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Abstract 

 

Big data can impact the performance of many standard measures used for classification.  

Specifically the efficiency of multi-class classification algorithms when the dataset is too 

large to fit into limited memory available needs to be explored.  Different algorithms with 

varying complexity have been proposed in the literature.  Two of the most recognized 

classification algorithms, batch learning and online learning have emerged as the most 

consistent options when solving for a multi-class problems.   Presently a gap in the 

documentation of such algorithms exists in the literature available.  Furthermore, the 

recent development of the online multi-class solver warrants a detailed examination.    

This thesis will address both concerns, providing detailed documentation of the analysis, 

comparisons of the algorithms, plots of the results, as well as a discussion about the 

findings. 

 

 

 

 

 

 

 

 
 



iv 
 

Acknowledgments 

 

First, I would like to thank my parents for allowing me to realize my own potential. All 

the support they have provided me over the years was the greatest gift anyone has ever 

given me.  

Also, I need to thank Carolyn O’Rourke my fiancée, who taught me the value of hard 

work and an education. Without her, I may never have gotten to where I am today. 

I would also like to acknowledge my committee members: Dr. Graciela Perera and 

Guang-Hwa Chang, who graciously agreed to serve on my committee. 

Finally, I would like to thank Alina Lazar, who took the time to share her knowledge 

and appreciation of machine learning. Also, for reading this thesis, for which I owe her a 

new box of pens.  

 

 

 

 

 

 

 

 

 

 



v 
 

Table of Contents 

 

 

Abstract ............................................................................................................................... 1 

Acknowledgments............................................................................................................... 2 

Table of Contents ................................................................................................................ 3 

List of Figures ..................................................................................................................... 6 

CHAPTER 1: INTRODUCTION ....................................................................................... 7 

1.1 Subject .................................................................................................................. 7 

1.2 Purpose ................................................................................................................. 8 

1.3 Scope and Limitations .......................................................................................... 8 

1.4 Plan of Development ............................................................................................ 9 

CHAPTER 2: LITERATURE REVIEW .......................................................................... 10 

2.1 Definitions .......................................................................................................... 10 

2.2 Binary Classification ...........................................................................................11 

2.3 Multi-class Classification ................................................................................... 12 

2.3.1 One-Against-All ............................................................................................. 13 

2.3.2 Pairwise comparison ....................................................................................... 14 

2.4 Coordinate Descent ............................................................................................ 15 



vi 
 

2.4.1 Line Search ..................................................................................................... 16 

2.5 Related Work ...................................................................................................... 17 

CHAPTER 3:  METHODOLOGY ................................................................................... 18 

3.1 Block Minimization............................................................................................ 18 

3.1.1 Support Vector Machines Learning ................................................................ 21 

3.2   Online Learning .................................................................................................... 24 

3.2.1 Gradient Descent ......................................................................................... 27 

CHAPTER 4:   COMPARISON ....................................................................................... 29 

4.1 Large-scale ......................................................................................................... 29 

4.1.1 SensIT Dataset ............................................................................................ 30 

4.1.2 RCV1 Dataset ............................................................................................. 31 

4.2 Study Design ...................................................................................................... 33 

4.3 Outcome Measures ............................................................................................. 33 

4.4 Performance Measures ....................................................................................... 34 

4.4.1 Accuracy ......................................................................................................... 34 

4.4.2 Training Time ................................................................................................. 35 

4.5 Analysis .............................................................................................................. 35 

CHAPTER 5: RESULTS AND DISCUSSION ................................................................ 36 

5.1 Datasets .............................................................................................................. 36 



vii 
 

5.1.1 Format ............................................................................................................. 36 

5.2 Performance Measures ....................................................................................... 38 

5.2.1 Training Time ................................................................................................. 38 

5.2.2 Accuracy ......................................................................................................... 41 

5.3 Discussion .......................................................................................................... 41 

Chapter 6: Conclusions ..................................................................................................... 45 

References ......................................................................................................................... 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                       viii 

  List of Figures  

 

Figure 1: SensIT Class Frequency .................................................................................... 30 

Figure 2: RCV1 Class Frequency ..................................................................................... 31 

Figure 3: Reuters Corpus Volume 1 Document ................................................................ 32 

Figure 4:  SensIT Training Time ....................................................................................... 38 

Figure 5: RCV1 Training Time ......................................................................................... 39 

Figure 6: SensIT Accuracy ................................................................................................ 40 

Figure 7: RCV1 Accuracy ................................................................................................. 40 

Figure 8: SensIT table of Statistics ................................................................................... 42 

Figure 9: RCV1 Table of Statistics ................................................................................... 42 

Figure 10: Average Run Time ........................................................................................... 43 

Figure 11:  Average Classification Accuracy .................................................................... 43 

 

 

 

 

 

 



 

CHAPTER 1: INTRODUCTION 

 

1.1 Subject 

 
Big Data has affected the way statistical analysis is being conducted.  Many real-world 

datasets contain hundreds or thousands of variables of interest which can contain 

hundreds of thousands or millions of records.  Time spent on reading/writing between 

memory and disk becomes the bottleneck, rendering most algorithms inefficient (Yu et al. 

2012).  Even with the growing memory sizes of computers, a large data set can still be 

problematic. As a consequence, the complexity of analysis increasingly becomes 

unmanageable by using traditional machine learning algorithms.  To extract useful 

knowledge from dense data makes the task of analysis time consuming.  Coupled with 

the fact that most algorithms use a iteration process that cycles through the dataset 

multiple times, the process is seemingly impossible to finish.   

In the past, classification models have been shown to handle large amounts of data 

well, and several optimization techniques have been applied to efficiently train data 

intensive models (Aly 2005). However the performance of these algorithms begins to 

decline when the data cannot be processed into memory (Yu et al. 2012). In these cases, 

training techniques that deal well with memory limitations become critical.  

Recent progress has been made in the development of techniques to optimize over 

memory constrained systems.  Presently there exists an influx of algorithms that optimize 

with processing constraints in the literature available.  Yu et al. (2012) draws comparisons 

from large-scale solvers with or without memory constraints.  The results from the 
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comparison suggest that performance wise both cases yielded similar results.  Similar 

findings were discussed in Langford and Zhang (2009), when online algorithms were 

tested.  This thesis will review the methodology behind these more recent memory 

constrained optimization algorithms in a classification framework. 

