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ABSTRACT 

 
This research demonstrates several methods to produce high voltage Schottky 

contact diodes. How contact construction and process temperatures affect turn-on voltage 

Schottky barrier height, on-resistance, and reverse breakdown voltage are studied.  

The performance of varied contact terminal construction types and temperature processes 

used to fabricate Schottky diodes were evaluated. The diodes are constructed of nickel 

metal mechanical (pressure) contacts and plasma sputter deposited nickel metal contacts 

on silicon carbide (SiC).  Current-voltage characterizations were used to study the 

differences in performance verses geometric construction types, sputter deposition 

temperature, and annealing temperatures. The configurations studied were needle points, 

spheres, and planar metal-semiconductor contacts varying in interface areas that ranged 

from 0.58×10-4 to 6.2×10-4 cm ². Planar Schottky contacts 500 µm in diameter sputter 

deposited at 27°C and 600°C are exposed to a range of temperatures in ultra pure 

nitrogen atmosphere. These Schottky contacts were studied to gain insight into 

mechanical contacts, plasma sputter deposited contacts, and temperature processes.  
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CHAPTER ONE 

INTRODUCTION 

This work presents the development performed on several innovative methods to 

manufacture Schottky diodes on SiC.  These methods feature several mechanical contacts 

including a spherical metal contact terminal (Figure 1) implemented to reduce electric 

field stress at edge terminations, and planar metal contacts (Figure 2) deposited at 27°C 

and 600°C with varied temperature processes.  I-V characteristics of these diodes will be 

recorded and the performance of these devices will be evaluated.  

Background information on the operation of Schottky diodes, technical problems, 

and fabrication techniques that address those problems will be provided.  The analysis of 

electric field stress around high voltage terminals and Schottky contact terminals will be 

evaluated. Details of fabrication, testing methods, and modeling of working diode devices 

will then be presented. Finally the results will be reviewed and conclusions will be made 

concerning the contact terminal data and work that may be preformed in the future. 

 

 

 

 

 

 

 

Figure 1: Nickel coated spherical (1.71mm dia.) mechanical (pressure) contact  

 

 

 

 

 

 

Figure 2: Nickel planar contact plasma sputter deposited (500µm dia.) 
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χ−Φ=Φ mB

1.1 Theory and Operation of Schottky Diodes 

The point contact diode is one of the earliest solid state semiconductor devices 

constructed. This type of diode is made when metal makes contact with a semiconductor 

surface. The point contact diode was later studied by Walter H. Schottky circa 1938 who 

formulated a theory as to why the diode worked; subsequently this device was named the 

Schottky diode to honor his contributions. Due to the fabrication simplicity of this device, 

the Schottky diode makes an excellent choice for testing experimental processes in 

semiconductor manufacturing. 

The semiconductor material for this study will be 4H-silicon carbide with n-type 

doping. The nickel metal that composes the other half of this device (a conductor) always 

has an abundance of free electron charge carriers. The metal also has a work function Φm 

the energy it takes to remove an electron from the atom to the vacuum level potential. 

The attributes of both metal and semiconductor while separated are illustrated in     

Figure 3. The potential energy needed to inject charge carriers from the metal into the 

semiconductor material is the Schottky barrier height measured in electron volts (eV). 

The Schottky barrier height value is the energy it takes to remove an electron from the 

metal minus the energy required to detach an electron from the n-type semiconductor 

material (electron affinity) creating electron flow from the semiconductor to the metal.  

The Schottky barrier height may be computed for a Schottky diode by the following 

equation 1.1. The electron affinity for silicon carbide is 4.17 eV while the work function 

for the metal can vary if inter-metallic compounds are formed at the Schottky diode 

junction [3].  

 

 (1.1) 

 

The Schottky barrier height (often referred to as SBH) is a fixed amount of energy 

drop across the diode, this value is unique to the combination of metal and 

semiconductor, ideally this does not vary with forward voltage biasing or current flow. 

However the phenomenon of SBH lowering may occur in reverse bias due to electric 

field crowding [4].  
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Figure 3:  Metal and semiconductor before contact; band diagram Schottky barrier height. 

  

When the metal contacts the semiconductor there is an imbalance of Fermi energy 

states in the two materials and the charges migrate to reach equilibrium levels. To 

simplify this matter, some of the electrons in the n-type semiconductor migrate into the 

metal leaving behind a region of material with no free charge carriers. This area is called 

the depletion region, and the energy it takes to cross this region is known as the built-in 

potential. This concept is illustrated in Figure 4. 

 

 

 

 

 

 

 

Figure 4: Metal and semiconductor in contact; band diagram of built-in potential. 

  

The built-in potential VBI also referred to as equilibrium contact potential 

(occurring when the Fermi levels have reached a balance) is the mechanism that prevents 

any further charge movement from the semiconductor conduction band to the metal. This 

built-in potential VBI is the difference in the work function of the metal and the work 

function of the semiconductor.  

            (1.2) 
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The built-in potential VBI, the applied voltage, and the doping concentration play 

a large role in the width of the depletion region. This depletion region is absent of charge 

carriers in the semiconductor essentially behaving as a layer of insulation. The width of 

this depletion region is related to both the built-in potential and doping concentration. 

Where Va is the applied biasing voltage with Na and Nd  being the acceptor/donor carrier 

concentrations, it is theorized that electrons (donors) in the n-material migrate into the 

metal and have a mirrored electric positive (acceptor) potential in the semiconductor 

opposite the depletion region. So that Na = Nd and the equation of 1.3 for pn junctions 

may be used to model the Schottky diode [5].  

 

 

           (1.3)  

   

The below illustration of Figure 5 helps to show why the doping concentration Na 

may be considered equal to Nd because of the mirrored electric field  in the metal [4].  

This depletion width can be manipulated by applying voltage across the device which 

will allow for passage of or resistance to the flow of electricity. When a forward biasing 

voltage Va is applied to the Schottky diode the work function of the semiconductor 

material Φs is reduced and thus the built-in potential is lowered as well.  

 

 
Figure 5: Mirrored electric dipole potentials of the Schottky contact depletion region.  
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The exponential current through the diode can be modeled by equation 1.4 below. 

The forward current IF through the diode depends exponentially on the applied voltage 

Va. The initial current Io forms in the depletion region with both with currents both equal 

and opposite in equilibrium conditions, thus it can be factored out [5].  

 

(1.4) 

 

Figure 6 shows an illustration of the conducting diode and the accompanying energy 

band diagram. During forward bias with the depletion region is reduced and the electrons 

migrate over the Schottky barrier and move from the n-type semiconductor material into 

the metal contact. From the energy band diagram the Fermi level of the semiconductor is 

raised by the value of the applied voltage.  It should be noted that the metal at the bottom 

of the semiconductor has been prepared to be ohmic having a linear current voltage 

relationship and posses a very low value of resistance that does not play a role in the ideal 

analysis of the Schottky diode current [4].  

During the reverse bias mode of the Schottky contact the applied voltage 

reinforces the built-in potential and creates a wider depletion region within the material.  

Because of the large negative value the applied voltage the forward current term tends to 

zero leaving just the reverse initial current that no longer has an opposing forward bias 

equilibrium current.   

(1.5) 

 

The initial current Io of the device under thermal equilibrium can be approximated by 

knowing the SBH of the diode given equation 1.1 along with the charge of the electron 

and the thermal voltage [5].  

           (1.6)  

 

During reverse bias with the depletion region widens and the only electrons that migrate 

over the Schottky barrier, those that existed in thermal equilibrium of the initial current 

Io. Figure 7 shows a reverse bias diode illustration and the band diagram of the Fermi 

level of the semiconductor lowered by the value of the applied voltage.    
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Figure 6:  Schottky diode with energy band diagram showing the forward flow of 

electrical current through the diode. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Schottky diode with energy band diagram showing the reverse bias Va applied 

to the diode that increases the built-in potential. 
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Aspects that affect the magnitude of current through the ideal Schottky diode are 

the area (A) of the metal contacting the semiconductor, the temperature (T) of the 

material, and the Richardson’s constant (A*) for the material which is a relation of 

current density and temperature. With these values known for the material a more 

accurate and comprehensive formula for the Schottky diode contact current may be 

expressed by equation 1.7. This equation also accommodates deviation from ideal diode 

performance by a factor of n. This value is known as the ideality factor and for the ideal 

diode this value should be nearly equal to 1. 

  

           (1.7)  

 

Now that a more accurate expression to descried the Schottky diode has been composed it 

now necessary to discuss some of the aspects of the non ideal diode Schottky diode. 

Various aspects of the material and fabrication will cause considerable deviation from the 

diode performance predicted by equation 1.7.  Some of the ways in which variation from 

the ideal diode characteristics can occur are offset potentials and linearization due to 

resistance. While in the reverse direction carrier generation can cause a steadily increase 

current greater than that of  Io and conduction of electrical current in reverse bias will 

occur due to Zener and avalanche breakdown [5]. 

 

Current linearization due to on resistance could be the cause of a poor quality ohmic 

contact or a poor quality Schottky contact interface. Both of these will contribute to a 

high series resistance within the diode. When large currents and voltages are applied to 

the diode the otherwise exponential I-V curve will become linear. At this point the linear 

part of the I-V curve may be evaluated with the help of equation 1.8 and the value for the 

total series resistance of the diode may be calculated by finding the change in voltage 

over the change in current [5].  

 

(1.8) 
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In the reverse bias operation of a Schottky diode there are several mechanisms 

that create current flow through when the diode should be in a high resistance mode due 

the applied reverse polarity. Carrier generation in a neutral transition region occurs due to 

thermal activity and the nature of the semiconductor in regard to what carrier generation - 

recombination centers may be in the material. A significant aspect of the diode is the 

reverse breakdown voltage that occurs when the diode in the reverse bias mode begins to 

conduct electrical current exponentially. There are generally two mechanisms that 

contribute to reverse bias breakdown. These phenomenons are known as avalanche 

multiplication and quantum mechanical tunneling. Neither of these two breakdown 

methods will destroy the diode, however heating of the diode could occur due to the high 

currents due to voltage breakdown which could result in permanent device failure [8]. 

Avalanche breakdown is created by impact ionization occurring when a large electrical 

potential is applied across the device and high energy electrons cross the barrier and 

trigger other electron hole pairs to form. Zener breakdown is attributed to a mechanism 

known as quantum mechanical tunneling which effectively allows the charge to penetrate 

the barrier of forbidden region. The applied reverse voltage at which these mechanisms of 

breakdown will occur can be estimated by the following equation of 1.9 that relates the 

breakdown electric field for the material Ec with the doping concentration Nd [1].  

