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ABSTRACT 

Detecting pedestrians in public settings is a major research topic in both Computer 

Vision and Artificial Intelligence communities. It has found applications in a wide range 

of areas such as vehicle driving with autonomous control systems, video surveillance, and 

navigating robots, etc. Over the past decade, a great progress has been made in the 

development of efficient algorithms and the availability of large-scale data set, 

especially the advancement of Deep Learning method. In this thesis, the performance of a 

few state-of-the-art methods were evaluated by conducting empirical experiments with 

different settings and dataset configurations on pedestrian detection. The experiments 

were carried out using several Deep Learning models in the framework of both 

baseline and special configurations, including the Faster R-CNN, Mask R-CNN, 

and Cascade R-CNN methods. The experimental results show that the Mask R-CNN 

with a ResNet50 barebone yields the best performance in terms of its larger AP 

improvement and fewer resource requirement. This work provides a solid foundation 

upon which more sophisticated comparative studies can be conducted that utilize 

new algorithms/models and larger data set. 
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CHAPTER 1 

INTRODUCTION 

Detecting pedestrians in public settings is an important goal in object detection. It has 

been utilized in different applications such as autonomous car driving, video surveillance 

and navigating robots. Much research has been done in this area, using a wide variety of 

methods and different detection settings. The use of deep learning to carry out detection is 

beneficial because object detection and instance segmentation can be conducted in an 

integrated system. Due to the improvements in autonomous vehicles and the prevalence of 

video surveillance systems, The task of detecting pedestrians accurately has become 

increasingly important in automobile industries [1]. 

This paper aims to analyze different combinations of model configurations and datasets 

to provide an experiment-based perspective of how the current methods work with real 

word videos. This thesis is organized as follows: In Chapter-2, a brief literature review is 

provided that describes the important related works in the field, as well as the availability 

of several large-scale public datasets to be used. The features of three models are presented: 

Faster R-CNN, Mask R-CNN and Cascade R-CNN. In Chapter-3, detailed information of 

video samples and pre-processing procedures are described. Chapter-4 contains the 

experimental design such as the training and validation setup and the grouping of 

algorithms, backbones and architectures in each test run. In Chapter-5, experimental results 

are presented and the impacts of several factors on the models’ performances are analyzed. 

The conclusions drawn from this study are given in Chapter-6.   
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1.1. TECHNICAL ISSUES 

There are several aspects of a detection algorithm: training, testing and actual detecting. 

A system must balance these aspects to provide an optimal detection system. 

Memory requirements: As the datasets and techniques improve, the memory required 

to carry on training tasks is also increased. This puts pressure on machine of a single GPU. 

Precision: Precision is a critical metric in detection. Average Precision (AP) is used 

when assessing the performances of algorithms and models. In a validation test, there are 

four values that help us understand how an algorithm works as shown in Fig. 1). 

 

 
Actual 

Positive Negative 

Predicted 
Positive True Positive (TP) False Positive (FP) 

Negative True Negative (TN) False Negative (FN) 

Figure 1: Confusion matrix table for a class. 

Precision is formulated as: 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
 

A system with low precision does not ensure whether a detection has been carried 

out correctly and is not reliable to be used in real applications. 

Training time: Preparing a model is a resource-intense task. Ideally, a good model 

has the lowest training time while not making any sacrifices from accuracy. Batch sizes 

and iteration counts help increase the accuracy of a model. Constantly increasing these 

values does not necessarily increase accuracy as there is a point of diminishing returns, and 

it is essential to find the optimal point between iterations and accuracy. 
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Realtime-ness: Since pedestrians are considered a part of traffic, the systems' detection 

must be done in real-time to prevent accidents. This is an important issue since the detection 

must be carried out quickly and accurately. 

1.2.CONTRIBUTIONS 

 This study focuses on the empirical evaluation of the Faster R-CNN[2], Mask R-

CNN[3] and Cascade R-CNN[4] methods with respect to the performances of two popular 

precision ratings: bounding box and segmentation in the context of detecting pedestrians. 

The primary contributions are: (i) Determining the impacts of the baselines and their 

properties on the training time, accuracy, and precision rate with a given dataset with 

different training/validation splits; (ii) Comparing the performances of three different 

models by the standard metrics under the same or similar experimental setups and running 

environments; (iii) Picking an optimal set of model, baseline and dataset features on 

training systems to detect pedestrians.  
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CHAPTER 2 

METHODOLOGY  

2.1. RELATED WORK 

There is a lot of literature and research done on object detection and image detection 

datasets. As the methods, size of the data and technological resources increase, libraries 

and software packages are being developed, each of them working in a different way. 

Detectron2[5] , an object detection library developed by FAIR (Facebook AI Research), is 

an excellent example of this, which has been started as Mask R-CNN-benchmark and 

continued to Detectron before being developed into its current state in almost four years. 

Libraries like this help other research since they are regularly maintained and usually 

include different models. 

Detecting pedestrians in public is also a research area that is being tackled for different 

scenarios, from robot navigation[6] to security and surveillance[7]. On a research done by 

Zhang et al.[8] focuses on the difficulty of training with natural scene images to detect 

objects in UAV images and introduce a dataset named MOHR. The authors also perform 

several experiments to evaluate the performance of different object detection models on 

their dataset. Authors suggest that R-FCN method with a ResNet-101 backbone works best 

with their dataset, performing 31.32 averaged AP, yet point out the need for further 

research, especially learning discriminative features for irregular shaped objects. 

