A Character Theory Free Proof of Burnside's $p^{a} q^{b}$ Theorem

by

Ben L. Adovasio

Submitted in Partial Fulfillment of the Requirements
for the Degree of

Master of Science

in the

Mathematics

Program

May, 2012

A Character Theory Free Proof of Burnside's $p^{a} q^{b}$ Theorem

Ben L. Adovasio

I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

> Ben L. Adovasio, Student

Date

Approvals:

$$
\text { Dr. Neil Flowers, Thesis Advisor } \quad \text { Date }
$$

Dr. Tom Wakefield, Committee Member Date

Dr. Eric Wingler, Committee Member Date

Peter J. Kasvinsky, Dean of School of Graduate Studies \& Research Date
©
Ben L. Adovasio
2012

Abstract

In 1904, George Burnside [2] proved that any group G with $|G|=p^{a} q^{b}$ where p and q are primes and a and b are positive integers is solvable. Burnside accomplished this through the use of character theory, i.e., the interaction between a group and a vector space.

Since then, group theorists began to try to prove this theorem without the use of character theory. They wanted a proof that relied only on group theoretical principles. This was finally achieved in 1972 by Helmut Bender [1].

However, in 1970, David M. Goldschmidt [3] supplied a group theoretic proof of Burnside's Theorem but only when the order of the group, G, was odd. Then in 1972, Hiroshi Matsuyama [4] supplied a group theoretic proof of Burnside's Theorem when the order of the group, G, was even. Ironically, Bender's and Matsuyama's results occurred independently and simultaneously. Therefore, both papers were published even though Bender's proof was more general.

The goal of this paper is to present the background knowledge and the more general proof of Burnside's Theorem.

I would like to thank my friends and family for their support. I would especially like to thank my advisor, Dr. Flowers, for all his insight and for inspiring me to learn about group theory.

Contents

1 Preliminaries 1

2 Solvable Groups 12

3 Nilpotent Groups 23

4 Groups Acting on Groups 33

5 Burnsides $p^{a} q^{b}$ Theorem 47

1 Preliminaries

In this section, we will introduce some background concepts and ideas. These ideas will build up the tools needed for the proof of Burnside's Theorem. We begin by introducing the idea of a group.

Definition 1.1. A group is a nonempty set G along with a binary operation $*$ such that

1. (closure): $a * b \in G$ for all $a, b \in G$;
2. (associativity): $(a * b) * c=a *(b * c)$ for all $a, b, c \in G$;
3. (identity): there exists $e \in G$ such that $e * a=a * e=a$ for all $a \in G$;
4. (inverse): for all $a \in G$ there exists $b \in G$ such that $a * b=b * a=e$.

Definition 1.2. Let $(G, *)$ be a group. A subset $H \subseteq G$ is called a subgroup of G if $(H, *)$ is a group. We write $H \leq G$.

Theorem 1.1 (Subgroup Test). Let G be a group and $\emptyset \neq H \subseteq G$. Then $H \leq G$ if and only if $a b^{-1} \in H$ for all $a, b \in H$.

Definition 1.3. Let G be group, $a \in G$, and $H \leq G$. Then the following are subgroups of G :

1. $Z(G)=\{g \in G \mid g x=x g$ for all $x \in G\}$. We call this the center of \boldsymbol{G}.
2. $\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$. We call this the cyclic subgroup generated by \boldsymbol{a}.
3. $C_{G}(a)=\{g \in G \mid a g=g a\}$. We call this the centralizer of \boldsymbol{a}.
4. $N_{G}(H)=\left\{g \in G \mid g H g^{-1} \in H\right\}$. We call this the normalizer of \boldsymbol{H}.

Definition 1.4. Let G be a group, $H \leq G$ and $g \in G$. The left coset of \boldsymbol{H} in \boldsymbol{G} containing \boldsymbol{g} is

$$
g H=\{g h \mid h \in H\} .
$$

Theorem 1.2. Let G be a group, $H \leq G$, and $a, b \in G$. Then $a H=b H$ if and only if $b^{-1} a \in H$.

Definition 1.5. Let G_{1} and G_{2} be groups and $\phi: G_{1} \rightarrow G_{2}$. Then ϕ is a homomorphism if

$$
\phi(a b)=\phi(a) \phi(b) \quad \text { for all } a, b \in G
$$

If, in addition, ϕ is 1-1 and onto, we call ϕ an isomorphism and we write $G_{1} \cong G_{2}$.

Theorem 1.3. Let G_{1}, G_{2} be groups and $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism. Define the kernel of ϕ by

$$
\operatorname{kern} \phi=\left\{g \in G_{1} \mid \phi(g)=1\right\}
$$

Then $\operatorname{kern} \phi \leq G_{1}$.

Definition 1.6. Let G be a group and $H \leq G$. Then H is a normal subgroup of \boldsymbol{G} if $\mathrm{ghg}^{-1} \in H$ for all $g \in G$ and for all $h \in H$. We write $H \unlhd G$.

Theorem 1.4. Let G be a group and $H \unlhd G$. Define

$$
\frac{G}{H}=\{g H \mid g \in G\}
$$

Then $\frac{G}{H}$ is a group under the operation

$$
a H b H=a b H \text { for all } a H, b H \in \frac{G}{H} .
$$

We call $\frac{G}{H}$ the quotient group.
Lemma 1.1. Let G be a group. Then $\frac{G}{\{1\}} \cong G$.
Proof. Define $\phi: G \rightarrow \frac{G}{\{1\}}$ by $\phi(g)=g\{1\}$ for all $g \in G$. We want to show that ϕ is a homomorphism. Let $a, b \in G$. Then

$$
\begin{aligned}
\phi(a b) & =a b\{1\} \\
& =a\{1\} b\{1\} \\
& =\phi(a) \phi(b) .
\end{aligned}
$$

Thus, ϕ is a homomorphism. We want to show that ϕ is onto. Let $g\{1\} \in \frac{G}{\{1\}}$. Then $g \in G$ and $\phi(g)=g\{1\}$. Thus, ϕ is onto. We want to show that ϕ is 1-1. Suppose $a, b \in G$ such that $\phi(a)=\phi(b)$. Then $a\{1\}=b\{1\}$ or $b^{-1} a \in\{1\}$. So $b^{-1} a=1$ or $a=b$. Thus, ϕ is 1-1. Therefore, ϕ is an isomorphism and so $\frac{G}{\{1\}} \cong G$.

Lemma 1.2. Let G be a group and $H \leq G$ such that $\frac{|G|}{|H|}=2$ then $H \unlhd G$.
Proof. Let $g \in G$ and $h \in H$. We want to show that $g h g^{-1} \in H$. If $g \in H$ then $g h g^{-1} \in H$ since $H \leq G$. If $g \notin H$ then $g H \neq 1 H$. Then since $\frac{|G|}{|H|}=2$ we get $G=1 H \cup g H$. Now $g h g^{-1} \in G$ and so $g h g^{-1} \in 1 H$ or $g h g^{-1} \in g H$. If $g h g^{-1} \in g H$ then there exists $h_{1} \in H$ such that $g h g^{-1}=g h_{1}$. Then $h g^{-1}=h_{1}$ or $g=h_{1}^{-1} h \in H$, which contradicts $g \notin H$. Therefore $g h g^{-1} \in 1 H=H$ and so $H \unlhd G$.

Theorem 1.5 ($1^{\text {st }}$ Isomorphism Theorem). Let G_{1}, G_{2} be groups and $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism. Then

$$
\frac{G_{1}}{\operatorname{kern} \phi} \cong \phi\left(G_{1}\right)
$$

Proof. Let $K=\operatorname{kern} \phi$. Define $\theta: \frac{G_{1}}{K} \rightarrow \phi\left(G_{1}\right)$ by $\theta(a K)=\phi(a)$ for all $a K \in \frac{G_{1}}{K}$. We want to show that θ is a homomorphism. Let $a K, b K \in \frac{G_{1}}{K}$. Then

$$
\begin{aligned}
\theta(a K b K) & =\theta(a b K) \\
& =\phi(a b) \\
& =\phi(a) \phi(b) \\
& =\theta(a K) \theta(b K)
\end{aligned}
$$

and so θ is a homomorphism. We want to show that θ is $1-1$. Let $a K, b K \in \frac{G_{1}}{K}$ such that $\theta(a K)=\theta(b K)$. Then $\phi(a)=\phi(b)$ or $\phi(b)^{-1} \phi(a)=1$. Thus, $\phi\left(b^{-1}\right) \phi(a)=1$ or $\phi\left(b^{-1} a\right)=1$. Hence $b^{-1} a \in \operatorname{kern} \phi=K$. Thus, $a K=b K$ and so θ is $1-1$. We want to show that θ is onto. Let $\phi(x) \in \phi\left(G_{1}\right)$ where $x \in G_{1}$. Then $x K \in \frac{G_{1}}{K}$ and $\theta(x K)=$ $\phi(x)$. Hence, θ is onto and so θ is an isomorphism. Therefore, $\frac{G_{1}}{\operatorname{kern} \phi} \cong \phi\left(G_{1}\right)$.

Theorem 1.6 (2 $2^{\text {nd }}$ Isomorphism Theorem). Let G be a group, $N \unlhd G$, and $H \leq G$. Then

$$
\frac{H N}{N} \cong \frac{H}{H \cap N} .
$$

Proof. Define $\phi: H \rightarrow \frac{H N}{N}$ by $\phi(h)=h N$ for all $h \in H$. We want to show that ϕ is a homomorphism. Let $a, b \in H$. Then

$$
\begin{aligned}
\phi(a b) & =a b N \\
& =a N b N \\
& =\phi(a) \phi(b)
\end{aligned}
$$

and so ϕ is a homomorphism. We want to show that ϕ is onto. Let $h n N \in \frac{H N}{N}$. Then

$$
\begin{aligned}
\phi(h) & =h N \\
& =h n N \quad \text { as }(h n)^{-1} h=n^{-1} \in N
\end{aligned}
$$

and so ϕ is onto. We claim that the $\operatorname{kern} \phi=H \cap N$. Now,

$$
h \in \operatorname{kern} \phi \Leftrightarrow \phi(h)=1 N \Leftrightarrow h N=1 N \Leftrightarrow 1^{-1} h \in N \Leftrightarrow h \in N \Leftrightarrow h \in H \cap N .
$$

Thus, $\operatorname{kern} \phi=H \cap N$. By Theorem 1.5, $\frac{H}{\operatorname{kern} \phi} \cong \phi(H)$. Thus, $\frac{H}{H \cap N} \cong \phi(H)$ and, since ϕ is onto, we get $\frac{H}{H \cap N} \cong \frac{H N}{N}$.

Theorem 1.7 (3 $3^{r d}$ Isomorphism Theorem). Let G be a group, $N \unlhd G, H \unlhd G$ such that $N \leq H$. Then

$$
\frac{G / N}{H / N} \cong \frac{G}{H}
$$

Proof. Define $\phi: \frac{G}{N} \rightarrow \frac{G}{H}$ by $\phi(g N)=g H$ for all $g N \in \frac{G}{N}$. We want to show that ϕ is well-defined. Let $a N, b N \in \frac{G}{N}$ such that $a N=b N$. Then $a=a 1 \in a N=b N$ and so there exists $n \in N$ such that $a=b n$. Then

$$
\begin{aligned}
\phi(a N) & =a H \\
& =b n H \\
& =b H \\
& =\phi(b N)
\end{aligned}
$$

and so ϕ is well-defined. We want to show that ϕ is a homomorphism. Let $a N, b N \in$ $\frac{G}{N}$. Then

$$
\begin{aligned}
\phi(a N b N) & =\phi(a b N) \\
& =a b H \\
& =a H b H \\
& =\phi(a N) \phi(b N)
\end{aligned}
$$

and so ϕ is a homomorphism. We want to show that ϕ is onto. Let $g H \in \frac{G}{H}$. Then $g N \in \frac{G}{N}$ and $\phi(g N)=g H$. Thus, ϕ is onto. We claim that the $\operatorname{kern} \phi=\frac{H}{N}$. Then,

$$
g N \in \operatorname{kern} \phi \Leftrightarrow \phi(g N)=1 H \Leftrightarrow g H=1 H \Leftrightarrow g \in H \Leftrightarrow g N \in \frac{H}{N} .
$$

Thus, $\operatorname{kern} \phi=\frac{H}{N}$. By Theorem 1.5, $\frac{G / N}{\operatorname{kern} \phi} \cong \phi(G / N)$ or $\frac{G / N}{H / N} \cong \phi(G / N)$ and, since ϕ is onto, we get $\frac{G / N}{H / N} \cong \frac{G}{H}$.

