
Empirical Study of Pedestrian Detection using Deep Learning

by

Ahmet Kapkic

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master

of

Computing and Information Systems

YOUNGSTOWN STATE UNIVERSITY

May, 2021

Empirical Study of Pedestrian Detection using Deep Learning

Ahmet Kapkic

I hereby release this thesis to the public. I understand that this thesis will be made available
from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access.
I also authorize the University or other individuals to make copies of this thesis as needed
for scholarly research.

Signature:

Ahmet Kapkic, Student Date

Approvals:

Dr. Yong Zhang, Thesis Advisor Date

Dr. John Sullins, Committee Member Date

Dr. Feng George Yu, Committee Member Date

Dr. Salvatore A. Sanders, Dean of Graduate Studies Date

iii

DEDICATION

To my parents, for their everlasting support;

To my professors who guided me not only with words, but also with their actions.

And to the memory of Prof. Coskun Bayrak.

iv

ABSTRACT

Detecting pedestrians in public settings is a major research topic in both Computer

Vision and Artificial Intelligence communities. It has found applications in a wide range

of areas such as vehicle driving with autonomous control systems, video surveillance, and

navigating robots, etc. Over the past decade, a great progress has been made in the

development of efficient algorithms and the availability of large-scale data set,

especially the advancement of Deep Learning method. In this thesis, the performance of a

few state-of-the-art methods were evaluated by conducting empirical experiments with

different settings and dataset configurations on pedestrian detection. The experiments

were carried out using several Deep Learning models in the framework of both

baseline and special configurations, including the Faster R-CNN, Mask R-CNN,

and Cascade R-CNN methods. The experimental results show that the Mask R-CNN

with a ResNet50 barebone yields the best performance in terms of its larger AP

improvement and fewer resource requirement. This work provides a solid foundation

upon which more sophisticated comparative studies can be conducted that utilize

new algorithms/models and larger data set.

v

ACKNOWLEDGEMENTS

I would like to thank Dr. Yong Zhang for his support with the opportunity to work

on this research project. By providing crucial guidance during every part of my graduate

experience and giving insights into approaching and solving a challenging problem. His

guidance has been an enormous resource for the overall experimental design, testing and

thesis writeup.

I would also like to thank the thesis committee members, Dr. John Sullins and Dr.

Feng George Yu, for their encouragement and support throughout my academic

coursework at Youngstown State University and spare their valuable time serving on the

committee.

vi

Table of Contents
ABSTRACT ... iv

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

CHAPTER 1 INTRODUCTION .. 1

1.1. TECHNICAL ISSUES ... 2

1.2. CONTRIBUTIONS .. 3

CHAPTER 2 METHODOLOGY ... 4

2.1. RELATED WORK ... 4

2.2. DATASETS .. 5

2.3. METHODS/ALGORITHMS .. 6

2.3.1. FAST R-CNN ... 9

2.3.2. FASTER R-CNN .. 9

2.3.3. MASK R-CNN.. 9

2.3.4. CASCADE R-CNN .. 10

2.3.5. YOLO ... 10

2.3.6. PANOPTIC SEGMENTATION ... 11

2.4. METHODOLOGY ... 12

CHAPTER 3 DATA PROCESSING .. 14

vii

3.1. DATASET .. 14

3.2. SAMPLE PREPARATION .. 15

CHAPTER 4 EXPERIMENT DESIGN ... 17

4.1. TRAINING .. 17

STEP-1: Prepare the dataset: .. 17

STEP-2: Train a model: .. 18

4.2. TESTING ... 21

STEP-3: Inference & Evaluation on trained model: ... 21

4.3. DATASET SPLIT .. 22

CHAPTER 5 RESULTS AND DISCUSSIONS .. 24

5.1. IMPACT OF BASELINES .. 25

5.1.1 IMPACT OF DETECTION ALGORITHM (C1) ... 25

5.1.2. IMPACT OF RES-NET MODELS (C2) .. 26

5.1.3. IMPACT OF BACKBONES (C3) .. 27

5.1.4. IMPACT OF LR SCHEDULE (C4) ... 28

5.2. IMPACT OF BASELINE PROPERTIES ... 29

5.2.2. Training Iterations: ... 30

5.2.3. RoI Batch Size: ... 30

5.2.4. Testing Threshold: .. 31

5.3. IMPACT OF TRAIN-VALIDATION SPLIT ... 33

viii

CHAPTER 6 CONCLUSIONS .. 36

REFERENCES ... 38

ix

LIST OF FIGURES

Figure 1: Confusion matrix table for a class. .. 2

Figure 2: Object detection output on a sample image. .. 7

Figure 3: Object detection output on a sample image. .. 8

Figure 4: Difference between object detection and instance segmentation 8

Figure 5: Instance segmentation output on a sample image. .. 9

Figure 6: General architecture of Faster R-CNN and Mask R-CNN methods. 10

Figure 7: General architecture of the Cascade R-CNN method. 11

Figure 8: Proposed methodology .. 12

Figure 9: Sample Model-Baseline couple table ... 13

Figure 10: An unfiltered image from the COCO dataset .. 14

Figure 11: Sample “person” images from the edited COCO dataset. 15

Figure 12: A processed image from “validation” set using Faster R-CNN. 15

Figure 13: COCO Data Format ... 17

Figure 14: Accuracy, False-Positive/Negative comparisons of Mask R-CNN (red), Cascade

R-CNN (purple) .. 25

Figure 15: Accuracy and False-Negative comparison of Mask R-CNN (red) and Faster R-

CNN (green).. 26

Figure 16: Detection made by M10 .. 27

Figure 17: A detection from #Run8 (Threshold 0.8) .. 31

Figure 18: A detection from #Run4 (Threshold 0.4) .. 32

Figure 19: Split comparison between Run#1, Run#10 and Run#11 34

Figure 20: Detections between Baseline M6 and Modified M6 35

x

Figure 21: Mask R-CNN accuracy of Modified M6 (Blue) and Baseline M6 (Green) 35

xi

LIST OF TABLES

TABLE 1: COMPLETE BASELINE TABLE ... 19

TABLE 2: SELECTED BASELINE SET .. 20

TABLE 3: EXPERIMENTAL BASELINE PROPERTIES ... 22

TABLE 4: BASELINE SPLITS ... 23

TABLE 5: EXPERIMENTAL RESULTS.. 24

TABLE 6: IMPACT OF DETECTION ALGORITHM (C1) ... 26

TABLE 7: IMPACT OF RES-NET MODELS (C2) .. 27

TABLE 8: IMPACT OF BACKBONES (C3) .. 28

TABLE 9: LR IMPACT ON MASK AND CASCADE R-CNN (C4) 28

TABLE 10: LR IMPACT ON FASTER R-CNN (C4) ... 28

TABLE 11: IMPACT OF SBL ... 30

TABLE 12: IMPACT OF ITERATION COUNT .. 30

TABLE 13: IMPACT OF ROI BATCH SIZE ... 30

TABLE 14: IMPACT OF TESTING THRESHOLD ... 31

TABLE 15: SUMMARIZATION OF DIFFERENT BASELINE VARIABLES 33

TABLE 16: IMPACT OF SPLIT .. 33

TABLE 17: EXPERIMENTAL BASELINE COMPARISON .. 34

TABLE 18: EXPERIMENTAL BASELINE AP COMPARISON 35

1

CHAPTER 1

INTRODUCTION

Detecting pedestrians in public settings is an important goal in object detection. It has

been utilized in different applications such as autonomous car driving, video surveillance

and navigating robots. Much research has been done in this area, using a wide variety of

methods and different detection settings. The use of deep learning to carry out detection is

beneficial because object detection and instance segmentation can be conducted in an

integrated system. Due to the improvements in autonomous vehicles and the prevalence of

video surveillance systems, The task of detecting pedestrians accurately has become

increasingly important in automobile industries [1].

