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ABSTRACT

The goal of this Thesis is to establish a firm foundation for for the theory of functional

limits in a topological setting. We will generalize the definition of the functional limit

from its traditional analytic setting to a topological setting. We will show that this

generalized limit applies to sequences, functions, and even integrals. We will show

its consistency with its analytic counterpart. We will expand the algebraic limit

theorems over topological algebras and briefly discuss the concept of differentiation

in a topological setting.
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Functional Limits in Topology

1 Definitions and Examples

Assume τ is a topology of open sets and ⟨τ⟩ is a basis for the topology. Assume unless

otherwise specified (X,τ) and (Y, τ ′) are topological spaces with f, g ∶ (X,τ) → (Y, τ ′)

functions. Also assume Ux is a neighborhood of x. Let τε denote the Euclidean

topology. If (B, τ) is a topological space and A ⊆ B then (A, τA) is A with the

subspace topology.

Definition. We say U ′
x = Ux ∖ {x} is the punctured neighborhood of Ux.

Definition. We say lim
x→c

f(x) = L if for any , UL ∈ τ ′, there exists a Uc ∈ τ with U ′
c ≠ ∅

such that f(U ′
c) ⊆ UL. We call L the functional limit of f as x approaches c. If we

are examining the same function but with multiple topologies and we want to better

specify the topologies we are using for the limit, say τ is a topology for X and τ ′ is a

topology for Y. We will write
(τ,τ ′)
lim
x→c

f(x) in place of lim
x→c

f(x) for f ∶ (X,τ) → (Y, τ ′).

Definition. We say (X,τ) is non-isolated at x ∈X if {x} ∉ τ .

We say (X,τ) is nowhere isolated if for any x ∈X, {x} ∉ τ

Theorem 1.1. Given (X,τ , c ∈X) the following are equivalent:

1) (X,τ) is non-isolated at c

2) For any Uc, Vc ∈ τ we have, Uc ∩ Vc ≠ {c}

3) For any Uc, Vc ∈ τ we have, U ′
c ∩ V ′

c ≠ ∅.
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Proof. 1→ 2

Let (X,τ) be non-isolated at c. If there exists Uc, Vc ∈ τ such that Uc ∩ Vc = {c}, then

{c} ∈ τ a contradiction. Thus, Uc ∩ Vc ≠ ∅.

2→ 3

If for any Uc, Vc ∈ τ we have, Uc ∩ Vc ≠ ∅. Then there exists y ∈ X ∖ {c} such that

y ∈ Uc ∩ Vc. Thus, y ∈ U ′
c ∩ V ′

c . Hence, U ′
c ∩ V ′

c ≠ ∅.

3→ 1

Suppose for any Uc, Vc ∈ τ we have, U ′
c ∩ V ′

c ≠ ∅ and also assume {c} ∈ τ . Then

U ′
c ∩ {c}′ = U ′

c ∩ ∅ = ∅ a contradiction, Thus, (X,τ) is non-isolated at c.

Example 1.1. Let X = N ∪ {ω} where ω is the first infinite ordinal number. S for

any n ∈ N, n < ω. Define τ = {(N,ω]} ∣ N ∈ N ∪ {0} ∪ {ω}}. Clearly, τ is a topology.

Let f:(N, τ) → (R, τε) and define the sequence xn = f(n). If lim
n→ω

xn = L, then given

any (L − ε,L + ε), there exists an (N,ω] such that f((N,ω] ∖ {ω}} ⊆ (L − ε,L + ε).

A more familiar way to say this is that for every ε > 0 there is an n0 ∈ N such that

for any n > n0, xn ∈ (L − ε,L + ε). Similarly, if instead of (R, τε) we have (Y, τ ′) then

lim
x→c

f(x) = L means that for any UL ∈ τ ′, there exists an N ∈ N such that for any

n > N,xn ∈ UL. This defines sequential convergence in a topological space.

Example 1.2. Consider f:(R, τε) → (R, τε). If lim
x→c

f(x) = L then for any (L−ε,L+ε),

there exists (c − δ, c + δ), such that f((c − δ, c) ∪ (c, c + δ)) ⊆ (L − ε,L + ε). Or in

analysis for all ε > 0, there will exist a δ > 0 such that ∣ x − c ∣< δ (x ≠ c) implies

that ∣ f(x) − L ∣< ε. Let f ∶ X → Y with X and Y metric spaces and lim
x→c

f(x) = L.

Then it follows from the definition that for any ε > 0, there exists a δ > 0 such that

for d1(x, c) < δ(x ≠ c) we have, d2(f(x), L) < ε.
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We will investigate the discrete metric in more detail later on. Metrics (such as the

discrete metric) that generate isolated points cause something interesting to happen

which we will investigate later.

Example 1.3. Let I = [a, b] and let P = {{x0, x1, ..., xn} ∣ a = x0 < x1 < ... < xn =

b}⋃{I} be the set of all Riemann Partitions and the entire interval. Let f ∶ I → R.

Now suppose (Pa)a∈A is an indexed set of elements from P and define F(Pa)a∈A = {P ∈

P ∣ ∃a ∈ A s.t. P ⊃ Pa}. Now let τ = {F(Pa)a∈A,P,∅ ∣ F(Pa)a∈A} and notice τ is a

topology on P. A quick check,

(1) P,∅ ∈ τ

(2) F(Pa)a∈A ∪ F(Pb)b∈B

= {P ∈ P ∣ a ∈ A or b ∈ B such that P ⊃ Pa or P ⊃ Pb}

Now create a new index set C such that, ∀a ∈ A, b ∈ B there exists c, c∗ such that

Pa = Pc and Pb = Pc∗ . Thus,

F(Pa)a∈A∪F(Pb)b∈B = F(Pc)c∈C . The arbitrary union follows from ⋃
A∈A

F(Pa)a∈A = F(Pa)a∈ ⋃
A∈A

A

(3) F(Pa)a∈A ∩ F(Pb)b∈B

= {P ∈ P ∣ There will exist (a, b) ∈ A ×B such that P ⊃ Pa and P ⊃ Pb}

= {P ∈ P ∣ there will exist (a, b) ∈ A ×B such that P ⊃ Pa ∪ Pb}

= F(Pa∪Pb)(a,b)∈A×B .

Notice {I} ∉ τ since F(Pa)a∈A has at least one partition, call it P = {x0, x1, ...xn}. If

x0 < x∗ < x1 then P ∗ = {x0, x∗, x1, ..., xn} ∈ F(Pa)a∈A. Thus, F(Pa)a∈A ≠ {I}. Finally

F{I} = {P ∈ P ∣ P ⊃ I} = ∅. Thus we have, I ∉ τ . Thus we have τ is non-isolated at I.

Now let R(f,P ) ∶ (P∖{I}, τ) → (R, τε) be the standard Riemann sum ∑n−1
i=0 f(xi)(xi+1−

xi), on f. Now let us consider if lim
P→I

R(f,P ) = L. It follows that for any (L− ε,L+ ε)

there is an F(Pa)a∈A , F
′
(Pa)a∈A ≠ ∅ and R(f(F(Pa)a∈A) ⊆ (L − ε,L + ε). Without loss of
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generality we can choose any Pa ∈ F(Pa)a∈A Then we can say for all ε > 0, there is a

Pa ∈ P ∖{I} such that for any P ⊃ Pa, ∣ R(f,P )−L ∣< ε. The number L is by definition

the Riemann Integral.