Theorem 1.8. Let G be a group and $N \unlhd G$. Define $\phi: G \rightarrow \frac{G}{N}$ by $\phi(g)=g N$ for all $g \in G$. We call ϕ the natural map. The following are true:

1. ϕ is a homomorphism
2. $\operatorname{kern} \phi=N$
3. If $H \leq G$, then $\phi(H)=\frac{H N}{N}$
4. If $H \leq G$, then $\phi^{-1}\left(\frac{H N}{N}\right)=H N$
5. If $L \leq \frac{G}{N}$, then $L=\frac{K}{N}$ where $N \leq K \leq G$

Proof. For (1), let $a, b \in G$. Then

$$
\begin{aligned}
\phi(a b) & =a b N \\
& =a N b N \\
& =\phi(a) \phi(b) .
\end{aligned}
$$

Thus, ϕ is a homomorphism. For (2), let $n \in \operatorname{kern} \phi$. Then,

$$
n \in \operatorname{kern} \phi \Leftrightarrow \phi(n)=1 N \Leftrightarrow n N=1 N \Leftrightarrow 1^{-1} n \in N \Leftrightarrow n \in N .
$$

Thus, $\operatorname{kern} \phi=N$. For $(3), \phi(H) \subseteq \frac{H N}{N}$. Let $h \in H, n \in N$, and $\phi(h) \in \phi(H)$. Then

$$
\begin{aligned}
\phi(h) & =h N \\
& =h 1 N \\
& \in \frac{H N}{N} .
\end{aligned}
$$

Hence, $\phi(H) \subseteq \frac{H N}{N}$. Next, $\frac{H N}{N} \subseteq \phi(H)$. Let $h n N \in \frac{H N}{N}$. Then

$$
\begin{aligned}
\phi(h) & =h N \\
& =h n N \quad \text { as } h^{-1} h n \in N .
\end{aligned}
$$

Hence, $h n N \in \phi(H)$ and so $\frac{H N}{N} \subseteq \phi(H)$. Therefore, $\phi(H)=\frac{H N}{N}$. For (4),
$H N \subseteq \phi^{-1}\left(\frac{H N}{N}\right)$. Let $h n \in H N$. Then

$$
\begin{aligned}
\phi(h n) & =h n N \\
& \in \frac{H N}{N}
\end{aligned}
$$

Thus, $h n \in \phi^{-1}\left(\frac{H N}{N}\right)$ and $H N \subseteq \phi^{-1}\left(\frac{H N}{N}\right)$. Next, we want to show that $\phi^{-1}\left(\frac{H N}{N}\right) \subseteq H N$. Let $g \in \phi^{-1}\left(\frac{H N}{N}\right)$. Then $\phi(g) \in \frac{H N}{N}$ or $g N \in \frac{H N}{N}$. Thus, there exists $h \in H$ and $n \in N$ such that $g N=h n N$. Then $g=g 1 \in g N=h n N$ and so there exists $n_{1} \in N$ such that $g=h n n_{1} \in H N$. Thus, $\phi^{-1}\left(\frac{H N}{N}\right) \subseteq H N$ and so $\phi^{-1}\left(\frac{H N}{N}\right)=H N$. For (5), we know $\phi^{-1}(L) \leq G$. If $n \in N$ then $\phi(n)=1 N \in L$ and so $n \in \phi^{-1}(L)$. Thus $N \leq \phi^{-1}(L)$. We claim that $\frac{\phi^{-1}(L)}{N}=L$. Let $g N \in L$. Then $\phi(g) \in L$ and so $g \in \phi^{-1}(L)$. Hence, $g N \in \frac{\phi^{-1}(L)}{N}$ and so $L \leq \frac{\phi^{-1}(L)}{N}$. Let $x N \in \frac{\phi^{-1}(L)}{N}$. Then $x \in \phi^{-1}(L)$ and so $\phi(x) \in L$. But $\phi(x)=x N$ and so $x N \in L$. Thus, $\frac{\phi^{-1}(L)}{N} \leq L$ and so $L=\frac{\phi^{-1}(L)}{N}$.

Theorem 1.9. Let G be any group and $S \subseteq G$. Define

$$
\langle S\rangle=\left\{s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}} \mid s_{i} \in S, n_{i} \in \mathbb{Z}, \text { for all } 1 \leq i \leq k, k \in \mathbb{Z}^{+}\right\}
$$

Then $\langle S\rangle \leq G$ and is called the subgroup generated by \boldsymbol{S}.

Proof. Let $s \in S$. Then $s=s^{1} \in\langle S\rangle$ and so $\langle S\rangle \neq \emptyset$. Let

$$
s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}}, r_{1}^{m_{1}} r_{2}^{m_{2}} \cdots r_{l}^{n_{l}} \in\langle S\rangle
$$

where $s_{i} \in S$ and $r_{i} \in S$ for all i and $n_{i} \in \mathbb{Z}$ and $m_{i} \in \mathbb{Z}$ for all i and $k, l \in \mathbb{Z}^{+}$. Then

$$
\begin{aligned}
\left(s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}}\right)\left(r_{1}^{m_{1}} r_{2}^{m_{2}} \cdots r_{l}^{n_{l}}\right)^{-1} & =s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}} r_{l}^{-m_{l}} r_{l-1}^{-m_{l-1}} \cdots r_{1}^{-m} \\
& \in\langle S\rangle .
\end{aligned}
$$

Hence $\langle S\rangle \leq G$ by the Subgroup Test.

Definition 1.7. Let G be a group, $a, b \in G, H \leq G$, and $K \leq G$. Then

1. $[a, b]=a b a^{-1} b^{-1}$ is called the commutator of \boldsymbol{a} and \boldsymbol{b}
2. $[H, K]=\langle\{[h, k] \mid h \in H$ and $k \in K\}\rangle$ is called the commutator subgroup generated by \boldsymbol{H} and \boldsymbol{K}
3. $G^{\prime}=\langle\{[a, b] \mid a, b \in G\}\rangle$ is called the commutator subgroup of \boldsymbol{G}

Lemma 1.3. Let G be a group, $N \unlhd G, H \leq G$, and $a, b \in G$. Then

1. $[a, b]=1$ if and only if $a b=b a$
2. $G^{\prime} \unlhd G$
3. $\frac{G}{G^{\prime}}$ is abelian
4. $\frac{G}{N}$ is abelian if and only if $G^{\prime} \leq N$
5. If $G^{\prime} \leq H$ then $H \unlhd G$

Proof. For (1),

$$
[a, b]=1 \Leftrightarrow a b a^{-1} b^{-1}=1 \Leftrightarrow a b=b a .
$$

For (2), let $x \in G^{\prime}$ and $g \in G$. Then, $x=\prod_{i=1}^{k}\left[a_{i}, b_{i}\right]$ and so

$$
\begin{aligned}
g x g^{-1} & =g\left(\prod_{i=1}^{k}\left[a_{i}, b_{i}\right]\right) g^{-1} \\
& =\prod_{i=1}^{k} g\left[a_{i}, b_{i}\right] g^{-1} \\
& =\prod_{i=1}^{k}\left[g a_{i} g^{-1}, g b_{i} g^{-1}\right] \\
& \in G^{\prime}
\end{aligned}
$$

and so $G^{\prime} \unlhd G$. For (3), let $a G^{\prime}, b G^{\prime} \in \frac{G}{G^{\prime}}$. Then,

$$
\begin{aligned}
{\left[a G^{\prime}, b G^{\prime}\right] } & =[a, b] G^{\prime} \\
& =1 G^{\prime} \quad \text { as } 1^{-1}[a, b]=[a, b] \in G^{\prime}
\end{aligned}
$$

Therefore, $\frac{G}{G^{\prime}}$ is abelian. For (4),

$$
\begin{gathered}
\frac{G}{N} \text { is abelian } \Leftrightarrow[a N, b N]=1 N \text { for all } a, b \in G \\
\Leftrightarrow[a, b] N=1 N \Leftrightarrow[a, b] \in N \Leftrightarrow G^{\prime} \leq N \text { since } N \leq G .
\end{gathered}
$$

For (5), let $g \in G$ and $h \in H$. Then $\left[h^{-1}, g\right] \in G^{\prime} \leq H$ and so $\left[h^{-1}, g\right] \in H$. Let $\left[h^{-1}, g\right]=h_{1}$ where $h_{1} \in H$. Then $h^{-1} g\left(h^{-1}\right)^{-1} g^{-1}=h_{1}$. Thus, $h^{-1} g h g^{-1}=h_{1}$ implying $g h g^{-1}=h h_{1} \in H$. Therefore, $H \unlhd G$.

Definition 1.8. Let G be a group and p a prime. Then G is called a p-group if $|G|=p^{r}$ for some $r \in \mathbb{Z}^{+} \cup\{0\}$.

Lemma 1.4. Let G be a group and $H \unlhd G$. Then $Z(H) \unlhd G$.
Theorem 1.10 (Cauchy's Theorem for Abelian Groups). Let G be abelian and p be a prime such that $p||G|$. Then G has an element of order p.

Definition 1.9. The group consisting of the set S_{n} of all permutations on $A=$ $\{1,2, \ldots, n\}$, under the operation of permutation multiplication is called the symmetric group of degree n.

Definition 1.10. Let G be a group and $S \neq\{ \}$ be a set. Then G acts on S if there exists a homomorphism $\phi: G \rightarrow \operatorname{Sym}(S)$.

Definition 1.11. Let G be a group, S be a set, and $a \in S$. The orbit of S containing \boldsymbol{a} is

$$
G a=\{g a \mid g \in G\} .
$$

Definition 1.12. A group G acts transitively on a set S, if there is only one orbit; i.e., $S=G a$ for all $a \in S$; i.e., for all $c, d \in S$ there exists $g \in G$ such that $c g=d$.

Definition 1.13. Let G be a group, p be a prime, and $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $p^{n}| | G \mid$ but $p^{n+1} \nmid|G|$. Then

1. $|G|_{p}=p^{n}$ is called the $p^{\text {th }}$ part of G.
2. A subgroup $H \leq G$ is called a sylow \boldsymbol{p}-subgroup if $|H|=|G|_{p}$.
3. $S y l_{p}(G)$ is the set of all sylow p-subgroups of G.

Theorem 1.11 (Sylow's Theorem). Let G be a group, p be any prime, $H \leq G$ be a p-group, and $n_{p}=\left|S y l_{p}(G)\right|$. Then

1. $\operatorname{Syl}_{p}(G) \neq\{ \}$
2. There exists $P \in \operatorname{Syl}_{p}(G)$ such that $H \leq P$. Moreover, G acts transitively on Syl $_{p}(G)$ by conjugation
3. $n_{p}| | G \mid$ and $n_{p} \equiv 1(\bmod p)$.

2 Solvable Groups

We next need to introduce what it means for a group to be solvable and will discover some important properties about solvability.

Definition 2.1. A group G is solvable if there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1
$$

such that $\frac{G_{i}}{G_{i+1}}$ is abelian for all $0 \leq i \leq n-1$.
Example 2.1. S_{3} is a solvable group.

Proof. Consider the subnormal series

$$
S_{3} \unrhd A_{3} \unrhd 1
$$

Now, $\left|\frac{S_{3}}{A_{3}}\right|=\frac{\left|S_{3}\right|}{\left|A_{3}\right|}=\frac{6}{3}=2$ and so $\frac{S_{3}}{A_{3}} \cong \mathbb{Z}_{2}$ is abelian. Next, $\left|\frac{A_{3}}{\{1\}}\right|=\frac{\left|A_{3}\right|}{|\{1\}|}=3$ and so $\frac{A_{3}}{\{1\}} \cong \mathbb{Z}_{3}$ is abelian. Therefore S_{3} is solvable.

Lemma 2.1. Let G be an abelian group. Then G is solvable.

Proof. Consider the subnormal series

$$
G=G_{0} \unrhd 1 .
$$

Then by Lemma 1.1 we know $\frac{G}{\{1\}} \cong G$. Since G is abelian, $\frac{G}{\{1\}}$ is abelian and so G is solvable.

Example 2.2. The abelian groups \mathbb{Z}_{n} and $\mathbb{Z}_{a} \times \mathbb{Z}_{b} \times \cdots \times \mathbb{Z}_{c}$ are solvable groups by Lemma 2.1.

Lemma 2.2. Let G be solvable and $H \leq G$. Then H is solvable.

Proof. Since G is solvable we know there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1
$$

such that $\frac{G_{i}}{G_{i+1}}$ is abelian. Consider the series

$$
H=H_{0} \geq H \cap G_{1} \geq H \cap G_{2} \geq \cdots \geq H \cap G_{n}=1
$$

We want to show that $H \cap G_{i+1} \unlhd H \cap G_{i}$. Let $x \in H \cap G_{i+1}$ and $g \in H \cap G_{i}$. Then $g x g^{-1} \in G_{i+1}$ since $x \in G_{i+1}$ and $G_{i+1} \unlhd G_{i}$. Also, $g x g^{-1} \in H$ since $g \in H$ and $x \in H$. Thus, $g x g^{-1} \in H \cap G_{i+1}$. Hence $H \cap G_{i+1} \unlhd H \cap G_{i}$ for all $0 \leq i \leq n-1$. Therefore,
$H=H_{0} \unrhd H \cap G_{1} \unrhd H \cap G_{2} \unrhd \cdots \unrhd H \cap G_{n}=1$ is a subnormal series. Now

$$
\begin{aligned}
\frac{H \cap G_{i}}{H \cap G_{i+1}} & =\frac{H \cap G_{i}}{H \cap G_{i} \cap G_{i+1}} \\
& \cong \frac{\left(H \cap G_{i}\right) G_{i+1}}{G_{i+1}} \quad \text { by } 2^{\text {nd }} \text { Isomorphism Theorem } \\
& \leq \frac{G_{i}}{G_{i+1}}
\end{aligned}
$$

Since $\frac{G_{i}}{G_{i+1}}$ is abelian we get $\frac{H \cap G_{i}}{H \cap G_{i+1}}$ is abelian for all $0 \leq i \leq n-1$. Thus H is solvable.

Lemma 2.3. Let G be solvable and $N \unlhd G$. Then $\frac{G}{N}$ is solvable.
Proof. Since G is solvable we know there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1
$$

such that $\frac{G_{i}}{G_{i+1}}$ is abelian for all $0 \leq i \leq n-1$. Taking the image of this series under the natural map we get

$$
\frac{G}{N}=\frac{G_{0}}{N} \geq \frac{G_{1} N}{N} \geq \frac{G_{2} N}{N} \geq \cdots \geq \frac{G_{n} N}{N}=1 N
$$

We claim that $\frac{G_{i+1} N}{N} \unlhd \frac{G_{i} N}{N}$. Let $g_{i+1} n_{1} N \in \frac{G_{i+1} N}{N}$ and $g_{i} n_{2} N \in \frac{G_{i} N}{N}$. Then

$$
\begin{aligned}
\left(g_{i} n_{2} N\right)\left(g_{i+1} n_{1} N\right)\left(g_{i} n_{2} N\right)^{-1} & =\left(g_{i} n_{2} N\right)\left(g_{i+1} n_{1} N\right)\left(n_{2}^{-1} g_{i}^{-1} N\right) \\
& =g_{i} n_{2} g_{i+1} n_{1} n_{2}^{-1} g_{i}^{-1} N \\
& =g_{i} n_{2} g_{i}^{-1} g_{i} g_{i+1} g_{i}^{-1} g_{i} n_{1} n_{2}^{-1} g_{i}^{-1} N \\
& =g_{i} n_{2} g_{i}^{-1} g_{i} g_{i+1} g_{i}^{-1} N \quad \text { since } g_{i} n_{1} n_{2}^{-1} g_{i}^{-1} \in N \\
& \in \frac{G_{i+1} N}{N} \text { since } g_{i} n_{2} g_{i}^{-1} \in G_{i+1} \text { and } g_{i} g_{i+1} g_{i}^{-1} \in N
\end{aligned}
$$

Thus,

$$
\frac{G}{N}=\frac{G_{0}}{N} \unrhd \frac{G_{1} N}{N} \unrhd \frac{G_{2} N}{N} \unrhd \cdots \unrhd \frac{G_{n} N}{N}=1 N
$$

is a subnormal series. Then

$$
\begin{aligned}
\frac{G_{i} N / N}{G_{i+1} N / N} & \cong \frac{G_{i} N}{G_{i+1} N} \quad \text { by } 3^{r d} \text { Isomorphism Theorem } \\
& =\frac{G_{i} G_{i+1} N}{G_{i+1} N} \\
& \cong \frac{G_{i}}{G_{I} \cap G_{i+1} N} \quad \text { by } 2^{\text {nd }} \text { Isomorphism Theorem } \\
& \cong \frac{G_{i} / G_{i+1}}{G_{I} \cap G_{i+!} N / G_{i+1}} \quad \text { by } 3^{\text {rd }} \text { Isomorphism Theorem }
\end{aligned}
$$

Since quotients of abelian groups are abelian, we get $\frac{G_{i} N / N}{G_{i+1} N / N}$ is abelian for all $0 \leq i \leq n-1$. Therefore, $\frac{G}{N}$ is solvable.

