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ABSTRACT

Throughout the ages, mathematics has been evolving and creating new branches. In

the middle to late twentieth century, a new branch formed: chaos. Chaos is the

study of dynamical systems that vary greatly with respect to initial conditions. The

slightest change in an initial condition, a seemingly unnoticeable change, can yield a

drastically different result if the system is chaotic. Hence the common term relating

to chaos theory, “the butterfly effect”. Something as minute as the flap of a butterfly’s

wings could spawn a natural disaster half-way across the world. This thesis provides

an insight to chaos from both a pure and an applied mathematician’s point of view.
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1 Introduction

“Many people believe that twentieth century science will be remembered for three

main theories: quantum mechanics, relativity, and chaos. Chaos theory is a blanket-

ing theory that covers all aspects of science, hence, it shows up everywhere in the

world today: mathematics, physics, biology, finance, and even music. Where classical

sciences end, chaos is only beginning”[3].

According to Dictionary.com [4], chaos theory is the study of unpredictable and

complex dynamic systems that are highly sensitive to small changes in external con-

ditions. So what does that mean in English? Let’s look at an example.

A bread maker will knead their dough until it is ready to be left to rise. Now,

consider two raisins that were placed in the dough near each other. As the bread

maker kneads the bread, he folds and then flattens the dough and repeats the process

over and over again. The first few times he goes through the process, the raisins

might stay the same distance apart from one another. This could lead to the thought

that this is not a chaotic system and that the raisins will stay the same distance

apart throughout the entire kneading process. However, after a few more times going

through the kneading process the raisins eventually begin to separate farther and

farther from one another and eventually into different parts of the folding process.

One might think that eventually the raisins will regain their initial positions, hence

making the system periodic and not chaotic.

So, why does the bread maker knead the dough?

The answer is...“to mix up the ingredients ... If you mix stuff up, the individual

particles have to move in a very irregular way. Particles that start close together end

up far apart; points far apart may be folded back to be close together. In short, chaos
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is the natural result of mixing” [24]. When we think of chaos as a result of mixing,

it can be applied to many things in life, not just to the mathematical and scientific

world but also the physical world.
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2 From the Perspective of a Pure Mathematician

Robert Devaney cites in Chaos and Fractals: The Mathematics Behind the Com-

puter Graphics [9] a formal definition for chaos:

Definition 1 (Chaos). Let f : M → M be a map, where M is a metric space. The

map f is said to be chaotic if

1. f has sensitive dependence on initial conditions,

2. f is topologically transitive, and

3. Periodic points of f are dense in M .

This is the definition that will be referred to in this paper. But let’s break this

down.

Definition 2 (Sensitive Dependence). A map f , having sensitive dependence on ini-

tial conditions, implies that “small errors in choosing initial points for orbits may lead

to vast errors along the resulting orbits” [15]. A technical definition using quantifiers

would be There exists δ > 0, such that for all x ∈ [0, 1], there exists a y ∈ I and n ∈ N

such that |fn(x)− fn(y)| ≥ δ where I denotes an open-in-[0, 1] interval [10].

Definition 3 (Topologically Transitive). A map f is topologically transitive if given

any two intervals U and V , there is some positive integer k such that fk(U)
⋂

V �= ∅
[26].

Finally, the periodic points that are dense allow for an element of regularity.

In order to look at examples, we need to look at fractals. “Certain sets of equa-

tions...can be repeated many times, creating images called fractals...(The) fractals
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exhibit all of the chaotic traits”: sensitivity to small changes, unpredictability with

a sense of regularity [2]. We will be taking the equation given and repeating it many

times, also known as iterating the equation.

The first example we’ll look at is the Doubling Function.

Theorem 1 (The Doubling Function is Chaotic). The map f : S1 → S1 given by

f(θ) = 2θ (mod 2π) is chaotic.

Proof. Note that f(θ) is not well-defined, we can make it well-defined by noting that

f(θ) = 2θ − 2π
⌊
θ
π

⌋
. Note that S1 is the unit circle on the plane and θ is given in

radians. Since θ is doubled upon iteration in the function f , f is sensitive to initial

conditions. The arc on S1 , associated with θ, is doubled upon iteration in the function

f . So eventually upon some iteration k, the arc will cover all of S1 and in particular

any other arc of S1. Thus, f is topologically transitive. A point is determined by any

angle of the form θ + 2kπ, k ∈ Z. So θ is a periodic point of period n if and only if

2nθ = θ + 2kπ, k ∈ Z. Therefore, the doubling map is chaotic.

