

Review of Large-Scale Coordinate Descent Algorithms for Multi-class Classification with Memory
Constraints

by
Aleksandar Jovanovich

Submitted in Partial Fulfillment of the Requirements

for the Degree of

Master

of

Computing and Information Systems

Program

YOUNGSTOWN STATE UNIVERSITY

May, 2013

Review of Large-Scale Coordinate Descent Algorithms for Multi-class Classification
with Memory Constraints

Aleksandar Jovanovich

I hereby release this thesis to the public. I understand that this thesis will be made avail-
able from the OhioLINK ETD Center and the Maag Library Circulation Desk for public
access. I also authorize the University or other individuals to make copies of this thesis
as needed for scholarly research.

Signature:

 Aleksandar Jovanovich, Student Date

Approvals:

 Alina Lazar, Thesis Advisor Date

 Gwang-Hwa Chang Committee Member Date

 Graciela Perera, Committee Member Date

 Bryan DePoy, Interim Dean of School of Graduate Studies and Research Date

iii

Abstract

Big data can impact the performance of many standard measures used for classification.

Specifically the efficiency of multi-class classification algorithms when the dataset is too

large to fit into limited memory available needs to be explored. Different algorithms with

varying complexity have been proposed in the literature. Two of the most recognized

classification algorithms, batch learning and online learning have emerged as the most

consistent options when solving for a multi-class problems. Presently a gap in the

documentation of such algorithms exists in the literature available. Furthermore, the

recent development of the online multi-class solver warrants a detailed examination.

This thesis will address both concerns, providing detailed documentation of the analysis,

comparisons of the algorithms, plots of the results, as well as a discussion about the

findings.

iv

Acknowledgments

First, I would like to thank my parents for allowing me to realize my own potential. All

the support they have provided me over the years was the greatest gift anyone has ever

given me.

Also, I need to thank Carolyn O’Rourke my fiancée, who taught me the value of hard

work and an education. Without her, I may never have gotten to where I am today.

I would also like to acknowledge my committee members: Dr. Graciela Perera and

Guang-Hwa Chang, who graciously agreed to serve on my committee.

Finally, I would like to thank Alina Lazar, who took the time to share her knowledge

and appreciation of machine learning. Also, for reading this thesis, for which I owe her a

new box of pens.

v

Table of Contents

Abstract ... 1

Acknowledgments... 2

Table of Contents .. 3

List of Figures ... 6

CHAPTER 1: INTRODUCTION ... 7

1.1 Subject .. 7

1.2 Purpose ... 8

1.3 Scope and Limitations .. 8

1.4 Plan of Development .. 9

CHAPTER 2: LITERATURE REVIEW .. 10

2.1 Definitions .. 10

2.2 Binary Classification ...11

2.3 Multi-class Classification ... 12

2.3.1 One-Against-All ... 13

2.3.2 Pairwise comparison ... 14

2.4 Coordinate Descent .. 15

vi

2.4.1 Line Search ... 16

2.5 Related Work .. 17

CHAPTER 3: METHODOLOGY ... 18

3.1 Block Minimization.. 18

3.1.1 Support Vector Machines Learning .. 21

3.2 Online Learning .. 24

3.2.1 Gradient Descent ... 27

CHAPTER 4: COMPARISON ... 29

4.1 Large-scale ... 29

4.1.1 SensIT Dataset .. 30

4.1.2 RCV1 Dataset ... 31

4.2 Study Design .. 33

4.3 Outcome Measures ... 33

4.4 Performance Measures ... 34

4.4.1 Accuracy ... 34

4.4.2 Training Time ... 35

4.5 Analysis .. 35

CHAPTER 5: RESULTS AND DISCUSSION .. 36

5.1 Datasets .. 36

vii

5.1.1 Format ... 36

5.2 Performance Measures ... 38

5.2.1 Training Time ... 38

5.2.2 Accuracy ... 41

5.3 Discussion .. 41

Chapter 6: Conclusions ... 45

References ... 46

 viii

 List of Figures

Figure 1: SensIT Class Frequency .. 30

Figure 2: RCV1 Class Frequency ... 31

Figure 3: Reuters Corpus Volume 1 Document .. 32

Figure 4: SensIT Training Time ... 38

Figure 5: RCV1 Training Time ... 39

Figure 6: SensIT Accuracy .. 40

Figure 7: RCV1 Accuracy ... 40

Figure 8: SensIT table of Statistics ... 42

Figure 9: RCV1 Table of Statistics ... 42

Figure 10: Average Run Time ... 43

Figure 11: Average Classification Accuracy .. 43

CHAPTER 1: INTRODUCTION

1.1 Subject

Big Data has affected the way statistical analysis is being conducted. Many real-world

datasets contain hundreds or thousands of variables of interest which can contain

hundreds of thousands or millions of records. Time spent on reading/writing between

memory and disk becomes the bottleneck, rendering most algorithms inefficient (Yu et al.

2012). Even with the growing memory sizes of computers, a large data set can still be

problematic. As a consequence, the complexity of analysis increasingly becomes

unmanageable by using traditional machine learning algorithms. To extract useful

knowledge from dense data makes the task of analysis time consuming. Coupled with

the fact that most algorithms use a iteration process that cycles through the dataset

multiple times, the process is seemingly impossible to finish.

In the past, classification models have been shown to handle large amounts of data

well, and several optimization techniques have been applied to efficiently train data

intensive models (Aly 2005). However the performance of these algorithms begins to

decline when the data cannot be processed into memory (Yu et al. 2012). In these cases,

training techniques that deal well with memory limitations become critical.

Recent progress has been made in the development of techniques to optimize over

memory constrained systems. Presently there exists an influx of algorithms that optimize

with processing constraints in the literature available. Yu et al. (2012) draws comparisons

from large-scale solvers with or without memory constraints. The results from the

1

comparison suggest that performance wise both cases yielded similar results. Similar

findings were discussed in Langford and Zhang (2009), when online algorithms were

tested. This thesis will review the methodology behind these more recent memory

constrained optimization algorithms in a classification framework.

1.2 Purpose

Within the literature a gap exists in the documentation of large scale coordinate descent

algorithms for multi-class classification with memory constraints. The purpose of this

paper is to provide a significant review of the existing methods, providing details about

the theory, implementation, and overall performance of the algorithms. In addition the

algorithms will be compared, testing the speed and classification accuracy of the multi-

class solvers. In the end this thesis is intended to “fill the gap” that is currently present

in the literature.