Theorem 2.1. Let G be a p-group. Then G is solvable.

Proof. Use induction on $|G|$. If $|G|=1$ then $G=\{1\}$ is abelian and therefore solvable. Assume the theorem holds for all p-groups of order less than $|G|$. Without
loss of generality, $G \neq 1$. Since G is a p-group we know $Z(G) \neq 1$. Then $\left|\frac{G}{Z(G)}\right|=$ $\frac{|G|}{|Z(G)|}<|G|$ and $\frac{G}{Z(G)}$ is a p-group. Thus $\frac{G}{Z(G)}$ is solvable by induction and so there exists a subnormal series

$$
\frac{G}{Z(G)}=\frac{G_{0}}{Z(G)} \unrhd \frac{G_{1}}{Z(G)} \unrhd \cdots \unrhd \frac{G_{n}}{Z(G)}=Z(G)
$$

such that $\frac{G_{i} / Z(G)}{G_{i+1} / Z(G)}$ is abelian for all $0 \leq i \leq n-1$. Taking the pre-image of this series under the natural map we get

$$
G=G_{0} \unrhd G_{1} \unrhd \cdots \unrhd Z(G) \unrhd 1
$$

Then $\frac{G_{i}}{G_{i+1}} \cong \frac{G_{i} / Z(G)}{G_{i+1} / Z(G)}$ is abelian by the $3^{\text {rd }}$ Isomorphism Theorem and $\frac{Z(G)}{\{1\}} \cong$ $Z(G)$ which is abelian. Therefore, G is solvable and every p-group is solvable by induction.

Definition 2.2. Let G be a group. Define the derived series of G by

$$
G^{(0)}=G, G^{(1)}=\left(G^{(0)}\right)^{\prime}=G^{\prime}, G^{(2)}=\left(G^{(1)}\right)^{\prime}=G^{\prime \prime}
$$

and inductively define

$$
G^{(n)}=\left(G^{(n-1)}\right)^{\prime}
$$

By Lemma 1.3 we have a subnormal series

$$
G=G^{(0)} \unrhd G^{(1)} \unrhd G^{(2)} \unrhd G^{(3)} \unrhd \cdots
$$

Theorem 2.2. Let G be a group. Then G is solvable if and only if there exists $n \in \mathbb{Z}^{+}$ such that $G^{(n)}=1$.

Proof. (\Leftarrow) Suppose there exists $n \in \mathbb{Z}^{+}$such that $G^{(n)}=1$. Consider the derived series

$$
G=G^{(0)} \unrhd G^{(1)} \unrhd G^{(2)} \unrhd \cdots \unrhd G^{(n)}=1
$$

Then $\frac{G^{(i)}}{G^{(i+1)}}=\frac{G^{(i)}}{\left(G^{(i)}\right)^{\prime}}$ is abelian by Lemma 1.3 for all $0 \leq i \leq n-1$. Therefore, G is solvable. (\Rightarrow) Suppose G is solvable. Then there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1
$$

such that $\frac{G_{i}}{G_{i+1}}$ is abelian. We claim that $G^{(i)} \leq G_{i}$. Use induction on i. If $i=0$ then $G^{(0)}=G \leq G=G_{0}$. Suppose $G^{(i)} \leq G_{i}$. We want to show $G^{(i+1)} \leq G_{i+1}$. Now

$$
\begin{aligned}
G^{(i+1)} & =\left(G^{(i)}\right)^{\prime} \\
& \leq\left(G_{i}\right)^{\prime} \quad \text { by induction hypothesis } \\
& \leq G_{i+1} \quad \text { since } \frac{G_{i}}{G_{i+1}} \text { is abelian and by Lemma } 1.3
\end{aligned}
$$

Thus, the claim holds. Hence $G^{(n)} \leq G_{n}=1$ and so $G^{(n)}=1$.

Theorem 2.3. Let G be a group and $H \unlhd G$ such that H and $\frac{G}{H}$ are solvable. Then G is solvable.

Proof. Since H and $\frac{G}{H}$ are solvable then there exist $m, n \in \mathbb{Z}^{+}$such that $H^{(m)}=1$ and $\left(\frac{G}{H}\right)^{(n)}=1 H$. Then $\frac{G^{(n)} H}{H}=1 H$ by the claim in Lemma 2.3. Let $a h H \in \frac{G^{(n)} H}{H}$ where $a \in G^{(n)}$ and $h \in H$. Then $a h H=1 H$ and so, by Theorem 1.2, $1^{-1} a h=a h \in H$
and so there exists $h_{1} \in H$ such that $a h=h_{1}$ or $a=h_{1} h^{-1} \in H$. Thus, $G^{(n)} \leq H$. Now by the claim in Lemma 2.3 we get $G^{(n+m)}=\left(G^{(n)}\right)^{(m)} \leq H^{(m)}=1$. Thus, $G^{(n+m)}=1$ and so G is solvable.

Definition 2.3. Let G be a group and $\phi: G \rightarrow G$ be a map. Then ϕ is an automorphism if ϕ is 1-1, onto, and a homomorphism. Let

$$
\operatorname{Aut}(G)=\{\phi \mid \phi \text { is an automorphism }\} .
$$

Definition 2.4. Let G be a group and $H \leq G$. Then H is a characteristic subgroup of G if $\phi(H) \leq H$ for all $\phi \in \operatorname{Aut}(G)$. We write H char G.

Lemma 2.4. Let G be a group, $H \leq G$, and $K \leq G$ such that H char K and K char G. Then H char G.

Proof. Let $\phi \in \operatorname{Aut}(G)$. Since K char G we know $\phi(K) \leq K$. If $x, y \in K$ such that $\phi(x)=\phi(y)$ then since ϕ is 1-1 we get $x=y$. Thus, $|\phi(K)|=|K|$ and so $\phi(K)=K$. But then $\left.\phi\right|_{K} \in \operatorname{Aut}(K)$ since H char K we get $\left.\phi\right|_{K}(H) \leq H$ and so $\phi(H) \leq H$. Thus, H char G.

Lemma 2.5. Let G be a group, $H \leq G$, and $K \leq G$ such that H char K and $K \unlhd G$. Then $H \unlhd G$.

Proof. Let $g \in G$ and $h \in H$. We want to show that $g h g^{-1} \in H$. Define $\phi_{g}: K \rightarrow K$ by $\phi_{g}(k)=g k g^{-1}$ for all $k \in K$. First, we need to show that ϕ_{g} is a homomorphism.

Let $x, y \in K$. Then,

$$
\begin{aligned}
\phi_{g}(x y) & =g x y g^{-1} \\
& =g x g^{-1} g y g^{-1} \\
& =\phi_{g}(x) \phi_{g}(y) .
\end{aligned}
$$

Next, we need to show that ϕ_{g} is 1-1. If $\phi_{g}(x)=\phi_{g}(y)$ then $g x g^{-1}=g y g^{-1}$ implying $x=y$. Finally, we need to show that ϕ_{g} is onto. Let $x \in K$. Since $K \unlhd G$ we know $g^{-1} x g=\left(g^{-1}\right) x\left(g^{-1}\right)^{-1} \in K$ and $\phi_{g}\left(g^{-1} x g\right)=g\left(g^{-1} x g\right) g^{-1}=x$. Thus, $\phi_{g} \in A u t(K)$. Since H char K we get $\phi_{g}(h) \in H$ or $g x g^{-1} \in H$. Therefore, $H \unlhd G$.

Lemma 2.6. $Z(G)$ char G.

Proof. Let $\phi \in \operatorname{Aut}(G), z \in Z(G)$, and $g \in G$. We want to show that $\phi(z) \in Z(G)$. Since $\phi \in \operatorname{Aut}(G)$ there exists $g_{1} \in G$ such that $\phi\left(g_{1}\right)=g$. Now,

$$
\begin{aligned}
\phi(z) g & =\phi(z) \phi\left(g_{1}\right) \\
& =\phi\left(z g_{1}\right) \quad \text { since } \phi \in \operatorname{Aut}(G) \\
& =\phi\left(g_{1} z\right) \quad \text { since } z \in Z(G) \\
& =\phi\left(g_{1}\right) \phi(z) \\
& =g \phi(z) .
\end{aligned}
$$

Thus, $\phi(z) \in Z(G)$ and so $Z(G)$ char G.

Definition 2.5. A group G is characteristically simple if $\{1\}$ and G are its only characteristic subgroups.

Definition 2.6. Let G be a group and $\left\{H_{i}\right\}_{i=1}^{n}$ be a collection of subgroups of G. We say $G=H_{1} \times H_{2} \times \cdots \times H_{n}$ if

1. $G=\prod_{i=1}^{n} H_{i}$
2. $H_{i} \cap \prod_{j \neq i} H_{i}=1$ for all $1 \leq i \leq n$
3. $H_{i} \unlhd G$ for all $1 \leq i \leq n$

Theorem 2.4. Let G be a characteristically simple group. Then $G=G_{1} \times G_{2} \times \cdots \times$ G_{n} where G_{i} s are simple isomorphic groups.

Proof. Let $1 \neq G_{1} \unlhd G$ such that $|G|$ is minimal and $H=\prod_{i=1}^{n} G_{i}$ such that

1. $G_{i} \cong G_{1}$ for all $1 \leq i \leq n$
2. $G_{i} \unlhd G$ for all $1 \leq i \leq n$
3. $G_{i} \cap \prod_{j \neq i} G_{j}=1$ for all $1 \leq i \leq n$
4. n is maximal

Clearly, $H \unlhd G$ since $G_{i} \unlhd G$ for all $1 \leq i \leq n$. If H is not a characteristic subgroup of G then there exists $\phi \in \operatorname{Aut}(G)$ and $1 \leq i \leq n$ such that $\phi\left(G_{i}\right) \not \leq H$. Since $G_{i} \unlhd G$ and $\phi \in \operatorname{Aut}(G)$ we know $\phi\left(G_{i}\right) \unlhd G$. Also $\phi\left(G_{i}\right) \cong G_{i} \cong G_{1}$ and so $\phi\left(G_{i}\right) \cong G_{1}$. Now $H \cap \phi\left(G_{i}\right) \unlhd G$ and $H \cap \phi\left(G_{i}\right)<\phi\left(G_{i}\right)$. Thus, $\left|H \cap \phi\left(G_{i}\right)\right|<$ $\left|\phi\left(G_{i}\right)\right|=\left|G_{i}\right|=\left|G_{1}\right|$. Hence, $H \cap \phi\left(G_{i}\right)=1$ by the minimality of $\left|G_{1}\right|$. But then $\phi\left(G_{i}\right) \cap \prod_{i=1}^{n} G_{i}=\phi\left(G_{i}\right) \cap H=1$. Therefore, the subgroups $\left\{G_{1}, G_{2}, \cdots, G_{n}, \phi\left(G_{i}\right)\right\}$
satisfy (1), (2), and (3), a contradiction, since n is maximal. Therefore, H char G. Since G is characteristically simple we get $G=H=\prod_{i=1}^{n} G_{i}=G_{1} \times G_{2} \times \cdots \times G_{n}$ where G_{i} 's are isomorphic groups. Suppose $N \unlhd G_{i}$ for some $1 \leq i \leq n$. If $j \neq i$ and $x \in G_{i}$ and $y \in G_{j}$ then, $x y x^{-1} y^{-1} \in G_{j} \cap G_{i} \leq G_{j} \cap \prod_{i \neq j}^{n} G_{i}=1$. Hence $x y=y x$. Now let $g_{1} g_{2} \cdots g_{n} \in G$ where $g_{i} \in G_{i}$ for all $1 \leq i \leq n$ and $n \in N$. Then,

$$
\begin{aligned}
g_{1} g_{2} \cdots g_{n} n\left(g_{1} g_{2} \cdots g_{n}\right)^{-1} & =g_{1} g_{2} \cdots g_{n} n g_{n}^{-1} g_{n-1}^{-1} \cdots g_{1}^{-1} \\
& =g_{i} n g_{i}^{-1} \\
& \in N \quad \text { since } N \unlhd G_{i} .
\end{aligned}
$$

Thus, $N \unlhd G$. But, $|N|<\left|G_{i}\right|=\left|G_{1}\right|$. Hence, $N=1$ or $N=G_{i}$ by the minimality of $\left|G_{1}\right|$. Therefore, each G_{i} is simple for all $1 \leq i \leq n$.

Definition 2.7. Let G be a group and $N \leq G$. Then N is a minimal normal subgroup of G if

1. $N \unlhd G$
2. If there exists a $L \leq N$ such that $L \unlhd G$ then $L=1$ or $L=N$.

Definition 2.8. A group G is called an elementary abelian p-group if $G \cong$ $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$ where p is a prime.

Theorem 2.5. Let G be a group and N be a minimal normal subgroup of G. Then N is an elementary abelian p-group for some prime p or $N=N_{0} \times N_{1} \times \cdots \times N_{n}$ where $N_{i} s$ are nonabelian simple isomorphic groups.

Proof. If K char N, then by Lemma 2.5, since $N \unlhd G$ we get $K \unlhd G$. But then, $K=1$ or $K=N$ since N is a minimal normal subgroup. Hence, N is characteristically simple. Then, by Theorem 2.4, $N=N_{1} \times N_{2} \times \cdots \times N_{n}$ where N_{i} 's are simple isomorphic groups.

