ).


• int killLast( int numDeleted )


This function deletes the last numDeleted nodes in the chain. It works by 


recursively calling itself on the next node until next = NULL, then returning 


numDeleted. As the CPU falls back up through the call stack, each recursion 


subtracts one from the returned number and returns that, thus counting down 


toward zero. When the return value is zero, the node calls delete next, and sets 


next = NULL. All nodes below this point are then deleted by the chain 


destructor, as described above.


• void svBrains( ofstream * saveFile )


This recursive function saves all of the neural networks being managed by 


a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron 


chain pointed to by each node in the chain, and then calling itself on the next 


mcEVO node. Note that the fstream object class counts and records the current 


position within the file, which greatly simplifies this implementation.


• void ldBrains( ifstream * loadFile )


This function works in a similar way to svBrains(), but loads the neural 


network weights from a file into all of the mcNeuron objects being managed 


by the called mcEVO chain.


• void mkBrains( int numPerceptrons, int RHL, int THL )


This recursive function causes all nodes in the mcEVO chain to generate 
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neural networks and history buffer lists using the chain constructor for the 


mcNeuron class. The neural networks thus created have numPerceptrons 


perceptrons, and both history buffers (one for input variables, and one for 


output variables) have RHL + THL nodes. Note that this function, in its 


current implementation, assumes that each neural network has 34 inputs and 16 


outputs. This will change when the class is adapted away from this project for 


general-purpose use.


● void mkBrains_random( int numPerceptrons, int RHL, int THL, float * array )


This function works in the same way as mkBrains, but fills the input and 


output weight arrays with random numbers rather than leaving the memory 


uninitialized. Array points to an array of type float that is large enough to hold 


all input and output weights, which was used internally in a different version of 


this function. It has not been removed, because that version has not yet been 


fully evaluated at the time of this writing. For the version of the function used 


in this thesis, array can be set to NULL.


● mcNeuron *getBrain()


This function returns a pointer to the first node in the mcNeuron chain 


being managed by the called mcEVO node.


● historyBuffer *getIHist()


This function returns a pointer to the first node in the input history buffer 


chain being managed by the called mcEVO node.
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• historyBuffer *getOHist()


This function returns a pointer to the first node in the output history buffer 


chain being managed by the called mcEVO node.


• void setIHist( historyBuffer * )


This function sets the input history buffer chain to be used by the called 


node.


• void setOHist( historyBuffer * )


This function sets the output history buffer chain to be used by the called 


node.


The core features of the genetic algorithm, including selection, crossover, 


and mutation, are implemented in two helper functions that are written to operate 


on a mcEVO chain. These functions are:


● rankNodes( mcEVO * target )


This function performs a sorting operation on the mcEVO chain beginning 


at target. The nodes are ranked in order of descending score. Note that, after 


the ranking is complete, target is no longer the first node in the chain. 


However, the member function getFirst() can be called on target, and the first 


node will be returned.


● breedNets( mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin, 


dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut, 


float iRnd, float oRnd )
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This function implements almost all of the actual genetic algorithm, and is 


called after rankNodes(). Its arguments are as follows:


 thePopulation is a pointer to the mcEVO chain on which the function will 


operate.


 popSize is the size of the population.


 nReplaced is the number of population members that be replaced with 


newly created candidates. 


 pMin is a pointer to the array containing the lower limits for the robot body 


parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).


 pMax is a pointer to an array containing the upper limits for the robot body 


parameters.


 nNeurons is the number of perceptrons in each population member.


 RHL is the length of the history stack used by the neural networks as 


inputs.


 THL is the length of the history buffer used for an additional learning rule 


that is not used in this thesis, but is implemented in the mcNeuron class. 


Note that the total length of the stacks is equal to RHL + THL.


 mutProb is the probability that a mutation will occur in any given 


perceptron.


 maxMut is the maximum magnitude of the random numbers that a segment 


of a perceptron's input weights will be replaced with, when this type of 


mutation occurs (see section 3.4). The newly generated weights will thus 
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vary from -maxMut to maxMut. Note that this value should be chosen so 


that its average magnitude is approximately equal to the average magnitude 


in the input weight vector, so that the newly created weights do not swamp 


the other weights. Because the input weights vector is normalized, the 


value of maxMut used in this thesis is set to    2 * sqrt( 1 / 


number_of_input_weights ). 


 iRnd is the maximum magnitude of the random numbers that are added to 


each input weight, after the perceptron is created and all mutations are 


applied, and before the input weight vector is normalized.


 oRnd is the maximum magnitude of the random numbers that are added to 


the output weights. Note that the output weights are never normalized.
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4. SIMULATION ENVIRONMENT


4.1 OVERVIEW


The software in which the robot controllers are trained is based on a free 


and open-source rigid body physics engine called OpenDE or ODE [8], which is 


short for “Open Dynamics Engine”. This engine was orignally created by Russell 


Smith, and is currently being maintained and extended by a community of 


volunteers. It is distributed under two separate licenses — the GNU LGPL and a 


BSD-style license — such that a user can choose either of them. Thus, it may be 


used in free or commercial software, with very few restrictions. The most 


significant restriction in the BSD-style license is that the original work must be 


cited. This physics engine provides general-purpose simulation of articulated 


bodies, in addition to collision detection, and is primarily intended for use in video 


games. It has become popular enough in robot simulations, however, that there 


have been robot-simulation software packages[9] created and even a book[10] 


written about modeling robots in ODE.


4.2 SIMULATION WORLD


The simulation “world” consists of two parts — a randomly generated 


height map (the “ground”), and a randomly proportioned robot model. The height 


map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space. 


At each grid point, the height is set to a random number so that all heights fall 


within a 0.13m range.
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The robot body is generated and inserted into the world by the spiderBody 


object class (see section 4.4). A majority of the code in this class, about 1500 


lines, comprises the constructor function, which performs the following steps:


● Create the core body of the robot, which consists of three ODE primitives, set 


up its mass and inertia matrix, add its collision detection geometry, and insert it 


into the world.


● Repeat the previous step for the upper legs and lower legs.


● Calculate the starting positions / rotations for the legs, and move them to those 


locations.


● Attach the legs with the appropriate ODE joints (ball joints at the hips and 


hinge joints at the knees).


● Calculate the base / tip positions of the actuators, and call genActuator() on 


each one.


4.3 QUADRUPED ROBOT BODY


The robot body used in these simulations is shown in Figure 4.1. This robot 


has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear 


servos controlling a single leg are shown in Figure 4.2; their effects are as follows:


1. Works with Actuator 2 to control the direction of the axis of the upper leg.


2. Works with Actuator 1 to control the direction of the axis of the upper leg.


3. Controls the rotation of the upper leg about its axis. The effect of this actuator 


is interdependent with Actuators 1 and 2.


4. Controls the bending angle of the knee joint.
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Figure 4.1: Quadruped Robot


Figure 4.2: Diagram of a Single Leg Showing Actuator Indices
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The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5. 


These dimensions correspond to those shown in Table 4.1, and the upper and 


lower limits given in Table 4.2.


Figure 4.3: Robot Body Core (isometric view), Showing Dimensions


Figure 4.4: Diagram of Upper and Lower Chassis Platforms
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Figure 4.5: Diagram of a Leg, Showing Dimensions


Figure 4.6: 3D Rendering of the Robot Walking in the Simulation 


Environment
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Figure 4.6 shows a 3D-rendered example of the robot. This image was 


made from a screenshot of the robot walking in the simulation software. The gray 


actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators 


correspond to Actuator 3, while Actuator 4 is not shown in this picture because it 


is handled outside ODE, in order to increase the speed of the software, and not 


drawn when the scene is rendered.


4.4 ROBOT BODY OBJECT CLASS


The ODE objects which model the robot body are created and manipulated 


through the spiderBody object class. The source code for this class is given in 


Appendix C. Aside from the constructor and destructor, the robot body class 


implements the following member functions:


● dReal getPos( int index )


Returns the current length, in meters, of the linear actuator specified by index, 


with respect to its starting length. Negative numbers indicate that the actuator 


has retracted, while positive numbers indicate that it has extended.


● dReal getVel( int index )


Returns the linear speed, in meters per second, of the actuator specified by 


index, where negative numbers indicate that the actuator is retracting and 


positive numbers indicate that it is extending.


● void addForce( int index, dReal force )


Adds a 3rd law pair of forces of magnitude force to the two ends of the 


actuator specified by index,  which are directed along its axis. This is the 
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source of all of the driven motion in the physics simulation, except for the four 


knee joints.


● void addKneeTorque( int index, dReal torque)


Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower 


leg specified by index. This is the source of all driven motion at the knee 


joints.


● dReal getKneeAngle( int index )


Returns the current angle, in radians, of the knee specified by index. This 


angle is measured from the direction of the upper leg (if the knee is straight, 


the angle is zero), and increases as the lower leg bends downward.


● dReal getKneeOmega( int index )


Returns the current angular speed, in radians per second, of the knee 


specified by index.


● dBodyID getCore()


Returns the ODE body ID of the robot chassis. This is used in the collision 


detection callback to count collisions between the chassis and ground 


(which incurs a small score penalty).


4.5 HELPER FUNCTIONS


In addition, there are three helper functions that are not members of the 


robot body class, but are used with it. All three of these functions relate to the 


actuator that drives each knee, but is external to the ODE world in order to 
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increase processing speed. The source code for these helper functions is given in 


Appendix C, and they are described below:


● dReal calcKneeActOffset( dReal angle, dReal KBR, dReal KLL )


Calculates the position of the knee actuator tip, in meters, with respect to the 


knee joint. This position ranges from zero to the length of the upper leg. Angle 


specifies the angle of the knee joint, in radians, as returned by 


spiderBody::getKneeAngle( int ), KBR is the distance between the knee 


joint and the link attachment point on the lower leg, and KLL is the length 


of the linkage itself.


