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Abstract 

 
More and more outlets are utilizing collaborative filtering techniques to make sense of 

the sea of data generated by our hyper-connected world. How a collaborative filtering 

model is generated can be the difference between accurate or flawed predictions. This 

study is to determine the impact of a cyclical training regimen on the algorithms 

presented in the Collaborative Filtering Toolkit for GraphChi. Initial testing shows that 

some of the algorithms benefited from a multi-cyclic approach, a result that is reinforced 

by repeating the experiment on a separate dataset. Additional testing focuses on the 

effectiveness of dynamic versus fixed training cycle sizes. However, there is no 

additional benefit to adopting this more complex training scheme. While the results are 

far from universal, half of the algorithms saw a significant increase in accuracy when 

subjected to a multi-cyclic training regimen.
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Chapter 1: Introduction to Collaborative Filtering 
With the growth of on-line services and e-commerce the amount of data that users need to 

make sense of has increased exponentially. The difficult task facing these service 

providers is to sift through a sea of options and find what a user wants before their 

competitors. One of the most powerful tools they have at their disposal is collaborative 

filtering.  

One of the central assumptions about collaborative filtering is that people with similar 

tastes, or shopping histories, are better predictors of a user's future behavior than a 

random person. Collaborative filtering techniques search through large datasets to 

identify patterns and similarities between these users, and then make recommendations. 

These processes are not limited to the retail sphere, collaborative filtering has also been 

applied to financial, geological, and other endeavors. An examination of a small example 

of collaborative filtering, to produce song recommendations for customers, will help 

illustrate some of these ideas. 

Table 1: Example User Song History and Ratings 
 

User song1 song2 song3 song4 song5 song6 song7 
A 3 X X 4 1 5 2 
B 1 2 X 2 4 X 4 
C 5 X 4 X 1 4 X 
D 2 X 1 X 5 X 5 

 

The example data covers four different customers (A-D) and their listening history over a 

catalog of seven songs. In addition to the fact that a user has listened to a particular song, 

there is an explicit rating (1-5, 5 being the highest). If a user has not listened to a song 
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this fact is highlighted with an 'X'. A predicted rating needs to be generated for these 

unknown songs, so that they can be suggested to the appropriate users. 

The first step in the process is to identify which users have similar tastes. User A and 

User C have three points of similarity. They both responded very positively to song6 

(ratings of A:5 and C:4) and very negatively to song5 (both had ratings of 1). The third 

point of similarity, song1, is less significant. User C responded very favorably to the 

song, while User A had a neutral reaction. A similar process can generate a taste profile 

for Users B and D (song1 B:1/D:2, song5 B:4/D:5, and song7 B:4/D:5). Using these 

pairings we can begin to identify likely reactions to some of the users' unknown songs. 

Table 2: Suggestions Based on Similarities 
 

User song1 song2 song3 song4 song5 song6 song7 
A 3 X + 4 1 5 2 
B 1 2 - 2 4 X 4 
C 5 X 4 + 1 4 - 
D 2 - 1 - 5 X 5 

 

Six of the unknown songs have been replaced with a suggested reaction (+ for positive or 

– for negative). An exact score would require further analysis, and most likely a great 

deal more information, but a more simplistic measure of attitude can be inferred.  

This still leaves four unknown songs in the table. A quick look over the table shows that 

the two pairs of users have completely opposite tastes in music. It would be reasonable to 

assume that what one pair likes the other will dislike, and vice versa. In this way we can 

utilize not only the similarity between users to determine attitudes, but also the reactions 

of diametrically opposed Users. 

In Table 3 all of the unknown songs have been assigned a suggested user reactions, and a 
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number of recommendations have been identified for User A and User C. These songs 

will be suggested the next time the users visit the site. Now all that remains is to scale the 

entire process to handle millions of users and products, while maintaining accuracy and 

minimizing costs (both financial and temporal). 

Table 3: Suggestions Based on Inverse Taste Profiles 

User song1 song2 song3 song4 song5 song6 song7 
A 3 + + 4 1 5 2 
B 1 2 - 2 4 - 4 
C 5 + 4 + 1 4 - 
D 2 - 1 - 5 - 5 
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Chapter 2: Related Work 
Collaborative Filtering has traditionally included methods such as Bayesian Networks 

and clustering. A Bayesian Network uses probability and causal relationships to classify 

new observations (Pearl 1994). Clustering algorithms attempt to represent observations as 

“points” in a multi-dimensional space. The closer together that two points are, the more 

similar the underlying observations (Witten, Frank and Hall 2011). These and other 

traditional methods are, and will continue to be, powerful and valid collaborative filtering 

methods.  

However, in the wake of events like the Netflix Prize a new series of algorithms were 

developed to deal with a new phenomenon “Big Data”. These new algorithms sought to 

incorporate the concepts of the traditional methods into new frameworks capable of 

dealing with data that was increasingly large, complex, and often extremely sparse.  

This study will concern itself with thirteen of these modern Collaborative Filtering 

algorithms: 

1. Alternating Least Squares (ALS), (Zhou et al. 2008) 

2. Stochastic Gradient Descent (SGD), (Koren 2009) 

3. Bias Stochastic Gradient Descent (BSGD), (Koren 2008) 

4. Koren’s Singular Value Decomposition (SVD++), (Koren 2008) 

5. Weighted ALS (WALS), (Hu, Koren, and Volinsky 2008) 

6. Non-Negative Matrix Factorization (NMF), (Lee and Seung 2001) 

7. Singular Value Decomposition (SVD), (Hernandez, Roman, and Tomas 2007) 

8. One-Sided SVD, (Hernandez, Roman, and Tomas 2007) 
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9. Tensor ALS (TALS), (Comon, Luciani, and de Almeida 2009) 

10. Restricted Bolzman Machines (RBM), (Hinton 2010) 

11. Time-SVD++(TSVD++), (Koren 2009) 

12. libFM, (Rendle 2010) 

13. Probabilistic Matrix Factorization (PMF), (Salakhutdinov and Mnih 2008) 

Each of the modern Collaborative Filtering algorithms seeks to either reduce or capitalize 

on the complexity of large datasets. Algorithms utilizing decomposition, factorization, 

and SGD seek to reduce the dimensionality of data in order to expose underlying 

relationships. Least squares methods treat recommendations as linear equations, and 

attempt to find the best estimation of the parameters necessary to calculate an accurate 

rating. TALS and TSVD++ try to leverage additional information, in this case time, in 

order to more accurately model behaviors.   