Case $1 N_{i}$ is nonabelian for all $0 \leq i \leq n$. Then $N=N_{1} \times N_{2} \times \cdots \times N_{n}$ and N_{i} s are nonabelian simple isomorphic groups.

Case $2 N_{i}$ s are abelian for all $0 \leq i \leq n$. Then N_{i} is simple and abelian for all $0 \leq i \leq n$. Then the only subgroups of N_{i} are $\{1\}$ and N_{i} for all $0 \leq i \leq n$. If N_{i} is not a p-group then there exists a prime q such that $q\left|\left|N_{i}\right|\right.$ and $q \neq p$. By Sylow's Theorem there exists $Q \in \operatorname{Syl}_{q}\left(N_{i}\right)$. Then $Q \leq N_{i}$ and $Q \neq 1$ and $Q \neq N_{i}$. Thus, N_{i} is a p-group for some prime p. Let $\left|N_{i}\right|=p^{n}$. If $n>1$ then by Cauchy's Theorem for Abelian Groups, there exists $1 \neq x \in N_{i}$ such that $x^{p}=1$. Then, $\langle x\rangle \leq N_{i}$ and $|\langle x\rangle|=p<\left|N_{i}\right|$. Therefore, $\langle x\rangle \neq 1$ and $\langle x\rangle \neq N_{i}$. Hence, $n=1$ and $\left|N_{i}\right|=p$. Now we know that N_{i} is cyclic and so $N_{i} \cong \mathbb{Z}_{p}$. Thus, $N \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$ is an elementary abelian p-group.

Therefore, N is an elementary abelian p-group for some prime p or $N=N_{0} \times N_{1} \times$ $\cdots \times N_{n}$ where N_{i} 's are nonabelian simple isomorphic groups.

Theorem 2.6. Let G be solvable and N be a minimal normal subgroup of G. Then N is an elementary abelian p-group for some prime p.

Proof. By Theorem 2.5, N is an elementary abelian p-group for some prime p or $N=N_{1} \times N_{2} \times \cdots \times N_{n}$ such that N_{i} s are simple nonabelian isomorphic groups. Hence N_{1} is simple. Then the only subnormal series N_{1} has is $N_{1} \unrhd 1$ by simplicity.

But, $\frac{N_{1}}{\{1\}} \cong N$ is nonabelian. Therefore, N_{1} is not solvable. But, $N_{1} \leq G$ and G is solvable, a contradiction. Thus, N is an elementary abelian p-group for some p.

3 Nilpotent Groups

We now introduce the idea of nilpotent groups. This allows us to explore important properties of nilpotent groups and will let us build the structures of these groups.

Definition 3.1. Let G is a group. Define the upper central series of G by

$$
Z_{0}(G)=1, Z_{1}(G)=Z(G), \frac{Z_{2}(G)}{Z_{1}(G)}=Z\left(\frac{G}{Z_{1}(G)}\right), \frac{Z_{3}(G)}{Z_{2}(G)}=Z\left(\frac{G}{Z_{2}(G)}\right), \cdots
$$

and inductively define

$$
\frac{Z_{n}(G)}{Z_{n-1}(G)}=Z\left(\frac{G}{Z_{n-1}(G)}\right) \text { for all } n \in \mathbb{Z}^{+}
$$

Lemma 3.1. Let G be a group. Then $Z_{i}(G) \unlhd G$ for all i and $Z_{i}(G) \leq Z_{i+1}(G)$ for all i.

Proof. Use induction on i. If $i=0$, then $Z_{0}(G)=\{1\} \unlhd G$. Assume $Z_{n}(G) \unlhd G$. Then $\frac{Z_{n+1}(G)}{Z_{n}(G)}=Z\left(\frac{G}{Z_{n}(G)}\right) \unlhd \frac{G}{Z_{n}(G)}$ and so taking pre-images we get $Z_{n+1}(G) \unlhd G$. Hence, $Z_{i}(G) \leq Z_{i+1}(G)$ for all i.

Definition 3.2. A group G is nilpotent if there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $G=Z_{n}(G)$.

Definition 3.3. Let G be a group. Define the lower central series of G by

$$
K_{0}(G)=G, K_{1}(G)=\left[K_{0}(G), G\right]=[G, G]=G^{\prime}, K_{2}(G)=\left[K_{1}(G), G\right], \cdots
$$

and inductively define

$$
K_{n}(G)=\left[K_{n-1}, G\right] .
$$

Lemma 3.2. Let G be group. Then $K_{i}(G) \unlhd G$ for all i and $K_{i+1}(G) \leq K_{i}(G)$ for all i.

Proof. Use induction on i. If $i=0$ then $K_{0}(G)=G \unlhd G$. Suppose $K_{i}(G) \unlhd G$. Then, since $G \unlhd G$ we get $K_{i+1}(G)=\left[K_{i}(G), G\right] \unlhd G$ as conjugation is a homomorphism. Next, we know that $K_{i}(G) \unlhd G$. Thus, $K_{i+1}(G)=\left[K_{i}(G), G\right] \leq K_{i}(G)$ for all i.

Theorem 3.1. Let G be a group. Then G is nilpotent if and only if there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $K_{n}(G)=1$.

Proof. (\Rightarrow) Let G be nilpotent. Then there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $Z_{n}(G)=G$. We claim that $K_{i}(G) \leq Z_{n-i}(G)$ for all i. Use induction on i. If $i=0$ then $K_{0}(G)=$ $G \leq G=Z_{n}(G)=Z_{n-0}(G)$. Suppose $K_{i}(G) \leq Z_{n-i}(G)$. Then,

$$
\begin{aligned}
K_{i+1}(G) & =\left[K_{i}(G), G\right] \\
& \leq\left[Z_{n-i}(G), G\right] \quad \text { since } K_{i}(G) \leq Z_{n-i}(G) \\
& \leq Z_{n-i-1}(G) \quad \text { since } \frac{Z_{n-i}(G)}{Z_{n-i-1}(G)}=Z\left(\frac{G}{Z_{n-i-1}(G)}\right) \\
& =Z_{n-(i+1)}(G)
\end{aligned}
$$

Thus, the claim hold by induction. But then, $K_{n}(G)=Z_{n-n}(G)=Z_{0}(G)=1$ and
so $K_{n}(G)=1$. (\Leftarrow) Suppose there exists a $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $K_{n}(G)=1$. We claim that $K_{n-i}(G) \leq Z_{i}(G)$ for all i. Use induction on i. If $i=0$ then $Z_{0}(G)=1 \geq$ $1=K_{n}(G)=K_{n-0}(G)$. Suppose $K_{n-i}(G) \leq Z_{i}(G)$. Now, $\left[K_{n-i-1}, G\right]=K_{n-i}(G) \leq$ $Z_{i}(G)$. Hence, $\frac{K_{n-i-1}(G) Z_{i}(G)}{Z_{i}(G)} \leq Z\left(\frac{G}{Z_{i}(G)}\right)=\frac{Z_{i+1}}{Z_{i}(G)}$. Taking pre-images we get $K_{n-i-1}(G) \leq K_{n-i-1}(G) Z_{i}(G) \leq Z_{i+1}(G)$ or $K_{n-(i+1)}(G) \leq Z_{i+1}(G)$. Thus, the claim holds. But then, $Z_{n}(G) \geq K_{n-n}(G)=K_{0}(G)=G$ and so $Z_{n}(G)=G$ and so G is nilpotent.

Lemma 3.3. Let G be a group, $N \unlhd G$, and $H \leq G$ such that $N \leq H$. If $\frac{H}{N} \leq Z\left(\frac{G}{N}\right)$ if and only if $[G, H] \leq N$.

Proof. $\frac{H}{N} \leq Z\left(\frac{G}{N}\right) \Leftrightarrow[h N, g N]=N$ for all $h \in H$ and for all $g \in G$. Then $h N g N(h N)^{-1}(g N)^{-1}=N \Leftrightarrow h N g N h^{-1} g^{-1}=N \Leftrightarrow h g h^{-1} g^{-1} N=N \Leftrightarrow[h, g]=N$
$\Leftrightarrow[h, g] \in N \Leftrightarrow[G, H] \leq N$.

Theorem 3.2. Let G be nilpotent. Then $Z(G) \neq 1$.

Proof. Suppose $Z(G)=1$. Since G is nilpotent there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $Z_{n}(G)=G$. Notice $Z_{1}(G)=Z(G)=1$. Suppose $Z_{i}(G)=1$. Then

$$
\frac{Z_{i+1}(G)}{Z_{i}(G)}=Z\left(\frac{G}{Z_{i}}\right)=Z\left(\frac{G}{\{1\}}\right) \cong Z(G)=1
$$

Then, $\left|\frac{Z_{i+1}(G)}{Z_{i}(G)}\right|=1$ or $\frac{\left|Z_{i+1}(G)\right|}{\left|Z_{i}(G)\right|}=1$ and so $\left|Z_{i+1}(G)\right|=\left|Z_{i}(G)\right|$. But, $Z_{i}(G) \leq$ $Z_{i+1}(G)$ and so $Z_{i+1}(G)=Z_{i}(G)=1$. Thus, by induction $Z_{i}(G)=1$ for all i. But then we get $G=Z_{n}(G)=1$, a contradiction. Therefore, $Z(G) \neq 1$.

Theorem 3.3. Let G be nilpotent and $1 \neq H \unlhd G$. Then $H \cap Z(G) \neq 1$.

Proof. Since G is nilpotent there exists $n \in \mathbb{Z}^{+}$such that $Z_{n}(G)=G$. Define

$$
H_{0}=H, H_{1}=\left[H_{0}, G\right]=[H, G]
$$

and inductively define

$$
H_{n}=\left[H_{n-1}, G\right] .
$$

Since $H \unlhd G$ we get $H=H_{0} \geq H_{1} \geq H_{2} \geq \cdots$. We claim that $H_{i} \leq Z_{n-i}(G)$ for all i. If $i=0$ then $H_{0}=H \leq G=Z_{n}(G)=Z_{n-0}(G)$. Assume $H_{i} \leq Z_{n-i}(G)$. Then,

$$
\frac{H_{i} Z_{n-i-1}(G)}{Z_{n-i-1}(G)} \leq \frac{Z_{n-i}(G)}{Z_{n-i-1}(G)}=Z\left(\frac{G}{Z_{n-i-1}(G)}\right)
$$

By Lemma 3.3, $\left[H_{i} Z_{n-i-1}(G), G\right] \leq\left[Z_{n-i-1}(G)\right]$. Hence, $\left[H_{i}, G\right] \leq\left[H_{i} Z_{n-i-1}(G), G\right] \leq$ $Z_{n-i-1}(G)$. Thus, $H_{i+1}=\left[H_{i}, G\right] \leq Z_{n-i-1}(G)=Z_{n-(i+1)}(G)$. Therefore, the claim holds by induction. But then $H_{n}=\left[H_{n-1}, G\right] \leq Z_{n-n}(G)=Z_{0}(G)=1$ and so $H_{n}=1$. Let $0 \leq k \leq n$ be minimal such that $H_{k}=1$. Then $H_{k-1} \neq 1$ and $1=H_{k}=\left[H_{k-1}, G\right]$ and so $1 \neq H_{k-1} \leq H \cap Z(G)$.

Theorem 3.4. Let G be nilpotent and $H \leq G$. Then $H<N_{G}(H)$.

Proof. Since G is nilpotent there exists $n \in \mathbb{Z}^{+}$such that $Z_{n}(G)=G$. Let i be minimal such that $Z_{i}(G) \not \leq H$. Then $Z_{i-1}(G) \leq H$. Also, $\left[H, Z_{i}(G)\right] \leq\left[G, Z_{i}(G)\right] \leq Z_{i-1}(G)$ since $\frac{Z_{i}(G)}{Z_{i-1}(G)}=Z\left(\frac{G}{Z_{i-1}(G)}\right)$. Thus, $\left[H, Z_{i}(G)\right] \leq H$. Hence, $Z_{i}(G) \leq N_{G}(H) \backslash H$ and so $H<N_{G}(H)$.

Definition 3.4. Let G be a group and $M \leq G$. Then M is a maximal subgroup if

1. $M \neq G$
2. whenever there exists $H \leq G$ such that $M \leq H \leq G$ then $H=M$ or $H=G$

Theorem 3.5. Let G be nilpotent and M be a maximal subgroup of G. Then $M \unlhd G$.
Proof. Since M is a maximal subgroup of G we know $M<G$. By Theorem 3.4, $M<N_{G}(M) \leq G$. Hence $G=N_{G}(M)$ by the maximality of M. Therefore, $M \unlhd G$.

Lemma 3.4. Let G be a group, $P \in \operatorname{Syl}_{p}(G)$, and $N \unlhd G$. Then $P \cap N \in \operatorname{Syl}_{p}(N)$.
Lemma 3.5 (Frattini Argument). Let G be a group, $N \unlhd G, P \in \operatorname{Syl}_{p}(G)$. Then, $G=N_{G}(P \cap N) N$.

Proof. Clearly, $N_{G}(P \cap N) N \subseteq G$ since G is a group. Let $g \in G$. Since $N \unlhd G$ and $P \in \operatorname{Syl}_{p}(G)$ by Lemma 3.4 $P \cap N \in \operatorname{Syl}_{p}(N)$. Since $N \unlhd G$ and $P \cap N \leq N$ we get $g^{-1} P \cap N g \leq g^{-1} N g=N$. Now, $\left|g^{-1}(P \cap N) g\right|=|P \cap N|$ and so $g^{-1}(P \cap N) g \in$ $S y l_{p}(N)$. By Sylow's Theorem there exists $n \in N$ such that $n g^{-1}(P \cap N) g n^{-1}=P \cap N$. Hence $n g^{-1} \in N_{G}(P \cap N)$ and so there exists $x \in N_{G}(P \cap N)$ such that $n g^{-1}=x$. But then $g=x^{-1} n \in N_{G}(P \cap N) N$. Thus, $G \subseteq N_{G}(P \cap N) N$. Hence $G=N_{G}(P \cap N) N$.