● dReal calcKneeTorque( dReal Angle, dReal slidePos, dReal KBR,


dReal F )


Returns the torque applied to the knee joint by a force F in the knee actuator. 


The input variable, slidePos, specifies the position of the knee actuator, as 


defined above, while F is the linear force in the actuator. Angle and KBR are 


the same variables described above.


● dReal calcKneeActVel( dReal Angle, dReal slidePos, dReal KBR,


dReal w )


Returns the linear speed of the knee actuator, in meters per second, given the 


angular speed of the knee joint, in radians per second. The input variable w is 


the angular speed; other inputs are the same as described above.
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4.6 BODY GEOMETRY PARAMETERS


The body parameters, which are set at random by the software and passed 


to the robot body constructor in a parameter array are listed in Table 4.1. These 


parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index 


column specifies the position in the array, while the Macro column gives the 


three- or four-letter macro by which the variables are referenced in the source 


code (see section 4.4 and Appendix C). Note that all linear dimensions are in 


meters, while all mass parameters are in kilograms.


Table 4.1: Robot Body Parameters Array


Index Variable     Macro


0 Upper platform (chassis) radius      UCR
1 V actuator upper mount offset (from centers of UP)      VAO
2 Distance between upper and lower platforms      RISE
3 Lower platform radius      LCR
4 Upper leg length      ULL
5 Lower Leg Length      LLL
6 Distance hip -> V ball on upper leg      IBR
7 Hip rotation linkage length      RBR
8 Knee link length (Obsolete; now set automatically)       KLL
9 Distance knee -> knee link attachment       KBR
10 Upper platform mass      UPM
11 Lower platform mass      LPM
12 Square tubing density (mass / unit length)       LINDENS
13 Platform and Leg thickness           THICK
14 Starting Position X      POSX
15 Starting Position Y      POSY
16 Starting Position Z      POSZ
17 Upper leg zero angle      ULZA
18 Leg rotation zero angle      LRZA
19 Lower leg zero angle      LLZA
20 Foot ball radius      FBR
21 Foot ball mass      FBM
22 V Actuator base mass              VABM
23 V Actuator tip mass              VATM
24 Rotational Actuator base mass            RABM
25 Rotational Actuator tip mass              RATM
26 Upper leg mass      ULM
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4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within 


a set of upper and lower limits defined by two limit arrays. The purpose of this 


variation is to train the neural networks to control a range of robots, rather than 


just a single example, to increase their resistance to the effects of small changes 


when going from the simulated robots to a physical one. The values used in the 


lower and upper limit arrays are given in Table 4.2.


Table 4.2: Upper and Lower Robot Parameter Limits


Index Macro Variable Description Lower Limit Upper Limit


0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9   KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52
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4.8 SIMULATION LOOP


On each step through the simulation loop, the inputs to the control system 


are updated with the force and position values for all of the actuators. The position 


values for the 12 upper leg actuators are obtained from ODE, using the getPos() 


member function of the robot body class, while the motion speeds for these 


actuators are obtained using getVel(). The knee actuator positions and speeds are 


calculated from the knee angles and angular velocities, which are obtained from 


ODE using the getKneeAngle() and getKneeOmega().


For all actuators, including the ones for the knees which are handled 


externally to ODE, the position is zero as seen by its control-system input at 


whatever position the actuators are created in. These zero positions are also used 


to define the actuator position variables which are modified by the outputs of the 


control system. The difference between these “set” position variables, and those 


returned by ODE, or calculated from angular values, in the case of the knees, are 


used to calculate the force in each actuator using a simple damped-spring 


equation:


F = -ks * (actual position – set position) – kd * ( actuator speed )


where ks is a spring constant, and kd is a damping coefficient.


The spring constant for knee actuators is 1500N/m; for other actuators it is 


1100N/m, and the damping coefficient is 30N*s/m. These values are based on 


measurements taken from a prototype linear actuator.
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The calculated forces for all actuators except those in the knees are sent 


back to ODE through the robot body class using the addForce( index, force ) 


member function, as well as to the control system as force-sensor inputs. The 


forces for the knees are converted to torque values, and sent to ODE using the 


addKneeTorque( index, torque ) member function.


The actuator set positions are produced by the control system outputs 


through a double integral. The control system is able to set acceleration values for 


the actuators, up to a certain maximum acceleration, and these values change the 


speed of the actuators (the rate of change of the set value), up to a certain 


maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum 


speed is 0.35m/s, both of which are based on measurements taken from a 


prototype actuator.


In addition to position and force measurements, the control system also has 


two other inputs that describe the desired direction of travel with respect to the 


robot. These two values are dot products of a unit vector pointing in the desired 


direction with the robot's local X and Y vectors. These are treated exactly the 


same as the sensor inputs, and propagate through the history stack in the same 


way.
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5. PERFORMANCE EVALUATION


5.1 OVERVIEW AND QUALITATIVE ANALYSIS


For a system such as this, the most definitive performance criterion is 


whether the robots begin walking in an effective way within a reasonable amount 


of time, while operating on a computer which is economically feasible to the user. 


During and after the development of this software, many test runs were performed, 


using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In 


eac test, the AI always either learned to walk, or found a way to work around the 


rules and “cheat”, within a few days.


In the earliest runs, there was no penalty for being upside-down, which 


resulted in the robots' bouncing and rolling forward as far as they could upon 


dropping into the world, then kicking their legs and hopping forward while 


upside-down. Some of them also managed to tilt 90 degrees to the side and roll a 


good distance, effectively doing cartwheels, before falling down. When the 


penalty was added and the software re-run, a population of robots was produced 


fairly quickly that would hop forward, like frogs. At this point, a bug in the 


physics simulation code was found and fixed, and the first population of actual 


walkers was produced on the following run. For this test, the software was 


allowed to run for a period of approximately three weeks in real-time, in which 


time the it became very good at making the robots walk—at the end of this run, 


the robots were moving about 16 body lengths in 14 seconds of simulation time, 


which is quite fast given the physical characteristics of the robot and the limits that 
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were in place on how fast the actuators were allowed to move and accelerate (see 


Chapter 4).


5.2 QUANTITATIVE ANALYSIS


In order to obtain a quantitative analysis of the performance of this system, 


a pair of test runs was done, with different parameters for the neural network. A 


special version of the software was created for these runs, which has the added 


feature of creating the log files that are used in the analyses below. These log files 


are formatted as plain text, with one line for each population member evaluated. 


The entries on each line are as follows:


● The index of the current population member. This ranges from 0 – 39, as a 


population size of 40 was used for all of the runs that used a log file.


● The score that the population member retained from the last generation, 


according to scoring rule #5 (see section 3.2).


● The number of times the chassis came into contact with the ground, as 


described in rule #4.


● The score given for any movement at all, as described in rule #1.


● The movement of the robot in the X direction.


● The movment of the robot in the Y direction.


● The final score passed back to the mcEVO node.


Results from two of these logged runs are included in this section. In these 


runs, each neural network is given a turn of 2000 time steps in which to control its 


robot. The starting positions are recorded after a delay of 250 time steps, which 
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gives an effective turn length of 1750 time steps. Each time step for the neural 


network represents 0.012 seconds of simulation time, so there is a period of 


approximately 21 seconds in simulation time for which movement is recorded. 


Both tests are identical in all respects, except that one uses a neural network of 30 


perceptrons, with a memory of 250 time-steps while the other uses 150 


perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is 


equivalent to approximately 3 seconds of simulation time, while 150 time-steps is 


equivalent to about 1.8 seconds. For these runs, the desired direction is always 


along the X axis, and the ground impact penalty is very small (0.05). Changes to 


these rules can be implemented slowly through a modification to the software — 


the desired direction will take random values that slowly drift away from the X 


axis, while the ground-impact penalty will slowly increase. This is not done here 


due to the length of time the software has to run before a new adaptation is made.


The results from the log files were post-processed using a second program, 


which was written to parse the data from the logs and extract the following data 


sets for each generation:


● The maximum score attained by any population member during the generation, 


excluding any score carried over from the previous generations.


● The top 5 scores from the generation.


● The average value of the top five scores from the generation.


● The maximum score ever achieved, in the current or any previous generation.
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● The total movement in the X and Y directions for the top 5 scorers in the 


generation.


Figure 5.1 shows the top score results vs. generation from the 30-


perceptron test. There are three data sets on this plot: the top score attained during 


the generation (orange), the average of the top five scores (purple), and the 


running maximum score (black). These scores are a figure of merit which 


represents the performance of the neural networks with respect to all of the 


scoring rules that are discussed in Chapter 3. A plot of the total movement in the 


X direction (orange) and the Y direction (purple) for the top scoring neural 


network in each generation is given in Figure 5.2. Unlike the scores shown in 


Figure 5.1, these movement figures provide concrete values that are relevant 


outside the context of the genetic algorithm — they represent the actual distance 


that the simulated robots were able to walk during the time allotted. 


Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively, 


but are taken from the 150-perceptron run. They show data taken from a smaller 


number of generations, but the same amount of real-world run time. This is 


because the software runs more slowly when a larger neural network is used.
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Figure 5.1: Scores Per-Generation for the 30-Perceptron Run


Figure 5.2: X and Y Displacement for the 30-Perceptron Run
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Figure 5.3: Scores Per-Generation From the 150-Perceptron Run


Figure 5.4: X and Y Displacement From 150-Perceptron Run
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5.3 DISCUSSION OF RESULTS


Note that the first run (30-perceptrons) went for 405 generations, while the 


second (150-perceptrons) run was only 240 generations. Both tests ran for 


approximately 11 days in real-world time, each running on one core of the same 


CPU, but the larger neural network slowed down the software considerably on the 


second run. This is to be expected, as the neural networks from the first run 


consume only 59MB of RAM, while those from the second run consume 179MB


—and all of these weights need to be processed 2,000 times per turn, and 160,000 


times per generation. 