This paper aims to analyze different combinations of model configurations and datasets

to provide an experiment-based perspective of how the current methods work with real

word videos. This thesis is organized as follows: In Chapter-2, a brief literature review is

provided that describes the important related works in the field, as well as the availability

of several large-scale public datasets to be used. The features of three models are presented:

Faster R-CNN, Mask R-CNN and Cascade R-CNN. In Chapter-3, detailed information of

video samples and pre-processing procedures are described. Chapter-4 contains the

experimental design such as the training and validation setup and the grouping of

algorithms, backbones and architectures in each test run. In Chapter-5, experimental results

are presented and the impacts of several factors on the models’ performances are analyzed.

The conclusions drawn from this study are given in Chapter-6.

2

1.1. TECHNICAL ISSUES

There are several aspects of a detection algorithm: training, testing and actual detecting.

A system must balance these aspects to provide an optimal detection system.

Memory requirements: As the datasets and techniques improve, the memory required

to carry on training tasks is also increased. This puts pressure on machine of a single GPU.

Precision: Precision is a critical metric in detection. Average Precision (AP) is used

when assessing the performances of algorithms and models. In a validation test, there are

four values that help us understand how an algorithm works as shown in Fig. 1).

Actual

Positive Negative

Predicted
Positive True Positive (TP) False Positive (FP)

Negative True Negative (TN) False Negative (FN)

Figure 1: Confusion matrix table for a class.

Precision is formulated as:
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

A system with low precision does not ensure whether a detection has been carried

out correctly and is not reliable to be used in real applications.

Training time: Preparing a model is a resource-intense task. Ideally, a good model

has the lowest training time while not making any sacrifices from accuracy. Batch sizes

and iteration counts help increase the accuracy of a model. Constantly increasing these

values does not necessarily increase accuracy as there is a point of diminishing returns, and

it is essential to find the optimal point between iterations and accuracy.

3

Realtime-ness: Since pedestrians are considered a part of traffic, the systems' detection

must be done in real-time to prevent accidents. This is an important issue since the detection

must be carried out quickly and accurately.

1.2.CONTRIBUTIONS

 This study focuses on the empirical evaluation of the Faster R-CNN[2], Mask R-

CNN[3] and Cascade R-CNN[4] methods with respect to the performances of two popular

precision ratings: bounding box and segmentation in the context of detecting pedestrians.

The primary contributions are: (i) Determining the impacts of the baselines and their

properties on the training time, accuracy, and precision rate with a given dataset with

different training/validation splits; (ii) Comparing the performances of three different

models by the standard metrics under the same or similar experimental setups and running

environments; (iii) Picking an optimal set of model, baseline and dataset features on

training systems to detect pedestrians.

4

CHAPTER 2

METHODOLOGY

2.1. RELATED WORK

There is a lot of literature and research done on object detection and image detection

datasets. As the methods, size of the data and technological resources increase, libraries

and software packages are being developed, each of them working in a different way.

Detectron2[5] , an object detection library developed by FAIR (Facebook AI Research), is

an excellent example of this, which has been started as Mask R-CNN-benchmark and

continued to Detectron before being developed into its current state in almost four years.

Libraries like this help other research since they are regularly maintained and usually

include different models.

Detecting pedestrians in public is also a research area that is being tackled for different

scenarios, from robot navigation[6] to security and surveillance[7]. On a research done by

Zhang et al.[8] focuses on the difficulty of training with natural scene images to detect

objects in UAV images and introduce a dataset named MOHR. The authors also perform

several experiments to evaluate the performance of different object detection models on

their dataset. Authors suggest that R-FCN method with a ResNet-101 backbone works best

with their dataset, performing 31.32 averaged AP, yet point out the need for further

research, especially learning discriminative features for irregular shaped objects.

Precision and speed are vital points in pedestrian detection since an inaccurate or late

decision could put people at risk. A study connected by Li and colleagues[1] focuses on

this by proposing a human and machine cooperative driving system. By designing a deep

Q-network (DQN) and combining it with the cooperative driving scheme in real-time, their

5

approach estimates collision and warns the user to take control. The work claims to achieve

a more efficient warning rate than other single-pooled DQN approaches. There are other

works [9], [10] focusing on detecting pedestrians under not ideal conditions like on low

resolution images or nighttime images.

2.2. DATASETS

Public datasets play an essential role in research since they are mostly a product of

collaborative work and usually have way more detailed annotations and categories. There

are also datasets with different focuses and properties, which can be used to add variance.

Microsoft COCO[11], presented by Lin et al., provides a dataset for using object

recognition to understand scenes. The researchers have gathered 330 thousand images of

everyday scenes containing objects in their natural context. Another object database, Open

Images Dataset (at the time of writing V6)[12], published by researchers at GoogleAI,

provides more than 9 million images with 3 million annotations and 15 million bounding

boxes. On its latest version, V6 + Extensions, also includes almost half a million

crowdsourced images. The authors state that the research provides 15 times more bounding

boxes than the following largest datasets. Developed by Zhang et al., Widerperson[13] is

another dataset focusing on pedestrian detection in the wild. The authors point out the

difference between diversity and density between requirements and select their images

from various scenarios to provide a diverse dataset. Their dataset includes almost 14

thousand images with about 400 thousand annotations.

6

Terminologies:

• CNN: Convolutional Neural Network

• FPN: Feature Pyramid Network

• IoU: Intersect over Union (𝐴𝐴∩𝐵𝐵
𝐴𝐴∪𝐵𝐵

)

• AP: Average Precision.

• Box AP: Bounding-box (Detection) AP

• Mask AP: Masking (Segmentation) AP

• AP50 AP at IoU=0.50

• APs AP for small objects: area < 322 px

• APm AP for medium objects: 322 < area < 962 px

• APl AP for large objects: area > 962 px

• Lr Sched (Training Schedule): Pre-training, 1x has ~12 rounds of iterations

while 3x has ~37 rounds.

• TIteration (s/it): Averaged time it takes to go through a single iteration.

• TInterference (s/img): Averaged time it takes to interference a single image.