Example 1.4. Let f ∶ X → Y be a non-negative measurable function with respect to

the measure µ Now let φ be a simple measurable function. Let X = {φ ∣ φ ≤ falmost

everywhere} ∪ {f}. Let (φa)a∈A be a net and define F(φa)a∈A = {φ ∣ there exists an

a ∈ A such that φa < φ ≤ f a.e.} ∪ {f}. Let τ = {X,∅, F(φa)a∈A ∣ (φa)a∈A is a net of

simple measurable functions }. I claim that τ is a topology on X. Notice f is in every

non-empty open set so f will be in the arbitrary union or finite intersection of open

sets. So we need not worry about f, so without loss of generality we need only consider

the simple measurable functions.

(1) X,∅ ∈ τ .

(2) F(φa)a∈A ∪ F(φb)b∈B = {φ ∣ ∃a ∈ A or; b ∈ B s.t. φa < φ ≤ f a.e. or φb < φ ≤ f a.e., f}.

Now create a new index C such that for any (a, b) ∈ A ×B there exist c, c∗ such that

φa = φc and φb = φc∗. Thus, F(φa)a∈A ∪ F(φb)b∈B = F(φc)c∈C .

Before we check finite intersections we need to notice something, for φa, φb simple mea-

surable functions, φ(a,b)(x) =max{φa(x), φb(x)} is a simple measurable function. Let

φa =
n

∑
i=1
aiχAi and φb = ∑m

j=1 bjχBj . Define h = ∑(i,j)∈{1,2,...,n}×{1,2,..,m}max{ai, bj}χAi∩Bj .

Now h is clearly a simple function and notice that since Ai,Bj are measurable we know

Ai∩Bj is measurable. Hence, h is a simple measurable function. Now for x ∈ Ai∩Bj,

where (i, j) ∈ {1,2, ..., n} × {1,2, ..,m} we have,

h(x) =max{ai, bj}χAi∩Bj(x) =max{ai, bj} = φ(a,b)(x).

(3) F(Pa)a∈A ∩ F(Pb)b∈B = {φ ∣ there exists an a ∈ A and b ∈ B such that φa < φ ≤ f a.e.

and f ∧ φb < φ ≤ f a.e. , f}⋃{F}. We know, φ ≥ max{φa, φb} = φ(a,b) is a simple
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measurable function. Thus F(Pa)a∈A ∩ F(Pb)b∈B = F{φ(a,b)}(a,b)∈A×B .

Thus τ is a topology on X. Now define S ∶ X→ R by S(φ) = ∫X φdµ.

Now if lim
φ→f

S(f) = L then for any (L−ε,L+ε), there will exist an F(φa)a∈A , F
′
(φa)a∈A ≠ ∅

such that S(F ′
(φa)a∈A) ⊆ (L− ε,L+ ε). In analysis we can say for any ε > 0, there is an

F(φa)a∈A such that if φ ∈ F(φa)a∈A, then ∣ L − S(φ) ∣< ε. Also, since φ ≤ f for any φ ∈ X

we know, 0 < L − S(φ) < ε which gives us L − ε < S(φ). That is, for any ε > 0, there

will exist a φ ∈ X such that L− ε < S(φ) which implies sup(S(φ)) = L. The number L

is the definition of the measure integral.

Notice in examples 1, 3, and 4 that the domain is not T2 and only non-isolated at

the point where we are taking the limit. So we may construct a topology where we

need only consider the limit at a particular point rather than the whole space.

2 Consistency and comparison with Analysis

Theorem 2.1. Let τ be non-isolated at c and τ ′ be T2. If lim
x→c

f(x) exists then it is

unique.

Proof. Assume lim
x→c

f(x) = L and lim
x→c

f(x) = L′ with L ≠ L′. Since τ ′ is T2 there exists

UL, UL′ ∈ τ ′ such that UL ∩ UL′ = ∅. Since lim
x→c

f(x) = L we have for UL a Uc ∈ τ such

that U ′
c ≠ ∅ and f(U ′

c) ⊆ UL. Since lim
x→c

f(x) = L′ we have for UL′ there will be a Vc ∈ τ

such that V ′
c ≠ ∅ and f(V ′

c ) ⊆ UL′ . Now U ′
c ∩V ′

c ≠ ∅ since τ is non-isolated at c. Thus,

f(U ′
c∩V ′

c ) ⊆ UL and f(U ′
c∩V ′

c ) ⊆ UL′ , hence f(U ′
c∩V ′

c ) ⊆ UL∩UL′ = ∅, a contradiction.

Thus, the limit must be unique.

The following examples show the necessity of τ being non-isolated at c.
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Example 2.1. Define ⟨τ⟩ = {(a, b),{0} ∣ a, b ∈ R, a < b}. Clearly τ is a topology and is

T2 since τε ⊆ τ . Define f:(R, τ) → (R, τε) by f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x + 1, if x ≥ 0;

x, if x < 0.

Consider lim
x→0

f(x). Let us first pick an open neighborhood of 1, say (1−ε,1+ε), and

choose U0 = {0}∪(0, ε) = [0, ε) ∈ τ . Now f(U ′
0) = f((0, ε)) = (1,1+ε) ⊆ (1−ε,1+ε); thus

lim
x→c

f(x) = 1. On the other hand let us pick an open neighborhood of 0, say (−ε, ε), and

let us pick V0 = {0} ∪ (−ε,0) = (−ε,0] ∈ τ . Then f(V ′
0) = f((−ε,0)) = (−ε,0) ⊆ (−ε, ε)

thus lim
x→0

f(x) = 0.

A more extreme example of this comes from the range being discrete.

Example 2.2. Notice that the discrete metric is isolated at every point. So let us

consider D ⊆ R and consider f ∶ (D,P(D)) → (R, τε) with the condition that there

exists y ∈ D ∖ {c} such that f(y) = L, y ≠ c. Then we can say lim
x→c

f(x) = L. Let

(L − ε,L + ε) be given. Choose {c, y} ∈ P(D). Then f({c, y}′) = f({y}) = {L} ⊆

(L − ε,L + ε). This tells us that for with the discrete metric topology defined on D we

have lim
x→c

f(x) = f(y) for any y ∈D ∖ {c}.

A few more definitions are needed before the next theorem.

Definition. A filter F on a set X is a non-empty collection of subsets of X such

that:

(1) ∅ ∉ F

(2) If F,G ∈ F , then F ∩G ∈ F

(3) If F ∈ F and G ⊃ F , then G ∈ F

6



A subcollection F ′ is a filter base for F , if F = {F ⊂X ∣ F ′ ⊂ F for some F ′ ∈ F ′}.

Definition. A filter F is said to converge to c (F → c) if F if finer than any local

neighborhood basis at c.

Definition. Let ⟨Uc⟩ be a neighborhood basis for c ∈ τ and define:

⟨U ′
c⟩ = {V ′

c ∣ Vc ∈< Uc >}. Also, if K ⊆ P(X) satisfies the definition of a filter basis,

then the filter FK is the filter generated by K.

It should also be mentioned that F⟨U ′
c⟩ ⊇ F⟨Uc⟩. If follows from the definition of

filter convergence that F⟨Uc⟩ → c; thus, F⟨U ′
c⟩ → c.

Theorem 2.2. Given τ and τ ′. If τ ′ is T2 and τ non-isolated at c, then the following

are equivalent:

(1) lim
x→c

f(x) = L

(2) For every (xa)a∈A topological nets with for any a ∈ A, we have xa ≠ c. If (xa)a∈A → c

then (f(xa))a∈A → L.

(3) If F⟨U ′
c⟩ ⊇ F , then f(F) → L.

Proof. (1) Ô⇒ (2)

Let lim
x→c

f(x) = L. Let (xa)a∈A → c, xa ≠ c for any a ∈ A. Now for UL there is a

Uc ∈ τ,U ′
c ≠ ∅, such that f(U ′

c) ⊆ UL. Since (xa)a∈A → c we know for Uc given,

there exists a0 ∈ A such that for any a ≥ a0, xa ∈ Uc, and xa ≠ c gives xa ∈ U ′
c; thus,

f(xa) ∈ UL. Hence, (f(xa))a∈A → L.