Several other things are apparent from Figures 5.1-5.4. First, the data has 


quite a bit of randomness in it—there is a large amount of inconsistency between 


generations in both the scores and displacements. Secondly, while the scores are 


generally rising as the generations progress, they do so in a very chaotic way, with 


relatively flat periods and periods of rapid increase. There is even what appears to 


be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show 


the X component of motion increasing with the score, while the Y component 


remains approximately centered at zero, but with steadily increasing random 


variation.


The first observation can be explained by the fact that the robots the system 


is being asked to control are randomly generated. Thus, a neural network that 


performs well in one generation may be do poorly with the robot it is given in the 


next generation. This is intentional, as the goal is to evolve a control system which 
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is effective in a wide variety of robots (thus increasing the chance that it will work 


well with a physical robot in the real world). In addition, it is possible for an 


otherwise strong-performing control system to flip its robot upside-down, 


obtaining a very low (or negative) score in the process. This tends to be especially 


likely with the very high scoring individuals in any generation, as they tend to be 


the “risk takers”. This issue can be exacerbated by the randomness in the robot 


parameters, as a behavior that is only slightly risky in one robot may be fatal in 


another.


The chaotic nature of the increases in score over time can be explained by 


the properties of the genetic algorithm. The software is continually recombining 


the same characteristics into new population members, only occasionally 


happening upon a new adaptation that results in significantly higher scores. It 


takes time, however, for this adaptation to propagate through the population, and 


be optimized to work in a consistent way. Thus, there can be a very large jump in 


the running maximum, creating a “high score” that holds for quite some time. The 


apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to 


the “deaths” of several population members which, while high-scoring, were also 


highly inconsistent. This is backed up by the fact that the randomness in the plot 


drops off very quickly during the same few generations, and remains smaller than 


before as the scores recover.


The movement in the X direction (which is always the “desired” direction 


in these two runs, as explained above) behaves as one would expect; it appears to 
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increase along with the scores. The Y movement, however, remains approximately 


centered at zero, but has a random noise in it that increases through the 


generations. This can be explained by the fact that the control system is becoming 


more effective at moving the robots in general, and because the population 


members still receive points for moving along the Y axis. In later generations, this 


movement is small compared to the motion in the X direction, as the control 


system improves at directing the robot in the direction of maximum score. This 


side movement could also be suppressed by slowly introducing a penalty for 


movement in the Y direction, especially if an additional input was added to the 


control system for current (absolute) position.


Finally, it is worth pointing out that the 30- and 150- perceptron tests were 


only allowed to run for 860 and 485 generations, respectively, due to time 


limitations. Previous runs that were much longer, including one that went into the 


thousands of generations, showed a continued increase in performance, with the 


longest run producing several scores between 8 and 9 on each generation. The 


plots here are, however, sufficient to show that the ability of the AI to control a 


robot is generally rising with time, and to show some of its characteristics.
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6. CONCLUSIONS AND FURTHER RESEARCH


6.1 CONCLUSIONS


From the results given in section 5.2, as well as direct observation of the simulated 


robots in the software, it is clear that this system is capable of generating effective 


walking movement. In addition, the robot design used in this thesis is particularly 


difficult to control, as its wide body does not permit the center of mass to remain 


in a stable position. In quadruped animals, the body is long and narrow, so that 


diagonal pairs of feet that are on the ground form a straight line that is always 


beneath the center of mass. With a hexapod or octopod, the problem would be 


even easier, as the feet on the ground at any given time form a triangle or a 


trapezoid, respectively, that can always enclose the center of mass on the 


horizontal plane. Thus, this method can be expected to produce better results than 


those given here for these other body types.


6.2 CONTINUED WORK WITH THIS BUILD


The first step that should be taken in order to learn more about this system is to 


perform more extensive testing than what was done for this thesis in order to 


maximize the efficiency of the system with respect to CPU load and memory 


usage. This will require a large number of test runs to be performed with many 


different configurations, in order to optimize the following variables:


● Population size


● Number of perceptrons
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● Memory length


● Probability of each type of mutation


● Scoring with respect to different criteria


● Selection rules


In order to perform a large number of tests in a reasonable amount of time, it 


would be best to use a computer with a large number of processor cores, as this 


software does not parallelize easily in its current form. Alternatively, the physics 


engine could be replaced with one that runs on a stream processor, such as PhysX 


from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the 


neural network could be rewritten to run on a GPU.


6.3 EXTENSION OF CONTROL SYSTEM


It would also be good to extend the scope of the control systems that are produced 


in a few different ways. First, multiple neural networks can be used, with each 


trained to perform a different task. While individual networks have been observed 


to produce multiple behaviors in this system, this would be a good way to separate 


the desired behaviors. Also, it might be effective to have “nested” learning rules, 


such that the neural network continues to learn on its own after it is produced by 


the genetic algorithm. This could be done by adding some form of short-term 


reinforcement learning, or by adding a classifier network to the inputs of the 


control system that predicts the result of current behavior on the score and adjusts 


the weights of the network, perhaps using the P-Delta learning rule[6] that 


originally went with the parallel perceptron network that is used here. Another 
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option may be to add some outputs that do not control anything, but still act as 


feedback loops. This would create a form of memory that permits state-space 


orbits that last much longer than the history-buffer length, which the system would 


use in whatever way happens to produce the highest scores.


6.4 POTENTIAL APPLICATIONS


In terms of applications, there are two things that would be very interesting to do. 


One such idea is to create a CAD-style robot “editor” in which robots can be 


designed in a quick and convenient way, instead of writing a 1500+ line 


constructor, as was done with the spiderBody class used in this research. This 


editor would allow one to create a robot using a library of predefined parts such as 


the linear servos seen on the robot that this thesis deals with, and automatically 


generate a bill of materials for its physical construction. After the robot is 


designed, the software can then be used to create parts of its control system.


The second possibility is to modify the simulation and genetic algorithm 


software to operate as a P2P application, in a similar way to the BitTorrent 


network. A large number of users who want the same robot could download a task 


file that specifies the robot that is to be controlled and points to an online 


“tracker”. Having connected to the tracker, a user's client would join the “swarm” 


of other users, and begin receiving population members to evaluate. Each user's 


PC processes a small population, similar to the ones that were used in the two test 


runs here, but downloads a few new neural networks from other users and 


transmits a few on each generation. Depending on the number of users who want a 
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particular robot, this could permit effective population sizes in the tens of 


thousands. Like the other possibilities mentioned above, this has not been 


evaluated at this point, and it is unknown whether it would be an effective design. 


It would, however, be very interesting to see what might come out of it.


52








1. INTRODUCTION


This thesis describes a method for automatically generating complex 


control systems for walking robots. One of the most interesting research fields 


today is the development of robots that are able to perform complex and 


somewhat arbitrary actions with some degree of reliability. While robotics as a 


field of engineering has existed for quite some time now, and robots have been 


created which are capable of performing many tasks, it is still very difficult to 


create a robot which can effectively navigate complex terrain, or inside buildings. 


This is mostly due to the fact that the simple forms of mechanical movement, such 


as wheels, are only effective over a narrow range of conditions. A wheeled robot, 


for example, may be able to navigate a single floor of a building, or a landscaped 


outdoor area, but would normally be incapable of dealing with anything that its 


wheels cannot roll over, such as stairs, or rough terrain. For this reason, an 


effective walking-robot technology would be very useful.


Designing an effective walking robot is a difficult problem for two distinct 


reasons. First, it is actually quite challenging for engineers to design mechanical 


systems that exhibit anything close to the combination of speed, strength, size and 


weight that exist in biological organisms. This problem tends to either introduce 


severe limits on what can be done, or alternatively, cause the cost to construct a 


robot to be extremely high. Secondly, and somewhat relatedly, the control system 


for an effective walking robot is by necessity very complicated. This is because of 
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the wide variety of conditions under which such a robot must be able to operate; a 


simple pre-programmed sequence of movements is not sufficient to provide 


reliable walking.


There are many different methods which have been used to provide 


intelligent control of walking robots. One approach is the use of Central Pattern 


Generators (CPGs), which have been used to control biped robots [1, 2]. Like the 


biological systems that inspired this method, a robot using CPG motion control 


has a very small neural network in which groups of individual perceptrons behave 


like schmidt trigger oscillators. The currently-active perceptrons inihibit the others 


until their responses to the input vector override the inhibition. At this point, when 


the system begins to switch states, a positive-feedback condition is created which 


strongly attracts the system into its next state. These neuronal oscillators can be 


connected in a purely feed-forward layout, in which the neurons use only each 


other's outputs as inputs, or they can use feedback, in which the inputs to the 


neurons are sensor outputs from the controlled system[3]. The behavior of this 


system is normally hard-coded, and tends to suffer from most of the same 


drawbacks as a pre-programmed gait — it requires a human programmer to 


consider each possible situation that it may encounter.


Genetic algorithms have also been used to develop control systems in 


walking robots. Luk, Galt and Chen [4] use a genetic algorithm to develop feed-


forward walking patterns for an octopod robot, while Lewis, Fagg and Bekey [5] 
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combine a genetic algorithm with a CPG to produce walking behavior in a 


hexapod robot.


In this thesis, a new method is developed which works in a similar way to 


[5], in that a neuronal oscillator controller is trained with a genetic learning rule, 


but with several key differences. First, the new method uses a relatively large 


neural network, of the type proposed by Auer, Burgsteiner and Maass [6]. The 


network used in this thesis has dozens to hundreds of perceptrons and, in some 


cases, upwards of a half-million weights (see test runs in Chapter 5). These 


perceptrons are not connected together directly as they are in the CPG, but do 


have feedback from the aggregate (system) output. In addition, the system has 


some internal memory which stores a certain number of past inputs and outputs. 