• Base Learning Rate (SBL): Initial learning rate, how much the model adapts to

errors in each update

• Max Iteration (SMI): Maximum number of iterations

• Batch Size Per Image (RBSPI): Region of Interest (ROI) batch size per image

• Testing Threshold (RHSTT): RoI testing confidence threshold

• Image Per Batch (SIPB): Number of images per batch

• RoI Classes (RNC): Number of Region of Interest classes

2.3. METHODS/ALGORITHMS

7

There are many different object detection algorithms developed over the years. Some

of the models are iterations of the others, improving the base model each time. These

algorithms vary between resource intensity, general approach and processing methods. R-

CNN and YOLO[14] models are an example of iterative models. There are two tasks

related to pedestrian detection.

Object Detection (Bounding Box): Object detection aims to create a bounding box

around a class to detect it. Since the final result is a bounding box, it does not tell anything

about the shape of an object or differentiate between different instances of the same class.

Fig. 2 gives an example of this, while a bounding box shows a box with “person”, this does

not give any information if the box includes a whole person or just a part of them.

Figure 2: Object detection output on a sample image.

8

Figure 3: Object detection output on a sample image.

Instance Segmentation: Segmentation classifies objects by creating pixel-level masks.

This represents an object way more accurately than object detection. Different from

semantic segmentation, instance segmentation tries to understand and find each instance of

the same class. Fig. 4 demonstrates the pixel-level mask by providing a comparison to

bounding box output.

Figure 4: Difference between object detection and instance segmentation

9

Figure 5: Instance segmentation output on a sample image.

2.3.1. FAST R-CNN

Fast R-CNN[12], a study done by Ross Girschick, improves on a previous R-CNN

(Region-based Convolutional Neural Network) by giving input image directly to CNN,

generating a convolutional feature map and using a region of interest pool layer. The author

suggests that the research provides train speedup times by up to 18.3 times over R-CNN.

2.3.2. FASTER R-CNN

A different study made by Ren and his colleagues proposed an improved version of

Fast R-CNN, called Faster R-CNN, which benefits from a newly introduced RPN (Region

Proposal Network) to cut the costs of region proposals. The authors state that these

improvements provide a detection frame rate of 5fps and an increased median Average

Precision value.

2.3.3. MASK R-CNN

In the study of Mask R-CNN, He et al. introduced a branch for recognizing bounding

boxes to the aforementioned Faster R-CNN, improving it further. Also, it enables image

segmentation by including mask and pixel-to-pixel alignment, which was missing in Faster

10

R-CNN. Mask R-CNN handles segmentation branches in parallel to the detection branch.

Authors claim that with these changes, Mask R-CNN outperforms all single-model entries

on every task at the COCO challenge at the time.

Figure 6: General architecture of Faster R-CNN and Mask R-CNN methods.

2.3.4. CASCADE R-CNN

Developed by Cai et al., Cascade R-CNN[15] is a cascade approach based on Faster R-

CNN, using multiple detection branches to achieve a better detection performance. Since

the Cascade R-CNN approach includes multiple detection branches, authors have extended

their previous Cascade R-CNN approach to do instance segmentation by adding a mask

head to the cascade, opposed to Mask R-CNN’s parallel branch architecture[4]. Authors

state that their approach increases AP with ResNet-50 by 3.6 on object detection (from

37.7) and 1.5 on instance segmentation (from 33.9) using COCO 2017 dataset.

2.3.5. YOLO

Another object detection system developed by Redmon et al. proposes a one-stage real-

time object detection (bounding box) system[14], focusing on speed and accuracy. YOLO

outperforms RetinaNet-50 and 101 methods in both mAP-50 ratings and in processing

Backbone Classification

Bounding Box

Network
Head

Segmentation

Input

Images

Faster R-CNN

Mask R-CNN

• ResNet – 50
• ResNet – 101
• ResNeXt – 101

• FC
• Conv

11

time. Since YOLO is a single-stage method, it takes a lot less time to process. The authors

also propose that their system outperforms Fast and Faster R-CNN methods in AP on

COCO test-dev 2015 dataset[16].

Figure 7: General architecture of the Cascade R-CNN method.

2.3.6. PANOPTIC SEGMENTATION

Proposed by Krillov et al., panoptic segmentation aims to provide a coherent

segmentation by unifying semantic and instance segmentation towards real-world vision

systems[17]. To achieve this, the authors define a set of rules to join these two segmentation

methods together, including proposing a new metric called Panoptic Quality and setting a

minimum IoU threshold. Using three datasets that have both dense semantic and instance

semantic annotations[18]–[20], authors compare the performance of their model by doing

several experiments; comparing AP results to their PQ metric and human-machine

prediction performances.

Backbone Classification

Bounding Box

Network
Head

Segmentation

In

Pool C

B

NH

S

Cascade R-CNN

P2 ...

12

2.4. METHODOLOGY

The proposed methodology consists of six steps, as explained in Fig 8.; model

selection, where the models mentioned in Related Work are compared and selected;

baseline comparison, where the baselines are compared in regard to their memory

requirement, speed and accuracy. After listing and comparing datasets and models, a

dataset is created and filtered. Datasets and models are trained with datasets to develop a

comparative table, described in Fig. 9. The model-baseline couple with the highest

accuracy and execution time is considered as the optimal couple and evaluated in the last

step.

Model
Selection

Dataset
Comparison

Model
Training

Picking the
optimal
couple

Evaluation
of the

trained
model

Data
Processing

Figure 8: Proposed methodology

13

Figure 9: Sample Model-Baseline couple table

14

CHAPTER 3

DATA PROCESSING

This section describes dataset preparation steps, from acquiring to be readily used in

the experiment.

3.1. DATASET

 During the course of the work, the COCO image dataset has been utilized as the

dataset provides enough images to train and take less space than other datasets with more

images. The COCO dataset provides 66,808 images with “person” annotation in total,

separated as 64,115 train and 2,693 validation images. A few utility programs were

developed in Python to acquire, split and prepare the datasets to help with the research.

Fig. 10 to 12 provides images from the COCO dataset at different stages of the work.

Figure 10: An unfiltered image from the COCO dataset

15

 Figure 11: Sample “person” images from the edited COCO dataset.

Figure 12: A processed image from “validation” set using Faster R-CNN.

3.2.SAMPLE PREPARATION

 A few utility programs were developed in Python to acquire, split and prepare the

datasets to help with the research. A dataset is generally constructed as two folders of

images train/validation and two annotation files consisting of annotations of respective

folders. A downloader utility used to get only images with “person” from 123,000 images,

a filter utility to extract unrelated (non-person) annotations in images, and a separator

16

utility to change sizes of training-validation annotation files. These utilities allow us to use

and split the dataset however we need.

 Using the created dataset utilities, several subsets of train images are selected to

achieve different balances with the validation dataset, including an 80/20 split between

training and validation images to provide an insight on the effect of dataset split on training

performance.

