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ABSTRACT

The objective of this study was to develop new design charts for linear elastic

buckling coefficients of rectangular flat plates with support conditions not previously

found in the literature. Critical buckling coefficients were found for rectangular flat plates

subjected to uniform compression with partially supported unloaded edges using the finite

element method. Plates with different aspect ratios and with varying support length on the

unloaded edge were analyzed. Currently there are no design charts available in the

literature for plates subjected to uniform compression and with partially supported un­

loaded edges. An engineer will be able to use these new design charts in the design work

of structures that are susceptible to instability failures. The method developed in this

work was verified on problems where closed form mathematical solutions exist.

A second part of this study was to investigate the effect of initial plate imperfections on

the ultimate plate strength with the use of a non-linear finite element method. By using a

non-linear finite element method, it is possible to model both an initial imperfection and

post yield elasto-plastic conditions. Plates that are failing by a combination of buckling

and yielding with initial geometric imperfections are analyzed. The results obtained from

the non-linear finite element method were compared to an approximate method available

in the literature.
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1. INTRODUCTION

Linear elastic buckling of plates that are subjected to in-plane forces is a problem

of great practical importance that has been extensively researched over the past 60 years.

Elastic instability of flat rectangular plates became an important research area when the

design of the lightweight airframes was introduced. Later, the theory of thin plates has

been applied to engineering structures (Fok, 1984). Some advantages of thin-walled

structures' are high strength coupled with the ease of manufacturing and the relative low

weight. However, thin-walled structures have the characteristic of susceptibility of failure

by instability or buckling. It is therefore important to the design engineer that accurate

methods are available to determine the critical buckling strength.

Most research on instability of flat plates has been done on rectangular shapes of

various proportions. Usually the plates are supported continuously along all edges with

loading occurring along two opposite sides. A limited amount of work has been done on

plates with an unsupported or partially supported unloaded edges.

Norris, et. aI., (1951) studied the buckling behavior of intermittently supported

rectangular plates with both analytical methods and laboratory experiments. The buckling

of simply supported but partially clamped rectangular plates subjected to uniform

compression was studied by Hamada et. al., (1967). Hamada et. aI. used the energy

method and laboratory experiments to investigate this problem.

According to Wang et. aI. (1993) engineers tend to use design charts and formulas

rather than using accurate but more complex solution methods such as finite element

analysis in everyday design work. Approximate formulas and design charts will continue

to be used until inexpensive and much more user-friendly computer software are

available to all engineers.

The objective of this study was to develop new design charts for the linear elastic

critical buckling stress of rectangular isotropic flat plates with one partially supported

unloaded edge using the finite element method. A second part of this study was to
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investigate the effect the initial imperfection has on the ultimate strength of the plate, by

the use of a non-linear finite element method.

As mentioned earlier, only a few published papers investigate the problem of flat

plates subjected to uniform compression with non-continuous boundary conditions. An

example of a problem could be a welded plate structure with openings. As an example,

consider the web of an I-section under compression where the top flange is shorter than

the bottom flange.

Web

Top Flange

Bottom Flange

Figure 1: I-beam under compression.

In this case the web is only supported partially by the top flange, but fully supported by

the bottom flange. Currently there are no design charts or formulas that include buckling

coefficients for the above case. This paper presents buckling coefficients for cases with

partially supported unloaded edges.

In this work, buckling coefficients and the ultimate strength of flat plates are

obtained by using the finite element method. The linear elastic buckling stress was

obtained using a linear eigenvalue buckling analysis solver. Verification of the finite

element method was done by comparing to closed-form solutions.

The second part of the finite element analysis consisted of an investigation on the

effect initial imperfections had on the ultimate strength of the plate. The ultimate strength

of the plate was obtained by using a non-linear finite element analysis procedure. The

non-linear finite element method has the advantage over a linear finite element method in

that it can model initial imperfections and post-yield elasto-plastic conditions. The
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element method was done by comparing to closed-form solutions.

The second part of the finite element analysis consisted of an investigation on the

effect initial imperfections had on the ultimate strength of the plate. The ultimate strength

of the plate was obtained by using a non-linear finite element analysis procedure. The

non-linear finite element method has the advantage over a linear finite element method in

that it can model initial imperfections and post-yield elasto-plastic conditions. The

2



ultimate strength of the flat plate was found when a small increase in the load resulted in

a very large deflection of the plate, i.e., the stiffness of the plate approached zero. This

method was verified using a flat plate whose ultimate strength was known from an

approximate method, the "effective-width" method.

A literature review of previous research of buckling of flat plates is presented in

the next section. Then in chapter 3 and 4, the theories of thin plates and elastic stability

are reviewed. Chapter 5 presents the finite element analysis and the results that were

obtained. A conclusion and a discussion of the results are included in chapter 6.
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2. LITERATURE REVIEW

Numerous research studies have been done over the years for rectangular plates with

different boundary and loading conditions (Timoshenko, 1936 and Bulson, 1970). Bryan

(1891) presented what seems to be the first published paper on elastic critical stress.

Bryan analyzed a rectangular flat plate under uniform compression with simply supported

edges. Over the years different combinations of simply supported and clamped edges

have been studied. Different loading conditions have been, for example, uniform

compression, bending and shear. The elastic critical stress is a function of the material (E,

v), the width (b), thickness (t) and the boundary conditions. The elastic critical stress is

given by (Timoshenko, 1936):

where: O'c =critical buckling stress

K =buckling coefficient

E =Young's modulus

v =Poisson's ratio

b =width of the plate (See Figure 2 below)

t =thickness of the plate (See Figure 2 below)

Eq.l

II--------
b

LI--------
Figure 2: Sketch of a flat plate under compression.
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Note: In this work, the factor n2/12 is embedded in the buckling coefficient i. e., the

buckling coefficient is defined as: K' = K rc 2/12.

2.1 Flat plates under uniform compression

Shown below are flat plates under uniform compression with different types of boundary

conditions:

Figure 3: Flat plates under uniform compression.

Timoshenko (1936) studied all of the above cases and Heck and Ebner (1936) and

Maulbetsch (1937) investigated cases when edges were fixed.

2.2 Flat plates under combined bending and compressive stresses

Buckling stresses for flat plates in compression and bending have been investigated by

Timoshenko (1936), Heck and Ebner (1936), Bijlaard (1957) and Brockenbrough and

Johnston (1974). In this case the plate is subjected to a combination of compression and

bending and the compressive stress along the edges will vary from a maximum to a

minimum, as shown below:

Figure 4: Combined bending and compression of a flat plate.
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Minimum buckling coefficients were published by Galambos (1988) for the following

ratios between bending stress and compressive stress, for plates with simply supported

edges:

a cb =00, 5.00, 2.00, 1.00, 0.50, 0.0
a c

where: O'cb =compressive stress due to bending

O'c =compressive stress due to uniform compression

The first case corresponds to pure bending and the last case to pure compression. For

plates with fixed unloaded edges and for plates with one free edge, minimum buckling

coefficients were given for O'cJO'b =00, 1.00 and 0.0.

2.3 Flat plates under uniform compression / tension in two perpendicular
directions

For the case of a flat plate under uniform compression or tension in two perpendicular

directions with simply supported edges (as shown below), research has been done by

Timoshenko (1936) and Heck and Ebner (1936). Timoshenko (1936) also studied the

cases with clamped edges.

Figure 5: Rectangular plate under uniform compression in two perpendicular directions.
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2.4 Combined bending and compressive stresses in two perpendicular
directions

The case of combined bending and compressive stresses in two perpendicular directions

for a rectangular plate, buckling coefficients have been published by Yoshizuka and

Narmoka (1971).

Figure 6: Flat plate subjected to compression and bending in two perpendicular directions.