This study will focus on graph-based implementations of these algorithms given their 

recent popularity and the ability to be executed on smaller machines. Recently graph-

based algorithms have been adopted by many large, commercial websites including 

Amazon and YouTube (Walia 2008). While it is important to note the adoption of 

techniques like this by powerful and influential corporations, it is admittedly the latter 

that was the driving force in adopting a graph-based approach. 

The GraphLab Project was developed in order to facilitate distributed, parallel, graph-

based algorithms in an efficient and reliable manner (Low et al. 2010). GraphChi is an 

offshoot of the GraphLab Project that seeks to leverage the power graph-based algorithms 

on a single machine, while maintaining high performance standards (Kyrola, Blelloch, 
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and Guestrin 2012). Bickson, one of the original developers of GraphLab, has ported a 

number of collaborative filtering algorithms from GraphLab to GraphChi in the form of 

the Collaborative Filtering Toolkit (CFT). Thirteen algorithms were supported at the time 

this study was run, December 2012, but two additional algorithms had already been 

added as this paper was being written, January 2013. 

In addition to developing the toolkit, Bickson has written a blog entry which serves as an 

introduction to the CFT and its underlying algorithms (Bickson 2012). In the tutorial, 

Bickson identifies a number of algorithms which have an element of fault tolerance. 

These algorithms allow the user to save the model to disk and then resume training from 

that exact state. 

Experimentation with the fault-tolerant algorithms seemed to yield an additional benefit, 

in that the accuracy of the model would often jump between executions of the training 

epochs (this paper will use the terms “epoch” and “cycle” interchangeably to refer to a 

group of training iterations). This would seem to suggest that there is an advantage to 

using multiple cycles beyond simple fault tolerance. The cumulative value of this inter-

cycle bump in accuracy could be quite significant. 

As these algorithms train a model, they attempt to reduce the sample space in an attempt 

to converge on an optimal answer. Given that these algorithms become more restrictive 

and focused the longer that they run, it is reasonable to assume that restarting an 

algorithm would have a significant positive impact on the final model.  By loosening the 

bounds placed on the algorithm it is possible to identify the possibility that the current 

parameters have focused on a local rather than global minimum. 



7 

Chapter 3: Proposal 
The observed increase in inter-epoch accuracy of models being trained with fault tolerant 

algorithms suggests that there is significant value to be gained from such a training 

regimen. This thesis will explore the possibilities of exploiting this behavior in three 

progressively more focused phases. 

Phase 1: 

First it will be necessary to establish whether there is in fact a boost in model accuracy 

between training cycles. Next, I will identify the cycle size that results in the best final 

model. A fault-tolerant algorithm, utilizing a epoch size of no more than 20, should result 

in a model that is significantly more accurate than those trained using a single-epoch 

algorithm. 

Phase 2: 

Having confirmed the existence of an inter-cycle boost in accuracy, it will be necessary to 

confirm the results on a separate dataset.  The results of this experiment should mirror 

those of the first part. There will be slight variations in accuracy and running time, but the 

behaviors observed in the initial testing should present themselves. 

Phase 3: 

The use of a fixed number of iterations in an epoch is simple, but limits the effectiveness 

of the training regimen because large portions of later cycles are spent trapped in a local 

minima or overfitting.  A dynamic epoch size should allow the user to reap the maximum 

benefit of a multi-cyclic training approach while eliminating the shortcomings of a fixed-

cycle regimen. 
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Chapter 4: Common Terms and Measures of Accuracy 
Local Minima: 

A global minimum refers to the lowest value for the entire domain of a function.  

However it is possible to have a value that is the lowest for a particular neighborhood of a 

function.  This value is referred to as local minima. Figure 1 is a graph of a function, both 

of the highlighted points represent minima for a particular neighborhood of values. 

 

Figure 1: 

Local 

Minima 

(image 

generated on 

www.wolframalpha.com) 

Matrix Factorization: 

The process of reducing a matrix into its component factors, which are also matrices.  

When multiplied together these factors result in the original matrix.  This decomposition 

often reveals relationships hidden in the original data. 

Overfitting: 

Generally there are two error scores generated while training a model, training and 

validation.  Training error is a measure of how well the model performs using the exact 

data that was used to generate it.  Validation error is how well the model performs on a 

subset of the data that was withheld from the training process.  Overfitting occurs when 
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the training error continues to improve while the validation error stagnates or increases.  

The root problem in overfitting is often that the model has latched onto some quirk of the 

training set that doesn't represent an actual relationship in the data. 

Root Mean Squared Error (RMSE): 

In order to estimate the error of a model overall, a single number is generated.  This 

number represents the average variance between a predicted value and the actual value.  

RMSE is calculated by squaring the difference between the predicted and real values, 

adding them all together, and dividing by the number of instances in the set.  As a final 

step, the square root is taken to put RMSE into the same measure as the original values.  

This measure is very similar to standard deviation, and can be utilized in many of the 

same ways. 

 

 

 

  

 Figure 2: RMSE Equation 

Image modified from www.gisdevelopment.net 
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Chapter 5: The Algorithms 
At the time of this study there were a total of thirteen algorithms in the CFT. Of these 

thirteen algorithms, seven are capable of fault tolerance (ALS, WALS, TALS, NMF, 

SGD, Bias-SGD and SVD++). 