 

1.2 Purpose 

 
Within the literature a gap exists in the documentation of large scale coordinate descent 

algorithms for multi-class classification with memory constraints.  The purpose of this 

paper is to provide a significant review of the existing methods, providing details about 

the theory, implementation, and overall performance of the algorithms.  In addition the 

algorithms will be compared, testing the speed and classification accuracy of the multi-

class solvers.   In the end this thesis is intended to “fill the gap” that is currently present 

in the literature. 

 

1.3   Scope and Limitations 

 
This research will provide significant contribution to the academic community. The 

review presented will detail the theories supporting multi-class classification, the 

framework of such algorithms, testing results, as well as a comparison of the performance 

measured.   As the research is not limited to a single application, it will act as a reference 

to various implementations outside the scope of this review.   Every study has some 

limitations that narrow the scope of a research. The limitations of this research are 
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discussed as follows: 

 

 As the study is based on two datasets, there is limitation of generalizing the results on the 

basis of a small sample size. It may not be appropriate to do so. 

 

 The research is based on the premise that entire dataset cannot fit into memory.  The 

availability of memory available will alter the performance of the multi-class solvers, 

which again makes the generalization part difficult as we are talking about all cases with 

memory constraints. 

 

 Further the availability of time and resource poses another limitation as classification 

problems extend beyond the scope of this paper.  It is not possible to conduct a research 

on whole of the multi-class classification and thus the findings of the study depend upon 

the availability of data with reference to time and accessibility.  

 

1.4   Plan of Development 

 
The paper is organized in the following manner:  Chapter 2 provides a literature review of 

existing work.  Chapter 3 presents methodology behind the approach taken in this thesis.  

In the next chapter, Chapter 4 draws comparison between the Large-Scale Coordinate 

Descent Algorithms for Multi-class Classification with Memory Constraints.  Results and 

discussions follow in Chapter 5, and finally the conclusion in Chapter 6.  This thesis lists 

references last. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1   Definitions 

 
Supervised learning is mainly concerned with predicting class information based on 

observed information. For example, predicting part-of-speech based on sentences. It 

employs statistical methods to construct a prediction rule from labeled training data.  

Data is comprised of points, called instances that are described by their values on some 

set of features. The space that these instances live in is called the feature space, and is 

typically denoted by X. The label of an instance is the predicted value of X, and denoted 

as the space of possible labels Y (Bayes and Regression 2010).  

Extension of a base learning problem is some unknown data distribution D over X × Y, 

coupled with a loss function ℓ(y′, y) measuring the loss of predicting y when the true label 

is y′.  The loss function is a function that maps an event onto a real number intuitively 

representing some “cost” associated with the event (Li and Yang 2003). Typically it is 

used for parameter estimation, and the event in question is some function of the 

difference between estimated and true values for an instance of data.  

The learning problem is solved by a learning algorithm, which takes a set of labeled 

training instances of the form (x, y) ∈ X × Y and produces a predictor f: X → Y.  

 

  E(x,y)∼D ℓ ( f (x), y)                                                                                                (1) 

 

The goal of the algorithm is to find the f such that, the expected loss is minimized (1). 
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2.2   Binary Classification 

 

There are two base learning problems, defined for any feature space X: a regression and a 

binary classification problem.  In this thesis only the binary classification problem is 

reviewed, more information about regression can be found in the work by Montgomery, 

Peck and Vining (2012).  

A binary classification problem is defined by a distribution D over X ×Y, where the 

labels   are assigned in only two classes, Y = {0, 1}. The goal of binary classification is to 

predict an unobserved binary label Y (Beygelzimer, Langford, and Zadrozny 2008).   

 

 e(h, D) = Pr(x,y)∼D [ h(x) ≠ y]                                                                               (2) 

 

By minimizing the error rate on D (2), a classifier h: X → Y is learned  

A general binary classification method used to learn a real-valued loss function f(x), 

where ℝ d → R such that a classification rule (3) is induced. 

 

 h(x)  =  {  
 1        𝑓(x)  >  0    
 −1      𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒        

                                                                          (3) 

 

In supervised learning, the classifier h(x), or its loss function f(x), is learned from a set of 

labeled examples {(x1, y1) … (xn,yn)} referred to as the training dataset.  Its performance 

(classification error) should be evaluated on a separate set of correctly labeled data called 

the testing dataset. 
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2.3   Multi-class Classification 

 
The principles of multi-class classification are founded upon the same principles of 

binary classification.  Each case involves assigning a class label for each instance present. 

In the case of multi-class classification however, the label is assigned from a set that has 

more than two classes. 

 

Formally, a k-class classification problem is defined by a distribution D over X × Y, 

where X is some feature space and Y = {1 . . . k} is the set of possible labels. The goal is 

to find a classifier h: X → Y minimizing the error rate on D (Beygelzimer, Langford and 

Zadrozny 2008).   

 

A common approach used in multiclass learning is based on the reduction of a multi-

class problem to a set of multiple binary classification problems (Bartlett and Tewari 

2007).  The process entails a transformation of a single problem into a set of multiple 

problems before being solved.  Reduction approaches are best suited for binary learning 

algorithm, batch learning, online learning as well as any Bayesian based learning 

algorithm.  

After the binary classification problems have been solved, the resulting set of binary 

classifiers must then be combined in some way.  The studies conducted in this thesis will 

review the general framework of learning algorithms that unify all of these methods of 

reducing a multiclass problem to a binary problem. 
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2.3.1 One-Against-All 

 

Perhaps the simplest such scheme is one-against-all (OAA).  For a k-class problem the 

OAA method constructs k models, where each model separates a class from the rest. The 

i
th model is trained with all of the binary instances pertaining to the i

th class (Liu, Wang, 

and Zeng 2007).  The final output of the one-against-all method is the class that 

corresponds to the highest output value.  The general algorithm for OAA solvers is 

presented in Algorithm 1. 