1.3 Scope and Limitations

This research will provide significant contribution to the academic community. The

review presented will detail the theories supporting multi-class classification, the

framework of such algorithms, testing results, as well as a comparison of the performance

measured. As the research is not limited to a single application, it will act as a reference

to various implementations outside the scope of this review. Every study has some

limitations that narrow the scope of a research. The limitations of this research are

2

discussed as follows:

 As the study is based on two datasets, there is limitation of generalizing the results on the

basis of a small sample size. It may not be appropriate to do so.

 The research is based on the premise that entire dataset cannot fit into memory. The

availability of memory available will alter the performance of the multi-class solvers,

which again makes the generalization part difficult as we are talking about all cases with

memory constraints.

 Further the availability of time and resource poses another limitation as classification

problems extend beyond the scope of this paper. It is not possible to conduct a research

on whole of the multi-class classification and thus the findings of the study depend upon

the availability of data with reference to time and accessibility.

1.4 Plan of Development

The paper is organized in the following manner: Chapter 2 provides a literature review of

existing work. Chapter 3 presents methodology behind the approach taken in this thesis.

In the next chapter, Chapter 4 draws comparison between the Large-Scale Coordinate

Descent Algorithms for Multi-class Classification with Memory Constraints. Results and

discussions follow in Chapter 5, and finally the conclusion in Chapter 6. This thesis lists

references last.

3

CHAPTER 2: LITERATURE REVIEW

2.1 Definitions

Supervised learning is mainly concerned with predicting class information based on

observed information. For example, predicting part-of-speech based on sentences. It

employs statistical methods to construct a prediction rule from labeled training data.

Data is comprised of points, called instances that are described by their values on some

set of features. The space that these instances live in is called the feature space, and is

typically denoted by X. The label of an instance is the predicted value of X, and denoted

as the space of possible labels Y (Bayes and Regression 2010).

Extension of a base learning problem is some unknown data distribution D over X × Y,

coupled with a loss function ℓ(y′, y) measuring the loss of predicting y when the true label

is y′. The loss function is a function that maps an event onto a real number intuitively

representing some “cost” associated with the event (Li and Yang 2003). Typically it is

used for parameter estimation, and the event in question is some function of the

difference between estimated and true values for an instance of data.

The learning problem is solved by a learning algorithm, which takes a set of labeled

training instances of the form (x, y) ∈ X × Y and produces a predictor f: X → Y.

 E(x,y)∼D ℓ (f (x), y) (1)

The goal of the algorithm is to find the f such that, the expected loss is minimized (1).

4

2.2 Binary Classification

There are two base learning problems, defined for any feature space X: a regression and a

binary classification problem. In this thesis only the binary classification problem is

reviewed, more information about regression can be found in the work by Montgomery,

Peck and Vining (2012).

A binary classification problem is defined by a distribution D over X ×Y, where the

labels are assigned in only two classes, Y = {0, 1}. The goal of binary classification is to

predict an unobserved binary label Y (Beygelzimer, Langford, and Zadrozny 2008).

 e(h, D) = Pr(x,y)∼D [h(x) ≠ y] (2)

By minimizing the error rate on D (2), a classifier h: X → Y is learned

A general binary classification method used to learn a real-valued loss function f(x),

where ℝ d → R such that a classification rule (3) is induced.

 h(x) = {
 1 𝑓(x) > 0
 −1 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

In supervised learning, the classifier h(x), or its loss function f(x), is learned from a set of

labeled examples {(x1, y1) … (xn,yn)} referred to as the training dataset. Its performance

(classification error) should be evaluated on a separate set of correctly labeled data called

the testing dataset.

5

2.3 Multi-class Classification

The principles of multi-class classification are founded upon the same principles of

binary classification. Each case involves assigning a class label for each instance present.

In the case of multi-class classification however, the label is assigned from a set that has

more than two classes.

Formally, a k-class classification problem is defined by a distribution D over X × Y,

where X is some feature space and Y = {1 . . . k} is the set of possible labels. The goal is

to find a classifier h: X → Y minimizing the error rate on D (Beygelzimer, Langford and

Zadrozny 2008).

A common approach used in multiclass learning is based on the reduction of a multi-

class problem to a set of multiple binary classification problems (Bartlett and Tewari

2007). The process entails a transformation of a single problem into a set of multiple

problems before being solved. Reduction approaches are best suited for binary learning

algorithm, batch learning, online learning as well as any Bayesian based learning

algorithm.

After the binary classification problems have been solved, the resulting set of binary

classifiers must then be combined in some way. The studies conducted in this thesis will

review the general framework of learning algorithms that unify all of these methods of

reducing a multiclass problem to a binary problem.

6

2.3.1 One-Against-All

Perhaps the simplest such scheme is one-against-all (OAA). For a k-class problem the

OAA method constructs k models, where each model separates a class from the rest. The

i
th model is trained with all of the binary instances pertaining to the i

th class (Liu, Wang,

and Zeng 2007). The final output of the one-against-all method is the class that

corresponds to the highest output value. The general algorithm for OAA solvers is

presented in Algorithm 1.

Algorithm 1 One-Against All

(Set of k-class training examples S, binary classifier learning algorithm A)

1. Set S′ = Ø

2. For all (x, y) ∈ S

 2.1 For all i ∈ {1, . . . , k}

 2.2 Add a binary example (x, i , 1(y = i)) to S′

3. Return h = A(S′)

Build k different binary classifiers. For the ith classifier, let the positive examples be all

the points in class i, and let the negative examples be all the points not in class i. Let fi be

the ith classifier. Classify with:

 𝑓(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥
 𝑖

𝑓𝑖 (𝑥) (4)

7

The OAA approach to classification presented in Algorithm 1 does not learn k separate

classifiers, only a single combined classifier on the union of all training data is learned

(Rifkin and Klautau 2004). The binary reduction applied in this framework maps multi-

class instances to binary instances, in principle transforming the original multiclass

distribution D into an induced binary distribution D′. To draw a sample from D′, a

multiclass example (x, y) from D is drawn as well as a random index i ∈ {1 . . . n}, and

output (x, i›, 1(y = i)).

2.3.2 Pairwise comparison

Another approach used for multiclass to binary reductions is based on comparing only

pairs of classes (Beygelzimer, Langford and Ravikumar 2009). The All-Pairs reduction

starts by constructing 2 binary classifiers, one for every pair of classes. Given a training

dataset S = {(x, y)}, the binary classifier for the (i, j) class pair is trained with dataset {(x,

1(y = i)) and y = i or j} to discriminate between classes i and j. Given a test instance, each

of the binary classifiers predicts a winner amongst its two classes, and the class with the

highest number of wins is chosen as the multiclass prediction, with ties broken randomly.