(2) Ô⇒ (3)

It is enough to show that f(F⟨U ′
c⟩) → L since it would imply that f(F) → L. Define

A = {(a,U ′
c) ∣ a ∈ U ′

c, U
′
c ∈ ⟨V ′

c ⟩}. For (a,U ′
c), (b,W ′

c) ∈ A. Let (a,U ′
c) ≥ (b,W ′

c) if and

only if W ′
c ⊇ U ′

c. Notice this makes A a directed set since it is the subset inclusion
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ordering. Now define x(a,U ′
c) = a and consider the net (x(a,U ′

c))(a,U ′
c)∈A.

Claim 1: (x(a,U ′
c))(a,U ′

c)∈A → c. To show this let Uc ∈ ⟨Vc⟩. For ⟨V ′
c ⟩ there exists

x(a,U ′
c)(since τ non-isolated at c) and thus, for any (b,W ′

c) ≥ (a,U ′
c) implies that

x(b,W ′
c) ∈ U ′

c ⊆ Uc. Thus, x(b,W ′
c) ∈ Uc which gives us (x(a,U ′

c))(a,U ′
c)∈A → c.

Now by (2) we know (f(x(a,U ′
c)))(a,U ′

c)∈A → L.

Thus, for UL ∈ ⟨UL⟩ there exists (a,U ′
c) such that for all (b,W ′

c) ≥ (a,U ′
c) we have

f(x(b,W ′
c)) ∈ UL. Now notice for any d ∈ U ′

c, (d,U ′
c) ≥ (a,U ′

c), which implies f(x(d,U ′
c)) ∈

UL. Hence, f(U ′
c) ⊆ UL. This gives us f(F⟨U ′

c⟩) ⊇ ⟨UL⟩. Hence, f(F⟨U ′
c⟩) → L.

(3) Ô⇒ (1)

It is enough to show this for just F⟨U ′
c⟩ since F⟨U ′

c⟩ ⊇ F . Given f(F⟨U ′
c⟩) → L gives us

F⟨UL⟩ ⊆ f(F<U ′
c>). We can also notice that any filter is its own basis. Thus,

for any UL ∈ τ ′ there is a Uc ∈ τ, U ′
c ≠ ∅ such that f(U ′

c) ∈ UL and thus lim
x→c

f(x) = L.

Theorem 2.3. Let f ∶ (X,τ) → (Y, τ ′) be continuous at c ∈ X and τ non-isolated at

c. Then lim
x→c

f(x) = f(c).

Proof. Let Uf(c) ∈ τ ′ be given. By continuity for any Uf(c) there is a Uc ∈ τ such that

f(Uc) ⊆ Uf(c). Since τ is non-isolated at c we know that {c} ∉ τ hence, U ′
c ≠ ∅ and

thus, f(U ′
c) ⊆ Uf(c).

The following example shows the necessity of non-isolated at c and is another

example involving the discrete metric.

Example 2.3. Let f ∶ (X,P(X)) → (X,P(X)) be defined by f(x) = x. This function

is clearly continuous. Suppose we pick an arbitrary point c and try to show lim
x→c

f(x) =

c. Then using {c} ∈ P(X) we have f−1({c}) = {c}. Thus the only potential Uc is {c},
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but U ′
c = ∅. Thus, there does not exist a Uc such that U ′

c ≠ ∅ and f(U ′
c) ⊆ {c}. Thus

the lim
x→c

f(x) ≠ f(c).

3 Modifying the Domain or Range Topologies

Theorem 3.1. Suppose τ is non-isolated at c. If lim
x→c

f(x) = L and if S ⊆ τ ′ then for

f ∶ (X,τ) → (X,S) we have
(τ,S)
lim
x→c

f(x) = L.

Proof. Let UL ∈ S be given, then UL ∈ τ ′ thus there exists Uc ∈ τ, U ′
c ≠ ∅ such that

f(U ′
c) ⊆ UL. Thus,

(τ,S)
lim
x→c

f(x) = L.

Notice this theorem applies only to manipulations of the range. We are not ma-

nipulating the topology of the domain, i.e. the domain topology is fixed.

Example 3.1. Let f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x + 1 if x ≥ 0

x if x < 0}
and ⟨S−⟩ = {[x, y) ∣ x < y}. We will

consider lim
x→0

f(x) in three cases.

(1) (R, ⟨S−⟩) → (R, ⟨S−⟩)

(2) (R, ⟨S−⟩) → (R, τε)

(3) (R, ⟨S−⟩) → (R{R,∅}).

(1) For [1,1 + ε) in the range pick [0,0 + ε) in the domain. Then f((0,0 + ε)) =

(1,1 + ε) ⊆ [1,1 + ε). Since ⟨S−⟩ is non-isolated at 0 we know the limit is unique.

(2) For (1 − ε,1 + ε) we can use [0,0 + ε) and since [1,1 + ε) ⊂ (1 − ε,1 + ε) and since

the Euclidean topology is non-isolated at 1, we know the limit is unique. Just for fun

lets look at say (−ε, ε) with ε < 1 and see that the only open sets that map into (−ε, ε)

are of the form [a, b) with a, b < 0 but none of these are an open neighborhood of zero.

9



(3) The only open set containing 1 is R. We need only choose the same [0, ε) and

since the indiscrete topology is clearly non-isolated at 0 we know the limit is unique

by theorem 2.1.

For domains just the opposite happens.

Theorem 3.2. Let f ∶ (X,τ) → (Y, τ ′) and suppose lim
x→c

f(x) = L. If S ⊇ τ , and S is

non-isolated at c, then for f ∶ (X,S) → (Y, τ ′) we have
(S,τ ′)
lim
x→c

f(x) = L.

Proof. For UL ∈ τ ′ there will be a Uc ∈ τ, U ′
c ≠ ∅ such that f(U ′

c) ⊆ UL.

Since Uc ∈ τ it follows that Uc ∈ S.

So domains can get finer and ranges can get courser. But going the opposite

direction leads to trouble.

Example 3.2. Consider f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x + 1 if x ≥ 0

x if x < 0

in the Euclidean topology with the

domain topologies,

(1) < S− >

(2) τε

(1) For (1 − ε,1 + ε) pick [0,0 + ε) and we have f((0,0 + ε)) = (1,1 + ε) ⊆ [1,1 + ε).

Thus, lim
x→c

f(x) = 1 which we have already shown.

(2) Consider an open neighborhood of 0 say (−ε, ε). For any value x ∈ (−ε,0) we

know, f(x) ∉ [1,1 + ε). Thus the limit is not 1. We know from Real Analysis that in

fact the limit does not exist.

Corollary. If f ∶ R → R in the standard topology with lim
x→c

f(x) = L then the left and

right limits must agree.
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Proof. We know that S+, S− ⊃ τε. We also know they are non-isolated at any point.

Thus, by the prior theorem
(S∗,τ ′)
lim
x→c

f(x) = L =
(S,τ ′)
lim
x→c

(x).

Theorem 3.3. Given f ∶ (X,τ) → (Y, τ ′), τ non-isolated at c and τ ′ is T2. Suppose

S, S ′ are both finer topologies then τ ′ with
(τ,S)
lim
x→c

= L and
(τ,S′)
lim
x→c

= M . If L ≠ M then

lim
x→c

f(x) does not exist.