Thus, the control system can not only “see” the current state of the robot, but also 


remembers what has been happening with the physical robot and what it has been 


doing. The length of this memory is a user-entered variable, which has been set at 


150 and 250 in the test runs performed for this thesis (see Chapter 5). Finally, the 


scoring and selection algorithms used in this thesis are based only on walking 


performance; the first training steps used in [5] to initially produce oscillatory 


behavior is not present.


For purposes of training the neural network, software is created which 


combines a physics simulation with a scoring algorithm. Candidate control 


systems are scored on how far they can make a simulated robot walk over 


randomly-generated terrain in a given amount of time, and this information is 


3







passed back to the genetic algorithm. After each neural network has had a turn, 


and received a score, the software ranks them and replaces the lower scorers with 


new networks that are created by combining pairs of high-scorers and applying 


random mutations. These steps are then repeated until the user decides that a 


sufficiently effective one has been produced, based on observation of the 3D-


rendered simulation or the figures of merit introduced in Chapter 5, and terminates 


the program.


When the program is first started, all of the neural network weights are 


random and the simulated robots are only able to move a very short distance. As 


time progresses, however, the robots begin to develop the ability to produce 


continuous motion in one direction. In the test runs, the robots began to show 


some walking ability within about two days, and were becoming quite effective at 


walking after about a week.


While this method still requires some forethought on what types of 


situation the robot will encounter, in order to create effective training simulations, 


it does not need any hard-coding to be performed. All that is necessary is to create 


a 3D “world” with any terrain that the robot might have to navigate, as the 


software will randomly place robots in the world and score the control systems on 


how well they perform. In addition, the neural networks produced by this software 


are not limited to a single type of walking — multiple methods of movement have 


been observed in individual networks — which simplifies their integration into a 


complete robot.
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This thesis is organized as follows: In Chapter 2, the neural network 


topology is described, as is the method for generating its input vector. There is a 


discussion on why it was chosen in section, and why it was expected to be 


effective, and its software implementation is described in detail. In Chapter 3, we 


discuss the genetic learning rule that is used with the neural network. The scoring 


rules that are used in the physics simulation are defined, as are the rules used for 


selection, crossover and mutation. Then, the software implementation of the 


genetic algorithm is described. In Chapter 4, the physics simulation in which the 


neural networks are trained is described, starting with the simulation “world”. 


Then, we discuss the quadruped robot body that is used in the simulations, its 


physics-engine implementation, and the geometrical parameters that describe 


individual robots. Finally, we describe the simulation loop in which the physics 


engine, the robot model, the neural network and the genetic algorithm come 


together. In Chapter 5, the performance of the software is evaluated. Figures of 


merit, collected from two test runs, are presented, and the results are discussed. In 


Chapter 6, we discuss our conclusions from this work, and propose some ideas for 


further research, as well as some potential applications.
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2. NEURAL NETWORK


 2.1 OVERVIEW


The neural network used in this project consists of a single layer of parallel 


perceptrons, similar to that described by Auer, Burgsteiner and Maass [6], but 


with an outboard genetic learning rule rather than the one described in that work. 


Each perceptron has a set of input weights that determines its response to a given 


set of inputs, an activation function which, in this thesis, is a unit-step function, 


and a set of output weights, which are multiplied by the output of the activation 


function (1 or 0) and added to the system output vector. This neural network 


operates in discrete time, evaluating sampled inputs and producing outputs at fixed 


time intervals. A block diagram of the neural network, and its associated memory 


stacks, is shown in Figure 2.1. 


Figure 2.1: Neural network block diagram
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2.2 INPUT VECTOR GENERATION


Inputs to the neural network come from three sources: body sensors, 


command and control signals, and previous inputs and system outputs. Past inputs 


and outputs come from a type of stack buffer where data travels down the stack 


and is discarded when it passes the last level. These historical data are used for 


two purposes: as inputs for the neural network, and as training data for a second 


learning rule that is implemented in the software, but not currently being used. 


The organization of this stack is shown in Figure 2.2.


Figure 2.2: Block Diagram of History Buffer Object
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2.3 OUTPUT VECTOR GENERATION


On each time step, the input vector to the neural network is generated by 


concatenating the body sensor and command inputs with the past inputs and 


outputs from the history buffer objects. This vector, I_sys, is multiplied (dot 


product) with each perceptron's input weight vector, W, to give the postsynaptic 


potential (PSP).  The output of the perceptron is the unit step function of the PSP, 


multiplied piecewise by the perceptron's output weights to give its contribution, 


Rn, to the system output vector, Rs. This may be expressed as follows:


Rn = u( I_sys • W ) (2.1)


Rs = Σ( Rn ) (2.2)


2.4 WHY THIS ALGORITHM


At this point, some information is given regarding why this system can 


work. First, due to the fact that the number of perceptrons is much larger than the 


number of outputs, this algorithm is a universal function approximator[6]. This 


means that it can implement an arbitrary bounded function given the correct 


weights, even when the network has only a single hidden layer. Because the 


outputs of this neural network determine the rate of change in the actuator 


positions on the robot, the result is a system of nonlinear partial differential 


equations which, depending on the weight vectors and the physical properties of 


the robot, are capable of producing an extremely wide variety of behaviors 
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(although not all behavior is technically possible, as there are physical limits on 


speed, force, and acceleration). Due to the way the data propagate through the 


history buffers, and thus constantly change position with respect to the input 


weights, it is relatively difficult for the system to reach a stable state where the 


robot does not move. Instead, this tends to encourage strange attractors, which 


produce repetitive, but not necessarily periodic, motion.


2.5 SOFTWARE IMPLEMENTATION


This neural network is implemented in C++ as the mcNeuron object class 


(in which the “mc” is short for “Motion Control”). It is organized in a linked list, 


where each instance represents one perceptron, and holds a pointer to the next 


perceptron in the chain. The advantage to this type of organization is that the 


source code can be kept short, as a large portion of the compiled machine code is 


automatically generated by the compiler itself. This also helps prevent errors by 


making the source code more readable, and relying on the very mature code-


generation algorithms used in the compiler. The source code for this object class is 


given in Appendix A, and its member functions are described below:


● void rnNet( float* inputs, historyBuffer* iHistory, historyBuffer* oHistory, 


      float* outputs)


This function multiplies the input weights of the perceptron (dot product) 


by the concatenation of inputs, iHistory, and oHistory, and if the result is 


positive, add its output weights to outputs. If there are more perceptrons in the 


chain, as indicated by a non-null “next” pointer, then this function is called in 
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the next node, with the same parameters. Thus, one call to the first perceptron 


in the chain propagates to all of them.


● void updateNet( float scale, historyBuffer* iHistory,


            historyBuffer* oHistory )


This function implements a second learning rule, which is not used in this 


project. It was replaced by the genetic algorithm very early in development. 


When called, it multiplies scale by values from iHistory and oHistory, and 


adds this to its input weights. Like rnNet, it propagates through all perceptrons 


in the chain.


● void iW_preset( float * newWeights )


This Function sets the input weights to the values stored in newWeights. This 


function is recursive, and if the perceptron has a non-null “next” pointer, will 


call the same function in the next perceptron. In this case, the pointer is 


advanced by the number of input weights, so that one large array can be used 


to set all of the input weights in a chain.


● void iW_preset_justOne( float * newWeights )


This function is the same as iW_preset(), but is not recursive.


● void oW_preset_justOne( float * newWeights )


This is the same as iW_preset_justOne(), but acts on the output weights instead 


of the input weights.
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● mcNeuron *getNext()


This function returns a pointer to the next perceptron in the chain, or NULL if 


a next node does not exist.


● mcNeuron *cutNth( int index )


This function cuts the chain at the Nth node, and returns a pointer to the 


removed segment. It works by recursively propagating down the chain while 


decrementing index, until index = 1. When this condition is true, the node sets 


its “next” pointer to NULL, and returns the value that was in that pointer. The 


returned pointer propagates back up the chain as the CPU falls down through 


the call stack, until the first called node finally returns it to the calling function.


● void setNext( mcNeuron * newNext )


This function sets the “next” pointer in the called node to newNext.


● void appendChain( mcNeuron * newSegment )


This function appends the chain specified by newSegment to the end of the 


called chain. It works by recursively propagating down the chain until it is 


called on a node whose “next” pointer is null, and setting that pointer to 


newSegment.


● float *getIWeights()


This function returns a pointer to the input weights for the called perceptron.


● float *getOWeights()


This function returns a pointer to the output weights for the called perceptron.


● void setRandomOWeights( float maxValue )
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This function sets the output weights of the perceptron to random numbers, 


varying from -maxValue to +maxValue. It is recursive, and operates on each 


node in the chain until a null “next” pointer is reached.


● void setRandomIWeights( float maxValue )


This function is the same as setRandomOWeights(), but operates on the 


input weights.


● void setCascadingOWeights( float weight, int oIndex )


This function sets the output weight specified by oIndex to weight, and sets all 


others to zero. If the “next” pointer is not null, it calls the same function on the 


next node, with the parameters set by the following two rules:


 If oIndex is less than the number of output weights, increment oIndex.


 If oIndex is equal to the number of output weights, then the next oIndex is 


zero, and the next weight is -weight.


Note that this function is not called in the final build of the software.


● void shakeIptWeights( float maxValue )


This function adds a random number, which varies from -maxValue to 


maxValue, to each of the input weights. It is recursive, and operates on all 


perceptrons in the chain. After the random values are added, the weight vector 


is normalized.


● void shakeOptWeights( float )


This function is the same as shakeIptWeights(), but operates on the output 


weights.
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● void mutateIptWeights( float maxValue )


This function selects a random, continuous segment of the input weights and 


replaces them with random numbers, which vary from –maxValue to 


maxValue. It is not recursive (it operates on only one perceptron), and is called 


by the much more extensive mutation function in the genetic algorithm class.


● void mutateOptWeights( float )


This is the same as mutateIptWeights(), but operates on the output weights.


