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ABSTRACT

We present a demonstration of the Gödel’s incompleteness phenomenon in the formal

first-order axiomatization of the Zermelo-Fraenkel axioms (ZF) of set theory following

the methods displayed in Gödel’s famous 1931 paper, Über formal unemtscheidbare

Sätze der Principia Mathematica und verwandter Systeme I. [1]
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1 Introduction

1.1 Outline of the Main Argument

In defining a formal theory, such as the first-order Zermelo-Fraenkel set theory (ZF),

one observes that the meaningful formulae are merely finite strings of symbols that

obey particular formation rules. Similarly, a proof-schema is a finite collection of for-

mulae that obey particular formation rules given by the axioms and rules of inference.

Using these rules one can, in a determinate way, decide whether a given string or a

given ordered collection of formulae is indeed a formula or proof-schema, respectively.

From a metamathematical viewpoint the objects used as the primitive symbols

are immaterial; it is merely their arrangement that serves purpose. We will instead

use natural numbers as our primitive symbols1 for the theory ZF. We use numbers

because, on the one hand, metamathematical concepts of our system then become

properties of natural numbers. It will be shown that concepts such as “is a formula,”

“is inferred by,” “is a proof-schema,” “is a provable formula,” etc. are definable by

certain number-theoretic functions and relations. On the other hand, the theory ZF is

capable of expressing properties of natural numbers, i.e., ZF contains number theory.

We are thus confronted with a most peculiar phenomena; namely, ZF can serve as its

own metatheory.

We can now demonstrate, in outline, the existence of an undecidable proposition2

in the theory ZF by a fixed-point argument. We will call a formula with one free

variable a class-property. As will be shown, each formula is represented by a number

1Thus, a formula will be a specific natural number defined by a particular finite series of numbers
and a certain proof-schema a specific natural number defined by a particular finite series of finite
series of numbers.

2A proposition P of ZF is undecidable iff neither P nor ¬P are provable within theory ZF
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and thus can be ordered in a sequence by some relation R, where R(n) denotes the

n-th class-property. For a class-property φ, let φ(n) denote the sentence obtained by

replacing each occurrence of the free variable in φ by the number n. Now, it can be

shown that the concept “class-property,” the relation R, and the relation x = y(z)

are all definable in ZF. Also, as stated above, the concept “is a provable formula”

is definable as a number-theoretic relation Thm(x) which states “x is a provable

formula.” We now define a class Γ of natural numbers as follows:

n ε Γ ⇐⇒ ¬Thm
(
[R(n)](n)

)
.

Thus the concept for “is a member of Γ,” too, must be definable in ZF by some

class-property, call it G. Since G is a class-property there must exist some number g

such that G = R(g).

We claim that the sentence [R(g)](g) is undecidable, assuming ZF is consistent. If,

on the one hand, [R(g)](g) were provable then Thm
(
[R(g)](g)

)
would hold. But this

would imply g 6 ε Γ and hence ¬G(g). But [R(g)](g) is G(g), a contradiction. On the

other hand, if ¬[R(g)](g) were provable then ¬G(g) would hold and, hence, g 6 ε Γ.

But this means Thm
(
[R(g)](g)

)
holds and [R(g)](g) is provable, a contradiction.

Reflecting upon the content of the sentence [R(g)](g), one sees that [R(g)](g)

essentially says, in a roundabout way, “I am unprovable.” Now, [R(g)](g) is indeed

not provable in ZF, but is nevertheless a true sentence. Utilizing this fact we show

that the consistency of ZF cannot be demonstrated within itself.
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1.2 Metamathematical notation

The following logical notation will be used in metalogical strings:3

¬ & V ⇒ ⇔ ∀ ∃ ε

representing negation, conjunction, disjunction, implication, biconditional, universal

and existential quantifiers, and membership, respectively. We use ≡ to represent

definition of formulae where, in general, the lefthand argument is meant to stand as

an abbreviation for the righthand argument.

We use the lowercase italicized english alphabet as metamathematical variables,

e.g., x, y, z, x1, ..., xn, ..., representing individual variables4 (“sets”) in Section 2, and

representing natural numbers thenceforth. Similarly, we use the uppercase italicized

english alphabet, e.g., P,Q,R, to represent well-formed strings in Section 2, and

representing number-theoretic relations thenceforth. Otherwise, use of such symbols

will be specified in or understood by context.

3That is, strings outside the systems L1 and L2
4Or for terms in the case of using s and t
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2 Zermelo-Fraenkel set theory

2.1 The language of set theory L1

We shall now define L1, our first-order language of set theory.5 L1 consists of the

following primitive symbols:

Logical symbols: ∼ ∨ ∀ ( )

Binary relations: = ∈

Individual variables:6 x1,x2, ...,xn, ...

We shall call a finite series of primitive symbols a string. The meaningful strings

of a logistic language are represented by terms and formulae. Since L1 contains no

function symbols, the terms of L1 are precisely the variables.7

Definition 2.1. We define a formula by induction on the construction of a string as

follows:

1. If s and t are terms, then (s = t) is a formula.

2. If s and t are terms, then (s ∈ t) is a formula.

3. If P is a formula, then so is (∼P ).

4. If P and Q are formulae, then so is (P ∨Q).

5. If P is a formula and x a variable, then (∀xP ) is a formula.

5We use the logic of F= from [4], where it is shown that F= is both sound and complete. It
should be noted that we replace the word “well-formed formula” in [4] simply by “formula.”

6We consider a denumerable collection of individual variables, one for each natural number ≥ 1.
7Although redundant for the formulae of L1, we use terms, instead of variables alone, in Definition

2.1 so we may use the very same definition in our construction of the formulae of L2, where the terms
are nontrivial.
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Definition 2.2. [4]

1. A well-formed part (wf part) of a formula P is a substring of P that is, itself, a

formula.

2. An occurrence of a variable x in a formula P is said to be bound iff it is in a wf

part of P of the form ∀xQ; otherwise x is said to be free. We use P (x1, ..., xn)

to denote that the free variables of P are among x1, ..., xn.8

3. A formulaR(x1, ..., xn) with precisely n free variables is called an n-ary predicate.

4. We call a 1-ary predicate R(x) a class-property.

5. A 0-ary predicate, i.e. a formula with no free variables, is called a sentence.

6. If x is a variable and t is a term, we say that t is free for x in a formula P iff

no free occurrence of x in P is in a wf part of P of the form ∀yQ, where y is a

free variable of t.

7. Let P be a formula. Then P
(
x
t

)
will denote the formula obtained by substitution,

where each free occurrence of x in P is replaced by the term t, provided t is free

for x in P .9

8Possibly some xi are not free, or do not occur, in P . [5]
9If x is not free in P , then P

(
x
t

)
is precisely P . To obtain the same desired result for multiple

substitutions, and to avoid capture, we define P ( a1
t1 · · ·

an
tn ) as follows: Let

m = max{l ∈ N : l = k for ai = xk, i = 1, ..., n or l = k for some xk free in P}.
Now, let Ti = ti( a1

xm+(i−1)n+1
· · · an

xm+(i−1)n+n
) for each i = 1, ..., n and let Q = P ( a1

T1
) · · · ( an

Tn
) by

repeated substitution. Now, by repeated substitution, we define

P ( a1
t1 · · ·

an
tn ) = Q( xm+1

a1
) · · · ( xm+n

an
) · · · ( xm+(i−1)n+1

a1 ) · · · ( xm+(i−1)n+n
an ) · · · ( xm+n2−n+1

a1 ) · · · ( xm+n2
an ).
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The axiomatic structure of L1 includes the following two rules of inference and

seven logical axioms. We shall also use the abbreviations:10

∧ → ↔ ∃

as well as omission of brackets.11

Rules of Inference:

(MP) Modus Ponens: From P and P → Q to infer Q.