Precision and speed are vital points in pedestrian detection since an inaccurate or late 

decision could put people at risk. A study connected by Li and colleagues[1] focuses on 

this by proposing a human and machine cooperative driving system. By designing a deep 

Q-network (DQN) and combining it with the cooperative driving scheme in real-time, their 
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approach estimates collision and warns the user to take control. The work claims to achieve 

a more efficient warning rate than other single-pooled DQN approaches. There are other 

works [9], [10] focusing on detecting pedestrians under not ideal conditions like on low 

resolution images or nighttime images. 

2.2. DATASETS 

Public datasets play an essential role in research since they are mostly a product of 

collaborative work and usually have way more detailed annotations and categories. There 

are also datasets with different focuses and properties, which can be used to add variance. 

Microsoft COCO[11], presented by Lin et al., provides a dataset for using object 

recognition to understand scenes. The researchers have gathered 330 thousand images of 

everyday scenes containing objects in their natural context. Another object database, Open 

Images Dataset (at the time of writing V6)[12], published by researchers at GoogleAI, 

provides more than 9 million images with 3 million annotations and 15 million bounding 

boxes. On its latest version, V6 + Extensions, also includes almost half a million 

crowdsourced images. The authors state that the research provides 15 times more bounding 

boxes than the following largest datasets. Developed by Zhang et al., Widerperson[13] is 

another dataset focusing on pedestrian detection in the wild. The authors point out the 

difference between diversity and density between requirements and select their images 

from various scenarios to provide a diverse dataset. Their dataset includes almost 14 

thousand images with about 400 thousand annotations. 
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Terminologies: 

• CNN: Convolutional Neural Network 

• FPN: Feature Pyramid Network 

• IoU: Intersect over Union ( 𝐴𝐴∩𝐵𝐵
𝐴𝐴∪𝐵𝐵

 ) 

• AP: Average Precision. 

• Box AP: Bounding-box (Detection) AP 

• Mask AP: Masking (Segmentation) AP 

• AP50 AP at IoU=0.50 

• APs AP for small objects: area < 322 px 

• APm AP for medium objects: 322 < area < 962 px 

• APl AP for large objects: area > 962 px 

• Lr Sched (Training Schedule): Pre-training, 1x has ~12 rounds of iterations 

while 3x has ~37 rounds.  

• TIteration (s/it): Averaged time it takes to go through a single iteration. 

• TInterference (s/img): Averaged time it takes to interference a single image. 

• Base Learning Rate (SBL): Initial learning rate, how much the model adapts to 

errors in each update 

• Max Iteration (SMI): Maximum number of iterations 

• Batch Size Per Image (RBSPI): Region of Interest (ROI) batch size per image 

• Testing Threshold (RHSTT): RoI testing confidence threshold 

• Image Per Batch (SIPB): Number of images per batch 

• RoI Classes (RNC): Number of Region of Interest classes 

2.3. METHODS/ALGORITHMS 
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There are many different object detection algorithms developed over the years. Some 

of the models are iterations of the others, improving the base model each time. These 

algorithms vary between resource intensity, general approach and processing methods. R-

CNN and YOLO[14] models are an example of iterative models. There are two tasks 

related to pedestrian detection. 

Object Detection (Bounding Box): Object detection aims to create a bounding box 

around a class to detect it. Since the final result is a bounding box, it does not tell anything 

about the shape of an object or differentiate between different instances of the same class. 

Fig. 2 gives an example of this, while a bounding box shows a box with “person”, this does 

not give any information if the box includes a whole person or just a part of them. 

 

Figure 2: Object detection output on a sample image. 
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Figure 3: Object detection output on a sample image. 

Instance Segmentation: Segmentation classifies objects by creating pixel-level masks. 

This represents an object way more accurately than object detection. Different from 

semantic segmentation, instance segmentation tries to understand and find each instance of 

the same class. Fig. 4 demonstrates the pixel-level mask by providing a comparison to 

bounding box output. 

 

Figure 4: Difference between object detection and instance segmentation 
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Figure 5: Instance segmentation output on a sample image. 

2.3.1. FAST R-CNN 

Fast R-CNN[12], a study done by Ross Girschick, improves on a previous R-CNN 

(Region-based Convolutional Neural Network) by giving input image directly to CNN, 

generating a convolutional feature map and using a region of interest pool layer. The author 

suggests that the research provides train speedup times by up to 18.3 times over R-CNN. 

2.3.2. FASTER R-CNN 

A different study made by Ren and his colleagues proposed an improved version of 

Fast R-CNN, called Faster R-CNN, which benefits from a newly introduced RPN (Region 

Proposal Network) to cut the costs of region proposals. The authors state that these 

improvements provide a detection frame rate of 5fps and an increased median Average 

Precision value. 

2.3.3. MASK R-CNN 

In the study of Mask R-CNN, He et al. introduced a branch for recognizing bounding 

boxes to the aforementioned Faster R-CNN, improving it further. Also, it enables image 

segmentation by including mask and pixel-to-pixel alignment, which was missing in Faster 
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R-CNN. Mask R-CNN handles segmentation branches in parallel to the detection branch. 

Authors claim that with these changes, Mask R-CNN outperforms all single-model entries 

on every task at the COCO challenge at the time. 

 

Figure 6: General architecture of Faster R-CNN and Mask R-CNN methods. 

2.3.4. CASCADE R-CNN 

Developed by Cai et al., Cascade R-CNN[15] is a cascade approach based on Faster R-

CNN, using multiple detection branches to achieve a better detection performance. Since 

the Cascade R-CNN approach includes multiple detection branches, authors have extended 

their previous Cascade R-CNN approach to do instance segmentation by adding a mask 

head to the cascade, opposed to Mask R-CNN’s parallel branch architecture[4]. Authors 

state that their approach increases AP with ResNet-50 by 3.6 on object detection (from 

37.7) and 1.5 on instance segmentation (from 33.9) using COCO 2017 dataset. 