ALS:   

In ALS the entire dataset is reduced to two matrices (U:Users & M:Movies). Matrix M 

contains the average rating for each movie. Matrix U contains each users deviation from 

the average score.  The first pass though the algorithm, the values in M are static while 

values in U are solved linearly to decrease the overall error.  The second pass switches 

matrices, locking in U and solving for M.  The product of the matrices is then taken and 

compared to the training set.  Passes through the algorithm continue until there is 

convergence. 

SGD:   

SGD is an implementation of the FunkSVD algorithm (Funk 2006). The algorithm seeks 

to isolate the effect of a number of unknown features on user's ratings.  The identity of 

these features does not need to be known or identified prior to running the algorithm.  

The general process is that for each of the features to be identified a generic value is 

assigned to the user and the movie. A rating is generated by taking the product of the 

current feature values for both the user and the movie, and all previously defined features.  

The error between the actual rating and the predicted rating, combined with a constant, is 

used to refine the feature values. 
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BSGD:   

The BSGD algorithm integrates implicit feedback into the SGD algorithm.  Implicit 

feedback seeks to identify the features that led a user to select a given item regardless of 

the explicit rating.  Additionally, it is possible to trace the impact of individual items to 

identify items which led to the recommendation. 

SVD++: 

SVD++ is simply a refinement of the BSGD model, but utilizes the same basic concepts. 

WALS: 

WALS uses implicit feedback, represented by a binary rating, to generate matrices U and 

M.  The impact of a given movie is then weighted based on its similarity to other movies 

the user has consumed. 

NMF: 

This algorithm performs matrix factorization with the additional requirement that all 

factors be positive.   

SVD & OSVD: 

Both algorithms decompose the initial user/movie matrix into two separate matrices, one 

for users and the other for movies. After the decomposition, a triplet is generated (ui, σi, 

vi). ui and vi are the singular vectors, while σi is the singular value. The product of this 

triplet is an estimation of the original rating. OSVD attempts to reduce the computational 

cost of the algorithm while maintaining accuracy. 
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TALS: 

TALS uses tensor decomposition to reduce the chance that ALS will become stuck in a 

local minima and reduce the number of training iterations. 

RBM: 

The RBM is a neural network consisting of two layers. The first, visible layer 

corresponds to the features being used to train the network. The second, hidden layer is 

trained by the features in the visible layer. The “restricted” in RBM refers to the 

requirement that all connections must be between visible-hidden node pairs. A gradient 

descent algorithm is used to compute the weights between the nodes. 

TSVD++: 

TSVD++ adds a temporal element to the SVD++ algorithm, tracking the changes in a 

user/item popularity over time.  The inclusion of time allows for the modeling of a user's 

changing attitudes over time.  This model helps to identify how a particular user's 

attitudes change, and apply the new attitude to future recommendations. 

libFM: 

The libFM library is a particular implementation of matrix factorization that includes 

SGD and ALS with Markov Chain Monte Carlo (MCMC).  MCMC is a sampling method 

useful when dealing with mutli-dimensional integrals, utilizing random walks. 

PMF: 

PMF is a matrix factorization model based on Bayesian probabilities, which is trained 

using MCMC methods and assumes that users and movies are dependent. 
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Chapter 6: The Data 
The type of data used in GraphChi, or any collaborative filtering method, is immaterial. It 

is up to the researcher to provide the appropriate framework to make the data meaningful 

to the algorithms. This study will utilize the Netflix and MovieLens datasets based on 

their identical framework and common use in the field of collaborative filtering. 

Section 6.1: Netflix 

The first phase of this study uses the same dataset featured in Bickson’s blog, which is a 

synthetic Netflix dataset created using an anonymized sample of the original. Although 

the dataset from the Netflix challenge is unavailable because of copyright, the general 

characteristics of the data are well established by the competition’s creators (Bennett and 

Lanning 2007). The GraphLab Netflix sample was done to preserve these characteristics 

(i.e. sparsity of data, user to movie ratio, user to rating ratio, etc) while ensuring the 

anonymity of the users. 

The Netflix subset has the following general characteristics: 95,526 unique users, 3,561 

movies, and 3,298,163 ratings (non-zeroes). This is a very sparse dataset with less than 

0.97% of the resulting matrix having ratings. 

Section 6.2: MovieLens 

The second phase of this study uses a similar dataset, the Million Rating MovieLens 

(Lam and Herlocker 2000), to identify if the results of Phase I are valid, or if they are the 

artifact of the Netflix dataset. The GraphLab team has converted this dataset into a 

training/testing pair appropriate for use with the CFT. The MovieLens dataset has the 

following general characteristics: 6,040 unique users, 3,952 movies, and 1,000,209 
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ratings (non-zeroes). This dataset has more than 23.55% of the resulting matrix having 

ratings, a far more dense sample. 

Section 6.3: Training and Testing Sets 

Both the Netflix and MovieLens datasets were divided, formatted, and hosted by the 

GraphLab team. These particular datasets were chosen because of their frequent use in 

collaborative filtering research. Their use will allow the results of this study to compared 

or applied to existing methodologies.  

The methods used to divide the data into training and testing sets facilitated a few simple 

goals. The training sets were designed to maintain the same statistical properties of the 

original dataset, in order to maintain the integrity of the predictions. The testing sets 

contain at least a single instance of every user and movie in order to test the model's full 

range of predictive possibilities. 

Section 6.4: Historic Benchmarks and Baseline Predictors 

In order to provide some context in which to view the results of this study the following 

results from the Netflix Prize (Netflix 2009) were retrieved: 

• Cinematch (2006) : RMSE 0.9525 

• 2007 Progress Prize : "KorBell" : RMSE 0.8723 

• 2008 Progress Prize : "BellKor in BigChaos" : RMSE 0.8627 

• Winners : "BellKor's Pragmatic Chaos" (2009) : RMSE 0.8567 

Additionally, KorBell reported that the best result they could get from a single method 

was an increase of 6.57% over Cinematch, RMSE ~0.8882 (Bell and Koren 2007). 