2.5 Rectangular plates subjected to edge shear stresses on all edges

The plate shown below is subjected to edge shear stresses on all edges, this stress state is

called "pure shear".

1--·--0---·1-----------I! t
b t t

L! I
Figure 7: Plate subjected to pure shear.

For the case with a plate with all edges simply supported, critical buckling coefficients

were developed by Timoshenko (1910), Bergmann and Reissner (1932) and Seydel

(1933). The critical shear stress can be found by substituting 'tc and K s for O'c and Kin Eq.

1. Approximate expressions for the critical buckling coefficient, Ks are given below:
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where: a =alb

K
s
= 4.00 + 5.3;

a

K
s
= 5.34 + 4.~0

a

valid for a ~ 1

valid for a ;::: 1

For a plate with all edges clamped, Moheit (1939) developed the following expressions

for the critical buckling coefficient:

K = 56 8.98
s • + 2

a
5.6

Ks = 8.98+-2a

valid for a ~ 1

valid for a ;::: 1

The case for a plate with two opposite edges clamped and the other two edges simply

supported, Iguchi (1938) developed a solution for a general rectangular plate and Leggett

(1941) for a square plate.

2.6 Shear combined with direct stress

Iguchi (1938) investigated the case with a plate subjected to shear and uniform

compression with all edges simply supported. Shown below is a plate subjected to shear

and uniform compression.

------------- ---To

Figure 8: Plate subjected to shear and uniform compression.

Iguchi developed an approximate interaction equation between the critical buckling stress

for uniform compression and for shear alone. This interaction equation given below

predicts instability when satisfied.
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valid for :!.- > 1
b

where: cr'c =critical stress for the case with compression only

't'c = critical stress for the case with shear only

crc =actual compression stress present

'tc =actual shearing stress present

2.7 Shear combined with bending

A plate that is subjected to a combination of pure shear and pure bending is shown below:

1---0---1
--------

~ t
~ t
~ t
~ t
----~----

Figure 9: Plate subjected to shear and bending.

Timoshenko (1934) investigated this problem and presented a reduced critical buckling

coefficient, kc which is a function of'tc / 't*c. This value for kc is valid for ex =0.5, 0.8 and

1.0.

where: ex =alb

'tc =the actual shearing stress present

't*c =the buckling stress for pure shear

Stein (1936) and Way (1936) also investigated this case. Chwalla (1936) presented the

following approximate interaction formula predicting failure, which corresponds well

with the results from Stein and Way.
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where: (j*cb = the critical buckling stress for bending

(jcb =the actual bending stress present

'tc = the actual shearing stress present

't*c =the critical buckling stress for pure shear

2.8 Shear combined with bending and uniform compression

For a plate which is subjected to a combination of shear, bending and compression and

having all four edges simply supported (as shown below), an interaction formula was

presented by Gerard and Becker (1957/1958).

Figure 10: Plate subjected to shear, compression and bending.

The three-part interaction formula is given by:

where: (j*c =the critical buckling stress for compression

(jc =the actual compression stress present

McKenzie (1964) presented interaction graphs that took into account, in addition to the

above loading condition, a uniform compressive load applied on the horizontal edge, as

shown below.
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Figure 11: Plate subjected to compression, bending, shear and a vertical applied
compression loading.

2.9 Buckling strength of stiffened plates: Uniaxial compression, combined
compression and shear

To increase the stiffness of a plate, stiffeners can be added, as shown below. Both

longitudinal and transverse stiffeners are used, either separately or in a combination.

- t--

- t--

- t--

- t--

j[) T T T T <]1

Figure 12: Plates with longitudinal and transverse stiffeners.

For the case with longitudinal stiffeners, Timoshenko and Gere (1961), Bleich and

Ramsey (1951) and Seide and Stein (1949) have presented solutions to plates with one,

two or three longitudinal stiffeners equally spaced (parallel to the applied loading).

Graphs and tables are given by the authors above to determine the critical stress for plates

simply supported on all edges.

Timoshenko and Gere (1961) investigated plates in uniaxial compression with

transverse stiffeners. For one, two or three equally spaced transverse stiffeners,

Timoshenko and Gere defined the required size of the stiffeners. Klitchieff (1949) defined
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the required size of stiffeners when any number of stiffeners are used. Gerard and Becker

(1957/1958) investigated the case with both longitudinal and transverse stiffeners and

supplied the minimum value of y as a function of a for different combinations of

longitudinal and transverse stiffeners in graphs.

where:

EIs =flexural rigidity of one transverse stiffener

D = t",);flexural rigidity of the plate
12 1- v

a
a=-

b

2.10 Buckling strength of flat plates with partial boundary conditions

To this author's knowledge there are just a few papers published on the buckling of

rectangular plates with partially edge boundary conditions (Hamada et. al. 1967 and

Norris et. al. 1951).

2.10.1 Flat plate under uniform compression with simply supported but partially
clamped edges.

Hamada et. al. (1967) investigated flat plates in uniform compression with simply

supported loaded edges and simply supported but partially clamped unloaded edges.

I- a -ICJc

r Fixed SS Fixed SS

b SS ss

1 SS Fixed SSSS Fixed
~

Figure 13: Flat plate under uniform compression with simply supported but partially
clamped unloaded edges and simply supported loaded edges.
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An energy method proposed by Hamada and Ota (1958, 1959) was used to investigate

this problem. Ten cases were presented with diagrams for plates with aspect ratio 1,2/3

and 1/2. Verification of the results were done by laboratory experiments.

2.10.2 Flat plate under compression with intermittently simply supported edges.

Norris et. al. (1951) studied the buckling behavior of long rectangular plates

intermittently supported along the unloaded edges. Shown below is a sketch of the

intermittently supported plate.

IT
11 Point support

Figure 14: Long flat plate with intermittently simply supported edges.

The objective of their research was to develop specifications that could be used to

determine the required length of intermittent fillet welds to connect component parts of

structural members. The critical buckling coefficient, K was given as follows of Norris et.

a!.:

K=4.0

K =(b/g)2

valid for 0 < g/b < 0.5

valid for g/b > 0.5

where: b =unsupported width of the plate

g =gap between intermittent supports

Norris et. al. also presented experimental results together with theoretical data.
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3. PLATE THEORY

A summary of the elastic bending and buckling theory of thin plates is discussed next.

This summary gives the needed theoretical background to elastic bending and buckling of

flat plates and to the mathematical definitions of the boundary conditions. These

definitions will be referred back to in Chapter 5 in the finite element modeling of the

plates in this paper.

3.1 Basic assumptions used in the theory of elasticity

Described below are the basic assumptions that are used in the theory of elasticity. These

assumptions are common to all elastic problems.

1. Perfectly elastic material, i.e., if a body is deformed by external forces, the body will

return completely to its initial shape when the external forces are removed.

2. Homogeneous, i.e., the physical properties of the entire body are the same as any

small element cut out from the body.

3. Isotropic, i.e., the elastic properties of the body are the same in all directions.

3.2 Theory of bending of thin plates

The theory for thin plates is similar to the theory for beams. In pure bending of beams,

"the stress distribution is obtained by assuming that cross-sections of the bar remain plane

during bending and rotate only with respect to their neutral axes so as to be always

normal to the deflection curve." (Timoshenko, 1936, p. 319). This is shown in the sketch

below:

-1----f----r--
,-------Deflection curve

'-----Normal to deflection curve

Figure 15: Beam under pure bending.

14

3. PLATE THEORY

A summary of the elastic bending and buckling theory of thin plates is discussed next.

This summary gives the needed theoretical background to elastic bending and buckling of

flat plates and to the mathematical definitions of the boundary conditions. These

definitions will be referred back to in Chapter 5 in the finite element modeling of the

plates in this paper.