(GN) Generalization: From P to infer ∀xP , where x is any variable.

Logical Axiom Schemata: [4]

(L1) P ∨ P → P

(L2) P → Q ∨ P

(L3) (P → Q)→ (R ∨ P → R ∨Q)

(L4) ∀xP → P
(
x
t

)
where t is a term which is free for x in P .

(L5) ∀x(P ∨Q)→ (P ∨ ∀xQ) if x is not free in P .

(L6) (x1 = x1)

(L7) x = y → (P
(
z
x

)
→ P

(
z
y

)
) for formula P .

Definition 2.3. A proof in a logistic system of a formula P is a sequence of formulae,

each of which is either an axiom or is inferred from preceding formulae in the sequence

by a rule of inference, with P as the last formula in the sequence. A theorem of a

logistic system is a formula which has a proof in the system.

10Note: we replace “⊃” in [4] by “→”. The abbreviations are as follows:

P ∧Q ≡ ∼((∼P ) ∨ (∼Q)) P → Q ≡ ((∼P ) ∨Q)
P ↔ Q ≡ (P → Q) ∧ (Q→ P ) ∃xP ≡ ∼(∀x(∼P ))

11Connectives take precedence in the following order: ∼, ∧, ∨, →, ↔.
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2.2 The theory ZF of L1

We can now provide a foundation for the first-order theory ZF, the axiomatic set

theory of Zermelo-Fraenkel, which is obtained by adding the follow axioms and axiom

schemata to the system L1. It is intended that the variables represent sets and

predicates represent properties of sets.

Axioms of ZF:12 [5]

(A1) ∀x1∀x2(x1 = x2 ↔ ∀x3(x3 ∈ x1 ↔ x3 ∈ x2)) [Extensionality ]

(A2) ∀x1∀x2∃x3∀x4(x4 ∈ x3 ↔ (x4 = x1 ∨ x4 = x2)) [Pairing ]

(A3)P ∀x1∀x2∃x3∀x4(x4 ∈ x3 ↔ (x4 ∈ x1 ∧ P ( x
x4

y
x2

))) [Separation Schema]

(A4) ∀x1∃x2∀x3(x3 ∈ x2 ↔ ∃x4(x4 ∈ x1 ∧ x3 ∈ x4)) [Union]

(A5) ∀x1∃x2∀x3(x3 ∈ x2 ↔ x3 ⊆ x1) [Power Set ]

(A6) ∃x1(∅ ∈ x1 ∧ ∀x2(x2 ∈ x1 → x2 ∪ {x2} ∈ x1)) [Infinity ]

(A7)P ∀x1(∀x2∀x3∀x4(P ( x
x2

y
x3

z
x1

) ∧ P ( x
x2

y
x4

z
x1

)→ x3 = x4) [Replacement

→ ∀x2∃x3∀x4(x4 ∈ x3 ↔ ∃x5(x5 ∈ x2 ∧ P ( x
x5

y
x4

z
x1

)))) Schema]

(A8) ∀x1(x1 6= ∅ → ∃x2(x2 ∈ x1 ∧ x1 ∩ x2 = ∅)) [Regularity ]

Note that both A3 and A7 are axiom schema, i.e. there are axioms A3P and A7P

for each formula P (x, y, z) in L1.

We now prove that ZF can demonstrate the existence of an empty-set ∅ and, given

any set x, the set-theoretical successor of x, denoted x ∪ {x}, is also a set.

12For clarity, we use the following abbreviations where s, t are terms and x, y are variables:

s ⊆ t ≡ ∀x(x ∈ s→ x ∈ t) s ∩ t = ∅ ≡ ∼∃x(x ∈ s ∧ x ∈ t)
∅ ∈ s ≡ ∃x∀y(y ∈ s ∧ ∼(y ∈ x)) s ∪ {s} ∈ t ≡ ∃x(x ∈ t ∧ ∀y(y ∈ x↔ (y = s ∨ y ∈ s))
s = ∅ ≡ ∀x(∼(x ∈ s)) t ∈ s ∪ {s} ≡ t ∈ s ∨ t = s
s 6= ∅ ≡ ∃x(x ∈ s) t = s ∪ {s} ≡ ∀x(x ∈ t↔ (x ∈ s ∨ x = s))

7



Proposition 2.4. The following sentences are theorems of ZF:

(i) ∃x1(x1 = ∅) (ii) ∀x1∃x2(x2 = x1 ∪ {x1})

Proof. For the sake of clarity and brevity, we will provide an informal proof of the

above claim.13

i. By A6, there exists a set x. Let P (x) ≡ (x 6= x), then by A3P there exists y, a

subset of x, such that z ∈ y iff z ∈ x ∧ z 6= z. But by L6 and substitution, z = z for

any z, thus y contains no elements. Hence y = ∅, making ∅ is a set.

ii. Let x be a set. Then {x, x} is a set by A2, and {x} = {x, x} by A1. Again, by

A2, {x, {x}} is a set. So there exists a set y, by A4, such that z ∈ y iff z ∈ x∨z ∈ {x},

i.e. z ∈ y iff z ∈ x ∨ z = x.

2.3 The language L2

Let L2 be the logistic system obtained by adding the constant 0 (“empty set”) and

the unary function symbol s (“successor”) to the language of L1, in addition we define

the terms of L2 inductively as follows:

1. 0 is a term.

2. If x is a variable, then x is a term.

3. If t is a term, then st is a term.

The formulae of L2 are then defined by Definition 2.1.

13As with a few facts in this paper, the formal proof of this claim would require an obnoxious
unpacking of abbreviations, but the author encourages the reader to enter the forest.
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2.4 The theory Z of L2

The object of our discourse will be the theory Z of L2, which is the axioms of ZF

combined with the following two axioms:

(A9) (0 = ∅)

(A10) ∀x1(sx1 = x1 ∪ {x1})

Axiom 9 defines the constant symbol 0 to be understood as the “empty-class,”

while axiom 10 defines the function symbol s on a set x to be understood as the

set-theoretic successor function, i.e. sx is the class x ∪ {x}. By Proposition 2.4, we

see that 0 and sx are sets, and are therefore redundant and only meant to be used as

convenient, albeit formal, definitions. It is readily apparent, then, that all theorems

of ZF are theorems of Z,14 i.e. Z is an extension of ZF. In fact, Z is a conservative

extension of ZF which implies Z is consistent iff ZF is consistent.15 Furthermore, one

can see that for each formula P in L2 there is a formula P ′ in L1 such that P ↔ P ′ is

a theorem in Z using A9 and A10. That is, if P is provable in Z then P ′ is provable

in ZF using Proposition 2.4. Thus, Z and ZF are, in a sense, equivalent. Therefore,

when we refer to theory Z we are essentially referring to ZF.