Sierpinski’s Triangle is a famous example of a fractal. To begin, one starts with an

equilateral triangle. Then in the first iteration, the middle triangle of the quartered-

triangle is removed. In the next iteration, and the iterations to follow, remove the

inner triangle of the leftover quartered-triangles. In doing so, the following fractal is

created.
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If you’d like to look at, or create, this fractal in a less picturesque way, here is how

a computer would handle generating the Sierpinski’s Triangle.

First, an initial point (x, y) is chosen. Then, the program would come up with

a random number between 0 and 1. If the number is between 0 and 1
3
, then the

following equations would be used to create the next point to be iterated:

xn =
1

2
(xn−1 + 1)

and

yn =
1

2
yn−1.

If the random number that was chosen is between 1
3
and 2

3
, then we’d use the

equations:

xn =
1

2
xn−1

and

yn =
1

2
yn−1.

Finally, if the number chosen at random was between 2
3
and 1, we would use the

equations:
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xn =
1

2

(
xn−1 +

1

2

)

and

yn =
1

2
(yn−1 + 1) .

Regardless of which way Sierpinski’s Triangle is approached, the result is the same.

Another famous fractal is the Koch Snowflake. As in Sierpinski’s Triangle, we

once again begin with a triangle. However, instead of removing the inner triangle of

the quartered-triangle, we remove the middle third of each side of the triangle and

add two sides of equal length. We then continue this process until we achieve the

Koch Snowflake. “The ultimate result is a curve that is infinitely wiggly - there are

no straight lines in it whatsoever” [14].
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such that f is a one-hump mapping on each interval [xi−1, xi]. The interval [xi−1, xi]

is called the base of the ith hump of f .

Definition 6 (Wiggle). A mapping f is a map with wiggly iterates if fn is a 2n−1

-hump mapping, for each n ≥ 1, and the length of the largest base of the humps of fn

tends to 0 as n tends to infinity.

Definition 7 (Woggle). Assuming that a map f has a derivative, a woggle is a hump

of the derivative mapping of f (the hump is in the map of f ′) whose base contains an

interval I and a point a ∈ I such that

i. f ′ > 0 on I and f ′ has a positive local minimum at a,

or

ii. f ′ < 0 on I and f ′ has a negative local maximum at a.

A lemma that will demonstrate an example of a wiggly iterate is the Spike Lemma.

Theorem 2 (Spike Lemma). Let f : [0, 1] → [0, 1] have wiggly iterates. For every

interval I ⊆ [0, 1] there is a hump of some fn whose base is contained in I.

Proof. Now, f having wiggly iterates implies by definition that the length of the

largest base of the humps of fn tends to 0 as n tends to infinity. Thus we can choose

an n such that the distance between two consecutive zeroes of fn is less than half the

length of I. By choosing the smallest zero that lies in I, call it xi , we can guarantee

that xi is in the first half of the interval . Then the next zero xi+1 of fn will be lying

in the interval I. Hence [xi, xi+1] ⊆ I.

Now, based off of the Spike Lemma, Theorem 2, we can now conclude the following

theorems.
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Theorem 3 (Wiggly implies Sensitive). If f : [0, 1] → [0, 1] has wiggly iterates, then

f has sensitive dependence everywhere with sensitivity constant 1
2
.

Proof. Suppose a mapping f has wiggly iterates. It will be shown that f has sensitive

dependence at all points through definition 2. Since we will show that the sensitivity

constant is 1
2
we shall let δ = 1

2
. Let x be any point in [0, 1], and let I be any open-

in-[0, 1] interval containing x. Now, we need to show the existence of a y ∈ I and

n ∈ N such that |fn(x)− fn(y)| ≥ 1
2
. By the Spike Lemma, Theorem 2, there is an n

such that for the mapping fn, the base of some hump is contained in I. If fn(x) ≤ 1
2
,

then choose y ∈ I such that fn(y) = 1. If fn(x) > 1
2
, then choose y ∈ I such that

fn(y) = 0. Either way, there exists a y ∈ I such that |fn(x)− fn(y)| ≥ 1
2
is satisfied.

Thus the theorem is proved.

We shall now tackle the topologically transitive feature of a chaotic system.

Theorem 4 (Wiggly implies Transitivity). If f : [0, 1] → [0, 1] has wiggly iterates

then f is transitive.
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Proof. Suppose a mapping f has wiggly iterates and let U and V be arbitrary subin-

tervals of [0, 1]. We want to show that there is an n ∈ N such that fn(U)
⋂

V �= ∅.
By the Spike Lemma, Theorem 2, there is an n such that for the mapping fn, the

base of some hump is contained in U . So, for this n we have that fn(U) = [0, 1].

Thus fn(U)
⋂

V �= ∅ and so f is transitive and the theorem is proved.

Finally, we need to satisfy the dense periodic points part of the chaotic definition.

Theorem 5 (Wiggly implies Dense Periodic Points). If f : [0, 1] → [0, 1] has wiggly

iterates, then the set of all periodic points of f is dense in the interval [0, 1].