 𝑓(𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑖(∑ 𝑓𝑖𝑗 (𝑥)) (5)

Build k (k-1) classifiers, one classifier to distinguish each pair of classes i and j. Let fij

be the classifier where class i are positive instances and class j are negative.

8

Beygelzimer, Langford, and Ravikumar (2009) propose the use of Error Correcting

Tournaments (ECT) classifiers to solve for pairwise comparisons. The m-elimination

tournament solves for the weighted classification problem in two phases. The first phase

consists of m single-elimination tournaments over the k labels where a label is paired

against another label at most once per round. Once an example has lost m times, it is

eliminated and no longer influences. The second phase is a final elimination phase,

where the winner is selected from the m winners of the first phase, usually by a single-

elimination tournament that weighs the m winners based on the degree of redundancy.

2.4 Coordinate Descent

Algorithms use an optimization scheme to efficiently solve the multi-class learning

problem and select the best label (with regard to some criteria) from some set of available

alternatives (Bouman and Sauer 1996). In the simplest case, an optimization problem

consists of maximizing or minimizing a real function by methodically choosing input

values from within an allowed set and computing the value of the function. An

optimization problem is solved when an element x0 in D is found, given a function f(x):

D → ℝ, such that for all x in D:

 f(x0) ≤ f(x) (minimization) or f(x0) ≥ f(x) (maximization) (6)

Here the function f(x) is termed the objective function. A possible solution that minimizes

9

(or maximizes) the objective function is called an optimal solution. The solution to the

optimization problem is generally located through an iterative process (Liu, Wang, and

Zeng 2007). The procedure generates a sequence of improving approximate solutions for

a class of problems and continues until some subsequence of iterations converges to the

optimal solution.

2.4.1 Line Search

In optimization, the line search strategy is a basic iterative approach that finds an optimal

solution to the objective function. The line search approach first finds a descent direction

along which the objective function f(x) will be reduced and then computes a step size that

determines how far x should move along that direction. The descent direction is referred

to as coordinate descent and can be computed by various methods, such as cyclical

descent and gradient descent (Jovanovich and Lazar 2012).

Cyclical descent is based on the idea that the minimization of a multivariable function

f(x) can be achieved by minimizing it along one direction at a time with respect to the

coordinate variables (Friedman, Hastie and Tibshirani 2010). Through cyclically iterative

steps, each direction sequentially minimizes the objective function.

Gradient descent is an optimization algorithm that finds a local minimum of a function

using the points in the direction of the greatest rate of increase of the scalar field

(Langford, Li, and Zhang 2009). Steps are taken proportionally to the negative of the

gradient of the function f(x) at the current point.

10

2.5 Related Work

In this section related work is discussed pertaining to comparisons of Large-scale

Classification problems. The topic has compiled a comprehensive library primarily for

binary classification. As such there seems to be a gap in knowledge pertaining to multi-

class classification. The techniques used for the comparisons were derived from strategies

implemented in related work.

Yu et al. first introduced a comparison for large linear classification in his paper

published in 2012. His comparison of SVM solvers and online-learning algorithms only

extended to binary classification. The study defined one assumption that is significant in

our comparison. Assuming that the amount of available memory is limited, entire

datasets cannot be stored in memory, but can be stored in the disk of one computer. The

size of the datasets used in this paper is large enough to satisfying this constraint, and

must be accessed through the hard drive where they are stored.

Multi-class classification was addressed in the paper by Chang and Roth (2011). In the

paper comparisons were drawn from both batch learning as well as online-learning

algorithms. Unfortunately Vowpal Wabbit at that time was limited to binary classification

and no comparisons were drawn. Instead the focus was primarily on block minimizing

algorithms, of which LIBLINEAR was deemed superior to several other algorithms.

Recently Jovanovich and Lazar (2013) implemented a comparison of batch vs. online

learning in a multi-class setting with limited memory.

11

CHAPTER 3: METHODOLOGY

A more challenging situation for large linear classification is to deal with data sets that

cannot fit in memory. Prevailing training algorithms often need to iteratively access data,

so without enough memory, the training time will be huge (Yu et al. 2012). Handling

data beyond the memory capacity remains a challenging research issue. According to

Langford et al. (2009), present approaches to handle large data can be roughly

categorized to two types. The first approach solves classification problems through batch

learning. The second approach considers online learning algorithms. Because data may be

used only once, this type of method can effectively handle the memory issue. Both

algorithms attempt to solve the classification problem of assigning labels from Y to

instances X (Bartlett and Tewari 2007).

3.1 Block Minimization

Optimization through block minimization has been used in the past to efficiently deal

with data to large too fit into memory. The process entails using an optimization

technique based on block minimization. The term “block” refers to partitions of the

dataset that can be read through the memory available. The size and content of each

block varies from approach to approach. Pérez-Cruz, Figueiras, and Artes (2004)

propose the use of “double chunking,” where data is partitioned into both “large chunks”

and “small chunks.” Another approach described by Chang and Roth (2011) uses

selective sampling for block minimization. By selecting only significant instances, the

12

goal is to minimize the size of data blocks and speed up the iteration process. The sizes

of the blocks are determined by the known memory constraints. Each instance is read

and randomly assigned a block.

Algorithm 2 explains the process for data splitting. Yu et al. (2012) suggest a

framework for block minimization that is also used for testing in this thesis. In this

approach the amount of memory available for processing correlates to the size of blocks.

The framework consists of 2 steps that split the data and read the blocks into memory,

before solving for classification through an iterative process. The algorithm can be

summarized as following:

Algorithm 2 Framework for Block Splitting

1. Decide m and create m empty files

2. For i = 1…

 2.1 Convert xi to a binary format xi.

 2.2 Randomly choose number j {1... m}.

 2.3 append xi into the end of the jth
 file.

The goal is to solve this problem in a way that (a) allows for each block B stored in files

to be handled individually by the processor or machine, and (b) does not involve transfer

of the block over the network.

Block minimization is a classical method of machine learning (Bertsekas 1999). Each

step of this method updates a block of features, and is modified here to corresponding

13

blocks of a contiguous chunk of data. The block minimization framework is summarized

in Algorithm 3. The step of working on a single block is denoted as an inner iteration,

while the m steps of going over all blocks as an outer iteration.