For the contents of this paper, the key property of Z, aside from its expressive

capabilities to serve as a foundation for a large part of mathematics, is that it can

model elementary number theory, in particular the axioms of Peano Arithmetic16

(PA).17

14This is because L1 ⊂ L2 and ZF ⊂ Z, so any proof in ZF is also a proof in Z.
15See [4] §25 2502.
16The axioms of PA are given by S1-S8 and axiom-schema S9 in [6].
17A clear exposition of this fact can be found in §5.1-2 in [7]

9



As is shown in [5], the natural numbers N are represented in Z by the set N , which

is defined as the smallest inductive class.18 In fact, 0 ≡ 0, 1 ≡ s0, 2 = ss0, ... ,

n ≡ s...s0,19 ... etc. As it turns out, N is equivalent to the first infinite ordinal ω, and

the operations of addition and multiplication will be defined by ordinal addition and

multiplication.20 Using A8, along with other properties specific to N ,we can derive a

full principle of induction.21

2.5 Gödel-Numbering of Z

In defining the primitive symbols for the languages L1 and L2, one can see that the

objects used to represent the symbols were immaterial with respect to the syntactic

structure of the languages. That is, it would be no different if we decided to use “A”

as the universal quantifier or “!” as a variable, or even reading strings from the right

instead of left. We will instead use numbers as the primitive symbols of Z, and we will

write these numbers using the arabic numerals in base 10. By defining a convenient

correspondence between the symbols and numbers we can use the Fundamental The-

orem of Arithmetic22 to uniquely construct a number r that represents a particular

string R of L2 by interpreting the numbers of the exponents23 of the primes (in order

of magnitude) of the prime factorization of r, and vice versa. We now set up such a

18A class C is inductive if ∅ ∈ C and if x ∈ C then x ∪ {x} ∈ C. By A6 there exists an inductive
set X, so by A3 N is a set since it is a subclass of set X.

19Where there are n occurrences of s proceeding 0. Henceforth we will abbreviate this by sn.
20Let α and β be ordinal numbers. As is defined in [5], α + β = γ, where γ ≥ α is the unique

ordinal such that β is equipotent to γ \α; and α · β = γ where γ is the unique ordinal equipotent to
the cartesian product α× β.

21See 1.4-1.10 in [5].
22A theorem that can be demonstrated using the PA, and hence represented in Z.
23That is, the exponents are the primitive symbols.
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one-to-one correspondence as follows:

1 ≡ 0 3 ≡ s 5 ≡ ∈

7 ≡ = 9 ≡ ∼ 11 ≡ ∨

13 ≡ ∀ 15 ≡ ( 17 ≡ )

pn+7 ≡ xn ,

where pn+7 is the n-th prime number ≥ 19, in order of magnitude. Now to each

string a, i.e. finite series of symbols, there corresponds a finite series of symbols

(numbers) x1...xn. We map each string a to the number Φ(a) = 2x1 · 3x2 · ... · pxn
n ,

and call such a number the string that corresponds to the series x1...xn representing

the string. Thus, a string that represents a term (or formula) is called a term (or

formula); and similarly for each metamathematical concept, e.g. “variable”, “nega-

tion”, “generalization”, “proof”,24 “theorem”, etc., there corresponds a concept of

the same name, in bold print, of a number that represents each concept, respectively.

So, if R(a1, ..., an) is an n-ary predicate there will correspond an n-ary predicate

R′(x1, ..., xn) which holds for x1, ..., xn iff xi = Φ(ai), for i = 1, ..., n and R(a1, ..., an).

Theory Z will, thus, denote the collection of axioms derived from applying Φ to

each of the axioms of Z.

3 (Primitive) Recursive functions and relations

We shall now demonstrate elementary results in recursion theory that, at this stage,

have no immediate connection to the formal system of Section 2.25

24In fact a proof is the product of the primes with exponents that are formulae, in the order
that the formulae appear in the proof.

25By “functions” we mean “number-theoretic functions,” where N stands the collection of natural
numbers including 0.
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3.1 Basics of recursion theory

Definition 3.1. [3]26 The functions Cn : N→ N, S : N→ N, and Pm
i : Nm → N are

called initial functions, where Cn(x) = n, S(x) = x + 1,27 and Pm
i (x1, ..., xm) = xi;

denoting the constant function (for n ε N), the successor function, and the projective

function (for m, i ε N and 1 ≤ i ≤ m), respectively.

Definition 3.2. [1] A function φ : Nn → N is said to be recursively defined by the

functions ψ : Nn−1 → N and µ : Nn+1 → N, if for all x2, ..., xn, k ε N the following

hold:28

φ(0, x2, ..., xn) = ψ(x2, ..., xn)

φ(k + 1, x2, ..., xn) = µ(k, φ(k, x2, ..., xn), x2, ..., xn)

Definition 3.3. Let φ : Nn → N, µ : Nm → N, and ψi : Nki → N be functions,

with n,m, ki ε N and 1 ≤ i ≤ m. Then φ is said to be derived by substitution from

µ, ψ1, ..., ψm if for all n ∈ Nn and ni ∈ Nki , where each value in ni is a number from n,

φ(n) = µ (ψ1(n1), ..., ψm(nm))

Definition 3.4. [1] A function φ is said to be recursive29, if there is a finite series

of functions φ1, ..., φn, with φn = φ, satisfying the property that each φk is either an

initial function, recursively defined by φi and φj, for i, j < k, or derived by any of

the previous functions by substitution. The length of the shortest series of φi, which

belong to a recursive function φ, is termed the degree of φ and is denoted deg(φ).

26Note that [3] uses “Umi ” instead of “Pmi ”; as well as merely the zero function instead of Cn,
which, like [1], we consider to be initial since it can easily be found to be primitive recursive.

27It should be noted that “x+ 1” or “k+ 1” denotes the successor of the number x or the number
k, and is not meant to presume the existence of an addition function.

28If n = 1 then ψ will be a constant.
29We use “recursive” as is used in [1], but is commonly called “primitive recursive”, as opposed

to “general recursive”, given by [3].
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Proposition 3.5. The addition and multiplication functions are recursive.

Proof.

(i) ι1(x1, x2) = S(P 2
2 (x1, x2))

(ii) ι2(x1, x2, x3) = S(P 3
2 (x1, x2, x3))

(iii) 0 + (0) = 0;

0 + (k + 1) = ι1(k, 0 + (k))

(iv) +(0, y) = 0 + (y);

+(k + 1, y) = ι2(k,+(k, y), y)

(v) ι3(x1, x2, x3) = +(P 3
1 (x1, x2, x3), P

3
2 (x1, x2, x3))

(vi) ×(0, y) = C0(y);

×(k + 1, y) = ι3(k,×(k, y), y)

We see that (i) and (ii) are recursive by substitution of initial functions, (iii) and (iv)

are recursively defined by (i), (ii), and (iii), respectively, hence recursive. Now, (v)

is a substitution of initial functions in (iv), thus recursive. Finally, (vi) is recursively

defined by a constant function and (v), and is, thus, recursive. Henceforth, we shall

write (iv) and (vi) with the infix notation x+ y and x · y.