Proof. Suppose L ≠M . Then since τ ′ is T2 there exists UL, UM ∈ τ ′ ⊆ S ∩S ′ such that

UL∩UM = ∅. Since
(τ,S)
lim
x→c

f(x) = L, there is a Uc ∈ τ,U ′
c ≠ ∅ such that f(U ′

c) ⊆ UL. Since

(τ,S′)
lim
x→c

f(x) =M there exists Vc ∈ τ, V ′
c ≠ ∅ such that f(V ′

c ) ⊆ UM . Also Uc ∩ Vc ≠ ∅ and

(Uc ∩ Vc)′ = U ′
c ∩ V ′

c ≠ ∅. Thus f(U ′
c ∩ V ′

c ) ⊆ UL ∩ UM = ∅, a contradiction. Thus, the

limit cannot exist.

Another very important result is the contrapositive of this.

Corollary. Suppose f ∶ (X,τ) → (Y, τ ′), τ is non-isolated at c and τ ′ is T2. Suppose

S,S ′ are both finer topologies than τ ′ with
(τ,S)
lim
x→c

f(x) = L and
(τ,S′)
lim
x→c

f(x) = M . If

lim
x→c

f(x) exists, then L =M .

Theorem 3.4. Suppose f ∶ (X,τ) → (Y, τ ′) with τ non-isolated at c, τ ′ is T2. If for

any S finer than τ ′ we have,
(τ,S)
lim
x→c

f(x) = L then lim
x→c

f(x) = L.

Proof. If UL ∈ τ ′ ⊆ S, then there exists Uc ∈ τ . Then U ′
c ≠ ∅ such that f(U ′

c) ⊆ UL.

4 Compositions of Functions

Suppose g ∶ (X,τ) → (Y, τ ′), lim
x→c

g(x) = L and f ∶ (Y, τ ′) → (Z, τ ′′), lim
y→L

f(y) =M , and

h ∶ (X,τ) → (Z, τ ′′) is defined by h(x) = f(g(x)) When does lim
x→c

h(x)
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(1) exist

(2) equal M

To start a partial solution to part (1) we have the following,

Definition. We define
′

lim
x→c

h(x) =M if for any UM ∈ τ ′′ there exists a Uc ∈ τ,U ′
c ≠ ∅

such that g(U ′
c) ⊆ f−1(UM).

Theorem 4.1. The lim
x→c

h(x) =M if and only if the
′

lim
x→c

h(x) =M . Or in other words

it is the same limit.

Proof. ⇒

Let UM ∈ τ ′′ be given. Since lim
x→c

h(x) = M there is a Uc ∈ τ,U ′
c ≠ ∅ such that

h(U ′
c) = f(g(U ′

c)) ⊆ UM . Now apply f−1 to both sides and we get,

g(U ′
c) ⊆ f−1(f(g(U ′

c))) ⊆ f−1(UM). Thus, for UM ∈ τ ′′ there exists Uc ∈ τ,U ′
c ≠ ∅ such

that g(U ′
c) ⊆ f−1(UM), that is

′
lim
x→c

h(x) =M .

⇐

Let UM ∈ τ ′′ be given. Since
′

lim
x→c

h(x) =M there exists a Uc ∈ τ,U ′
c ≠ ∅ such that

g(U ′
c) ⊆ f−1(UM). If we apply f to both sides we will get

h(U ′
c) = f(g(U ′

c)) ⊆ f(f−1(UM)) ⊆ UM . Thus, lim
x→c

h(x) = M . Hence, the two limits

are equivalent.

Since the two limits are equivalent we will no longer distinguish lim′ from lim.

To give a partial answer to (2) I have two results.

Theorem 4.2. If f is continuous at L. Then lim
x→c

h(x) =M .

Proof. Let UM ∈ τ ′′ be given. Since lim
y→L

f(y) =M and f continuous at L gives us for

UL there exists a UL ∈ τ ′, UL ≠ ∅ such that f(U ′
L) ⊆ UM . Since lim

x→c
g(x) = L, we know

12



there exists a Uc ∈ τ,U ′
c ≠ ∅ such g(U ′

c) ⊂ UL. Hence, h(U ′
c) = f(g(U ′

c)) ⊆ f(UL) ⊆ UM .

Thus, lim
x→c

h(x) =M .

The final condition I have found is a much stronger condition, but in some rare

cases it allows you to work with f not being continuous.

Definition. For f ∶ (X,τ) → (Y, τ ′) we say slimx→cf(x) = L if for each UL ∈ τ ′ there

is a Uc ∈ τ,U ′
c ≠ ∅ such that f(U ′

c) ⊆ U ′
L.

The difference is very subtle between the lim and the slim. However notice that the

slimx→0f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x sin(x) if x ≠ 0,

0 if x = 0

does not exist in the standard realm of analysis

since 0 is in the image of every open neighborhood of 0, despite the fact that f(x) is

continuous at 0. Let us look at the definition in a standard analysis view.

Definition. Given f ∶ R→ R we say slimx→cf(x) = L if for any ε > 0, there will exist

δ > 0 such that ∣ x − c ∣< δ, (x ≠ c) gives us that 0 <∣ f(x) −L ∣< ε.

Clearly if the domain is non-isolated at c and the range is T2 and the slim exists

then the limit exists and they the same. This is because f(U ′
c) ⊆ U ′

L ⊆ UL. Thus, if

the two limits exist they must be the same.

The next condition for compositions of limits to exist is given in the following

theorem.

Theorem 4.3. If slimx→cg(x) = L then lim
x→c

h(x) =M .

Proof. Let UM ∈ τ ′′ be given. Since lim
y→L

f(x) = M there will exist a UL ∈ τ ′, U ′
L ≠ ∅

such that f(U ′
L) ⊆ UM . Since slimx→cg(x) = L it follows that UL ∈ τ ′. ∃Uc ∈ τ,U ′

c ≠ ∅

and g(U ′
c) ⊆ U ′

L. Thus, h(U ′
c) = f(g(U ′

c)) ⊆ f(U ′
L) ⊆ UM giving the desired result.
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A notable example about composition of limits is the following.

Example 4.1. For a mapping from the reals to reals (under the traditional topology)

consider f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

sin( 1
x), if x ≠ 0

x, if x = 0

and g(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
x if x ≠ 0

0, if x = 0

. In both cases the limit

as x approaches 0 does not exist. But f(g(x)) = sin(x) is a continuous function and

as a result the limit exists as the x approaches zero.

5 Discontinuities (of R)

Next let us consider discontinuities of functions. In particular let us focus primarily on

discontinuities of functions from R to R. To do this we will use the extended real line

as a tool in defining some discontinuities and discerning what are often the two cases

of the essential discontinuity. One of these I will call an extended jump discontinuity

to distinguish it from the other. But before we do that we should review the topology

on the extended reals. The order topology on the extended reals has the sub-basis,

{[−∞, a), (b,∞] ∣ a, b ∈ R∪{−∞,∞}}. We will denote this by (Rext, τext). We will also

need to examine the left and right limits very closely. One thing to notice is that the

real line under the standard topology is a subspace of the extended real line.

So we can now consider the left hand and right hand limits of D ⊆ R, f ∶D → R .

(1) lim
x→c−

f(x) = L if for all ε > 0, there exists δ > 0 such that, 0 < x − c < δ yields

∣ f(x) −L ∣< ε.

(2) lim
x→c+

f(x) = L if for any ε > 0 there will exist a δ > 0 such that, 0 < c−x < δ implies

that ∣ f(x)−L ∣< ε. For our study of discontinuities at points we want to refer to both

limits on the real line and limits on the extended real line. To remedy any confusion

I will denote limits going to the extended real line by limextx→cf(x) with a plus or
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minus subscript on c indicating a left hand or right hand limit in the domain.

Theorem 5.1. Let L ∈ R. Then, lim
x→c

f(x) = L if an only if limextx→cf(x) = L and

similarly for the left hand limit and right hand limit.

Proof. Realize {(L− ε,L+ ε) ∣ for ε ∈ (0,∞)} is a local basis for the extended reals as

well as the reals.