3.1 Basic assumptions used in the theory of elasticity

Described below are the basic assumptions that are used in the theory of elasticity. These

assumptions are common to all elastic problems.

1. Perfectly elastic material, i.e., if a body is deformed by external forces, the body will

return completely to its initial shape when the external forces are removed.

2. Homogeneous, i.e., the physical properties of the entire body are the same as any

small element cut out from the body.

3. Isotropic, i.e., the elastic properties of the body are the same in all directions.

3.2 Theory of bending of thin plates

The theory for thin plates is similar to the theory for beams. In pure bending of beams,

"the stress distribution is obtained by assuming that cross-sections of the bar remain plane

during bending and rotate only with respect to their neutral axes so as to be always

normal to the deflection curve." (Timoshenko, 1936, p. 319). This is shown in the sketch

below:

-1----f----r--
,-------Deflection curve

'-----Normal to deflection curve

Figure 15: Beam under pure bending.

14



For a thin plate, bending in two perpendicular directions occur. A rectangular plate

element is shown below:

x

//
//

//
//

//
/

z y

Figure 16: Thin plate notation.

Consider a small element cut out by two pairs of planes, parallel to the xz-plane and the

yz-plane. This small differential element is shown below:

1
z

N
D

Neutral axis

dx I
I
I
I

--f-.
// I .................

// ..+.. .........
/" ,// I "-

/'

dy

Figure 17: Differential element notation.

The basic assumptions of elastic plate bending are:

1. Perfectly flat plate and of uniform thickness
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2. The thickness of the plate is small compared with other dimensions. For plate

bending, the thickness, t, is less than or equal to 1/4 of the smallest width of the plate.

For plate buckling equations, the thickness, t, should be 1/10 of the smallest width of

the plate, (Young, 1989).

3. Deflections are small, i.e., smaller or equal to 1/2 of the thickness, (Young, 1989).

4. The middle plane of the plate does not elongate during bending and remains a neutral

surface.

5. The lateral sides of the differential element, in the above figure, remain plane during

bending and rotate only to be normal to the deflection surface. Therefore, the stresses

and strains are proportional to their distance from the neutral surface.

6. The bending and twisting of the plate element resist the applied loads. The effect of

shearing forces is neglected.

From the above assumptions the strains in a plane element, in the x- and y-directions are

given by:

ze=­x
Px

ze =-
y P

y
Eq.2

where: z =distance from neutral surface

l/px =curvatures of the neutral surface in a section parallel to the xz-plane

l/py =curvatures of the neutral surface in a section parallel to the yz-plane

z

Figure 18: Curvatures of the neutral surface in a plate section.
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and from Hooke's law, the strains Ex and Ey are related to the stresses O'x and O'y as

follows:

1
ex = E (0" x - vO" y )

Eq.3

where: E =Young's modulus

O'x =normal stresses in the x-direction

O'y =normal stresses in the y-direction

v =Poisson's ratio

By combining Eq. 2 and Eq. 3, and solving for the normal stresses O'x and O'y, yields

Eq.4

The normal stresses above act on the lateral sides of the element in Figure 17 and can be

reduced to couples, which must equal the externally applied moments. It can then be

shown that, the edge moments Mx and My are given by:

Mx =D(_l+v_
l J

Px Py

My =D(_l + v_IJ
Py Px

Eq.5

where: D = tt3

); flexural rigidity of the plate.
12 1- v 2

Eq.6

This quantity corresponds to the EI-value of a beam of unit width. The term (1-v2
)

increases the rigidity of the plate compared to a beam of the same width. The reason for

this is that moments in one direction create a curvature in a perpendicular direction, to

form a so called anticlastic surface. The plate's resistance to this the second curvature,

has the effect of an increase in the rigidity of the plate.
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Eq.4
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Mx =D(_l+v_
l J

Px Py

My =D(_l + v_IJ
Py Px
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12 1- v 2

Eq.6

This quantity corresponds to the EI-value of a beam of unit width. The term (1-v2
)

increases the rigidity of the plate compared to a beam of the same width. The reason for

this is that moments in one direction create a curvature in a perpendicular direction, to

form a so called anticlastic surface. The plate's resistance to this the second curvature,

has the effect of an increase in the rigidity of the plate.

17



Let the deflection, in the z-direction, of the plate be w, then by using the

approximate formulas for the curvatures of a plate, the curvatures are given by:

Eq.7

Substituting Eq. 7 into Eq. 5 yields the following expressions for the moments:

Eq.8

From basic theory of elasticity, the relationship between shear strain and shear stress is

given by:

2(1 + v)
Yxy = E x'r xy

It can then be shown that the twisting moment is given by:

J2 W
M = -D(1-v)--

xy J xJ y

Eq.9

Eq.l0

Consider a plate that is subjected to a distributed lateral load (as shown below),

acting perpendicular to the middle plane of the plate, where q(x, y) is the intensity of the

load. In the general case, the intensity q is a function of x and y.
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Figure 19: Distributed lateral load on a plate.

By integrating the following fourth-order partial differential equation, the deflection

surface can be found:

Eq.ll

If the deflection surface is known, all the stresses can be calculated. Next, the definition

of the boundary conditions will be discussed.

3.3 Mathematical definitions of the boundary conditions

In order to integrate the above differential equation, the distributed load and the boundary

conditions must be known. Discussed below are the mathematical definitions for a fixed

(clamped or built-in) edge, simply supported edge and for a free edge.

3.3.1 Fixed Edge

Shown below is a sketch of a fixed edge:
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Figure 19: Distributed lateral load on a plate.

By integrating the following fourth-order partial differential equation, the deflection

surface can be found:

Eq.ll

If the deflection surface is known, all the stresses can be calculated. Next, the definition

of the boundary conditions will be discussed.

3.3 Mathematical definitions of the boundary conditions

In order to integrate the above differential equation, the distributed load and the boundary

conditions must be known. Discussed below are the mathematical definitions for a fixed

(clamped or built-in) edge, simply supported edge and for a free edge.

3.3.1 Fixed Edge

Shown below is a sketch of a fixed edge:
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Figure 20: Fixed edge.

The deflection is zero along the fixed edge and the slope of the middle plane of the plate

is zero for a fixed edge. Using the above coordinate system, the boundary conditions are:

(W)y:o = 0 (awJ =0
ay y:o

Eq.12

3.3.2 Simply Supported Edge

A simply supported edge has no deflections along the supported edge, however the

rotation with respect to the x-axis is not restricted. A sketch of a simply supported edge is

shown below:

x

y

Figure 21: Simply supported edge.
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Figure 21: Simply supported edge.
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Because there are no restrictions against rotation along the simply supported edge, this

means that there are no bending moments along this edge. The mathematical definition of

a simply supported edge is given below:

(W)y=o = 0 Eq.13

3.3.3 Free Edge

Along an edge that has no supports, the bending and twisting moments and the vertical

shearing forces will all be zero. Let the edge x =a be free in the sketch below:

x

Figure 22: Free edge.

Eq.14

The two boundary conditions above for the twisting moment and the shearing forces can

be combined to one boundary condition, as was proved by Kirchhoff (1850), i.e.,

(
aMxyJ

Qx--a- =0
Y x=a

The analytical expression for the above boundary condition can be shown to be:
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Figure 22: Free edge.