2.3.5. YOLO 

Another object detection system developed by Redmon et al. proposes a one-stage real-

time object detection (bounding box) system[14], focusing on speed and accuracy. YOLO 

outperforms RetinaNet-50 and 101 methods in both mAP-50 ratings and in processing 

Backbone Classification

Bounding Box

Network 
Head

Segmentation

Input

Images

Faster R-CNN

Mask R-CNN

• ResNet – 50 
• ResNet – 101
• ResNeXt – 101 

• FC 
• Conv 
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time. Since YOLO is a single-stage method, it takes a lot less time to process. The authors 

also propose that their system outperforms Fast and Faster R-CNN methods in AP on 

COCO test-dev 2015 dataset[16]. 

 

Figure 7: General architecture of the Cascade R-CNN method. 

2.3.6. PANOPTIC SEGMENTATION 

Proposed by Krillov et al., panoptic segmentation aims to provide a coherent 

segmentation by unifying semantic and instance segmentation towards real-world vision 

systems[17]. To achieve this, the authors define a set of rules to join these two segmentation 

methods together, including proposing a new metric called Panoptic Quality and setting a 

minimum IoU threshold. Using three datasets that have both dense semantic and instance 

semantic annotations[18]–[20], authors compare the performance of their model by doing 

several experiments; comparing AP results to their PQ metric and human-machine 

prediction performances. 

Backbone Classification

Bounding Box

Network 
Head

Segmentation

In

Pool C

B

NH

S

Cascade R-CNN

P2 ...
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2.4. METHODOLOGY 

The proposed methodology consists of six steps, as explained in Fig 8.; model 

selection, where the models mentioned in Related Work are compared and selected; 

baseline comparison, where the baselines are compared in regard to their memory 

requirement, speed and accuracy. After listing and comparing datasets and models, a 

dataset is created and filtered. Datasets and models are trained with datasets to develop a 

comparative table, described in Fig. 9. The model-baseline couple with the highest 

accuracy and execution time is considered as the optimal couple and evaluated in the last 

step. 

Model 
Selection

Dataset 
Comparison

Model 
Training

Picking the 
optimal 
couple

Evaluation 
of the 

trained 
model

Data 
Processing

 

Figure 8: Proposed methodology 
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Figure 9:  Sample Model-Baseline couple table  
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CHAPTER 3 

DATA PROCESSING 

This section describes dataset preparation steps, from acquiring to be readily used in 

the experiment. 

3.1. DATASET 

 During the course of the work, the COCO image dataset has been utilized as the 

dataset provides enough images to train and take less space than other datasets with more 

images. The COCO dataset provides 66,808 images with “person” annotation in total, 

separated as 64,115 train and 2,693 validation images. A few utility programs were 

developed in Python to acquire, split and prepare the datasets to help with the research. 

Fig. 10 to 12 provides images from the COCO dataset at different stages of the work. 

 

Figure 10: An unfiltered image from the COCO dataset 
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                         Figure 11: Sample “person” images from the edited COCO dataset. 

 
 

Figure 12: A processed image from “validation” set using Faster R-CNN. 

3.2.SAMPLE PREPARATION 

 A few utility programs were developed in Python to acquire, split and prepare the 

datasets to help with the research. A dataset is generally constructed as two folders of 

images train/validation and two annotation files consisting of annotations of respective 

folders. A downloader utility used to get only images with “person” from 123,000 images, 

a filter utility to extract unrelated (non-person) annotations in images, and a separator 
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utility to change sizes of training-validation annotation files. These utilities allow us to use 

and split the dataset however we need. 

           Using the created dataset utilities, several subsets of train images are selected to 

achieve different balances with the validation dataset, including an 80/20 split between 

training and validation images to provide an insight on the effect of dataset split on training 

performance. 
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CHAPTER 4 

EXPERIMENT DESIGN 

This section describes the experimental details during the training/validation phases 

with various parameter setups. All experiments were carried out on different configurations 

using the Detectron2 packages installed under Linux environments, a local machine with 

Nvidia 1660Ti, CUDA 11.2 with 6 GB GPU memory, and on a Google Colab machine 

with a Tesla T4, CUDA 11.2 with 15 GB’s of GPU Memory. Datasets are stored locally 

for the local machine and on Google Drive, for Google Colab machines to reduce network 

and data transmission costs. 

4.1. TRAINING 

The training phase has two steps: 

STEP-1: Prepare the dataset: 

 Locally stored datasets are prepared with annotation files in COCO JSON format. 

JSON format helps to parse the data using the utility programs to prepare the dataset to be 

imported by detectron2’s library. 

COCO Standard Data Format Object Detection Extension 
{"info" : info, "images" : [image],  
"annotations" : [annotation], "licenses" : [license],} 
 
info{ "year": int, 
"version" : str, "description" : str, 
"contributor" : str, "url" : str, 
"date_created" : datetime,} 
 
image{"id" : int, "width" : int, 
"height" : int, "file_name" : str, 
"license" : int, "flickr_url" : str, 
"coco_url" : str, "date_captured" : datetime,}  
 
license{"id" : int, "name" : str, "url" : str, } 

annotation{ 
"id" : int, 
"image_id" : int, 
"category_id" : int, 
"segmentation" : RLE or [polygon], 
"area" : float, 
"bbox" : [x,y,width,height], 
"iscrowd" : 0 or 1, 
} 
 
categories[{ 
"id" : int, 
"name" : str, 
"supercategory" : str, 
}] 
 

Figure 13: COCO Data Format 
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STEP-2: Train a model: 

 In this step, a baseline is picked and fine-tuned on the prepared dataset. Baselines: 

During the work, baselines from detectron2’s model zoo are used. A few of the baselines 

with different backbone combinations and baseline features are selected to provide a 

comparison. These are, 

1) Algorithms:  

• Faster R-CNN, provides only object (bounding box) detection 

• Mask R-CNN, supports object segmentation and object detection 

• Cascade R-CNN, is a cascade of Mask R-CNN model. 