When we are trying to show the extended limit is infinity we need to look at neigh-

borhoods of the form (α,∞], α < ∞ as the order topology would dictate. Similarly if

we want to show our extended limit to be negative infinity we need to look at open

sets sets of the form [−∞, α), α > −∞.

Definition. We say f ∶D → R has a removable discontinuity at c if

lim
x→c−

f(x) = lim
x→c+

f(x) ≠ f(c).

Definition. We say f ∶ D → Rext has an extended removed discontinuity at c if

limextx→c−f(x) = limextx→c+f(x) ≠ f(c).

Definition. We say f ∶D → R has a jump discontinuity at c if

lim
x→c−

f(x) = L and lim
x→c+

f(x) =M and L ≠M .

Definition. We say f ∶D → Rext has an extended jump discontinuity at c if limextx→c−f(x) =

L and limextx→c+f(x) =M and L ≠M .

Definition. We say f ∶ D → R has an essential discontinuity if either limx→c−f(x)

or limx→c+f(x) does not exist.

In the case of functions from reals to reals any time a left hand or right hand

limit is infinite then the function has an essential discontinuity. However, there are

essential discontinuities that do not involve an infinite limit.
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Definition. Let f ∶ (X,τ) → (Y, τ ′) and (c,L) ∈ X × Y . We say f reverberates at

(c,L) if for any Uc ∈ τ, f(U ′
c) ∩ {L} ≠ ∅.

Theorem 5.2. Suppose f ∶ (X,τ) → (Y, τ ′), τ is non-isolated at c and τ ′ is T2. If f

reverberates at (c,L) and (c,M)(L ≠M), then lim
x→c

f(x) does not exist.

Proof. Let ⟨G′
c⟩ be a local punctured neighborhood basis. We shall give ⟨G′

c⟩ the

ordering, U ≤ V if and only if V ⊆ U . Under this ordering ⟨G′
c⟩ is a directed set. For

all U ′
c there exist x, y ∈ U ′

c such that f(x) = L and f(y) = M . Label x and y as xU ′
c

and yU ′
c
. Now we have constructed the nets, (xU ′

c
)U ′

c∈⟨G′
c⟩, (yU ′

c
)U ′

c∈⟨G′
c⟩ with both nets

converging to c. However their images are both constant nets. Now by construction,

(f(xU ′
c
))U ′

c∈⟨G′
c⟩ → L and (f(y)U ′

c
)U ′

c∈⟨G′
c⟩ →M . Thus the limit cannot exist.

A function may have a jump discontinuity at a point c even if it reverberates. An

example is the folowing:

Let f(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{x sin( 1
x) if x > 0

x sin( 1
x) + 1 if x < 0; 0, x = 0}

then this is just a jump discontinuity

with f reverberating at (0,0) and (0,1). To give a relationship between essential

discontinuity and reverberations we have the following theorem.

Theorem 5.3. Let D ⊆ R, f ∶ (D,τεD) → (R, τε) with f reverberating at (c,L), (c,M),

and (c,N), where L ≠ M,M ≠ N, and N ≠ L. Then f must have an essential

discontinuity at c.

Proof. We want to show that either the left hand limit or the right hand limit does

not exist. Let {(c − εn, c + εn) ∩ D}n∈N be a countable basis with (εn) → 0. Now

pick xn, yn, zn ∈ (c − εn, c + εn) ∩D such that f(xn) = L, f(yn) = M,f(zn) = N . Now

clearly (xn)n∈N, (yn)n∈N, and (zn)n∈N converge to c but (f(xn))n∈N → L, (f(yn))n∈N →
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M, and (f(zn))n∈N → N . Now {xn}n∈N ∩ ([c, c + ε) ∩D) or {xn}n∈N ∩ ((c − ε, c] ∩D)

is infinite. If both are infinite, pick one and create the subsequence (xnl)l∈N. Do the

same process for (yn) and (zn) to obtain sequences (ynm)m∈N, (znk)k∈N. Now at least

two of these sequences must be contained within either [c, c+ ε) or (c− ε, c]. Without

loss of generality we may assume (ynm)m∈N, (znk)k∈N are within [c, c + ε). Thus, by

the above theorem, lim
x→c−

f(x) does not exist. Thus, f has an essential discontinuity at

c.

We should note you can mimic the above proof to get the same result for functions

mapping to the extended real line.

6 Limits in Topological Algebras

We will allow ∗ to be an arbitrary binary operation.

Definition. (M,∗) is a magma if for all a, b ∈M we have, a ∗ b ∈M .

Definition. (X,∗, τ) is a Topological Magma if

(1) X is a Magma

(2) The function ∗ ∶ (X,τ)2 → (X,τ) by ∗(x, y) = x ∗ y is continuous

If X is understood to be a magma with continuous operations under τ , we write (X,τ)

for short.

When the binary operation is understood we will suppress the binary operation

and write a ∗ b as ab.

Some examples of topological magmas are the following.

Example 6.1. [0,∞) with the euclidean topology.
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Example 6.2. (N, τ) where τ is the topology example 1.1.

Definition. (X,∗, τ) is a topological group if

(1) X is a Group

(2) The function ∗ ∶ (X,τ)2 → (X,τ) is a continuous function

(3) The function inv ∶ (X,τ) → (X,τ) defined by inv(x) = x−1 is continuous

If X is understood to be a group with continuous operations under τ we write (X,τ)

for short.

Clearly a topological group is a topological magma.

Definition. Let (X,∗, τ) be a topological group. Let ′∗,∗′ ∶ (X,τ)2 → (X,τ) be defined

by:

′ ∗ (x, y) = x−1y and ∗′(x, y) = xy−1 to be the left and right inverted binary operators.

Theorem 6.1. Let (X,∗, τ) be a group then both (X,′ ∗, τ) and (X,∗′, τ) are Topo-

logical magmas.

Proof. Clearly, both ′∗ and ∗′ are closed since the group is closed.

Notice that ′ ∗ (x, y) = x−1y = x−1 ∗ y = ∗(x−1, y) and ∗ is continuous at

(x−1, y) for any (x, y) ∈X2.

Also similarly, ∗′(x, y) = xy−1 = x ∗ y−1 = ∗(x, y−1) and ∗ is continuous at

(x, y−1) for any (x, y) ∈X2.

Thus, (X,′ ∗, τ) and (X,∗′, τ) are Topological magmas.

Theorem 6.2. AlgebraicLimitTheorem(ALT)

Let (Y, τ ′) is a topological magma and (X,τ) non-isolated at c. If lim
x→c

f(x) = L and

lim
x→c

g(x) =M , then lim
x→c

f(x)g(x) = LM .
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Proof. Let ULM ∈ τ ′ be given. Since ∗ is continuous there exist UL, UM ∈ τ ′ such that

∗(UL ×UM) ⊆ ULM .

Now lim
x→c

f(x) = L gives us for UL given, there is Uc ∈ τ,U ′
c ≠ ∅, and f(U ′

c) ⊆ UL.

Also, lim
x→c

g(x) =M gives us for UM given; there will be Vc ∈ τ, V ′
c ≠ ∅, and f(V ′

c ) ⊆ UM .

Now Uc ∩ Vc ∈ τ implies U ′
c ∩ V ′

c ≠ ∅ and a punctured neighborhood of c, thus

f(U ′
c∩V ′

c )g(U ′
c∩V ′

c ) = ∗(f(U ′
c∩V ′

c ), g(U ′
c∩V ′

c )) ⊆ ∗(f(U ′
c), g(V ′

c )) ⊆ ∗(UL, UM) ⊆ ULM .

Hence, lim
x→c

f(x)g(x) = LM .