Eq.14

The two boundary conditions above for the twisting moment and the shearing forces can
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Eq.16

The expression for the requirement that the bending moment is zero can be expressed as

follows:

(
d

2
W+Vd2WJ =0

dx2 dl
x=a

Eq.17

3.4 Plate subjected to in-plane loads

If a plate has, in addition to the distributed lateral load, forces that are applied in the

middle plane of the plate, the effect on plate bending can be considerable. The differential

equation for the deflection surface can then be shown to be (Saint Venant derived this

differential equation in 1883):

Eq.18

where: q =distributed lateral load intensity

Nx =edge force per unit length in the x-direction

Ny =edge force per unit length in the y-direction

Nxy =edge shearing force per unit length

The above differential equation is not valid for large deflections, i.e., when the middle

plane of the plate stretches. This would be the case when inelastic buckling occurs and/or

when the plate carries ultimate load.
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4. ELASTIC STABILITY OF THIN PLATES

The analytical solution of elastic instability problems can be done by integration of the

differential equation of the deflected shape of the buckled plate or by the energy method.

The energy method can be used when an analytical solution of Eq. 17 can not be found.

However, in order to use the energy method a good approximation of the deflected shape

of the plate needs to be known.

4.1 Integration of differential equation of equilibrium

A brief description of how to solve for the critical buckling load will be done next. One

way of analyzing a plate for critical buckling load is to assume that the plate will buckle

slightly under edge compression. Then the magnitude of this edge compression to keep

the plate in this slightly buckled shape is the critical buckling load. Consider a simply

supported thin flat plate with a uniform compressive load acting in the middle plane, as

shown below:

Figure 23: Simply supported flat plate subjected to uniform compression.

The differential equation of the buckled shape is obtained from Eq. 17, and by setting q =

°(i.e., there are no lateral loads), Nx =at, Ny =0, Nxy =°and if no body forces are

present, the differential equation of the buckled plate then becomes:

J4W+ 2 J4W + J4W =~((j t J2 WJ
J x4 J x2J l J / D J x2

where: (j =compressive stress

t = thickness of plate
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Assuming that the plate buckles in m sinusoidal half-waves in the direction of the

compressive load, the solution is then assumed to be in the form,

w = f(y)x sin mn:x
a

Eq.20

where f(y) is a function of y only. This expression needs to satisfy the four boundary

conditions that are given by:

(w = ot=o,a and Eq.21

By substituting Eq. 20 in Eq. 19, the following differential equation is obtained:

The general solution is given by:

Eq.22

where:

Eq.23

Eq.24

Eq.25

The constants of integration above, are determined by using the given boundary

conditions. Four equations can then be found involving Al through A4. These four

equations can be written in matrix form as shown below:

1

cosh(ah)
y2

y2cosh(ah)

o
sinh(ah)

o
y2 sinh(ah)

1

cos(f3b)
_82

_8 2 cos(f3b)

o Al

sin(f3b) ~ = 0
o A3

_8 2 sin(f3b) A
4

24

Eq.26
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where: Eq.27

Eq.28

The above four equations are satisfied if all four constants of integration equal zero, i.e., a

trivial solution and that w =0, and that would be the unbuckled shape of the plate. For a

non-trivial solution to exist, the determinant of the above matrix must equal zero, as

shown below:

- (y2 + 8 2f sinh(ab)sin(,Bb) =° Eq.29

This equation is the characteristic equation and defines the stability of the plate. Defining

the following parameters:

a
ep=­

b
Eq.30

If the above parameters K and ep are substituted into Eq. 24 and Eq. 25, it can be shown

that

ab=[~~'(,fK +;)T'
fib = [ ~~' ( ,fK-;)T'

Eq.31

Eq.32

Denoting ab and,Bb withp and q and yb2 and 82b2 with rand s, it can be shown that,

Eq.33
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The solution to the characteristic equation can then be written as a function of K and ¢.

Setting m =1, i.e., the buckled plate has only one-half wave in the direction of the

compressive load. For this particular example, a plate simply supported on all four edges,

the relationship between K and ¢ is given by:

1
K=-2 +¢2+2

¢

This function is shown below:

Eq.34
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Figure 24: Buckling coefficient, K versus aspect ratio, <1>.

As can be seen from the above graph, the function has a minimum at <1> =1 which

corresponds to K =4. Rewriting Eq. 30,

Eq.35

The above expression is the well-known equation for the critical buckling stress, and K is

the buckling coefficient.
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The above expression is the well-known equation for the critical buckling stress, and K is

the buckling coefficient.

26



Timoshenko (1961) showed that the deflection surface of a buckled simply

supported plate is a double sine curve, and can be represented by the following equation:

~~ . mnx . nny
W = .£..J.£..Jamn sm--sm--

m=! n=! a b
Eq.36

4.2 The energy method

As stated earlier, the energy method can also be used to find the critical buckling load.

The energy method has the advantage of finding the critical load in a direct and simple

way, and for cases where it is not possible to find an analytical solution to the differential

equation of the deflected shape of the buckled plate. The principle of conservation of

energy states that the strain energy stored in a system is equal to the work done by the

applied loads. If the work done by the applied loads becomes larger than the strain energy

due to bending (for any shape of the deflection surface) buckling occurs. However, a

good approximation of the shape of the deflection surface of the buckled plate needs to be

known. For cases with partial boundary conditions, the energy method has been used to

find critical buckling stresses. Hamada et. al. (1967) and Norris et. al. (1951) used the

energy method to analyze cases with partial boundary conditions, as was described in the

literature review section. A very brief description of the energy method will be done next.

Consider a flat plate subjected to loads acting in the middle plane of the plate. A

small amount of lateral bending is produced, which is consistent with the given boundary

conditions. If no stretching of the middle plane occurs, the energy of bending and the

work done by the applied loads in the middle plane only need to be considered. Then, the

critical forces can be found from,

fJ.T; = fJ.U

where: fJ.T 1 =work done by external forces
fJ.U =strain energy of bending

The buckled shape of a simply supported plate was given from Eq. 36, as follows:

27

Eq.37

Timoshenko (1961) showed that the deflection surface of a buckled simply

supported plate is a double sine curve, and can be represented by the following equation:

~~ . mnx . nny
W = .£..J.£..Jamn sm--sm--

m=! n=! a b
Eq.36

4.2 The energy method

As stated earlier, the energy method can also be used to find the critical buckling load.

The energy method has the advantage of finding the critical load in a direct and simple

way, and for cases where it is not possible to find an analytical solution to the differential

equation of the deflected shape of the buckled plate. The principle of conservation of

energy states that the strain energy stored in a system is equal to the work done by the

applied loads. If the work done by the applied loads becomes larger than the strain energy

due to bending (for any shape of the deflection surface) buckling occurs. However, a

good approximation of the shape of the deflection surface of the buckled plate needs to be

known. For cases with partial boundary conditions, the energy method has been used to

find critical buckling stresses. Hamada et. al. (1967) and Norris et. al. (1951) used the

energy method to analyze cases with partial boundary conditions, as was described in the

literature review section. A very brief description of the energy method will be done next.

Consider a flat plate subjected to loads acting in the middle plane of the plate. A

small amount of lateral bending is produced, which is consistent with the given boundary

conditions. If no stretching of the middle plane occurs, the energy of bending and the

work done by the applied loads in the middle plane only need to be considered. Then, the

critical forces can be found from,

fJ.T; = fJ.U

where: fJ.T 1 =work done by external forces
fJ.U =strain energy of bending

The buckled shape of a simply supported plate was given from Eq. 36, as follows:

27

Eq.37



~~ . m1LX . n1Ly
W = £.oJ£.oJamn Slll--Slll--

m=\ n=\ a b

The strain energy of bending can then be shown to be:

Work done by the externally applied compressive forces, can be shown to be:

2b = =
1L ~~ 2 2111; = --N x£.oJ £.oJ m amn
8a m=\ n=\

Eq.38

Eq.39

Critical values of the compressive forces can then be found by equating Eq. 38 and Eq.