2) Backbones:  

• FPN: Uses a Resnet + Feature Pyramid Network (FPN) backbone with standard 

convolution layer and Fully-connected (FC) heads for bounding box and mask 

predictions. 

• Conv4 (C4): A ResNet conv4 backbone with a conv5 head. This backbone has also 

used by the Faster R-CNN paper. 

• Dilated C5 (DC5): A ResNet conv5 backbone, including dilations in conv5, and a 

standard convolution and Fully Connected layers as head for bounding box and 

mask predictions. 

3) ResNet Network Architectures: 

• R-50: Original ResNet-50 model, by Microsoft Research Asia. 50 layers deep. 

• R-101: Original ResNet-101 model. 101 layers deep. 

• X-101: ResNeXt-101-32x8d model. 101 layers deep. 
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The main difference between ResNet and ResNeXt is that ResNeXt has more 

detailed layers in each stage of convolution; and includes 32 grouped convolutions each 

iteration. This results in a more detailed processing of an image, but requires more 

memory. 

4) Baseline training schedule: 1x/3x. This defines how much a baseline has been 

pretrained. A 3x schedule represents 3 COCO epochs of training.  

A table with the complete baselines is provided below. 

TABLE 1: COMPLETE BASELINE TABLE 

Model ID Name Lr 
sched 

Train 
time 

(s/iter) 

Inference 
time 

(s/im) 

Train 
mem 
(GB) 

Box 
AP 

Mask AP 

Faster R-CNN 
137257644 R50-C4 1x 0.551 0.102 4.8 35.7 - 
137847829 R50-DC5 1x 0.38 0.068 5 37.3 - 
137257794 R50-FPN 1x 0.21 0.038 3 37.9 - 
137849393 R50-C4 3x 0.543 0.104 4.8 38.4 - 
137849425 R50-DC5 3x 0.378 0.07 5 39 - 
137849458 R50-FPN 3x 0.209 0.038 3 40.2 - 
138204752 R101-C4 3x 0.619 0.139 5.9 41.1 - 
138204841 R101-DC5 3x 0.452 0.086 6.1 40.6 - 
137851257 R101-FPN 3x 0.286 0.051 4.1 42 - 
139173657 X101-FPN 3x 0.638 0.098 6.7 43 - 

Mask R-CNN 
137259246 R50-C4 1x 0.584 0.11 5.2 36.8 32.2 
137260150 R50-DC5 1x 0.471 0.076 6.5 38.3 34.2 
137260431 R50-FPN 1x 0.261 0.043 3.4 38.6 35.2 
137849525 R50-C4 3x 0.575 0.111 5.2 39.8 34.4 
137849551 R50-DC5 3x 0.47 0.076 6.5 40 35.9 
137849600 R50-FPN 3x 0.261 0.043 3.4 41 37.2 
138363239 R101-C4 3x 0.652 0.145 6.3 42.6 36.7 
138363294 R101-DC5 3x 0.545 0.092 7.6 41.9 37.3 
138205316 R101-FPN 3x 0.34 0.056 4.6 42.9 38.6 
139653917 X101-FPN 3x 0.69 0.103 7.2 44.3 39.5 

Cascade R-CNN (C-R-CNN) 
138602847 C-R-CNN 1x 0.317 0.052 4 42.1 36.4 
144998488 C-R-CNN 3x 0.328 0.053 4 44.3 38.5 
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A subset of baselines is picked to provide the ideal comparison, a set of criteria is 

set by these research goals: 

• C1: Algorithms: Comparison of Faster, Cascade and Mask R-CNN algorithms, 

visualizing the difference between algorithms. 

• C2: ResNet training models: How do R-50, R-101, and X-101 affect the 

performance? 

• C3: Backbone comparisons: FPN/C4/DC5, which one does perform better? 

• C4: LR schedule difference: How does 1x and 3x differ? 

Baselines are codenamed for logging and comparison purposes. The resulting 

baseline subset is shown in the table below: 

TABLE 2: SELECTED BASELINE SET 

Codename Algorithm Model ID Name Lr 
sched 

Train 
mem (GB) 

Box 
AP 

Mask AP 

F3 Faster R-CNN 137257794 R50-FPN 1x 3 37.9 - 
F6 Faster R-CNN 137849458 R50-FPN 3x 3 40.2 - 
M1 Mask R-CNN 137259246 R50-C4 1x 5.2 36.8 32.2 
M2 Mask R-CNN 137260150 R50-DC5 1x 6.5 38.3 34.2 
M3 Mask R-CNN 137260431 R50-FPN 1x 3.4 38.6 35.2 
M6 Mask R-CNN 137849600 R50-FPN 3x 3.4 41 37.2 
M9 Mask R-CNN 138205316 R101-FPN 3x 4.6 42.9 38.6 
M10 Mask R-CNN 139653917 X101-FPN 3x 7.2 44.3 39.5 
CR1 Cascade R-CNN 138602847 C R-CNN 1x 4 42.1 36.4 
CR2 Cascade R-CNN 144998488 C R-CNN 3x 4 44.3 38.5 

M3 is selected as the base model, which will be compared with others to answer 

the research goals. Following subsets are created to answer the research goals: 

• C1: F3-M3-CR1 

• C2: M6-M9-M10 

• C3: M1-M2-M3 
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• C4: F3-F6, M3-M6, CR1-CR2 

We have several properties to adjust in addition to the baseline model: 

• SOLVER.IMS_PER_BATCH (SIPB): Number of images per batch, 2 for each 

GPU in training. Increases memory as batch size increases. 