● void svNet( ofstream * saveFile )


This function saves the input and output weights of a perceptron to the fstream 


object pointed to by saveFile. It is recursive, so the entire network will be 


saved when it is called on the first element in the chain. Note that the fstream 


object has an internal index that counts up as data are saved, so the function 


can be called on multiple chains with one open file, and they will all be saved 


in order.


● void ldNet( ifstream * loadFile )


This function loads the input and output weights stored in the fstream object 


pointed to by loadFile into the input and output weights. It is also recursive, 


and operates in the same way as svNet.
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3. GENETIC ALGORITHM


3.1 INTRODUCTION


The neural network described in Chapter 2 is trained using an outboard 


genetic search algorithm, which operates on the entire network, rather than 


individual perceptrons. Each candidate neural network is given a turn to control a 


randomly generated robot in a physics simulation, and scored based on its 


effectiveness at making the robot walk. Like all genetic algorithms, this one 


combines randomness, selection, crossover, and mutation to search the space of all 


possible input and output weight vectors. Due to the extremely large search space, 


and the fact that there are large clusters of viable solutions (different types of 


walking) with fitness functions that tend to be somewhat continuous, this problem 


should be particularly well-matched to the properties of a genetic algorithm [7].


Selection is based on a floating-point score that is generated by evaluating 


the network's efficacy in controlling a simulated robot. In order to function, a 


genetic algorithm must find a region in the search space where there exists a score 


gradient before it can begin to function as a genetic algorithm; before this happens 


it implements only a random search. As a result, the search must happen upon a 


region with a fitness gradient, by chance. If these regions fill too small a portion of 


the total search space, it can take a very long time for the search to locate one of 


them. For this reason, points must initially be awarded for results that are not 


directly useful, but which are likely to be connected to a useful region by a 


“bridge” of scores that are high for their particular region[7]. 
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3.2 SCORING


At the start of a turn, the software drops a robot into the “world” at a 


random position and begins stepping its neural network along with the physics 


engine. In order to reduce noise in the score due to a random bounce when the 


robot falls a short distance to the ground, and reduce the tendency for the system 


to waste time early on by simply making the robots lean forward, there is a delay 


of approximately two seconds in simulation time before the software records the 


robot's “start” position. At the end of the turn, the start position is subtracted from 


the ending position, and points are awarded according to the following five rules:


1. Score is awarded for any movement that occurs, regardless of direction. Early 


in the process, this causes the system to select the neural networks that cause 


the system to exhibit those attractors that produce constant motion. This causes 


oscillatory behavior to be learned early in the evolutionary process, and is what 


replaces the initial learning step used in [5], where fitness functions were 


assigned to per-leg oscillations.


2. The population member receives points a second time for movement in the 


desired direction, as determined by a dot product, but only if that number is 


positive — a negative score here is counted as zero. As a result, it is possible 


for an individual to receive up to two points per meter for moving in the 


correct direction. 


3. A two-point penalty is assessed if the robot is upside-down at the end of the 


turn, which can occur quite easily due to the physical characteristics of this 
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particular robot design. The purpose of this penalty is to avoid behavior that 


emerged in some of the earliest tests, where the robot would roll forward, and 


then hop along upside-down by kicking its legs.


4. A user-configurable penalty is assigned each time the robot chassis comes into 


contact with the ground. There is a delay of approximately 1 second in 


simulation time after a ground impact is registered, before the counter can be 


incremented again. This prevents large penalties from accruing quickly if the 


chassis remains in contact with the ground for a period of time. From the test 


runs that have been performed, it was found that this penalty needs to be very 


small at the beginning. In the tests discussed in Chapter 5, a penalty of 0.05 


was used. It may be effective to increase this penalty slowly after the system 


has learned to walk, but this has not yet been tested.


5. The population member retains half of the score it received in the previous 


generation, so that a single weak performance is not likely to “kill” a high-


scoring neural network. While this last rule can sometimes prevent a more-fit 


individual from displacing a less-fit one, the effect quickly fades away when 


an individual performs poorly for two or more generations. It also is not 


typically enough to prevent displacement in the case of a very low, or negative, 


score. For this reason, several replacements still occur in most generations.


16







3.3 SELECTION


At the end of a generation, all members of the population are sorted by a 


ranking algorithm, so that those with the highest score appear in the earliest 


positions. In order to select each parent for the next generation, a random floating-


point number in the range [0, 1] is generated, and squared, so that the new 


probability distribution will tend toward zero. This new number still falls within 


the same range, but has an average value of ¼ instead of ½ — thus selecting 


higher-scoring individuals more often than low-scoring ones. This number is then 


multiplied by the size of the population, cast to an integer, and used to index a 


neural network that will be the “parent” of a new population member. Note that 


the random number could also be raised to any other positive power, or another 


function could be used to provide a different probability distribution, although 


these options have not been investigated. A second method which has been tested 


is to instead multiply the square by the maximum score in the population, and then 


take the weakest member above that score, but it appears to be too aggressive for 


the small populations that are feasible on a current PC, and was found to cause 


problems with early convergence. This cause of this problem is that the highest 


score in a generation tends to be much higher than the average score, or even the 


average of the top 5 scores, as shown in Chapter 5. The top scoring population 


member thus tends to be chosen as a parent very often by this rule, which causes 


the diversity in the population to disappear rapidly, leading to the early 


convergence problems that were observed.


17







3.4 CROSSOVER AND MUTATION


After the two parent networks are selected, a new neural network is created 


by combining them. Each perceptron in the child is created by randomly selecting 


the perceptron at the same position from one of the parents, and occasionally 


introducing a random mutation. These mutations can take any of the forms 


outlined below:


● A random, continuous, segment of the perceptron's input weights is chosen, 


and replaced with a string of random numbers. This permits behavior to drift 


over time at the individual perceptron level.


● A perceptron's output weights are rotated, so that all of its effects are 


“mirrored” to the opposite side of the body (either side-side or front-back can 


occur). At the same time, the perceptron's response is time-delayed by a 


random amount by doing a circular shift on its input weights by an integer 


multiple of the number of inputs. The purpose of this mutation is to encourage 


symmetry in the robot's motion, and allow  effective behavior that evolves in 


one leg to eventually propagate to the other legs.


● At the population-member level, the software randomly selects a continuous 


group of perceptrons, and moves them to a new position in the list. This has no 


direct effect, but makes it possible for a new child to be created with multiple 


perceptrons that originally occurred at the same position. For example, the 


child could contain four nodes that were all at position 25 in its grandparents.


● After the new perceptron is generated, all of its weights (both input and 
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output) are randomly adjusted by a small amount, and the input weights vector 


is normalized.


3.5 SOFTWARE IMPLEMENTATION


The genetic algorithm is implemented by the mcEVO object class, which 


manages the population, and two helper functions, rankNodes() and breedNets(), 


which perform the genetic operations.


The mcEVO class encapsulates the neural network and its associated 


history buffers in such a way that the entire population can be accessed through 


one pointer. It also stores the geometry for the randomly generated robots. The 


source code for this class is given in Appendix B, and its member functions are 


described below:


● mcEVO( int popSize, mcEVO * previous, dReal * geomMin, dReal * 


geomMax )


This is a chain constructor which builds a population of popSize. It does not 


generate the neural networks (this is done in a separate call), but it does 


generate a random set of robot-body proportions for each element. The input 


variable geomMin should point to an array containing the lower limits for each 


body dimension, while geomMax should contain the upper limits. These 


parameters are described in detail in the simulation section of this thesis. 


Previous is used internally to this chain constructor, and should be set to 


NULL when it is called from outside.
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● ~mcEVO()


This destructor operates on the entire chain, deleting all nodes and any 


perceptron chains that were attached to them.


• mcEVO * getMax( mcEVO * curBest, float curMax )


This function returns a pointer to the node in the chain with the highest 


score value. The input variables curBest and curMax are used internally as 


the function recurses through the chain; it should thus be called with 


curBest = NULL and curMax set to a large negative number (-10 is 


sufficient in this case).


• void setPrevious( mcEVO * newPrevious )


This function sets the “previous” pointer for the called node to 


newPrevious.


• void setNext( mcEVO *)


This function sets the “next” pointer for the called node to newNext.


• void detach()


This function detaches the called node from the chain, calls 


previous->setNext( next ) and next->setPrevious( previous ), and sets its own 


previous and next pointers to NULL. Thus, the node is removed from the 


chain, and the chain is spliced back together.


• mcEVO *getNext()


This function returns the value in the “next” pointer of the called node.
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• mcEVO *getPrevious()


This function returns the value in the “previous” pointer of the called node.


• mcEVO *getFirst()


This recursive function can be called on any node in the chain. It calls 


previous->getfirst() until previous = NULL, then returns a pointer to that 


node.


• mcEVO *getLast()


This function works in the same way as getFirst(), but recurses down the 


chain instead of up, and returns a pointer to the last node.


• float getScore()


This function returns the score stored by the called node.


• mcEVO *getLastAbove( float minScore )


This function recurses up the chain until it reaches a node whose score is 


higher than minScore. It then returns a pointer to that node. Note that this 


function is called on the last node in the chain (rather than the first), and is 


intended to be used after the ranking operation is complete. See the section 


on the rankNodes() helper function below.


• mcEVO *getNth( int N )


This recursive function extracts a pointer to the Nth node in the chain. It 


works by calling itself on the next node in the chain, while decrementing N, 


until N = 0. It then returns a pointer to the node where this occurred. 
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• void insBefore( mcEVO * newNode )


This function inserts the node pointed to by newNode into the position 


preceding the called node. It sets its own “previous” pointer to newNode, and 


calls setPrevious() and setNext() on the new node, and setNext() on the 


current previous node, so that the chain is still continuous in both directions.


• void dumpScores()


This recursive debug function causes all nodes in the chain to send their 


scores to stdout.


• void dumpWeights()


This debug function causes all nodes in the chain to send their weights to 


stdout. Note that there can be many millions of weights, which can cause 


problems depending on the terminal program from which the software is run.