39,

( )

2
'TT'2b = = 'TT'4 b = = 2 2
,. ~ ~ 2 2 ,. a ~ ~ m n
--Nx£.oJ£.oJm amn =--D£.oJ£.oJamn -2+-2
8a m=\ n=\ 8 m=\ n=\ a b

and solving for Nx :

= = (2 2)22 22 m n
1L a DIIamn -2+-2

N = m=\ n=\ a b
x

IIm2a~n
m=\ n=\

Eq.40

It can then be shown that Eq. 40 becomes a minimum if all the coefficients amn , except

one, are set to zero. Eq. 40 then becomes:

Eq.41

By setting n = 1, Nx will be a minimum. This means that the plate buckles so there is just

one-half wave in the perpendicular direction and many half-waves in the direction of the

applied loads. The expression for the critical load then becomes:
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5. FINITE ELEMENT ANALYSIS

There are two parts to the finite element analysis (FEA). First, the linear elastic buckling

load was obtained by using a linear eigenvalue buckling analysis program. Verification of

the results obtained from the FEA was done as follows: A flat plate with known linear

elastic buckling stress was modeled using the FEA program. The linear elastic buckling

stress obtained from the FEA program was then compared to a closed-form solution.

Several models with increasingly more and more elements were analyzed until the FEA

solution was within 5% of the closed-form solution.

The second part of the finite element analysis was to estimate the ultimate strength

of the plate. The ultimate strength of the plate was obtained as follows: A non-linear

finite element analysis procedure was selected. In the non-linear finite element method

initial imperfections and elasto-plastic conditions could be modeled. The first buckled

mode shape obtained from the linear elastic solver was used as an initial imperfection. By

doing this the worst case scenario would be modeled, i.e., a flat plate with an initial

imperfection corresponding to the first buckled mode shape. Von Mises yield condition

was used in the analysis, with a tangent modulus of zero. By choosing a tangent modulus

of zero, again, a worst case is modeled. An incremental solution procedure was then used

in the non-linear FEA. The ultimate strength of the flat plate was found when a small

increase in the load resulted in a very large deflection of the plate, i.e., the stiffness of the

plate approached zero. The non-linear finite element method was compared to an

approximate method, the "effective-width" method.

5.1 Linear elastic buckling strength

The linear elastic buckling load was obtained by using a commercially available FEA­

program, the ALGOR-software, (Algor, Inc.; 150 Beta Drive; Pittsburgh, Pa 15238). This

program determines the load which brings the structure to the bifurcation point. The

predicted buckling load is the Euler buckling load. The bifurcation point is defined as

follows (Galambos, 1988): At the bifurcation point, the compressed member can be in

equilibrium in two different configurations. The member can either be straight or in a

slightly deflected shape. If a plot of axial load versus lateral deflection is made, a branch
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point occurs at the bifurcation point. After the bifurcation point two different

load/deflection curves are mathematically valid. Idealized load-displacement paths are

shown in Figure 25 below.

Load

o

Bifurcation Point

B

Displacement

Figure 25: Idealized load-displacement paths.

The solid line represents a perfect structure and displaces along a basic path (OAB) and

the bifurcation occurs at point A. The dashed line AC represents the post-buckling path,

and this path can either rise or descend depending on what type of structure and loading is

considered. The third line (OD), applies to structures with initial imperfections and as can

be seen a bifurcation point does not exist.

The basic equation to be solved in finite element analysis is

{F} = [K]{d}

where: F =global nodal force vector

K =global stiffness matrix

d =global nodal displacement vector

Eq.43

By using the minimum potential energy principle the total potential energy of a plate

element can be written as (Allen, 1980):

Ve = ~{8r[KL +KG ]{8}
2

where: Ve =total potential energy of the plate element
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and this path can either rise or descend depending on what type of structure and loading is

considered. The third line (OD), applies to structures with initial imperfections and as can

be seen a bifurcation point does not exist.

The basic equation to be solved in finite element analysis is

{F} = [K]{d}

where: F =global nodal force vector

K =global stiffness matrix

d =global nodal displacement vector

Eq.43

By using the minimum potential energy principle the total potential energy of a plate

element can be written as (Allen, 1980):

Ve = ~{8r[KL +KG ]{8}
2

where: Ve =total potential energy of the plate element
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Eq.44



() =nodal displacement vector

KL = linear stiffness matrix

l«J =geometric stiffness matrix

At the critical load, the total potential energy is a minimum and the homogeneous

equation

Eq.45

has a non-trivial solution. The critical stress is then the smallest root of the determinant of

the following equation:

det(KL + AcrKG ) = 0

where: ACT = the buckling load factor

Eq.46

As was the case in the theoretical development of the critical buckling load, the

FEA-model of the flat plate is assumed to be perfectly flat and entirely elastic, i.e., the

buckling takes place in the elastic region. The linear elastic buckling load was found for

the flat plate shown below with non-continuous boundary conditions. The plate is

subjected to uniform compression and has one partially supported unloaded edge.
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Figure 26: Flat plate under uniform compression with a partially supported unloaded edge.

where: a =length of the plate

b =width of the plate

a' =supported length of an unloaded, longitudinal edge

SS =simply supported edge

Four aspect ratios, alb were investigated for the above case: alb =1.0, 1.4,2.0,3.0.

Dimensions and material properties for the four different plate models are given below:

alb Length, a Width, b Thickness, t Young's Poisson's ratio
(--) (in) (in) (in) modulus (--)

(psi)

1.0 2.00 2.00 0.05 30E6 0.30

1.4 2.80 2.00 0.05 30E6 0.30

2.0 4.00 2.00 0.05 30E6 0.30

3.0 6.00 2.00 0.05 30E6 0.30

The supported length on the partially supported edge was varied between zero and the

plate length, i.e., 0 ~a 'fa ~1, where a' is the length of the support on the partially
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supported edge. Two closed-form solutions are known for each set of plates, namely

when the top edge (in Figure 26) is supported along the entire edge and when the edge is

free. The finite element solution should, therefore, correspond to the closed-form

solutions at these points. One verification of the PEA-model and the corresponding

buckling load can therefore be done by considering these two cases.

The linear elastic buckling strength was obtained by using a linear eigenvalue

solver (ALGOR-software). In the next section, the finite element models will be

described showing elements used, boundary conditions and applied loads.

5.2 Description of the finite element models

Shown in Figure 27 is a sketch of the finite element model used in the linear elastic

buckling model. Boundary conditions are as follows: Translational boundary conditions

are denoted by Tx , Ty, Tz, where the subscript denotes along what axis the translational

boundary constraint is applied.

In this work, the PEA-results are compared to closed-form solutions, therefore,

the boundary conditions used in the FEA-model must correspond to boundary conditions

used in the analytical solutions. In Figure 26 above, the boundary conditions are given as

simply supported along the edges. From Eq. 12 in the theory section, the mathematical

definition of a simple support was given as:

(
JZW JzwJ(w) =0 =0 and --z+v--z =0

Y J y J x y=o

The first equation states that there are no deflections along the supported edges, and the

second equation indicates that there are no bending moments along the supported edges.

Translational boundary conditions must therefore be used in the FEA-model. Referring to

Figure 27, on the left edge, boundary conditions Tx and Ty are applied along the edge.

Translations are therefore restricted in the x-and y-directions, where the x-direction is the

out of plane direction and the y-direction is the longitudinal direction. On the bottom

edge, the boundary conditions Tx and Tz are applied which constrains the translation in the

transverse direction, (z-direction) and in the x-direction. The right and top edge only have
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the out-of-plane boundary condition, Tx • With these boundary conditions, there are no

deflections in the x-direction along the edges and the plate can still contract in the y-and

z-directions, also, no rotational restrictions are imposed on the plate model. Similar

boundary conditions will be used for the non-linear FEA-model. The applied load was

distributed evenly along the one edge of the plate. At the two comer nodes one half the

nodal load was applied, as shown below:

,.....-----l--15P

1I2P

Figure 27: FEA model of partially supported plate.