• SOLVER.BASE_LR (SBL): Base Learning Rate, 0.001 selected as default to keep 

it away from overshooting while keeping the convergence time short. 

• SOLVER.MAX_ITER (SMI): Maximum number of training iterations, 900 chosen 

as default. 

• ROI.BATCH_SIZE_PER_IMAGE (RBSPI): Region of Interest (ROI) batch size 

per image, 512 given as default. 

• ROI.NUM_CLASSES (RNC): Region of Interest classes, which is 1 for this project 

because there’s only one class (Person) to train. 

4.2. TESTING 

STEP-3: Inference & Evaluation on trained model: 

 After training a model, the path to the model is given to calculate inference on the 

validation dataset. In addition to the previous properties, an RoI testing threshold is added 

at this point. 

            ROI_HEADS.SCORE_THRESH_TEST (RHSTT): RoI testing threshold, 0.6 as 

default. A lower value increases AP but slows down the inference process. Different values 

may be chosen and experimented on to find an ideal point. 

These are also the model variables that will be adjusted during the work to observe 

their effect on accuracy and training time on pedestrian detection. To observe this, baseline 

M3 will be run with values of: 
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TABLE 3: EXPERIMENTAL BASELINE PROPERTIES 
 

SIPB SBL SMI RBSPI RNC RHSTT 
Run#1 2* 0.001 900 512 1** 0.6 
Run#2 2 0.002 900 512 1 0.6 
Run#3 2 0.0005 900 512 1 0.6 
Run#4 2 0.001 1800 512 1 0.6 
Run#5 2 0.001 450 512 1 0.6 
Run#6 2 0.001 900 1024 1 0.6 
Run#7 2 0.001 900 256 1 0.6 
Run#8 2 0.001 900 512 1 0.8 
Run#9 2 0.001 900 512 1 0.4 

*SIPB will be kept at 2, according to the GPU and memory limitations.  

**RNC is held at 1 due to the class size. 

All of these runs are compared in terms of detection performance to find an optimal 

baseline run configuration. 

4.3. DATASET SPLIT 

 In addition to the baseline property runs, two more runs of M3 are conducted with 

the same baseline properties but with different training-validation splits. This is done to 

observe the effect of splits in performance and precision, if there is any. The splits are done 

using custom utility tools, and three total splits are created. 

• Split1: A split of 20560 training and 2693 validation images (88%/12%). This is 

the default split used in all of the runs. 

• Split2: All images with “person” class in the COCO dataset. 64115 training and 

2693 validation images (96%/4%). 

• Split3: A split with 80% and %20 between training and validation images. 
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TABLE 4: BASELINE SPLITS 
 

Split SBL SMI RBSPI RHSTT 
Run#1 20560/2693 0.001 900 512 0.6 

Run#10 64115/2693 0.001 900 512 0.6 
Run#11 10772/2693 0.001 900 512 0.6 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

Throughout the experiments, selected ten baselines have trained dozens of times 

separately to compare their differences. Table 5 below provides the results of chosen runs 

carried out as described in previous chapters. As the baselines are undertrained, every 

initial run except an experimental run saw an increase in AP values. On top of comparing 

baselines, nine combinations of baseline properties are also experimented with to provide 

an insight into their effect on performance. During this chapter, the impact of baselines 

with regard to their detection algorithm, res-net models, backbones and LR schedules are 

explained separately. Baseline properties are compared with base learning rates, training 

iterations, RoI batch sizes and testing thresholds. Notable differences in results are also 

demonstrated with Tensorboard outputs, Fig. 14, 15, 19, and 21. 

TABLE 5: EXPERIMENTAL RESULTS 

Code-
name 

Name Lr 
sched 

Box 
AP 

Mask 
AP 

Train 
Box 
AP 

Train 
Mask 

AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total Time 
(h:mm:ss) 

M1 R50-C4 1x 36.8 32.2 49.998 40.849 13.198 8.649 1.5486 0.362128 0:39:09 
M2 R50-DC5 1x 38.3 34.2 49.845 42.124 11.545 7.924 1.0256 0.220827 0:25:06 
M3 R50-FPN 1x 38.6 35.2 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19 
M6 R50-FPN 3x 41 37.2 54.119 45.569 13.119 8.369 0.5443 0.125886 0:13:42 
M9 R101-

FPN 
3x 42.9 38.6 54.537 47.233 11.637 8.633 0.7421 0.162362 0:18:16 

M10 X101-
FPN 

3x 44.3 39.5 56.582 48.472 12.282 8.972 3.6404 0.732266 1:26:49 

CR1 R50-FPN 1x 42.1 36.4 56.399 45.692 14.299 9.292 0.681 0.156877 0:17:07 
CR2 R50-FPN 3x 44.3 38.5 57.808 47.96 13.508 9.46 0.67 0.173187 0:17:40 
F3 R50-FPN 1x 37.9 - 50.882 - 12.982 - 1.2647 0.31936 0:33:01 
F6 R50-FPN 3x 40.2 - 53.157 - 12.957 - 1.2541 0.320109 0:32:53 

 
After comparing ten baselines with nine different configurations, the results are presented. 
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5.1. IMPACT OF BASELINES 

Baselines have several different properties, which requires a detailed evaluation of 

them. In this section, previously defined criteria are evaluated and compared in separate 

parts. 