Lemma 3.6. Let G be nilpotent and $P \in \operatorname{Syl}_{p}(G)$ then $P \unlhd G$.
Proof. Suppose P is not normal in G. Then $N_{G}(P)<G$. Hence, there exists a maximal subgroup M of G such that $N_{G}(P) \leq M$. Since G is nilpotent, by Theorem 3.5, $M \unlhd G$. Now, $P \leq N_{G}(P) \leq M$ and so $P \leq M$. By Lemma 3.5,

$$
G=N_{G}(P \cap M) M=N_{G}(P) M=M .
$$

Thus, $G=M$, a contradiction, since M is maximal. Hence, $P \unlhd G$.

Lemma 3.7. Let G be a group, $H \unlhd G, K \unlhd G$ such that H and K are nilpotent. Then $H K \unlhd G$ and $H K$ is nilpotent.

Proof. Use induction on $|G|$. Since $H \unlhd G$ and $K \unlhd G$ clearly $H K \unlhd G$. If $H K<G$ then $H \unlhd H K$ and $K \unlhd H K$. Also, H and K are nilpotent. Thus, by induction $H K$ is nilpotent. We may assume $G=H K$. Since H is nilpotent by Theorem 3.2, $Z(H) \neq 1$. Let $N=[Z(H), K]$.

Case 1 If $N=1$. Then $[Z(H), K]=1$. But also $[H, Z(H)]=1$. Hence, $[G, Z(H)]=1$ since $G=H K$. Thus $1 \neq Z(H) \leq Z(G)$. Thus, $\frac{G}{Z(G)}$ is a group and $\left|\frac{G}{Z(G)}\right|=$ $\frac{|G|}{|Z(G)|}<|G|$ since $Z(G) \neq 1$. Since, $H \unlhd G$ and $K \unlhd G$ we get $\frac{H Z(G)}{Z(G)} \unlhd \frac{G}{Z(G)}$ and $\frac{K Z(G)}{Z(G)} \unlhd \frac{G}{Z(G)}$. Then,

$$
\begin{aligned}
\frac{H Z(G)}{Z(G)} \cong \frac{H}{H \cap Z(G)} \quad \text { by } 2^{\text {nd }} \text { Isomorphism Theorem } \\
\frac{K Z(G)}{Z(G)} \cong \frac{K}{K \cap Z(G)} \quad \text { by } 2^{\text {nd }} \text { Isomorphism Theorem }
\end{aligned}
$$

and $\frac{H Z(G)}{Z(G)}$ is nilpotent by induction hypothesis.

Case 2 If $N \neq 1$. Since $K \unlhd G$ we know $N \leq K$. Also, since $H \unlhd G$ by Lemma 1.4 $Z(H) \unlhd G$. Therefore, since $K \unlhd G$ we get $N=[Z(H), G] \unlhd G$. Hence $N \unlhd K$. Since $N \neq 1$ and K is nilpotent we get $1 \neq N \cap Z(K)$. Now $Z(H) \unlhd G$ implies $N \leq Z(H)$. Thus, we get $1 \neq N \cap Z(K) \leq Z(H) \cap Z(K)$. Since $G=H K$ we have $Z(H) \cap Z(K) \leq Z(G)$. Thus, $Z(G) \neq 1$ and we get HK is nilpotent by Case 1.

Lemma 3.8. Let G be a group and $N \unlhd G$ such that $N \leq Z_{i}(G)$ for all $i \in \mathbb{Z}^{+}$. Then $Z_{i}\left(\frac{G}{N}\right)=\frac{Z_{i}(G)}{N}$ for all i.

Theorem 3.6. Let G be nilpotent and $N \unlhd G$. Then $\frac{G}{N}$ is nilpotent.
Proof. Since G is nilpotent there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $Z_{n}(G)=G$. We claim that $\frac{Z_{i}(G) N}{N} \leq Z_{i}\left(\frac{G}{N}\right)$ for all i. Use induction on i. If $i=0$ then

$$
\begin{aligned}
\frac{Z_{0}(G) N}{N} & =\frac{1 N}{N} \\
& =\frac{N}{N} \\
& =1 N \\
& =Z_{0}\left(\frac{G}{N}\right) .
\end{aligned}
$$

Assume the claim holds. Since $Z\left(\frac{G}{Z_{i}(G)}\right)=\frac{Z_{i+1}(G)}{Z_{i}(G)}$, by Lemma 3.3, $\left[G, Z_{i+1}(G)\right] \leq$ $Z_{i}(G)$. Then $\frac{\left[G, Z_{i+1}(G)\right] N}{N} \leq \frac{Z_{i}(G) N}{N}$. Since $N \unlhd G$ we get $\left[G, Z_{i+1}(G)\right] N=$ $\left[G, Z_{i+1}(G) N\right]$. But, $\left[\frac{G, Z_{i+1}(G) N}{N}\right]=\left[\frac{G}{N}, \frac{Z_{i+1}(G) N}{N}\right]$.

Therefore, $\left[\frac{G}{N}, \frac{Z_{i+1}(G) N}{N}\right] \leq \frac{Z_{i}(G) N}{N} \leq Z_{i}\left(\frac{G}{N}\right)$. Then by Lemma 3.8,

$$
\frac{\frac{Z_{i+1}(G / N) N}{N}}{Z_{i}(G / N)} \leq Z\left(\frac{G / N}{Z_{i}(G / N)}\right)
$$

or

$$
\frac{\frac{Z_{i+1}(G / N) N}{N}}{Z_{i}(G / N)} \leq \frac{Z_{i+1}(G / N)}{Z_{i}(G / N)}
$$

and taking pre-images we get $\frac{Z_{i+1}(G / N) N}{N} \leq Z_{i+1}(G / N)$. Thus the claims holds by induction. Then $Z_{n}\left(\frac{G}{N}\right) \leq \frac{Z_{n}(G) N}{N}=\frac{G N}{N}=\frac{G}{N}$. Therefore, $Z_{n}\left(\frac{G}{N}\right)=\frac{G}{N}$. Hence, $\frac{G}{N}$ is nilpotent.

Theorem 3.7. Let G be nilpotent. Then $G=\prod P$ where the product runs over all $P \in \operatorname{Syl}_{p}(G)$ and $p||G|$.

Proof. By Lemma 3.6 $P \unlhd G$ for all $P \in \operatorname{Syl}_{p}(G)$. Therefore, $\Pi P \leq G$ where $P \in \operatorname{Syl}_{p}(G)$ and $p\left||G|\right.$. Since $P \cap \prod_{P \neq Q} Q=1$ for all P when $q \neq p$ where $Q \in \operatorname{Syl}_{q}(G)$ we get $\left|\prod P\right|=\Pi|P|=|G|$. Thus, $G=\prod P$.

Definition 3.5. Let G be a group. Define the fitting group $F(G)=\prod_{N \unlhd G} N$ and N nilpotent. Then $F(G)$ is the unique maximal normal nilpotent subgroup of G.

Definition 3.6. Let G be a group and p be a prime. Define $O_{p}(G)$ by $O_{p}(G)=\prod_{P \unlhd G} P$ and P is a p-group. Then $O_{p}(G)$ is the unique maximal normal p-subgroup of G.

Definition 3.7. Let G be a group and p be a prime. Define $O_{p^{\prime}}(G)=\prod_{Q \unlhd G} Q$ and Q is a p^{\prime}-subgroup. Then $O_{p^{\prime}}(G)$ is the unique maximal normal p^{\prime}-subgroup of G.

Theorem 3.8. Let G be a group. Then $F(G)=\prod O_{p}(G)$ where $p||G|$.

Proof. As $p\left||G|\right.$ and $O_{p}(G)$ is a p-group, we know $O_{p}(G)$ is nilpotent. Since $O_{p}(G) \unlhd G$ we get $O_{p}(G) \leq F(G)$. By Sylow's Theorem there exists $P \in S y l_{p}(F(G))$ such that $O_{p}(G) \leq P$. By Lemma 3.6 we know $P \unlhd G$. Hence since P is a p-group we get $P \leq O_{p}(G)$. Thus, $O_{p}(G)=P \in \operatorname{Syl}_{p}(F(G))$. Since $F(G)$ is nilpotent, by Theorem 3.7, $F(G)=\prod P=\prod O_{p}(G)$.

Lemma 3.9. Let G be a group and $H \unlhd G$. Then $C_{G}(H) \unlhd G$.

Lemma 3.10. Let G be a group, $H \leq G, K \leq G$, and $L \leq G$ such that $[H, K]=1$. Then $[H, K L]=[H, L]$.

Lemma 3.11. Let G be a group, $H \leq G, K \leq G$, and $L \leq G$ such that $K \leq H$. Then $H \cap K L=K(H \cap L)$.

Theorem 3.9. Let G be solvable. Then $C_{G}(F(G)) \leq F(G)$.

Proof. Let $F=F(G)$ and $C=C_{G}(F)$. Suppose $C \not \leq F$. By Lemma 3.9, since $F \unlhd G$ we know $C \unlhd G$. Then, $\frac{C F}{F} \unlhd \frac{G}{F}$. Also, since $C \not \leq F$ we know $\frac{C F}{F} \neq 1 F$. Then there exists $1 \neq \frac{N}{F} \leq \frac{C F}{F}$ such that $\frac{N}{F}$ is a minimal normal subgroup of $\frac{G}{F}$. Since G is solvable we know $\frac{G}{F}$ is solvable. Hence by Theorem 2.6, $\frac{N}{F}$ is an elementary abelian p-group. Hence, $\left(\frac{N}{F}\right)^{\prime}=\frac{N^{\prime}}{F}=1$ and so $N^{\prime} \leq F$. Since $\frac{N}{F} \leq \frac{C F}{F}$ we get $N \leq C F$. But then, $N=N \cap C F=F(N \cap C)$. We claim that $K_{i}(N) \leq K_{i-1}(F)$ for all $i \geq 1$. Use induction on i. If $i=1$ then, $K_{1}(N)=[N, N]=N^{\prime} \leq F=K_{0}(F)$. Assume
$K_{i}(N) \leq K_{i-1}(F)$ for all $i \geq 1$. Then

$$
\begin{aligned}
K_{i+1}(N) & =\left[K_{i}(N), N\right] \\
& \leq\left[K_{i-1}(F), N\right] \\
& =\left[K_{i-1}(F), F(N \cap C)\right] \\
& =\left[K_{i-1}(F), F\right] \quad \text { by Lemma } 3.10 \\
& =K_{i}(F)
\end{aligned}
$$

Thus, the claim holds. Since $F=F(G)$ in nilpotent there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $K_{n}(F)=1$. Then $K_{n+1}(N) \leq K_{n}(F)=1$ and so $K_{n+1}(N)=1$. Thus N is nilpotent. Since $\frac{N}{F} \unlhd \frac{G}{F}$ we have $N \unlhd G$. Thus, $N \leq F$. But then, $\frac{N}{F}=1$, a contradiction. Therefore, $C_{G}(F(G)) \leq F(G)$.

Lemma 3.12. Let G be a group and $P \in \operatorname{Syl}_{p}(F(G))$. Then $P \unlhd G$.

Proof. Let $g \in G$. Since $P \leq F(G)$ we get $g P g^{-1} \leq g F(G) g^{-1}$. Since $F(G) \unlhd G$, $g F(G) g^{-1} \leq F(G)$ and so $g P g^{-1} \leq F(G)$. Now $F(G)$ is nilpotent implies $P \unlhd F(G)$. Thus by Sylow's Theorem,

$$
n_{p}=\frac{|F(G)|}{\left|N_{F(G)}(P)\right|}=\frac{|F(G)|}{|F(G)|}=1
$$

Also $\left|g P g^{-1}\right|=|P|$ and so $g P g^{-1} \in \operatorname{Syl}_{p}(F(G))$. Since $n_{p}=1$ we get $P=g P g^{-1}$ and so $P \unlhd G$.

Theorem 3.10. Let G be a group, $P \leq G$ be a p-group, and $N \unlhd G$ be a p^{\prime}-group. Then

$$
\frac{N_{G}(P)}{P}=N_{G / N}\left(\frac{P N}{N}\right)
$$

Proof. Let $x N \in \frac{N_{G}(P)}{N}$ where $x \in N_{G}(P)$. Then

$$
\begin{aligned}
x N\left(\frac{P N}{N}\right) x^{-1} N & =\frac{x(P N) x^{-1}}{N} \\
& =\frac{x P x^{-1} x N x^{-1}}{N} \\
& =\frac{P N}{N} \quad \text { since } x \in N_{G}(P) \text { and } N \unlhd G
\end{aligned}
$$

Hence, $x N \in N_{G / N}\left(\frac{P N}{N}\right)$ and so $\frac{N_{G}(P) N}{N} \leq N_{G / N}\left(\frac{P N}{N}\right)$. Let $x N \in N_{G / N}\left(\frac{P N}{N}\right)$. Then $x N\left(\frac{P N}{N}\right) x^{-1} N=\frac{P N}{N}$ and so as before we get $\frac{x P x^{-1}}{N}=\frac{P N}{N}$ Taking preimages we get $x P x^{-1}=P N$. Since N is a p^{\prime}-group we get $P, x P x^{-1} \in \operatorname{Syl}_{p}(P N)$. By Sylow's Theorem there exists $n \in N$ such that $n x P x^{-1} n^{-1}=P$ or $n x P(n x)^{-1}=P$. Thus, $n x \in N_{G}(P)$. But then $x N=n x N \in \frac{N_{G}(P) N}{N}$. Thus, $N_{G / N}\left(\frac{P N}{N}\right) \leq$ $\frac{N_{G}(P) N}{N}$. Therefore, $\frac{N_{G}(P) N}{N}=N_{G / N}\left(\frac{P N}{N}\right)$.

4 Groups Acting on Groups

We know look at how groups act on groups and will prove important Theorems about co-prime actions.

Definition 4.1. Let G and H be groups. Then G acts on H if there exists a homomorphism ϕ such that $\phi: G \rightarrow \operatorname{Aut}(H)$.

Theorem 4.1. Let G and H be p-groups such that G acts on H. Then there exists $1 \neq h \in H$ such that $G=G_{h}$.

Proof. Since G acts on H we know G acts on $S=H \backslash\{1\}$. Since H is a p-group and $p \nmid 1$ we know $p \nmid|S|$. Since G is a p-group by the Fixed Point Theorem there exists $s \in S$ such that $G=G_{s}$. But then, $1 \neq s \in H$.

Theorem 4.2. Let G be a group, $A \leq G, B \leq G$, and $C \leq G$ such that $[A, B, C]=1$ and $[B, C, A]=1$. Then $[C, A, B]=1$.

