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ABSTRACT

The objective of this study was to develop new solutions for linear elastic buckling

coefficients of rectangular flat plates with various support conditions. Critical buckling

coefficients were found for rectangular flat plates subjected to compression and bending

on two opposite edges with one free unloaded edge using the finite element method.

Plates with different aspect ratios (0.5,0.75, 1, 1.5,2,2.4,2.8, 3.2, 3.6,4) were analyzed.

Currently, no solutions are available in the literature for plates subjected to compression

and bending with a free unloaded edge.

Thin-walled structures have the characteristic of susceptibility of failure by instability or

buckling. It is important to the design engineer that accurate methods are available to

determine the critical buckling strength. The method developed in this work was verified

on problems where closed form mathematical solutions exist.

An engineer will be able to use the solutions developed in this work in the design of

components that are susceptible to instability failures. Another benefit of this work is to

demonstrate to practicing engineers that reliable instability results can be obtained by

using standard finite element analysis (FEA) methods. This work considers a small

subset of instability problems but the FEA method utilized herein can be effectively used

to model a large class of practical instability problems.
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NOMENCLATURE

a length of the plate (in)

a' supported length of an unloaded, longitudinal edge (in)

b width of plate (in)

be "effective-width"

D &3
flexural rigidity of the plate (lb*in): --­

12(1-v2
)

{d} Global nodal displacement vector

E Young's modulus (psi)

ET Tangent modulus (strain-hardening modulus) (psi)

8 F Unbalanced nodal force vector

{F} global nodal force vector

g gap between intermittent supports (in)

Is moment of inertia of a stiffener (in4
)

[K] global stiffness matrix

K buckling coefficient (--)

K' modified buckling coefficient, Kn2/12 (--)

Ks buckling coefficient for shear buckling stress (--)

KL linear stiffness matrix

Ko geometric stiffness matrix

My edge moment along the x-axis (in*lb)

Mxy twisting moment (in*lb)

Nx edge force per unit length in the x-direction (lb/in)

ix



Nxy

PUlt

q(x,y)

t

~u

w

z

a

r

v

edge force per unit length in the y-direction (lb/in)

edge shearing force per unit length (lb/in)

ultimate load (lb)

shearing force (lb)

Intensity of a distributed lateral load (lb)

Work done by external forces (lb*in)

thickness of plate (in)

strain energy of bending (lb*in)

global displacement vector (non-linear finite element method)

total potential energy of a plate element (lb*in)

displacement function (in)

distance from neutral surface (in)

the ratio alb (--)

nodal displacement vector

displacement tolerance (--)

Strain in the x-direction (--)

Strain in the y-direction (--)

alb

shear strain (--)

EIs (--)

bD

buckling load factor

Poisson's ratio (--)

x



cr*C

cr*Cb

Sy

crl,2,3

r*c

xi

curvature of the neutral surface in a section parallel to the xz-plane (in)

curvature of the neutral surface in a section parallel to the yz-plane (in)

critical buckling stress (psi)

critical stress for the case with compression only (psi)

compressive stress due to bending (psi)

critical buckling stress for bending (psi)

normal stress in the x-direction (psi)

normal stress in the y-direction (psi)

yield point of the material under consideration (psi)

Von Mises equivalent I-D stress (psi)

principal stresses (psi)

edge stress (psi)

average stress at ultimate load

critical shear stress (psi)

critical stress for the case with shear only (psi)

shear stress (psi)
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1. INTRODUCTION

Linear elastic buckling of plates that are subjected to in-plane forces is a problem of great

practical importance that has been extensively researched over the past 60 years. Elastic

instability of flat rectangular plates became an important research area when the design of

the lightweight airframes was introduced. Later, the theory of thin plates has been

applied to engineering structures (Fok, 1984). Some advantages of thin-walled structures

are the high strength coupled with the ease of manufacturing and the relative low weight.

However, thin-walled structures have the characteristic of susceptibility of failure by

instability or buckling. It is, therefore, important to the design engineer that accurate

methods are available to determine the critical buckling strength.

Most research on instability of flat plates has been done on rectangular shapes of various

proportions. Usually the plates are supported continuously along all edges with loading

occurring along two opposite sides. A limited amount of work has been done on plates

with an unsupported or partially supported unloaded edge.

Norris, et. aI., (1951) studied the buckling behavior of intermittently supported

rectangular plates with both analytical methods and laboratory experiments. According

to Wang et. aI. (1993), engineers tend to use design charts and formulas rather than using

accurate but more complex solution methods such as finite element analysis in everyday

design work. Approximate formulas and solutions will continue to be used until

inexpensive and much more user-friendly computer software is available to all engineers.

The objective of this study was to develop new solutions for the linear elastic critical

buckling stress of rectangular isotropic flat plates with one unsupported unloaded edge

using the finite element method.

As mentioned earlier, only a few published papers investigate the problem of flat plates

subjected to uniform compression with non-continuous boundary conditions. An
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example of such a problem could be a welded plate structure with openings. As an

example, consider the web of an I-section under bending.

BottoM Flo.nge

Figure I-I: I-beam under bending.

In this case, the web is not supported at the top section. Currently, there are no solutions

that include buckling coefficients for the above case. This paper presents buckling

coefficients for cases with an unsupported unloaded edge with combinations on the other

edges i.e., simply supported and fixed.

In this work, buckling coefficients of flat plates are obtained by using the finite element

method. The linear elastic buckling stress was obtained using a linear eigenvalue

buckling analysis solver. Verification of the finite element method was done by

comparing to known closed-form solutions. Charts are drawn for the buckling

coefficients of flat plates with an unsupported unloaded edge for various ratios of bending

stress to compression stress with other edges either simply supported or fixed.

A literature review of previous research of buckling of flat plates is presented in the

coming section. Then in chapters 3, 4 and 5, the theories of thin plates and elastic

stability are reviewed. Chapter 6 presents the finite element analysis and the results that

were obtained. A conclusion and a discussion of the results are included in chapter 7.
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2. LITERATURE REVIEW

Numerous research studies have been done over the years for rectangular plates with

different boundary and loading conditions (Timoshenko, 1936 and Bulson, 1970). Bryan

(1891) presented what seems to be the first published paper on elastic critical stress.

Bryan analyzed a rectangular flat plate under uniform compression with simply supported

edges.

Over the years different combinations of simply supported and clamped edges have been

studied. Different loading conditions have been studied, for example pure bending,

combined bending and compression, uniform compression, and shear. The elastic critical

stress, a function of the material (E, v), with width (b), thickness (t) and the boundary

conditions, is given by (Timoshenko, 1936):

Eq.2.1

where: <J'c =critical buckling stress (psi)

K =buckling coefficient (--)

E = Young's modulus (psi)

v =Poisson's ratio (--)

b =width of the plate (in)

t =thickness of the plate (in)
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t

b

Figure 2-1: Sketch of flat plate under pure bending.