 5.1.1 IMPACT OF DETECTION ALGORITHM (C1) 

 The detection algorithm is one of the essential factors in detection problems. On 

top of their performance improvements, algorithms also allow different approaches and 

functionalities to improve the scale of pedestrian detection further. As Mask R-CNN 

supports instance segmentation on top of the bounding box object detection present in 

Faster R-CNN and Fast R-CNN, Mask R-CNN is mode adaptable. The experiments also 

show that Mask R-CNN models train better in both Box AP and Mask AP. As shown in 

Fig. 14 and 15, there is not much difference in accuracy, false-negative, and false-positive 

values; since the image classification is done with R-50. Mainly, increases in AP values 

and iteration times are focused on.  

 

Figure 14: Accuracy, False-Positive/Negative comparisons of Mask R-CNN (red), Cascade R-

CNN (purple) 
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Figure 15: Accuracy and False-Negative comparison of Mask R-CNN (red) and Faster R-CNN (green) 

As shown in Table 5., the difference in AP increase in Mask R-CNN (M3) and 

Cascade R-CNN (CR1) has very similar increases in AP values between three baselines, 

the difference between the two being only 0.37% more. However, each iteration of CR1 is 

25.92% slower than M3. Faster R-CNN has the lowest values of AP increase and iteration 

time. Based on these results, it can be said that Mask R-CNN is a better option in terms of 

speed/train performance than Faster R-CNN and Cascade R-CNN in general. Except, in 

bounding box AP, Cascade R-CNN provides the highest AP. 

TABLE 6: IMPACT OF DETECTION ALGORITHM (C1) 

Code-
name 

Name Box 
AP 

Mask 
AP 

Train 
Box 
AP 

Train 
Mask 

AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total Time 
(h:mm:ss) 

M3 R50-FPN 38.6 35.2 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19 
CR1 R50-FPN 42.1 36.4 56.399 45.692 14.299 9.292 0.681 0.156877 0:17:07 
F3 R50-FPN 37.9 - 50.882 - 12.982 - 1.2647 0.31936 0:33:01 

 5.1.2. IMPACT OF RES-NET MODELS (C2) 

By utilizing different layer depths and setting, ResNet models provide similar AP 

increases before and after training, and it is observed that iteration time and memory usage 

makes the most notable difference. Table 7 shows that X101 takes 700% more time than 

the R50 baseline for each iteration and has a lower increase in AP. However, a more 

complex model provides a better AP; thus, it is more suitable for stable systems that do not 
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require re-training models. In terms of iteration speed, AP increase and memory usage, 

R50 provides a better increase-performance tradeoff with a lower memory requirement.   

TABLE 7: IMPACT OF RES-NET MODELS (C2) 

Code-
name 

Name Box 
AP 

Mask 
AP 

Train 
Box 
AP 

Train 
Mask 

AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total Time 
(h:mm:ss) 

M6 R50-FPN 41 37.2 54.119 45.569 13.119 8.369 0.5443 0.125886 0:13:42 
M9 R101-FPN 42.9 38.6 54.537 47.233 11.637 8.633 0.7421 0.162362 0:18:16 

M10 X101-FPN 44.3 39.5 56.582 48.472 12.282 8.972 3.6404 0.732266 1:26:49 

 

Figure 16: Detection made by M10 

 5.1.3. IMPACT OF BACKBONES (C3) 

 When comparing backbone training and AP performances, the main difference the 

time it takes to train a baseline. FPN halves the total time compared to C4, with almost 

three times faster iteration times. While DC5 is 1.5 times faster than C4, it does not affect 

Box and Mask AP as much as C4. 
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TABLE 8: IMPACT OF BACKBONES (C3) 

Code-
name 

Name Box 
AP 

Mask 
AP 

Train 
Box AP 

Train 
Mask 

AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total Time 
(h:mm:ss) 

M1 R50-C4 36.8 32.2 49.998 40.849 13.198 8.649 1.5486 0.362128 0:39:09 
M2 R50-DC5 38.3 34.2 49.845 42.124 11.545 7.924 1.0256 0.220827 0:25:06 
M3 R50-FPN 38.6 35.2 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19 

 5.1.4. IMPACT OF LR SCHEDULE (C4) 

LR Schedule determines the number of epochs a model has been pre-trained. As 

algorithms differ in training performance and benefit differently from the number of trains, 

they are compared separately. Baselines have chosen in regard to their barebone configs. 

It is observed that there’s next to no difference between 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 and 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 when 

it comes to the LR schedule. when it comes to the LR schedule. However, less trained 

models are trained faster, whereas higher LR sched baselines have higher AP scores. 