Proof. Suppose a mapping f has wiggly iterates. We need to show that the set of all

periodic points of f is dense in the interval [0, 1]. In other words, we need to show

that every interval I ⊆ [0, 1] contains a periodic point of f . Let I be any subinterval

of [0, 1]. By the Spike Lemma, Theorem 2, there is an n such that for the mapping

fn, the base of some hump is contained in I. The graph of this hump-mapping must

intersect the identity graph (f(x) = x) in at least two points by the Intermediate

Value Theorem. When we project these points onto the domain, we obtain at least

two periodic points of fn. Thus fn has at least two periodic points in I.

By putting together the three previous theorems Theorem 3, Theorem 4, Theorem

5, we can see that wiggly implies chaotic.

Another example of a function that is chaotic is the logistic mapping. The logistic

function is fμ(x) = μx(1− x).

Proposition 1. The logistic function has the following properties:

i. fμ(0) = fμ(1) = 0 and fμ(pμ) = pμ, where pμ = μ−1
μ
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ii. 0 < pμ < 1 if μ > 1

Proof. Ad (i.)

fμ(0) = μ(0)(1− 0) = 0

fμ(1) = μ(1)(1− 1) = 0

fμ(pμ) = fμ

(
μ− 1

μ

)

= μ

(
μ− 1

μ

)(
1− μ− 1

μ

)

= (μ− 1)

(
μ− μ+ 1

μ

)

= (μ− 1)
1

μ

= pμ

Ad (ii.) If μ > 1, then pμ = μ−1
μ

> 0 since μ− 1 > 0 and clearly pμ = μ−1
μ

< 1 since

μ− 1 < μ.

A specific example of the logistic function is a f4.

Proposition 2. The logistic function at μ = 4, f4(x) = 4x(1− x), is chaotic on the

interval [0, 1].

Proof. Let g(θ) = 2θ such that g : S1 → S1. Define h1 : S1 → [−1, 1] by h1(θ) =

cos(θ) (hence projecting S1 onto the x-axis). Let q(x) = 2x2 − 1. Then
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h1 ◦ g(θ) = cos(2θ)

= 2 cos2(θ)− 1

= q ◦ h1(θ)

So h1 conjugates g with q. Thus q is topologically conjugate to f4. Let h2 : S1 →
[−1, 1]. If h2(t) =

1
2
(1− t), then we have f4 ◦ h2 = h2 ◦ q. And so f4 is topologically

transitive, for if U and V are two open intervals in [0, 1], choose open arcs U ′ and

V ′ in S1 which project onto U and V under h2 ◦ h1. Since there is a k such that

gk(U ′)
⋂

V ′ �= ∅, we therefore have fk
4 (U)

⋂
V �= ∅. To show sensitivity on initial

conditions, we will start by noting that any neighborhood of U of x ∈ [0, 1] “lifts”

to U ′ in S1. So there is an n such that gn(U ′) covers S1, so fn
4 (U) covers [0, 1] as

well. Hence there are points in U which move at least δ = 1
2
away from x. To show

the density of periodic points, we will note the function g is chaotic and hence has

periodic points that are dense. Therefore, there exists g-periodic points in U ′. The

projection of this point in U is clearly f4 periodic.

Thus, there are many applications for a pure mathematician in the relatively new

field of chaos.
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3 From the Perspective of the Applied Mathemati-

cian

“The Butterfly Effect” is probably the most recognizable application for chaos the-

orists. The term was coined by Edward Lorenz in the mid-twentieth century. Lorenz

was an American mathematician and meteorologist. The combination of the two pro-

fessions led him to become interested in chaos theory in order to better predict the

weather. While trying to find a way to better predict the weather, Lorenz determined

twelve equations that would help him become more accurate. The twelve equations

modeled the weather. Lorenz would utilize a computer to examine the outputs that

different inputs would yield. He found that the system evolved differently based on a

slight difference in input. This was discovered when he was trying to further analyze

a sequence. However, instead of starting at the same initial point, he decided to input

a number from the middle of the sequence to cut back on waiting time. When the

computer was done computing Lorenz realized a rather puzzling error in the com-

putations. The results were not the same but drastically different. It took Lorenz

some time to notice that the original number was stored in the computer out to the

millionths place but the number he entered was only out to the thousandths place.

This led to his curiosity into the value of sensitive dependence. This in turn would

lead to the popular term today of “The Butterfly Effect”.

Why “The Butterfly Effect”? Lorenz noticed that the slightest change in the

error of the air velocity would result in a change in the original weather pattern. This

slightest change in air velocity could be credited to the flap of a butterfly’s wings.