Some excellent references for plate buckling are Galambos (1988), Bulson (1970), Young

(1989), Timoshenko (1936, 1961)

2.1 Flat plates under combined bending and compressive stresses:

In this case the plate is subjected to a combination of compression and bending stresses

and the compressive stress along the edges will vary from a maximum to a minimum, as

shown below:

D=D+D
Figure 2-2: Combined bending and compression of a flat plate.

Buckling stresses for flat plates in bending and compression have been investigated by

Timoshenko (1936), Heck and Ebner (1936), Bijlaard (1957) and Brockenbrough and

Johnston (1974).

For the following ratios between bending and compressive stress, for plates with all

simply supported edges minimum buckling coefficients were published by Galambos

(1988):

(j
---!J!... = 00,5.00,2.00,1.00,0.50,0.0
O"c
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where: u eb =compressive stress due to bending

U e =compressive stress due to uniform compression

The first case corresponds to pure bending and the last case to pure compression. For

plates with loaded edges simply supported and unloaded edges fixed, minimum buckling

coefficients were given for u eb = 00, 1.00 and 0.0.
u b

2.2 Flat plates under uniform compression:

Flat plates under uniform compression with different types of boundary conditions are

shown below:

Figure 2-3: Flat plates under uniform compression.

All the cases above were studied by Timoshenko (1936) and the cases when edges were

fixed were investigated by Heck and Ebner (1936) and Maulbetsch (1937).

2.3 Flat plates under uniform tension / compression in two perpendicular

directions:

Research has been done by Timoshenko (1936) and Heck and Ebner (1936) for the case

of flat plates under uniform tension or compression in two perpendicular directions with
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simply supported edges as shown below. Timoshenko (1936) also studied the cases with

clamped edges.

Figure 2-4: Rectangular plate under uniform compression in two perpendicular directions.

2.4 Combined bending and compressive stresses in two perpendicular directions:

Yoshizuka and Narmoka (1971) published the buckling coefficients for the case of

combined bending and compressive stresses in two perpendicular directions for a

rectangular plate.

Figure 2-5: Flat plate subjected to compression and bending in two perpendicular directions.

2.5 Rectangular plates subjected to edge shear stresses on all edges:

The plate shown below is subjected to edge shear stresses on all edges, this stress state is

called "pure shear".
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If-"---0----1
------..-........ ----...._---

~ll II

L !'-:L-_,--_-_--=.---,.-_-=--:_--l.
Figure 2-6: Plate subjected to pure shear.

Timoshenko (1910), Bergmann and Reissner (1932) and Seydel (1933) developed critical

buckling coefficients for the case of plate with all edges simply supported. The critical

shear stress can be found by substituting 'tc and Kg for o"c and K in Eq. 2-1. Approximate

expressions for the critical buckling coefficient, Kg are given below:

5.34 I'd fK s =4,00+-2- va 1 or a ~ 1
a

K
s
=5.34 + 4.~0 valid for a 2: 1

a

where: a =alb

Moheit (1939) developed the following expressions for the critical buckling coefficients

for the plates with all edges clamped:

K s =5.6 + 8.~8 valid for a ~ 1
a

ks =8.98 + 5.~ valid for a 2: 1
a

The case for a plate with two opposite edges clamped and the other two edges simply

supported, Iguchi (1938) developed a solution for a general rectangular plate and Leggett

(1941) for a square plate.
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2.6 Shear combined with direct stress:

Shown below is a plate subjected to shear and uniform compression. Iguchi (1938)

investigated the case with a plate subjected to shear and uniform compression with all

edges simply supported.

I- 0 "I
0;. ------------r II

It

~Itb It1 ~.

~I It-----....--.-----To

Figure 2-7: Plate subjected to shear and uniform compression.

Iguchi developed an approximate interaction equation between the critical buckling stress

for uniform compression and for shear alone. This interaction equation given below

predicts instability when satisfied.

O"~ +('l"~)2 =1 valid for alb > 1
o"c 'l"c

where: 0"; =critical stress for the case with compression only

<=critical stress for the case with shear only

O"c =actual compression stress present

'l"c =actual shearing stress present

2.7 Shear combined with bending:

A plate subjected to a combination of pure shear and pure bending is shown below:
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,"
I

a "\
0;, --------

I·T i f
~ t

b
t fL t f
-----~--Tc

Figure 2-8: Plate subjected to shear and bending.

This problem was investigated by Timoshenko (1934) and a value for reduced critical

buckling coefficient Kc, which is a function of TJ r; was presented. This value for Kc is

valid for a =0.5, 0.8 and 1.0.

Where: a =alb

Tc =the actual shearing stress present

r; =the buckling stress for pure shear

This case was also investigated by Stein (1936) and Way (1936). Chwalla (1936)

presented the following approximate interaction formula predicting failure, which

corresponds well with the results from Stein and Way.

where: a;b = the critical buckling stress for bending

acb =the actual bending stress present

Tc =the actual shearing stress present

r; = the critical buckling stress for pure shear
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2.8 Shear combined with bending and uniform compression:

An interaction fonnula was presented by Gerard and Becker (1957/1958) for a plate

which is subjected to a combination of shear, bending and compression and having all

four edges simply supported as shown below:

I' e [
0;. --------

~

I~I+

*
*_.....--~----

Figure 2-9: Plate subjected to shear, compression and bending.

The three-part interaction fonnula is given by:

where: 0"; =the critical buckling stress for compression

O"c =the actual compression stress present

McKenzie (1964) presented interaction graphs that took into account, in addition to the

above loading condition, a unifonn compressive load applied on the horizontal edge, as

shown below.

Figure 2-10: Plate subjected to compression, bending, shear and a vertical applied compression

loading.
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2.9 Buckling strength of stiffened plates: Uniaxial compression, combined

compression and shear:

To increase the stiffness of a plate, stiffeners are added, as shown below. Both

longitudinal and transverse stiffeners are used, either separately or in a combination.

Timoshenko and Gere (1961), Bleich and Ramsay (1951) and Seide and Stein (1949)

have presented solutions to plate with one, two or three longitudinal stiffeners equally

spaced parallel to the applied loading. Tables and graphs are given by them to determine

the critical stress for plates simply supported on all edges.

f--- --0-

I-- -
I-- i---

I-- i---

I

III
,Ii

1:'

I:
il
I

I) T T T T <J

Figure 2·11: Plates with longitudinal and transverse stiffeners.