Corollary. Let (Y, τ) be a topological magma with, X ⊆ Y, (X,τ) non-isolated at c

and lim
x→c

f(x) = L. Then

(1) lim
x→c

kf(x) = kL

(2) lim
x→c

f(x)k = Lk

Proof. Let h(x) = k be a constant function. Then h(x) is continuous, giving us

lim
x→c

h(x) = k. Thus,

(1) lim
x→c

kf(x) = lim
x→c

h(x)f(x) = kL

(2) lim
x→c

f(x)k = lim
x→c

f(x)h(x) = Lk.

Theorem 6.3. If (Y, τ ′) is a group, (X,τ) is non-isolated at c, and both

lim
x→c

f(x) = L and lim
x→c

g(x) = G, then

(1) lim
x→c

f(x)g(x) = LM

(2) lim
x→c

f(x)g(x)−1 = LM−1

(3) lim
x→c

f(x)−1g(x) = L−1M
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Proof. This follows from Theorems 6.1 and 6.2 since (Y,∗, τ ′), (Y,′ ∗, τ ′) and (Y,∗′, τ ′)

are topological magmas.

Definition. (R,+,×, τ) is a topological ring if

(1) R is a ring (0 is the additive identity and 1 is the multiplicative identity if it is

in the ring);

(2) (R,+, τ) is a topological group;

(3) (R,×, τ) is a topological magma.

When R is understood to be a ring we write (R, τ) for short.

Definition. (F,+,×, τ) is a topological field if, (recall F × = F ∖ {0})

(1) F is a field;

(2) (F,+,×, τ) is a topological ring;

(3) (F ×,×, τ) is a topological group;

(4) F × ∈ τ .

When F is understood to be a field we write (F, τ).

Note that the general definition of a topological field need not include the third

condition. The fourth condition guarantees for any x ∈ F × and Ux ∈ τ , there is a

Vx ∈ τ such that Vx ⊆ F × and Vx ⊆ Ux. Some authors assume that the topology is T1

or T2 while others assume no condition or separation axiom at all. This assumption

is strictly weaker than T1.

Theorem 6.4. If (Y, τ ′) is a topological ring,(X,τ) is non-isolated at c, and both

lim
x→c

f(x) = L, and lim
x→c

g(x) =M , then

(1) lim
x→c

[f(x) + g(x)] = L +M

(2) lim
x→c

[f(x)g(x)] = LM
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Example 6.3. (R, τε). We know R is a field, and inv+(x) = −x and inv×(x) = x−1

are continuous so it is enough to show that (1) +(x, y) = x + y and (2) ×(x, y) = xy

are continuous functions from R2 to R as well as to show that (3) R× is open.

(1) For (a, b) ∈ R2 and ε > 0 let δ < ε/2. Then, ∣ x−a ∣< δ and ∣ y − b ∣< δ imply that

∣ +(x, y) − +(a, b) ∣ = ∣ x + y − a − b ∣ = ∣ (x − a) + (b − y) ∣

≤∣ x − a ∣ + ∣ b − y ∣< ε.

(2) Let (a, b) ∈ R2 and ε > 0. If ∣ x − a ∣< ε
2(∣b∣+1) and ∣ y − b ∣<min{1, ε

2(∣a∣+1)}, then

∣ y ∣≤∣ y − b ∣<∣ 1 + b ∣. So

∣ ×(x, y) − ×(a, b) ∣ = ∣ xy − ab ∣ = ∣ xy − ay + ay − ab ∣ ≤ ∣ xy − ay ∣ + ∣ ay − ab ∣

=∣ y ∣∣ x − a ∣ + ∣ a ∣∣ y − b ∣ ≤ ∣ b + n ∣∣ x − a ∣ + ∣ a ∣∣ y − b ∣< ε

(3) Also {0} is closed in R; thus {0}c = R× is open. Thus, (R, τε) is a topological

field.

Theorem 6.5. If (Y, τ ′) is a topological field, (X,τ) is non-isolated at c, and both

lim
x→c

f(x) = L and lim
x→c

g(x) =M , then

(1) lim
x→c

kf(x) = kL, if X ⊆ R

(2) lim
x→c

(f(x) + g(x)) = L +M

(3) lim
x→c

(f(x)g(x)) = LM

(4) lim
x→c

(f(x)g(x)−1) = LM−1 provided M ≠ 0

Proof. Since (Y,+, τ ′), (Y,×, τ ′) are topological magmas, (2) and (3) hold.

(4) ×′(x, y) = xy−1 = ×(x, y−1) is continuous on F ×F × so we can use the proof for the

Algebraic Limit Theorem with ×′ instead of ×.

Corollary. If (X,τ) is non-isolated at c and f, g ∶ (X,τ) → (R, τε) with

lim
x→c

f(x) = L and lim
x→c

g(x) =M , then
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(1) lim
x→c

kf(x) = kL

(2) lim
x→c

[f(x) + g(x)] = L +M

(3) lim
x→c

[f(x)g(x)] = LM

(4) lim
x→c

[f(x)g(x)−1] = LM−1 provided, M ≠ 0

Proof. R is a topological field.

Notice from examples 1.1,1.2,1.3, and 1.4 earlier that the algebraic limit theorems

hold for sequences and functional limits as well as for the Riemann and measure

integrals.

Definition. Let R be a ring with one. Define

R−1 = {x ∈ R ∣ there exists y ∈ R such that xy = yx = 1}

.

We call R−1 the group of units.

Definition. Let R be a ring with one. Then R is a division ring if R−1 = R ∖ {0}.

Definition. (R, τ) is a weak topological field if

(1) R is a ring with 1;

(2) R is a topological ring;

(3) (R−1, τR−1) is a topological group;

(4) R−1 ∈ τ .

The fourth condition guarantees for any x ∈ R−1 and Ux ∈ τ there is a Vx ∈ τ with

Vx ⊆ F × such that Vx ⊆ Ux.
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Lemma 1. Let fa ∶ (Xa, τa) → (Ya, τ ′a) be continuous for all a ∈ A.

Then h ∶ ∏a∈A(Xa, τa) → ∏a∈A(Ya, τ ′a) (where ∏a∈A(Xa, τa) and ∏a∈A(Ya, τ ′a) have ei-

ther the (1) Box topologies or (2) the product topology) defined by, h(x) = (fa(πa(x)))a∈A

is continuous.

Proof. For all (ca)a∈A we have h((ca)a∈A) = fa(πa(ca))a∈A = ∏a∈a fa(ca). We will show

this is continuous at an arbitrary point (ca)a∈A. So for (1) consider, without loss of

generality, the neighborhood U(h((ca)a∈A) = ∏a∈AUfa(ca) ∈ ∏a∈A τ
′
a. Now since fa(x) is

continuous at ca, for Ufa(ca) ∈ τ ′a, there exist Uca ∈ τa such that fa(Uca) ⊆ Ufa(ca). Now

let U(ca)a∈A = ∏a∈AUca . Then,

h(U(ca)a∈A) = (fa(πa(U(ca)a∈A)))a∈A = (fa(Uca))a∈A ⊆ (Ufa(ca))a∈A = ∏
a∈A

Ufa(ca) = U(h((ca)a∈A)

. Thus, the function is continuous at all points.

Now for (2) all but finitely many a ∈ A, we have Ufa(ca) = Ya, so we let Uca =Xa. Thus

for the product topology case we get the function to be continuous at all points as

well. Thus in both cases h is a continuous function.

Theorem 6.6. Let (Xa, τa) be a topological (1) magma, (2) group, or (3) ring. Then

(∏a∈AXa, τ), where τ is the box [product] topology, is a topological (1) magma, (2)

group, or (3) ring

Proof. (1) (+(x, y) = (+a(πa(x, y))a∈A and thus by above lemma continuous

(2) inv(x) = (inva(πa(x)))a∈A, so by the lemma is continuous.