 

  

(1.9) 

    

 

The best way to reduce currents resulting from the preceding phenomenon is to 

reduce the field intensity across the device. One of the most influential aspects to electric 

field intensity surrounding a Schottky contact is the physical shape of the metal in contact 

with the semiconductor forming the diode junction. Many techniques for design and 

construction of  Schottky diode contacts implement varied contact geometries so that 

reverse breakdown voltages may be increased. 
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1.2 Survey of Schottky Diodes Structures  

Many techniques have been tested in trying to improve Schottky contact diode 

characteristics. Based on layered nature of the photolithographic process most Schottky 

contacts are of a planar design. One of the problems encountered while utilizing planar 

contact geometries is the effects that occur at edge terminations. A common technique to 

prevent electric field stress at edge terminals is buffering the edges of the metal contact 

with insulator. Research conducted by Ravi Chilukuri and B.J. Baliga at North Carolina 

State University implemented the usage of low energy Argon (Ar) implantation into the 

4H SiC epilayer for planar edge termination[9]. An illustration of the design for the 

Schottky diode is shown in Figure 8. The Argon ion implantations can be seen to the left 

and right of the Schottky diode contact. 

 

       

 

 

 

 

 

 

Figure 8:  Nickel on SiC Schottky contact diode and I-V curve sketch of the performance 

difference obtainable by adding argon implantation edge termination to the diode design. 

 

The diodes without edge termination were found to have a leakage current 

proportional to the diode diameter indicating a dominance of perimeter leakage where 

barrier height lowering occurred due to electric field crowding at the edge terminal. The 

Schottky diodes constructed with the use of low energy argon implantation for planar 

edge termination were found to result in breakdown voltages above 1 kV. This technique 

created a thin highly resistive layer at the edges of the planar metal contact where the 

doses of argon ions were implanted.  
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The quality of a Schottky contact and successful edge termination is measured by 

how closely the device can approach its theoretical breakdown voltage. The method 

discussed previously is a technique of buffering the edges with a highly resistive layer of 

denatured semiconductor. Another technique is to deposit a field plate insulator (typically 

a layer of oxide) over the semiconductor so that a Schottky contacts edge terminal may 

be protected by the field plate. This way fringing effects at the edge terminals are directed 

through the insulator field plate and not the semiconductor.  

Research conducted by M.C. Tarplee, V.P. Madangalri, Q. Zhang, and T. 

Sudarshan developed design rules for optimizing field plate thickness and metal contact 

overlap [10]. The computer simulation preformed by the group also showed that 

breakdown occurred directly underneath the corner of the unguarded Schottky contact. 

Electric field stress computer simulations allowed the team to make predictions as to 

what ratio of field plate thickness to metal contact overlap would be optimal. Figure 9 

contrasts the diodes to show the benefit of oxide field plate termination.  The concepts 

discussed in “Design Rules for Field Plate Edge Termination in SiC Schottky Diodes” 

provide a 4 step design process that may be used to optimize the oxide layer thickness 

and field plate overlap (Xo) when fabricating Schottky diodes [10].  

 

 

Figure 9: Schottky contact with and without oxide layer edge guard.  
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Another common technique to prevent electric field stress at edge terminations is 

guard rings. The importance of electric field distribution around a geometric design plays 

a major role in the development of ring guard terminations also referred to as field 

limiting rings FLR. Research performed by Seong-Jin Kim at Woosuk University studied 

the improvement of high voltage reverse breakdown characteristics of Schottky barrier 

diodes with ring guard terminations [7].  In this study no ring guard protection, a single 

guard ring protector, and multiple guarding protectors made from Aluminum (Al) were 

deposited by using electron beam deposition and thermal treatment upon the SiC 

substrate. The aluminum oxidized and formed Al silicide at the deposited locations 

becoming an insulator. The research based the dimensions for the FLR design on a two 

dimensional numerical device simulation using the SILVACO ATLAS simulator. The 

findings confirmed that the breakdown voltage characteristics were greatly dependant on 

the FLR width and spacing. When I-V curve analysis was performed on the device it was 

shown that the absence of ring guards had no effect on the forward conduction current. 

However the reverse leakage currents where greatly affected by the ring guard edge 

termination structure. Figure 10 illustrates the concept of ring guard termination similar 

to those discussed. Multiple ring guards could achieve breakdowns higher than -1.2kV 
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Figure 10:  Diodes with different guard ring configurations for improved VRB, one with 

no ring guard, a single guard ring, and multiple guard rings for improved breakdown 

characteristics.  
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CHAPTER TWO 

SCHOTTKY DIODE RESEARCH  

There are two techniques investigated during this research that are proposed to 

improve the quality of the metal-semiconductor Schottky diode junctions. By deviating 

from the standard planar contact a spherically shaped contact will be formed and 

mechanically contact the semiconductor. Adopting physical dimensions with large radii 

of curvature in high voltage applications is widely practiced in macro scale electrical 

systems. Several mechanical Schottky diode contacts were fabricated, characterized, and 

contrasted. This technique of varied mechanical contact geometry became of interest 

because it had the prospects of reducing planar edge termination electric field stress 

without the requirement of advanced diode fabrication equipment. Another potential 

benefit was the possibility to test some of the semiconductors parameters by quickly 

making a mechanical Schottky contact and avoiding the time consuming process of 

vacuum sputter deposition. Several well fabricated mechanical contacts with varied 

metals of interest could be swapped between various semiconductor materials and some 

parametric measurements could be taken in a short period of time. The sphere with the 

best electrical performance will then be compared with conventional planar contacts of 

similar dimensions that were fabricated by plasma sputter deposit. 

 

The second technique to improve the quality of the Schottky diode devices will 

address the temperature aspects of planar Schottky contact diode construction. The focus 

of this research will be to fabricate the conventional 500μm planar contacts at high 

temperature and then heat treat the diodes. Two samples will be plasma sputter deposited 

one at room temperature 27°C and the other at 600°C. The two samples will be taken and 

annealed with a rapid thermal processor that will heat them to 200°C, 300°C, 400°C, 

500°C, and 600°C. After each heat treatment the diodes will be removed from the rapid 

thermal processor and I-V characterization will be performed any changes in 

performance will be noted. 
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2.1 High Voltage Contact Terminal Evaluation and Testing 

The way electrodes or insulators are shaped can greatly reduce the intensity of 

electric field stress surrounding a device. This technique is used to reduce electric 

breakdown at high voltages in large scale systems. These systems implement construction 

designs that feature physical dimensions with large radii of curvature. Possible 

advantages could result in applying these techniques to small scale devices such as metal 

contacts on semiconductors. Research conducted on the effects of discharge terminal 

geometry variation and breakdown voltage is a well developed topic for large scale 

devices.  Figure 11 qualitatively shows the improvement of voltage breakdown with 

increased terminal size and was inspired by Los Alamos research based on data collected 

from discharge terminals placed in dry transformer oil at 25 ºC. The electrode dimensions 

were 25 cm diameter spheres, 1.1 cm diameter spheres, and needle points [15].  

    

 

 

 

 

 

 

 

 

 

 

Figure 11:  Qualitative difference found between discharge terminals of varied geometry. 

 

In order to model the interaction of the electric fields for different geometries in 

of high voltage terminals and later semiconductor contacts a formula that relates the 

plane and sphere relationship to the electric field gradient was used and the related 

variables show in Figure 12. An interesting aspect for this geometric configuration is that 

the electric breakdown field is effectively divided in half from that of the sphere to sphere 

configuration. 
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Figure 12: A spherical discharge terminal is shown suspended above a plane. 

 

The equation that models the sphere to plane relationship of Figure 12 is 

expressed by the equation 2.1 which is used to estimate the performance of the corona 

discharge terminal experiments. The same will be later used to model electrical field 

stress surrounding Schottky contact terminals on the silicon carbide devices.  

 

 

(2.1) 

 

The first of the experimental testing was done on corona discharge terminals. The 

benefit of this test was to insure the ability to model and predict contact terminal 

performance on a large scale and shift toward smaller scale electrodes. A high voltage 

18kV transformer was utilized to elevate the various metal terminals to corona onset 

potentials. The 18kV potential transformer (PT) was controlled with at variable 

transformer that could be adjusted from 0 to 100%. A divide by 100 probe was connected 

across the high voltage terminals of the (PT) and readings were taken from 0 to 100% in 

decade increments for a total of 11 voltage measurements. The impedance of the divide 

by 100 probe was 10 mega ohms and it was removed while measuring corona current to 

reduce loading effects.  
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To measure the corona current a 20kΩ sensing resistor was placed in series with 

the transformer and the water plate discharge terminal test rig. A high impedance analog 

voltmeter was connected across the current sensing resistor. This type of volt meter was 

used because it was isolated from ground so that there would be no damage to the 

instrument. Figure 13 features the water plate discharge terminal test rig  that is further 

illustrated and detailed in Figure 14. 

 
Figure 13: Experimental setup used to induce corona discharge around a metal electrode. 

 

The metal electrode was placed under a glass plate (2mm in thickness) with pool 

of water on the opposite side. An electric potential difference was applied to the water 

and electrode. The water allowed for easy observation of corona discharge, while 

monitoring the corona current with the meter and observing that area of discharge 

beneath the water plate the various contact terminal geometries were evaluated.  

. 

 

 

 

 

 

 

 

 

Figure 14: Test rig for corona onset occurring on the test electrode beneath water plate.  
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An initial problem in the evaluation of performance was to determine effective 

contact area of the discharge terminals on the glass substrate. To establish a method to 

compare spherical terminals with planar terminals an estimation formula for effective 

contact diameter (ECD) was based on a mean location for dominate corona discharge 

activity. The equation of 2.2 was a formula empirically developed to estimate the 

effective contact diameter. 

(2.2) 

 

For the effective contact diameter (ECD), the distance from the plane to the 

sphere’s elevated surface was equal to 15% of the sphere’s radius. This provided a 

method to determine the appropriate sized planar contacts to be used comparatively in the 

study. Figure 15 shows how the equation 2.7 was arrived at by showing the separation 

distance from sphere to plane of at the angle of 60 degrees which is equal to 15% of the 

initial R value. This 15% tolerance was arrived at by observation of the corona discharge.  

The photographs in Figure 15 show the two spherical discharge terminals (a) and (b) 

below them are photographs of their respective corona onsets (c) and (d). In photographs 

(c) and (d) an overlay of the effective contact diameters for the spheres has been drawn 

over top of the corona discharge. The written overlays point out 9.6mm ECD for the 

small sphere (c) and 30mm ECD for the large sphere (d) this by observation effectively 

approximates the centralization of the corona discharge activity.  