Timoshenko and Gere (1961) investigated plates in uniaxial compression with transverse

stiffeners. For one, two, or three equally spaced stiffeners, Timoshenko and Gere defined

the required size of the stiffeners. Klitchieff (1949) defined required size of stiffeners

when any numbers of stiffeners are used. Gerard and Becker (1957/1958) investigated

the case with both longitudinal and transverse stiffeners and supplied the minimum value

of y as a function of a for different combinations of longitudinal and transverse stiffeners

in graphs.

h
EIs

were: y=--
bD

EIs = flexural rigidity of one transverse stiffener
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D = Et
3

2 ; flexural rigidity of the plate
12(I-v )

a= alb

2.10 Buckling strength of flat plates with partial boundary conditions:

There are just a few papers published on the buckling of rectangular plates with partially

edge boundary conditions (Persson, T. S Thesis 1996, Hamada et. AI. 1967 and Norris et.

AI. 1951).

2.10.1 Flat plate under uniform compression with simply supported but partially

clamped edges:

Hamada et. AI. (1967) investigated flat plates with simply supported loaded edges in

uniform compression and simply supported but partially clamped unloaded edges.

I- a -IO"c

T i Fixed SS Fixed SS
r----

SSb SS

1 SS Fixed SSSS Fixed

Figure 2-12: Flat plate under uniform compression with simply supported but partially clamped

unloaded edges and simply supported loaded edges.
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Hamada and Ota (1958, 9159) proposed an energy method which was used to investigate

this problem. Ten cases were presented with diagrams for plates with aspect ratio 1, 2/3

and 1/2. Laboratory experiments were done to verify the results.

2.10.2 Flat plate under compression with intermittently simply supported edges:

Shown below is the sketch of the intermittently supported plate. Norris et. AI. (1951)

studied the buckling behavior of long rectangular plates intermittently supported along

the unloaded edges.

IT
~ I

"0 I

~ b

t I
-.L .i..

-------0 ------l

Point support

Figure 2-13: Long flat plate with intermittently simply supported edges.

The objective of the research was to develop specifications that could be used to

determine the required length of intermittent fillet welds to connect component parts of

structural members. The critical buckling coefficient, K was given as follows:

K =4.0 valid for 0 < g/b < 0.5

K =(b/g)2 valid for g/b > 0.5

Where: b =unsupported width of the plate

g =gap between intermittent supports
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3. PLATE THEORY BACKGROUND

A summary of the elastic bending and buckling theory of thin plates is discussed next.

This summary gives the needed theoretical background to elastic bending and buckling of

flat plates and to the mathematical definitions of the boundary conditions.

3.1 Basic assumptions used in the theory of elasticity:

Described below are the basic assumptions that are used in the theory of elasticity. These

assumptions are common to all elastic problems.

1. Perfectly elastic material, i.e., if a body is deformed by external forces, the body will

return completely to its initial shape when the external forces are removed.

2. Homogeneous, i.e., the physical properties of the entire body are the same as any

small element cut out from the body.

3. Isotropic, i.e., the elastic properties of the body are the same in all directions.

3.2 Theory of bending of thin plates:

The theory for thin plates is similar to the theory for beams. In pure bending of beams,

"the stress distribution is obtained by assuming that cross-sections of the bar remain

plane during bending and rotate only with respect to their neutral axes so as to be always

normal to the deflection curve." (Timoshenko, 1936, p. 319) as shown in figure 2-1

below.
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--[----------------B- Unloaded

Deflection curve Normal to
deflection curve

-~---- Loaded by

bending

Figure 2-1. Beam under pure bending.

A rectangular plate element is shown below. For a thin plate, bending in two

perpendicular directions occur.

x

z

Figure 3-2: Thin plate notation.

Consider a small element cut out by two pairs of planes, parallel to the xz-plane and the

yz-plane. This small differential element is shown below:



I
1
z

Neutral axis-

dx I
I
I
I

......
// I ' .......

././ ...... "-
,/ ,./ I .......

./

./
./

./

'"

dy

16

Figure 3-3: Differential element notation.

The basic assumptions of elastic plate bending are:

1. Perfectly flat plate and of uniform thickness.

2. The thickness of the plate is small compared with other dimensions. For plate

bending, the thickness, t, is less than or equal to 1/4 of the smallest width of the plate.

For plate buckling equations, the thickness, t, should be 1/10 of the smallest width of

the plate, (Young, 1989).

3. Deflections are small, i.e., smaller or equal to 1/2 of the thickness, (Young, 1989).

4. The middle plane of the plate does not elongate during bending and remains a neutral

surface.

5. The lateral sides of a differential element remain plane during bending and rotate only

to be normal to the deflection surface. Therefore, the stresses and strains are

proportional to their distance from the neutral surface.

6. The bending and twisting of the plate element resist the applied loads. The effect of

shearing forces is neglected.
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From the above assumptions the strains in a plane element, in the x- and y-directions are

given by:

Z
E =­x

Px

Z
E =­

y P
y

....................................Eq.3-1

where: z =distance from neutral surface

lIpx =curvatures of the neutral surface in a section parallel to the xz-plane

lIpy =curvatures of the neutral surface in a section parallel to the yz-plane

z

Figure 3-4: Curvatures of the neutral surface in a plate section.

and from Hooke's law, the strains Ex and Ey are related to the stresses O'x and O'y as

follows:

1
Ey =-(O"y -vO"x> Eq.3-2

E

where: E =Young's modulus

O"x =normal stresses in the x-direction

0"y =normal stresses in the y-direction

v =Poisson's ratio

By combining Eq.3-1 and Eq.3-2, and solving for the normal stresses o"x and O"y' yields
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The normal stresses above act on the lateral sides of the element in Figure 3-3 and can be

reduced to couples, which must equal the externally applied moments. It can then be

shown that, the edge moments Mx and My are given by:

M, =DU, +v;J Eq.3.4

where: D = Et
3

2 ; flexural rigidity of the plate Eq.3-5
12(l-v )

This quantity corresponds to the EI - value of a beam unit width. The term (l-v2
)

increases the rigidity of the plate compared to a beam of the same width. The reason for

this is that moments in one direction create a curvature in a perpendicular direction, to

form a so called anticlastic surface. The plate's resistance to this second curvature, has

the effect of an increase in the rigidity of the plate.