(3) By (1), (2), the fact that ∏a∈A((Xa,+a), τ) is a topological group, and the fact

that ∏a∈A ∗((Xa,+a), τ) is a topological magma, we have the desired result.
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Theorem 6.7. Let (Xa, τa) be a weak topological field for any a ∈ A. Then ∏a∈A(Xa, τa)

is a weak topological field in the box topology.

Proof. (i) ∏a∈AXa has a one namely (1a)a∈A

(ii) Free from Theorem 6.6 (3)

(iii) (X−1
a ,×a, τ) is a topological group for all a ∈ A. Part (2) of Theorem 6.6 tells us

that (∏a∈A(X−1
a ,×a), τ) is a topological group.

(iv) If X−1
a ∈ τa for all a ∈ A, then ∏a∈AX

−1
a ∈ ∏a∈A τa. So ∏ınAX

−1 is in the box

topology.

Notice that this is not possible in the infinite product topology since X−1 ⊂ X

Thus the arbitrary product of X−1 cannot possibly be open since it will not be X at

all but finitely many places.

Theorem 6.8. Let (Fa, τa) be topological fields. Then (∏a∈AFa, τ) where τ is the box

topology, is a weak topological field.

Proof. Since (Fa, τa) is a topological field implies it is also a weak topological field for

any a ∈ A. Now by theorem 6.7 (4) we get the desired result.

Example 6.4. For any n ∈ N we have, Rn is a weak topological field.

We know Rn in the Euclidean metric is homeomorphic to Rn in the d1 metric whose

topology is homeomorphic to the product topology of ∏n
i=1(R, τε), which is the product

of topological fields.

Example 6.5. Let D ⊆ R Now notice that (R, τε)D forms a weak topological field

under the product topology.
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Theorem 6.9. ALT for Weak Topological Fields

Suppose (Y, τ ′) is a weak topological field, (X,τ) is non-isolated at c, lim
x→c

f(x) = L,

and lim
x→c

g(x) =M . Then

(1) lim
x→c

(f(x) + g(x)) = L +M

(2) lim
x→c

(f(x)g(x)) = LM

(3) lim
x→c

kf(x) = kL and lim
x→c

f(x)k = Lk, if X ⊆ Y

(4) lim
x→c

(f(x)g(x)−1) = LM−1, if M ∈ Y −1

(5) lim
x→c

(f(x)−1g(x)) = L−1M , if L ∈ Y −1.

Proof. Parts (1) and (2) come from (Y,+, τ ′) and (Y,×, τ ′) being respectively a topo-

logical group and a topological magma. (3)Use (2) and the continuous function h(x)

= k. For (4) and (5), we have ×′(a, b),′ ×(a, b) are continuous functions thus form

topological magma’s. Then apply the algebraic limit theorem for magma’s.

For a division ring R, R may only be a topological ring or it may be a weak

topological field. A great example of a division ring that is a topological field are

the quaternions with the traditional metric topology. Under this topology the set of

quaternions is homeomorphic to R4 but not isomorphic. We can easily get this from

the quaternions have only one non-invertible element while the topological weak field

R4 has a non-invertible set of the form:

{(x1, x2, x3, x4) ∣ x1x2x3x4 = 0},

which is clearly an infinite set. Thus the multiplicative groups could not be isomor-

phic.

Example 6.6. Notice C[0,1], the set of continuous functions on [0,1] to R with the

sup metric, forms a weak topological field. The proofs that addition, subtraction, and

multiplication are continuous binary operations are nearly identical to the proofs for
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the real line with the standard topology. We should also have an idea of what C[0,1]−1

looks like.

Suppose, f ∈ C[0,1]×. Then f(x) ≠ 0 for any x ∈ [0,1]. We have by continuity

f(x) = ∣ f(x) ∣ for all x ∈ [0,1] or f(x) = − ∣ f(x) ∣ for all x ∈ [0,1] as well as

f(x) ≠ 0 for any x ∈ [0,1]. To confirm that this is sufficient let us assume there exists

(g, x) ∈ C[0,1] × [0,1] such that g(x)
f(x) is undefined. Then,

(1) f(x) = 0 implies f(x) ∉ C[0,1]−1.

(2) f(x) ≠ 0 tells us that g(x) is undefined which would imply g(x) ∉ C[0,1].

Thus we can say C[0,1]−1 = {f(x) ∈ C[0,1] ∣ f(x) = ∣ f(x) ∣ or f(x) = − ∣ f(x) ∣

for any x ∈ [0,1] and ∣ f(x) ≠ 0 for any x ∈ [0,1]}. From this we can see that the

proof that inv×(f(x)) = 1
f(x) is continuous over C[0,1]× is virtually identical to the

proof that 1
x is continuous on R ∖ {0}. There are two ways to see that C[0,1]−1 is

open. The first way is analytically, the second way is topologically.

(1) Let us show that C[0,1]−1 is an open set. Let f ∈ C[0,1]−1 and without loss of

generality assume f > 0. Thus, since f is continuous on a compact set it has a local

minimum, L > 0. Pick ε ∈ (0, L). Now for any x ∈ [0,1], f(x) − ε > L − ε > L − L > 0.

Thus for all f ∈ C[0,1]−1 there exists εf such that B(f, εf) ⊆ C[0,1]−1. Thus C[0,1]−1

is open.

(2) Let f ∈ C[0,1]−1 and g(x) = 0. Notice that g(x) ∈ C[0,1]. Now since any

metric space is T2 there will exist Uf and Ug, both open in C[0,1] with the property

Uf ∩Ug = ∅. Thus, Uf ⊆ C[0,1]−1 which implies C[0,1]−1 is open.

Thus, we know that C[0,1] is a weak topological field. Hence, if f, g ∶ (X,τ) → C[0,1],

τ is non-isolated at c, lim
x→c

f(x) = L and lim
x→c

g(x) =M , Then

(1) lim
x→c

(f(x) + g(x)) = L +M

(2) lim
x→c

(f(x)g(x)) = LM
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(3) lim
x→c

kf(x) = kL and lim
x→c

f(x)k = Lk, if X ⊆ Y

(4) lim
x→c

(f(x)g(x)−1) = LM−1, if g(x) ∈ (R[0,1])−1

(5) lim
x→c

(f(x)−1g(x)) = L−1M , if L ∈ (R[0,1])−1.

7 Differentiability in a Topological Setting

Definition. Let D ⊆ F [ring with one] field and let f ∶ (D,τ) → (F, τ ′) and c ∈ D.

Define Dc ∶ D − {c} → F by Dc(x) = [f(x) − f(c)][x − c]−1 [when it exists] to be the

difference quotient at c.

Definition. Given (X,τ) and (X − {c}, τX−{c}), we say Uc ∈ τX∖{c} is an absent

neighborhood of c ∈X if

(1) There exists a Vc ∈ τ such that Uc = V ′
c ,

(2) V ′
c ≠ ∅.

The reason we need absent neighborhoods is to deal with the problem of taking

the limit as x approaches c to a function who has (x− c)−1 since this function clearly

is not defined at c.

Notice if there is a non-empty Uc absent neighborhood then the original topology

is non-isolated at c.

Theorem 7.1. Let f ∶ (X τ) → (Y, τ ′) and define plimx→cf(x) = L if for all UL ∈ τ ′

there exists a Uc ∈ τX−{c} such that U ′
c ≠ ∅ and f(U ′

c) ⊆ UL. If

lim
x→c

f(x) = L and plimx→cf(x) =M we have, L = M.

Proof. Uc ∈ τX−{c} if and only if there exists Vc ∈ τ such that V ′
c = Uc. Thus, for the

limit we would chose Vc ∈ τ . Finally by definition, V ′
c ≠ ∅ and f(V ′

c ) = f(U ′
c) ⊆ UL.
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For this reason,we will except the plim and the lim are the same operation when

dealing with difference quotients as we will below. We need the plim because it allows

us to define limits where they are not even defined in the domain. This is something

we must deal with in difference quotients.