Proof. Let $a \in A, b \in B$, and $c \in C$. Notice

$$
b\left[a^{-1}, b, c^{-1}\right] b^{-1} c\left[b^{-1}, c, a^{-1}\right] c^{-1} a\left[c^{-1}, a, b^{-1}\right] a^{-1}=1
$$

Now, $\left[a^{-1}, b, c^{-1}\right]=1$ and so $b\left[a^{-1}, b, c^{-1}\right] b^{-1}=1$ since $[A, B, C]=1$. Similarly, $c\left[b^{-1}, c, a^{-1}\right] c^{-1}=1$ since $[B, C, A]=1$. Thus, $a\left[c^{-1}, a, b^{-1}\right] a^{-1}=1$ and so $\left[c^{-1}, a, b^{-1}\right]=$ 1. Therefore, $[C, A, B]=1$.

Theorem 4.3. Let $A \leq A u t(P)$ be a p^{\prime}-group and P be a p-group such that there exists a subnormal series

$$
P \unrhd P_{1} \unrhd P_{2} \unrhd \cdots \unrhd P_{n}=1
$$

such that P_{i} is A-invariant and A acts trivially on $\frac{P_{i}}{P_{i+1}}$ for all $1 \leq i \leq n-1$. Then A acts trivially on P.

Proof. Use induction on $|P|$. Since $\left|P_{1}\right| \leq|P|$ we get A acts trivially on P_{1}. If A does not act trivially on P there exists $\phi \in A$ and $x \in P$ such that $\phi(x) \neq x$. Since A acts trivially on $\frac{P}{P_{1}}$ we get $\phi\left(x P_{1}\right)=x P_{1}$ or $\phi(x) P_{1}=x P_{1}$. Hence, there exists a $y \in P_{1}$ such that $\phi(x)=x y$. Then,

$$
\begin{aligned}
\phi(\phi(x)) & =\phi(x y) \\
& =\phi(x) \phi(y) \\
& =x y y \\
& =x y^{2} .
\end{aligned}
$$

Since A acts trivially on P_{1} we get $x=\phi^{|\phi|}(x)=x y^{|\phi|}$. But then, $y^{|\phi|}=1$ and so $|y|\left||\phi|\right.$. Since P is a p-group and A is a p^{\prime}-group we get $\operatorname{gcd}(|y|,|\phi|)=1$. Thus, $|y|=1$ and so $y=1$. But then $\phi(x)=x 1=x$, a contradiction. Therefore, A acts trivially on P.

Theorem 4.4. Suppose $A \times B$ acts on P such that A is a p^{\prime}-group and B and P are p-groups. If A acts trivially on $C_{P}(B)$ then A acts trivially on P.

Proof. Let $C_{P}(B) \leq Q \leq P$ where Q is a maximal $A \times B$-invariant subgroup of P such that A acts trivially on Q. If $Q<P$. Now by Theorem 3.4, $Q<N_{P}(Q)=R$ and $Q \unlhd R$. Since P and Q are $A \times B$-invariant we know R is $A \times B$-invariant. Thus, $A \times B$ acts on $\frac{R}{Q}$ and so B acts on $\frac{R}{Q}$. Let $1 Q \neq \frac{S}{Q} \leq \frac{R}{Q}$ be a minimal $A \times B$ invariant subgroup of $\frac{R}{Q}$. Now, B acts on $\frac{S}{Q}$ and they are both p-groups. Therefore, by Theorem 4.1, $1 \neq C_{S / Q}(B) \leq \frac{S}{Q}$. Since $\frac{S}{Q}$ is $A \times B$-invariant we get $C_{S / Q}(B)$ is $A \times B$-invariant. By the minimality of $\frac{S}{Q}=C_{S / Q}(B)$. But then, $[S, B] \leq Q$.

Now, $[S, B, A] \leq[Q, A]=1$ since A acts trivially on Q. Hence, $[S, B, A]=1$. Also, $[B, A]=1$ implies $[B, A, S]=1$. By Theorem 4.2, $[A, S, B]=1$. Thus, $[A, S] \leq C_{P}(B) \leq Q$. Now we have a subnormal series $S \unlhd Q \unlhd 1$ and A acts trivially on $\frac{S}{Q}$ and on $\frac{Q}{\{1\}}$. Since A is a p^{\prime}-group and S is a p-group by Theorem 4.3, A acts trivially on S. Now, $Q<S$ since $\frac{S}{Q} \neq 1 Q$ and S is $A \times B$-invariant, this contradicts the maximality of Q. Hence, $P=Q$ and A acts trivially on P.

Definition 4.2. Let G be a group, $A \leq \operatorname{Aut}(G), g \in G$, and $\phi \in A$. Then

1. $[g, \phi]=g^{-1} \phi(g)$ is the commutator of g and ϕ
2. $[G, A]=\langle\{[g, \phi] \mid g \in G$ for all $\phi \in A\}\rangle$
3. $C_{G}(A)=\{g \in G \mid \phi(g)=g$ for all $\phi \in A\}$.

Theorem 4.5. Let $A \leq A u t(P)$ be a p^{\prime}-group and P be an abelian p-group. Then $P=C_{P}(A) \times[P, A]$.

Proof. Let $|A|=n$ and writing P additively define $\theta=\frac{1}{n} \sum_{\phi \in A} \phi$. Then $\theta: P \rightarrow P$ is a homomorphism since P is abelian. We want to show the following,

1. $\theta \phi_{1}=\theta$ for all $\phi_{1} \in A$
2. $\theta^{2}=\theta$
3. $\theta(P)=C_{P}(A)$
4. $[P, A]=\{-x+\theta(x) \mid x \in P\}$
5. $P=\theta(P) \times B$ where $B=[P, A]$

For (1), let $x \in P$. Then

$$
\begin{aligned}
\theta \phi_{1}(X) & =\frac{1}{n} \sum_{\phi \in A} \phi \phi_{1}(x) \\
& =\frac{1}{n} \sum_{\phi \in A} \phi(x) \quad \text { since } P \text { is abelian } \\
& =\theta(x)
\end{aligned}
$$

For (2), let $x \in P$. Then,

$$
\begin{aligned}
\theta^{2}(x) & =\theta\left(\frac{1}{n} \sum_{\phi \in A} \phi(x)\right) \\
& =\frac{1}{n} \sum_{\phi \in A} \theta \phi(x) \\
& =\frac{1}{n} \sum_{\phi \in A} \theta(x) \\
& =\frac{1}{n} n \theta(x) \\
& =\theta(x) .
\end{aligned}
$$

For (3), let $\theta(x) \in \theta(P)$ and $\phi \in A$. Then $\phi \theta(x)=\theta(x)$. Hence, $\theta(x) \in C_{P}(A)$ and so $\theta(P) \leq C_{P}(A)$. Let $x \in C_{P}(A)$. Then,

$$
\begin{aligned}
\theta(x) & =\frac{1}{n} \sum_{\phi \in A} \phi(x) \\
& =\frac{1}{n} \sum_{\phi \in A} x \\
& =\frac{1}{n} n x \\
& =x .
\end{aligned}
$$

Hence, $x \in \theta(P)$ and so $C_{P}(A) \leq \theta(P)$. Thus, $\phi(P)=C_{P}(A)$. For (4), let $x \in P$. Then,

$$
\begin{aligned}
-x+\theta(x) & =-x+\frac{1}{n} \sum_{\phi \in A} \phi(x) \\
& =\frac{1}{n} \sum_{\phi \in A}-x+\theta(x) \quad \text { since } P \text { is abelian } \\
& \in[P, A] \quad \text { since }-x+\theta(x) \in[P, A] \text { for all } x \in P \text { and } \phi \in A .
\end{aligned}
$$

Hence, $\{-x+\theta(x) \mid x \in P\} \subseteq[P, A]$. Let $x \in P$ and $\phi \in A$. Then,

$$
\begin{aligned}
{[x, \phi] } & =-x+\phi(x) \\
& =-x+\phi(x)+0 \\
& =-x+\phi(x)+\theta(x+-\phi(x)) \quad \text { by }(1) \\
& \in\{x+\theta(x) \mid x \in P\} .
\end{aligned}
$$

Hence, $[P, A] \subseteq\{-x+\theta(x) \mid x \in P\}$ since $\{-x+\theta(x) \mid x \in P\}$ is closed. Therefore, $[P, A]=\{-x+\theta(x) \mid x \in P\}$. For (5), let $x \in P$. Then, $x=\theta(x)+x+-\theta(x) \in \theta(P) B$. Thus, $P=\theta(P) B$. Suppose, there exists $u \in \phi(P) \cap B$. Then, there exists $x, y \in P$
such that $u=\theta(x)$ and $u=-y+\theta(y)$. Then,

$$
\begin{aligned}
u & =\theta(x) \\
& =\theta^{2}(x) \quad \text { by }(2) \\
& =\theta(\theta(x)) \\
& =\theta(u) \\
& =\theta(-y+\theta(y)) \\
& =-\theta(y)+\theta^{2}(y) \\
& =-\theta(y)+\theta(y) \\
& =0 .
\end{aligned}
$$

Hence, $\theta(B) \cap B=0$ and so $P=\theta(P) B=C_{P}(A)[P, A]=C_{P}(A) \times[P, A]$.

Lemma 4.1. Let G be a group and $A \leq \operatorname{Aut}(G)$. Then $[G, A] \unlhd G$ and $[G, A]$ is A-invariant.

Lemma 4.2. Let G be a group, $A \leq \operatorname{Aut}(G)$, and $N \unlhd G$ be A-invariant. Then A acts on $\frac{G}{N}$ by $\phi(g N)=\phi(g) N$ for all $g N \in \frac{G}{N}$ and for all $\phi \in A$.

Theorem 4.6. Let $A \leq A u t(P)$ be a p^{\prime}-group and P be a p-group. Then

$$
P=C_{P}(A)[P, A] .
$$

Proof. Let $H=[P, A]$.

Case $1 H \leq Z(P)$. Let $\phi \in A$. Define $\alpha_{\phi}: P \rightarrow[P, \phi]$ by $\alpha_{\phi}=[x, \phi]$ for all $x \in P$. If $x, y \in P$ then

$$
\begin{aligned}
\alpha_{\phi}(x y) & =[x y, \phi] \\
& =(x y)^{-1} \phi(x y) \\
& =y^{-1} x^{-1} \phi(x) \phi(y) \\
& =x^{-1} \phi(x) y^{-1} \phi(y) \quad \text { since } x^{-1} \in \phi(x) \leq Z(P) \\
& =[x, \phi][y, \phi] \\
& =\alpha_{\phi}(x) \alpha_{\phi}(y) .
\end{aligned}
$$

Hence, α_{ϕ} is a homomorphism. Now, $\operatorname{Kern} \alpha_{\phi}=C_{P}(\phi)$ and α_{ϕ} is onto. By Theorem 1.5, $\frac{P}{K e r n} \alpha_{\phi} \cong \alpha_{\phi}(P)$. Thus, $\frac{P}{C_{P}(\phi)} \cong[P, \phi]$ since α_{ϕ} is onto. Since $[P, \phi] \leq H \leq Z(P)$ we get $\frac{P}{C_{P}(\phi)}$ is abelian. Hence, by Lemma 1.3, $P^{\prime} \leq$ $C_{P}(\phi)$. Therefore, $P^{\prime} \leq C_{P}(A)$. Now A acts on $\frac{P}{P^{\prime}}$ which is an abelian p-group. Then, $\frac{P}{P^{\prime}}=C_{P / P^{\prime}}(A)\left[\frac{P}{P^{\prime}}, A\right]=C_{P / P^{\prime}} \frac{[P, A] P^{\prime}}{P^{\prime}}$. Let $\frac{C}{P^{\prime}}=C_{P / P^{\prime}}(A)$. Then, $\frac{P}{P^{\prime}}=\frac{C}{P^{\prime}} \frac{[P, A] P^{\prime}}{P^{\prime}}$ and taking pre-images we get $P=C[P, A] P^{\prime}$ or $P=C[P, A]$. Now, $\left[P^{\prime}, C\right]=P^{\prime}$ since $\frac{C}{P^{\prime}}=C_{P / P^{\prime}}(A)$. Hence, we have a subnormal series

$$
C \unrhd P^{\prime} \unrhd 1
$$

and A acts trivially on $\frac{C}{P^{\prime}}$ and $\frac{P^{\prime}}{\{1\}}$. Since A is a p^{\prime}-group and C is a p-group by Theorem 4.3, A acts trivially on C. Thus, $P=C[P, A] \leq C_{P}(A)[P, A] \leq P$ and so $P=C_{P}(A)[P, A]$.

Case $2 H \not \leq Z(P)$. Use induction on $|P|$. Since P is nilpotent and $H=[P, A] \unlhd P$
by Theorem 3.3, $1 \neq H \cap Z(P)$. Now, $K=H \cap Z(P) \unlhd P$ and so $\frac{P}{K}$ is a p-group. Also, K is A-invariant and so A acts on $\frac{P}{K}$. Also, $\left|\frac{P}{K}\right|<|P|$ and so by induction $\frac{P}{K}=C_{P / K}(A)\left[\frac{P}{K}, A\right]=C_{P / K}(A) \frac{[P, A] K}{K}$. Let $\frac{C}{K}=C_{P / K}(A)$. Then, $\frac{P}{K}=\frac{C}{K} \frac{[P, A] K}{K}$ and taking pre-images we get $P=C[P, A] K=C[P, A]$. If $P=C$ then $\frac{P}{K}=\frac{C}{K}=C_{P / K}(A)$. Hence, $\left[\frac{P}{K}, A\right]=K$ and so $[P, A] \leq K$. But then $H=[P, A] \leq K \leq Z(P)$, a contradiction. Therefore, $P \neq C$. Thus, $C<P$ and so $|C|<|P|$. Hence, by induction $C=C_{C}(A)[C, A]$. But then, $P=C_{C}(A)[C, A][P, A] \leq C_{P}(A)[P, A] \leq P$ and so $P=C_{P}(A)$.

Theorem 4.7. Let $A \leq A u t(P)$ be a p^{\prime}-group, P be a p-group, and $N \unlhd P$ be A invariant. Then $C_{P / N}(A)=\frac{C_{P}(A) N}{N}$.