 

 

 

 

 

 

 

 

 

 

Figure 15:  Effective contact diameter (ECD) and corona discharge terminals. 
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2.2 Corona Current verses Contact Terminal Geometry 

Initially the data showed what appeared to be exponential growth of corona 

current Ic (in micro amps) with an increase in applied voltage Vc (in kilovolts) which 

was to be expected by the relation of equation 2.3 taken from corona air propulsion 

research [17].  

 

(2.3) 

 

The observation was made that the spherical corona discharge terminals out 

performed the planar contacts in the sense that they had lower corona leakage currents. 

The observation  was made, in which the larger sphere that should posses a lower surface 

electric potential gradient had a larger corona leakage current than that of the smaller 

sphere. This deviation from the expected was proposed to be caused by the larger contact 

having more peripheral area for corona discharge to occur despite the reduced electric 

field. In addition to spheres, several types of circular planar contacts (9mm, 19mm, and 

26mm diameters) were tested and compared with each other in order to see which 

construction would have the most corona leakage current. Figure 16 shows the results of 

the corona discharge experiments. Most corona leakage current occurred around the 

contact with the largest periphery of electric field stress. For any given voltage applied 

more corona current will onset around a larger planar contact terminal due to its increased 

perimeter. From these results it is anticipated that larger circular planar contacts on 

semiconductor devices will have a lowered breakdown voltage because the contact 

posses a larger perimeter with an aggravated electric field condition at the edge terminal. 

The data shows that there is increased corona current in proportion to the periphery 

around the planar contact (Figure 17). Given the results of the water plate corona 

discharge experiments it is anticipated that the spherical contacts on semiconductor 

substrates may be advantageous over planar contacts. This corona discharge terminal 

experiment will also be modeled in the electric field simulation.  
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Figure 16: Corona currents plotted for various high voltage terminal geometries tested.  

 
Figure 17:  Corona currents for circular planar terminals increase with contact periphery.  
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2.3 Finite Element Electric Field Analysis  

To model the corona discharge terminals the exact dimensions of the metal 

terminals and glass substrate were entered into the Infolytica Electnet electric field 

simulation software. The applied voltage of 18kV was set to the electrodes, the 

conductivity of all the metal corona electrodes simulated was set to that of Aluminum and 

electric permittivity of the surrounding air (epsilon = 1) and glass (EP05 =epsilon = 5 ) 

were taken into account. The water plate that would have been above the sphere in the 

experiment is now positioned below; since it serves as a ground plane, the electrical 

parameters of the water were set to that of a perfect conductor. In the simulation featured 

in Figures 18, 19, 20 the maximum of the electric field scale represented in red is set to 

3×106 V/m which is approximately the breakdown field for air. Therefore, the red area 

depicted in the Figures gives a good indication of where corona discharge will occur 

around the electrode. A photo of the corona onset confirms this and is shown in the upper 

left corner of the simulation.  

Simulation helped to confirm that the larger sphere (50mm dia.) does have a 

reduced electric field at the surface (Figure 20). However, at the voltages applied more 

surface area was at corona potential than that of the smaller sphere (16mm dia.).  

Figure 19 features the simulation for the small spherical corona electrode with the 

perimeter of larger sphere positioned over top. From this it can be easily seen that the 

larger sphere has more area at the elevated potentials for discharge to occur relative to the 

smaller sphere.  

Several planar contact terminals constructions were tested including square, 

circle, and square with center removed. The open square construction investigates the 

effect of contact area versus perimeter. It was found the square and the open square had 

the same amount of corona current indicating perimeter leakage was dominant in corona 

discharge experiments.  Since the perimeter was the largest contributing factor for corona 

leakage only one simulation was run for all types of planar electrodes. All material 

parameters have been kept the same as in prior simulations with the thickness of the 

planar contact set to 0.1mm. Figure 18 shows the electric field stressing that occurs at the 

perimeter.  
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There were several benefits in performing the corona discharge terminal concept 

testing before contact terminal testing on semiconductors. The first was that testing 

confirmed plausible improvement due to spherical contacts. Secondly, this testing 

confirmed the ability to qualitatively examine electric field stress surrounding contact 

terminals by using the Electnet simulation software. Doing this testing as a precursor it 

helped to develop expectations of performance that could be easily examined on a large 

scale so the effects of small scale contacts could be more closely examined. Finally this 

testing aided in the experiment designs for semiconductor testing and demonstrated need 

for accurate measurement of metal semiconductor interface region. 

 

 

 
Figure 18:  Electnet simulation of planar corona discharge terminal, with high electric 

field intensities at the perimeter.  

 

 

 



  21 

  
Figure 19:  Sphere (16 mm dia.) with the large sphere’s perimeter over lay comparison.  

 

 
Figure 20: Large sphere (50mm dia.) simulation with the corresponding corona photo. 
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2.4 Similar Developments in Schottky Contact Terminals 

Recent literature reveals several techniques were that are currently in use with 

semiconductor applications and are also similar the proposed research. A mechanical 

contact method that closely resembles this research conducted in regard to spherical 

contacts was implemented on diamond substrates in 2004. In this research gold metal 

pressure (mechanical) contacts were fabricated without edge termination. To better 

evaluate the high voltage reverse characteristics the contacts were spherically shaped and 

used in place of the conventional sputter contacts. The size of the spherically shaped 

mechanical contact was 1.2 mm in diameter. This research specified the contact area of 

the sphere on semiconductor only to be a “small interface” with the diamond substrate 

and it was not quantified. Though there was no edge termination the device was tested 

within a high breakdown dielectric fluid. The spherical contact when used on diamond 

with stood breakdown voltages up to -4kV with less than 1 nano ampere of reverse 

leakage current detected. The research group then performed finite element analysis on 

the sphere and found that electric field intensity surrounding the contact was on the order 

of 4 MV/cm [13] 

 

 
Figure 21: Spherical contact on diamond substrate characterization, test was performed in 

a container of dielectric fluid to reduce arcing flash over.  
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Another innovative tactic in reducing electrical field stress implemented was an 

oxide field plate overlap design in which the oxide layer is etched into the form of a 

ramp. The periphery of the Schottky contacts where edge terminal electric field crowding 

would occur, an oxide field plate with a ramped contour of a 5º incline has been added. 

The oxide layer was 1.1 µm thick with Ni metal contacts on n-type 6H SiC. The circular 

contact windows in the field plate termination have a diameter of 320 µm and were 

created with the use of a shadow mask. In order to obtain the ramp profile, multiple 

layers of oxide were over etched with acid solution [14]. Figure 22 illustrates the 

implementation of an oxide ramp to reduce electrical field stress at the edge termination 

of the contact. The research on these contacts was also conducted at high temperatures of 

800°C, 900°C, and 1000°C. 

 
Figure 22: Oxide ramp field plate termination on SiC with Ni Schottky contact.  

 

The exposure of the diode to high temperatures resulted in higher reversed bias 

leakage currents, until the diode became ohmic at 1000°C [14]. However, research 

performed by Q. Zhang and T.S. Sudarshan investigated the annealing of Schottky diodes 

up to 800°C and found benefits in both forward and reverse bias characteristics. It was 

found that annealing the diodes repaired leaky low barrier parasitic parallel diodes that 

may have been present due to various barrier inconsistencies [12]. From this prior 

research it is shown that both physical contact terminal design and temperature treatment 

play a crucial role in the development of better metal-semiconductor contact terminal 

design. Therefore, both of these parameters are studied in this research. 
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CHAPTER THREE 

SCHOTTKY CONTACT DIODE FABRICATION  

Six different kinds of Schottky contacts have been constructed. The 1.71mm 

diameter sphere, 0.85 diameter sphere, and a needle point contact fashioned from 

0.82mm diameter wire. Three sets of circular planar contact terminals have been 

constructed, one set of 125µm in diameter and two sets of 0.5mm diameter Schottky 

contacts. These circular planar contacts will be fabricated with metal sputter deposition 

and one set of the 0.5mm contacts will have metal deposited at a temperature of 600°C. 

The semiconductor sample used for this research is n-type 4H SiC manufactured by Cree. 

The doping concentrations and layer thickness are featured below. The bottom of the 

400µm SiC layer was coated with Ti/NiGa/Ti and heated to 950°C to form an ohmic 

contact. The effectiveness of the ohmic contact used in this research was based on a well 

established fabrication method. Figure 35 below shows an overview of the contacts tested 

and the general parameters of the SiC sample. 

 

 

 

  

 

 

 

 
Figure 23: Overview of the diode contacts to be tested and a diagram of the SiC substrate. 
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3.1 Fabrication: Preparing SiC Substrate and Ohmic Contacts 

 The 4H n-type Silicon Carbide (SiC) samples used were manufactured by Cree; 

the wafer was assigned the following serial number XZ0799 – 05 X4NXXXX – 00S2. 

The sample wafer was sliced into 5 by 5 mm squares that are used in the experiments. 

Over the sample wafer there is a protective SiO2 layer on top of the SiC epilayer.  

The samples used were assigned a names based on YSUXX standard labeling 

nomenclature used at the Youngstown State University’s Wide Bandgap Laboratory. 

Samples YSU 96, YSU 97, YSU 114 are used with the mechanical contact terminals. 

Sample YSU 113 was used to fabricate 125 μm diameter circular planar contacts. Lastly, 

samples YSU 111 and YSU 112 were used to fabricate planar 0.5 mm diameter contacts. 

YSU 111 was elevated to 600°C during metal plasma sputter deposition to study the 

effects of high temperature processes. Before the fabrication of Schottky diodes began, 

the backs of all these samples were polished with a fine grit sand paper to prepare the 

back surface for ohmic contacts. 

The ohmic contact is the first step needed to make a functional diode. This 

provides a low resistance terminal attached to the back of the semiconductor so that the 

device may be biased with a voltage potential. After the back of the samples have been 

polished they were all boiled in acetone, rinsed in alcohol, and rinsed in de-ionized water. 