Three baseline methods are also included in the Bickson tutorial. All of these methods 
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seek to reduce the CF process to a simple average that can quickly be applied to a set of 

unknown instances. The first simply assigns the user's mean rating to all unrated movies, 

regardless of any other considerations. The second method assigns the mean rating of the 

movie, if it hasn't been rated. The final method determines the average of every rating in 

the dataset, and uses that as the default rating. 

The error rates for each of the baseline methods were: 

Netflix: 
User's Mean Rating : RMSE 0.9728 
Movie's Mean Rating : RMSE 1.0005 
Global Mean Rating : RMSE 1.0781 

MovieLens: 
User's Mean Rating : RMSE 1.02809 
Movie's Mean Rating : RMSE 1.11734 
Global Mean Rating : RMSE 0.97439 

 

Section 6.5: Control Groups 

One final piece of information is necessary to determine the effectiveness of a multi-

cyclic training regimen, a control group.  The control group was trained using a single-

epoch consisting of a large number of iterations.  The control groups were generated after 

Phase I in an attempt to limit the number of unnecessary training cycles, since large 

epochs require 8+ hours to run.   

Waiting until after the completion of Phase I had the additional benefit of identifying a 

number of algorithms which did not need to included in the control group. All of the 

algorithms utilizing ALS already had runs which demonstrated that even moderately 

sized single iterations were outperformed by multi-cyclic regimens ( as was noted in the 

Methodology section). This meant that it was only necessary to run control groups on 

SGD, BSGD, NMF, and SVD++. 

Each of the control groups is trained using the same parameters utilized in Phase I, only 
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the progression of epoch size is altered.  A starting size of 200 iterations was selected 

since it is within the bounds of each of the selected algorithms total number of iterations 

run from Phase I.  Each succeeding epoch will be doubled in size up to 1,600 iterations.  

The next epoch will be increased to 2,000 and then incremented by 1,000 every epoch 

after that.  Training will continue until the RMSE no longer decreases between runs, and 

actually begins to increase. 

Table 4:  Netflix Control Group Results 
 

Algorithm # of Iterations RMSE Running Time (sec) 

SGD 200 1.123820 274.217 

BSGD 400 1.117690 727.475 

SVD++ 400  0.982024 1025.760 

NMF 2000 2.370640 5549.790 

 
 
Table 5:  MovieLens Control Group Results 
 

Algorithm # of Iterations RMSE Running Time (sec) 

SGD 200 1.111930  59.2760 

BSGD 200 1.388990 58.0992 

SVD++ 200 0.933052  138.1750 
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Chapter 7: The Output 
      A.            B.                      C.                                D.                              E. 

  0.247825) Iteration:   0 Training RMSE:    1.55184  Validation RMSE:     1.4803 ratings_per_sec:          0  

  0.551404) Iteration:   1 Training RMSE:    1.43175  Validation RMSE:    1.38094 ratings_per_sec: 1.45679e+06  

  0.843033) Iteration:   2 Training RMSE:    1.34697  Validation RMSE:    1.31508 ratings_per_sec: 1.97772e+06  

    1.1353) Iteration:   3 Training RMSE:    1.29099  Validation RMSE:    1.27127 ratings_per_sec: 2.24475e+06  

   1.42998) Iteration:   4 Training RMSE:     1.2528  Validation RMSE:    1.24062 ratings_per_sec: 2.40533e+06  

   1.72584) Iteration:   5 Training RMSE:     1.2254  Validation RMSE:    1.21809 ratings_per_sec: 2.51095e+06  

    2.0265) Iteration:   6 Training RMSE:    1.20487  Validation RMSE:    1.20091 ratings_per_sec: 2.58013e+06  

   2.32415) Iteration:   7 Training RMSE:    1.18894  Validation RMSE:    1.18741 ratings_per_sec: 2.63517e+06  

   2.61634) Iteration:   8 Training RMSE:    1.17624  Validation RMSE:    1.17654 ratings_per_sec: 2.68354e+06 

. 

. 

. 

   21.0371) Iteration:  72 Training RMSE:    1.10307  Validation RMSE:    1.11021 ratings_per_sec: 3.07028e+06  

   21.3199) Iteration:  73 Training RMSE:    1.10306  Validation RMSE:    1.11021 ratings_per_sec: 3.07214e+06  

   21.5915) Iteration:  74 Training RMSE:    1.10306  Validation RMSE:     1.1102 ratings_per_sec: 3.07491e+06  

   21.8678) Iteration:  75 Training RMSE:    1.10305  Validation RMSE:     1.1102 ratings_per_sec: 3.07751e+06  

   22.1428) Iteration:  76 Training RMSE:    1.10305  Validation RMSE:    1.11019 ratings_per_sec: 3.07977e+06  

    22.422) Iteration:  77 Training RMSE:    1.10305  Validation RMSE:    1.11019 ratings_per_sec: 3.08168e+06  

    22.701) Iteration:  78 Training RMSE:    1.10304  Validation RMSE:    1.11019 ratings_per_sec: 3.0832e+06  

   22.9786) Iteration:  79 Training RMSE:    1.10304  Validation RMSE:    1.11018 ratings_per_sec: 3.08536e+06 

Figure 3:  Sample Output from the CFT 

Above is a selection of output from one of the training cycles.  It is useful as an 

illustration of what training a model in CFT looks like, and to talk about some of the 

common behaviors demonstrated by many of the algorithms.  In addition to output 

similar to this selection, each training cycle also outputs to the screen a list of all the 

environmental variables and arguments used to train the model. 