A three-dimensional, isotropic, membrane plus bending linear plate element was used in

this work with a Veubeke formulation (QM5 plane stress element). As stated earlier, the

linear eigenvalue buckling solver finds the critical buckling load and the first buckling

mode shape. In the next sections, results are presented for the four different types of

plates that were investigated in this work.

5.2.1 Flat plate with aspect ratio, alb =1.0

Shown below is a chart for the critical buckling coefficient, K' for the case of a flat plate

with an aspect ratio, alb of 1.0. The x-axis shows the ratio between supported length, a',

and length of the plate, a, for the unloaded edges and the critical buckling coefficients are

plotted against the y-axis.
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Figure 28: Buckling coefficient, K' for a flat plate with a1b=1.0.
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Figure 28: Buckling coefficient, K' for a flat plate with a1b=1.0.



From the above chart it is interesting to note that the critical buckling coefficient does not

decrease dramatically until the unsupported length is greater than the supported length. A

comparison between the FEA and closed-form solutions when a 'fa =0 (free edge) and

a 'fa =1 (simply supported all around) is presented below.

Critical Buckling Coefficient, K':

Support condition: Closed-form solution: FEA: % difference

a'fa =0, (One free edge) 1.18 1.16 -1.69 %

a' fa =1, (SS) 3.29 3.31 0.608 %

As can be seen from the above results, the FEA-results correspond well with the two

closed-form solutions that are available. Shown below are pictures of the buckled mode

shapes for the plate with aspect ratio equal to one.
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a'/a =1.0

a'/a =0.25

a'/a =0.75

a'/a =0

Figure 29: Buckled mode shape of plates with alb-ratio = 1.0

5.2.2 Flat plate with aspect ratio, alb =1.4

The chart for the critical buckling coefficient, K' for the case of a flat plate with an aspect

ratio, alb of 1.4 is shown below:
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Figure 30: Buckling coefficient, K' for a flat plate with a1b=1.4.
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Figure 30: Buckling coefficient, K' for a flat plate with a1b=1.4.



For this case, the critical buckling coefficient starts to decrease earlier than for the plate

with aspect ratio equal to one. The buckling coefficient drops when the ratio a'fa::::; 11/16.

The comparison between the PEA-results when a'fa =0 (free edge) and a 'fa =1 (simply

supported all around) and the closed-form solutions are presented below.

Critical Buckling Coefficient, K':

Support condition: Closed·form solution: FEA: % difference

a'fa =0,( Free edge) 0.784 0.759 -3.19 %

a'fa =1,( SS) 3.68 3.69 0.272 %

Again, the FEA-results correspond well with the closed-form solutions. The buckled

mode shapes for the plates with aspect ratio equal to 1.4 are shown below:
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a'/a =1.0

FYVIA r VVlA
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Figure 31: Buckled mode shape of plates with alb-ratio = 1.4

5.2.3 Flat plate with aspect ratio, alb =2.0

The chart for the critical buckling coefficient, K' for the case of a flat plate with an aspect

ratio, alb of 2.0 is shown below:
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Figure 32: Buckling coefficient, K' for a flat plate with a1b=2.0.
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Figure 32: Buckling coefficient, K' for a flat plate with a1b=2.0.



For the aspect ratio of two, the supported length has to be approximately 75% of the

length of the plate for the plate to have equivalent stiffness compared to a plate with all

edges simply supported. The comparison between the FEA-results when a 'fa =0 (free

edge) and a'/a =1 (simply supported all around) and the closed-form solutions are

presented below.

Critical Buckling Coefficient, K':

Support condition: Closed-form solution: FEA: % difference

a'fa =0, Free edge 0.574 0.549 -4.36 %

a'fa =1, SS 3.29 3.31 0.608 %

Again, the PEA-results correspond well with the closed-form solutions. The buckled

mode shapes for the plates with aspect ratio equal to 2.0 are shown below:
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Figure 33: Buckled mode shape of plates with alb-ratio = 2.0

5.2.4 Flat plate with aspect ratio, alb =3.0

The chart for the critical buckling coefficient, K' for the case of a flat plate with an aspect

ratio, alb of 3.0 is shown below:
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Figure 34: Buckling coefficient, K' for a flat plate with a/b=3.0.
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Figure 34: Buckling coefficient, K' for a flat plate with a/b=3.0.



When the supported length is less than 718 of the plate length, the critical buckling

coefficient drops dramatically. The comparison between the FEA-results when a'/a =0

(free edge) and a'/a =1 (simply supported all around) and the closed-form solutions are

presented below.

Critical Buckling Coefficient, K':

Support condition: Closed-form solution: FEA: % difference

a'ia =0, Free edge 0.464 0.438 -5.60 %

a'ia =1, SS 3.29 3.31 0.608 %

Again, the FEA-results correspond well with the closed-form solutions. The buckled

mode shapes for the plates with aspect ratio equal to 3.0 are shown below:
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a'/a =1.0 a'/a =0.75

a'/a =0.5

a'/a =0.25 a'/a =0

Figure 35: Buckled mode shape of plates with alb-ratio = 3.0

In the next section, a comparison of the results obtained from the PEA is done with

closed-form solutions.
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5.3 Verification of the FEA-models

Closed-form solutions for the critical buckling stress exists when boundary support

conditions are continuous. However, closed-form solutions are not available, to this

author's knowledge, for the cases presented in this work, i.e., plates with partially

supported edges. An approximate method to verify the results for the cases where closed­

form solutions do not exist will be presented next. The plate will be divided into two

smaller segments (see Figure 36), and these two smaller plate segments will then have

continuous support boundary conditions all around.

dFa / ree e ge
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1
SS 1 SS
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I
1

Free edge

I S5 I 1

1 1

1 1

1 I
~ 55 "'551 ~ 1"'55 55

L
1

L
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SS S5

~a'~ ~(a-a')~

Figure 36: Plate under uniform compression divided into two segments.

The intersection between the two segments will be treated as a simple support in this

work. However, the true boundary condition at the intersection is something in-between a

fixed support and a simple support, as indicated in the sketch above. The intersection will

carry a moment in reality, i.e., the plate will be stiffer than if it were a simple support and

by treating the intersection as a simple support a worst case scenario is modeled. The

buckling stress and the buckling coefficient will therefore be on the conservative side. By

48

5.3 Verification of the FEA-models

Closed-form solutions for the critical buckling stress exists when boundary support

conditions are continuous. However, closed-form solutions are not available, to this

author's knowledge, for the cases presented in this work, i.e., plates with partially

supported edges. An approximate method to verify the results for the cases where closed­

form solutions do not exist will be presented next. The plate will be divided into two

smaller segments (see Figure 36), and these two smaller plate segments will then have

continuous support boundary conditions all around.

dFa / ree e ge
~ ----

SS I
1

1
SS 1 SS

I
I
1

Free edge

I S5 I 1

1 1

1 1

1 I
~ 55 "'551 ~ 1"'55 55

L
1

L
1

1 I
1 1

SS S5

~a'~ ~(a-a')~

Figure 36: Plate under uniform compression divided into two segments.

The intersection between the two segments will be treated as a simple support in this

work. However, the true boundary condition at the intersection is something in-between a

fixed support and a simple support, as indicated in the sketch above. The intersection will
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modeling the two segments as described above, existing closed-form solutions can be

used and critical buckling coefficients can be obtained.