17

CHAPTER 4

EXPERIMENT DESIGN

This section describes the experimental details during the training/validation phases

with various parameter setups. All experiments were carried out on different configurations

using the Detectron2 packages installed under Linux environments, a local machine with

Nvidia 1660Ti, CUDA 11.2 with 6 GB GPU memory, and on a Google Colab machine

with a Tesla T4, CUDA 11.2 with 15 GB’s of GPU Memory. Datasets are stored locally

for the local machine and on Google Drive, for Google Colab machines to reduce network

and data transmission costs.

4.1. TRAINING

The training phase has two steps:

STEP-1: Prepare the dataset:

 Locally stored datasets are prepared with annotation files in COCO JSON format.

JSON format helps to parse the data using the utility programs to prepare the dataset to be

imported by detectron2’s library.

COCO Standard Data Format Object Detection Extension
{"info" : info, "images" : [image],
"annotations" : [annotation], "licenses" : [license],}

info{ "year": int,
"version" : str, "description" : str,
"contributor" : str, "url" : str,
"date_created" : datetime,}

image{"id" : int, "width" : int,
"height" : int, "file_name" : str,
"license" : int, "flickr_url" : str,
"coco_url" : str, "date_captured" : datetime,}

license{"id" : int, "name" : str, "url" : str, }

annotation{
"id" : int,
"image_id" : int,
"category_id" : int,
"segmentation" : RLE or [polygon],
"area" : float,
"bbox" : [x,y,width,height],
"iscrowd" : 0 or 1,
}

categories[{
"id" : int,
"name" : str,
"supercategory" : str,
}]

Figure 13: COCO Data Format

18

STEP-2: Train a model:

 In this step, a baseline is picked and fine-tuned on the prepared dataset. Baselines:

During the work, baselines from detectron2’s model zoo are used. A few of the baselines

with different backbone combinations and baseline features are selected to provide a

comparison. These are,

1) Algorithms:

• Faster R-CNN, provides only object (bounding box) detection

• Mask R-CNN, supports object segmentation and object detection

• Cascade R-CNN, is a cascade of Mask R-CNN model.

2) Backbones:

• FPN: Uses a Resnet + Feature Pyramid Network (FPN) backbone with standard

convolution layer and Fully-connected (FC) heads for bounding box and mask

predictions.

• Conv4 (C4): A ResNet conv4 backbone with a conv5 head. This backbone has also

used by the Faster R-CNN paper.

• Dilated C5 (DC5): A ResNet conv5 backbone, including dilations in conv5, and a

standard convolution and Fully Connected layers as head for bounding box and

mask predictions.

3) ResNet Network Architectures:

• R-50: Original ResNet-50 model, by Microsoft Research Asia. 50 layers deep.

• R-101: Original ResNet-101 model. 101 layers deep.

• X-101: ResNeXt-101-32x8d model. 101 layers deep.

19

The main difference between ResNet and ResNeXt is that ResNeXt has more

detailed layers in each stage of convolution; and includes 32 grouped convolutions each

iteration. This results in a more detailed processing of an image, but requires more

memory.

4) Baseline training schedule: 1x/3x. This defines how much a baseline has been

pretrained. A 3x schedule represents 3 COCO epochs of training.

A table with the complete baselines is provided below.

TABLE 1: COMPLETE BASELINE TABLE

Model ID Name Lr
sched

Train
time

(s/iter)

Inference
time

(s/im)

Train
mem
(GB)

Box
AP

Mask AP

Faster R-CNN
137257644 R50-C4 1x 0.551 0.102 4.8 35.7 -
137847829 R50-DC5 1x 0.38 0.068 5 37.3 -
137257794 R50-FPN 1x 0.21 0.038 3 37.9 -
137849393 R50-C4 3x 0.543 0.104 4.8 38.4 -
137849425 R50-DC5 3x 0.378 0.07 5 39 -
137849458 R50-FPN 3x 0.209 0.038 3 40.2 -
138204752 R101-C4 3x 0.619 0.139 5.9 41.1 -
138204841 R101-DC5 3x 0.452 0.086 6.1 40.6 -
137851257 R101-FPN 3x 0.286 0.051 4.1 42 -
139173657 X101-FPN 3x 0.638 0.098 6.7 43 -

Mask R-CNN
137259246 R50-C4 1x 0.584 0.11 5.2 36.8 32.2
137260150 R50-DC5 1x 0.471 0.076 6.5 38.3 34.2
137260431 R50-FPN 1x 0.261 0.043 3.4 38.6 35.2
137849525 R50-C4 3x 0.575 0.111 5.2 39.8 34.4
137849551 R50-DC5 3x 0.47 0.076 6.5 40 35.9
137849600 R50-FPN 3x 0.261 0.043 3.4 41 37.2
138363239 R101-C4 3x 0.652 0.145 6.3 42.6 36.7
138363294 R101-DC5 3x 0.545 0.092 7.6 41.9 37.3
138205316 R101-FPN 3x 0.34 0.056 4.6 42.9 38.6
139653917 X101-FPN 3x 0.69 0.103 7.2 44.3 39.5

Cascade R-CNN (C-R-CNN)
138602847 C-R-CNN 1x 0.317 0.052 4 42.1 36.4
144998488 C-R-CNN 3x 0.328 0.053 4 44.3 38.5

20

A subset of baselines is picked to provide the ideal comparison, a set of criteria is

set by these research goals:

• C1: Algorithms: Comparison of Faster, Cascade and Mask R-CNN algorithms,

visualizing the difference between algorithms.

• C2: ResNet training models: How do R-50, R-101, and X-101 affect the

performance?

• C3: Backbone comparisons: FPN/C4/DC5, which one does perform better?

• C4: LR schedule difference: How does 1x and 3x differ?

Baselines are codenamed for logging and comparison purposes. The resulting

baseline subset is shown in the table below:

TABLE 2: SELECTED BASELINE SET

Codename Algorithm Model ID Name Lr
sched

Train
mem (GB)

Box
AP

Mask AP

F3 Faster R-CNN 137257794 R50-FPN 1x 3 37.9 -
F6 Faster R-CNN 137849458 R50-FPN 3x 3 40.2 -
M1 Mask R-CNN 137259246 R50-C4 1x 5.2 36.8 32.2
M2 Mask R-CNN 137260150 R50-DC5 1x 6.5 38.3 34.2
M3 Mask R-CNN 137260431 R50-FPN 1x 3.4 38.6 35.2
M6 Mask R-CNN 137849600 R50-FPN 3x 3.4 41 37.2
M9 Mask R-CNN 138205316 R101-FPN 3x 4.6 42.9 38.6
M10 Mask R-CNN 139653917 X101-FPN 3x 7.2 44.3 39.5
CR1 Cascade R-CNN 138602847 C R-CNN 1x 4 42.1 36.4
CR2 Cascade R-CNN 144998488 C R-CNN 3x 4 44.3 38.5

M3 is selected as the base model, which will be compared with others to answer

the research goals. Following subsets are created to answer the research goals:

• C1: F3-M3-CR1

• C2: M6-M9-M10

• C3: M1-M2-M3

21

• C4: F3-F6, M3-M6, CR1-CR2

We have several properties to adjust in addition to the baseline model:

• SOLVER.IMS_PER_BATCH (SIPB): Number of images per batch, 2 for each

GPU in training. Increases memory as batch size increases.