There are six pieces of information displayed for each iteration of a training epoch, 

labeled A-E. A is a simple timer that shows how many seconds have elapsed between the 

beginning of the cycle and the end of the current iteration. B is the number of the iteration 
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in the sequence, starting with 0. C is the training RMSE, which is the ability to correctly 

predict the ratings of the movies which were used to train the model. D is the validation 

RMSE, this is a measure of how accurately the model predicts the rating of movies 

outside of the training set. Finally, E is the number of ratings generated per second by the 

current iteration. 

Figure 3 is a good example of how most of the algorithms perform for any given training 

cycle. At the start of the cycle both training and validation RMSE improve dramatically 

every iteration.  As the training continues the rate of improvement slowly  wanes until 

even the earliest iterations see little or no improvement. As the cycle draws to a close, 

training and validation RMSE only improve every couple iterations. At this point, the 

parameters under which the algorithm is operating under have become so restrictive that 

large improvements are no longer possible.  Later epochs will experience this type of 

stagnation at earlier iterations as the algorithm reaches the limits of its effectiveness. 

Most of the algorithms perform and display in the manner described above, but there are 

exceptions. SVD and OSVD report the error for each of the factors identified, but no 

intermediary measures. NMF does not make use of a validation set, and so only reports 

the training RMSE. NMF also has a much more consistent rate of improvement, even for 

early iterations. It would seem that NMF is the one fault tolerant algorithm that has no 

benefit to restarting the training cycle. 

The behavior identified in the sample output, the initial surge in accuracy at the beginning 

of an epoch, is the factor that should lead to the multi-cyclic training regimen delivering a 

more effective model.   
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Chapter 8: Phase I 
Section 8.1: Methodology 

Since this study is seeking to understand the impact of epoch size on the accuracy of the 

resulting model, there will be no attempt to tune any of the algorithms. The default 

settings were used in order to limit the impact of user proficiency on the resulting models 

(Bickson 2012). 

The CFT reports the accuracy of the model generated using root mean squared error 

(RMSE). This statistic is generated for every complete pass over the training set, and is 

reported in terms of both training and validation. The training RMSE will not be used in 

this study as it is only a reflection of how well the model performs on the training data. 

Instead the validation RMSE will be the only measure reported since it demonstrates how 

well the model handled the test data. Additionally, the validation RMSE will identify 

problems with the model such as overfitting which are ignored in the training algorithm. 

Fault Tolerance Algorithms (ALS, WALS, TALS, NMF, SGD, BSGD and SVD++): 

The initial epoch size will be set to the maximum iterations specified in the tutorial, 

usually 6 iterations. After the first training cycle, the argument --

load_factors_from_file=1 will be added to the algorithm to resume training with the 

current state. Training cycles will continue until one of the following three conditions are 

met: 

1. The validation RMSE no longer improves with subsequent training cycles (a 

minima is reached). 

2. The validation RMSE increases with additional training cycles (overfitting). 



20 

3. Multiple training cycles result in an improvement of the validation RMSE of less 

than .00005 / 10 iterations (diminishing returns). 

Upon reaching one of the above criteria, the current state of the model will be saved and 

the validation RMSE and total number of training cycles recorded. 

Next the epoch size will be increased and the entire process will repeat for the new 

model. The training epoch will be increased on the following schedule:  6, 20, 40, 80, 

100, 120, 140, 180, 200. After 200 iterations the size of the epoch will be incremented by 

50 for every subsequent increase. The training of new models on this schedule will 

continue until the resulting model has a higher validation RMSE than the previously 

generated model. 

After the complete training of an algorithm is completed, an average starting RMSE is 

selected and recorded as well. The starting RMSE is defined as the validation RMSE after 

a single iteration of the algorithm. Since there is a degree of variation inherent in all of 

these algorithms it is necessary to choose a representative initial state. The starting RMSE 

will allow for a model’s training regimen to be judged both by its final accuracy and the 

degree of accuracy that is a result of training. 

Remaining Algorithms (SVD, One-Sided SVD, RBM, TSVD++, libFM, and PMF): 

Even though these algorithms do not support a multi-cyclic training regimen, they will be 

trained on the same epoch schedule to provide additional context. 

Additional Note on Alternating Least Squares (ALS) Algorithms: 

Overfitting was a significant problem with the ALS algorithms, and as such some 

modifications to the methods were made for those algorithms. Instead of stopping the 

training schedule with the first model resulting in a higher RMSE, all schedules were run 
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to at least a training epoch of 80 iterations in size. This was an attempt to see if 

overfitting could be overcome with additional training. Overfitting also led to the 

inclusion of two smaller epoch sizes on the training schedule, two and ten, in order to 

identify if the optimal size was located at this smaller scale. 

Section 8.2: Results 

Hypothesis: 

The initial impressions of the CFT suggested that the apparent boost in accuracy between 

training epochs would favor a training regimen consisting of a large number of very small 

cycles (no more than 20 iterations per epoch). This type of training would lead to results 

superior, to those generated without it.  

 Table 6: Algorithms Ordered by Final RMSE (Multi-Cyclic Algorithms Bolded) 

Algorithm Initial RMSE Final RMSE 

PMF 2.498400 0.914566 

RBM 0.979169 0.926279 

SVD++ 1.124420 0.931921 

BSGD 1.363540 0.952970 

SGD 1.240700 0.959890 

TSVD++ 1.041220 0.995435 

LibFM 1.090030 1.025770 

TALS 1.244250 1.147030 

ALS 1.251550 1.159920 
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NMF 1.580120 2.375430 

WALS 5.522080 5.325280 

 

The first thing of note about Table 6 is that only eleven algorithms are included. Both 

SVD and One-Sided SVD have been left off of the table intentionally. No modification to 

the number of training iterations yielded any variation in how these algorithms 

performed. Every run of these methods resulted in both an identical process and model. 

Additionally, these algorithms utilize a different error metric than the rest of the CFT by 

reporting an error estimate for each of the features generated. For these reasons these 

algorithms were left out of the rest of the discussion of this study’s results, but an 

example of the output of each has been included at the end of this paper as Appendix 1. 