• void setScore( float newScore )


This function sets the score stored by the called node to newScore.


• dReal *getParams()


This function returns a pointer to the robot-body geometry parameters 


stored by the node.


• void appendChain( mcEVO * newSegment )


This function causes the chain starting at newSegment to be appended to the 


end of the chain holding the called node. It recurses down the chain 


until next = NULL, then sets next = newSegment and calls 
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newSegment->setNext( this ).


• int killLast( int numDeleted )


This function deletes the last numDeleted nodes in the chain. It works by 


recursively calling itself on the next node until next = NULL, then returning 


numDeleted. As the CPU falls back up through the call stack, each recursion 


subtracts one from the returned number and returns that, thus counting down 


toward zero. When the return value is zero, the node calls delete next, and sets 


next = NULL. All nodes below this point are then deleted by the chain 


destructor, as described above.


• void svBrains( ofstream * saveFile )


This recursive function saves all of the neural networks being managed by 


a mcEVO chain into saveFile. It works by calling svNet() on the mcNeuron 


chain pointed to by each node in the chain, and then calling itself on the next 


mcEVO node. Note that the fstream object class counts and records the current 


position within the file, which greatly simplifies this implementation.


• void ldBrains( ifstream * loadFile )


This function works in a similar way to svBrains(), but loads the neural 


network weights from a file into all of the mcNeuron objects being managed 


by the called mcEVO chain.


• void mkBrains( int numPerceptrons, int RHL, int THL )


This recursive function causes all nodes in the mcEVO chain to generate 
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neural networks and history buffer lists using the chain constructor for the 


mcNeuron class. The neural networks thus created have numPerceptrons 


perceptrons, and both history buffers (one for input variables, and one for 


output variables) have RHL + THL nodes. Note that this function, in its 


current implementation, assumes that each neural network has 34 inputs and 16 


outputs. This will change when the class is adapted away from this project for 


general-purpose use.


● void mkBrains_random( int numPerceptrons, int RHL, int THL, float * array )


This function works in the same way as mkBrains, but fills the input and 


output weight arrays with random numbers rather than leaving the memory 


uninitialized. Array points to an array of type float that is large enough to hold 


all input and output weights, which was used internally in a different version of 


this function. It has not been removed, because that version has not yet been 


fully evaluated at the time of this writing. For the version of the function used 


in this thesis, array can be set to NULL.


● mcNeuron *getBrain()


This function returns a pointer to the first node in the mcNeuron chain 


being managed by the called mcEVO node.


● historyBuffer *getIHist()


This function returns a pointer to the first node in the input history buffer 


chain being managed by the called mcEVO node.
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• historyBuffer *getOHist()


This function returns a pointer to the first node in the output history buffer 


chain being managed by the called mcEVO node.


• void setIHist( historyBuffer * )


This function sets the input history buffer chain to be used by the called 


node.


• void setOHist( historyBuffer * )


This function sets the output history buffer chain to be used by the called 


node.


The core features of the genetic algorithm, including selection, crossover, 


and mutation, are implemented in two helper functions that are written to operate 


on a mcEVO chain. These functions are:


● rankNodes( mcEVO * target )


This function performs a sorting operation on the mcEVO chain beginning 


at target. The nodes are ranked in order of descending score. Note that, after 


the ranking is complete, target is no longer the first node in the chain. 


However, the member function getFirst() can be called on target, and the first 


node will be returned.


● breedNets( mcEVO *thePopulation, int popSize, int nReplaced, dReal *pMin, 


dReal *pMax, int nNeurons, int RHL, int THL, float mutProb, float maxMut, 


float iRnd, float oRnd )
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This function implements almost all of the actual genetic algorithm, and is 


called after rankNodes(). Its arguments are as follows:


 thePopulation is a pointer to the mcEVO chain on which the function will 


operate.


 popSize is the size of the population.


 nReplaced is the number of population members that be replaced with 


newly created candidates. 


 pMin is a pointer to the array containing the lower limits for the robot body 


parameters (see sections 4.6 and 4.7, as well as Tables 4.1 and 4.2).


 pMax is a pointer to an array containing the upper limits for the robot body 


parameters.


 nNeurons is the number of perceptrons in each population member.


 RHL is the length of the history stack used by the neural networks as 


inputs.


 THL is the length of the history buffer used for an additional learning rule 


that is not used in this thesis, but is implemented in the mcNeuron class. 


Note that the total length of the stacks is equal to RHL + THL.


 mutProb is the probability that a mutation will occur in any given 


perceptron.


 maxMut is the maximum magnitude of the random numbers that a segment 


of a perceptron's input weights will be replaced with, when this type of 


mutation occurs (see section 3.4). The newly generated weights will thus 
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vary from -maxMut to maxMut. Note that this value should be chosen so 


that its average magnitude is approximately equal to the average magnitude 


in the input weight vector, so that the newly created weights do not swamp 


the other weights. Because the input weights vector is normalized, the 


value of maxMut used in this thesis is set to    2 * sqrt( 1 / 


number_of_input_weights ). 


 iRnd is the maximum magnitude of the random numbers that are added to 


each input weight, after the perceptron is created and all mutations are 


applied, and before the input weight vector is normalized.


 oRnd is the maximum magnitude of the random numbers that are added to 


the output weights. Note that the output weights are never normalized.
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4. SIMULATION ENVIRONMENT


4.1 OVERVIEW


The software in which the robot controllers are trained is based on a free 


and open-source rigid body physics engine called OpenDE or ODE [8], which is 


short for “Open Dynamics Engine”. This engine was orignally created by Russell 


Smith, and is currently being maintained and extended by a community of 


volunteers. It is distributed under two separate licenses — the GNU LGPL and a 


BSD-style license — such that a user can choose either of them. Thus, it may be 


used in free or commercial software, with very few restrictions. The most 


significant restriction in the BSD-style license is that the original work must be 


cited. This physics engine provides general-purpose simulation of articulated 


bodies, in addition to collision detection, and is primarily intended for use in video 


games. It has become popular enough in robot simulations, however, that there 


have been robot-simulation software packages[9] created and even a book[10] 


written about modeling robots in ODE.


4.2 SIMULATION WORLD


The simulation “world” consists of two parts — a randomly generated 


height map (the “ground”), and a randomly proportioned robot model. The height 


map is arranged on a 256 x 256 grid that spans 50 x 50 meters in simulation space. 


At each grid point, the height is set to a random number so that all heights fall 


within a 0.13m range.
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The robot body is generated and inserted into the world by the spiderBody 


object class (see section 4.4). A majority of the code in this class, about 1500 


lines, comprises the constructor function, which performs the following steps:


● Create the core body of the robot, which consists of three ODE primitives, set 


up its mass and inertia matrix, add its collision detection geometry, and insert it 


into the world.


● Repeat the previous step for the upper legs and lower legs.


● Calculate the starting positions / rotations for the legs, and move them to those 


locations.


● Attach the legs with the appropriate ODE joints (ball joints at the hips and 


hinge joints at the knees).


● Calculate the base / tip positions of the actuators, and call genActuator() on 


each one.


4.3 QUADRUPED ROBOT BODY


The robot body used in these simulations is shown in Figure 4.1. This robot 


has four legs, each with four degrees of freedom, for a total of 16 DoF. The linear 


servos controlling a single leg are shown in Figure 4.2; their effects are as follows:


1. Works with Actuator 2 to control the direction of the axis of the upper leg.


2. Works with Actuator 1 to control the direction of the axis of the upper leg.


3. Controls the rotation of the upper leg about its axis. The effect of this actuator 


is interdependent with Actuators 1 and 2.


4. Controls the bending angle of the knee joint.
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Figure 4.1: Quadruped Robot


Figure 4.2: Diagram of a Single Leg Showing Actuator Indices
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The major dimensions of the robot are shown in Figures 4.3, 4.4 and 4.5. 


These dimensions correspond to those shown in Table 4.1, and the upper and 


lower limits given in Table 4.2.


Figure 4.3: Robot Body Core (isometric view), Showing Dimensions


Figure 4.4: Diagram of Upper and Lower Chassis Platforms
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Figure 4.5: Diagram of a Leg, Showing Dimensions


Figure 4.6: 3D Rendering of the Robot Walking in the Simulation 


Environment
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Figure 4.6 shows a 3D-rendered example of the robot. This image was 


made from a screenshot of the robot walking in the simulation software. The gray 


actuators correspond to Actuators 1 and 2 in Figure 4.2. The yellow actuators 


correspond to Actuator 3, while Actuator 4 is not shown in this picture because it 


is handled outside ODE, in order to increase the speed of the software, and not 


drawn when the scene is rendered.


4.4 ROBOT BODY OBJECT CLASS


The ODE objects which model the robot body are created and manipulated 


through the spiderBody object class. The source code for this class is given in 


Appendix C. Aside from the constructor and destructor, the robot body class 


implements the following member functions:


● dReal getPos( int index )


Returns the current length, in meters, of the linear actuator specified by index, 


with respect to its starting length. Negative numbers indicate that the actuator 


has retracted, while positive numbers indicate that it has extended.


● dReal getVel( int index )


Returns the linear speed, in meters per second, of the actuator specified by 


index, where negative numbers indicate that the actuator is retracting and 


positive numbers indicate that it is extending.


● void addForce( int index, dReal force )


Adds a 3rd law pair of forces of magnitude force to the two ends of the 


actuator specified by index,  which are directed along its axis. This is the 
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source of all of the driven motion in the physics simulation, except for the four 


knee joints.


● void addKneeTorque( int index, dReal torque)


Adds a 3rd law pair of torques, of magnitude torque, to the upper and lower 


leg specified by index. This is the source of all driven motion at the knee 


joints.


● dReal getKneeAngle( int index )


Returns the current angle, in radians, of the knee specified by index. This 


angle is measured from the direction of the upper leg (if the knee is straight, 


the angle is zero), and increases as the lower leg bends downward.