• SOLVER.BASE_LR (SBL): Base Learning Rate, 0.001 selected as default to keep

it away from overshooting while keeping the convergence time short.

• SOLVER.MAX_ITER (SMI): Maximum number of training iterations, 900 chosen

as default.

• ROI.BATCH_SIZE_PER_IMAGE (RBSPI): Region of Interest (ROI) batch size

per image, 512 given as default.

• ROI.NUM_CLASSES (RNC): Region of Interest classes, which is 1 for this project

because there’s only one class (Person) to train.

4.2. TESTING

STEP-3: Inference & Evaluation on trained model:

 After training a model, the path to the model is given to calculate inference on the

validation dataset. In addition to the previous properties, an RoI testing threshold is added

at this point.

 ROI_HEADS.SCORE_THRESH_TEST (RHSTT): RoI testing threshold, 0.6 as

default. A lower value increases AP but slows down the inference process. Different values

may be chosen and experimented on to find an ideal point.

These are also the model variables that will be adjusted during the work to observe

their effect on accuracy and training time on pedestrian detection. To observe this, baseline

M3 will be run with values of:

22

TABLE 3: EXPERIMENTAL BASELINE PROPERTIES

SIPB SBL SMI RBSPI RNC RHSTT
Run#1 2* 0.001 900 512 1** 0.6
Run#2 2 0.002 900 512 1 0.6
Run#3 2 0.0005 900 512 1 0.6
Run#4 2 0.001 1800 512 1 0.6
Run#5 2 0.001 450 512 1 0.6
Run#6 2 0.001 900 1024 1 0.6
Run#7 2 0.001 900 256 1 0.6
Run#8 2 0.001 900 512 1 0.8
Run#9 2 0.001 900 512 1 0.4

*SIPB will be kept at 2, according to the GPU and memory limitations.

**RNC is held at 1 due to the class size.

All of these runs are compared in terms of detection performance to find an optimal

baseline run configuration.

4.3. DATASET SPLIT

 In addition to the baseline property runs, two more runs of M3 are conducted with

the same baseline properties but with different training-validation splits. This is done to

observe the effect of splits in performance and precision, if there is any. The splits are done

using custom utility tools, and three total splits are created.

• Split1: A split of 20560 training and 2693 validation images (88%/12%). This is

the default split used in all of the runs.

• Split2: All images with “person” class in the COCO dataset. 64115 training and

2693 validation images (96%/4%).

• Split3: A split with 80% and %20 between training and validation images.

23

TABLE 4: BASELINE SPLITS

Split SBL SMI RBSPI RHSTT
Run#1 20560/2693 0.001 900 512 0.6

Run#10 64115/2693 0.001 900 512 0.6
Run#11 10772/2693 0.001 900 512 0.6

24

CHAPTER 5

RESULTS AND DISCUSSIONS

Throughout the experiments, selected ten baselines have trained dozens of times

separately to compare their differences. Table 5 below provides the results of chosen runs

carried out as described in previous chapters. As the baselines are undertrained, every

initial run except an experimental run saw an increase in AP values. On top of comparing

baselines, nine combinations of baseline properties are also experimented with to provide

an insight into their effect on performance. During this chapter, the impact of baselines

with regard to their detection algorithm, res-net models, backbones and LR schedules are

explained separately. Baseline properties are compared with base learning rates, training

iterations, RoI batch sizes and testing thresholds. Notable differences in results are also

demonstrated with Tensorboard outputs, Fig. 14, 15, 19, and 21.

TABLE 5: EXPERIMENTAL RESULTS

Code-
name

Name Lr
sched

Box
AP

Mask
AP

Train
Box
AP

Train
Mask

AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total Time
(h:mm:ss)

M1 R50-C4 1x 36.8 32.2 49.998 40.849 13.198 8.649 1.5486 0.362128 0:39:09
M2 R50-DC5 1x 38.3 34.2 49.845 42.124 11.545 7.924 1.0256 0.220827 0:25:06
M3 R50-FPN 1x 38.6 35.2 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19
M6 R50-FPN 3x 41 37.2 54.119 45.569 13.119 8.369 0.5443 0.125886 0:13:42
M9 R101-

FPN
3x 42.9 38.6 54.537 47.233 11.637 8.633 0.7421 0.162362 0:18:16

M10 X101-
FPN

3x 44.3 39.5 56.582 48.472 12.282 8.972 3.6404 0.732266 1:26:49

CR1 R50-FPN 1x 42.1 36.4 56.399 45.692 14.299 9.292 0.681 0.156877 0:17:07
CR2 R50-FPN 3x 44.3 38.5 57.808 47.96 13.508 9.46 0.67 0.173187 0:17:40
F3 R50-FPN 1x 37.9 - 50.882 - 12.982 - 1.2647 0.31936 0:33:01
F6 R50-FPN 3x 40.2 - 53.157 - 12.957 - 1.2541 0.320109 0:32:53

After comparing ten baselines with nine different configurations, the results are presented.

25

5.1. IMPACT OF BASELINES

Baselines have several different properties, which requires a detailed evaluation of

them. In this section, previously defined criteria are evaluated and compared in separate

parts.

 5.1.1 IMPACT OF DETECTION ALGORITHM (C1)

 The detection algorithm is one of the essential factors in detection problems. On

top of their performance improvements, algorithms also allow different approaches and

functionalities to improve the scale of pedestrian detection further. As Mask R-CNN

supports instance segmentation on top of the bounding box object detection present in

Faster R-CNN and Fast R-CNN, Mask R-CNN is mode adaptable. The experiments also

show that Mask R-CNN models train better in both Box AP and Mask AP. As shown in

Fig. 14 and 15, there is not much difference in accuracy, false-negative, and false-positive

values; since the image classification is done with R-50. Mainly, increases in AP values

and iteration times are focused on.

Figure 14: Accuracy, False-Positive/Negative comparisons of Mask R-CNN (red), Cascade R-

CNN (purple)

26

Figure 15: Accuracy and False-Negative comparison of Mask R-CNN (red) and Faster R-CNN (green)

As shown in Table 5., the difference in AP increase in Mask R-CNN (M3) and

Cascade R-CNN (CR1) has very similar increases in AP values between three baselines,

the difference between the two being only 0.37% more. However, each iteration of CR1 is

25.92% slower than M3. Faster R-CNN has the lowest values of AP increase and iteration

time. Based on these results, it can be said that Mask R-CNN is a better option in terms of

speed/train performance than Faster R-CNN and Cascade R-CNN in general. Except, in

bounding box AP, Cascade R-CNN provides the highest AP.