Let the deflection, in the z-direction, of the plane be w, then by using the approximate

formulas for the curvatures of a plate, the curvatures are given by:

1 a2w- =--2 Eq.3-6
P y ay

Substituting Eq.3-6 into Eq.3-4 yields the following expressions for the moments:
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M, =-D(~~ +V~:~) Eq.3-7

From basic theory of elasticity, the relationship between shear strain and shear stress is

given by:

2(1 +v)r = T Eq.3-8xy E xy

It can then be shown that the twisting moment is given by:

a 2w
Mxy =-D(1-v)-- Eq.3-9

axay

Consider a plate that is subjected to a distributed lateral load as shown in figure below,

acting perpendicular to the middle plane of the plate, where q(x,y) is the intensity of the

load. In the general case, the intensity q is a function of x and y.

Figure 3-5: Distributed lateral load on a plate.
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By integrating the following fourth-order partial differential equation, the deflection

surface can be found:

trW trW a4w q
--4 +2 2 2 +--4 =- Eq.3-10ax ax ay ay D

If the deflection surface is known, all the stresses can be calculated. Next, the definition

of the boundary conditions will be discussed.

3.3 Mathematical definitions of the boundary conditions:

Discussed below are the mathematical definitions for a simply supported edge, fixed

(clamped or built-in) edge and for a free edge. In order to integrate the above differential

equation, the distributed load and the boundary conditions must be known.

3.3.1 Simply Supported Edge:

A simply supported edge has no deflections along the supported edge, however the

rotation with respect to the x-axis is not restricted. A sketch of a simply supported edge is

shown below:

Figure 3-6: Simply supported edge.
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Because there are no restrictions against rotation along the simply supported edge, this

means that there is no bending moments along this edge. The mathematical definition of

a simply supported edge is given below:

(w)y=o =0 (~~ +v~:~L =0.H.... HH..........H... Eq.3.n

3.3.2 Fixed Edge:

The deflection is zero along the fixed edge and the slope of the middle plane of the plate

is zero for a fixed edge. Shown below is a sketch of a fixed edge:

x

Figure3-7: Fixed edge

Using the above coordinate system, the boundary conditions are:

(W)y=o =0 (~L=0 H..H H Eq.3·12
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3.3.3 Free Edge:

Along an edge that has no supports, the bending and twisting moments and the vertical

shearing forces will all be zero. Let the edge x =a be free in the sketch below:

Figure 3-8: Free edge.

(Mx)x=a =0 (Mxy)x=a =0 (Qx) x=a =0 Eq.3-13

The two boundary conditions above for the twisting moment and the shearing forces can

be combined to one boundary condition, as was proved by Kirchhoff (1850), i.e.,

( Qx - a; xy J =0 Eq.3-14
Y x=a

The analytical expression for the above boundary condition can be shown to be:

[~~ +(2-v) a:~2L~O H..... H Eq.3-1S
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The expression for the requirement that the bending moment is zero can be expressed as

follows:

(~:~ +v~:~L=O...................... Eq.3-16

3.4 Plate subjected to in-plane loads:

If a plate has, in addition to the distributed lateral load, forces that are applied in the

middle plane of the plate, the effect on plate bending can be considerable. The

differential equation for the deflection surface can then be shown to be (Saint Venant

derived this differential equation in 1883):

where: q =distributed lateral load intensity

Nx =edge force per unit length in the x-direction

Ny =edge force per unit length in the y-direction

Nxy =edge shearing force per unit length

The above differential equation is not valid for large deflections, i.e., when the middle

plane of the plate stretches. This would be the case when inelastic buckling occurs and/or

when the plate carries ultimate load.
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4. LOCAL BUCKLING OF PLATES

4.1 Introduction:

Most structural members and fabrications are composed of connected elements that,

for purposes of analysis and design, may be treated as plates. When a plate is

subjected to direct compression, bending, or shear, the plate may buckle locally

before the member as a whole becomes unstable. This section considers local

buckling of flat plates.

4.1.1 Behavior of Flat Plates Under Various Edge Loadings:

A. Compression and Bending: When in-plane bending stresses act simultaneously

with uniform compression stresses, the sum of the applied edge stress varies along

the loaded edges of the plate from a maximum compressive stress, 0"1, to a

minimum stress 0"2, as shown in Figure. The behavior of plates under these

loading conditions is generally similar to that discussed in succeeding sub section.

For the elastic range, the value of 0"1 at buckling, fed, is

k 1[2£
JerI = 1 2 2 ••••••••.••••••••••••••..•••••••••••••••••••••••••• ...Eq.4-1

12(l-v )(b/t)

where k l is a non dimensional plate buckling coefficient that depends primarily on

the type of edge support and on the ratio of bending stress, to uniform compressive

stress, fi/fe.
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Minimum Buckling Coemclent,*k,

Loading

==-2/3a. r

Ratio of Bending stress to
uniform Com pression stress,
l'bll'.

00

(Pure Bending)

5.00

Unloaded Edges
S Imply Supported

23.9

15.7

Unloaded
EdgeS Fixed

39.6

J == -1/3a. f 2.00 11.0

~ ==0 r: 1.00 7.8 13.6

~ = = 1/3a. W 0.50 5.8

B ==a. B
0'--------_0

0.00
(Pure Compression)

4.0 6.97

*Values given are based on plates having loaded edges simply supported and are conservative for plates

having loaded edges fixed.

Figure 4-1: Buckling coefficients for flat plates under compression and bending

Minimum values of k l for two edge conditions are given in Figure 4-2. The plate

buckling coefficient k l is independent of alb for values of aIb>1.0, and are

conservative for aIb<1.0. For stress ratios not shown in Figure values of k l can be

obtained by linear interpolation.
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Figure 4-2: Chart for fiJi' fc versus minimum buckling coefficient, k for all sides simply supported

B. Uniform Compression: A plate that is (1) made of isotropic material, (2) free of

residual stresses, (3) perfectly flat, and (4) subjected to loads in its plane is

referred to as a "perfect plate". When an increasing uniform compressive load is

applied along opposite edges of a perfect rectangular plate, the plate shortens

uniformly in its plane, and compressive stresses are uniformly distributed overall

transverse cross sections. However, when the buckling stress is reached, the plate

deflects from its initial plane in a series of waves, and the compressive stresses
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are redistributed over transverse cross sections. The buckling stress of a plate is

not usually the maximum stress of a plate can withstand.

Within the elastic range, the buckling stress, fer is

k :r 2E
fcr = 12(1_cV2 )(blt)2

where bit is the plate width-to-thickness ratio and kc is a non-dimensional plate

buckling coefficient that depends primarily on the type of edge supports and the

length-to-width ratio, alb, of the plate. The width is measured perpendicular to

the direction of the applied load. The above equation is similar to the Euler

equation for columns.

Figure 4-3 gives kc for various loading conditions
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b ~SE I ~ ~ CASE 2 ~14 FIXED SIMPLY SUPPORTED
(S.S.)