The samples were mounted to a sputter platform equipped with a film thickness monitor 

and suspended 10 cm above the sputter target. The vacuum metal sputter deposition 

chamber was then employed to coat the backs of the samples. The vacuum chamber was 

pumped down to a base pressure of 7.2×10-10 Torr, Argon was then allowed to flow into 

the chamber at a rate of 15.3 sccm and the pressure of the chamber during sputtering was 

held at 2 milli Torr.  Titanium was sputtered with a current of 0.1 amperes and the Nickel 

Gallium was sputtered at 0.05 amperes, a pre-sputter time of 1 minute was allowed to 

clean surface oxides from the targets. The thickness of the metal sputtered was monitored 

with the film thickness monitor so that the correct amount of material could be deposited; 

the monitor was recalibrated for each new metal sputtered. A layer of 25 nm of Titanium, 

70 nm of Nickel Gallium, and a final 10 nm of Titanium were deposited. Figure 24 shows 

the polished SiC samples and the metals sputtered for the ohmic contact.  
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Figure 24: Polished 5x5mm samples and sputter diagram of ohmic metal contact. 

 

The samples were again cleaned by boiling in acetone, rinsing alcohol and rinsing 

in water. Now the samples are ready to be heated in the Rapid Thermal Processor (RTP) 

at high temperatures so that the metals sputtered will diffuse into the semiconductor and 

form an ohmic contact terminal. The RTP was set to reach a temperature of 950°C and 

will hold this temperature for 2 minutes so that the metal adsorption into the material 

would occur and resistive contact will form. Ultra pure Nitrogen (N2) an inert gas was 

fed into the annealing chamber so that no there will be no reaction with oxygen at the 

metallic surface of the ohmic contacts. The RTP and the thermal profile for annealing the 

samples is shown if Figure 25 as well as the surface oxide removal procedure. 

 

    
Figure 25:  Rapid thermal processor, temperature verses time, and HF acid preparation.  

 

The final step in preparing the test samples for Schottky diode fabrication was to 

remove the protective oxide (SiO2) layer from the epilayer of the SiC. This was done by 

mounting the sample on a glass slide with wax (protecting the side with the metal ohmic 

contact) and soaking the sample in dilute 1:10 hydro fluoric acid (HF) for 3 minutes. 
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3.2 Fabrication: Mechanical Schottky Contacts 

The mechanical Schottky contacts were the fabricated during this research since a 

key point of interest was to investigate how the variation of contact terminal geometry 

will affect diode performance. The mechanical contacts were made in the form of spheres 

in anticipation of a performance advantage. The experimental process used to form the 

spherical mechanical contacts started by drawing a plasma arc from a copper wire. The 

heat of the arc would bead the copper into a ball termination at the end of the wire. Once 

a ball was formed a combination of electro-erosion and electroplating was used.  A +12 

volt potential was applied to the sphere termination it was dipped in a copper sulfate 

solution that eroded contours and oxides from the spheres surface. Following this the 

voltage was lowered to 1 volt and a clean layer of copper was electroplated onto the 

surface of the spherical contact. Photos of the plasma arc fabrication of the contacts and 

an illustration of the electro erosion process is shown in Figure 26. The needle point 

contacts to be discussed only used the electro-erosion/plating process no plasma arc.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Plasma arc process formation of spheres and electro-erode/plate process. 
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Due to the experimental nature of the plasma arc and electro-erosion/plating 

method used to form the contacts there was a lack of control in creating consistent 

spheres. Many spherical and needle point contacts were fabricated and examined. The 

contacts that were of the best geometry and surface quality were selected for research 

purposes. Figure 27 shows a collection of spherical contacts that had been fabricated 

during this research. The mechanical contacts will all receive a coating of 2000 Å of 

nickel with the planar contacts during plasma sputter deposit. 

 

 

 

 

 

Figure 27: Several dimensions of spherical contacts in various stages of construction. 

3.3 Fabrication: Planar Plasma Sputter Deposit Contacts 

The second type of Schottky contact construction was the 125µm planar contact. 

This diameter was chosen because it was close to the contact diameter of the largest 

spherical contact. The comparable contact area will lend itself for comparison of planar 

verses spherical contact performance. This 125µm contact was made by using the 

photolithographic process. The sample YSU 113 was again boiled in acetone, rinsed in 

alcohol, rinsed in de-ionized water, and blown dry. Photo resist AZ 5214 was applied to 

the sample and spin coated by rotating the sample 4000 RPM for 30 seconds. This 

allowed for a uniform distribution of photo resist across the sample. The sample was then 

removed from the spin coater and placed on the hot plate to bake the photo resist for 1 

minute at 100°C. The sample was then placed in the mask aligner and a pattern with 

125µm dots was placed over the sample YSU 113. Ultraviolet light was allowed shine 

through the pattern to expose the photo resist for 3 minutes. The sample was then 

removed from the mask aligner machine and the pattern in the photo resist was developed 

by soaking the sample in AZ 400 developer for 50 seconds. The equipment used in the 

preceding process is featured in Figure 28 which illustrates the spin coater, hot plate, 

mask aligner, and the final sample with photo resist applied.  
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Figure 28: Spin coater, hot plate, mask aligner, and dot pattern after soaked in developer. 
 

The final step in fabrication of the spherical, needle point, and 125µm diameter 

planar contacts is the metal sputter deposition which will apply a uniform coating of 

nickel to all of the contacts. The contacts were placed on a movable holder that had a film 

thickness monitor attached. The contact terminals and YSU113 were moved over the 

plasma and Nickel90% Gallium10% was sputtered to coat all of the contacts with 2000 Å of 

the material. The vacuum chamber was initially pumped down to a base pressure of 

8.9×10-7 Torr. Argon was then allowed to flow into the chamber at a rate of 15 SCCM 

and the pressure of the chamber during sputtering was held at 2 milli Torr.  Nickel90% 

Gallium10% was sputtered at 0.075 amperes, a pre-sputter time of 1 min was allowed to 

clean surface oxides from the targets. 

 

 
Figure 29: Plasma sputter deposit process with chamber and sputter targets shown. 
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The last contacts fabricated made with the use of a shadow mask, which has been 

placed in front of the SiC samples. Photolithography may not be used here because of the 

high temperatures at which one of the two samples will be deposited. At a deposition 

temperature of 600°C the photo resist would deform or melt away. The shadow mask is 

made from stainless steel and is perforated with 0.5 mm diameter holes. When the sample 

is sputtered with the metal (NiGa) the material will only be deposited on the SiC exposed 

by the perforations. To investigate temperature effects one sample YSU 112 was 

deposited with the shadow mask at room temperature 27ºC.  During the sputter process of 

sample YSU 112 the temperature was monitored and recorded to only rise up to 33ºC. 

The other sample, YSU 111 was deposited at high temperature of 600°C using heat 

lamps. Investigated as to how the metal deposition temperature affected the forward and 

reverse bias characteristics of the diode will be studied. Though samples YSU111 and 

YSU112 were sputtered at different times and temperatures all other parameters of 

sputter deposition were held the same. The vacuum chamber was initially pumped down 

to a base pressure of 5.8×10-7 Torr for YSU 111 and 9.8×10-7 for YSU 112, argon was 

then allowed to flow into the chamber at a rate of 15 sccm and the pressure of the 

chamber during sputtering was held at 2 milli Torr.  NiGa was sputtered at 0.075 

amperes; a pre-sputter time of 1 min was allowed to clean surface oxides from the targets. 

The sputtering continued for 24 minutes allowing 439 Å of NiGa to be sputtered onto the 

substrates. 

  

 
Figure 30: High temperature plasma sputter deposit process with shadow mask. 
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3.4 Inspection & Modeling of the Schottky Contact Terminals 

At this point all Schottky contact diodes needed for the research have been 

constructed. These diodes are mounted to a copper substrate (this will facilitate testing) 

that was custom fabricated. The mechanical contacts will be supported by a custom 

designed insulation support structure that was fabricated on the three dimensional printer. 

Other resources that culminated in the production and testing of these Schottky diode 

devices were the Wide Band Gap Laboratory (general testing and fabrication) 

Electromagnetic Fields Instrumentation and Research Center (electric field simulation), 

Scanning Electron Microscope or SEM (metal semiconductor interface analysis), and the 

Electronics Maintenance Services (providing vital test equipment and technical support). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Youngstown State University laboratories and personnel surrounding the 

diode helped contributed to the construction and analysis of these devices.  
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The measurement of contact dimensions of the newly fabricated Schottky contact 

terminals is necessary for analysis and modeling. The first contact reviewed will be the 

needle point contact fabricated from 0.82mm diameter wire electro eroded to a fine point. 

The radius of curvature has been approximated with the optical microscope to be 0.2mm 

(Figure 32). The second contact terminal is the small sphere produced by the plasma arc 

electro erosion/plating method. It has 0.85mm diameter and a radius of 0.42mm 

(Figure33). The third contact terminal is the large sphere produced by the same plasma 

arc electro-erosion/plating method. It has 1.71mm diameter and a radius of 0.85mm 

(Figure 34). All contacts made from copper are sputter coated with 2000 Å of NiGa.  

 

 
Figure 32: SEM & optical microscope photos of the needle point contact. 
 

 
Figure 33: SEM & optical microscope photos of the small spherical contact. 

 

 
Figure 34: SEM & optical microscope photos of the large spherical contact. 
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The fourth diode constructed is the 125µm planar contact terminal produced by 

photolithographic patterning and plasma sputter deposit.  The circular planar contact of 

Figure 35 has 62.5µm radius and a thickness of 2000 Å of NiGa. 

 
Figure 35: SEM & optical microscope photos of 125µm planar contact. 

  

The fifth and sixth diodes are the 0.5mm planar contact terminals produced by 

plasma sputtering metal vapor deposition through a shadow mask.  The fifth contact is 

metal sputter coated with NiGa at room temperature (27ºC) for 24 minutes resulted in a 

layer thickness of 439 Å. While the sixth contact terminal was NiGa sputter coated on to 

the substrate at 600°C for a period of 24 minutes resulting in approximately 439 Å. 

 

 
Figure 36: Optical microscope photos 27°C deposit planar contact. 
 

.  

Figure 37: Optical microscope photos 600°C deposit planar contact, note the halo effect 

caused at high temperature. 
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To calculate the amount of metal-semiconductor area for the spherical contact, a 

mathematical technique was employed that has been used in the analysis of sphere plane 

electrical contacts and contact creep effects [18-19]. The formula allows for Rh the radius 

of circular contact to be determined which allows for the contact area to be established as 

in equation 3.1 

    (3.1) 

 

Equation 3.2 produces Rh  the effective radius of circular contact for a sphere interfaced 

with a plane. Where F is the force applied to the contact, Rs is the radius of the spherical 

contact, and E* is the combined Young’s modulus for the SiC and Copper sphere 

material. 