Definition 3.6. [1] A relation R(x1, ..., xn) among natural numbers is said to be a

recursive relation if there exists a recursive function φ such that, for all numbers

x1, ..., xn ε N:

R(x1, ..., xn) holds iff [φ(x1, ..., xn) = 0] holds.

13



Proposition 3.7. [1]The following propositions hold:30

I. Every function (or relation) derived from recursive functions (or relations) by sub-

stitution of recursive functions in place of variables is recursive, so also is every

function derived from recursive functions by recursive definition.

II. If R and S are recursive relations, then so also are ¬R and R V S.31

III. If the functions φ(n) and ψ(x) are recursive, then so is the relation: φ(n) = ψ(x).

IV. If the function φ(n) and the relation R(x, x) are recursive, then so are the relations

S and T , as well as the function ψ, given by:

S(n, x) ≡ (∃x)[x ≤ φ(n) & R(x, x)]

T (n, x) ≡ (∀x)[x ≤ φ(n)⇒ R(x, x)]

ψ(n, x) = (εx)[x ≤ φ(n) & R(x, x)]

where (εx)F (x) means “the smallest number x such that F (x) holds, and 0 if no such

number exists.”

Proof.

I. Suppose φ : Nn → N is defined, as in Definition 3.3, by

φ(n) = µ (ψ1(n1), ..., ψm(nm)) ,

where µ, ψ1, ..., ψm are each recursive. By Definition 3.4, there exists a finite series of

functions for each of µ, ψ1, ..., ψm. The combination of these series will remain finite

and, with the addition of φ as the last function and using the same derivation rules

therein, will satisfy Definition 3.4, making φ recursive. Similarly, let R(n) be an n-ary

relation given by

R(n) ≡ S(ψ1(n1), ..., ψm(nm)),

30By φ(n) we mean φ is a function of n-tuple n, i.e. φ is an n-ary functions. We use a similar
convention for relations R(x).

31And hence the remaining logical connectives.
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where S is a recursive m-ary relation, and, ψ1, ..., ψm each recursive functions.

By Definition 3.6, there exists a recursive function µ such that S(x1, ..., xm) holds iff

[µ(x1, ..., xm) = 0] holds. Thus R(n) holds iff [φ(n) = 0] holds (where φ is defined

as above), but we have already shown such a φ to be recursive. Therefore R(n) is a

recursive relation.

II-III. We now show there corresponds recursive functions to the connectives ¬,

V , and =. Indeed,

α(0) = 1; α(x) = 0 for x 6= 0

β(0, y) = β(x, 0) = 0; β(x, y) = 1 if x = y = 1

γ(x, y) = 0 if x = y; γ(x, y) = 1 if x 6= y

are recursive. Let R(n) and S(x) be recursive, defined by [φ(n) = 0] and [ψ(x) = 0],

respectively. Then

¬R(n) ≡ [α(φ(n)) = 0]

R(n) V S(x) ≡ [β(φ(n), ψ(x)) = 0]

[φ(n) = ψ(x)] ≡ [γ(φ(n), ψ(x)) = 0].

By (I), each composition of functions is recursive, hence each relation defined by

those connectives are recursive, and indeed all logical connectives can be shown to be

recursive by proper use of α and β.

IV. Let φ(n) and R(x, x) be a recursive function and relation, respectively. Then

there is recursive ρ(x, x) such that R(x, x) holds iff [ρ(x, x) = 0] holds. Now define a

new function χ(x, x) as follows

χ(0, x) = 0; χ(k + 1, x) = (k + 1) · a+ χ(k, x) · α(a),

where

a = α[α(ρ(0, x))] · α[ρ(k + 1, x)] · α[χ(k, x)].

15



It should be observed that, by definition of α, a can only take the values 0 or 1.

In fact, we see that χ(k + 1, x) = k + 1 iff a = 1 iff the following holds:

¬R(0, x) & R(k + 1, x) & [χ(k, x) = 0],

otherwise χ(k + 1, x) = χ(k, x). Thus, it is observed that χ(n, x) remains 0 until that

least value m for which R(m, x) holds, and for any k ≥ m, χ(k, x) = m. Hence

ψ(n, x) = χ(φ(n), x) and S(n, x) ≡ R[ψ(n, x), x],

which are recursive by (I). For T , we build a new function χ′, in a similar manner to

χ, based on the recursive relation ¬R, as opposed to R. Then, similar to ψ and S,

we define the new recursive function ψ′ and recursive relation S ′ based on χ′. Hence

T (n, x) ≡ ¬S ′(n, x),32

and is recursive by (I).

3.2 Recursion theory as the metalanguage of Z

Using Proposition 3.7, and following the direction of [1], the following list of functions

and relations (1-50) are found to be recursive, with the exception of 51. This shows

that the concepts “ is a formula,” “ is an axiom,” “ is inferred by ,” etc., are

recursive.

1. x0 ≡ 1; xk+1 ≡ x · (xk)

2. x/y ≡ (∃z)[z ≤ x & x = y · z]

x is divisible by y.

32We see that
¬S′(n, x) ≡ ¬(∃x)[x ≤ φ(n) & ¬R(x, x)]

≡ ¬(∃x)[¬(¬(x ≤ φ(n)) V R(x, x))]
≡ ¬¬(∀x)[¬(x ≤ φ(n)) V R(x, x)]
≡ (∀x)[x ≤ φ(n)⇒ R(x, x)]
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3. Prim(x) ≡ ¬(∃z)[z ≤ x & z 6= 1 & z 6= x & x/z] & x > 1

x is a prime number.

4. 0 Pr x ≡ 0; (k + 1) Pr x ≡ (εy)[y ≤ x & Prim(y) & x/y & y > k Pr x]

n Pr x is the n-th prime factor contained in x, 0 otherwise.

5. 0! ≡ 1; (k + 1)! ≡ (k + 1) · k!

6. Pr(0) ≡ 0; Pr(k + 1) ≡ (εy)[y ≤ Pr(k)! + 1 & Prim(y) & y > Pr(k)]

Pr(n) is the n-th prime number.

7. n Exp x ≡ (εy)[y ≤ x & x/(n Pr x)y & ¬(x/(n Pr x)y+1)]

n Exp x is the n-th symbol assigned to x, i.e., the exponent of the n-th

prime factor of x, 0 otherwise.

8. l(x) ≡ (εy)[y ≤ x & y Pr x > 0 & (y + 1) Pr x = 0]

l(x) is the length of the series of symbols assigned to x, i.e., the number

of prime factors of x.

9. x ∗ y ≡ (εz)[z ≤ Pr(l(x) + l(y))x+y & (∀n)[n ≤ l(x)⇒ n Exp z = n Exp x]

& (∀n)[0 < n ≤ l(y)⇒ (n+ l(x)) Exp z = n Exp y]]

x ∗ y is the concatenation of the symbols assigned to x and y.

10. R(x) ≡ 2x

R(x) is the string consisting of the single symbol x.

11. E(x) ≡ R(15) ∗ x ∗ R(17)

E(x) corresponds to the operation of “bracketing” the string x.

17



12. Var(x) ≡ (x ≥ 19) & Prim(x)

x is a variable.

13. Neg(x) ≡ E[R(9) ∗ x]

Neg(x) is the negation of x.