 
TABLE 9: LR IMPACT ON MASK AND CASCADE R-CNN (C4) 

Code-
name 

Name Lr 
sched 

Box 
AP 

Mask 
AP 

Train 
Box 
AP 

Train 
Mask 

AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total Time 
(h:mm:ss) 

M3 R50-FPN 1x 38.6 35.2 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19 
M6 R50-FPN 3x 41 37.2 54.119 45.569 13.119 8.369 0.5443 0.125886 0:13:42 

CR1 R50-FPN 1x 42.1 36.4 56.399 45.692 14.299 9.292 0.681 0.156877 0:17:07 
CR2 R50-FPN 3x 44.3 38.5 57.808 47.96 13.508 9.46 0.67 0.173187 0:17:40 

On the other hand, LR does not provide any significant changes at Box AP, iteration and 

interference time on Faster R-CNN. 
TABLE 10: LR IMPACT ON FASTER R-CNN (C4) 

Code-
name 

Name Lr 
sched 

Box 
AP 

Train 
Box AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total Time 
(h:mm:ss) 

F3 R50-FPN 1x 37.9 50.882 12.982 1.2647 0.31936 0:33:01 
F6 R50-FPN 3x 40.2 53.157 12.957 1.2541 0.320109 0:32:53 
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5.2. IMPACT OF BASELINE PROPERTIES 

There are several properties that change how a model is trained and performed. For 

testing, baseline M3 has been selected. Run#1 is the control model, where every value is 

at its defaults. 

• Run#2 and #3 demonstrates the effect of SBI, which is the base learning rate. 

• Run#4 and #5 demonstrates the effect of SMI, count of maximum training 

iterations. Iteration numbers are doubled and halved to show the impact, to 

provide a point to create an ideal model. 

• Run#6 and #7 shows the difference achieved by changing RBSPI, RoI batch 

size per image. 

• And Run#8 and #9 shows how changing testing threshold (RHSTT) value affect 

interference performance. 

Since the research was done on single GPU machines, differences in the number of 

images per batch (SIPB) were not observed. Likewise, as the dataset was filtered to include 

a single class, multiple class AP values (RNC) are also not provided. 

 5.2.1. Base Learning Rate (SBL): 

Learning rate is the rate of how a model reacts to errors by changing weights in 

each update. The learning rate is doubled on Run#2 and halved on Run#3. The results show 

a lower learning rate resulted in improved Box AP and Mask AP values. However, on 

experimental runs where SBL is 0, a dramatic decrease in AP has been observed since the 

model does not improve itself. This shows that the SBL value should be experimented with 

each dataset-model as there’s no definite ideal value. 
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TABLE 11: IMPACT OF SBL 

M3 
Runs 

SBL Train 
box 
AP 

Train 
mask 
AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total Time 
(h:mm:ss) 

Run#1 0.001 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19 
Run#2 0.002 51.239 44.06 12.64 8.858 0.5535 0.14662 0:14:45 
Run#3 0.0005 53.141 45.26 14.54 10.06 0.5322 0.12728 0:13:35 

 5.2.2. Training Iterations: 

A lower count of iterations has a minimal effect on iteration per second value; 

however, having a high number of iterations provide higher Box AP scores at the cost of 

time. On an experimental run with 9000 iterations, 53 Box AP has been reached in an hour 

and 25 minutes which further proves it. 

TABLE 12: IMPACT OF ITERATION COUNT 

M3 Runs Iteration 
Count 
(SMI) 

Train 
box 
AP 

Train 
mask 
AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total 
Time 

(h:mm:ss) 
Run#1 900 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19 
Run#4 1800 52.429 44.38 13.83 9.178 0.5423 0.1287 0:21:56 
Run#5 450 51.191 43.71 12.59 8.51 0.5554 0.1323 0:09:59 

Run#Exp1 9000 52.919 44.85 14.32 9.65 0.5404 0.128306 1:26:42 

 

 5.2.3. RoI Batch Size: 

Increasing batch sizes directly affects Box AP values, as it improves the control 

model’s Bounding box AP by 0.8. 

TABLE 13: IMPACT OF ROI BATCH SIZE 

M3 
Runs 

RoI 
Batch 

(RBSPI) 

Train 
box 
AP 

Train 
mask 
AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total 
Time 

(h:mm:ss) 
Run#1 512 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19 
Run#6 1024 53.037 44.39 14.44 9.188 0.5775 0.12238 0:14:03 
Run#7 256 51.718 44.53 13.12 9.328 0.5059 0.13482 0:13:31 
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 5.2.4. Testing Threshold: 

Changes in testing threshold show themselves in results, as it provides a threshold 

for predictions, a high testing rate results in higher confidence in detected objects. Still, it 

can also miss predictions with lower confidence, resulting in a lower AP. Figures 11 and 

12 demonstrate the effect of using different thresholds on validation outputs.  

TABLE 14: IMPACT OF TESTING THRESHOLD 

M3 
Runs 

Testing 
Threshold 

Train 
box 
AP 

Train 
mask 
AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total 
Time 

(h:mm:ss) 
Run#1 0.6 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19 
Run#8 0.8 52.009 44.44 13.41 9.243 1.3914 0.35865 0:36:39 
Run#9 0.4 51.535 44.4 12.94 9.199 1.3922 0.34576 0:36:05 

 

 

Figure 17: A detection from #Run8 (Threshold 0.8) 
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Figure 18: A detection from #Run4 (Threshold 0.4) 

Having experimented with different values, it is observed that: 

• Most notable factor in Box and Mask AP’s observed by decreasing the learning 

rate.  

• Halving the iteration count reduced the training time by half, but it has lowered 

the AP values as a result. 

• Increasing RoI batch sizes provided a better result in Box AP and the fastest 

interference time per image. 