(3.2) 

 

The combined Young’s Modulus for the two contacting materials is determined by 

equation 3.3 where v1 is the Poisson Ratio for copper (0.34) and E1 is the Young’s 

Modulus for copper ( 110 GPa) and v2 is the Poisson Ratio for SiC (0.192) and E2 is the 

Young’s Modulus for SiC (302.8 GPa). This yields a combined Young’s Modulus value 

of 89.1 Giga Pascal (GPa) (Note: Pascal is equal to 1 N/ m²).  

 

(3.3) 

 

The force applied to the contact terminal was mostly due to the weight of the contact and 

spring tension from that of the metal wire attached. The force exerted on the SiC 

substrate by the metal contact was crudely measured with the use of a scale by resting the 

contact on the scale surface as if it was the SiC substrate. Through this experiment the 

force exerted on the plate of the scale caused a reading of a weight equal to 100 grams 

was measured.  With the use of F=mg the force exerted was approximated to be on the 

order of 1 Newton. To find Rh the values of the combined Young’s modulus, the force 

and the various contact radii were substituted into equation 3.2 to form equation 3.4. 
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The values of Rs will be 0.81 mm large sphere, 0.42mm small sphere, and 0.2 mm 

needle contact. Below Figure 38 illustrates the variable used in the above calculations to 

the left the calculated and observable contact areas are contrasted and the error term is 

illustrated. To the right in the Figure 52 a typical spherical contact is shown and the 

variable Rs is illustrated and the actual contact area to be solved for with equation 3.1 is 

shown at the base of the sphere.  

  

 

 

 

 

 

 

 

 

Figure 38: Apparent contact radius Ra, calculated Radius Rh , and the error margin.  

 

To test the contact area equations it was necessary to make some observations to 

compare the observable contact area with that predicted. The mechanical contacts on 

silicon carbide were placed in the SEM and a side angle view was utilized to make an 

estimate of the contact area. The projected scale in the SEM image capture was utilized 

with a software tool known as Screen Calipers to measure the contact diameter. The 

screen caliper was calibrated to that of the SEM scale and the calipers were adjusted over 

the image of the contact until a best fit of estimation of contact diameter was reached.  

When the results of observed and predicted contacts were compared, an error term was 

found. Each of the SEM observations measured 30µm more that the estimate the 

predicted by the contact equations.  Figure 53 shows the three mechanical contacts 

constructed and micrographed in the SEM. The screen caliper tool is used to estimate the 

diameter of contact. In the SEM photos deviation from the ideal geometry can be seen as 

well as some surface artifacts on the contact terminals.  
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Large Sphere  

Contact Diameter: 109.7µm 

Measured Contact Radius: 

54.85µm 

 

Calculated Contact Radius: 

19.2µm 

Error: 64% 

Difference: 35.65µm 

Small Sphere  

Contact Diameter: 95.65µm 

Measured Contact Radius: 

47.85µm 

 

Calculated Contact Radius:  

15.2 µm 

Error: 68% 

Difference: 32.65µm 

Needle Point 

Contact Diameter: 86.47µm 

Measured Contact Radius: 

43.25µm  

 

Calculated Contact Radius:  

11.89µm 

Error: 72% 

Difference: 31.36µm 

 

Figure 39: SEM analysis of mechanical Schottky contacts, error term around 30µm. 
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The same electric field simulation software that was used to model the corona 

discharge terminals has also been used to simulate the electrical field stresses that would 

exist around the mechanical Schottky diode contacts. The first simulation performed was 

on the large spherical contact terminal. The dimensions of the SiC (405µm thick by 5mm 

across) were entered into the simulation software. The εr relative electric permittivity of 

the SiC was set to εr=10 and the conductivity of the mechanical contact terminal were set 

to that of Copper. The diameter of the sphere is in the simulation was set to the directly 

measured value of 1.71mm. (Figure 40) The diameter of the small sphere is in the 

simulation the measured value of 0.85mm. (Figure 41)  The measurements of physical 

dimensions discovered with the use of the SEM were the parameters entered into the 

simulation for the needle point contact as well. (Figure 42)  The measurements of the 

planar contacts diameter & physical dimensions were observed with an optical 

microscope and found to be 0.5mm in diameter. (Figure 43) This diameter was entered 

into the simulation and the thickness of the planar contact was set to 0.01mm the thinnest 

resolution that the simulation would practically allow. All contacts in the simulation had 

+10 volts of electric potential applied. The scale for this simulation and all of the 

proceeding simulations is 60kV/m or 60V/mm this scale was used because it showed the 

contrast in field reduction between the different types of contact geometries. From the 

simulations it can be shown that the largest sphere does have the greatest reduction in 

electric field intensity.  

Because of the electric field at the perimeter the planar contacts in comparison 

with the other mechanical contact constructions there are more intense regions of 

electrical stress were breakdown can occur. It is anticipated that as a result of this electric 

field stress these contacts would exhibit higher amounts of reverse leakage current and 

premature breakdown. Since only the peripheral electric field edge effects were of 

interest only the 0.5mm diameter contact was simulated with the Electnet software. In 

comparison of the planar contact to that of the large spherical contact, a significant 

difference in performance should be noticeable due to the nature of the electric field 

surrounding these two geometries.   
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Figure 40: Elecnet simulation of electric field surrounding 1.71mm dia. contact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Elecnet simulation of electric field surrounding 0.82mm dia. contact. 
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Figure 42: Elecnet simulation of electric field surrounding needle point contact. 

 

 
Figure 43: Elecnet simulation of electric field surrounding planar 0.5mm dia. contact. 
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CHAPTER FOUR 

EFFECTS OF VARIED DIODE CONTACT GEOMETRIES 

Five of the six different kinds of Schottky contact constructions were tested to 

investigate the variation of construction geometry on diode performance. A 1.71mm dia. 

sphere, 0.85mm dia. sphere, a needle point contact fashioned from 0.82mm dia. wire, a 

0.125mm in diameter circular planar contact, and a 0.5mm dia. circular planar contact. 

All of these junctions were made at room temperature with no thermal effects 

investigated. In the forward bias regime of testing some predictions were made with the 

use of the Schottky diode equation and its auxiliary relationships. Typical Schottky 

Barrier Height values for metals on 4H - SiC may vary between values of 0.8eV to 1.7eV 

[22] and differences in SBH values measured have been found to vary in sample 

preparation procedures. The value used for the Schottky Barrier Height of Ni on 4H – 

SiC was determined by calculations found in referenced material. [6]: 

 

 

The Schottky diode equation below will have the appropriate values of n, k, T, A*, Ac, 

ΦB and q substituted to make some predictions as to diode performance. 

 

 

IF =Forward diode current as a function of applied voltage 

Va = Applied voltage 

Ac = Area of metal in contact with semiconductor 

q = Charge of the electron (1.602176*10^-19 Coulombs) 

T = Absolute Temperature in Kelvin (Room Temp. 300K) 

k = Boltzmann Constant (1.38065*10^-23 m^2*kg/(s^2*K)) 

n = Ideality Factor (approx. = 1)  

A* = Richardson’s constant for the specific material (142 A/(cm^2K^2)) 

ΦB = Barrier height of the metal semiconductor junction (1.63eV) 
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The equation of 4.1 below is the Schottky diode equation with the appropriate 

values substituted for the types of contact diodes constructed. The last variable of contact 

area varies with the types of contact geometry tested.  

 

(4.1) 

 

The following will represent the area of the mechanical contacts tested by use of the SEM 

measured contact radii, 43.25µm, 47.85 µm, and 54.85 µm, respectively. The area is 

shown in centimeters due to the nature of the Richardson’s Constant (A*) 

 

 

 

 

 

Planar contact areas are calculated from equation 4.2 and the measured radii of 62.5um 

and 250um respectively: 

 

 

 

These values of contact area will be substituted into the equation of 4.1 to yield the 

graphs in Figures 44 and 45. The predicted I-V relationships resulting from 4.1 will be 

compared to that of the measured I-V experimental results.  

Theoretically the only parameter changing from one Schottky diode to another is 

the contact area. Contact area affects the forward current of each diode tested. The needle 

point contact construction should experience the least forward current flow while the 

large 0.5mm diameter planar contact will experience the largest current flow due to the 

contact area. The values for voltages substituted into equation 4.1 are exactly the same 

values applied to diodes under testing.  Notice that there is no resistance accounted for in 

the simulated modeling so it can be anticipated that there will be linear deviation from 

exponential current voltage relationship.   
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Figures 44 and 45 show the experimental results (doted lines) in comparison with the 

theoretically predicted values (solid lines). The mechanical contacts are found to have 

turn-on voltages much lower than those predicted while the 0.125mm contact has a turn-

on voltage that is much higher. Figure 45 is shown with the current scale adjusted to 

show how contact resistance has linearized the diode curves. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44: Experiment I-V curves zoomed to nano amps scale to show turn-on voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Experiment I-V curves zoomed to micro amps scale to show resistance. 
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4.1 Testing Methods for I-V Characterization 

All forward bias I-V characterizations were taken with the use of the Keithley 

power supply that was interfaced to a PC running Labview. For each voltage applied a 

corresponding current measurement through the device was taken. In each measurement 

the mechanical Schottky contacts were attached to the Keithley by the bolt of the 

insulator terminal and the base of the copper substrate. Each test sample for a particular 

diode the mechanical contact was placed and the replaced on different parts of the SiC. 
 

    
Figure 46: The test rig for the mechanical diode contacts and the Keithley curve tracer. 
 

All planar contact plasma sputter deposited contacts were tested with a single 

gliding probe attached to the positive terminal of the Keithley and the copper substrate 

attached to the ground terminal. A different circular Schottky contact diode was selected 

for each test sample measured. The SiC sample is mounted to copper with silver paste. 

 

 
Figure 47: Planar plasma sputter deposit contacts on copper substrate with test probe. 
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4.2 Varied Contact Geometries Forward Bias Measurements  

The mechanical Schottky diode contact terminals with varied geometries of 

construction are tested and the I-V curves are shown in Figures 48. Immediately variation 

in contact resistance from test diode to test diode can be observed due to inconsistency of 

mechanical contact interface of metal with semiconductor. Each test sample was formed 

by placing the mechanical contact in a new area of the semiconductor. Though each 

mechanical contact tested shows variation in contact resistance a functional diode is 

formed on every attempt. The quality of the diode junction formed will be further 

investigated by examining the specific series on resistance, Schottky barrier height, and 

ideality factor.  