Algorithm 3 Block Coordinate Descent

 1. Split {1, . . . , l} to B1 , . . . , Bm and store data into m files accordingly.

2. Set initial α or w

3. For k = 1,2, . . . (outer iteration)

 For j = 1, 2, . . . , m (inner iteration)

 3.1. Read xr , ∀r ∈ Bj from disk

 3.2 conduct operation on {xr | r ∈ Bj}

 3.3 Update α or w

Let {B1. . . Bm } be a partition of all data indices {1, . . . , l}. The block size is adjusted

according to the memory constraint so that Bj can fit in memory. These m blocks, are

stored as m files and are loaded when required (Chang and Roth 2011). Then at each step

operations are implemented using one block of data, followed by an update to w or α

according to if the primal or the dual problem is measured. The iteration round is then

complete. The process will continue, repeating the iteration steps until the algorithm

converges at the optimal solution.

14

3.1.1 Support Vector Machines Learning

One of the most prominent learning algorithms associated with block minimization is

Support Vector Machines (SVMs) learning. Proposed by Cortes and Vapnik in 1995, the

algorithm has since grown into one of the most widely used learning algorithm in the

world (Bottou and Lin 2007). The implementation and broad uses of SVMs have been

well documented in the years since past.

SVMs are studied in this work for the reason that it is one of the most used classifiers.

Given a training set {(xi , yi)} , xi ∈ Rn, yi ∈ {−1, +1}, SVMs solve the following

optimization problem:

𝑚𝑖𝑛

1

2
𝑤
𝑇𝑤 + 𝐶∑𝜉(𝑤; 𝑥 𝑖

 , 𝑦 𝑖
)

𝑖

 (7)

where ξ(𝑤; 𝑥 𝑖 , 𝑦 𝑖) is a loss function, C > 0 is a penalty parameter (Chang et al. 2008).

Equation (7) is often referred to as the primal form of SVMs.

In order to optimize through block minimization only the dual form of SVMs must be

used (Chang and Roth 2011). By examining the dual form of the optimization problem

the entire algorithm is written in terms of only inner products between input feature

vectors. Updates to the weight vector w, which corresponds to the entire data set treating

instances uniformly prevent the primal form of SVMs to be used (Shalev-Shwartz et al.

15

2007). Solving the dual problem generates efficient learning in very high dimensional

spaces. The framework for solving the dual SVMs is presented in Algorithm 4.

Algorithm 4 Framework for Dual SVMs

 (Details are shown for steps 3.2 and 3.3)

 3.2 Exactly or approximately solve the sub-problem (1) to obtain d ∗
𝐵𝑗

 Where αBj ← αBj + d 𝐵𝑗 ∗

 3.3 Update w by (3)

Let Bj = {1 . . . , l}\Bj and d�̅�j be the sub-vector of d comprising di, i ∈ Bj. At each inner

iteration step the following sub-problem is solved:

 𝑑�̅�𝑗
𝑚𝑖𝑛 f (α + d)

 Subject to: dBj = 0 and 0 ≤ αi + di ≤ C, ∀ ∈ Bj (8)

αBj is updated by solving (8) for each block. The iteration round k is then complete after

w is updated. To update w, if dBj is an optimal solution for the sub-problem, then:

 𝑤 ← 𝑤 + ∑ 𝑑
∗ 𝑦

 𝑥

 ∈𝐵𝑗

 (9)

16

while solving for the objective function (10).

 𝑤 ≡∑𝛼 𝑖
 𝑦 𝑖

 𝑥 𝑖

𝑖

 (10)

The iteration process continues until optimization is reached, converging when one of

two conditions is met (Yu et al. 2012). The first condition states that optimization is

complete when the sub-problem for each block is solved and the solutions converge. The

second condition is a stopping criterion. Usually a finite number of iterations are chosen,

or an accuracy threshold is obtained.

 LIBLINEAR addresses both conditions while solving for the sub-problem (8). The

software contains a library with tools used for SVM classification when data cannot fit

into memory (Yu et al. 2012). By sequentially selecting one variable for update and fixes

others inside the block the memory constraint can be solved. The framework shown in

this paper is explained by Yu et al. (2012). LIBLINEAR uses a SVM coordinate descent

method and solver to update instances in block Bj before solving for algorithm 4.

Using reduction scheme discussed early (from multi-class to binary), the Dual SVM

framework from Algorithm 4 is implemented. If data can fit in memory the optimization

problem by Crammer and Singer (2002) can be solved by a dual coordinate descent

method, which is available in LIBLINAR.

17

Algorithm 5: One-Against-All Multi-class Block Minimization Framework

(We assume the k class labels are 1 . . . k)

1. Split {1 . . . l} to B1 . . . Bm, and store data into m files accordingly

2. Set initial α1 . . . αK and w1. . . wK , where k is the number of classes

3. For k = 1, 2 . . . (outer iteration)

 For j = 1. . . m (inner iteration)

 3.1. Read xr, ∀r ∈ Bj from disk

 3.2. For t = 1 . . . K

 3.2.1. Use Bj ≡ {xr | r ∈ Bj and yr = t} as positive and Bj\𝐵𝑗𝑡 as negative data

 3.2.2. Conduct certain training operations, and update α 𝑡and 𝑤 𝑡

To apply the one-against-the rest approach for a k-class problem, k classifiers must be

trained. An implementation to save the disk access time is to train k models together and

not separate. Each block Bj to 𝐵𝑗 . . . 𝐵𝑗𝐾 is partitioned according to the class

information. Then, K sub-problems are solved simultaneously using 𝐵𝑗𝑡 as positive data

and Bj \ 𝐵𝑗𝑡 as negative data to update vectors wt and αt.

3.2 Online Learning

Online learning algorithms were proposed as fast alternatives to SVMs. Online learning

algorithms are used to efficiently classify data by building a weight model derived from

sequentially received training instances. Compared to block minimization which solves

18

for the sub-problem of each block, online learning updates instances through the use of a

cache file. Each iteration round updates the cache file where the weight model is stored.

The algorithm classifies each instance, and uses the new “instance-label pair” to update

and improve the stored model (Tewari and Bartlett 2007). This method is expected to

accurately predict the labels of instances that are not part of the training set. The

framework for the general online learner proposed by Beygelzimer, Langford and

Zadrozny (2008) is presented in Algorithm 6 below.

Algorithm 6 Online-learning

(In the setting of standard online learning, we are interested in sequential prediction

problems where repeatedly from i = 1, 2 . . .)