S.S. fIXED

\ § CASE 3 § § CASE 4 ~ U"
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Figure 4-3: Buckling Coefficients for flat plates under uniform compression.
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c. Shear: A plate subjected to uniformly distributed shear stress along all four edges

develops internal tension and compression stresses that are a maximum on planes

at 45 degrees to the edges and equal to the edge shear stress. Thus, when

increasing shear stresses are applied, the internal compression stress increases and

the plate eventually buckles.

Within the elastic range the value of the shear stress at buckling, f crs , is

fers -12(l~·~;~/t)2 Eq.4-3
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where ks is a non dimensional plate buckling coefficient that depends primarily on the

type of edge supports and the alb ratio. Except for small alb ratios, plates with long

edges fixed and short edges simply supported have the same buckling strength as

plates with all edges fixed. If long edges are simply supported and short edges fixed,

the buckling strength of long plates will be the same as if all edges were simply

supported.

D. Shear and Other Loadings: When shear is simultaneously applied with bending

and/or uniform compression, a plate will buckle before the applied stress reaches

the lowest critical value calculated for independent loadings. Curves giving stress

combinations that will cause buckling for three different combinations of loading

and the interaction equations that define them are shown in figures 4-5, 4-6, and

4-7. The curves and equations are given in terms of stress ratios, that is, ratios of

applied stress to buckling stress for independent loadings. For simultaneous

loadings of shear, compression, and bending, a series of curves is given in 4-7 for

various shear-stress ratios. The curve for zero shear stress ratio is an interaction

curve for compression and bending.

Each curve has been derived for plates having alb 2/1, and are

conservative for smaller alb ratios. The curves are based on elastic behavior, but

will give approximate results in the inelastic range if the inelastic buckling

stresses are calculated by the equations given in the preceding sections.
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5. ELASTIC STABILITY OF THIN PLATES

5.1 Deflections of Rectangular Plates with Simply Supported Edges:

In the case of a rectangular plate with simply supported edges (Figure 5-1), the

deflection surface can be represented by the double trigonometric series

w =f f a mn sin m1lX sin nny Eq.5-1
m=l n=l a b

Each term of this series vanishes for x =0, x =a and also for y =0, y =b. Hence the

deflection w is zero along the boundary as required.

Calculating the derivatives a2 w/ ax2 and a2 w/al, we find again that each term of

the calculated series becomes zero at the boundary. From this it can be concluded

that the bending moments are zero along the boundary as they should be in the case of

simply supported edges. The expression for the potential energy of bending for this

case is

Substituting for the w expression, it can be shown that the integral of the term in the

brackets vanishes and we obtain

Only the squares of the terms of the infinite series give integrals different from zero.
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Only the squares of the terms of the infinite series give integrals different from zero.

/y

Figure 5-1

Then observing that

rf . 2 m1rX . 2 nJr)!dxd ab.b sm --sm y=-
a b 4

we obtain

ab 00 00 2(m 2J[2 n
2J[2 J2U=-DLLamn -2-+-2- Eq.5-2

8 m=l n=l a b

Having this expression for U, we can obtain the deflection of the plate for any kind of

loading by using the principle of virtual displacements. Assume, for instance, that a

concentrated load force Q is acting at a point A with coordinates ; and 17. To

determine any coefficient amn of the series in this case, we give to this coefficient a

small increment 8 amn • The corresponding virtual deflection of the plate is

s:~ . m1rX . nJr)!
<Xl sm--sm--

mn a b
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Q
5:_ • m:m; . nJrll
uumn SIn--sm--

a b

and from the principle of virtual displacements we obtain the following equation:

( J
2

. mJr~ . nJrll aU ab m 2Jr2 n 2Jr2
Q&mn sm--sm--=--&mn =-Damn --2-+--2- &mn (a)

a b ~mn 4 a b

from which
4Q

. mJr~ . nJrllsm--sm--

amn = (a 2 2
b
J2

4 m n
abDJr -+-

a 2 b2

..................................(b)

When this is substituted in Eq. 5-1, the deflection of the plate produced by a

concentrated load Q is obtained. Having this deflection and using the principle of

superposition, we can determine the deflections for any kind of loading.

5.2 Buckling of a Simply Supported Rectangular Plate under Combined

Bending and Compression:

y

a

b

o

Figure 5-2

Ny

No a No
x

b

'"
,

x ""-,,

1 y
Ny

Figure 5-3
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Consider a simply supported rectangular plate (Fig. 5-3) along whose sides x =0 and x =
a distributed forces, acting in the middle plane of the plate, are applied, their intensity

being given by the equations

Nx =No(l- a;) Eq.5-3

where No is the intensity of compressive force at the edge y =0 and a is a numerical

factor. By changing a, we can obtain various particular cases. For example, by taking

a =2 we obtain the case of pure bending. If a is less than 2, we have a combination of

bending and compression as indicated in Figure 5-1. If a > 2, there will be a similar

combination of bending and tension.

The deflection of buckled plate simply supported on all sides can be taken in the

form of the double trigonometric series

f' f' . m1lX . nny
w =L..J L..J amn sm--sm--

m=! n=! a b

For calculating the critical value of the compressive force No we use the energy method.

For the strain energy of bending due to the deflections w use

( J
2D b1r 4 = = 2 2

/)..U =-_a_-IIamn
2 m

2
+~ Eq 5-4

2 4 m=! n=! a b

The work done by the external forces during buckling of the plate is

t.T~ ~ rrNo(l-a ~n:rdxdy Eq.5.5

substituting the value of w, we obtain, for the work done by external forces during

buckling, the following expression:
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where for i only such numbers are taken that n ± i is always odd.

Equating this work to the strain energy of bending /1U , we obtain for the critical value of

No an equation which states that (No )cr is equal to

The coefficients amn must be adjusted now so as to make the obtained expression for

(No )cr a minimum. By taking the derivatives of this expression with respect to each

coefficient amn and equating these derivatives to zero, we finally obtain a system of

linear equations of the following form:

Collect all equations with a certain value of the number m. These equations will contain

coefficients amI, am2, am3, .... All other coefficients equal to zero, so for the deflection of

plate, take the expression

. m1lX L~ . nnyw=sm-- a sm--
mn ba n=l
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which is equivalent to the assumption that the buckled plate is subdivided along the x axis

into m half-waves. Consider one half-wave between two nodal lines as a simply

supported plate which is buckled into one half-wave. Substituting m =1 in Eq. 5-6 and

using the notation

(NO\r(fer =_..:.......:.c-

t

we obtain a system of equations of the following kind:

[(

2 J2 2 ()] 2 ~2 a a t a a t aJjn ia1n l+n -2 -(fer-2- 1-- -Sa(fer-4-I( r =O Eq5-7
b 7( D 2 7( D i n 2 - i 2

where the summation is taken over all numbers i such that n ± i is an odd number.