 

Algorithm 1 One-Against All 

(Set of k-class training examples S, binary classifier learning algorithm A) 

1.  Set S′ = Ø 

2.  For all (x, y) ∈ S  

           2.1 For all i ∈ {1, . . . , k} 

           2.2 Add a binary example (x, i , 1(y = i)) to S′ 

3.  Return h = A(S′) 

 

Build k different binary classifiers. For the ith classifier, let the positive examples be all 

the points in class i, and let the negative examples be all the points not in class i.  Let fi be 

the ith classifier. Classify with:  

 

            𝑓(𝑥)  = 𝑎𝑟𝑔  𝑚𝑎𝑥
                                   𝑖

𝑓𝑖 (𝑥)                                                                                        (4) 
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The OAA approach to classification presented in Algorithm 1 does not learn k separate 

classifiers, only a single combined classifier on the union of all training data is learned 

(Rifkin and Klautau 2004). The binary reduction applied in this framework maps multi-

class instances to binary instances, in principle transforming the original multiclass 

distribution D into an induced binary distribution D′. To draw a sample from D′, a 

multiclass example (x, y) from D is drawn as well as a random index i ∈ {1 . . . n}, and 

output (x, i›, 1(y = i)). 

 

2.3.2 Pairwise comparison 

 
Another approach used for multiclass to binary reductions is based on comparing only 

pairs of classes (Beygelzimer, Langford and Ravikumar 2009).  The All-Pairs reduction 

starts by constructing 2 binary classifiers, one for every pair of classes. Given a training 

dataset S = {(x, y)}, the binary classifier for the (i, j) class pair is trained with dataset {(x, 

1(y = i)) and y = i or j} to discriminate between classes i and j. Given a test instance, each 

of the binary classifiers predicts a winner amongst its two classes, and the class with the 

highest number of wins is chosen as the multiclass prediction, with ties broken randomly. 

 

   𝑓(𝑥)  = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑖(  ∑ 𝑓𝑖𝑗 (𝑥)  )                                                                           (5) 

 

Build k (k-1) classifiers, one classifier to distinguish each pair of classes i and j.  Let fij 

be the classifier where class i are positive instances and class j are negative. 
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Beygelzimer, Langford, and Ravikumar (2009) propose the use of Error Correcting 

Tournaments (ECT) classifiers to solve for pairwise comparisons.  The m-elimination 

tournament solves for the weighted classification problem in two phases. The first phase 

consists of m single-elimination tournaments over the k labels where a label is paired 

against another label at most once per round. Once an example has lost m times, it is 

eliminated and no longer influences.  The second phase is a final elimination phase, 

where the winner is selected from the m winners of the first phase, usually by a single-

elimination tournament that weighs the m winners based on the degree of redundancy. 

 

2.4   Coordinate Descent 

 
Algorithms use an optimization scheme to efficiently solve the multi-class learning 

problem and select the best label (with regard to some criteria) from some set of available 

alternatives (Bouman and Sauer 1996).  In the simplest case, an optimization problem 

consists of maximizing or minimizing a real function by methodically choosing input 

values from within an allowed set and computing the value of the function.   An 

optimization problem is solved when an element x0 in D is found, given a function f(x):  

D → ℝ, such that for all x in D:          

  

  f(x0) ≤ f(x) (minimization) or  f(x0) ≥ f(x) (maximization)                                    (6)  

 

Here the function f(x) is termed the objective function.  A possible solution that minimizes 
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(or maximizes) the objective function is called an optimal solution. The solution to the 

optimization problem is generally located through an iterative process (Liu, Wang, and 

Zeng 2007).  The procedure generates a sequence of improving approximate solutions for 

a class of problems and continues until some subsequence of iterations converges to the 

optimal solution. 

 

2.4.1 Line Search 

 

In optimization, the line search strategy is a basic iterative approach that finds an optimal 

solution to the objective function.  The line search approach first finds a descent direction 

along which the objective function f(x) will be reduced and then computes a step size that 

determines how far x should move along that direction.  The descent direction is referred 

to as coordinate descent and can be computed by various methods, such as cyclical 

descent and gradient descent (Jovanovich and Lazar 2012). 

Cyclical descent is based on the idea that the minimization of a multivariable function 

f(x) can be achieved by minimizing it along one direction at a time with respect to the 

coordinate variables (Friedman, Hastie and Tibshirani 2010). Through cyclically iterative 

steps, each direction sequentially minimizes the objective function.   

Gradient descent is an optimization algorithm that finds a local minimum of a function 

using the points in the direction of the greatest rate of increase of the scalar field 

(Langford, Li, and Zhang 2009).  Steps are taken proportionally to the negative of the 

gradient of the function f(x) at the current point.  
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2.5   Related Work 

 
In this section related work is discussed pertaining to comparisons of Large-scale 

Classification problems.  The topic has compiled a comprehensive library primarily for 

binary classification.  As such there seems to be a gap in knowledge pertaining to multi-

class classification. The techniques used for the comparisons were derived from strategies 

implemented in related work.   

Yu et al. first introduced a comparison for large linear classification in his paper 

published in 2012. His comparison of SVM solvers and online-learning algorithms only 

extended to binary classification. The study defined one assumption that is significant in 

our comparison.  Assuming that the amount of available memory is limited, entire 

datasets cannot be stored in memory, but can be stored in the disk of one computer.  The 

size of the datasets used in this paper is large enough to satisfying this constraint, and 

must be accessed through the hard drive where they are stored. 

Multi-class classification was addressed in the paper by Chang and Roth (2011).  In the 

paper comparisons were drawn from both batch learning as well as online-learning 

algorithms.  Unfortunately Vowpal Wabbit at that time was limited to binary classification 

and no comparisons were drawn.  Instead the focus was primarily on block minimizing 

algorithms, of which LIBLINEAR was deemed superior to several other algorithms. 

Recently Jovanovich and Lazar (2013) implemented a comparison of batch vs. online 

learning in a multi-class setting with limited memory. 
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CHAPTER 3:  METHODOLOGY 

 

A more challenging situation for large linear classification is to deal with data sets that 

cannot fit in memory.  Prevailing training algorithms often need to iteratively access data, 

so without enough memory, the training time will be huge (Yu et al. 2012).  Handling 

data beyond the memory capacity remains a challenging research issue. According to 

Langford et al. (2009), present approaches to handle large data can be roughly 

categorized to two types. The first approach solves classification problems through batch 

learning. The second approach considers online learning algorithms. Because data may be 

used only once, this type of method can effectively handle the memory issue. Both 

algorithms attempt to solve the classification problem of assigning labels from Y to 

instances X (Bartlett and Tewari 2007).    