1. An unlabeled example xi arrives

2. We make a prediction based on existing weights wi ∈ R
d

3. We observe yi, let zi = (xi, yi), and incur some known loss L(wi, zi) that is convex in

parameter wi

4. Update weights according to some rule wi+1 ← f (wi)

By finding the update rule f(x), the sum of loses will be bound (11).

 ∑𝐿(

𝑇

𝑖

𝑤𝑖
 , 𝑧𝑖
) (11)

19

More formally, an online algorithm descends through the dataset in a sequence of trials.

Each trial can be decomposed into three steps. First the algorithm receives an instance.

Second the algorithm predicts the label of the instance. Third the algorithm receives the

true label of the instance (fan et al. 2008). The third stage is the most crucial as the

algorithm can use this label feedback to update its hypothesis for future trials. The goal of

the algorithm is to minimize some performance criteria. Because on-line learning

algorithms continually receive label feedback, the algorithms are able to adapt and learn

in difficult situations (Shalev-Shwartz et al. 2007). Many online algorithms can give

strong guarantees on performance even when the instances are not generated by a

distribution. As long as a reasonably good classifier exists, the online algorithm will learn

to predict correct labels.

The concept of online learning has long been used by researchers. Various strategies

were proposed to optimize online learning algorithms, most of which extend the original

purpose of binary classification to multi-class learning. In the literature, the Lasso

algorithm (Tibshirani, 1996) is commonly used to achieve optimization. The algorithm

implements a loss function bound by a convex constraint ‖𝑤‖
 ≤ 𝑠. Furthermore a soft

regularization constraint can be bound by (12).

 𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛

∑𝐿(

𝑇

𝑖

𝑤𝑖
 , 𝑧𝑖
) + 𝑔‖𝑤‖

 (12)

20

 More recently, Duchi and Singer (2008) propose a framework for empirical risk

minimization with regularization called Forward Looking Sub gradients, where a

regularized optimization problem is solved after every gradient-descent step. Shalev-

Shwartz et al. (2007) exploited the dual formation of optimization to create a more

efficient online learning algorithm. The Forgetron algorithm proposed by Dekel et al.

(2006) is an online-learning algorithm that manages memory use by decaying the weights

on previous examples and then rounding these weights to zero when they become small.

The algorithm can perform well when a hyper plane exists that splits the data into two

categories. This algorithm can be modified to allow infrequently change during the online

learning trials. A Bayesian approach to learning is taken by Balakrishnan and Madigan

(2008), where they approximate the posterior by a Gaussian distribution.

3.2.1 Gradient Descent

Online learning methods are very closely related to stochastic gradient methods, as they

operate on only one single instance at each iteration step (Langford, Li, and Zhang 2009).

Furthermore, many online learning rules can be perceived as an implementation of a

stochastic gradient descent. Such methods have strong associations to the predictor,

without minimize the SVM objective. Online Gradient Descent solves (7) with a

different loss function (13).

 max(-yiwTxi, 0) (13)

21

Both SVM (9) and SGD (13) maintain weight w, but they take different directions

through the optimization process. The optimal solution is presented in (14).

 w ← w – ηΔw(𝑦𝑖 , 𝑥𝑖) (14)

The parameter η > 0 in (14) is often referred to as the learning rate. ηΔw(𝑦𝑖 , 𝑥𝑖) is a sub-

gradient of the objective function (15).

 w
T
w/2 + Cmax(1-yiw

T
xi, 0) (15)

The above method has been widely used in online learning (Langford, Li, and Zhang

2009). One of the most widely successful implementation of online learning is Vowpal

Wabbit (VW). John Langford and his colleagues at Yahoo! Research developed the

package, a fast online-learning algorithm that uses stochastic gradient descent to handle

very large datasets without ever needing to load the entire dataset into memory. The

algorithm also requires less computational power and far fewer resources by learning

through online gradient descent (Langford, Li, and Zhang, 2009). The algorithm includes

functions for multi-class classification solvers OAA as well as ECT.

Vowpal Wabbit is said to be efficient for solving batch problems when optimization of

the online algorithm over training data requires several iterations. The idea has been

successfully applied to large-scale SVM formulations (Shalev-Shwartz et al., 2007).

22

CHAPTER 4: COMPARISON

In the present study, interest was primarily focused on the responsiveness of coordinate

descent algorithms to train and predict classification of multi-class large-scale datasets.

4.1 Large-scale

Big Data is a collection of data sets so large and complex that it becomes difficult to

process using traditional data processing applications (Howe et al. 2008). The challenges

include capture, storage, search, analysis, and visualization. The trend to larger data sets

is due to the additional information derivable from analysis of a single large set of related

data.

Datasets grow in size in part because they are increasingly being gathered by a growing

array of technology that includes: mobile devices, remote sensing, software logs,

cameras, microphones, and wireless sensor networks Howe et al. (2008). The world's

technological per-capita capacity to store information has roughly doubled every 3 years

for the last 50 years, and as of 2012, every day 2.5 quintillion (2.5×1018) bytes of data

were created.

In a research report Laney (2001) defined data growth challenges and opportunities as

being three-dimensional, i.e. increasing volume (amount of data), velocity (speed of data

in and out), and variety (range of data types and sources). Using this definition, the

comparison presented will be based on two data sets of varying size and data types.

23

Figure 1: SensIT Class Frequency

4.1.1 SensIT Dataset

The SensIT Vehicle dataset is comprised of instances labeled as one of three classes. The

data was extracted from sensor data collected during a real world experiment carried out

at Twenty nine Palms, CA in November of 2001 (Duarte and Hu 2004). The sensors were

used to obtain both acoustic and seismic activity from vehicles in the vicinity. Each

vehicle was driven around a road while sensors collected information as they passed.

Classes included in the training set presented in Figure 1 included: AAV3 (class 1), DW3

(class 2), and a third class for noise (class 3). In total there are 78,823 training samples,

19,705 testing samples and 50 features were extracted.

24

Figure 2: RCV1 Class Frequency

4.1.2 RCV1 Dataset

The RCV1 dataset (Figure 2) was used in part due to its 53-class problem. The RCV1

dataset is one of the most widely used test collection for text categorization research

(Lewis et al. 2004). Reuters is the largest text and television news agency in the world.

The editorial division produces some 11,000 stories a day in 23 languages. Stories are

both distributed in real time and made available through online databases. The stories

cover the range of content typical of a large English language international newswire, and

vary from a few hundred to several thousand words in length. Figure 3 shows an example

story.