TABLE 6: IMPACT OF DETECTION ALGORITHM (C1)

Code-
name

Name Box
AP

Mask
AP

Train
Box
AP

Train
Mask

AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total Time
(h:mm:ss)

M3 R50-FPN 38.6 35.2 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19
CR1 R50-FPN 42.1 36.4 56.399 45.692 14.299 9.292 0.681 0.156877 0:17:07
F3 R50-FPN 37.9 - 50.882 - 12.982 - 1.2647 0.31936 0:33:01

 5.1.2. IMPACT OF RES-NET MODELS (C2)

By utilizing different layer depths and setting, ResNet models provide similar AP

increases before and after training, and it is observed that iteration time and memory usage

makes the most notable difference. Table 7 shows that X101 takes 700% more time than

the R50 baseline for each iteration and has a lower increase in AP. However, a more

complex model provides a better AP; thus, it is more suitable for stable systems that do not

27

require re-training models. In terms of iteration speed, AP increase and memory usage,

R50 provides a better increase-performance tradeoff with a lower memory requirement.

TABLE 7: IMPACT OF RES-NET MODELS (C2)

Code-
name

Name Box
AP

Mask
AP

Train
Box
AP

Train
Mask

AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total Time
(h:mm:ss)

M6 R50-FPN 41 37.2 54.119 45.569 13.119 8.369 0.5443 0.125886 0:13:42
M9 R101-FPN 42.9 38.6 54.537 47.233 11.637 8.633 0.7421 0.162362 0:18:16

M10 X101-FPN 44.3 39.5 56.582 48.472 12.282 8.972 3.6404 0.732266 1:26:49

Figure 16: Detection made by M10

 5.1.3. IMPACT OF BACKBONES (C3)

 When comparing backbone training and AP performances, the main difference the

time it takes to train a baseline. FPN halves the total time compared to C4, with almost

three times faster iteration times. While DC5 is 1.5 times faster than C4, it does not affect

Box and Mask AP as much as C4.

28

TABLE 8: IMPACT OF BACKBONES (C3)

Code-
name

Name Box
AP

Mask
AP

Train
Box AP

Train
Mask

AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total Time
(h:mm:ss)

M1 R50-C4 36.8 32.2 49.998 40.849 13.198 8.649 1.5486 0.362128 0:39:09
M2 R50-DC5 38.3 34.2 49.845 42.124 11.545 7.924 1.0256 0.220827 0:25:06
M3 R50-FPN 38.6 35.2 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19

 5.1.4. IMPACT OF LR SCHEDULE (C4)

LR Schedule determines the number of epochs a model has been pre-trained. As

algorithms differ in training performance and benefit differently from the number of trains,

they are compared separately. Baselines have chosen in regard to their barebone configs.

It is observed that there’s next to no difference between 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰 and 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 when

it comes to the LR schedule. when it comes to the LR schedule. However, less trained

models are trained faster, whereas higher LR sched baselines have higher AP scores.

TABLE 9: LR IMPACT ON MASK AND CASCADE R-CNN (C4)

Code-
name

Name Lr
sched

Box
AP

Mask
AP

Train
Box
AP

Train
Mask

AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total Time
(h:mm:ss)

M3 R50-FPN 1x 38.6 35.2 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19
M6 R50-FPN 3x 41 37.2 54.119 45.569 13.119 8.369 0.5443 0.125886 0:13:42

CR1 R50-FPN 1x 42.1 36.4 56.399 45.692 14.299 9.292 0.681 0.156877 0:17:07
CR2 R50-FPN 3x 44.3 38.5 57.808 47.96 13.508 9.46 0.67 0.173187 0:17:40

On the other hand, LR does not provide any significant changes at Box AP, iteration and

interference time on Faster R-CNN.
TABLE 10: LR IMPACT ON FASTER R-CNN (C4)

Code-
name

Name Lr
sched

Box
AP

Train
Box AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total Time
(h:mm:ss)

F3 R50-FPN 1x 37.9 50.882 12.982 1.2647 0.31936 0:33:01
F6 R50-FPN 3x 40.2 53.157 12.957 1.2541 0.320109 0:32:53

29

5.2. IMPACT OF BASELINE PROPERTIES

There are several properties that change how a model is trained and performed. For

testing, baseline M3 has been selected. Run#1 is the control model, where every value is

at its defaults.

• Run#2 and #3 demonstrates the effect of SBI, which is the base learning rate.

• Run#4 and #5 demonstrates the effect of SMI, count of maximum training

iterations. Iteration numbers are doubled and halved to show the impact, to

provide a point to create an ideal model.

• Run#6 and #7 shows the difference achieved by changing RBSPI, RoI batch

size per image.

• And Run#8 and #9 shows how changing testing threshold (RHSTT) value affect

interference performance.

Since the research was done on single GPU machines, differences in the number of

images per batch (SIPB) were not observed. Likewise, as the dataset was filtered to include

a single class, multiple class AP values (RNC) are also not provided.

 5.2.1. Base Learning Rate (SBL):

Learning rate is the rate of how a model reacts to errors by changing weights in

each update. The learning rate is doubled on Run#2 and halved on Run#3. The results show

a lower learning rate resulted in improved Box AP and Mask AP values. However, on

experimental runs where SBL is 0, a dramatic decrease in AP has been observed since the

model does not improve itself. This shows that the SBL value should be experimented with

each dataset-model as there’s no definite ideal value.

30

TABLE 11: IMPACT OF SBL

M3
Runs

SBL Train
box
AP

Train
mask
AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total Time
(h:mm:ss)

Run#1 0.001 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19
Run#2 0.002 51.239 44.06 12.64 8.858 0.5535 0.14662 0:14:45
Run#3 0.0005 53.141 45.26 14.54 10.06 0.5322 0.12728 0:13:35

 5.2.2. Training Iterations:

A lower count of iterations has a minimal effect on iteration per second value;

however, having a high number of iterations provide higher Box AP scores at the cost of

time. On an experimental run with 9000 iterations, 53 Box AP has been reached in an hour

and 25 minutes which further proves it.

TABLE 12: IMPACT OF ITERATION COUNT

M3 Runs Iteration
Count
(SMI)

Train
box
AP

Train
mask
AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total
Time

(h:mm:ss)
Run#1 900 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19
Run#4 1800 52.429 44.38 13.83 9.178 0.5423 0.1287 0:21:56
Run#5 450 51.191 43.71 12.59 8.51 0.5554 0.1323 0:09:59

Run#Exp1 9000 52.919 44.85 14.32 9.65 0.5404 0.128306 1:26:42

 5.2.3. RoI Batch Size:

Increasing batch sizes directly affects Box AP values, as it improves the control

model’s Bounding box AP by 0.8.

TABLE 13: IMPACT OF ROI BATCH SIZE

M3
Runs

RoI
Batch

(RBSPI)

Train
box
AP

Train
mask
AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total
Time

(h:mm:ss)
Run#1 512 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19
Run#6 1024 53.037 44.39 14.44 9.188 0.5775 0.12238 0:14:03
Run#7 256 51.718 44.53 13.12 9.328 0.5059 0.13482 0:13:31

31

 5.2.4. Testing Threshold:

Changes in testing threshold show themselves in results, as it provides a threshold

for predictions, a high testing rate results in higher confidence in detected objects. Still, it

can also miss predictions with lower confidence, resulting in a lower AP. Figures 11 and

12 demonstrate the effect of using different thresholds on validation outputs.