These are homogeneous linear equations in an, a12, ... which will be satisfied by

putting an, a12, ... equal to zero, which corresponds to the flat form of equilibrium of the

plate. To get for the coefficients all, a12, ... solutions different from zero, which indicates

the possibility of buckling of the plate, the determinant of the Eq. 5-7 must be zero. In

this wayan equation for calculating the critical values of compressive stresses is

obtained. The calculation can be made by successive approximations. Begin by taking

only the first of the Eq. 5-7 and assuming that all coefficients except an are zero. In this

way we obtain

( J

2

1+~ -(f ~(1-a)=o
b 2 er 7(2 D 2

from which

(fer = 7(

2
2
D

(1 + a: J2 1 = 7(

2
2
D (!?- + a)2 1 Eq.5-8

at b l-al2 bt a b l-al2
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This first approximation gives a satisfactory result only for small values of u. To obtain a

second approximation, two equations of the system 5-7 with coefficients au and al2

should be taken, and we obtain

[( J
2 ]a

2
a

2t a a
2t 2

all 1+-2 -aer -2-(1--) -8aaer -4-- aI2 =0
b :rD 2 :rD9

[( J
2 ]a

2
t 2 a

2
a

2
t a

- 8aaer -4- - au + 1+ 4-2 - a cr -2- (1 - -) a l2 =0
:rD9 b :rD 2

Equating to zero the determinant of these equations, we obtain

...........................Eq.5·9

From this equation the second approximation for acr can be calculated. The accuracy of

this approximation decreases as a increases; for pure bending, when a =2, and for a

square plate the error is about 8 per cent, so that the calculation of a further

approximation is necessary to obtain a more satisfactory accuracy. By taking three

equations of the system Eq. 5-7 and assuming a =2, we obtain



39

Equating to zero the determinant of these equations, we obtain an equation for calculating

the third approximation which is sufficiently accurate for the case of pure bending.

The final expression for CTcr can be represented by the equation
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6. FINITE ELEMENT ANALYSIS

The linear elastic buckling coefficient was obtained by using a linear critical buckling

analysis program using PEA. The results obtained from the PEA were verified as

follows: A flat plate with known linear elastic buckling stress and buckling coefficient

was modeled using the PEA program. The linear elastic buckling coefficient obtained

from the PEA program was then compared to a closed-form solution.

6.1 Linear elastic buckling strength

The linear elastic buckling load was obtained by using a commercially available PEA­

program, ALGOR -software. This program determines the load which brings the

structure to the bifurcation point. The predicted buckling load is the Euler buckling load.

The bifurcation point is defined as: The compressed member can be in equilibrium in two

different configurations at the bifurcation point. (Galambos,1988). The member can

either be straight or in a slightly deflected shape. If a plot of axial load versus lateral

deflection is made, a branch point occurs at the bifurcation point. After the bifurcation

point two different load/deflection curves are mathematically valid. Idealized load­

displacement paths are shown in Figure 6-1 below:

Load'

o

Bifurcation Point

B

----A _---D

-------- -

Displacement

Figure 6-1: Idealized load-displacement paths.

The solid line represents a perfect structure and displaces along a basic path (OAB) and

the bifurcation occurs at point A. The dashed line AC represents the post-buckling path,
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and this path can either rise or descend depending on what type of structure and loading

is considered. The third line (OD), applies to structures with initial imperfections and as

can be seen a bifurcation point does not exist.

The basic equation to be solved in finite element analysis is

{F}= [KRd} Eq.6-1

where: F =global nodal force vector

K =global stiffness matrix

d =global nodal displacement vector

By using the minimum potential energy principle the total potential energy of a plate

element can be written as (Allen, 1980):

Ve =.!.{b'Y[KL +KG RJ} ·.. ·.. ·.. ·.. · Eq.6-2
2

Where: Ve =total potential energy of the plate element

6 = nodal displacement vector

KL =linear stiffness matrix

Ka =geometric stiffness matrix

At the critical load, the total potential energy is a minimum and the homogeneous

equation given below has a non-trivial solution.

[KL +KGRJ}= 0 Eq.6-3

The critical stress is then the smallest root of the determinant of the following equation:
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det(KL +AcrKG ) =0 Eq.6-4

where: Acr =the buckling load factor.

As was the case in the theoretical development of the critical buckling load, the FEA­

model of the flat plate is assumed to be perfectly flat and entirely elastic, i.e., the

buckling takes place in the elastic region. The linear elastic buckling load was found for

the flat plate shown below with non-continuous boundary conditions. The plate is

subjected to combined bending and compression and has one unloaded edge free.

Free edge

b SS/Fixed

Figure 6-2: Flat plate under pure bending with top edge free.

where: a =length of the plate

b = width of the plate

SS/Fixed =simply supported or fixed edge

Ten aspect ratios, alb were investigated for the above case: alb =0.5, 0.75, 1, 1.5,2,2.4,

2.8, 3.2, 3.6, 4. Materials properties for these ten different models are:

Thickness, t (in): 0.05

Young's modulus (psi): 30E6

Poisson's ratio: 0.30

Dimensions for the ten different plate models are given below:
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alb Length, a Width, b

(in) (in)

0.50 1.00 2.00

0.75 1.50 2.00

1.00 2.00 2.00

1.50 3.00 2.00

2.00 4.00 2.00

2.40 4.80 2.00

2.80 5.60 2.00

3.20 6.40 2.00

3.60 7.20 2.00

4.00 8.00 2.00

The same above ten aspect ratios were also investigated for the plate with three side's

totally fixed and top unloaded edge free. The closed-form solutions are known for plates

when the top edge is supported along the entire edge. The finite element solution should,

therefore, correspond to the closed-form solution at this point. One verification of the

PEA - model and the corresponding buckling load can therefore be done by considering

the above case.

The linear elastic buckling strength was obtained by using a linear eigenvalue solver

(ALGOR-software). In the next section, the finite element models will be described

showing elements used, boundary conditions and applied loads.