 

3.1   Block Minimization 

 
Optimization through block minimization has been used in the past to efficiently deal 

with data to large too fit into memory.  The process entails using an optimization 

technique based on block minimization.  The term “block” refers to partitions of the 

dataset that can be read through the memory available.   The size and content of each 

block varies from approach to approach.  Pérez-Cruz, Figueiras, and Artes (2004) 

propose the use of “double chunking,” where data is partitioned into both “large chunks” 

and “small chunks.”  Another approach described by Chang and Roth (2011) uses 

selective sampling for block minimization.   By selecting only significant instances, the 
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goal is to minimize the size of data blocks and speed up the iteration process.  The sizes 

of the blocks are determined by the known memory constraints.  Each instance is read 

and randomly assigned a block.   

Algorithm 2 explains the process for data splitting.  Yu et al. (2012) suggest a 

framework for block minimization that is also used for testing in this thesis.  In this 

approach the amount of memory available for processing correlates to the size of blocks.  

The framework consists of 2 steps that split the data and read the blocks into memory, 

before solving for classification through an iterative process.  The algorithm can be 

summarized as following: 

 

Algorithm 2 Framework for Block Splitting 

1.  Decide m and create m empty files 

2.  For i = 1… 

          2.1 Convert xi to a binary format xi. 

          2.2 Randomly choose number j {1... m}. 

          2.3 append xi into the end of the jth
 file. 

 

The goal is to solve this problem in a way that (a) allows for each block B stored in files 

to be handled individually by the processor or machine, and (b) does not involve transfer 

of the block over the network. 

Block minimization is a classical method of machine learning (Bertsekas 1999).  Each 

step of this method updates a block of features, and is modified here to corresponding 
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blocks of a contiguous chunk of data. The block minimization framework is summarized 

in Algorithm 3.  The step of working on a single block is denoted as an inner iteration, 

while the m steps of going over all blocks as an outer iteration.  

 

Algorithm 3 Block Coordinate Descent 

    1. Split {1, . . . , l} to B1 , . . . , Bm and store data into m files accordingly. 

2. Set initial α or w 

3. For k = 1,2, . . . (outer iteration) 

           For j = 1, 2, . . . , m (inner iteration) 

           3.1. Read xr , ∀r ∈ Bj from disk 

           3.2 conduct operation on {xr | r ∈ Bj} 

               3.3 Update α or w 

 

Let {B1. . . Bm } be a partition of all data indices {1, . . . , l}. The block size is adjusted 

according to the memory constraint so that Bj can fit in memory. These m blocks, are 

stored as m files and are loaded when required (Chang and Roth 2011). Then at each step 

operations are implemented using one block of data, followed by an update to w or α 

according to if the primal or the dual problem is measured.  The iteration round is then 

complete.  The process will continue, repeating the iteration steps until the algorithm 

converges at the optimal solution.   
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3.1.1 Support Vector Machines Learning 

 

One of the most prominent learning algorithms associated with block minimization is 

Support Vector Machines (SVMs) learning.  Proposed by Cortes and Vapnik in 1995, the 

algorithm has since grown into one of the most widely used learning algorithm in the 

world (Bottou and Lin 2007).  The implementation and broad uses of SVMs have been 

well documented in the years since past.   

SVMs are studied in this work for the reason that it is one of the most used classifiers. 

Given a training set {(xi , yi )}        , xi ∈ Rn, yi ∈ {−1, +1}, SVMs solve the following 

optimization problem: 

 

                     
𝑚𝑖𝑛      

1

2
𝑤  
𝑇𝑤 + 𝐶∑𝜉(𝑤; 𝑥 𝑖

 , 𝑦 𝑖
 )

 

𝑖  

                                                                         (7) 

 

where ξ(𝑤; 𝑥 𝑖 , 𝑦 𝑖 ) is a loss function, C > 0 is a penalty parameter (Chang et al. 2008).  

Equation (7) is often referred to as the primal form of SVMs.   

In order to optimize through block minimization only the dual form of SVMs must be 

used (Chang and Roth 2011).   By examining the dual form of the optimization problem 

the entire algorithm is written in terms of only inner products between input feature 

vectors.  Updates to the weight vector w, which corresponds to the entire data set treating 

instances uniformly prevent the primal form of SVMs to be used (Shalev-Shwartz et al. 
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2007).  Solving the dual problem generates efficient learning in very high dimensional 

spaces. The framework for solving the dual SVMs is presented in Algorithm 4.   

 

Algorithm 4 Framework for Dual SVMs 

   (Details are shown for steps 3.2 and 3.3) 

    3.2 Exactly or approximately solve the sub-problem (1) to obtain d ∗
𝐵𝑗

 

    Where αBj ← αBj + d 𝐵𝑗 ∗  

  3.3 Update w by (3) 

 

Let Bj = {1 . . . , l}\Bj and d�̅�j be the sub-vector of d comprising di, i ∈ Bj.  At each inner 

iteration step the following sub-problem is solved: 

 

             𝑑�̅�𝑗
𝑚𝑖𝑛  f (α + d)                                                

 Subject to: dBj = 0 and 0 ≤ αi + di ≤ C, ∀ ∈ Bj                                                      (8) 

 

αBj is updated by solving (8) for each block.  The iteration round k is then complete after 

w is updated.  To update w, if dBj is an optimal solution for the sub-problem, then: 

 

                       𝑤 ← 𝑤 + ∑ 𝑑   
∗  𝑦   

  𝑥   
   

 

 ∈𝐵𝑗

                                                                                 (9) 
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while solving for the objective function (10). 

 

                        𝑤 ≡∑𝛼  𝑖
  𝑦 𝑖 

  𝑥 𝑖
   

  

𝑖  

                                                                                         (10) 

                     

 

The iteration process continues until optimization is reached, converging when one of 

two conditions is met (Yu et al. 2012).  The first condition states that optimization is 

complete when the sub-problem for each block is solved and the solutions converge. The 

second condition is a stopping criterion.  Usually a finite number of iterations are chosen, 

or an accuracy threshold is obtained. 