TABLE 14: IMPACT OF TESTING THRESHOLD

M3
Runs

Testing
Threshold

Train
box
AP

Train
mask
AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total
Time

(h:mm:ss)
Run#1 0.6 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19
Run#8 0.8 52.009 44.44 13.41 9.243 1.3914 0.35865 0:36:39
Run#9 0.4 51.535 44.4 12.94 9.199 1.3922 0.34576 0:36:05

Figure 17: A detection from #Run8 (Threshold 0.8)

32

Figure 18: A detection from #Run4 (Threshold 0.4)

Having experimented with different values, it is observed that:

• Most notable factor in Box and Mask AP’s observed by decreasing the learning

rate.

• Halving the iteration count reduced the training time by half, but it has lowered

the AP values as a result.

• Increasing RoI batch sizes provided a better result in Box AP and the fastest

interference time per image.

A well-performing model should have a low learning rate, high iterations, and bigger RoI

batch sizes. But as the iterations increase, the time the model takes to develop increases

diminishingly.

33

TABLE 15: SUMMARIZATION OF DIFFERENT BASELINE VARIABLES

M3
Runs

Train
box
AP

Train
mask
AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total Time
(h:mm:ss)

Run#1 52.227 45.08 13.63 9.877 0.5469 0.20723 0:17:19
Run#2 51.239 44.06 12.64 8.858 0.5535 0.14662 0:14:45
Run#3 53.141 45.26 14.54 10.06 0.5322 0.12728 0:13:35
Run#4 52.429 44.38 13.83 9.178 0.5423 0.1287 0:21:56
Run#5 51.191 43.71 12.59 8.51 0.5554 0.1323 0:09:59
Run#6 53.037 44.39 14.44 9.188 0.5775 0.12238 0:14:03
Run#7 51.718 44.53 13.12 9.328 0.5059 0.13482 0:13:31
Run#8 52.009 44.44 13.41 9.243 1.3914 0.35865 0:36:39
Run#9 51.535 44.4 12.94 9.199 1.3922 0.34576 0:36:05

5.3. IMPACT OF TRAIN-VALIDATION SPLIT

Another two runs of M3 (M3 Run#10 and #11) has been done to show how different

splits of training data would result in training.

M3 Run#1 itself has 20,560 train, 2,693 validation images. The rate of training

images to validation images is 7.5/1. M3 Run#10 includes all images in the COCO dataset

with the “person” class, filtered by utility tools. With 64,115 train and 2,693 validation

images, the rate of train-validation is 23/1. M3 Run#11 has run with an 80/20 split,

including 10,772 training and 2,693 validation images. As it can be seen from Table 16,

the results do not give any insight on the impact of a split, as most of the accuracy and

model is reached on first iterations. After the optimal accuracy is achieved, the model re-

evaluates itself around the same rates, which can be seen in Fig. 19.

TABLE 16: IMPACT OF SPLIT

M3
Runs

Split Train
box
AP

Train
mask
AP

𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰
(s/it)

𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰
(s/img)

Total
Time

(h:mm:ss)
Run#1 20560/2693 52.227 45.077 13.627 9.877 0.5469 0.207233 0:17:19

Run#10 64115/2693 50.749 44.181 12.149 8.399 0.5542 0.134859 0:14:15
Run#11 10772/2693 51.752 44.035 13.152 8.835 0.5597 0.132962 0:14:14

34

Figure 19: Split comparison between Run#1, Run#10 and Run#11

After running and analyzing these experiments, a baseline with ideal properties

have been created and run to prove experiment results. Test baseline is selected from M6,

as it has the best properties (Mask R-CNN, R50-FPN) and is more trained than M3. Table

17 below provides a comparison between initial runs and the run with changed baseline

properties. Table 18 includes detailed AP values for comparison.

TABLE 17: EXPERIMENTAL BASELINE COMPARISON

Runs Box
AP

Mask
AP 𝚫𝚫𝑩𝑩𝑩𝑩𝑩𝑩 𝑨𝑨𝑨𝑨 𝚫𝚫𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨 SBL SMI RBSPI RHSTT 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑴𝑴𝑰𝑰𝑰𝑰𝑩𝑩𝑰𝑰

(s/it)
𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰

(s/img)

Total
Time

(h:mm:ss)

M6
(initial) 54.119 45.569 13.119 8.369 0.001 900 512 0.6 0.5443 0.125886 0:13:42

M6-F 55.302 47.249 14.299 10.049 0.0005 2700 1024 0.6 0.5911 0.126910 0:32:17

35

TABLE 18: EXPERIMENTAL BASELINE AP COMPARISON

Baseline
Object Detection Instance Segmentation

 AP AP50 AP75 APs APm APl AP AP50 AP75 APs APm APl
M6 (init) 54.119 83.45 58.94 37.7 60.783 70.24 45.569 79.88 47.854 27.426 50.437 63.623

M6-F 55.302 83.98 60.25 37.91 62.645 72.106 47.249 81.01 50.654 28.578 51.767 65.598

The AP and increment results are similar to M10’s, which has an X101-FPN

backbone. But the improvement shows itself on runtime, whereas M10 uses 7 GB of

memory and takes 1:27:17 to train, our experimental M6-F uses 5.6 GB and takes 0:32:17

to achieve similar results. The difference between the baseline trained M6 and modified

trained M6 is shown in Fig. 20 and 21.

Figure 20: Detections between Baseline M6 and Modified M6

Figure 21: Mask R-CNN accuracy of Modified M6 (Blue) and Baseline M6 (Green)

36

CHAPTER 6

CONCLUSIONS

This thesis compares the performances of several pedestrian detection methods

with different model parameter values and configuration settings. It should be noted that

the performance of a detection model may vary largely depending upon the data size and

computing power used. The experimental results of this study are obtained using a local

server and therefore the conclusions cannot be extended to a different computing domain

without making appropriate adjustments. The primary findings are summarized as below:

1. Baseline models with Mask R-CNN yields a higher AP with the minimal running time.

2. Cascade R-CNN uses more memory, takes more time for iterations and interference,

but generates the highest AP.

3. Faster R-CNN baselines require less memory, but do not support object segmentation

and perform worse on bounding box than the Mask R-CNN models.

4. If a well-rounded model is desired, a baseline with these features can be considered:

• Mask R-CNN, ResNet R-50, and FPN backbone.

• High LR, as it was pre-trained with higher initial AP values. This can

be an issue when introducing new classes.

• Iteration Count: 1800-2700 may be a good starting choice.

• Base Learning Rate: 0.001 to 0.00025 for a single GPU.

• RoI Batch Size: At least 512 for a practical dataset.

5. ResNet models require increasingly more memory as the layer depth increases. X-101

takes more time and resources to improve AP than other R-101 variants. Using COCO

dataset, R-50 finishes training faster and does not require much memory.