The buckling coefficients obtained previously in this work, using FEA, will be

compared to approximate buckling coefficients obtained by using the modeling technique

described above and existing closed-form solutions. A sketch of the plate with aspect

ratio 1.0 and a' /a =0.25 is shown below:

where: a' = supported length of a longitudinal edge of the plate

a =length of the plate

Free edge0.501 1--1.50

SSI
I
I

SS I SS
I
I
I

o
o
C'J

Lf--------------

Figure 37: Plate with aspect ratio 1.0 and a'/a = 0.25

The critical buckling coefficient for the plate segment with one free edge will be found.

The aspect ratio for that segment is,

150 = 0.75
2.00

The critical buckling coefficient is then (Young, 1989),

K' =1.88

Similar analysis can be done for the plates with aspect ratios 1.4,2.0 and 3.0. A summary

of the results are shown in the table below.
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Figure 38: Flat plate with a'/a = 0.25

Comparison of critical buckling coefficients for plates with a'la = 0.25

alb: PEA: Theory: Percent diff.:

1.0 2.25 1.88 -16.4%

1.4 1.50 1.10 -26.7%

2.0 1.00 0.73 -27.0%

3.0 0.70 0.535 -23.9%

As was mentioned earlier, by treating the intersection between the two plate segments as

a simple support the stiffness of the plate would decrease. As can be seen from the above

results, the FEA predicts a higher critical buckling coefficient than the approximate

buckling coefficients. The approximate critical buckling coefficients obtained from

closed-form solutions are 16-27% lower than what the PEA predicts.
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5.4 Estimate of ultimate strength using non-linear finite element method

The objective of the second part of the FEA was to estimate the ultimate strength of a flat

plate under compression using a non-linear finite element method. In the first part of this

work, the linear elastic critical buckling load was found. As was described earlier, the

linear elastic buckling load was found by assuming that the plate is initially perfectly flat

and buckles elastically. However, by using a non-linear finite element method, initial

imperfections and inelastic behavior can be modeled. According to Zienkiewicz (1991),

postbuckling behavior should be studied by the large deformation process and in order to

model the buckling behavior, an initial imperfection must be imposed on the initially

perfect plate. Bathe (1996) states that by using the buckled mode shape of the plate in the

post-buckling analysis, the load carrying capacity of the model may correspond much

better to the actual structure. In this work the postbuckling strength of the plate was found

when a small increase in the load resulted in large displacements, i.e., the stiffness of the

plate approached zero. The load at this point was then used as the ultimate load. The

collapse of the plate was therefore a combination of both buckling and yielding. The

effect of the initial imperfection was investigated by modeling different models with

varying initial imperfection.

The results from the non-linear FEA were compared to an approximate method,

the "effective-width" method. However, in actual engineering design work, the

imperfection in the actual structure may be known or can be measured.

The ALGOR non-linear finite element software was used in this section. Next, a

brief summary of the non-linear finite element method will be described.

5.4.1 Non-linear finite element method

According to Bathe (1996), a non-linear analysis should be preceded by a linear analysis

to determine what nonlinearities are significant in the model. By doing this, appropriate

material models and non-linear formulations can be chosen.
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In linear finite element analysis it is assumed that the displacements are

infinitesimally small and the material is linearly elastic (Bathe, 1996). Then, the equation

to be solved in static analysis was given by Eq. 43

{F} = [K]{d}

i.e., a set of simultaneous linear equations. In solving non-linear problems, a series of

successive linear approximations with corrections are required. Structural non-linear

effects are classified as material and/or geometric. Material non-linearity exist when

stress is not proportional to strain. If a structure experiences large deformations, its

changing geometric configuration may cause the structure to respond non-linearly. In

general non-linear finite element analysis, the problem is to find the equilibrium of the

body corresponding to the applied loads.

The Newton-Raphson method is the basic form for most of the iterative methods

used in non-linear FEA (Bathe, 1996). In this solution scheme, the effective stiffness

matrix and the right hand side effective load vector of the system are updated for each

equilibrium iteration within all the time / load steps. This method is very effective for

problems with strong nonlinearity in that it converges quadratically with respect to the

number of iterations. However, the Full Newton-Raphson method is more expensive in

terms of solution time. In this work the Full Newton-Raphson method with line search

was used as the iterative solution scheme. The basic idea behind a line search scheme is

the following: During each equilibrium iteration, the Newton-Raphson method generates

a search direction for new possible solutions, while the line search scheme is used to find

a solution in that direction that minimizes the out-of-balance force error. Line searches

usually help to stabilize the iterative schemes, especially near the time or load levels

where rapid material property and/or geometric configuration changes occur, but line

searches also add to the cost per iteration (ALGOR, Accupak manual 1994).

The time step increment is the incremental solution time step used in the non­

linear finite element solution procedure. The displacement convergence tolerance is used

to measure equilibrium convergence. This convergence criteria is defined by the

following inequality, Bathe (1996):
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Eq.47

Eq.48

where: Un =the global displacement vector corresponding to the n-th iteration in the
current time step interval.

Un-1 =the global displacement vector corresponding to the (n-l)-th iteration in
the current time step interval.

CD =displacement tolerance

An energy based method was used for the convergence criteria code for equilibrium

iterations. The energy based convergence criteria combines a displacement convergence

criteria and an out-of-balance load vector convergence criteria code. This convergence

criteria indicates when both the displacements and forces are near the equilibrium values.

The amount of work done by the out-of-balance loads on the displacement increments is

compared to the initial energy increment. Convergence is reached when the following

inequality is satisfied:

tJ..Un . M'n-l
--"---"-~ '.5. t: E

tJ..U 1 • M'o

where: tJ..Un =the displacement increment vector corresponding to the n-th equilibrium
iteration in the current time step interval

tJ..U1 =the displacement increment vector corresponding to the 1st equilibrium
iteration in the current time step interval

f}.Fn-l =the unbalanced nodal force vector corresponding to the (n-l)-th
equilibrium iteration results in the current time step interval

f}.Fo =the initial unbalanced nodal force vector of the current time step interval

The Total Lagrangian Formulation is effective for elasto-plastic analysis

involving large displacements, large rotation or small strain, according to Bathe (1996).

In the total Lagrangian formulation all static and kinematic variables are referred to at

time, t =O. All kinematical non-linear effects are included in the total Lagrangian

formulation, i.e., non-linear effects due to large displacements and large rotations.
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A fundamental difference between calculating the stresses in an elastic and

inelastic model is that in an elastic model the stress can be calculated from the strain

alone. However, calculation of the stress in an inelastic response depends on the stress

and strain history. The von Mises material model is based on the elasto-plastic response

governed by the incremental theory of plasticity (Prandtl - Reuss equations), Mendelson

(1983). Three properties are used to calculate the plastic strain:

1. Yield function, from which a yield condition is given that determines when plastic

flow starts.

2. Flow rule, plastic strain increments are related to the current stresses and the stress

increments.

3. Hardening rule specifies how the yield function is modified during plastic flow.

In this work, the material is modeled as bilinear (see sketch below), the effective stress ­

effective strain relationship is a straight line.

Stress

Yield point- --

Slope E

Slope

Total strain

Figure 39: Bilinear material model.

where: E =modulus of elasticity

ET =tangent modulus (strain-hardening modulus)

cryield point =yield point of the material under consideration
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As can be seen from the above sketch, the material model has a linear elastic behavior

until the yield point of the material is reached.

5.4.2 Non-linear finite element model

In the non-linear finite element model a 3D-shell element was used; a 4-node

isoparametric quadrilateral shell element. Each shell element node has five degrees of

freedom, three translations and two rotations. Shown below is the plate that was analyzed

using the non-linear finite element method.

/Free edge

If----.

~200-~

o
o
0-J

Lr----
ss

ss

ss

Figure 40: Sketch of non-linear finite element model.