Proof. Let $c N \in \frac{C_{P}(A) N}{N}$ and $\phi \in A$. Then, $\phi(c N)=\phi(c) N=c N$ since $c \in$ $C_{P}(A)$. Thus, $\frac{C_{P}(A) N}{N} \leq C_{P / N}(A)$. Let $\frac{C}{N}=C_{P / N}(A)$. Then, $N \leq C \leq P$ and C is A-invariant. Also $[C, A] \subseteq N$. Hence, by Theorem 4.6, $C=C_{P}(A)[C, A] \leq$ $C_{P}(A) N$. Therefore, by taking pre-images we get $C_{P / N}(A)=\frac{C}{N} \leq \frac{C_{P}(A) N}{N}$. Hence, $C_{P / N}(A)=\frac{C_{P}(A) N}{N}$.

Definition 4.3. Let G be a group then $O_{p^{\prime}}(G)=\prod_{N \unlhd G} N$ where N is a p^{\prime}-group and is the largest normal p^{\prime}-subgroup of G.

Theorem 4.8. Let G be solvable and $P \leq G$ be a p-subgroup. Then, $O_{p^{\prime}}\left(N_{G}(P)\right) \leq$ $O_{p^{\prime}}(G)$.

Proof. Let $A=O_{p^{\prime}}\left(N_{G}(P)\right)$ and $B=O_{p^{\prime}}(G)$.

Case $1 O_{p^{\prime}}(G)=1$. We want to show that $A=1$. Suppose, $A \neq 1$. Then, $A \unlhd N_{G}(P)$ and $P \unlhd N_{G}(P)$. Hence, $A P \unlhd N_{G}(P)$. Since A is a p^{\prime}-group and P is a p-group we get $|A \cap P|=1$. Since $A \unlhd N_{G}(P)$ and $P \unlhd N_{G}(P)$ we get $[A, P]=1$. Since $B \unlhd G$ we get $A \times P$ acts on B by conjugation. Now, $C_{B}(P) \leq N_{G}(P)$ and $A \unlhd N_{G}(P)$. Since $B \unlhd G$ we get $\left[A, C_{B}(P)\right] \leq A \cap B=1$. Thus, A acts trivially on $C_{B}(P)$. By Theorem 4.4, A acts trivially on B. But then, $A \leq C_{G}(B)$ and so $C_{G}(B)$ is not a p-group. Since $B \unlhd G$ we know $C_{G}(B) \unlhd G$. Then, $\frac{C_{G}(B) B}{B} \unlhd \frac{G}{B}$. If $\frac{C_{G}(B) B}{B}=1$ we get $C_{G}(B) \leq B$. But then, since B is a p-group we get $C_{G}(B)$ is a p-group, a contradiction. Thus, $1 \neq \frac{C_{G}(B)}{B} \unlhd \frac{G}{B}$. Hence, there exists $1 \neq \frac{N}{B} \leq \frac{C_{G}(B)}{B}$ such that $\frac{N}{B}$ is a minimal subgroup of $\frac{G}{B}$. Since G is solvable by Theorem 2.3, $\frac{G}{B}$ is solvable. By Theorem 2.6, $\frac{N}{B}$ is an elementary q-group. Suppose $p=q$. Since $\frac{N}{B} \unlhd \frac{G}{B}$ we get $N \unlhd G$. Also, $|N|=\frac{|N|}{|B|}$ and $|B|=\left|\frac{N}{B}\right||B|$ is a power of P and so N is a p-group. Hence, $N \leq B=O_{p}(G)$ and we get $\frac{N}{B}=1$, a contradiction. Therefore, $p \neq q$. Let $Q \in \operatorname{Syl}_{q}(N)$. Then, $\frac{Q B}{B} \in \operatorname{Syl}_{q}\left(\frac{N}{B}\right)$. Since $\frac{N}{B}$ is a p-group we get $\frac{N}{B}=\frac{Q B}{B}$. Taking pre-images we get $N=Q B$. Since $\frac{N}{B} \leq \frac{C_{G}(B)}{B}$ we get $N \leq C_{G}(B)$. Hence, $Q \leq N \leq C_{G}(B) B$ and so $\frac{Q C_{G}(B)}{C_{G}(B)} \leq \frac{C_{G}(B) B}{C_{G}(B)}$. But, $\frac{C_{G}(B) B}{C_{G}(B)} \cong \frac{B}{B \cap C_{G}(B)}$ is a p-group. Thus, $\frac{Q C_{G}(B)}{C_{G}(B)}$ is a p-group. But, $\frac{Q C_{G}(B)}{C_{G}(B)} \cong \frac{Q}{Q \cap C_{G}(B)}$ is a q-group. Thus, $\frac{Q C_{G}(B)}{C_{G}(B)}=1$ and so $Q \leq C_{G}(B)$. Since $N=Q B$ we get $Q \unlhd N$. Therefore, Q is the only Sylow q-subgroup of N by Sylow's Theorem. Now, since $N \unlhd G$ we get $Q \unlhd G$. Since $p \neq q$ we know Q is a p^{\prime}-group and so $Q \leq O_{p^{\prime}}(G)=1$ and so $N=Q B=B$ and we get $\frac{N}{B}=\frac{B}{B}=1$, a contradiction. Thus, $A=1$

Case $2 O_{p^{\prime}}(G) \neq 1$. Then, $\frac{G}{O_{p^{\prime}}(G)}$ is solvable and $\frac{P O_{p^{\prime}}(G)}{O_{p^{\prime}}} \leq \frac{G}{O_{p^{\prime}}}(G)$ is a p-group.

Finally, $O_{p^{\prime}}\left(\frac{G}{O_{p^{\prime}}(G)}\right)=1$ by Case 1 we get $O_{p^{\prime}}\left(N_{G / O_{p^{\prime}}(G)}\left(\frac{P O_{p^{\prime}}(G)}{O_{p^{\prime}}(G)}\right)\right)=1$. Then, $O_{p^{\prime}}\left(\frac{N_{G}(P) O_{p^{\prime}}(G)}{O_{p^{\prime}}}\right)=1$ by Lemma 3.10. But, $\frac{O_{p^{\prime}}\left(N_{G}(P)\right) O_{p^{\prime}}(G)}{O_{p^{\prime}}(G)} \leq$ $O_{p^{\prime}}\left(\frac{N_{G}(P) O_{p^{\prime}}(G)}{O_{p^{\prime}}}\right)$ and so $\frac{O_{p^{\prime}}\left(N_{G}(P)\right) O_{p^{\prime}}(G)}{O_{p^{\prime}}(G)}=1$ which implies $O_{p^{\prime}}\left(N_{G}(P)\right) \leq$ $O_{p^{\prime}}(G)$.

Definition 4.4. Let G be a group. Define the Franttini Subgroup by $\Phi(G)=\bigcap M$ where M is a maximal subgroup of G.

Theorem 4.9. Let P be a p-group. Then, $\frac{P}{\Phi(P)}$ is an elementary abelian p-group. In particular, if $\Phi(P)=1$ then P is an elementary p-group.

Proof. Let M be a maximal subgroup of P and let $x \in P$. Since P is nilpotent we get $M \unlhd P$ by Theorem 3.5. Since M is maximal we know $\{1\}$ and $\frac{P}{M}$ are the only subgroups of $\frac{P}{M}$. Thus, $\frac{P}{M} \cong \mathbb{Z}_{p}$ is abelian. Thus, $P^{\prime} \leq M$. Also, $(x M)^{p}=x^{p} M=$ $1 M$ since $\frac{P}{M} \cong \mathbb{Z}_{p}$. Thus, $x^{p} \in M$ but then, $P^{\prime} \leq \Phi(P)$ and $x^{p} \in \Phi(P)$ for all $x \in P$ which implies all the elements have order p or 1 . By the Fundamental Theorem of Finite Abelian Groups we get $\frac{P}{\Phi(P)} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$ is an elementary abelian p-group. In particular, if $\Phi(P)=1$ then $P \cong \frac{P}{\{1\}} \cong \frac{P}{\Phi(P)}$ is an elementary p-group.

Definition 4.5. A group A acts regularly on a group G if $C_{G}(\alpha)=1$ for all $1 \neq$ $\alpha \in A$.

Theorem 4.10. Suppose an elementary p-group A acts regularly on a q-group V. Then $A \cong \mathbb{Z}_{p}$.

Proof. Use contradiction. Suppose $A \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Then all elements of A have order P. Hence, $H=\bigcup_{i=1}^{p+1} A_{i}$ such that $\left|A_{i}\right|=p$ for all i and $A_{i} \cap A_{j}=1$ for all $i \neq j$. Let $1 \neq v \in V$ and $1 \neq a_{0} \in A$. Then $a_{0}\left(\prod_{a \in A} a v\right)=\prod_{a \in A} a_{0} a v=\prod_{a \in A} a v$ since as a runs over A so does $a_{0} a$ and V is abelian. Since A acts regular on V we get $\Pi a v=1$. Similarly, $\prod_{a_{i} \in A_{i}} a_{i} v=1$. Hence,

$$
\begin{aligned}
1 & =\prod_{i=1}^{p+1} \prod_{a_{i} \in A_{i}} a_{i} v \\
& =v^{p} \prod_{a \in A} a v \quad \text { since } V \text { is abelian } \\
& =v^{p} 1 \\
& =v^{p}
\end{aligned}
$$

Hence, $v^{p}=1$ and so $|v|=p$ since $v \neq 1$. But then, $p=|v|| | V \mid$ which implies $p \mid q^{a}$, a contradiction. Thus, $A \cong \mathbb{Z}_{p}$.

Theorem 4.11. Let $G=B V$ be a group such that $B \unlhd G$ is a p-group and V is an elementary abelian q-group. Then

$$
B=\left\langle C_{B}(U) \mid U \leq V, \frac{|V|}{|U|}=q\right\rangle
$$

Proof. Use induction on $|G|$. Let $A=\left\langle C_{B}(U) \mid U \leq V, \frac{|V|}{|U|}=q\right\rangle$. If $A<B$ then since B is nilpotent we get $A<N_{B}(A)$. Since $V \leq N_{G}(B)$ and V is abelian we know $V \leq N_{G}(A)$. Hence, $V \leq N_{B}\left(N_{B}(A)\right)$ and so $V N_{B}(A) \leq G$. If $V N_{B}(A)<G$ then by induction we get $N_{B}(A)=\left\langle C_{N_{B}(A)}(U) \mid U \leq V, \frac{|V|}{|U|}=q\right\rangle \leq A$, a contradiction.

Hence, $G=V N_{B}(A)$ and so $A \unlhd G$. Thus, $\frac{G}{A}=\frac{B}{A} \frac{V A}{A}$ is a group. If $A \neq 1$, then $\left|\frac{G}{A}\right|<|G|$ and $\frac{B}{A} \unlhd \frac{G}{A}$ is a p-group and $\frac{V A}{A}$ is an elementary q-group. Hence, by induction $\frac{B}{A}=\left\langle C_{B / A}\left(\frac{U}{A}\right) \left\lvert\, \frac{U}{A} \leq \frac{V A}{A}\right., \frac{|V A|}{|U|}=q\right\rangle$. Since $A<B$ we know $\frac{B}{A} \neq 1 A$. Hence, there exists $\frac{U}{A} \leq \frac{V A}{A}$ such that $\frac{|V A|}{|U|}=q$ and $C_{B / A}\left(\frac{U}{A}\right) \neq 1 A$. Let $U_{0} \in S y l_{q}(U)$. Then $\frac{U_{0} A}{A} \in S y l_{q}\left(\frac{U}{A}\right)$. Since $\frac{U}{A}$ is a q-group we get $\frac{U}{A}=\frac{U_{0} A}{A}$ Hence, $C_{B / A}\left(\frac{U_{0} A}{A}\right) \neq 1 A$. Since U_{0} and $\frac{U_{0} A}{A}$ act on $\frac{B}{A}$ in the same way we get $C_{B}\left(U_{0}\right) \neq 1$ by Theorem 4.7 the q-group U_{0} acts on the p-group $\frac{B}{A}$ and we get $1 \neq C_{B / A}\left(U_{0}\right)=\frac{C_{B}\left(U_{0}\right) A}{A}$. Hence, $C_{B}\left(U_{0}\right) \not \leq A$. Now,

$$
\begin{aligned}
& q=\frac{|V A|}{|U|} \\
&=\frac{|V A|}{\left|U_{0} A\right|} \\
&=\frac{\left|V U_{0} A\right|}{\left|U_{0} A\right|} \\
&=\frac{|V|\left|U_{0} A\right|}{\left|V \cap U_{0} A\right|} \\
&\left|U_{0} A\right| \\
&=\frac{|V|}{\left|V \cap U_{0} A\right|} .
\end{aligned}
$$

Hence, $\frac{|V|}{\left|V \cap U_{0} A\right|}=q$. Now, $V \cap U_{0} A \leq U_{0} A$ and $V \cap U_{0} A$ is a q-group. Since $U_{0} \in S y l_{q}\left(U_{0} A\right)$ by Sylow's Theorem there exists $a \in A$ such that $V \cap U_{0} A \leq a U_{0} a^{-1}$. Then $V \cap U_{0} A \leq V \cap a U_{0} a^{-1}$. But $V \cap a U_{0} a^{-1} \leq V \cap U_{0} A$ and so $V \cap U_{0} A=$ $V \cap a U_{0} a^{-1}$. Hence, $\frac{|V|}{\left|V \cap a U_{0} a^{-1}\right|}=q$ and so $C_{B}\left(V \cap a U_{0} a^{-1}\right) \leq A$. Now, $C_{B}\left(U_{0}\right) \not \leq A$, a contradiction. Hence, $A=1$. As, $\Phi(B)<B$ and $B \unlhd G$, we get $\Phi(B) \unlhd G$. Then $\Phi(B) V<B V=G$. Hence, $|\Phi(B)|<|G|$ and so, by induction, $\Phi(B)=\left\langle C_{\Phi(B)}(U)\right|$ $\left.U \leq V, \frac{|V|}{|U|}=q\right\rangle \leq A=1$. Thus, $\Phi(B)=1$ which implies by Theorem 4.9 B is an elementary abelian p-group. Let $1 \neq b \in B$ and $\left\langle b^{G}\right\rangle=\left\langle g b g^{-1} \mid g \in G\right\rangle$. Then
$\left\langle b^{G}\right\rangle \unlhd G$ and so V acts on $\left\langle b^{G}\right\rangle$ by conjugation. Now, since $G=B V$ and B is abelian we get $\left\langle b^{G}\right\rangle=\left\langle b^{V}\right\rangle$. Moreover, since V is abelian, $\frac{V}{C_{V}(b)}$ acts on $\left\langle b^{V}\right\rangle$ regularly by conjugation. Then, by Theorem 4.10, $\frac{V}{C_{V}(b)} \cong \mathbb{Z}_{q}$ and so $\left|\frac{V}{C_{V}(b)}\right|=q$. Now, $1 \neq b \in C_{B}\left(C_{V}(b)\right) \leq A=1$, a contradiction. Thus, $B=A=\left\langle C_{B}(U) \mid U \leq V, \frac{|V|}{|U|}\right\rangle$.