14. x Dis y ≡ E[x ∗ R(11) ∗ y]

x Dis y is the disjunction of x and y.

15. x Gen y ≡ E[R(13) ∗ R(x) ∗ y]

x Gen y is the universal generalization of y by means of the variable x

(assuming x is a variable).

16. x Imp y ≡ [Neg(x)] Dis y

x Imp y is the implication of x to y.

17. x Con y ≡ Neg[Neg(x) Dis Neg(y)]

x Con y is the conjunction of x and y.

18. x Iff y ≡ (x Imp y) Con (y Imp x)

x Iff y is the biconditional of x and y.

19. x Ex y ≡ Neg[x Gen Neg(y)]

x Ex y is the existential generalization of y by means of the variable x,

if x is a variable.

20. 0 S x ≡ x; (k + 1) S x ≡ R(3) ∗ k S x

n S x corresponds to the prefixing of the symbols assigned to x, n occur-

rences of the symbol for “s”.
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21. #(n) ≡ n S R(1)

#(n) is the number for the number n.

22. x In y ≡ E[x ∗ R(5) ∗ y]

x In y is the membership of x in y.

23. x Eq y ≡ E[x ∗ R(7) ∗ y]

x Eq y is the equality of x and y.

24. Term(x) ≡ (∃m,n)[m,n ≤ x & (m = 1 V Var(m)) & x = n S R(m)]

x is a term.

25. Bf(x) ≡ (∃m,n)[Term(m) & Term(n) & (x = m In n V x = m Eq n)]

x is a basic formula.

26. Op(x, y, z) ≡ x = Neg(y) V x = y Dis z V (∃v)[v ≤ x & Var(v) & x = v Gen y]

x is obtained by logical operations from y and z.

27. SoF(x) ≡ l(x) > 0 & (∀n)[0 < n ≤ l(x)⇒ (Bf(n Exp x)

V (∃p, q)[0 < p, q < n & Op(n Exp x, p Exp x, q Exp x)])]

x is a series of formulae of which each is either a basic formula or is

obtained by logical operations from those preceding.

28. Form(x) ≡ (∃n)[n ≤ Pr(l(x)2)x·l(x)
2

& SoF(n) & x = (l(n) Exp n)]

x is a formula.33

33The motivation for the limitation n ≤ Pr(l(x)2)x·l(x)
2

is given as follows: The length of the
shortest series of formulae belonging to x can at most be equal to the number of constituent
formulae of x. There are at most l(x) constituent formulae of length 1, l(x) − 1 of length 2, etc.
and in hence at most 1

2 l(x)[l(x) + 1] ≤ l(x)2. The prime factors in n can therefore all be assumed to
be smaller than Pr(l(x)2), of length smaller than l(x)2 and with exponents less than x. [1]
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29. v Bd n, x ≡ (∃a, b, c)[a, b, c ≤ x & x = a ∗ (v Gen b) ∗ c & Form(b) &

l(a) + 1 ≤ n ≤ l(a) + l(v Gen b)] & Var(v) & Form(x)

The variable v is bound at the n-th place in x.

30. v Fr n, x ≡ Var(v) & Form(x) & v = (n Exp x) & n ≤ l(x) & ¬(v Bd n, x)

The variable v is free at the n-th place in x.

31. Su x
(
n
y

)
≡ (εz)[z ≤ Pr(l(x) + l(y))x+y & (∃u, v)[u, v ≤ x & n = l(u) + 1

& x = u ∗ R(n Exp x) ∗ v & z = u ∗ y ∗ v]]

Su x
(
n
y

)
derives from x by substituting y in place of the n-th symbol in x.

32. 0 Pl v, x ≡ (εn)[n ≤ l(x) & v Fr n, x

& ¬(∃p)[n < p < l(x) & v Fr p, x]]

(k + 1) Pl v, x ≡ (εn)[n < k Pl v, x & v Fr n, x

& ¬(∃p)[n < p < k Pl v, x & v Fr p, x]]

n Pl v, x is the (n+ 1)-th place in x (counting from the end of formula x)

at which v is free in x, 0 otherwise.

33. fo(v, x) ≡ (εn)[n ≤ l(x) & n Pl v, x = 0]

fo(v, x) is the number of places at which v if free in x.

34. Sb0(x
v
y) ≡ x; Sbk+1(x

v
y) ≡ Su [Sbk(x

v
y)
(
k Pl v,x

y

)
]

35. Sub(xvy) ≡ Sbfo(v,x)(x
v
y)

Sub(xvy) is the concept of substitution as defined in Definition 2.2.7.34

34To evaluate multiple substitutions, i.e. Sub(x v
y
u
z ), we proceed in a similar manner to substi-

tutions in Z to avoid capture, or simple evaluate iteratively, i.e. Sub(Sub(xvy) u
z ), if capture is not

an issue.
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36. FF(x, v, y) ≡ ¬(∃m,n,w)[m ≤ l(x) & n ≤ l(y) & w ≤ x

& w = m Exp x & w Bd n, y & v Fr n, y]

x is free for v in y, as in Definition 2.2.6.

Now, for the axioms L6, A1,A2, A4, A5, A6, A8, A9 and A10 there corresponds

determinate numbers l6, z1, z2, z4, z5, z6, z8, z9, z10, respectively, determined by

Φ.35 However, since the remaining axioms are schemata, we provide the follow-

ing

37. L1(x) ≡ (∃p)[p ≤ x & Form(p) & x = (p Dis p) Imp p]

38. L2(x) ≡ (∃p, q)[p, q ≤ x & Form(p) & Form(q) & x = p Imp (q Dis p)]

39. L3(x) ≡ (∃p, q, r)[p, q, r ≤ x & Form(p) & Form(q) & Form(r)

& x = (p Imp q) Imp ([r Dis p] Imp [r Dis q])]

40. L4(x) ≡ (∃v, p, t)[v, p, t ≤ x & Var(v) & Form(p) & Term(t) & FF(t, v, p)

& x = (v Gen p) Imp Sub(pvt )]

41. L5(x) ≡ (∃v, p, q)[v, p, q ≤ x & Var(v) & Form(p) & Form(q) & fo(v, p) = 0

& x = (v Gen [p Dis q]) Imp (p Dis [v Gen q])]

42. L7(x) ≡ (∃v, w, z, p)[v, w, z, p ≤ x & Var(v) & Var(w) & Var(z) & Form(p)

& x = (v Eq w) Imp [Sub(pzv) Imp Sub(pzw)]]

43. L− Ax(x) ≡ L1(x) V L2(x) V L3(x) V L4(x) V L5(x) V x = l6 V L7(x)

x is an instance of an logical axiom

35For instance,

l6 = 215 · 319 · 57 · 719 · 1117 = 17142817942881776483831985287448616219174786560000000
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44. Z3(x) ≡ (∃p, v, w)[p, v, w ≤ x & Form(p) & Var(v) & Var(w) & x =

19 Gen 23 Gen 29 Ex 31 Gen (31 In 29 Iff [31 In 19 Con Sub(p v
R(31)

w
R(23))])]

45. Z7(x) ≡ (∃p, u, v, w)[p, u, v, w ≤ x & Form(p) & Var(u) & Var(v) & Var(w)

& x = 19 Gen [23 Gen 29 Gen 31 Gen (Sub(p u
R(23)

v
R(29)

w
R(19))

Con Sub(p u
R(23)

v
R(31)

w
R(19)) Imp R(29) Eq R(31)) Imp 23 Gen 29 Ex

31 Gen (31 In 23 Iff 37 Ex [37 In 23 Con Sub(p u
R(37)

v
R(29)

w
R(19))])]]

46. Z − Ax(x) ≡ x = z1 V x = z2 V Z3(x) V x = z4 V x = z5

V x = z6 V Z7(x) V x = z8 V x = z9 V x = z10

x is an instance of a set-theoretical axiom

47. Ax(x) ≡ L− Ax(x) V Z − Ax(x)

x is an axiom of theory Z.