25

<?xml version="1.0" encoding="iso-8859-1" ?>

<newsitem itemid="2330" id="root" date="1996-08-20"

xml:lang="en">

<title>USA: Tylan stock jumps; weighs sale of company.</title>

<headline>Tylan stock jumps; weighs sale of company.</headline>

<dateline>SAN DIEGO</dateline>

<text>

<p>The stock of Tylan General Inc. jumped Tuesday after the maker

of

process-management equipment said it is exploring the sale of the

company and added that it has already received some inquiries

from

potential buyers.</p>

<p>Tylan was up $2.50 to $12.75 in early trading on the Nasdaq

market.</p>

<p>The company said it has set up a committee of directors to

oversee

the sale and that Goldman, Sachs & Co. has been retained as

its

financial adviser.</p>

</text>

<copyright>(c) Reuters Limited 1996</copyright>

<metadata>

<codes class="bip:countries:1.0">

<code code="USA"> </code>

</codes>

<codes class="bip:industries:1.0">

<code code="I34420"> </code>

</codes>

<codes class="bip:topics:1.0">

<code code="C15"> </code>

<code code="C152"> </code>

<code code="C18"> </code>

<code code="C181"> </code>

<code code="CCAT"> </code>

</codes>

<dc element="dc.publisher" value="Reuters Holdings Plc"/>

<dc element="dc.date.published" value="1996-08-20"/>

<dc element="dc.source" value="Reuters"/>

<dc element="dc.creator.location" value="SAN DIEGO"/>

<dc element="dc.creator.location.country.name" value="USA"/>

<dc element="dc.source" value="Reuters"/>

</metadata>

</newsitem>

Figure 3: Reuters Corpus Volume 1 Document

26

RCV1 is extracted from one of the online databases. It was intended to consist only of

English language stories produced by Reuter’s journalists between August 20, 1996, and

August 19, 1997. It contains in total 534,135 manually categorized newswire stories. The

dataset is divided into 518,571 training documents and 15,564 test documents, and

contains 47,236 features (Lewis et al. 2004). Preparation of the dataset involved

substantial verification and validation of the content, as well as attempts to remove false

or duplicated documents.

4.2 Study Design

The study was designed to review not only the theory but the implementation and

efficiency of the large-scale coordinate descent learning algorithms for multi-class

classification problems when memory is limited. To ensure optimum performance and

reliability the algorithms were compiled in C++ and run under the Linux operating

system. To ensure the memory constraint condition, the hardware was scaled down to an

Asus 5750G laptop. The CPU processor was limited to 2.2 GHz and only 6 GB of DDR3

was made available.

4.3 Outcome Measures

Classification predictions and processing time for training was recorded at the end of

every iteration step. They were obtained from the best of three runs using the minimum

value measure. In addition an overall assessment of efficiency was obtained for the

27

optimum solution at the stopping threshold of 78 iterations by ranking the performance

measures using a 3 point response scale ranging from best to worst.

4.4 Performance Measures

Performance measurement estimates the parameters under which algorithms converge at

the optimal solution. The efficiency of the algorithms can be viewed as a process to

reduce resource consumptions, including training time and accuracy.

4.4.1 Accuracy

It is surprisingly difficult to arrive at an adequate definition and measurement of

accuracy. The best test of a classifier's value is its future performance (generalization), i.e.

correctly classifying instances. Generalization is linked to classifier design,

implementation and testing (Joachims 2001). Overall, complex classifiers fit 'noise' in

the training data, consequently lowering the accuracy when presented with instances.

Every so often it is necessary to accept reduced accuracy on the training data if it leads to

increased accuracy.

Focusing on the generalization of a classifier differs from traditional statistical

approaches which are usually judged by coefficient p-values or some overall goodness of

fit such as R2 (Stevens 2012). The statistical focus relates to the fit of the data to some

pre-defined model and does not explicitly test performance on future data, generally

because of the assumptions made about the parameters estimated by the statistics.

28

4.4.2 Training Time

Besides the classification performance, the training time is a second key factor that

affects the aptness of a classification algorithm regarding an unknown dataset. An

algorithm with a slightly lower accuracy is maybe preferred if its training time is

significantly lower (Reif, Shafait and Dengel 2011). Additionally, an estimation of the

required training time of a pattern recognition task is very useful if the result has to be

available in a certain amount of time.

4.5 Analysis

Analysis of Large-Scale Coordinate Descent Algorithms for Multi-class Classification

with Memory Constraints can be broken down into two main components, testing over

SensIT dataset and testing over RCV1 dataset. The size of the SensIT dataset (training

instances and features) is significantly smaller than RCV1, providing a baseline for

performance measures. Pechyony, Shen and Jones state that using more samples and

adding more features will boost performance in optimization. Following their lead, the

comparisons made in this thesis follow the same structure.

 Both LIBLINEAR and VOWPAL WABBIT support the coordinate descent

algorithms discussed in this study. Multi-class Online Solvers OAA and ECT are

implemented in VW, while Batch OAA is the primary solver for LIBLINEAR.

29

CHAPTER 5: RESULTS AND DISCUSSION

5.1 Datasets

Before the experiment can be run using the LIBLINEAR, the training dataset must be

partitioned into smaller blocks. The optimal number of partitions was discovered to be 4

when training over the SensIT dataset and 8 blocks for the RCV1 dataset. Each block

contains an even distribution of instances spread out across the partitions. Vowpal Wabbit

on the other hand uses a cache file which fulfills the memory constraint without any

parameter adjustments. The dataset does not need to be split or compressed; VW can

access each instance without reading the entire datasets into memory.

5.1.1 Format

Both Datasets used in this thesis are available for download from LIBSVM Datasets

webpage (Chang and Lin 2011). To date RCV1 is the largest available multi-class

classification dataset in the database. This page contains a database of various

classification, regression, and multi-label datasets stored in LIBSVM format (16).

 <class/target> [<attribute number> :< attribute value>]* (16)

30

For most sets, the scale for each attribute is set to [-1, 1] or [0, 1]. The testing data (if

provided) is adjusted accordingly. The format of the data corresponds to LIBSVM which

is able to be read by LIBLINEAR.

Vowpal Wabbit however reads data with a slightly different input format. The raw

(plain text) input data for VW should have one example per line (Langford, Li, and

Zhang 2009). Each example should be formatted according to the input format in (17).