The material properties of the above plate are shown below:

E =30E6 psi

v =0.3

where: E =Young's modulus

v =Poisson's ratio

cry =36,000 psi

ET = tangent modulus (strain hardening modulus)

cry =yield point
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Figure 40: Sketch of non-linear finite element model.

The material properties of the above plate are shown below:

E =30E6 psi

v =0.3

where: E =Young's modulus

v =Poisson's ratio

cry =36,000 psi

ET = tangent modulus (strain hardening modulus)
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A sketch of the FEA-model showing boundary conditions and applied loads are shown

below:

On these nodes,

r the applied load
is P

,-'!"l--f!4---j

~~+~~~~~~~+- +.; ~~C"~-8lJ----t

.•
1/2P

Figure 41: Non-linear finite element model.

The buckled mode shape of the flat plate being analyzed is shown below:
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Initial imperfection
measured at this
point.

Figure 42: Buckled mode shape I initial imperfection.

The buckled mode shapes, as shown in the above picture, was then scaled down. Five

different scaled-down buckled mode shapes were investigated. The imperfection was

measured at the point shown in the above picture. A summary of the five models is

shown below.
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Figure 42: Buckled mode shape I initial imperfection.

The buckled mode shapes, as shown in the above picture, was then scaled down. Five

different scaled-down buckled mode shapes were investigated. The imperfection was

measured at the point shown in the above picture. A summary of the five models is

shown below.

57



Length, a: 2.00 in

Width, b: 2.00 in

alb - ratio: 1

Thickness, t: 0.025 in

Initial imperfections: 0.0125 0.0250 0.0375 0.0500 0.1000

Element type: 3D-shell

Material model: von Mises yield condition

Analysis type: Total Lagrangian

Yield strength (psi): 36,000 psi

Young's Modulus (psi): 30E6 psi

Tangent modulus: 0

No. of time steps: 50 200 100 100 100

Time step increment: 0.02000 0.00250 0.00595 0.00620 0.00800

Displacement tolerance: 0.0001

Line search tolerance: 0.5

Iteration method: Full Newton Method with line search

Convergence criteria code for Energy only
equilibrium iterations:

Next, the results from the five non-linear FEA-models will be presented with stress

dithers. The five stress dithers below all show the stresses at the last load step, i.e., the

last load step before collapse of the plate. The dithered stress, in the below screen dumps,

is the so called von Mises equivalent stress, and is defined as follows (Budynas, 1977):

where: <J'VM =von Mises equivalent 1-D stress
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Figure 43: Stress-dithers showing the von Mises equivalent stress at the collapse load level.

Also, the stresses are the raw element stresses, i.e., the stresses have not been

extrapolated to the nodes. The stresses are measured at the Gaussian points within each
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Also, the stresses are the raw element stresses, i.e., the stresses have not been

extrapolated to the nodes. The stresses are measured at the Gaussian points within each
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shell element. Shown below is a shell element with four Gaussian integration points, i.e.,

an integration orders of 2 x 2:

r

points

Figure 44: Sketch showing the Gaussian integration points.

The r-s axis is the local coordinate system of the shell element. In this work a 2 x 2

integration order was used and according to Bathe (1996), an integration order of 2 x 2 is

recommended for a 4-node element.

The stress levels are indicated by the different gray scales. White color represents

low stress areas and black represents high stress areas. (These kinds of stress dithers are

of course in color in reality, and are easier to analyze than when they are in black and

white). As can be seen from the above pictures, all the plates have large regions in the

upper central part that have yielded, i.e., the black region. As was mentioned above, these

stress dithers were captured at the last load step before collapse of the plate. The stiffness

of the plates has dropped due to a combination of yielding and buckling. The ultimate

load found by using the non-linear finite element method will next be compared to an

approximate method called the "effective-width" method.

5.4.3 Estimate of the ultimate load using the "effective-width" method.

According to Galambos (1988), one method of estimating the ultimate strength of plates

is by using the "effective-width" method. This method uses the fact that much of the load

is carried by the regions of the plate near the edges, see sketch below:
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Actual stress distribution

This region is assumed not to transmit
stress due to buckling

Figure 45: Sketch showing the definition of "effective-width".

The load can then be assumed to be carried by the two edge strips of the plate and the

center of the plate is considered unstressed. In this work, the ultimate load of a flat plate

with one free edge was to be estimated. Winter (1947) determined experimentally the

"effective-width" of a flat plate under uniform compression with one free longitudinal

edge as:

be = 1.19 ~(1- 0.30 ~J
b V~ V~

where: be ="effective-width"

Eq.50

b =width of the plate

O'e =edge stress

O'c = critical buckling stress

The average stress at ultimate load can then be written as:

Eq.51

where:
p

a =-'!!!...
av bt
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Pult = ultimate load

b =width of the plate

t =thickness of the plate

The theoretical ultimate load for the plate that is being analyzed in this work can be

calculated as follows:

(70' ~ ;;' = 1.19~(7,(7, (1-030~:: J => P.." ~ bl x 1.19~(7P , (1- 030~:: J

(
6078 )P..lt = (2)(0.025)(1.19).J6078 x 36,000 1- 0.30 ~ P..lt =772 lbs

36,000

5.4.4 Comparison of ultimate load obtained from FEA and from the "effective­
width" method.

Shown below is a summary of the results obtained:

Initial imperfections: 0.0125 0.0250 0.0375 0.0500 0.1000

FEA: 1,152 925 771 677 422

"effective-width"
772 772 772 772 772

estimate:

% diff: 49.2% 19.8% -0.13% -12.3% -45.3%
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As can be seen in the table and graph on pages 62 and 63, the amount of initial

imperfection that is imposed on the plate model strongly effects the ultimate load that the

FEA predicts. The "effective-width" method does not correct for different initial

imperfections, as can be seen in the above graph. With a small imperfection, the ultimate

load predicted by the FEA is almost 50% higher than the "effective-width" estimate. With

a large imperfection, the ultimate load predicted by the FEA is 45% lower than the

"effective-width" estimate. Also, in actual engineering design work, different finite

element models with varying initial imperfections should be modeled to get a feel for the

behavior of the structure. In conclusion, the non-linear finite element method clearly has

an advantage over the "effective-width" method in estimating the collapse load of a

structure.
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6. CONCLUSION

New design charts for the critical buckling coefficient for flat plates under uniform

compression with non-continuous boundary conditions were presented in this work. The

second part of this work was an investigation of the effect an initial geometric

imperfection had on the ultimate strength of the plate, using a non-linear finite element

method.

The finite element method proved to be an accurate tool to determine the critical

buckling load for flat plates with complex boundary conditions. The percent error

between the PEA-method and closed-form solutions were less than 6% for the plates

studied in this work.

Design engineers will be able to use the design charts developed when faced with

plates under compression with partial boundary conditions. By using these design charts,

the engineer can find the actual critical buckling load for the entire plate (with the partial

support conditions) without having to make additional approximations.

As has been shown in this work, the non-linear finite element method can be used

to find the ultimate strength of plates under compression. However, the amount of initial

imperfection that is imposed on the plate greatly affects the ultimate strength.

This work also showed that the non-linear finite element method was able to

better predict the ultimate strength of the plate than the "effective-width" method. The

"effective-width" method did not consider initial imperfections in the plate. The ultimate

strength of the plate, obtained from the non-linear PEA, varied as much as 50% from the

"effective-width" estimate, depending on the initial imperfection used. This indicates that

it is important to accurately determine the imperfections of the structure when trying to

find ultimate collapse loads. In actual engineering work, the initial imperfections may be

known from manufacturing standards or from measurements of imperfections on the

structure under analysis. This work also concluded that, to get an understanding of how

the structure responds to different initial imperfections, several models with different

imperfections should be analyzed.
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