48. Inf(x, y, z) ≡ y = z Imp x V (∃v)[v ≤ x & Var(v) & x = v Gen y]

x is inferred by y and z.

49. Pf-S(x) ≡ l(x) > 0 & (∀n)[0 < n ≤ l(x)⇒ Ax(n Exp x)

V (∃p, q)[0 < p, q < n & Inf(n Exp x, p Exp x, q Exp x)]]

x is a proof-schema, i.e., a finite series of formulae, of which each is either

an axiom or inferred by two previous ones.

50. x Pf y ≡ Pf-S(x) & [l(x)] Exp x = y

x is a proof of formula y

51. Thm(x) ≡ (∃y)[y Pf x]

x is a theorem, i.e. x is a provable formula.36

36Note that Thm is not justifiably recursive. In fact, Theorem 4.2 will show Thm is not recursive.

22



3.3 Representability of recursiveness in Z

Above we have shown that recursion theory is capable of serving as the metalanguage

for the theory Z, which, again, is essentially Z with numbers as the primitive symbols.

We now demonstrate the peculiar fact that recursion theory can be represented in Z.

Definition 3.8. [2] Let φ(x1, ..., xn) be a function. The predicate r, with free vari-

ables37 u1, ..., un+1 formally represents φ(x1, ..., xn) iff for any numbers x1, ..., xn, k ε N

[φ(x1, ..., xn) = k]⇒ Thm
[
Sub

(
r u1

#(x1) · · ·
un

#(xn)
un+1

#(k)

)]
(1)

[φ(x1, ..., xn) 6= k]⇒ Thm
[
Neg Sub

(
r u1

#(x1) · · ·
un

#(xn)
un+1

#(k)

)]
(2)

We say r is a recursive predicate if it formally represents a recursive function.

Proposition 3.9. [2] [6](Gödel’s β-function) Let β be the function defined by

β(n, d, k) ≡ n mod (1 + (k + 1)d)

for each n, d, k ε N.

I. β is a recursive function.

II. Let σ be a sequence of natural numbers where σ(i) denotes the i-th term of the

sequence. Then for each k ε N there exists n, d ∈ N such that β(n, d, i) = σ(i) for

each i ≤ k.

III. β is formally representable by a recursive 4-ary predicate b.

Proof.

I. By Propositions 3.5 and 3.7.IV, the function

x mod (y) ≡ (εn)[n < y & (∃d, r)[r < y & x = dy + r]]

is recursive. Thus β(n, d, k) ≡ n mod (1 + (k + 1)d) is recursive by substitution.

37i.e. primes ≥ 19
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II. Let k ε N and l = max{k, σ(0), ..., σ(k − 1)}. We claim that, for any i, j < k

with i 6= j, the numbers 1 + (i + 1)l! and 1 + (j + 1)l! are relatively prime. If we

suppose the contrary, then there are numbers j < i < k and prime p > 1 such that

p | (1 + (i + 1)l!) and p | (1 + (j + 1)l!). Thus p will divide their difference, yielding

p | (i − j)l!. But this implies p | l!, since both i, j < k making i − j < k ≤ l, which

forces i − j to be a factor l!. However p | (1 + (i + 1)l!), which implies that p 6 | l!, a

contradiction.38 Now, since 1 + (i+ 1)l! and 1 + (j + 1)l! are relatively prime for any

i 6= j, by the Chinese Remainder Theorem (CRT ), there is a smallest n such that

σ(i) ≡ n mod (1 + (i+ 1)l!) for each i < k. Let d = l!, then β(n, d, i) = σ(i) for each

i < k, and we are done.

III. The proof of this claim, upon reflection, offers no difficulty in principle39 since

Z models PA and PA serves as a foundation for elementary number theory; hence

there is a constructive proof in Z of the CRT called CRT. We shall omit the formal

demonstration since it is outside the scope of this paper, but one need only formalize

the proof of the CRT given in any text on elementary number theory.40 Once this

proof has been formalized, a predicate B(x, y, z, w) can be constructed in Z so that

B(xsn

y
sd

z
sk

w
sm

) holds when and only when β(n, d, k) = m holds. Using this we can prove

CRT in theory Z and construct predicate b ≡ Φ(B) formally representing β; i.e.

by formally mimicking the proofs for B(xsn

y
sd

z
sk

w
sm

) and ∼B(xsn

y
sd

z
sk

w
sm

) as proofs in

Z. In the same fashion, let l denote the predicate representing the predicate L(x, y),

where L(xsn

y
sm

) is provable precisely when the relation n < m holds.

38This is an elementary fact of number theory. If p | n + 1 and p | n, then p | (n + 1 − n) = 1, a
contradiction. So if p | (1 + (i+ 1)l!) then p 6 | (i+ 1)l!, hence p 6 | (i+ 1) and, in particular, p 6 | l!.

39See Prop. 3.21 in [6] for a more rigorous exposition.
40Such as [8].
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Proposition 3.10. [2] Every recursive function is formally represented by a recur-

sive relation.

Proof. Let φ be a recursive function. We proceed by complete induction on deg(φ).

If deg(φ) = 1 then φ must be an initial function.

i. S(x) = y is given by r ≡ Φ(sx1 = x2) = (1 S 19) Eq 23.

ii. P n
i (x1, ..., xn) = y is given by r ≡ Φ(xi = xn+1) = Pr(i) Eq Pr(n+ 1).

iii. Cn(x) = y is given by r ≡ Φ(x2 = sn0) = 23 Eq #(n).

Since Z models PA, (i)-(iii) are all demonstrable in the system Z, i.e. conditions (1)

and (2) hold, and the base case is satisfied.

Now, suppose the hypothesis holds for all recursive functions of degree less than

φ. Thus φ must be derived from recursive functions of lesser degree by either (iv)

substitution or (v) recursive definition.

iv. Suppose φ is derived by substitution, where for each x1, ..., xn−1 ε N

φ(x1, ..., xn−1) = µ (ψ1(x1, ..., xn−1), ..., ψm−1(x1, ..., xn−1)) ,

where µ, ψ1, ..., ψm−1 are recursive functions, each with degree less than φ. By the

inductive hypothesis there are predicates rµ, rψ1 , ..., rψm−1 that satisfy conditions (1)

and (2). Observe that the free variables amongst the rψi
’s are shared, of which there

are n-many, and there are m free variables in rµ. We may assume, without loss of

generality, that the free variables shared by the rφi
’s are the first n prime numbers

(≥ 19) and those of rµ are the proceeding m prime numbers. Let N = n+m+ 1 and

pi denote the i-th prime number ≥ 19. We define predicate r (with free variables
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19, ..., pn) as follows:41

r ≡ pN Ex ... pN+m−1 Ex pN+m Ex

[
Sub

(
rµ

pn+1

R(pN ) · · ·
pm

R(pN+m)

)
Con Sub

(
rφ1

pn

R(pN )

)
Con ... Con Sub

(
rφm−1

pn

R(pN+m−1)

)]
.