● dReal getKneeOmega( int index )


Returns the current angular speed, in radians per second, of the knee 


specified by index.


● dBodyID getCore()


Returns the ODE body ID of the robot chassis. This is used in the collision 


detection callback to count collisions between the chassis and ground 


(which incurs a small score penalty).


4.5 HELPER FUNCTIONS


In addition, there are three helper functions that are not members of the 


robot body class, but are used with it. All three of these functions relate to the 


actuator that drives each knee, but is external to the ODE world in order to 
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increase processing speed. The source code for these helper functions is given in 


Appendix C, and they are described below:


● dReal calcKneeActOffset( dReal angle, dReal KBR, dReal KLL )


Calculates the position of the knee actuator tip, in meters, with respect to the 


knee joint. This position ranges from zero to the length of the upper leg. Angle 


specifies the angle of the knee joint, in radians, as returned by 


spiderBody::getKneeAngle( int ), KBR is the distance between the knee 


joint and the link attachment point on the lower leg, and KLL is the length 


of the linkage itself.


● dReal calcKneeTorque( dReal Angle, dReal slidePos, dReal KBR,


dReal F )


Returns the torque applied to the knee joint by a force F in the knee actuator. 


The input variable, slidePos, specifies the position of the knee actuator, as 


defined above, while F is the linear force in the actuator. Angle and KBR are 


the same variables described above.


● dReal calcKneeActVel( dReal Angle, dReal slidePos, dReal KBR,


dReal w )


Returns the linear speed of the knee actuator, in meters per second, given the 


angular speed of the knee joint, in radians per second. The input variable w is 


the angular speed; other inputs are the same as described above.
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4.6 BODY GEOMETRY PARAMETERS


The body parameters, which are set at random by the software and passed 


to the robot body constructor in a parameter array are listed in Table 4.1. These 


parameters correspond to the dimensions in Figures 4.3, 4.4 and 4.5. The Index 


column specifies the position in the array, while the Macro column gives the 


three- or four-letter macro by which the variables are referenced in the source 


code (see section 4.4 and Appendix C). Note that all linear dimensions are in 


meters, while all mass parameters are in kilograms.


Table 4.1: Robot Body Parameters Array


Index Variable     Macro


0 Upper platform (chassis) radius      UCR
1 V actuator upper mount offset (from centers of UP)      VAO
2 Distance between upper and lower platforms      RISE
3 Lower platform radius      LCR
4 Upper leg length      ULL
5 Lower Leg Length      LLL
6 Distance hip -> V ball on upper leg      IBR
7 Hip rotation linkage length      RBR
8 Knee link length (Obsolete; now set automatically)       KLL
9 Distance knee -> knee link attachment       KBR
10 Upper platform mass      UPM
11 Lower platform mass      LPM
12 Square tubing density (mass / unit length)       LINDENS
13 Platform and Leg thickness           THICK
14 Starting Position X      POSX
15 Starting Position Y      POSY
16 Starting Position Z      POSZ
17 Upper leg zero angle      ULZA
18 Leg rotation zero angle      LRZA
19 Lower leg zero angle      LLZA
20 Foot ball radius      FBR
21 Foot ball mass      FBM
22 V Actuator base mass              VABM
23 V Actuator tip mass              VATM
24 Rotational Actuator base mass            RABM
25 Rotational Actuator tip mass              RATM
26 Upper leg mass      ULM
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4.7 BODY PARAMETER LIMITS
These body-geometry parameters listed in Table 4.1 vary randomly within 


a set of upper and lower limits defined by two limit arrays. The purpose of this 


variation is to train the neural networks to control a range of robots, rather than 


just a single example, to increase their resistance to the effects of small changes 


when going from the simulated robots to a physical one. The values used in the 


lower and upper limit arrays are given in Table 4.2.


Table 4.2: Upper and Lower Robot Parameter Limits


Index Macro Variable Description Lower Limit Upper Limit


0 UCR Upper Platform Radius 0.22 0.27
1 VAO V-Actuator Offset 0.018 0.022
2 RISE Distance between upper / lower platforms 0.18 0.22
3 LCR Lower Platform Radius 0.085 0.12
4 ULL Upper Leg Length 0.27 0.32
5 LLL Lower Leg Length 0.22 0.27
6 IBR Inline Ball Radius 0.22 0.27
7 RBR Rotational Ball Radius 0.14 0.15
8 KLL Knee Link Length (OBSOLETE) 0.18 0.22
9   KBR Distance between knee and link attachment 0.09 0.11
10 UPM Upper Platform Mass 1.8 2.2
11 LPM Lower Platform Mass 0.9 1.1
12 LINDENS Linear Density of Square Tubing 0.18 0.22
13 THICK Thickness of Square Tubing 0.025 0.028
14 POSX Starting X Position -5.00 5.0
15 POSY Starting Y Position -5.00 5.0
16 POSZ Starting Z Position 0.39 0.4
17 ULZA Upper Leg Zero Angle 0.25 0.3
18 LRZA Leg Rotation Zero Angle 0.37 0.42
19 LLZA Lower Leg Zero Angle 1.3 1.7
20 FBR Foot Ball Radius 0.035 0.055
21 FBM Foot Ball Mass 0.17 0.22
22 VABM V-Actuator Base Mass 0.4 0.52
23 VATM V-Actuator Tip Mass 0.09 0.12
24 RABM Rotational Actuator Base Mass 0.38 0.42
25 RATM Rotational Actuator Tip Mass 0.077 0.1
26 ULM Upper Leg Mass 0.46 0.52
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4.8 SIMULATION LOOP


On each step through the simulation loop, the inputs to the control system 


are updated with the force and position values for all of the actuators. The position 


values for the 12 upper leg actuators are obtained from ODE, using the getPos() 


member function of the robot body class, while the motion speeds for these 


actuators are obtained using getVel(). The knee actuator positions and speeds are 


calculated from the knee angles and angular velocities, which are obtained from 


ODE using the getKneeAngle() and getKneeOmega().


For all actuators, including the ones for the knees which are handled 


externally to ODE, the position is zero as seen by its control-system input at 


whatever position the actuators are created in. These zero positions are also used 


to define the actuator position variables which are modified by the outputs of the 


control system. The difference between these “set” position variables, and those 


returned by ODE, or calculated from angular values, in the case of the knees, are 


used to calculate the force in each actuator using a simple damped-spring 


equation:


F = -ks * (actual position – set position) – kd * ( actuator speed )


where ks is a spring constant, and kd is a damping coefficient.


The spring constant for knee actuators is 1500N/m; for other actuators it is 


1100N/m, and the damping coefficient is 30N*s/m. These values are based on 


measurements taken from a prototype linear actuator.
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The calculated forces for all actuators except those in the knees are sent 


back to ODE through the robot body class using the addForce( index, force ) 


member function, as well as to the control system as force-sensor inputs. The 


forces for the knees are converted to torque values, and sent to ODE using the 


addKneeTorque( index, torque ) member function.


The actuator set positions are produced by the control system outputs 


through a double integral. The control system is able to set acceleration values for 


the actuators, up to a certain maximum acceleration, and these values change the 


speed of the actuators (the rate of change of the set value), up to a certain 


maximum. The maximum acceleration is set to be 2.9m/s^2 and the maximum 


speed is 0.35m/s, both of which are based on measurements taken from a 


prototype actuator.


In addition to position and force measurements, the control system also has 


two other inputs that describe the desired direction of travel with respect to the 


robot. These two values are dot products of a unit vector pointing in the desired 


direction with the robot's local X and Y vectors. These are treated exactly the 


same as the sensor inputs, and propagate through the history stack in the same 


way.
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5. PERFORMANCE EVALUATION


5.1 OVERVIEW AND QUALITATIVE ANALYSIS


For a system such as this, the most definitive performance criterion is 


whether the robots begin walking in an effective way within a reasonable amount 


of time, while operating on a computer which is economically feasible to the user. 


During and after the development of this software, many test runs were performed, 


using an Intel E4300 CPU, a very inexpensive processor used in consumer PCs. In 


eac test, the AI always either learned to walk, or found a way to work around the 


rules and “cheat”, within a few days.


In the earliest runs, there was no penalty for being upside-down, which 


resulted in the robots' bouncing and rolling forward as far as they could upon 


dropping into the world, then kicking their legs and hopping forward while 


upside-down. Some of them also managed to tilt 90 degrees to the side and roll a 


good distance, effectively doing cartwheels, before falling down. When the 


penalty was added and the software re-run, a population of robots was produced 


fairly quickly that would hop forward, like frogs. At this point, a bug in the 


physics simulation code was found and fixed, and the first population of actual 


walkers was produced on the following run. For this test, the software was 


allowed to run for a period of approximately three weeks in real-time, in which 


time the it became very good at making the robots walk—at the end of this run, 


the robots were moving about 16 body lengths in 14 seconds of simulation time, 


which is quite fast given the physical characteristics of the robot and the limits that 
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were in place on how fast the actuators were allowed to move and accelerate (see 


Chapter 4).


5.2 QUANTITATIVE ANALYSIS


In order to obtain a quantitative analysis of the performance of this system, 


a pair of test runs was done, with different parameters for the neural network. A 


special version of the software was created for these runs, which has the added 


feature of creating the log files that are used in the analyses below. These log files 


are formatted as plain text, with one line for each population member evaluated. 


The entries on each line are as follows:


● The index of the current population member. This ranges from 0 – 39, as a 


population size of 40 was used for all of the runs that used a log file.


● The score that the population member retained from the last generation, 


according to scoring rule #5 (see section 3.2).


● The number of times the chassis came into contact with the ground, as 


described in rule #4.


● The score given for any movement at all, as described in rule #1.


● The movement of the robot in the X direction.


● The movment of the robot in the Y direction.


● The final score passed back to the mcEVO node.