 [Label] [Importance [Tag]]|Namespace Features |Namespace Features... (17)

 Where Namespace = String [: Value] and Features = (String [: Value])*

In order to convert the LIBSVM formatted dataset to VW input format a script was

written in C (18). The script can be implemented to seamlessly convert any LIBSVM

formatted dataset (i.e. binary and multi-class classification, regression, and multi-label)

into VW input format.

 Zless [dataset] $1 | sed –e ‘s/\s/ | /’ (18)

To create a label dataset to be used for predication accuracy, the script (19) was also

created and written in C.

 Cat [dataset] | cut –d ‘ ‘ –f 1 > [output.txt] (19)

31

5.2 Performance Measures

The performance measures for each iteration step are compared between the algorithms

discussed in the review. VW uses a Gradient Descent method that is implemented in both

VW OAA and VW ECT. Comparisons are made from the multi-class learners using

gradient descent. Online learning VW OAA will also be compared to the batch learning

LIBLINEAR OAA in terms of optimization approaches for limited memory constraints.

5.2.1 Training Time

Figure 4 shows the processing time per iterations over the SensIT dataset. The dataset

represents a simple scenario where binary classification is extended into a 3-class

problem.

Figure 4: SensIT Training Time

0

20

40

60

80

100

120

140

Ti
m

e
 (

Se
co

n
d

s)

VW OAA LIBLINEAR VW ECT

32

Figure 5: RCV1 Training Time

On average for Figure 4, the runtime per iteration for Vowpal Wabbit solving with OAA

was the fastest averaging 0.36 seconds, while VW ETC came in second averaging 0.47

seconds. LIBLINEAR was a distant third averaging 1.48 seconds.

Figure 5 is consistent with the performances from the algorithms established with the

tests run over the SensIT dataset in Figures 4. Average runtime per iteration for VW

OAA increased to 27.26 seconds while LIBLINEAR took an average of 36 seconds per

iteration. VW ECT managed an astounding 4.12 seconds per iteration. VW OAA was

by far the most efficient classifier.

33

Figure 6: SensIT Accuracy

Figure 7: RCV1 Accuracy

34

5.2.2 Accuracy

While all algorithms scored over 80% over the SensIT dataset in Figure 6, accuracy

classifying testing instances VW ETC scored highest most consistently. The biggest

differences recorded can be seen between the first 5 iteration rounds. This is where the

optimization approaches can be distinguished. Vowpal Wabbit ETC begins to maintain a

constant accuracy as LIBLINEAR begins to degrade. As the Vowpal Wabbit algorithm

passes through the dataset and the weights are updated from the initial label, the accuracy

of classification begins to rise.

Moving on to the bigger dataset presented in Figure 7, the results indicate increased

performance in both accuracy and speed. Classification accuracy raised an average of

8% when comparing the results of Figure 6 to 7. The larger dataset has had a positive

impact on the accuracy rate of classification for the two algorithms. In this case, the lager

dataset yields the highest accuracy rate when using LIBLINEAR. This is contrary to the

results found in the SensIT experiment, in which VW ETC yielded the highest

classification accuracy. In fact VWETC scored the lowest accuracy this time around.

5.3 Discussion

In both tests VW was 4 times as fast as LIBLINEAR. Both algorithms achieved higher

levels of performance solving for the larger RCV1 classification problem. Figures 8 and 9

provide tables with a more detailed look.

35

SensIT Dataset

Vowpal Wabbit LIBLINEAR ECT
Iteration Time Acc Iteration Time Acc Iteration Time Acc

1 1.28 79.86% 1 5.52 80.47% 1 0.58 80.43%
2 1.64 80.06% 2 8.00 80.47% 2 1.15 80.55%
3 2.05 80.12% 3 9.53 80.43% 3 1.62 80.55%
4 2.46 80.15% 4 11.25 80.46% 4 2.23 80.56%
5 2.87 80.16% 5 13.03 80.42% 5 2.69 80.56%
6 3.29 80.20% 6 15.43 80.43% 6 3.30 80.56%
7 3.56 80.19% 7 16.09 80.46% 7 4.17 80.56%
8 3.95 80.19% 8 17.27 80.43% 8 4.71 80.53%
9 4.40 80.19% 9 18.76 80.43% 9 4.60 80.55%
10 4.81 80.19% 10 20.14 80.47% 10 5.14 80.54%
20 7.13 80.24% 20 34.28 80.45% 20 10.17 80.55%
30 10.83 80.22% 30 48.93 80.43% 30 15.10 80.53%
50 17.52 80.27% 50 76.93 80.44% 50 25.44 80.53%
78 27.81 80.32% 78 116.56 80.43% 78 38.68 80.53%

Figure 8: SensIT table of Statistics

RCV1 Dataset

VW OAA LIBLINEAR VW ECT
Iteration Time Acc Iteration Time Acc Iteration Time Acc

1 13.38 90.74% 1 180 92.13% 1 4.438 87.10%
2 27.85 90.94% 2 217 92.12% 2 8.749 87.25%
3 40.27 90.93% 3 251 92.12% 3 12.58 87.02%
4 53.67 90.72% 4 284 92.12% 4 15.89 86.80%
5 68.16 90.65% 5 318 92.12% 5 20.67 86.61%
6 82.01 90.55% 6 351 92.14% 6 23.14 86.43%
7 94.48 90.48% 7 384 92.15% 7 28.61 86.24%
8 114.12 90.34% 8 418 92.22% 8 33.72 86.10%
9 126.81 90.25% 9 451 92.23% 9 37.98 85.94%

10 143.59 90.16% 10 484 92.23% 10 40.38 85.88%
20 279.09 89.64% 20 816 92.18% 20 83.36 85.02%
30 416.09 89.29% 30 1147 92.14% 30 133.537 84.34%
50 681.63 88.79% 50 1811 92.14% 50 205.133 83.51%
78 1052.34 88.34% 78 2825 92.14% 78 322 82.99%

Figure 9: RCV1 Table of Statistics

36

Iteration runtime of both algorithms experienced an increase in time when compared to

SensIT results. VW ECT was able to quickly optimize over the 78 step threshold limit,

averaging only 4 seconds per round. Average runtime from both datasets is presented in

Figure 10.

Average Time VW OAA LIBLINEAR VW ECT

SensIT 0.36s 1.5s 0.49s

RCV1 13.49s 36.22s 4.13s

 Total 6.925s 18.86s 2.31s

Figure 10: Average Run Time

Overall performance measures indicate the VW’s use of gradient descent is better suited

for large-scale classification with limited memory constraints. Figures 8 and 9 highlight

in blue the highest accuracy achieved for the algorithms. In the latter case, LIBLINEAR

achieved the highest accuracy rating recorded after iteration Round 9, where accuracy

peaked at 92.23%. The classification accuracy improved on average in Figure 11.