   LIBLINEAR addresses both conditions while solving for the sub-problem (8).  The 

software contains a library with tools used for SVM classification when data cannot fit 

into memory (Yu et al. 2012).  By sequentially selecting one variable for update and fixes 

others inside the block the memory constraint can be solved. The framework shown in 

this paper is explained by Yu et al. (2012).  LIBLINEAR uses a SVM coordinate descent 

method and solver to update instances in block Bj before solving for algorithm 4.   

Using reduction scheme discussed early (from multi-class to binary), the Dual SVM 

framework from Algorithm 4 is implemented. If data can fit in memory the optimization 

problem by Crammer and Singer (2002) can be solved by a dual coordinate descent 

method, which is available in LIBLINAR.   
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Algorithm 5:  One-Against-All Multi-class Block Minimization Framework 

(We assume the k class labels are 1 . . . k) 

1. Split {1 . . . l} to B1 . . . Bm, and store data into m files accordingly 

2. Set initial α1 . . . αK and w1. . . wK , where k is the number of classes 

3. For k = 1, 2  . . . (outer iteration) 

              For  j = 1. . . m (inner iteration) 

 3.1. Read xr, ∀r ∈ Bj from disk 

 3.2. For t = 1 . . . K 

   3.2.1. Use Bj ≡ {xr | r ∈ Bj and yr = t} as positive and Bj\𝐵𝑗𝑡 as negative data  

  3.2.2. Conduct certain training operations, and update α 𝑡and 𝑤 𝑡 

 

To apply the one-against-the rest approach for a k-class problem, k classifiers must be 

trained.  An implementation to save the disk access time is to train k models together and 

not separate.   Each block Bj to 𝐵𝑗  . . . 𝐵𝑗𝐾 is partitioned according to the class 

information. Then, K sub-problems are solved simultaneously using 𝐵𝑗𝑡 as positive data 

and Bj \ 𝐵𝑗𝑡 as negative data to update vectors wt and αt. 

 

3.2   Online Learning  

 
Online learning algorithms were proposed as fast alternatives to SVMs. Online learning 

algorithms are used to efficiently classify data by building a weight model derived from 

sequentially received training instances. Compared to block minimization which solves 
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for the sub-problem of each block, online learning updates instances through the use of a 

cache file.  Each iteration round updates the cache file where the weight model is stored. 

The algorithm classifies each instance, and uses the new “instance-label pair” to update 

and improve the stored model (Tewari and Bartlett 2007).  This method is expected to 

accurately predict the labels of instances that are not part of the training set.  The 

framework for the general online learner proposed by Beygelzimer, Langford and 

Zadrozny (2008) is presented in Algorithm 6 below.    

 

Algorithm 6 Online-learning  

(In the setting of standard online learning, we are interested in sequential prediction 

problems where repeatedly from i = 1, 2 . . .) 

1. An unlabeled example xi arrives 

2. We make a prediction based on existing weights wi ∈ R
d  

3. We observe yi, let zi = (xi, yi), and incur some known loss L(wi, zi) that is convex in 

parameter wi 

4. Update weights according to some rule wi+1 ← f (wi) 

 

By finding the update rule f(x), the sum of loses will be bound (11).   

  

 ∑𝐿(

𝑇

𝑖  

𝑤𝑖
 , 𝑧𝑖
 )                                                                                                    (11) 
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More formally, an online algorithm descends through the dataset in a sequence of trials. 

Each trial can be decomposed into three steps. First the algorithm receives an instance. 

Second the algorithm predicts the label of the instance. Third the algorithm receives the 

true label of the instance (fan et al. 2008).  The third stage is the most crucial as the 

algorithm can use this label feedback to update its hypothesis for future trials. The goal of 

the algorithm is to minimize some performance criteria. Because on-line learning 

algorithms continually receive label feedback, the algorithms are able to adapt and learn 

in difficult situations (Shalev-Shwartz et al. 2007).  Many online algorithms can give 

strong guarantees on performance even when the instances are not generated by a 

distribution. As long as a reasonably good classifier exists, the online algorithm will learn 

to predict correct labels. 

The concept of online learning has long been used by researchers.  Various strategies 

were proposed to optimize online learning algorithms, most of which extend the original 

purpose of binary classification to multi-class learning.  In the literature, the Lasso 

algorithm (Tibshirani, 1996) is commonly used to achieve optimization. The algorithm 

implements a loss function bound by a convex constraint ‖𝑤‖   
 ≤ 𝑠.  Furthermore a soft 

regularization constraint can be bound by (12). 

 

              𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛
 
∑𝐿(

𝑇

𝑖  

𝑤𝑖
 , 𝑧𝑖
 ) +  𝑔‖𝑤‖   

                                                                  (12)      

 

20



 
 

  More recently, Duchi and Singer (2008) propose a framework for empirical risk 

minimization with regularization called Forward Looking Sub gradients, where a 

regularized optimization problem is solved after every gradient-descent step. Shalev-

Shwartz et al. (2007) exploited the dual formation of optimization to create a more 

efficient online learning algorithm.  The Forgetron algorithm proposed by Dekel et al. 

(2006) is an online-learning algorithm that manages memory use by decaying the weights 

on previous examples and then rounding these weights to zero when they become small. 

The algorithm can perform well when a hyper plane exists that splits the data into two 

categories. This algorithm can be modified to allow infrequently change during the online 

learning trials. A Bayesian approach to learning is taken by Balakrishnan and Madigan 

(2008), where they approximate the posterior by a Gaussian distribution. 

 

3.2.1 Gradient Descent 

 
Online learning methods are very closely related to stochastic gradient methods, as they 

operate on only one single instance at each iteration step (Langford, Li, and Zhang 2009).  

Furthermore, many online learning rules can be perceived as an implementation of a 

stochastic gradient descent. Such methods have strong associations to the predictor, 

without minimize the SVM objective.  Online Gradient Descent solves (7) with a 

different loss function (13).  

 

                        max(-yiwTxi, 0)                                                                                        (13) 
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Both SVM (9) and SGD (13) maintain weight w, but they take different directions 

through the optimization process.  The optimal solution is presented in (14). 

 

   w ← w – ηΔw(𝑦𝑖 , 𝑥𝑖 )                                                                              (14) 

 

The parameter η > 0 in (14) is often referred to as the learning rate. ηΔw(𝑦𝑖 , 𝑥𝑖 ) is a sub-

gradient of the objective function (15).  