Definition. Given Let F be a field [ring with one], D ⊆ F , and f ∶ (D,τ) → (F, τ ′).

We define the topological derivative at c ∈D to be τ ′
τxf(c) = lim

x→c
Dc(x)[if it exists]. If f

is differentiable on all of D, we denote the topological derivative of the function on D

by τ ′
τxf(x). When the two topologies are understood to be fixed we may instead write

f ′ as the topological derivative and f ′(x) for the topological derivative at a point.

Notice if limits are not unique then the derivative need not be a function.

Theorem. If f ∶ R→ R is differentiable at c (by the traditional analytic definition or

the topological definition), then d
dxf(x) =

τε
τεx
f(x).

Proof. Suppose τε
τεx
f(c) = L, which is by definition lim

x→c
Dc(x) = L. Then,

(1) For any UL = (L − ε,L + ε), ε > 0,

(2) There will exist Uc = (c − δ, c + δ), δ > 0,

(3)U ′
c = (c − δ, c) ∪ (c, c + δ) and,

(4)Dc(U ′
c) ⊆ UL.

From (1,2,3,4) we get, For any ε > 0, there will exist a δ > 0 such that ∣ x−c ∣< δ(x ≠ c)

implies ∣ f(x)−f(x)x−c −L ∣< ε.

Thus d
dxf(c) = L.

Conversely, let us assume d
dxf(x) = L then,

(1) For all ε > 0,

(2) There is a δ > 0,
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(3)such that ∣ x − c ∣< δ, x ≠ c,

(4) Gives us that ∣ f(x)−f(c)x−c −L ∣< ε. Now from (1,2,3,4) we get: For any (L−ε,L+ε) ⊆ UL

there will exist a Uc = (c − δ, c + δ) such that U ′
c ≠ ∅ and Dc(U ′

c) ⊆ UL.

Hence, τε
τεx
f(c) = L. Thus, the two are equivalent.

Now we will present some interesting examples of how this may differ from the

traditional derivative.

Example 7.1. There exists a function f ∶ R → R whose topological derivative is the

floor function.

Proof. Let f ∶ (R, S−) → (R, τε) be defined by f(x) = ⌊x⌋x. Now by the above theorem

if the limit exists in a courser topology then the limit exists in the finer topology so

long as the topology is non-isolated at that point. Recall that the lower limit topology

is non-isolated everywhere. Thus, on intervals (z, z + 1), where x ∈ Z, f(x) = zx and

thus,

τε
S−xf(x) = d

dxf(x) = z = ⌊x⌋. Now to show τε
S−xf(z) = z we must pick (z − ε, z + ε) ∈ τε

(with out loss of generality we may assume ε < 1). Now if we pick [z, z + ε) ∈ S−, then

for x = z + δ ∈ [z, z + ε)′ we have

[f(z+δ)−f(z)][z+δ−z]−1 = [z(z+δ)−z2]δ−1 = [z2+zδ−z2]δ−1 = zδ(δ)−1 = z ∈ (z−ε, z+ε).

Thus, τε
S−1f(z) = z = ⌊x⌋. Hence, τε

S−1f(x) = ⌊x⌋.

This examples show’s that Darboux’s property need not hold in a topological

setting. Also realize this provides a counter example to the mean value property on

the real line. Consider [2, 7
2] if the mean value theorem were to hold there would exist

c ∈ [2, 7
2] such that ⌊c⌋ = f ′(c) = f( 7

2
)−f(2)
7
2
−2

= 3( 7
2
)−2(2)
7
2
−2

=
21
2
−4
3
2

= 13
3 , which is impossible.

Example 7.2. There exists a function and a domain and range topology such that

the function is
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(1) not continuous at a point c and

(2) the function is differentiable at the point c.

Proof. Consider Z3 and define the following topologies on Z3: τ = {Z3,∅,{0,2},{1}},

τ ′ = τ . Define f ∶ (Z3, τ) → (Z3, τ ′) by f(x) = x + 2.

Claim 1: f(x) is not continuous at 0

f(0) = 0 + 2 = 2. f−1({0,2}) = {1,2} ∉ τ . Thus, f(x) is not continuous at 2.

Now let us compute D0(x) = f(x)−f(0)
x−0 = x+2−2

x = x
x = 1.

Claim 2: lim
x→0

D0(x) = 1.

Let U1 = {1} ∈ τ ′. Let U0 = {0,2}. Then U ′
0 = {2} and D0({2}) = {1}.

Thus, lim
x→0

D0(x) = 1, which implies that τ
τxf(0) = 1. Thus this function is discontinu-

ous at 0 yet differentiable at 0.

In fact this can be generalized to create functions that are everywhere differentiable

yet nowhere continuous.

Example 7.3. Let D ⊆ F , D ≠ ∅, and f ∶ (D,{∅,D}) → (F,{∅,{1}, F}) is defined

by f(x) = x is nowhere continuous. For all c ∈ D,Dc(x) = f(x)−f(c)
x−c = x−c

x−c = 1. Thus,

the derivative is 1 but one can easily see that the function is nowhere continuous.

Example 7.4. Here is another function that is everywhere differentiable but nowhere

continuous on the real line with more efficient topologies. Let c ∈ R and let f ∶ (R, τε) →

(R,S−) be defined by f(x) = x+ c. Clearly, f will be discontinuous everywhere because

of the topologies, but the difference quotient is one. Now another set of topologies that

does this is the indiscrete topology on the range space and the Euclidean topology on

the domain space. If you let the discrete topology be the topology on the range space

and you let the Euclidean topology be the topology on the domain space then you would

have the same result.
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This shows us that in general differentiability and continuity are not entirely re-

lated. We will investigate under what conditions they are related, but first we need a

couple of properties that are related to a single commutative binary operation.

Theorem 7.2. Let G be an Abelian group under addition and let τ be a topology on

G. If addition is separately continuous with respect to τ then we have the following

property: If U ∈ τ , then U + c = {x + c ∣ x ∈ U} ∈ τ .

Proof. For any c ∈ G, Define fc ∶ (G, τ) → (G, τ) by fc(x) = x− c = x+(−c) = +(x,−c).

Then fc thus continuous by hypothesis. Thus, for any U ∈ τ, f−1
c (U) = {x+c ∣ x ∈ U} =

U + c ∈ τ .

Theorem 7.3. Let G be an Abelian group under addition and let τ be a topology on

G with addition is separately continuous with respect to τ . Let f, g ∶ (X,τ) → (G, τ ′)

with g(x) = f(x) −L and lim
x→c

g(x) = 0. Then lim
x→c

f(x) = L.

Proof. Let UL ∈ τ ′ be given. Then UL − L is an open neighborhood of 0, which we

will denote by U0. Since lim
x→c

g(x) = 0 there will exist a Uc ∈ τ such that U ′
c ≠ ∅ and

g(U ′
c) ⊆ U0. Now f(U ′

c) = {g(x) +L ∣ x ∈ U ′
c} ⊆ U0 +L = UL.

Theorem 7.4. Let F be a field, D ⊆ F , and let τ and τ ′ be topologies on D and

F respectively. Suppose that f ∶ (D,τ) → (F, τ ′) and τ ′ is jointly continuous under

multiplication and separately continuous under addition. Then f is also continuous.

Proof. lim
x→c

(f(x) − f(c)) = lim
x→c

(f(x)−f(c)x−c (x − c)) = lim
x→c

(Dc(x)(x − c)) = f ′(c)(0) = 0.

Hence, lim
x→c

f(x) − f(c) = 0. Thus, f(x) = f(c).

This result does not require full continuity of addition, nor does it require conti-

nuity of inverses.
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