Average Accuracy VW OAA LIBLINEAR VW ECT

SensIT 80.16% 80.44% 80.54%

RCV1 90.13% 92.16% 85.80%

 Total 85% 86% 83%

Figure 11: Average Classification Accuracy

Lower rates of classification accuracy can be contributed to the smaller training dataset

size and lack of features. Frequency distribution presented in Figures 1 and 2 are

37

unbalanced, as such the classification accuracy over the smaller SensIT data set was

lower than the larger RCV1 dataset. The increase in instances correlated with the

accuracy of overall classification. As more instances were added, classification accuracy

improved.

38

Chapter 6: Conclusions

The following question about Fast Learning large-scale multi-class classification can be

answered:

Question: Which algorithm is most efficient when there are constraints to the memory?

When compared, Vowpal Wabbit is the most efficient multi-class classification algorithm.

The results from the SensIT test case suggested that Vowpal Wabbit was the quicker

algorithm while maintaining a slightly lower accuracy percentile than LIBLINEAR.

Moving from the SensIT dataset to the larger RCV1, the results remained consistent. We

have concluded that Vowpal Wabbit had a slight advantage in overall efficiency when

there is a constraint placed of computer memory size. The Vowpal Wabbit OAA multi-

class solver was by far the most efficient, ranking high in every test.

Performance measured from the implemented algorithms yielded relatively close

results. Due to the small size of the experiment, further testing is needed for a thorough

comparison. Testing over datasets that are more expansive, both in sample and feature

size could be used for a more significant experiment. However, the size of the datasets

used in this paper is adequate to provide conclusive results for the comparisons made.

39

References

Aly, M. 2005. Survey on multiclass classification methods. Neural networks, 1-9.

Argyriou, A., Herbster, M., and Pontil, M. 2005. Combining graph Laplacians for semi-

supervised learning.

Bayes, N. and Regression, L. 2010. Fundamental Statistical Techniques. Handbook of

Natural Language Processing, 2: 189.

Bottou, L. and Lin, C. J. 2007. Support vector machine solvers. Large scale kernel

machines, 301-320.

Bouman, C. A. and Sauer, K. 1996. A unified approach to statistical tomography using

coordinate descent optimization. Image Processing, IEEE Transactions, 5(3): 480-492.

Chang, K. W., and Roth, D. 2011. Selective block minimization for faster convergence of

limited memory large-scale linear models. In Proceedings of the 17th ACM SIGKDD

international conference on Knowledge discovery and data mining, 699-707.

Chang, C. and Lin, C. 2011. LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2(3): 27:1--27:27. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Cortes, C. and Vapnik, V. 1995. Support-vector networks. Machine learning, 20(3): 273-

297.

Dekel, O. 2008. From online to batch learning with cutoff-averaging.

40

Douglas, L 2001. 3D Data Management: Controlling Data Volume, Velocity and Variety.

Duarte, M. F., and Hen Hu, Y. 2004. Vehicle classification in distributed sensor networks.

Journal of Parallel and Distributed Computing, 64(7): 826-838.

Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., and Lin, C. J. 2008. LIBLINEAR: A

library for large linear classification. The Journal of Machine Learning Research, 9:

1871-1874.

Friedman, J., Hastie, T., and Tibshirani, R. 2010. Regularization paths for generalized

linear models via coordinate descent. Journal of statistical software, 33(1): 1.

Francis, M. 2012. Future telescope array drives development of exabyte processing.

Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., and Rhee, S. Y.

2008. Big data: The future of biocuration. Nature, 455: 47-50.

Joachims, T. 2001. A statistical learning learning model of text classification for support

vector machines. In Proceedings of the 24th annual international ACM SIGIR conference

on Research and development in information retrieval, 128-136.

A. Jovanovich and A. Lazar 2013. Comparison of Fast Learning Large Scale Multi-Class

Classification. Midwest Artificial Intelligence and Cognitive Science Conference 2013.

A. Jovanovich and A. Lazar 2012. Comparison of Optimization Methods for L1-

regularized Logistic Regression. Midwest Artificial Intelligence and Cognitive Science

Conference 2012.

41

Langford, J., Li, L., and Zhang, T. 2009. Sparse online learning via truncated gradient.

The Journal of Machine Learning Research, 10: 777-801.

Lewis, D., Yang, Y., Rose, T., and Li, F. 2004. RCV1: A new benchmark collection for

text categorization research. Journal of Machine Learning Research, 5: 361-397.

Li, F. and Yang, Y. 2003. A loss function analysis for classification methods in text

categorization. In Machine Learning-International Workshop Then Conference. 20: 472.

Liu, Y., Wang, R., and Zeng, Y. S. 2007. An Improvement of One-Against-One Method

for Multi-class Support Vector Machine. In Machine Learning and Cybernetics, 2007

International Conference 5: 2915-2920.

Menon, A. K. 2009. Large-scale support vector machines: algorithms and theory.

Research Exam, University of California, San Diego.

Montgomery, D. C., Peck, E. A., and Vining, G. G. 2012. Introduction to linear regression

analysis. 821.

Pechyony, D., Shen, L., and Jones, R. Solving Large Scale Linear SVM with Distributed

Block Minimization.

Pérez-Cruz, F., Figueiras, A., and Artes, A. 2004. Double chunking for solving SVMs for

very large datasets.

Reif, M., Shafait, F., and Dengel, A. 2011. Prediction of classifier training time including

parameter optimization. In KI 2011: Advances in Artificial Intelligence, 260-271.

42

Rifkin, R. and Klautau, A. 2004. In defense of one-vs-all classification. The Journal of

Machine Learning Research, 5: 101-141.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. 2007. Pegasos: Primal estimated sub-

gradient solver for svm. In Proceedings of the 24th international conference on Machine

learning, 807-814.

Stevens, James P. Applied multivariate statistics for the social sciences. Routledge
Academic, 2012.

Tewari, A. and Bartlett, P. L. 2007. On the consistency of multiclass classification

methods. Journal of Machine Learning Research, 8: 1007-1025.

Yu, H. F., Hsieh, C. J., Chang, K. W., and Lin, C. J. 2012. Large linear classification

when data cannot fit in memory. ACM Transactions on Knowledge Discovery from Data,

TKDD 5(4): 23.

43

		2013-05-23T14:14:56-0400
	ETD Program