 

 w
T
w/2 + Cmax(1-yiw

T
xi, 0)                                                                                 (15) 

 

The above method has been widely used in online learning (Langford, Li, and Zhang 

2009).  One of the most widely successful implementation of online learning is Vowpal 

Wabbit (VW). John Langford and his colleagues at Yahoo! Research developed the 

package, a fast online-learning algorithm that uses stochastic gradient descent to handle 

very large datasets without ever needing to load the entire dataset into memory. The 

algorithm also requires less computational power and far fewer resources by learning 

through online gradient descent (Langford, Li, and Zhang, 2009).  The algorithm includes 

functions for multi-class classification solvers OAA as well as ECT. 

Vowpal Wabbit is said to be efficient for solving batch problems when optimization of 

the online algorithm over training data requires several iterations. The idea has been 

successfully applied to large-scale SVM formulations (Shalev-Shwartz et al., 2007). 
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CHAPTER 4:   COMPARISON 

 

In the present study, interest was primarily focused on the responsiveness of coordinate 

descent algorithms to train and predict classification of multi-class large-scale datasets.   

 

4.1 Large-scale 
 

Big Data is a collection of data sets so large and complex that it becomes difficult to 

process using traditional data processing applications (Howe et al. 2008). The challenges 

include capture, storage, search, analysis, and visualization. The trend to larger data sets 

is due to the additional information derivable from analysis of a single large set of related 

data. 

Datasets grow in size in part because they are increasingly being gathered by a growing 

array of technology that includes: mobile devices, remote sensing, software logs, 

cameras, microphones, and wireless sensor networks Howe et al. (2008).   The world's 

technological per-capita capacity to store information has roughly doubled every 3 years 

for the last 50 years, and as of 2012, every day 2.5 quintillion (2.5×1018) bytes of data 

were created. 

In a research report Laney (2001) defined data growth challenges and opportunities as 

being three-dimensional, i.e. increasing volume (amount of data), velocity (speed of data 

in and out), and variety (range of data types and sources). Using this definition, the 

comparison presented will be based on two data sets of varying size and data types. 
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Figure 1: SensIT Class Frequency 

 

4.1.1 SensIT Dataset 

 
The SensIT Vehicle dataset is comprised of instances labeled as one of three classes.  The 

data was extracted from sensor data collected during a real world experiment carried out 

at Twenty nine Palms, CA in November of 2001 (Duarte and Hu 2004).  The sensors were 

used to obtain both acoustic and seismic activity from vehicles in the vicinity.  Each 

vehicle was driven around a road while sensors collected information as they passed.  

Classes included in the training set presented in Figure 1 included: AAV3 (class 1), DW3 

(class 2), and a third class for noise (class 3).   In total there are 78,823 training samples, 

19,705 testing samples and 50 features were extracted.  
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Figure 2: RCV1 Class Frequency 

 

4.1.2 RCV1 Dataset 

 

The RCV1 dataset (Figure 2) was used in part due to its 53-class problem. The RCV1 

dataset is one of the most widely used test collection for text categorization research 

(Lewis et al. 2004). Reuters is the largest text and television news agency in the world.  

The editorial division produces some 11,000 stories a day in 23 languages. Stories are 

both distributed in real time and made available through online databases. The stories 

cover the range of content typical of a large English language international newswire, and 

vary from a few hundred to several thousand words in length. Figure 3 shows an example 

story. 
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<?xml version="1.0" encoding="iso-8859-1" ?> 

<newsitem itemid="2330" id="root" date="1996-08-20" 

xml:lang="en"> 

<title>USA: Tylan stock jumps; weighs sale of company.</title> 

<headline>Tylan stock jumps; weighs sale of company.</headline> 

<dateline>SAN DIEGO</dateline> 

<text> 

<p>The stock of Tylan General Inc. jumped Tuesday after the maker 

of 

process-management equipment said it is exploring the sale of the 

company and added that it has already received some inquiries 

from 

potential buyers.</p> 

<p>Tylan was up $2.50 to $12.75 in early trading on the Nasdaq 

market.</p> 

<p>The company said it has set up a committee of directors to 

oversee 

the sale and that Goldman, Sachs &amp; Co. has been retained as 

its 

financial adviser.</p> 

</text> 

<copyright>(c) Reuters Limited 1996</copyright> 

<metadata> 

<codes class="bip:countries:1.0"> 

<code code="USA"> </code> 

</codes> 

<codes class="bip:industries:1.0"> 

<code code="I34420"> </code> 

</codes> 

<codes class="bip:topics:1.0"> 

<code code="C15"> </code> 

<code code="C152"> </code> 

<code code="C18"> </code> 

<code code="C181"> </code> 

<code code="CCAT"> </code> 

</codes> 

<dc element="dc.publisher" value="Reuters Holdings Plc"/> 

<dc element="dc.date.published" value="1996-08-20"/> 

<dc element="dc.source" value="Reuters"/> 

<dc element="dc.creator.location" value="SAN DIEGO"/> 

<dc element="dc.creator.location.country.name" value="USA"/> 

<dc element="dc.source" value="Reuters"/> 

</metadata> 

</newsitem> 

 

 

Figure 3: Reuters Corpus Volume 1 Document 
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RCV1 is extracted from one of the online databases. It was intended to consist only of 

English language stories produced by Reuter’s journalists between August 20, 1996, and 

August 19, 1997. It contains in total 534,135 manually categorized newswire stories. The 

dataset is divided into 518,571 training documents and 15,564 test documents, and 

contains 47,236 features (Lewis et al. 2004). Preparation of the dataset involved 

substantial verification and validation of the content, as well as attempts to remove false 

or duplicated documents. 

 

4.2   Study Design 

 
The study was designed to review not only the theory but the implementation and 

efficiency of the large-scale coordinate descent learning algorithms for multi-class 

classification problems when memory is limited.  To ensure optimum performance and 

reliability the algorithms were compiled in C++ and run under the Linux operating 

system.  To ensure the memory constraint condition, the hardware was scaled down to an 

Asus 5750G laptop. The CPU processor was limited to 2.2 GHz and only 6 GB of DDR3 

was made available.   

 

4.3 Outcome Measures 

 
Classification predictions and processing time for training was recorded at the end of 

every iteration step.  They were obtained from the best of three runs using the minimum 

value measure. In addition an overall assessment of efficiency was obtained for the 
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optimum solution at the stopping threshold of 78 iterations by ranking the performance 

measures using a 3 point response scale ranging from best to worst.   