He eventually whittled the twelve equations down to three more manageable equa-
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tions that would exhibit a similar behavior. The three equations were

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz.

The dependent variables are x, y, and z, while t denotes time, and σ, r, and b

are the parameters. While these three equations were not demonstrative of weather

patterns, they were demonstrative of another type of chaotic system. These equations

effectively modeled a leaky waterwheel, “The Lorenzian Waterwheel”. The Lorenzian

waterwheel was “the first, famous chaotic system discovered by Edward Lorenz” [16].

Imagine a waterwheel made of cups with holes in the bottom. Water entering the

cups at a steady rate is not enough to determine the motion of the wheel. If the

water entering the cup is being poured too slowly, then the cup (remembering the

hole in the bottom) will never fill up and the waterwheel will never be set in motion.

If the water entering the cup is being poured at the correct flow, then the cups will

fill and empty at the proper speed and the wheel will be set into its normal motion.

However, if the water entering the cup is being poured too fast, then the cup will

not have enough time to drain properly and the wheel will either stop or reverse its

motion. Under these equations, the waterwheel’s motions can never repeat itself nor

will it ever become predictable.

Another example in nature where chaos is involved is in the shorelines. The shore-

lines or coastlines themselves are an example of a fractal and hence an example of

chaos in geology. The shores from above look like a long wiggly line that provides
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a barrier between the land and the sea. However, if you zoom in on the coastlines,

into the bays and into the coves, you would eventually see something that resembles

the aforementioned Koch Snowflake. On the shorelines usually lie numerous vari-

eties of seashells that exhibit chaotic characteristics. Let’s look specifically at cone

shells. “Some cone shells have what seem to be random collections of triangles of var-

ious sizes” [23]. These triangles could be attributed to fractals, which are related to

dynamical chaos. Dynamical chaos is an irregular behavior that occurs in a determin-

istic mathematical system. Hence, “the cone shell combines mathematical features of

order and chaos in one pattern” [23].

The impacts of chaos theory are also seen in the human body. The way our veins

twist and weave themselves inside our bodies is an example of a fractal, previously

mentioned, and hence chaotic. Another body part whose behavior can be modeled by

chaos theory is the human heart, in particular the human heartbeat. Not just with a

normal heartbeat, but chaos theory presents itself when a patient is in fibrillation, or

an irregular beating of the heart. “Traditionally, thoughts about fibrillation took two

forms. One classic idea was that secondary pacemaking signals come from abnormal

centers within the heart muscle itself, conflicting with the main signal”.The other

approach focused not on the initiation of electrical waves but on the way they are

conducted geographically through the heart” [Harvard-M.I.T. researchers] found that

abnormalities in the wave, spinning in tight circles, could cause “re-entry, in which

some areas begin a new beat too soon, preventing the heart from pausing for the quiet

interval necessary to maintain coordinated pumping”[16]. Either of the approaches

shows an awareness to a small change in a parameter. The parameter here is the

timing or electrical conductivity. A slight change in this parameter can push an

otherwise healthy heart into an unhealthy situation such as a heart attack or sudden
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death.

There are other systems in the human body whose behavior can be explained

using chaos theory. In the respiration system, breathing disorders such as panting,

sighing, and Cheyne-Stokes respiration, which is a “breathing characterized by rhyth-

mic waxing and waning of the depth of respiration” which could lead to heart failure

and brain damage [5]. SIDS, or Sudden Infant Death Syndrome in which an infant

under the age of one year dies from unexplained reasons, is another example of chaos

in humans [1]. Blood disorders, such as forms of leukemia, which can disrupt or

alter the “balance of white and red cells, platelets and lymphocytes” are examples

which can be explained by chaos theory. Also, brain disorders like schizophrenia and

depression are examples of chaos. These disorders can be related to chaos behavior

since a small difference in the brains’ fluid-filled cavities can lead to schizophrenia and

chemical imbalances in the brain can lead to depression [6],[7]. Both disorders are a

slight variation of a healthy brain that leads to dramatically different results (healthy

human versus unhealthy human).

Hence, there are numerous applications for an applied mathematician to look at

in the field of chaos.
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4 Conclusion

“The discovery of chaos required many things and many people. It needed pure

mathematicians to develop the topological approach to qualitative dynamics, and to

ask sufficiently general questions. It needed physicists to link the answers to the real

world. It needed experimentalists to check that the theories made sense. It needed

electronic engineers to design and build computers with good graphics and powerful

number-crunching capabilities ... It’s the combinations that [allows the discovery to

work]” [21]. Chaos is found not only in the pure mathematics world but also in

the applied world of mathematics. It can be realized by not only those trained in

mathematics but also to the person that may not be as mathematically inclined. It is

a theory that has been present in the world since the beginning but has just recently

been looked at as a science.
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