A well-performing model should have a low learning rate, high iterations, and bigger RoI 

batch sizes. But as the iterations increase, the time the model takes to develop increases 

diminishingly. 
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TABLE 15: SUMMARIZATION OF DIFFERENT BASELINE VARIABLES 

M3 
Runs 

Train 
box 
AP 

Train 
mask 
AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total Time 
(h:mm:ss) 

Run#1 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19 
Run#2 51.239 44.06 12.64 8.858 0.5535 0.14662 0:14:45 
Run#3 53.141 45.26 14.54 10.06 0.5322 0.12728 0:13:35 
Run#4 52.429 44.38 13.83 9.178 0.5423 0.1287 0:21:56 
Run#5 51.191 43.71 12.59 8.51 0.5554 0.1323 0:09:59 
Run#6 53.037 44.39 14.44 9.188 0.5775 0.12238 0:14:03 
Run#7 51.718 44.53 13.12 9.328 0.5059 0.13482 0:13:31 
Run#8 52.009 44.44 13.41 9.243 1.3914 0.35865 0:36:39 
Run#9 51.535 44.4 12.94 9.199 1.3922 0.34576 0:36:05 

5.3. IMPACT OF TRAIN-VALIDATION SPLIT 

Another two runs of M3 (M3 Run#10 and #11) has been done to show how different 

splits of training data would result in training. 

M3 Run#1 itself has 20,560 train, 2,693 validation images. The rate of training 

images to validation images is 7.5/1. M3 Run#10 includes all images in the COCO dataset 

with the “person” class, filtered by utility tools. With 64,115 train and 2,693 validation 

images, the rate of train-validation is 23/1. M3 Run#11 has run with an 80/20 split, 

including 10,772 training and 2,693 validation images. As it can be seen from Table 16, 

the results do not give any insight on the impact of a split, as most of the accuracy and 

model is reached on first iterations. After the optimal accuracy is achieved, the model re-

evaluates itself around the same rates, which can be seen in Fig. 19. 

TABLE 16: IMPACT OF SPLIT 

M3 
Runs 

Split Train 
box 
AP 

Train 
mask 
AP 

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 
(s/it) 

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 
(s/img) 

Total 
Time 

(h:mm:ss) 
Run#1 20560/2693 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19 

Run#10 64115/2693 50.749 44.181 12.149 8.399 0.5542 0.134859 0:14:15 
Run#11 10772/2693 51.752 44.035 13.152 8.835 0.5597 0.132962 0:14:14 
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Figure 19: Split comparison between Run#1, Run#10 and Run#11 

After running and analyzing these experiments, a baseline with ideal properties 

have been created and run to prove experiment results. Test baseline is selected from M6, 

as it has the best properties (Mask R-CNN, R50-FPN) and is more trained than M3. Table 

17 below provides a comparison between initial runs and the run with changed baseline 

properties. Table 18 includes detailed AP values for comparison. 

TABLE 17: EXPERIMENTAL BASELINE COMPARISON  

Runs Box 
AP 

Mask 
AP 𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 SBL SMI RBSPI RHSTT 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 

(s/it) 
𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 

(s/img) 

Total 
Time 

(h:mm:ss) 

M6 
(initial) 54.119 45.569 13.119 8.369 0.001 900 512 0.6 0.5443 0.125886 0:13:42 

M6-F 55.302 47.249 14.299 10.049 0.0005 2700 1024 0.6 0.5911 0.126910 0:32:17 
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TABLE 18: EXPERIMENTAL BASELINE AP COMPARISON 

Baseline 
Object Detection Instance Segmentation 

   AP      AP50     AP75     APs      APm      APl       AP      AP50     AP75     APs      APm      APl    
M6 (init) 54.119 83.45 58.94 37.7 60.783 70.24 45.569 79.88 47.854 27.426 50.437 63.623 

M6-F 55.302 83.98 60.25 37.91 62.645 72.106 47.249 81.01 50.654 28.578 51.767 65.598 

The AP and increment results are similar to M10’s, which has an X101-FPN 

backbone. But the improvement shows itself on runtime, whereas M10 uses 7 GB of 

memory and takes 1:27:17 to train, our experimental M6-F uses 5.6 GB and takes 0:32:17 

to achieve similar results. The difference between the baseline trained M6 and modified 

trained M6 is shown in Fig. 20 and 21. 

 

Figure 20: Detections between Baseline M6 and Modified M6 

 

Figure 21: Mask R-CNN accuracy of Modified M6 (Blue) and Baseline M6 (Green)  
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CHAPTER 6 

CONCLUSIONS 

This thesis compares the performances of several pedestrian detection methods 

with different model parameter values and configuration settings. It should be noted that 

the performance of a detection model may vary largely depending upon the data size and 

computing power used. The experimental results of this study are obtained using a local 

server and therefore the conclusions cannot be extended to a different computing domain 

without making appropriate adjustments. The primary findings are summarized as below: 

1. Baseline models with Mask R-CNN yields a higher AP with the minimal running time. 

2. Cascade R-CNN uses more memory, takes more time for iterations and interference, 

but generates the highest AP. 

3. Faster R-CNN baselines require less memory, but do not support object segmentation 

and perform worse on bounding box than the Mask R-CNN models. 

4. If a well-rounded model is desired, a baseline with these features can be considered: 

• Mask R-CNN, ResNet R-50, and FPN backbone. 

• High LR, as it was pre-trained with higher initial AP values. This can 

be an issue when introducing new classes. 

• Iteration Count: 1800-2700 may be a good starting choice. 

• Base Learning Rate: 0.001 to 0.00025 for a single GPU. 

• RoI Batch Size: At least 512 for a practical dataset. 

5. ResNet models require increasingly more memory as the layer depth increases. X-101 

takes more time and resources to improve AP than other R-101 variants. Using COCO 

dataset, R-50 finishes training faster and does not require much memory. 
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6. A baseline model of a FPN backbone yields better results than that of C4 and DC5 

alternatives. 

7. Testing threshold seems not a significant factor of affecting the AP results. 
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