 

4.4 Performance Measures 

 
Performance measurement estimates the parameters under which algorithms converge at 

the optimal solution.  The efficiency of the algorithms can be viewed as a process to 

reduce resource consumptions, including training time and accuracy. 

 

4.4.1 Accuracy 

 

It is surprisingly difficult to arrive at an adequate definition and measurement of 

accuracy. The best test of a classifier's value is its future performance (generalization), i.e. 

correctly classifying instances. Generalization is linked to classifier design, 

implementation and testing (Joachims 2001).  Overall, complex classifiers fit 'noise' in 

the training data, consequently lowering the accuracy when presented with instances. 

Every so often it is necessary to accept reduced accuracy on the training data if it leads to 

increased accuracy. 

Focusing on the generalization of a classifier differs from traditional statistical 

approaches which are usually judged by coefficient p-values or some overall goodness of 

fit such as R2 (Stevens 2012). The statistical focus relates to the fit of the data to some 

pre-defined model and does not explicitly test performance on future data, generally 

because of the assumptions made about the parameters estimated by the statistics.  
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4.4.2 Training Time 

 

Besides the classification performance, the training time is a second key factor that 

affects the aptness of a classification algorithm regarding an unknown dataset. An 

algorithm with a slightly lower accuracy is maybe preferred if its training time is 

significantly lower (Reif, Shafait and Dengel 2011). Additionally, an estimation of the 

required training time of a pattern recognition task is very useful if the result has to be 

available in a certain amount of time. 

 

4.5 Analysis 

 

Analysis of Large-Scale Coordinate Descent Algorithms for Multi-class Classification 

with Memory Constraints can be broken down into two main components, testing over 

SensIT dataset and testing over RCV1 dataset. The size of the SensIT dataset (training 

instances and features) is significantly smaller than RCV1, providing a baseline for 

performance measures. Pechyony, Shen and Jones state that using more samples and 

adding more features will boost performance in optimization. Following their lead, the 

comparisons made in this thesis follow the same structure.   

 Both LIBLINEAR and VOWPAL WABBIT support the coordinate descent 

algorithms discussed in this study.  Multi-class Online Solvers OAA and ECT are 

implemented in VW, while Batch OAA is the primary solver for LIBLINEAR.   
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CHAPTER 5: RESULTS AND DISCUSSION 

 

5.1 Datasets 

 

Before the experiment can be run using the LIBLINEAR, the training dataset must be 

partitioned into smaller blocks.  The optimal number of partitions was discovered to be 4 

when training over the SensIT dataset and 8 blocks for the RCV1 dataset.  Each block 

contains an even distribution of instances spread out across the partitions. Vowpal Wabbit 

on the other hand uses a cache file which fulfills the memory constraint without any 

parameter adjustments.  The dataset does not need to be split or compressed; VW can 

access each instance without reading the entire datasets into memory.   

 

5.1.1 Format 

 

Both Datasets used in this thesis are available for download from LIBSVM Datasets 

webpage (Chang and Lin 2011).  To date RCV1 is the largest available multi-class 

classification dataset in the database.  This page contains a database of various 

classification, regression, and multi-label datasets stored in LIBSVM format (16).  

 

 <class/target> [<attribute number> :< attribute value>]*                              (16) 
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For most sets, the scale for each attribute is set to [-1, 1] or [0, 1].  The testing data (if 

provided) is adjusted accordingly.  The format of the data corresponds to LIBSVM which 

is able to be read by LIBLINEAR.  

Vowpal Wabbit however reads data with a slightly different input format.  The raw 

(plain text) input data for VW should have one example per line (Langford, Li, and 

Zhang 2009).  Each example should be formatted according to the input format in (17). 

 

      [Label] [Importance [Tag]]|Namespace Features |Namespace Features...             (17) 

     Where Namespace = String [: Value]   and    Features = (String [: Value])* 

 

In order to convert the LIBSVM formatted dataset to VW input format a script was 

written in C (18).  The script can be implemented to seamlessly convert any LIBSVM 

formatted dataset (i.e. binary and multi-class classification, regression, and multi-label) 

into VW input format. 

 

 Zless [dataset] $1 | sed –e ‘s/\s/ | /’                                                                    (18) 

 

To create a label dataset to be used for predication accuracy, the script (19) was also 

created and written in C.   

 

 Cat [dataset] | cut –d ‘ ‘ –f 1 > [output.txt]                                                        (19) 
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5.2 Performance Measures 

 
The performance measures for each iteration step are compared between the algorithms 

discussed in the review.  VW uses a Gradient Descent method that is implemented in both 

VW OAA and VW ECT.  Comparisons are made from the multi-class learners using 

gradient descent.  Online learning VW OAA will also be compared to the batch learning 

LIBLINEAR OAA in terms of optimization approaches for limited memory constraints.   

 

5.2.1 Training Time 

 
Figure 4 shows the processing time per iterations over the SensIT dataset. The dataset 

represents a simple scenario where binary classification is extended into a 3-class 

problem.     

 

 

Figure 4:  SensIT Training Time 
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Figure 5: RCV1 Training Time 

 

 

On average for Figure 4, the runtime per iteration for Vowpal Wabbit solving with OAA 

was the fastest averaging 0.36 seconds, while VW ETC came in second averaging 0.47 

seconds. LIBLINEAR was a distant third averaging 1.48 seconds.   

Figure 5 is consistent with the performances from the algorithms established with the 

tests run over the SensIT dataset in Figures 4.  Average runtime per iteration for VW 

OAA increased to 27.26 seconds while LIBLINEAR took an average of 36 seconds per 

iteration.  VW ECT managed an astounding 4.12 seconds per iteration.   VW OAA was 

by far the most efficient classifier. 
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Figure 6: SensIT Accuracy  

 

 

 

Figure 7: RCV1 Accuracy 
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5.2.2 Accuracy 

 
While all algorithms scored over 80% over the SensIT dataset in Figure 6, accuracy 

classifying testing instances VW ETC scored highest most consistently.  The biggest 

differences recorded can be seen between the first 5 iteration rounds.  This is where the 

optimization approaches can be distinguished.  Vowpal Wabbit ETC begins to maintain a 

constant accuracy as LIBLINEAR begins to degrade.  As the Vowpal Wabbit algorithm 

passes through the dataset and the weights are updated from the initial label, the accuracy 

of classification begins to rise.   