It is clear now that, for given numbers x1, ..., xn−1, k,

φ(x1, ..., xn−1) = k ⇔ µ (ψ1(x1, ..., xn−1), ..., ψm−1(x1, ..., xn−1)) = k,

that is, iff there are numbers y1, ..., ym−1 such that ψi(x1, ..., xn−1) = yi, for each

i = 1, ...,m− 1, and µ(y1, ..., ym−1) = k. If such is the case, then by condition (1),

Sub
(
rψi

19
#(x1) · · ·

pn−1

#(xn−1)
pn

#(yi)

)
for each i = 1, ...,m− 1, and

Sub
(
rµ

pn+1
#(y1) · · ·

pn+m−1

#(ym−1)
pn+m

#(k)

)
are provable. So the repeated conjunction of the above sentences would also

be provable, and thus the existential quantification, with the yi’s removed, is

provable. Hence

φ(x1, ..., xn−1, k)⇒ Thm
[
Sub

(
r 19

#(x1) · · ·
pn−1

#(xn−1)
pn

#(k)

)]
and condition (1) is satisfied. By a similar argument, (2) is also satisfied.

v. Suppose φ is derived from recursive definition by

φ(0, x2, ..., xn−1) = ψ(x2, ..., xn−1)

φ(k + 1, x2, ..., xn−1) = µ(k, φ(k, x2, ..., xn−1), x2, ..., xn−1)

where ψ and µ are recursive functions with degree less than φ. By the inductive

41Intuitively, but informally, r is understood as follows:

r(x1, ..., xn) ≡ ∃y1...∃ym∃z
(
rµ(y1, ..., ym, z) ∧ rψ1(x1, ..., xn, y1) ∧ ... ∧ rψm

(x1, ..., xn, ym)
)
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hypothesis there are predicates rψ (with free variables 23, ..., pn) and rµ (with free

variables v1, v2, 23, ..., pn) that satisfy conditions (1) and (2). We define predicate

r (with free variables 19, ..., pn) as follows:42

r ≡ q1 Ex q2 Ex

[
q3 Ex

[
Sub

(
b u1

R(q1)
u2

R(q2)
u3

#(0)
u4

R(p3)

)
Con Sub

(
rψ

pn

R(q3)

) ]
Con

[
q4 Gen q5 Ex

[
(R(q5) Eq R(3) ∗ R(q4))

Con
(

Sub
(
l u1

R(q4)
u2

R(pn)

)
Imp

(
q6 Ex q7 Ex

(
Sub

(
b u1

R(q1)
u2

R(q2)
u3

R(q4)
u4

R(q6)

)
Con Sub

(
b u1

R(q1)
u2

R(q2)
u3

R(q4)
u4

R(q7)

)
Con Sub

(
rµ

v1
R(q4)

v2
R(q6)

pn

R(q7)

))))]]]
where b and l (with free variables among u1, ..., u4) are given by Proposition 3.9,

and u1, ..., u7 are the first variables (primes) that do not occur free amongst rψ, rµ, b

and l. The proof that r satisfies conditions (1) and (2) requires a richer development

of the syntactic structure of L2. A complete exposition can be found in [6].43

42Intuitively, albeit informally, we can describe construction as follows:
To determine the value of φ(k, n) one needs a sequence σ of length k, where σ(i) = φ(i, n) for each
i < k. This allows us evaluate µ without directly using φ, which in turn will also ensure that the
construction of r will be finite and not self-referential. For a given k, Proposition 3.9 provides us
with an m, d ε N where the β-function is precisely σ. That is φ(0, n) = ψ(n) = β(m, d, 0) and
φ(i+ 1, n) = µ(i, β(m, d, i), n). So essentially

r(x1, n, k) ≡ ∃m∃d
[
rψ(n, β(m,n, 0)) ∧ ∀i[i < k → rµ(i, β(m, d, i), n, β(m, d, i+ 1))]

]
,

but due to our formalization, it looks more like

r(x1, n, k) ≡ (∃m, d)
[
(∃z)(b(m, d, 0, z) ∧ rψ(n, z)) ∧ (∀i)(l(i, k)→

(∃u)(∃v)[b(m,n, i, u) ∧ b(m,n, i+ 1, v) ∧ rµ(i, u, n, v)])
]

43Specifically Prop. 3.23 from [6].
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Proposition 3.11. To each recursive relation R(x1, ..., xn) there corresponds a

recursive n-ary predicate r (with free-variables u1, ..., un) such that for every

n-tuple of numbers (x1, ..., xn) the following hold:

R(x1, ..., xn)⇒ Thm
[
Sub

(
r u1

#(x1)
...
...

un

#(xn)

)]
(3)

¬R(x1, ..., xn)⇒ Thm
[
Neg Sub

(
r u1

#(x1)
...
...

un

#(xn)

)]
(4)

Proof. Let φ(x1, ..., xn) be the recursive function such that R(x1, ..., xn) holds precisely

when [φ(x1, ..., xn) = 0]. By Proposition 3.10, there is a relation rφ that satisfies (1)

and (2) of Definition 3.8. Let r ≡ Sub(rφ
un+1

#(0) ). Hence r is as required.

4 The Incompleteness of Z

Let C be any collection of formulae.44 By Ded(C) we mean the smallest collection

of formulae that contains all the axioms of Z and formulae of C, and is closed

with respect to the relation “inferred by” (Inf).

Definition 4.1. Let C be a collection of formulae.

1. C is said to be incomplete iff there is a sentence p such that neither p nor

Neg(p) are in Ded(C). Otherwise C is complete.

2. C is said to be inconsistent iff there is a sentence p where both p and Neg(p)

are contained in Ded(C). Otherwise C is consistent.

3. C is said to be ω-inconsistent iff there is a class-property r such that

(∀n)[Sub(r v
#(n)) ε Ded(C)] & [Neg(v Gen r)] ε Ded(C), (5)

44Including infinite or empty collections.
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where v is the free-variable in the class-property r. Otherwise C is ω-

consistent.45

We now demonstrate two truly remarkable results, known as Gödel’s First Incom-

pleteness Theorem and Gödel’s Second Incompleteness Theorem, respectively.

Theorem 4.2. [1] Let C be any ω-consistent recursive collection of formulae.

Then C is incomplete, in particular there corresponds a recursive class-property

r such that neither v Gen r nor Neg(v Gen r) belong to Ded(C).