Results from two of these logged runs are included in this section. In these 


runs, each neural network is given a turn of 2000 time steps in which to control its 


robot. The starting positions are recorded after a delay of 250 time steps, which 
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gives an effective turn length of 1750 time steps. Each time step for the neural 


network represents 0.012 seconds of simulation time, so there is a period of 


approximately 21 seconds in simulation time for which movement is recorded. 


Both tests are identical in all respects, except that one uses a neural network of 30 


perceptrons, with a memory of 250 time-steps while the other uses 150 


perceptrons, with a memory of 150 time-steps. Note that 250 time-steps is 


equivalent to approximately 3 seconds of simulation time, while 150 time-steps is 


equivalent to about 1.8 seconds. For these runs, the desired direction is always 


along the X axis, and the ground impact penalty is very small (0.05). Changes to 


these rules can be implemented slowly through a modification to the software — 


the desired direction will take random values that slowly drift away from the X 


axis, while the ground-impact penalty will slowly increase. This is not done here 


due to the length of time the software has to run before a new adaptation is made.


The results from the log files were post-processed using a second program, 


which was written to parse the data from the logs and extract the following data 


sets for each generation:


● The maximum score attained by any population member during the generation, 


excluding any score carried over from the previous generations.


● The top 5 scores from the generation.


● The average value of the top five scores from the generation.


● The maximum score ever achieved, in the current or any previous generation.
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● The total movement in the X and Y directions for the top 5 scorers in the 


generation.


Figure 5.1 shows the top score results vs. generation from the 30-


perceptron test. There are three data sets on this plot: the top score attained during 


the generation (orange), the average of the top five scores (purple), and the 


running maximum score (black). These scores are a figure of merit which 


represents the performance of the neural networks with respect to all of the 


scoring rules that are discussed in Chapter 3. A plot of the total movement in the 


X direction (orange) and the Y direction (purple) for the top scoring neural 


network in each generation is given in Figure 5.2. Unlike the scores shown in 


Figure 5.1, these movement figures provide concrete values that are relevant 


outside the context of the genetic algorithm — they represent the actual distance 


that the simulated robots were able to walk during the time allotted. 


Figures 5.3 and 5.4 are the same plots as those in 5.1 and 5.2, respectively, 


but are taken from the 150-perceptron run. They show data taken from a smaller 


number of generations, but the same amount of real-world run time. This is 


because the software runs more slowly when a larger neural network is used.
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Figure 5.1: Scores Per-Generation for the 30-Perceptron Run


Figure 5.2: X and Y Displacement for the 30-Perceptron Run
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Figure 5.3: Scores Per-Generation From the 150-Perceptron Run


Figure 5.4: X and Y Displacement From 150-Perceptron Run
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5.3 DISCUSSION OF RESULTS


Note that the first run (30-perceptrons) went for 405 generations, while the 


second (150-perceptrons) run was only 240 generations. Both tests ran for 


approximately 11 days in real-world time, each running on one core of the same 


CPU, but the larger neural network slowed down the software considerably on the 


second run. This is to be expected, as the neural networks from the first run 


consume only 59MB of RAM, while those from the second run consume 179MB


—and all of these weights need to be processed 2,000 times per turn, and 160,000 


times per generation. 


Several other things are apparent from Figures 5.1-5.4. First, the data has 


quite a bit of randomness in it—there is a large amount of inconsistency between 


generations in both the scores and displacements. Secondly, while the scores are 


generally rising as the generations progress, they do so in a very chaotic way, with 


relatively flat periods and periods of rapid increase. There is even what appears to 


be a period of decrease in the scores in Figure 5.1. Third, Figures 5.2 and 5.4 show 


the X component of motion increasing with the score, while the Y component 


remains approximately centered at zero, but with steadily increasing random 


variation.


The first observation can be explained by the fact that the robots the system 


is being asked to control are randomly generated. Thus, a neural network that 


performs well in one generation may be do poorly with the robot it is given in the 


next generation. This is intentional, as the goal is to evolve a control system which 
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is effective in a wide variety of robots (thus increasing the chance that it will work 


well with a physical robot in the real world). In addition, it is possible for an 


otherwise strong-performing control system to flip its robot upside-down, 


obtaining a very low (or negative) score in the process. This tends to be especially 


likely with the very high scoring individuals in any generation, as they tend to be 


the “risk takers”. This issue can be exacerbated by the randomness in the robot 


parameters, as a behavior that is only slightly risky in one robot may be fatal in 


another.


The chaotic nature of the increases in score over time can be explained by 


the properties of the genetic algorithm. The software is continually recombining 


the same characteristics into new population members, only occasionally 


happening upon a new adaptation that results in significantly higher scores. It 


takes time, however, for this adaptation to propagate through the population, and 


be optimized to work in a consistent way. Thus, there can be a very large jump in 


the running maximum, creating a “high score” that holds for quite some time. The 


apparent decrease in score in the 30-perceptron run (Figure 5.1) could be due to 


the “deaths” of several population members which, while high-scoring, were also 


highly inconsistent. This is backed up by the fact that the randomness in the plot 


drops off very quickly during the same few generations, and remains smaller than 


before as the scores recover.


The movement in the X direction (which is always the “desired” direction 


in these two runs, as explained above) behaves as one would expect; it appears to 
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increase along with the scores. The Y movement, however, remains approximately 


centered at zero, but has a random noise in it that increases through the 


generations. This can be explained by the fact that the control system is becoming 


more effective at moving the robots in general, and because the population 


members still receive points for moving along the Y axis. In later generations, this 


movement is small compared to the motion in the X direction, as the control 


system improves at directing the robot in the direction of maximum score. This 


side movement could also be suppressed by slowly introducing a penalty for 


movement in the Y direction, especially if an additional input was added to the 


control system for current (absolute) position.


Finally, it is worth pointing out that the 30- and 150- perceptron tests were 


only allowed to run for 860 and 485 generations, respectively, due to time 


limitations. Previous runs that were much longer, including one that went into the 


thousands of generations, showed a continued increase in performance, with the 


longest run producing several scores between 8 and 9 on each generation. The 


plots here are, however, sufficient to show that the ability of the AI to control a 


robot is generally rising with time, and to show some of its characteristics.
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6. CONCLUSIONS AND FURTHER RESEARCH


6.1 CONCLUSIONS


From the results given in section 5.2, as well as direct observation of the simulated 


robots in the software, it is clear that this system is capable of generating effective 


walking movement. In addition, the robot design used in this thesis is particularly 


difficult to control, as its wide body does not permit the center of mass to remain 


in a stable position. In quadruped animals, the body is long and narrow, so that 


diagonal pairs of feet that are on the ground form a straight line that is always 


beneath the center of mass. With a hexapod or octopod, the problem would be 


even easier, as the feet on the ground at any given time form a triangle or a 


trapezoid, respectively, that can always enclose the center of mass on the 


horizontal plane. Thus, this method can be expected to produce better results than 


those given here for these other body types.


6.2 CONTINUED WORK WITH THIS BUILD


The first step that should be taken in order to learn more about this system is to 


perform more extensive testing than what was done for this thesis in order to 


maximize the efficiency of the system with respect to CPU load and memory 


usage. This will require a large number of test runs to be performed with many 


different configurations, in order to optimize the following variables:


● Population size


● Number of perceptrons
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● Memory length


● Probability of each type of mutation


● Scoring with respect to different criteria


● Selection rules


In order to perform a large number of tests in a reasonable amount of time, it 


would be best to use a computer with a large number of processor cores, as this 


software does not parallelize easily in its current form. Alternatively, the physics 


engine could be replaced with one that runs on a stream processor, such as PhysX 


from Nvidia, which runs on their GeForce 8 and newer graphics cards, and the 


neural network could be rewritten to run on a GPU.


6.3 EXTENSION OF CONTROL SYSTEM


It would also be good to extend the scope of the control systems that are produced 


in a few different ways. First, multiple neural networks can be used, with each 


trained to perform a different task. While individual networks have been observed 


to produce multiple behaviors in this system, this would be a good way to separate 


the desired behaviors. Also, it might be effective to have “nested” learning rules, 


such that the neural network continues to learn on its own after it is produced by 


the genetic algorithm. This could be done by adding some form of short-term 


reinforcement learning, or by adding a classifier network to the inputs of the 


control system that predicts the result of current behavior on the score and adjusts 


the weights of the network, perhaps using the P-Delta learning rule[6] that 


originally went with the parallel perceptron network that is used here. Another 
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option may be to add some outputs that do not control anything, but still act as 


feedback loops. This would create a form of memory that permits state-space 


orbits that last much longer than the history-buffer length, which the system would 


use in whatever way happens to produce the highest scores.


6.4 POTENTIAL APPLICATIONS


In terms of applications, there are two things that would be very interesting to do. 


One such idea is to create a CAD-style robot “editor” in which robots can be 


designed in a quick and convenient way, instead of writing a 1500+ line 


constructor, as was done with the spiderBody class used in this research. This 


editor would allow one to create a robot using a library of predefined parts such as 


the linear servos seen on the robot that this thesis deals with, and automatically 


generate a bill of materials for its physical construction. After the robot is 


designed, the software can then be used to create parts of its control system.


The second possibility is to modify the simulation and genetic algorithm 


software to operate as a P2P application, in a similar way to the BitTorrent 


network. A large number of users who want the same robot could download a task 


file that specifies the robot that is to be controlled and points to an online 


“tracker”. Having connected to the tracker, a user's client would join the “swarm” 


of other users, and begin receiving population members to evaluate. Each user's 


PC processes a small population, similar to the ones that were used in the two test 


runs here, but downloads a few new neural networks from other users and 


transmits a few on each generation. Depending on the number of users who want a 
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particular robot, this could permit effective population sizes in the tens of 


thousands. Like the other possibilities mentioned above, this has not been 


evaluated at this point, and it is unknown whether it would be an effective design. 


It would, however, be very interesting to see what might come out of it.


52





		2008-09-24T11:31:39-0400
	ETD Program