6.2 Grid of cases to consider: The following six grid of cases were investigated with the

following two boundary conditions:

(1) Flat plate with 3 sides simply supported and the top unloaded edge free

(2) Flat plate with 3 sides totally fixed and the top unloaded edge free



Pure + Pure Bending Ratio fblfc
a Compression

'n ~:
f.=O f.=a,

C"2 = -at ~ ~+'j ~
f.= 1/Sa,
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f. =113a, f. =213 a,

f~a,/2 f.=aJ2

a:z = 0 f:~ ~ 8 +~ r
fc:~a' fo=!at

~ az = 1/3a, W~ 8 8 +~ r 0.5

0'1

Figure 6-3: Flat plates under compression and bending

o
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6.3 Verification of model results:

There are no closed form solutions available with one side of the plate unsupported. To
verify the PEA method used a known solution was modeled. This verification solution
has all four sides simply supported. The results of this verification are given below and
show good correlation.

Minimum Buckling Coefficient, K

Ratio of Bending All Edges Simply Supported
Loading

Stress to Uniform

Compresion Stress

flct/flc Closed-form FEA
Solution*

CI,

8 8 0.0 4.0 4.0032
<7:z: 0".

0'1

G 0.50 5.8 5.9

~ r:02= 0 1.00 7.8 7.84

*Values given are from "Guide to Stability Design Criteria for Metal Structures" edited by Theodore V.
Galambos, 4th Edition, pg. 103.

6.4 Description of the finite element models:

6.4.1 FEA-model of the plate with 3 sides Simply Supported and the unloaded top

edge Free: Shown in Figure 6-4 is a sketch of the finite element model used in the linear

elastic buckling. Boundary conditions are as follows: Translational boundary conditions

are denoted by Tx, Ty, Tz and rotational boundary conditions are denoted by Rx, Ry, Rz
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where the subscript denotes the axis along which the translational and rotational

boundary constraint is applied.

In Figure 6-4 below, the boundary conditions are given as simply supported along the

edges. From Eq.3-6 in the theory section, the mathematical definition ofa simple support

was given as:

(wh=o = 0 and

The first equation states that there are no deflections along the supported edges, and the

second equation indicates that there are no bending moments along the supported edges.

Translational boundary conditions must therefore be used in the FEA-model. Referring

to Figure 6-4, on the left edge, boundary conditions Tx and Tyare applied along the edge.

Translations are therefore restricted in the x-and y-directions, where the x-direction is the

out ofplane direction and the y-direction is the longitudinal direction. The bottom and the

right edge only have the out-of-plane boundary condition, Tx. With these boundary

conditions, there are no deflections in the x-direction along the edges and the plate can

still contract in the y-and z-directions; also, no rotational restrictions are imposed on the

plate model. The applied load was distributed along one edge ofthe plate. At the two

comer nodes one half the nodal load was applied, as shown below:

Txv

'--r---y

Tx

Tx

1-+-+__ 15P

Figure 6-4: FEA-model of plate with 3 sides simply supported and top unloaded edge free.
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6.4.1 FEA-model of the plate with 3 sides totally Fixed and the unloaded top edge

Free:

Shown in Figure 6-5 is the sketch ofFEA-model used. From Eq.3-7 the mathematical

definition ofa fixed support was given as:

(wh=o = 0 and (Ow] - 0
Oy y=O

The equations state that deflection is zero along the fixed edge and the slope ofthe

middle plane of the plate is zero for a fixed edge. Translational and rotational boundary

conditions must therefore be used in the FEA-model. Referring to the Figure 6-5, on the

left edge, boundary conditions Tx and Ty and Ryz are applied along the edge. Translations

are therefore restricted in x-and y-directions and rotations about y- and z-directions. On

the bottom edge the boundary conditions Tx and Ry are applied which constraints the

translation in the x-direction and the rotation about the y-direction. The right edge has the

out-of-plane translational boundary condition, Tx and transverse rotational boundary

condition, Rz. The applied load was distributed along one edge ofthe plate. At the two

comer nodes one half the nodal load was applied, as shown below:

TxRz

z

x

100-+-+-- 15P

Figure 6-5: FEA-model of plate with 3 sides fixed and top unloaded edge free
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In the next sections, results are presented for different grid ofcases for different types of

plates that were investigated in this work.

6.4.3 Pure Bending:

In the case where the plate is under pure bending only bending stress fb exists and the

compressive stress t:: is zero. Shown below is a chart for the critical buckling coefficient,

K, for the pure bending case ofa flat plate with different aspect ratios. The different

aspect ratios are plotted against the x-axis and the respective critical buckling coefficients

are plotted against they-axis.

Pure Bending

ftl f. = 00

25
24
23
22
21
20
19
18
17
16
15
14

-..13
"'12

11
10
9
8
7
6
5
4
3
2
1
o

o 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25

alb

--+- 3sides ss,
1free

---- 3sides
fixed, 1free

Figure 6-6: Buckling coeffkient K for plates with different ratios of alb with G2 = - 6t

From the above chart it is interesting to note that the buckling coefficient increases as the

aspect ratio decreases. The buckling coefficients for different aspect ratios of the plates
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with 3 sides fixed and 1 side free are higher when compared to the plates with 3 sides

simply supported and 1 side free as seen from the chart.

Shown below are pictures ofthe buckled mode shapes for the plates with two different

boundary conditions under pure bending.

Case 1: Pure Bending: Gz =-Gl

Figure 6-7: Buckled mode shapes of plates with 3 sides simply supported and top edge free:

Buckled mode shape with alb = 0.75 Buckled mode shape with alb =3.2

Buckled mode shapes of plates with 3 sides totally fixed and top edge free:

; •..
!=.""'".....-..----.......-

Buckled mode shape with alb =0.75

.1.

···.·.·=-.

.-­........~---

Buckled mode shape with alb =3.2
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6.4.4 Grid ofcase with cr2 = - 2/3 crl:

In this case the plate is under combined bending and compression where both the fb and fc

exist. Chart for the critical buckling coefficient, K, ofa flat plate with different aspect

ratios is shown below with aspect ratios plotted against the horizontal-axis and the

respective critical buckling coefficients against vertical-axis.

f2 = ·213 f1 fc=1/6 crl

fb=5/6 crl

24
23
22
21
20
11
13
17
'6
1i
14
13

::IlII:::: f2
11
1)

9
8
7
6
5
4
3
2
1
o
o 0.25 0.5 0.75 1 125 15 175 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25

alb

en =-2/30'1

-.-Simply
Supported 3
sides, 1free

-I-Fixed 3
sides, 1side
free

Figure 6-8: Buckling coeff"lClent K for plates with different ratios of alb with cr2 =-2/3 crt

As seen from the chart the buckling coefficients for different aspect ratios of the plates

with 3 sides fixed and 1 side free are higher when compared to the plates with 3 sides

simply supported and 1 side free. The K increases with decreasing alb ratio. Buckled

mode shapes are shown below.