Improved methods to develop mechanical contact Schottky diodes might include 

systems to accurately maintain pressure and position for the mechanical contacts. All of 

these mechanical Schottky contact diodes tested were held in position by the 

nonconductive holding stand and the force exerted by the metal wire. It is anticipated 

from simulation that these types of mechanical contacts due to their unique shapes will 

have advantages in the reverse bias voltage regime by possessing higher breakdown 

voltages. It is also suggested by prior simulation that the planar contacts may have 

aggravated electric field stress at their peripheral edges.  

The planar sputter deposited Schottky diode contact terminals with two varied 

diameters are tested and the I-V curves are shown in Figures 48 as well. The planar 

contacts are more consistent from test diode to test diode. A different contact was tested 

in each case to form the five data samples shown in the plots. 

Figure 48.1 shows the data collected for the needle point contact terminal which 

forms a Schottky contact diode. Figure 48.3 shows the data points collected for the small 

sphere mechanical contact terminal(R = 47.85um). Figure 48.5 shows the data points 

collected for the large sphere mechanical contact (R = 54.85um). Figure 48.2 shows the 

data points collected for the planar sputter deposited metal contacts (R = 62.5um).  

Figure 48.4 shows the data points collected for the large planar sputter deposited metal 

contacts (R = 250 um). Five separate diodes were tested and curves recorded in all cases. 
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Small Sphere Contact IV Characterization
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Large Sphere Contact IV Characterization
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Figure 48: I-V measurements for diode contacts for various construction geometries. 
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4.3 Analysis of Varied Contact Geometries in Forward Bias  

The evaluation of the forward bias performance of Schottky diode construction 

types will compare the parameters of series on resistance, Schottky barrier height, and 

ideality factor. Two data samples from the set of five will be chosen for analysis, the two 

samples are those with the highest and lowest series on resistance. These diodes were 

chosen for analysis because the represent the upper and lower boundaries of our data set.  

The series on resistance will be calculated by the slope at the linear part of the I-V curve. 

Two voltage and two current measurements will be taken at the end points of the slope so 

that a resistance may be approximated.  

 

(4.3) 

 

 

The Schottky barrier height may be solved for with the manipulation of the Schottky 

diode equation to form equation 4.4. The value for the initial current when zero volts is 

applied IF(0) is determined by the slope intercept point from log plot analysis. This value 

is then substituted in into the equation to determine the SBH. 

 

 

(4.4) 

 

The ideality factor is a measure of diode quality in comparison to a diode of ideal 

behavior to its actual performance. The slope determined from log plot analysis will be 

substituted into the equation to determine n and therefore indicate a measure of how close 

the test sample diode performs relative to ideal diode behavior. 

 

 

(4.5) 
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The calculations and analysis conducted with the aid of equations 4.3 to 4.5 has 

been appended to this document. The results are shown in Figures 49 and 50. A clear 

contrast can be seen in the different Schottky contact constructions as they vary in 

ideality factor, Schottky barrier height, and contact resistance. 

Ideality and SBH
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Figure 49: Ideality and SBH for varied contact terminal constructions. 
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Figure 50: Contact resistance for the varied contact terminal constructions. 



  48 

( )
d

cmo
RB qN

EV
2

2εε
≈

4.4 Measurement and Analysis of the Contacts in Reverse Bias 

The modification of metal-semiconductor contact terminal construction was 

anticipated to have the best results for contact terminals with reduced electric field stress 

at edge termination as per simulations results (i.e. the large spherical contact). The 

reverse voltage break down potential for SiC with a specified doping concentration may 

be predicted by the equation (1.9) of the first chapter. When these values are substituted 

into the equation the SiC samples with an ideal infinite planar contact should breakdown 

at a voltage potential of 1350 volts.  

 

 

 

VRB = Breakdown voltage at which exponential current flow will occur.  

ε o= Free space permittivity ( 8.854e-14 F/cm )                                    

εm  = Relative permittivity of the SiC material (10.1) 

Ec = Breakdown voltage of the 4H SiC (2200 kV/cm)  

Nd = Doping concentration of the surface epilayer (1e16 cm^3)         

q= Charge of the electron (1.602e-19 Coulombs)  

 

The value of Ec the critical breakdown electric field strength has been modified with the 

equation for electric field distribution around high voltage discharge terminals. It is 

anticipated that large radii of curvature will allow that Schottky diode terminal to perform 

closer to ideal conditions, and or allow for a better estimate of when breakdown will 

occur. This equation allows for the inverse of the electric field distribution to be 

multiplied by the electric breakdown field of the material, intern predicting how much the 

electric field will be reduced by geometry with a given radius of curvature. 
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From the initial results of Figure 51 this modeling appeared to be successful in the ability 

to predict approximately when electric breakdown would occur. However it was later 

found that the Keithley source meter could not bias the diodes to true avalanche reverse 

breakdown. So a Tektronix curve tracer was utilized. 

 

 

 

 

 

 

 

 

Figure 51: Preliminary reverse bias breakdown with the Keithley/Labview curve tracer.  
 

The Tektronix 576 I-V curve tracer implemented is an instrument that allowed for testing 

up to 1500 volts and could source much higher currents through the diode that would be 

comparable to conditions in a typical Schottky diode industrial application.  

   
Figure 52: Tektronix 576 I-V curve tracer attached to the probe station. 

 
Figure 53: Tektronix 576 I-V curve tracer attached to the custom diode test rig. 
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The results of testing with the Tektronix curve tracer are represented in the following 

Figure 54 oscillograms taken just before permanent device failure. Both the needle point 

contact and small spherical contact experienced very similar reverse avalanche 

breakdown potentials. As anticipated the larger spherical contact yields better 

performance than the other mechanical contacts this is summarized in Figure 55. 

 

  
Figure 54: Breakdown for both needle point, small sphere (left) and large sphere (right). 
 

For comparison purposes the data collected in the oscillogram curve traces are drawn in 

relation to each other in Figure 55. The large spherical contact (1.71mm dia.) was found 

to have a reverse breakdown voltage of -80 volts. The needle point and small sphere were 

found to begin breakdown at -40 volts with the needle point contact terminal having 

greater leakage currents than the spheres.   

 

 

 

 

 

 

 

 

 

Figure 55: Summary of the mechanical contact reverse breakdown data. 
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Because the large spherical contact had a radius of curvature much greater than that 

found at the edge terminations of planar contacts. Modeling and corona discharge 

experiments also suggested that the larger planar contact terminals (0.5mm dia.) would 

have more leakage current than that of the smaller planar contacts (0.125mm dia.) 

However an observation counter intuitive to the simulations was made. 

  

Figures 56: Breakdown for 0.125 planar contacts (left) and 0.5mm planar contacts (right).  
 

The planar contacts were found to have higher reverse breakdown voltages than the 

spheres. For comparison purposes the curve traces are drawn in relation to each other in 

Figure 57 below. The large planar contact (0.5mm dia.) was found to have a breakdown 

voltage of -325 volts. The planar contact (0.125mm dia.) was found to have a breakdown 

voltage of -150 volts, twice that of the large spherical contact with a breakdown of -80V. 

 

 

 

 

 

 

 

Figure 57: Summary of the planar and large sphere contact reverse breakdown data. 
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CHAPTER FIVE 

EFFECTS OF TEMPERATURE PROCESSES 

Two kinds of large planar 500µm diameter Schottky contact terminals were tested 

to investigate the variation of high temperature metal sputter deposition on diode 

performance. Post 600°C and 27°C metal deposit processes the diodes are tested and then 

thermally annealed at temperatures from 200°C to 600°C in nitrogen atmosphere to 

investigate how the diodes react to high temperature exposure. Points of concern are the 

effects generated by depositing diode material at different temperatures and how will this 

deposition process affect further exposures to high temperatures in the future life of the 

device. For each test of a diode the probe was placed on top of a random diode contact in 

the center of the 5x5mm sample. There were in total six separate collections of diode 

measurements taken post deposition, the first as deposited, the second at 200°C, third at 

300°C, and so on to the last heating and test after exposure to 600°C. All heating 

treatments were preformed in an ultra pure nitrogen atmosphere with the rapid thermal 

processor. Figure 58 shows a 10 second preheat to 200°C then a 10 second ramp up to the 

temperature of interest, followed by 10 minutes of exposure to that temperature, with a 

large period of cool down allowed. 

 
Figure 58: Thermal profile set for the Rapid Thermal Processor (RTP)  
 

In regard to testing and analysis of the diodes, 5 diodes were tested at each of the 

6 steps in the planned experiment. However one noticeable effect of heating was that 

some diodes exposed to high temperatures developed parasitic Schottky diode barriers. 

This is believed to be due to metal semiconductor compounds formed with exposure to 

these temperatures, this could be at topic investigated during future research.  
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5.1 Forward Bias I-V Measurements across Temperatures 

The first set of testing was done after initial metal sputter deposit; there is a 

clearly observable difference shown in Figure 59 between the room temperature and high 

temperature deposit contacts in both the coloration of the metal and a “halo” effect that 

appeared around perimeter of the high temperature deposited contacts. 
 

   
Figure 59: 27°C deposited nickel contact and 600°C deposited nickel contacts.   
 

No Annealing 

 
Figure 60: I-V data post deposition no annealing for samples YSU111 and YSU112.   
 

I-V measurements before any annealing heat treatment show that the high 

temperature deposit contacts have a lower on-resistance. (Figure 60) The second set of 

testing was done after the 200°C RTP annealing process, the third set of testing was done 

after the 300°C RTP annealing process, and the fourth set of testing was done after the 

400°C RTP annealing process (Figure 61). In all cases there is a clearly observable 

difference in the room temperature deposition and the high temperature deposition on-

resistance.  
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300°C Anneal 
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400°C Anneal 
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Figure 61: I-V data for 200°C, 300°C and 400°C for samples YSU111 and YSU112.   
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500°C Anneal 

The fifth set of testing was done after the 500°C RTP annealing process. A 

noticeable discoloration in the 27°C deposited contacts has occurred, while the high 

temperature contacts continue to be visually unaffected by the heat treatments of the 

RTP, shown in Figure 62.  From the I-V curves plotted in Figure 63 it is shown that there 

is now a drop in on resistance for the room temperature deposit contacts making their 

resistance very comparable to the low on resistance of high temperature deposited.  . The 

results of annealing the material at 500°C have shown that this temperature appears to be 

a critical point where interaction between the nickel contacts and SiC substrate will begin 

to occur. 

  
Figure 62: Discolored 27°C and 600°C deposit contact respectively post 500°C anneal. 