Looking at the results purely in terms of accuracy suggest that the fault-tolerant 

algorithms are generally of inferior quality. However, this view of the results is 

misleading. There was no effort made to tune these algorithms, or to even check if there 

current settings were conducive to producing good models, before these results were 

generated. So while it is interesting which algorithms handled the data best, it doesn’t 

really show how well these models developed over the course of training. 

Table 7: Results Ordered by Percent Improved Over Initial RMSE 

Algorithm % Improvement 

PMF 63.39% 

BSGD 30.11% 
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SGD 22.63% 

SVD++ 17.12% 

TALS 7.81% 

ALS 7.32% 

LibFM 5.90% 

RBM 5.40% 

TSVD++ 4.40% 

WALS 3.56% 

NMF -50.33% 

 

By ordering the results by how much a model’s RMSE was improved over the course of 

training reveals a far different picture of the fault-tolerant algorithms. The improvement 

in final RMSE would suggest that these algorithms are more effective at training, but it is 
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unclear whether this is a product of the algorithm itself or the training regimen. A closer 

look at all of the results, as well as the effect of the restart boost, should provide a clearer 

picture of the factors at work. 

    

   Figure 4: Trendlines of Algorithm Performance 

Figure 4 shows the percentage difference between all of the training regimens for a given 

algorithm and its starting RMSE. The trendlines clearly show that while the effectiveness 

of the algorithms may vary, their training behaviors are very similar. From this limited 

sample it would seem that there is no evidence that the restart boost creates a more 

effective training regimen. But this is not evidence that it has no effect.  

 
 
 
 
 
 
 
Table 8:  Epoch Size and Number of Cycles Trained for Each Algorithm (Multi-Cyclic 
Algorithms Bolded) 
 

Algorithm Epoch Size (Iterations) Training Cycles Total Running Time 
(sec) 

PMF 180 -  2,501.9900 

RBM 80 - 692.3140 

SVD++ 40 7 691.6511 

BSGD 40 92 6,860.8908 

SGD 40 59 3127.5310 

TSVD++ 80 - 251.9750 
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LibFM 200 - 908.0320 

TALS 10 1 74.6055 

ALS 2 4 47.4264 

NMF 40 56 9,045.0080 

WALS 10 1 66.1071 

 

The idea that a cyclical training regimen is superior to a single epoch algorithm has been 

thoroughly disproved, with the exceptional performance of both PMF and RBM. But 

what about the ideal size for these epochs? Table 8 shows, rather conclusively, that the 

ideal number of iterations is larger than the 20 iteration ceiling that had been theorized. 

The problem of overfitting was again to blame. Each cycle needs to be large enough to 

take advantage of as many positive iterations (those that reduce the validation RMSE), 

while minimizing the number of overfitted iterations (a common occurrence in later 

training cycles). 

While the cyclical training regimen fails to outperform the single epoch algorithms, it is 

clearly not without its benefits.  Three of the cyclically generated models have 

significantly higher accuracy than similar models learned over the course of a lone epoch.  

All of the algorithms in the CFT suffer from the same design flaw, they fail to take into 

account validation RMSE.  This results in either overfitting or the algorithm becoming 

trapped in a local minima, as the parameters of the algorithms become more and more 

restrictive. Restarting the algorithm loosens the bounds on the program allowing it to 

move beyond erroneous assumptions about the data. So while the hypothesized accuracy 
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failed to materialize, there are definitely significant advantages to this style of training 

with SGD, BSGD, and SVD++. 

Table 9: Final RMSE of Control and Test Models (Phase I) 

Algorithm Control RMSE Test RMSE Improvement 

SGD 1.123820 0.959890 14.59% 

BSGD 1.117690 0.952970 14.74% 

SVD++  0.982024 0.931921 5.10% 

ALS 1.159920 1.161300 0.11% 

TALS 1.147030 1.147030 0.00% 

WALS 5.325280 5.325280 0.00% 

NMF 2.370640 2.375430 -0.20% 

 

If the results seen in this initial experiment are not a fluke, there should be some gain in 

removing the hindrance of a fixed cycle size.  So the first step is to recreate this 

experiment with another dataset.  If the results of this second run confirm the behaviors 

observed in the initial data, it should be possible to generate a more accurate model by 

loosening the strict epoch size requirements. 
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Chapter 9: Phase II 
Section 9.1: Methodology 

This phase is meant to verify the results of Phase I with a different dataset, the 1M 

MovieLens. Given this emphasis, the number of training epochs will be severely 

truncated. Each algorithm will be run using the regimen identified in Phase I.  The second 

model will be trained with the the final step from Phase I.   

At this point the training will continue in one of two directions. If the RMSE decreases 

for the second run, epoch size will continue to increase on the schedule outlined in Phase 

I.  If however, the RMSE increases it will be necessary to run at least one of the earlier 

training regimens to ensure that the optimal model isn't generated earlier on the training 

schedule. 

Some of the algorithms in the CFT rely on modified datasets. LibFM, TALS, TSVD++, 

and WALS all require additional time stamp data that is not included in this version of the 

MovieLens dataset.  Additionally, NMF requires a version of the dataset where positions 

of the user and movie data are switched.  Since this phase designed only to verify the 

results found in Phase 1, there will be no attempt to engineer these datasets.  Instead these 

algorithms will be left out of this phase.  A more complete investigation of this dataset 

would be interesting, but is beyond the scope of this study. 

Section 9.2: Results 

Hypothesis: 

The results of generating models on a different dataset will mirror the results found in 

Phase I. 
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Table 10: Algorithms Ordered by Final RMSE (Multi-Cyclic Algorithms Bolded) 

Algorithm Initial 
RMSE 

Final 
RMSE 

Epoch 
Size Cycles % 

Improved 
Running 

Time 
PMF 2.456660 0.848362 250 - 65.47% 543.3890 
SVD++ 1.130650 0.881066 40 9 22.07% 220.6638 
RBM 0.951297 0.892780 100 - 6.15% 174.1320 
SGD 1.480210 0.896868 40 118 39.41% 1367.3722 
BSGD 1.800190 0.900937 100 115 49.95% 3306.0545 
ALS 1.018160 0.965357 10 1 5.19% 13.0477 
 

For the most part, the results of Phase 2 are similar to the results found in Phase 1. 