~: Cf2 =-213 crl

Figure 6-9: Buckled mode shapes of plates with 3 sides simply supported and top edge free:
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Buckled mode shape with alb =0.5 Buckled mode shape with alb = 4

,I'.,

'..:.w,."n
'UII'UI",-.­.-..---fJlIIll....

Buckled mode shapes of plates with 3 sides totally fned and top edge free:

Buckled mode shape with alb =0.5 Buckled mode shape with alb =4
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6.4.5 Grid of case with CJz = - 113 CJ1:

The flat plate in this case is under combined bending and compression with different

values of fb and fc when compared to the last case. Shown below is a chart for the critical

buckling coefficient, K, for the case 02 =- 1/3 01 with different aspect ratios.

f2 =-1/3 f1 fc= 1/3 <rJ

fb= 2/3 <rJ

23
22
21
20
11
11
17
tl
tl
14
13
12

::.:::: 11
1)

9
8
7
6
5
4
3
2
1
o

o

-+-3sides 88,
1side free

0.25 0.5 0.75 1 125 15 175 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 -a-3sides

alb Fixed, 1sid
free

Figure 6-10: Buckling coeff"lCient K for plates with different ratios of alb with G2 =-1/3 cr.

It can be noted from the chart above that the buckling coefficients for different aspect

ratios of the plates with 3 sides fixed and 1 side free are higher when compared to the

plates with 3 sides simply supported and 1 side free and also that with decreasing alb

ratio the value ofK increases.

Pictures of the buckled mode shapes for the plates with two different boundary conditions

are shown below.



Figure 6-11: Buckled mode shapes of plates with 3 sides simply supported and top edge free:
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Buckled mode shape with alb = 1 Buckled mode shape with alb = 2.8

I
,,·

......

:-.~'.-.
......"--...­.-.,

Buckled mode shapes of plates with 3 sides totally fiucl and top edge free:

Buckled mode shape with alb =1 Buckled mode shape with alb =2.8
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6.4.6 Grid of case with G2 = 0:

In this case where the flat plate is under combined bending and compression both the

bending and compressive stresses are equal. Chart for the critical buckling coefficient, K,

ofa flat plate with different aspect ratios is shown below. The aspect ratios are plotted

against the x-axis and K along y-axis.

f2 =0

2 225 2.5 2.75 3 325 3.5 3.75 4 425

22
21
20
1l
'8
17
ti
15
14
13
12

:.:::11
1)

9
8
7
6
5
4
3
2
1
o

o 025 0.5 0.75 1 125 15 175

alb

~~1

LJ~

-+-3 sides
55,1 side
fi'ee

-.-3 sides
Fixed, 1
sidefi'ee

Figure 6-12: Buckling coefficient K for plates with different ratios of alb with G1 = 0

The values ofcritical buckling coefficients for plates with 3 sides simply supported and 1

side free are lower than that for plates with 3 sides totally fixed and 1 side free and K

increases with decreasing alb ratio.

Buckled mode shapes for the above two different boundary conditions for this grid of

case are shown below.
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Figure 6-13: Buckled mode shapes of plates with 3 sides simply supported and top edge free:
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Buckled mode shape with alb =2.4

Buckled mode shapes of plates with 3 sides totally ("ned and top edge free:
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Buckled mode shape with alb =1.5 Buckled mode shape with alb = 2.4
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6.4.7 Grid of case with G2 = 1/3 Gt:

The plate is under combined bending and compression in this case where compressive

stress is greater than the bending stress. The ratio ofbending to compressive stress is 0.5.

Shown below is a chart for the critical buckling coefficient, K.

f2 =1/3 f1

2)

'9
~

17
1l
'fi
14
13
'2
11

~1l

9
8
7
6
5
4
3
2
1
o
o

-+-3 sides
SS, 1free

025 05 0.75 1 125 15 175 2 225 25 2.75 3 325 35 3.75 4 425 -a-3sides

alb Fixed,1
free

Figure 6-14: Buckling coetTlcient K for plates with different ratios of alb with G2 = 113 01

It can be noted from the plot that the values ofbuckling coefficients when compared are

greater for plates with 3 sides simply supported and 1 side free than plates with 3 sides

fixed and 1 free. As in all the above cases the value ofK increases with decreasing alb

ratios.

Some ofthe buckled mode shapes are shown below.
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~: Gz "" 1/3 cr.

Figure 6-15: Buckled mode shapes of plates with 3 sides simply supported and top edge free:

,""­,-.

Buckled mode shape with alb = 2

,""­,­•

Buckled mode shape with alb =3.6

Buckled mode shapes of plates with 3 sides totally fixed and top edge free:

._­,­.
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Buckled mode shape with alb =2 Buckled mode shape with alb = 3.6
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6.4.8 Grid of case with cr2 = crt:

In the case where the plate is under pure compression only compressive stress fc exists

and the bending stress fb is zero. The ratio of bending to compressive stress is hence zero.

Chart shown below gives the different values ofK for plates under pure compression

with different alb ratios.

f2 =f1

11

17

Il

'fi

14

13

12

11

1)

~9

8

7

6

5

4

3

2

1

o
O~M~1~Gm2~~m3~~m4

alb

-+-3 sides
55, 1free

425 ~3sides

Fixed, 1
free

FiguR 6-16: Budding coetrtdent K for plates with different ratios of alb with G2 = crt

As seen from the chart the values ofK for the plates with 3 sides simply supported and 1

free are lower than the plates with 3 sides fixed and 1 side free.

Shown below are pictures of the buckled mode shapes of plates for different aspect ratios

under pure compression.
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Figure 6-17: Buckled mode shapes of plates with 3 sides simply supported and top edge free: -­,-•
1·.

1=_··'­.---.---

Buckled mode shape with alb =0.75 Buckled mode shape with alb =3.6

Buckled mode shapes of plates with 3 sides totally fixed and top edge free:

111_---

Buckled mode shape with alb =0.75

....­,-•
•1.·.

OJ!l.~.. '"a-u_a_a_-­4m.M­...--......

Buckled mode shape with alb =3.6



Shown below is a chart for the minimum critical buckling coefficient, K, for different

grid ofcases considered where alb is large enough to have a minimum K value.
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Figure 6-18: Minimum buckling coefficient K for different grid of cases.
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7. CONCLUSION

New solutions for linear elastic buckling coefficients of rectangular plates with

various support conditions were developed in this work. Design charts for the critical

buckling coefficients for flat plates under combined bending and compression with

two different boundary conditions with unloaded top edge free were presented in this

work.

The finite element method is proved to be an accurate tool to determine the critical

buckling load for flat plates with complex boundary conditions. When faced with

plates under combined bending and compression with one unloaded edge free design

engineers will be able to use the design charts developed in this work without having

to make additional approximations.
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