 

The resistance of both room and high temperature of the Schottky contacts has become 

comparable at the annealing temperature of 500°C. 
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Figure 63: Data for 27°C and 600°C deposited contacts respectively post 500°C anneal. 
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600°C Anneal 

The sixth set of testing was done after the 600°C RTP annealing process. Again 

noticeable darkening in color of the nickel metal to a deep blue was observed with the 

27°C deposited contacts. Meanwhile the high temperature contacts continue to be 

unaffected by the heat treatments of the RTP shown in Figure 64. From the I-V data 

plotted for the diodes it is show that the initial drop in on resistance for 27°C deposition 

contacts at 500°C appears to have returned to its original resistance value. The on 

resistance of the high temperature deposited diode was not affected by the exposure to the 

600°C anneal. The results of annealing the diodes at 600°C illustrate how the different 

diode deposition temperatures will affect how a diode will handle exposure to high 

temperatures. 

   
Figure 64: Color change of 27°C and 600°C unaffected contacts post 600°C anneal.   

 

An interesting deviation in resistance occurs at 600°C in which the room temperature 

contact resistance noticeably increases unlike that of high temperature deposited Schottky 

contact diodes shown in Figure 65. 
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Figure 65: I-V data for the 27°C and 600°C deposited contacts post 600°C anneal.  
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5.2 Analysis of Temperature Effects in Forward Bias 

The calculations and analysis conducted with the aid of equations 4.3 to 4.5 has 

been appended to this document. The results are shown in Figures 66, 67, and 68. A clear 

contrast can be seen between the two Schottky contact sputter deposit temperatures. The 

diodes differ in contact resistance, ideality factor, and Schottky barrier height. In all test 

cases expect for 27°C deposited contacts had a higher contact resistance except for post 

500°C annealing where a drop to 3.6 ohms was recorded. At the temperature of 500°C 

the first discoloration of the 27°C deposited contacts was noticed. This temperature range 

from 400°C to 600°C may be of interest in future nickel on silicon carbide contacts. 
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Figure 66: On-resistance verses anneal temperature for 27°C and 600°C deposit contacts. 
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Notable changes occurred in Schottky barrier height over the range of anneal 

temperatures. As the 27°C contact was heated up to 600°C the data indicates a rise in 

Schottky barrier height, while the ideality factor became closer to one. The 600°C 

deposited contact varied in value slightly but performance was consistent.  
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Figure 67: SBH and ideality factor verses anneal temperature for 27°C deposit contacts. 
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Figure 68: SBH and ideality factor verses anneal temperature for 600°C deposit contacts. 
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5.3 Reverse Bias I-V Measurement for Temperature Processes  

The reverse voltage break down potential for the 500µm diameter planar nickel 

metal room temperature (27°C) sputtered Schottky contact diodes on SiC were evaluated 

in the previous chapter. The large planar contacts deposited at with different temperatures 

process are contrasted in reverse breakdown voltage. Then reverse breakdown voltages of 

27°C and 600°C diode fabrication processes are contrasted again after 300°C annealing 

and finally tested after 600°C anneal. The Tektronix I-V curve tracer is employed to 

measure the high voltage breakdown of the device. 

   
Figure 69: Breakdown 27°C and 600°C deposited contacts -325V and -200V respective. 
 

Because the Tektronix curve tracer could not capture multiple I-V data points for the 

results shown in Figure 69 they have been drawn in Figure 70. Tests on three diodes from 

both 27°C and 600°C deposited contacts composed the data sample of Figure 70 and all 

six diodes for both samples measured consistently. 

 

 

 

 

 

 

 

 

Figure 70: Summery of breakdown voltage for 27°C and 600°C contacts no annealing. 



  60 

Diode samples were then annealed at 200°C and again at 300°C, after 300°C 

annealing the breakdown voltage measurements were again taken. Three breakdown 

measurements from each SiC sample of two different sputter deposit temperatures. 
  

   
Figures 71: Post 300°C breakdown voltages planar 27°C and 600°C plasma sputter 

deposit contacts with -325V and -325V respectively single -500V anomaly found. 
 

The 300°C anneal in nitrogen atmosphere has appeared to raise the breakdown 

voltage of the high temperature (600°C) deposited contacts, while no contacts in the 

room temperature (27°C) deposited contact sample appeared to greatly change their 

breakdown voltage. There was also one anomalous diode from the 600°C deposited 

sample that had a breakdown voltage of around -500 volts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 72: Summery of breakdown voltages for 27°C and 600°C contacts post 300°C. 
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Both diode samples where then annealed at 400°C, 500°C (some discoloration for 

room temperature deposition contacts), and finally at 600°C. After the final anneal the 

last reverse breakdown voltage measurements were taken. Again 3 measurements from 

each SiC sample of two different sputter deposition temperatures taken. 

 

 

 

 

 

 

 

 

Figures 73: Oscillographs of 27°C deposit contact with -600V breakdown and 600°C 

deposit contact with -325V breakdown shown respectively, post 600°C anneal process.  
 

The 600°C anneal process in nitrogen atmosphere markedly improved the reverse voltage 

breakdown of the Schottky diodes deposited at room temperature (27°C) these diodes 

were able to resist voltage breakdown up to -600 volts across all three test samples. This 

was also marked by a darkening of the metal contact terminals. The 600°C deposited 

contacts after 600°C anneal did not discolor or change in appearance and maintained the 

voltage breakdown of -325 volts that was experienced after the 300°C anneal process. 

 

 

 

 

 

 

 

 

 

Figure 74: Summery of breakdown voltages for 27°C and 600°C contacts post 600°C. 
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CHAPTER SIX 

CONCLUSION 

Six different types of methods for producing Schottky diodes with metal-

semiconductor contact terminals i.e., three mechanical contacts (needle point, small 

sphere, and large sphere) and three planar sputter deposition contacts (125µm 27°C, 500 

µm 27°C, and 500µm 600°C deposit). Each different diode type was fabricated, modeled, 

and tested. Fabrication included the machining of test fixtures, plasma bead electro 

coat/polish process, vacuum chamber metal sputter deposition, and high temperature 

annealing processes. The modeling include predictions made by Schottky diode 

equations, Hertz’s model for contacting sphere/plane interface, and finite element models 

of electric field distributions around contact terminal electrodes. Testing of the diodes 

involved the analysis of the devices based on their current/voltage relationships 

through/across the device under forward and reverse biases. The results of the research 

produced a contrast both qualitatively and quantitatively in the way a technique of 

producing a nickel on silicon carbide diode will affect the way a device will perform. 

Depending on the specifics of an application there may be one advantage in using a 

certain type of device architecture verses another. In typical power electronics 

applications desirable diodes have low “knee” or turn on voltages, low on resistance, and 

high reverse bias voltage breakdown. The mechanical contacts had low “knee” voltages 

but higher on resistance and lower reverse voltage breakdown. While the sputter contacts 

had a higher “knee” voltage but lower resistance and higher reverse breakdown. 

  The variation of contact geometry does make a difference in how the device will 

respond to applied voltage, and a larger radius of curvature was an improvement over the 

other mechanical contacts. Spherical contacts did not have higher reverse breakdown 

voltages compared to the planar contacts as was originally anticipated. It was also 

discovered that planar 0.5mm diameter contacts sputtered at 27°C and then annealed at 

600°C had higher reverse breakdown voltages than the same 0.5mm planar contacts 

sputtered at 600°C then annealed at 600°C. This change in diode performance was also 

not anticipated. 
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6.1 Conclusions on Varied Fabrication Temperature Processes  

The initial measurements of the room temperature 27°C deposition and the high 

temperature 600°C deposition shows a clear contrast in on resistance and reverse voltage 

breakdown. It was anticipated that as the room temperature deposited diodes were 

exposed to high temperatures up to 600°C that their characteristics would look more like 

the characteristics of those deposited at 600°C. The initial measurements and anticipated 

changes are illustrated qualitatively in Figure 75. 

 
Figure 75: Initial measurements and anticipated changes due to thermal process. 
 

Actual measured results are found to be different than what was anticipated. Upon 

heating the 27°C deposited contacts dramatically lower and later regain their resistance 

value while achieving reliable breakdown voltages of -600 volts. The 600°C deposited 

contacts also experienced a gain in reverse breakdown voltage post depositing annealing. 

These changes may be due to temperature and/or the nitrogen atmosphere surrounding 

the SiC sample during the anneal process. 

 

Figure 76: Initial measurements (dotted) and actual changes due to thermal process. 
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A summary of numerical results from the testing of temperature process effects are 

depicted in Table 1. These values were used to generate the depicted graphical 

relationships show in Figures 77 and 78. 
 

Table 1: Summery of 27°C vs. 600°C sputter deposit contacts over anneal temperatures. 

 
 

The first relationship that was not anticipated is the abrupt drop in resistance experienced 

by the 27°C deposited diode at 500°C. This occurred when the first sign of metal 

discoloration was experienced. While the 600°C deposited diodes experienced slight 

decreases in resistance over annealing temperatures. This resistance phenomenon may be 

a point of interest in the future and further analysis of the material’s physical and 

chemical properties at this point may be studied.  In all figures dots referrer to points 

where numerical values were recorded, lines represent approximate trends. 

 

 
Figure 77: Changes in resistance of the samples over the annealing process.  
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The Schottky barrier height of a sample diode proved difficult to measure with 

development of parasitic secondary Schottky barriers at high temperatures. Small 

deviations in the experimental setup can also make it difficult to discern the accuracy of 

measurements. After averaging several SBH values for multiple values a trend did 

emerge. The SBH of the 600°C deposited diodes tended to stay around the1.5 eV level.  

There did appear to be a definite increase in SBH as the 27°C deposited contacts were 

annealed over the range of temperatures.  A maximum measured value of 1.667eV for the 

27°C deposited diodes was recorded after 500°C anneal. The most dramatic contrasting 

observation of the temperature process experiments was the significant increase in 

breakdown voltage experienced by the two SiC samples. The 600°C deposited contact 

experienced an increase in reverse breakdown voltage after annealing at 300°C, however 

at this test interval one anomalous diode that with stood -600 volts breakdown was 

recorded. The 27°C deposited diodes maintain a -325 volt breakdown voltage until tested 

after 600°C (Note: No reverse breakdown voltage measurements were taken at 500°C 

when discoloration was first observed). After 600°C anneal the nickel metal contacts had 

turned a deep blue color and consistently tested to have breakdown voltages of -600volts. 

Figure 78 qualitatively illustrate the changes above. It may also be interesting to 

thermally process mechanical (pressure) contacts to see if changes in measurement 

consistency, on resistance, SBH, and reverse voltage breakdown would be experienced. 