Proof. Let C be a recursive ω-consistent collection of sentences. We now define

the following relations specific to C:

Pf-SC(x) ≡ (∀n)[n ≤ l(x)⇒ Ax(n Exp x) V (n Exp x) ε C

V (∃p, q)[0 < p, q < n & Inf(n Exp x, p Exp x, q Exp x)]] & l(x) > 0
(6)

x PfC y ≡ Pf-SC(x) & [l(x) Exp x = y] (7)

ThmC(y) ≡ (∃x)[x PfC y] (8)

By Proposition 3.7, both (6) and (7) are recursive. Now, it is clear that46

(∀y)[Thm(y)⇒ ThmC(y)] (9)

and, by definition of Ded(C),

(∀y)[ThmC(y)⇔ y ε Ded(C)]. (10)

We now define the following relation:

Q(x, y) ≡ ¬
[
x PfC Sub

(
y 23

#(y)

)]
. (11)

45Note that every ω-consistent C is consistent, but the converse does not hold. C is said to be
recursive if the relation x ε C is a recursive relation.

46Ded(∅) ⊆ Ded(C), where Ded(∅) is the collection of all provable sentences of theory Z.
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It follows that Q(x, y) is recursive by Proposition 3.7 and the fact that PfC , Sub, and

# are recursive. By Proposition 3.11 and (9), there is a recursive 2-ary predicate

q, with free variables 19 and 23, such that

¬
[
x PfC Sub

(
y 23

#(y)

)]
⇒ ThmC

[
Sub

(
q 19

#(x)
23

#(y)

)]
(12)

x PfC Sub
(
y 23

#(y)

)
⇒ ThmC

[
Neg Sub

(
q 19

#(x)
23

#(y)

)]
(13)

Define the number g as

g ≡ 19 Gen q. (14)

Thus g is a recursive class-property with free-variable 23. Next, we define the

number r as

r ≡ Sub
(
q 23

#(g)

)
(15)

where it is readily seen that r is recursive by Proposition 3.7 and is a class-property

with free-variable 19. Observe that, by (14) and (15),

Sub
(
g 23

#(g)

)
= Sub

(
[19 Gen q] 23

#(g)

)
= 47 19 Gen Sub

(
q 23

#(g)

)
= 19 Gen r

(16)

Furthermore,

Sub
(
q 19

#(x)
23

#(g)

)
= 48 Sub

(
Sub

(
q 23

#(g)

)
19

#(x)

)
= Sub

(
r 19

#(x)

) (17)

By replacing y with g, as well as applying (16) and (17) to the antecedent and

consequent, respectively, in (12) and (13) we obtain

¬ [x PfC (19 Gen r)] ⇒ ThmC

[
Sub

(
r 19

#(x)

)]
(18)

47In this case Sub preserves Gen since #(g) is free for 19 in q.
48Since both #(g) is free for 19 and #(x) is free for 23, there will be no unwanted capturing in

the substitution and, therefore, does not affect the order of substitutions.
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x PfC (19 Gen r) ⇒ ThmC

[
Neg Sub

(
r 19

#(x)

)]
(19)

We can now demonstrate that neither 19 Gen r nor Neg(19 Gen r) are C-provable.49

Case 1. 19 Gen r is not C-provable:

Suppose, a contrario, that (19 Gen r) ε Ded(C). By (10), ThmC(19 Gen r) holds

so there is a proof-schema n given by (8) such that n PfC (19 Gen r). But by (16),

19 Gen r = Sub
(
g 23

#(g)

)
, hence n PfC Sub

(
g 23

#(g)

)
holds, which by (19) yields

ThmC

[
Neg Sub

(
r 19

#(n)

)]
.

Thus Neg Sub
(
r 19

#(n)

)
is C-provable. However, since 19 Gen r is C-provable it

follows then that Sub
(
r 19

#(n)

)
, by L4 and Inf, is also C-provable.50 Thus C is not

consistent, hence it is not ω-consistent. Reductio ad absurdum.

Case 2. Neg(19 Gen r) is not C-provable:

Suppose, a contrario, that ThmC [Neg(19 Gen r)] holds. Since we have already

determined that 19 Gen r is not C-provable, it must be the case that no number is

a proof-schema for 19 Gen r. That is, for any number n, ¬ [n PfC (17 Gen r)]. It

follows from (18) that

(∀n)
[
ThmC

[
Sub

(
r 19

#(n)

)]]
.

By (10) this means

(∀n)
[
Sub

(
r 19

#(n)

)
ε Ded(C)

]
.

Hence C is ω-inconsistent, reductio ad absurdum.

Therefore, neither 19 Gen r nor Neg(19 Gen r) are in Ded(C), so C is incomplete.

49“x is C-provable” means that x ε Ded(C), which by (10) is equivalent to ThmC(x).
50That is, by axiom L4 and rule of inference MP.
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Theorem 4.3. [1] Let C be a consistent recursive collection of formulae. Then

the sentence which asserts that C is consistent is not C-provable.

Proof. The proposition Con(C), denoting “C is consistent,” is defined as follows:

Con(C) ≡ (∃x)[Form(x) & ¬ThmC(x)].

Observe that, in Case 1 of Theorem 4.2, only the consistency of C was exploited to

show the sentence 19 Gen r was not C-provable. Hence

Con(C) ⇒ ¬ThmC(19 Gen r)

⇒ (∀x)[¬[x PfC (19 Gen r)]] by (8)

⇒ (∀x)
[
¬
[
x PfC Sub

(
g 23

#(g)

)]]
by (16).

Thus, by (11),

Con(C)⇒ (∀x)Q(x, g). (20)

We proceed by formalizing previous results, in particular Theorem 4.2, within

theory ZF. We will assume, without demonstration, that this has been carried out.51

That is, assume all contents from Section 2.5 up to (20), including the collection

C, have been formalized in theory Z. Let c, then, be the sentence representing

Con(C). We see that, in this formalization, the relation Q(x, y) will be represented by

relation q, class-property Q(x, g) by class-property r, and the sentence (∀x)Q(x, g)

by sentence 19 Gen r. By Theorem 4.2, the formalization of Theorem 4.2, there

corresponds an analogue to (20), namely

c Imp (19 Gen r).

Now if c were C-provable, then so would 19 Gen r, contradicting our assumption of

consistency.

51The results hitherto provided utilize only methods of classical mathematics; methods for which
ZF provides foundation. However, the actual demonstration of this claim would contain, for the
most part, the entirety of this paper.
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5 Closing remarks

We first note that the assumption that collection C being ω-consistent can be re-

placed simply by consistent.52

The introduction of the recursive collection C in Theorem 4.2 was essential in

securing the absoluteness of Gödel’s result. When C is empty one clearly sees that

theory Z is incomplete. But for C nonempty implies that even the resulting sys-

tem obtained by the addition of arbitrary, yet recursive, formulae will still remain

incomplete. Introducing the Axiom of Choice, the Generalized Continuum Hypoth-

esis, or any other controversial axiom to our theory will not yield a completeness

result unless that theory is inconsistent. Furthermore, by Theorem 4.3, one cannot

carry out, in a consistent theory, a proof of that theory’s consistency.

It is also worth reflecting upon the content of the sentence 19 Gen r, which

by (16) is equivalent to Sub
(
g 23
#(g)

)
. Now, 19 Gen r represents, in theory Z, the

sentence (∀x)Q(x, g) which essential states:

“Sub
(
g 23
#(g)

)
is not provable.”

By Theorem 4.2, 19 Gen r, and hence Sub
(
g 23
#(g)

)
, is not provable. Therefore the

above claim is nevertheless a true statement, yet it’s formally undecidable in ZF.

52Theorem II in [9].
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