SVD++ performs slightly better with the MovieLens data, managing to eek out a slightly 

better result the RBM.  In the same way SGD and BSGD have switched places.  

However, aside from some reordering of how the individual algorithms performed, there 

was little difference between how the training process itself behaved.  

The best way to see the similarities between Phases 1 and 2 is to focus on how effectively 

the algorithms trained their final models. Each of the algorithms had a percentage of 

improvement that was in keeping with the results seen in Phase 1. Most saw a modest 

increase in improvement, but this is in keeping with the fact that the MovieLens dataset is 

far more dense than Netflix and should therefore provide more concrete relationships.  

Table 11 verifies that the models trained using a multi-cyclic approach are far more 

accurate than single-epoch models developed by the same algorithms.  SGD and SVD++ 

show very similar results to those generated, in the first phase.  BSGD seems to have 
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been far more effective, but this may be an artifact of its unusually high starting RMSE.  

ALS has once again shown that least squares algorithms benefit very little from a multi-

cyclic approach. Table 10 already showed that the overall effectiveness of the training 

regimen was similar to the previous experiment, and this is more a testament to how 

limited a single-epoch training regimen is for these algorithms. 

Table 11: Final RMSE of Control and Test Models (Phase I) 

Algorithm Control RMSE Test RMSE Improvement 

SGD 1.111930 0.896868 19.34% 

BSGD 1.388990 0.900937 35.14% 

SVD++ 0.933052 0.881066 5.57% 

ALS 0.965357 0.965357 0.00% 

 

Phase 2 has confirmed that the behaviors identified in Phase 1 are inherent to the 

algorithms themselves, and not the product some quirk in the Netflix dataset. By 

instituting a more intelligent and adaptive training regimen it should be possible to 

exploit these behaviors to develop more accurate models. 
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Chapter 10: Phase III 
Section 10.1: Methodology 

Based on the previous testing, using a fixed epoch size should limit the effectiveness of a 

model due to the inherent flaws of the CFT. If the number of iterations is set too low, 

early training cycles fail to take maximum advantage of unrestrictive parameters in order 

to more effectively position the model. If the epoch size is too large, later training cycles 

fritter away gains with cycles that overfit the model for up to 75% of the iterations.   

What is needed is a training regimen that leverages the benefits of large epochs in early 

cycles, but doesn't suffer from rampant overfitting in later cycles. To this end epochs will 

be decremented every training cycle that results in either overfitting or becoming stuck in 

a local minima. The specific starting size and decremental schedule will vary for each 

algorithm in order to fit the training regimen to the individual needs of the model.  The 

initial epoch size will be derived from the results of the control group training, since it 

represents a wide view of how the algorithms perform over large cycles, as shown in 

Table 12.   

Table 12: Starting Epoch Size for Decremental Training 

Algorithm Initial Epoch  

SGD 100 

BSGD 100 

SVD++ 120 

NMF 2000/100 
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ALS 8 

TALS 10 

WALS 6 

 

The initial epoch sizes are drawn from the results of the control group generation.  The 

number of iterations was selected to maximize the number of positive training runs, 

minimize initial training stagnation, and prevent any overfitting in the first cycle. This 

should maximize the effectiveness of early cycles, and prevent the need for radical 

iteration reductions.   

After the initial training cycle, epoch size will be decremented as needed for each 

algorithm. The signal to reduce the number of iterations will be one of two conditions, 

overfitting or stagnation. The triggering event will be identified by the iteration it occurs 

in, referred to as n. Any cycle resulting in overfitting will immediately have the next 

epoch reduced to a maximum of n-1 iterations. Stagnation will be a bit more flexible in 

its definition.   

There will be two different triggers based on the model becoming trapped in a local 

minima, each represented by a separate training regimen. The first is based on the 

assumption that little harm is done to the model if the validation RMSE is caught in a 

local minima while the training RMSE continues to decline.  However if both training 

and validation become stagnant, the next epoch will be reduced to a maximum of n-1 

iterations. The second is based on the idea that any cycles involving the model becoming 

trapped in a minima are detrimental to the development of an effective model. This 
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regimen will reduce epoch size as soon as iterations fail to result in improved RMSE. In 

keeping with this regimen's focus on reducing/eliminating stagnant training cycles, a 

smaller initial cycle size was selected for NMF.    

Training in either fashion shall continue until the epoch size is zero or the training cycles 

no longer result in significant improvement.  A significant gain in accuracy was 

previously defined as an reduction of RMSE of at least of 5.0e-5/10 iterations. 

Section 10.2: Results 

Hypothesis: 

The adoption of a more flexible, adaptive training regimen should result in a final model 

that is significantly more accurate than its fixed-cycle counterpart.  A significant 

improvement of accuracy will be defined as at least a 5% decrease in RMSE when 

comparing final model accuracy to initial RMSE values. Of the two training styles, the 

regimen that seeks to completely eliminate stagnant training iterations should result in the 

superior model. 

Despite what seemed to be evidence to the contrary, there is no value to adopting a more 

complex multi-cyclic training regimen. Table 13 clearly shows that all of the models, 

regardless of training style, had a nearly identical final RMSE. Differences of less than 

1% can easily be attributed to the type of variation that occurs when using any machine 

learning algorithm. This level of difference is more the product small advantages or 

missteps encountered during the training process, rather than an impact of how the 

training was organized.  

It would seem  that any reasonably-sized, multi-cyclic training regimen will result in a 
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model which approaches the upper bounds of accuracy possible with these algorithms. 