Moving on to the bigger dataset presented in Figure 7, the results indicate increased 

performance in both accuracy and speed.  Classification accuracy raised an average of 

8% when comparing the results of Figure 6 to 7.   The larger dataset has had a positive 

impact on the accuracy rate of classification for the two algorithms.  In this case, the lager 

dataset yields the highest accuracy rate when using LIBLINEAR.  This is contrary to the 

results found in the SensIT experiment, in which VW ETC yielded the highest 

classification accuracy.  In fact VWETC scored the lowest accuracy this time around. 

 

5.3 Discussion 

 
In both tests VW was 4 times as fast as LIBLINEAR.  Both algorithms achieved higher 

levels of performance solving for the larger RCV1 classification problem. Figures 8 and 9 

provide tables with a more detailed look.   
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SensIT Dataset 

Vowpal Wabbit LIBLINEAR ECT 
Iteration Time Acc Iteration Time Acc Iteration Time Acc 

1 1.28 79.86% 1 5.52 80.47% 1 0.58 80.43% 
2 1.64 80.06% 2 8.00 80.47% 2 1.15 80.55% 
3 2.05 80.12% 3 9.53 80.43% 3 1.62 80.55% 
4 2.46 80.15% 4 11.25 80.46% 4 2.23 80.56% 
5 2.87 80.16% 5 13.03 80.42% 5 2.69 80.56% 
6 3.29 80.20% 6 15.43 80.43% 6 3.30 80.56% 
7 3.56 80.19% 7 16.09 80.46% 7 4.17 80.56% 
8 3.95 80.19% 8 17.27 80.43% 8 4.71 80.53% 
9 4.40 80.19% 9 18.76 80.43% 9 4.60 80.55% 
10 4.81 80.19% 10 20.14 80.47% 10 5.14 80.54% 
20 7.13 80.24% 20 34.28 80.45% 20 10.17 80.55% 
30 10.83 80.22% 30 48.93 80.43% 30 15.10 80.53% 
50 17.52 80.27% 50 76.93 80.44% 50 25.44 80.53% 
78 27.81 80.32% 78 116.56 80.43% 78 38.68 80.53% 

Figure 8: SensIT table of Statistics 

 

RCV1 Dataset 

VW OAA LIBLINEAR VW ECT 
Iteration Time Acc Iteration Time Acc Iteration Time Acc 

1 13.38 90.74% 1 180 92.13% 1 4.438 87.10% 
2 27.85 90.94% 2 217 92.12% 2 8.749 87.25% 
3 40.27 90.93% 3 251 92.12% 3 12.58 87.02% 
4 53.67 90.72% 4 284 92.12% 4 15.89 86.80% 
5 68.16 90.65% 5 318 92.12% 5 20.67 86.61% 
6 82.01 90.55% 6 351 92.14% 6 23.14 86.43% 
7 94.48 90.48% 7 384 92.15% 7 28.61 86.24% 
8 114.12 90.34% 8 418 92.22% 8 33.72 86.10% 
9 126.81 90.25% 9 451 92.23% 9 37.98 85.94% 

10 143.59 90.16% 10 484 92.23% 10 40.38 85.88% 
20 279.09 89.64% 20 816 92.18% 20 83.36 85.02% 
30 416.09 89.29% 30 1147 92.14% 30 133.537 84.34% 
50 681.63 88.79% 50 1811 92.14% 50 205.133 83.51% 
78 1052.34 88.34% 78 2825 92.14% 78 322 82.99% 

Figure 9: RCV1 Table of Statistics 
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Iteration runtime of both algorithms experienced an increase in time when compared to 

SensIT results.  VW ECT was able to quickly optimize over the 78 step threshold limit, 

averaging only 4 seconds per round. Average runtime from both datasets is presented in 

Figure 10. 

 

Average Time VW OAA LIBLINEAR VW ECT 

SensIT 0.36s 1.5s 0.49s 

RCV1 13.49s 36.22s 4.13s 

         Total 6.925s 18.86s 2.31s 

Figure 10: Average Run Time 

 

Overall performance measures indicate the VW’s use of gradient descent is better suited 

for large-scale classification with limited memory constraints.  Figures 8 and 9 highlight 

in blue the highest accuracy achieved for the algorithms.  In the latter case, LIBLINEAR 

achieved the highest accuracy rating recorded after iteration Round 9, where accuracy 

peaked at 92.23%.  The classification accuracy improved on average in Figure 11.   

 

Average Accuracy VW OAA                LIBLINEAR VW ECT 

SensIT 80.16% 80.44% 80.54% 

RCV1 90.13% 92.16% 85.80% 

         Total 85% 86% 83% 

Figure 11:  Average Classification Accuracy 

 

Lower rates of classification accuracy can be contributed to the smaller training dataset 

size and lack of features.  Frequency distribution presented in Figures 1 and 2 are 
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unbalanced, as such the classification accuracy over the smaller SensIT data set was 

lower than the larger RCV1 dataset. The increase in instances correlated with the 

accuracy of overall classification.  As more instances were added, classification accuracy 

improved. 
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Chapter 6: Conclusions 

 

The following question about Fast Learning large-scale multi-class classification can be 

answered: 

Question: Which algorithm is most efficient when there are constraints to the memory?  

When compared, Vowpal Wabbit is the most efficient multi-class classification algorithm.   

The results from the SensIT test case suggested that Vowpal Wabbit was the quicker 

algorithm while maintaining a slightly lower accuracy percentile than LIBLINEAR.  

Moving from the SensIT dataset to the larger RCV1, the results remained consistent.  We 

have concluded that Vowpal Wabbit had a slight advantage in overall efficiency when 

there is a constraint placed of computer memory size.  The Vowpal Wabbit OAA multi-

class solver was by far the most efficient, ranking high in every test.   

Performance measured from the implemented algorithms yielded relatively close 

results.   Due to the small size of the experiment, further testing is needed for a thorough 

comparison.   Testing over datasets that are more expansive, both in sample and feature 

size could be used for a more significant experiment.  However, the size of the datasets 

used in this paper is adequate to provide conclusive results for the comparisons made. 
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