 

 
Figures 78: Changes in SBH and reverse breakdown voltage with annealing respectively. 
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6.2 Conclusions on Varied Contact Terminal Geometry 

A comparison of the various diode construction types are shown in Table 2 with 

the various parameters of diode operation. The mechanical contacts typically have high 

resistances compared to the sputtered planar contacts, this is attributed to the fact that the 

mechanical contacts have smaller contact areas and are only resting on the surface of the 

substrate.  The SBH was also much lower and the depletion region was of a lesser 

volume for the mechanical contacts than for planar contacts, this is related to the 

inconsistency of the metal-semiconductor contact and interface area.  The observations 

made about reverse breakdown voltage had a discrepancy in what was predicted to be a 

better contact with electric field simulation. It was anticipated that contact terminal 

experiments would mimic the results from the corona discharge experiment.  

 

Table 2: Summery of data collected on Schottky contact diode terminal construction. 

 
 

It is suspected that the inconsistent quality of the mechanical contact reduced the 

depletion region that forms beneath the metal, lending to a considerably smaller volume 

of unknown geometric configuration. The planar contact with a larger area and uniform 

metal-semiconductor contact interface develops a defined depletion region which has the 

ability to with stand much higher voltages, despite electrical stress at edge terminations. 

 
Figure 79: Simulations with dotted line show a questionable volume of depletion region. 
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6.3 Recommendations for Further Studies 

An untested method for the manufacturing of spherical Schottky contacts based 

on this research may achieve the performance anticipated in simulations see Figure 80. 

By utilizing the following design, the geometry of the depletion region that forms around 

the contact may be engineered in shape. Spherical Schottky contacts could regain their 

proven beneficial corona discharge performance once the depletion region is designed to 

withstand greater than 3kV/mm electric field stress. The processes of Figure 80 are 

hybrid designs that combine the benefits of spherical and planar contacts of the research. 

By etching the semiconductor substrate and sputter depositing metal, the metal-

semiconductor interface would be far more controlled. This allows for the geometry of 

the depletion region around the spherical contact to be engineered with specific 

dimensions. A secondary method that would have an advantageous geometry would be to 

create a hemispherical etched substrate depositing metal on top. Further research would 

combine the improvements demonstrated during temperature processes with the proposed 

contact terminal designs. Experiments would be vary temperature processing while 

sputter depositing metal on the etched spherical contacts and anneal the proposed 

contacts post deposition.  Having the metal contact deposited inside a well or on top of a 

hemispherical substrate could result in some side effects from the unusual thermal 

profile. The mechanisms of how temperature processes result in higher reverse 

breakdown voltage should also be a topic to further investigate. 

 
Figure80: Untested design concept for spherical metal–semiconductor contacts.  
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APPENDIX 

APPENDED CHAPTER FOUR ANALYSIS 

1. Needle Point Contact 

From the linear slopes of the IV curves the on resistance for the needle point contact 

Schottky diodes could be determined. The resistance determined from IV measurements 

put into equation 4.3 for test diode samples T3 and T1 are shown respectively.  
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Needle Point Contact IV Characterization
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The exponential curve fits plotted in log scale allow for a slope and intercept point for the 

diode current to be determined. These values are put into equations 4.4 and 4.5 to 

determine the Schottky barrier height and the ideality factor for the two contacts show 

below for contact terminals T3 and T1 of the needle point mechanical Schottky contact. 
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2. Small Sphere Contact (0.82mm dia.) 

From the linear slopes of the IV curves the on resistance for the small sphere contact 

Schottky diodes could be determined. The resistance determined from IV measurements 

put into equation 4.3 for test diode samples T5 and T3 are shown respectively. 
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The exponential curve fits plotted in log scale allow for a slope and intercept point for the 

diode current to be determined. These values are put into equations 4.4 and 4.5 to 

determine the Schottky barrier height and the ideality factor for the two contacts show 

below for contact terminals T3 and T5 of the small sphere mechanical Schottky contact. 
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3. Large Sphere Contact (1.71mm dia.) 

The resistance is determined from IV measurements substituted into equation 4.3 for test 

diode samples T5 and T4 are shown below respectively for the large sphere. 
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Large Sphere Contact IV Characterization
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The exponential curve fits plotted in log scale allow for a slope and intercept point for the 

diode current to be determined. These values are put into equations 4.4 and 4.5 to 

determine the Schottky barrier height and the ideality factor for the two contacts show 

below for contact terminals T4 and T5 of the large sphere mechanical Schottky contact 
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4. Planar Contact (0.125mm dia.) 

The resistance is determined from IV measurements substituted into equation 4.3 for test 

diode samples T4 and T2 are shown below respectively for the planar contact. 
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Planar Contact IV Characterization
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The exponential curve fits plotted in log scale allow for a slope and intercept point for the 

diode current to be determined. These values are put into equations 4.4 and 4.5 to 

determine the Schottky barrier height and the ideality factor for the two contacts show 

below for contact terminals T4 and T2 of the planar Schottky contact. 
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5. Large Planar Contact (0.5mm dia.) 

The resistance is determined from IV measurements substituted into equation 4.3 for test 

diode samples T1 and T2 are shown below respectively for the large planar contact. 
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The exponential curve fits plotted in log scale allow for a slope and intercept point for the 

diode current to be determined. These values are put into equations 4.4 and 4.5 to 

determine the Schottky barrier height and the ideality factor for the two contacts show 

below for contact terminals T1 and T2 of the large planar Schottky contact. 
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APPENDED CHAPTER FIVE ANALYSIS 

1. No Annealing 

The resistance is determined from IV measurements substituted into the resistance 

equation for the test diodes. It is clear that the diodes sputter deposited at 600°C have a 

lower on resistance than room temperature deposited contacts with no post annealing. 
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Log scale analysis used to determine the Schottky barrier height and ideality factor for 

the two different diode fabrication processes with no annealing. The maximum number of 

test samples without parasitic diodes were used for analysis.  

Large Planar Contact IV Characterization
YSU 112 - Room Temp. Deposition
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Expon. (T5 LPC Temp. 27C)

 

ΦT1 ΦT2 ΦT5 nT1 nT2 nT5 
1.506eV 1.555eV 1.465eV  1.27 1.22 1.34 

 

 

 

 

Large Planar Contact IV Characterization
YSU111 - High Temp. Deposition
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ΦT1 ΦT5  nT1 nT5 
1.500eV 1.429eV  1.21 1.31 
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2. 200ºC Anneal 

Log scale analysis used to again for the two different diode fabrication processes after 

annealing the samples at 200°C.  

Large Planar Contact IV Characterization
YSU112 -Room Temp Deposite + 200C Anneal
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Expon. (T1 LPC Temp. 27C +200C)
Expon. (T2 LPC Temp. 27C +200C)
Expon. (T3 LPC Temp. 27C + 200C)
Expon. (T4 LPC Temp. 27C + 200C)

 

ΦT1 ΦT2 ΦT3 ΦT4 nT1 nT2 nT3 nT4 
1.247eV 1.465eV 1.395eV 1.346eV  1.64 1.32 1.39 1.45 

 

 

 

Large Planar Contact IV Characterization
YSU 111 - High Temp. Deposite +200C Anneal 
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ΦT1 ΦT3  nT1 nT3 
1.500eV 1.405eV  1.21 1.33 
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3. 300ºC Anneal 

Log scale analysis used to again for the two different diode fabrication processes after 

annealing the samples at 300°C.  

Large Planar Contact IV Characterization
YSU112 - Room Temp. Deposite +300C Anneal
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Expon. (T3 LPC Temp. 27C + 300C)

Expon. (T4 LPC Temp. 27C + 300C)

 

ΦT1 ΦT2 ΦT3 ΦT4 nT1 nT2 nT3 nT4 
1.203eV 1.524eV 1.363eV 1.405eV  1.81 1.3 1.51 1.42 

 

 

 

Large Planar Contact IV Characterization
YSU111- High Temp. Deposite +300C Anneal
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1.514eV 1.551  1.17 1.14 
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4. 400ºC Anneal 

Log scale analysis used to again for the two different diode fabrication processes after 

annealing the samples at 400°C.  

Large Planar Contact IV Characterization
YSU112- Room Temp. Deposite + 400C Anneal
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ΦT1 ΦT3 nT1 nT3 
1.573eV 1.485eV  1.21 1.32 

 

 

 

 

Large Planar Contact IV Characterization
YSU111- High Temp. Deposite +400C Anneal
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5. 500ºC Anneal 
 

The resistance is determined from IV measurements substituted into the resistance 

equation for the test sample diodes. This temperature creates a very interesting 

phenomenon where by the room temperature deposited Schottky diode on resistance 

drops after an annealing treatment at 500°C for ten minutes. While the 600°C deposited 

Schottky contacts maintain a consistent on resistance throughout anneal treatments.  
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Log scale analysis used to determine the Schottky barrier height and ideality factor for 

the two different diode fabrication processes post at 500°C anneal. The maximum 

number of test samples without parasitic diodes has now become smaller, it can be seen 

that high temperatures cause formation of secondary SBH. 

Large Planar Contact IV Characterization
YSU112 - Room Temp. Deposite + 500C Anneal
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Large Planar Contact IV Characterization
YSU111 - High Temp. Deposite + 500C Anneal
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1.524eV 1.611  1.75 1.09 
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6. 600ºC Anneal 

The resistance is determined from IV measurements substituted into the resistance 

equation for the test sample diodes. It was found that at temperature of 600°C the room 

temperature deposited Schottky diode on resistance (which was lowered in the previous 

500°C anneal) has increased to near its original value of 9 ohms while noticeable 

discoloration of the contact occurred. However the 600°C deposited Schottky contacts 

again maintained a consistent on resistance throughout anneal treatments and no 

discoloration was observed for any diodes in this test set.  
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Log scale analysis used to determine the Schottky barrier height and ideality factor for 

the two different diode fabrication processes post at 600°C anneal. The maximum 

number of test samples without parasitic diodes is smaller, further illustrating that high 

temperatures cause formation of secondary SBH. 

Large Planar Contact IV Characterizaton
YSU 112 - Room Temp. Deposite + 600C 

y = 2E-24e33.395x

y = 2E-22e30.324x

1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

0.7 0.9 1.1 1.3 1.5

Voltage

C
ur

re
nt

T1 LPC 27C + 600C

T4 LPC 27C + 600C

Expon. (T1 LPC 27C + 600C)

Expon. (T4 LPC 27C + 600C)

 

ΦT1 ΦT4 nT1 nT4 
1.643eV 1.524eV  1.15 1.27 

 

 

 

 

Large Planar Contact IV Characterization
 YSU 111- High Temp Deposited + 600C
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