37

6. A baseline model of a FPN backbone yields better results than that of C4 and DC5

alternatives.

7. Testing threshold seems not a significant factor of affecting the AP results.

38

REFERENCES

[1] J. Li, L. Yao, X. Xu, B. Cheng, and J. Ren, “Deep reinforcement learning for pedestrian

collision avoidance and human-machine cooperative driving,” Inf. Sci., vol. 532, pp.

110–124, Sep. 2020, doi: 10.1016/j.ins.2020.03.105.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” ArXiv150601497 Cs, Jan. 2016, Accessed:

Apr. 20, 2021. [Online]. Available: http://arxiv.org/abs/1506.01497.

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” ArXiv170306870 Cs,

Jan. 2018, Accessed: Apr. 20, 2021. [Online]. Available:

http://arxiv.org/abs/1703.06870.

[4] Z. Cai and N. Vasconcelos, “Cascade R-CNN: High Quality Object Detection and

Instance Segmentation,” ArXiv190609756 Cs, Jun. 2019, Accessed: Apr. 20, 2021.

[Online]. Available: http://arxiv.org/abs/1906.09756.

[5] Yuxin Wu, Alexander Kirillov, Francisco Massa and Wan-Yen Lo, & Ross Girshick.

(2019). Detectron2. https://github.com/facebookresearch/detectron2

[6] A. Mateus, D. Ribeiro, P. Miraldo, and J. C. Nascimento, “Efficient and robust

Pedestrian Detection using Deep Learning for Human-Aware Navigation,” Robot.

Auton. Syst., vol. 113, pp. 23–37, Mar. 2019, doi: 10.1016/j.robot.2018.12.007.

[7] H. Huang, Y. Xu, Y. Huang, Q. Yang, and Z. Zhou, “Pedestrian tracking by learning

deep features,” J. Vis. Commun. Image Represent., vol. 57, pp. 172–175, Nov. 2018,

doi: 10.1016/j.jvcir.2018.11.001.

39

[8] H. Zhang, M. Sun, Q. Li, L. Liu, M. Liu, and Y. Ji, “An empirical study of multi-scale

object detection in high resolution UAV images,” Neurocomputing, vol. 421, pp. 173–

182, Jan. 2021, doi: 10.1016/j.neucom.2020.08.074.

[9] Y. Jin, Y. Zhang, Y. Cen, Y. Li, V. Mladenovic, and V. Voronin, “Pedestrian detection

with super-resolution reconstruction for low-quality image,” Pattern Recognit., vol.

115, p. 107846, Jul. 2021, doi: 10.1016/j.patcog.2021.107846.

[10] X. Dai et al., “Multi-task faster R-CNN for nighttime pedestrian detection and

distance estimation,” Infrared Phys. Technol., vol. 115, p. 103694, Jun. 2021, doi:

10.1016/j.infrared.2021.103694.

[11] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” ArXiv14050312

Cs, Feb. 2015, Accessed: Apr. 20, 2021. [Online]. Available:

http://arxiv.org/abs/1405.0312.

[12] A. Kuznetsova et al., “The Open Images Dataset V4: Unified image classification,

object detection, and visual relationship detection at scale,” Int. J. Comput. Vis., vol.

128, no. 7, pp. 1956–1981, Jul. 2020, doi: 10.1007/s11263-020-01316-z.

[13] S. Zhang, Y. Xie, J. Wan, H. Xia, S. Z. Li, and G. Guo, “WiderPerson: A Diverse

Dataset for Dense Pedestrian Detection in the Wild,” ArXiv190912118 Cs, Sep. 2019,

Accessed: Apr. 20, 2021. [Online]. Available: http://arxiv.org/abs/1909.12118.

[14] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”

ArXiv180402767 Cs, Apr. 2018, Accessed: Apr. 20, 2021. [Online]. Available:

http://arxiv.org/abs/1804.02767.

40

[15] Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into High Quality Object

Detection,” ArXiv171200726 Cs, Dec. 2017, Accessed: Apr. 20, 2021. [Online].

Available: http://arxiv.org/abs/1712.00726.

[16] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,”

ArXiv161208242 Cs, Dec. 2016, Accessed: Apr. 25, 2021. [Online]. Available:

http://arxiv.org/abs/1612.08242.

[17] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic Segmentation,”

ArXiv180100868 Cs, Apr. 2019, Accessed: Apr. 20, 2021. [Online]. Available:

http://arxiv.org/abs/1801.00868.

[18] M. Cordts et al., “The Cityscapes Dataset for Semantic Urban Scene

Understanding,” ArXiv160401685 Cs, Apr. 2016, Accessed: Apr. 23, 2021. [Online].

Available: http://arxiv.org/abs/1604.01685.

[19] B. Zhou et al., “Semantic Understanding of Scenes through the ADE20K Dataset,”

ArXiv160805442 Cs, Oct. 2018, Accessed: Apr. 23, 2021. [Online]. Available:

http://arxiv.org/abs/1608.05442.

[20] G. Neuhold, T. Ollmann, S. R. Bulò, and P. Kontschieder, “The Mapillary Vistas

Dataset for Semantic Understanding of Street Scenes,” in 2017 IEEE International

Conference on Computer Vision (ICCV), Oct. 2017, pp. 5000–5009, doi:

10.1109/ICCV.2017.534.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1. TECHNICAL ISSUES
	1.2. CONTRIBUTIONS

	CHAPTER 2 METHODOLOGY
	2.1. RELATED WORK
	2.2. DATASETS
	2.3. METHODS/ALGORITHMS
	2.3.1. FAST R-CNN
	2.3.2. FASTER R-CNN
	2.3.3. MASK R-CNN
	2.3.4. CASCADE R-CNN
	2.3.5. YOLO
	2.3.6. PANOPTIC SEGMENTATION

	2.4. METHODOLOGY

	CHAPTER 3 DATA PROCESSING
	3.1. DATASET
	3.2. SAMPLE PREPARATION

	CHAPTER 4 EXPERIMENT DESIGN
	4.1. TRAINING
	STEP-1: Prepare the dataset:
	STEP-2: Train a model:

	4.2. TESTING
	STEP-3: Inference & Evaluation on trained model:

	4.3. DATASET SPLIT

	CHAPTER 5 RESULTS AND DISCUSSIONS
	5.1. IMPACT OF BASELINES
	5.1.1 IMPACT OF DETECTION ALGORITHM (C1)
	5.1.2. IMPACT OF RES-NET MODELS (C2)

	LIST OF TABLES
	5.1.4. IMPACT OF LR SCHEDULE (C4)
	5.2. IMPACT OF BASELINE PROPERTIES
	5.2.2. Training Iterations:
	5.2.3. RoI Batch Size:
	5.2.4. Testing Threshold:
	5.3. IMPACT OF TRAIN-VALIDATION SPLIT

	CHAPTER 6 CONCLUSIONS
	REFERENCES

		2021-05-07T14:25:34-0400
	Youngstown State University