That being the case, there is no logical justification for the additional time and effort 

necessary to execute a decremented training regime. 
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Table 13: Comparison of All Netflix Training Regimen 

Algorithm Initial RMSE Final RMSE % Improved 

SVD++ 1.12442   

Phase 1  0.931921 17.12% 

Phase 3 (Minima)   0.932509 17.07% 

Phase 3 (No Minima)  0.931851 17.13% 

BSGD 1.36354   

Phase 1  0.952970 30.11% 

Phase 3 (Minima)  0.953158 30.10% 

Phase 3 (No Minima)  0.954605 29.99% 

SGD 1.24070   

Phase 1  0.959890 22.63% 

Phase 3 (Minima)  0.958879 22.71% 

Phase 3 (No Minima)  0.957286 22.84% 

NMF 1.58012   

Phase 1  2.37543 -50.33% 

Phase 3 (Minima)  2.37544 -50.33% 

Phase 3 (No Minima)  2.38669 -51.04% 

ALS 1.25155   



35 

Phase 1  1.159920 7.32% 

Phase 3 (Minima)  1.159500 7.35% 

Phase 3 (No Minima)  1.159950 7.32% 

TALS 1.24425   

Phase 1  1.147030 7.81% 

Phase 3 (Minima)  1.150900 7.50% 

Phase 3 (No Minima)  1.152530 7.37% 

WALS 5.52280   

Phase 1  5.325280 3.56% 

Phase 3 (Minima)  5.345600 3.21% 

Phase 3 (No Minima)  5.356200 3.02% 
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Chapter 11: Conclusions and Future Work 
Initial examination of the Collaborative Filtering Toolkit suggested that some of the 

behaviors observed in the fault-tolerant algorithms would result in models superior to 

those generated by single-epoch algorithms.  It also appeared that limiting the size of 

individual training cycles to a small number of iterations would enhance these behaviors.  

Both assumptions turned out to be false.  As with any other set of tools, gimmicks were 

trumped by matching the best tool to the job at hand.  However this study was not 

without its lessons. 

Although a multi-cyclic approach failed to outperform other algorithms, it yielded 

superior results to a single-epoch approach for the same algorithm. Additional training 

cycles allowed the some of the algorithms (BSGD, SGD, and SVD++ in particular) to 

work past limitations that left them susceptible to becoming trapped in local minima and 

overfitting. Exploration of a more complicated training regimen, incorporating a 

decremented epoch size, failed to produce further enhancements.  This failure is actually 

a boon to those who would use the CFT.  Automation of a multi-cyclic training regimen 

can focus on the relatively trivial task of a fixed cycle size, without sacrificing the 

resulting model's accuracy. 

The Collaborative Filtering Toolkit represents a powerful tool which allows users to 

easily leverage the power data analysis. Continued research into this constantly evolving 

resource is necessary in order to understand and effectively utilize the ever growing 

ensemble of algorithms the CFT represents.   
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Appendix: SVD and One-Sided SVD Output 

 
./toolkits/collaborative_filtering/svd --
training=smallnetflix_mm --nsv=3 --nv=10 --
max_iter=5 --quiet=1 --tol=1e-1 
WARNING:  common.hpp(print_copyright:104): 
GraphChi Collaborative filtering library is written 
by Danny Bickson (c). Send any  comments or 
bug reports to danny.bickson@gmail.com  
[training] => [smallnetflix_mm] 
[nsv] => [3] 
[nv] => [10] 
[max_iter] => [5] 
[quiet] => [1] 
[tol] => [1e-1] 
Load matrix smallnetflix_mm 
Starting iteration: 1 at time: 2.71863 
Starting step: 1 at time: 3.42417 
Starting step: 2 at time: 4.6307 
Starting step: 3 at time: 5.88049 
Starting step: 4 at time: 7.11613 
Starting step: 5 at time: 8.36737 
Starting step: 6 at time: 9.63118 
Starting step: 7 at time: 10.9138 
Starting step: 8 at time: 12.2115 
Starting step: 9 at time: 13.5747 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
Number of computed signular values 5 
Singular value 0      3276.69 Error estimate: 
  0.000305186 
Singular value 1      1064.07 Error estimate: 
  1.18507e-13 
Singular value 2      956.541 Error estimate: 
   0.00162432 
Singular value 3      889.028 Error estimate: 
   0.00841469 
Singular value 4       710.42 Error estimate: 
    0.0551811 
Going to save output vectors U and V 
Lanczos finished 22.5142 

./toolkits/collaborative_filtering/svd_onesided --
training=smallnetflix_mm --nsv=3 --nv=10 --
max_iter=5 --quiet=1 --tol=1e-1 
WARNING:  common.hpp(print_copyright:104): 
GraphChi Collaborative filtering library is written 
by Danny Bickson (c). Send any  comments or bug 
reports to danny.bickson@gmail.com  
[training] => [smallnetflix_mm] 
[nsv] => [3] 
[nv] => [10] 
[max_iter] => [5] 
[quiet] => [1] 
[tol] => [1e-1] 
Load matrix smallnetflix_mm 
Starting iteration: 1 at time: 0.560262 
Starting step: 1 at time: 1.22546 
Starting step: 2 at time: 4.76345 
Starting step: 3 at time: 8.32286 
Starting step: 4 at time: 11.8127 
Starting step: 5 at time: 15.4576 
Starting step: 6 at time: 19.1342 
Starting step: 7 at time: 22.8375 
Starting step: 8 at time: 26.5084 
Starting step: 9 at time: 30.1965 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
set status to tol 
Number of computed signular values 5 
Singular value 0      3276.69 Error estimate: 
   3.8991e-14 
Singular value 1      1064.07 Error estimate: 
   0.00146017 
Singular value 2      956.541 Error estimate: 
   0.00782078 
Singular value 3      889.028 Error estimate: 
    0.0440951 
Singular value 4       710.42 Error estimate: 
    0.0864268 
Lanczos finished in 47.1228 
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