Theorem 4.12. Let $G=A B$ where A is a p-group and B is a q-group. Further suppose there exists $1 \neq A_{0} \unlhd A$ and $1 \neq B_{0} \unlhd B$ such that $\left\langle A_{0}^{B_{0}}\right\rangle$ is a p-group. Then G is not simple.

Proof. Let $\left\langle A_{0}^{B_{0}}\right\rangle \leq P_{0} \leq G$ such that P_{0} is maximal with respect to P_{0} being a p-group, P_{0} generated by conjugates of A_{0}, and $B_{0} \leq N_{G}\left(P_{0}\right)$. By Sylow's Theorem there exists $P \in \operatorname{Syl}_{p}(G)$ such that $P_{0} \leq P$. We want to show that $P_{0} \unlhd P$. Suppose not. Then, $N_{P}\left(P_{0}\right)<P$. Since P is nilpotent we get $N_{P}\left(P_{0}\right)<N_{P}\left(N_{P}\left(P_{0}\right)\right)$. Let $x \in N_{P}\left(N_{P}\left(P_{0}\right)\right) \backslash N_{P}\left(P_{0}\right)$. Then $x P_{0} x^{-1} \neq P_{0}$ and so $x P_{0} x^{-1} \not \leq P_{0}$. Hence, there exists $g \in G$ such that $x g A_{0}(x g)^{-1} \not \leq g A_{0} g^{-1} \leq P_{0}$. Let $H=\left\langle P_{0}\left(x g A_{0}(x g)^{-1}\right)^{B_{0}}\right\rangle$. Then $P_{0} \leq H$. Also, H is generated by conjugates of A_{0} and since $B_{0} \leq N_{G}\left(P_{0}\right)$ we know $B_{0} \leq N_{B}(H)$. Now, $g A_{0} g^{-1} \leq P_{0} \leq N_{P}\left(P_{0}\right)$ and so $x g A_{0}(x g)^{-1} \leq$ $N_{P}\left(P_{0}\right)$ since $x \in N_{P}\left(N_{P}\left(P_{0}\right)\right)$. Thus, $\left(x g A_{0}(x g)^{-1}\right)^{B_{0}} \leq N_{G}\left(P_{0}\right)$. Therefore, $H=$ $\left\langle P_{0},\left(x g A_{0}(x g)^{-1}\right)^{B_{0}}\right\rangle=P_{0}\left\langle\left(x g A_{0}(x g)^{-1}\right)^{B_{0}}\right\rangle$. Now, since $A_{0} \unlhd A$ and $B_{0} \unlhd B$ and $G=A B$ we get $\left\langle\left(x g A_{0}(x g)^{-1}\right)^{B_{0}}\right\rangle \leq\left\langle A_{0}^{B_{0}}\right\rangle^{b}$ since $g=b a$ and $b \in B$ and $a \in A$. But since $\left\langle A_{0}^{B_{0}}\right\rangle$ is a p-group we get $\left\langle A_{0}^{B_{0}}\right\rangle^{b}$ is a p-group. Therefore, $\left\langle\left(x g A_{0}(x g)^{-1}\right)^{B_{0}}\right\rangle$ is a p-group. Since P_{0} is a p-group we get $H=P_{0}\left\langle\left(x g A_{0}(x g)^{-1}\right)^{B_{0}}\right\rangle$ is a p-group, a contradiction to the maximality of P_{0}. So, $P_{0} \unlhd P$. Now since $G=A B$ and $P \in \operatorname{Syl}_{p}(G)$ we get $G=P B$ so then since $B_{0} \unlhd B, B_{0} \leq N_{P}\left(P_{0}\right)$, and $P \leq N_{G}\left(P_{0}\right)$ we get $1 \neq B_{0} \leq \bigcap_{b \in B} b N_{G}\left(P_{0}\right) b^{-1}=\bigcap_{g \in G} g N_{G}\left(P_{0}\right) g^{-1} \unlhd G$. If $\bigcap_{g \in G} g N_{G}\left(P_{0}\right) g^{-1} \neq G$ we get G
is not simple. If $G=\bigcap_{g \in G} g N_{G}\left(P_{0}\right) g^{-1}$ then $G=N_{G}\left(P_{0}\right)$. But then $1 \neq P_{0} \unlhd G$ and $P_{0}=G$ since P_{0} is a p-group. Hence, G is not simple.

Definition 4.6. Let G be a group and p be a prime. Define

$$
\Omega_{1}(G)=\left\langle x \in G \mid x^{p}=1\right\rangle .
$$

Definition 4.7. Let G be group and $P \leq G$ be a p-group. Define

$$
J(P)=\langle A| A \leq P \text { is abelian and }|A| \text { is maximal }\rangle .
$$

Then $J(P)$ is called the Thompson Subgroup.
Theorem 4.13 (Baer). Let G be a group and $H \leq G$ such that $\left\langle H, g H g^{-1}\right\rangle$ is a p-group for all $g \in G$. Then $H \leq O_{p}(G)$.

Theorem 4.14. Let G be a group and $x \notin O_{2}(G)$ such that $x^{2}=1$. Then there exists $y \in G$ such that $|y|$ is odd and $x y x^{-1}=y^{-1}$.

Theorem 4.15. Let G be a group such that $|G|=p^{a} q^{b}$ for odd primes p and q and $P \in \operatorname{Syl}_{p}(G)$ such that $C_{G}\left(\Omega_{1}(Z(P))\right)=P$. Then $J(P) \unlhd G$.

Definition 4.8. Let G be a group and $H \leq G$. Then H is a p-central subgroup of G is there exists $P \in \operatorname{Syl}_{p}(G)$ such that $H \leq Z(P)$. We write H p-central $\leq G$.

5 Burnsides $p^{a} q^{b}$ Theorem

We now have all the group theoretical tools needed to begin our proof of Burnside's Theorem.

Theorem 5.1 (Burnside's Theorem). Let G be a group such that $|G|=p^{a} q^{b}$. Then G is solvable.

Proof. Assume the theorem is false and let G be a minimal counterexample. We to prove the following about G,

1. G is simple.

Assume not. There exists $1 \neq N \unlhd G$ and $N \neq G$. Then $\frac{G}{N}$ is a group such that $\left|\frac{G}{N}\right|<|G|$ and N is a group such that $|N|<|G|$ and they are both $p q$ groups. Hence, by the minimality of G we get $\frac{G}{N}$ and N are solvable and so by Theorem 2.3, G is solvable, a contradiction. Thus, G is simple.
2. If M is a maximal subgroup of G then $F(M)$ is a p or q group.

Suppose $p||F(M)|$ and $q||F(M)|$. Let $Z=Z_{p} Z_{q}$ where $Z_{p}=\Omega_{1}\left(Z\left(O_{p}(M)\right)\right)$ and $Z_{q}=\Omega_{1}\left(Z\left(O_{q}(M)\right)\right)$. Then $Z_{p} \unlhd M$ and so $M \leq N_{G}\left(Z_{p}\right) \leq G$. By the maximality of M we get $M=N_{G}\left(Z_{p}\right)$ or $G=N_{G}\left(Z_{p}\right)$. If $G=N_{G}\left(Z_{p}\right)$ then we get $Z_{p} \unlhd G$, a contradiction since G is simple. Therefore, $M=N_{G}\left(Z_{p}\right)$ and similarly $M=N_{G}\left(Z_{q}\right)$. We claim that M is the unique maximal subgroup of G such that $Z \leq M$. Suppose $Z \leq H$ and H is a maximal subgroup of G. Then $O_{p}(M) \cap H \unlhd M \cap H$ is a q-group. But then,

$$
\begin{aligned}
O_{p}(M) \cap H & \leq O_{p}(M \cap H) \\
& =O_{p}\left(N_{G}\left(Z_{q}\right) \cap H\right) \\
& =O_{p}\left(N_{H}\left(Z_{q}\right)\right) \\
& \leq O_{p}(H) .
\end{aligned}
$$

Similarly, using $M=M_{G}\left(Z_{p}\right)$ we get $O_{q}(M) \cap H \leq O_{q}(H)$. Hence,

$$
\begin{aligned}
F(M) \cap H & =O_{p}(M) O_{q}(M) \cap H \\
& =\left(O_{p}(M) \cap H\right)\left(O_{q}(M) \cap H\right) \\
& \leq O_{p}(H) O_{q}(H) \\
& =F(H) .
\end{aligned}
$$

Thus, $F(M) \cap H \leq F(H)$. Now, $Z=Z_{q} Z_{q} \leq F(M) \cap H \leq F(H)$. Hence, by Sylow's Theorem $Z_{p} \leq O_{p}(H)$ and $Z_{q} \leq O_{q}(H)$. Now, $\left[Z_{p}, O_{q}(H)\right] \leq$ $\left[O_{p}(H), O_{q}(H)\right] \leq O_{p}(H) \cap O_{q}(H)=1$ and so $\left[Z_{p}, O_{q}(H)\right]=1$. Thus, $O_{q}(H) \leq$ $C_{G}\left(Z_{p}\right) \leq N_{G}\left(Z_{p}\right)=M$. Similarly, $O_{p}(H) \leq M$ and so $F(M)=O_{p}(H) O_{q}(H) \leq$ M. Since $Z_{p} \leq O_{p}(H)$ and $Z_{q} \leq O_{q}(H)$ we get $p||F(H)|$ and $q||F(H)|$. Similarly, since H is maximal subgroup, using $Z_{p}^{*}=\Omega_{1}\left(Z\left(O_{p}(H)\right)\right)$ and $Z_{q}^{*}=$ $\Omega_{1}\left(Z\left(O_{q}(H)\right)\right)$ we get $F(M) \cap M \leq F(M)$ and $F(M) \leq H$. But then $F(M)=$ $F(M) \cap H \leq F(H)=F(H) \cap M \leq F(M)$. Thus, $F(M)=F(H)$. Now since M and H are maximal and G is simple we get $M=N_{G}(F(M))=N_{G}(F(H))=H$. We claim M does not contain a Sylow p-subgroup of G. Let $M_{p} \in \operatorname{Syl}_{p}(M)$. If $M_{p} \in \operatorname{Syl}_{p}(G)$ then by Sylow's Theorem there exists $G_{q} \in \operatorname{Syl}_{q}(G)$ such that $O_{q}(M) \leq G_{q}$. Then $G=M_{p} G_{q}$. Now since $O_{q}(M) \unlhd M$ we get $1 \neq$ $O_{q}(M) \leq \bigcap_{x \in M_{p}} x G_{q} x^{-1}=\bigcap_{x \in G} x G_{q} x^{-1} \unlhd G$. Thus, $1 \neq \bigcap_{x \in G} x G_{q} x^{-1} \unlhd G$ but $\bigcap_{x \in G} x G_{q} x^{-1} \leq G_{q}<G$, a contradiction since G is simple. Hence, M does not contain a Sylow p-subgroup of G and similarly M does not contain a Sylow q-subgroup of G. Let $M_{p} \in \operatorname{Syl}_{p}(M)$. Then there exists $G_{p} \in \operatorname{Syl}_{p}(G)$ such that $M_{p}<G_{p}$. Since G is nilpotent, by Theorem 3.4, $M_{p}<N_{G_{p}}\left(M_{p}\right)$. Let $x \in N_{G_{p}}\left(M_{p}\right) \backslash M_{p}$. Since $Z_{p} \unlhd M$ is a p-group by Sylow's Theorem
$Z_{p} \leq M_{p}$. Hence, $Z_{p} \leq M_{p}=x M_{p} x^{-1} \leq x M x^{-1}$. Now since $Z_{q} \unlhd M$ we get $x Z_{q} x^{-1} \unlhd x M x^{-1}$. Since $Z\left(O_{p}(M)\right)$ is abelian we know $Z_{p}=\Omega_{1}\left(Z\left(O_{p}(M)\right)\right)$ is an elementary abelian p-group. From the action of Z_{p} and $x Z_{q} x^{-1}$, by Theorem 4.11, we get $x Z_{q} x^{-1}=\left\langle C_{x Z_{q} x^{-1}}(U) \mid U \leq Z_{p}, \frac{\left|Z_{p}\right|}{|U|}=p\right\rangle$. Let $U \leq Z_{p}$ such that $\frac{\left|Z_{p}\right|}{|U|}=p$. Since Z is abelian we get $Z_{p} \leq C_{G}(U)<G$. By the uniqueness of M we have $C_{G}(U) \leq M$. Thus, since $M C_{x Z_{q} x^{-1}}(U) \leq C_{G}(U)$ we get $x Z_{q} x^{-1} \leq M$. But then $Z_{q} \leq x^{-1} M x$. Hence, $Z=Z_{p} Z_{q} \leq x^{-1} M x$. Again by the uniqueness of M we get $M=x^{-1} M x$. Hence, $x \in N_{G}(M)$. But since M is maximal and G is simple we have $M=N_{G}(M)$. Thus, $x \in M$ and so $x \in M \cap G_{p}$. Now by Sylow's Theorem there exists $m \in M$ such that $G_{p} \cap M \leq m M_{p} m^{-1}$. Hence we get $M_{p} \leq G_{p} \cap M \leq m M_{p} m^{-1}$. and so $M_{p}=G_{p} \cap M$. Thus we get $x \in G_{p} \cap M=M_{p}$, a contradiction. Hence, $Z_{p} \cong \mathbb{Z}_{p}$ and $\{1\}$ is the only subgroup of Z_{p} with index p thus Z_{p} is cyclic. Similarly, $Z_{q} \cong \mathbb{Z}_{q}$ is cyclic. Since $Z_{p} \leq x M x^{-1}$ and $x Z_{q} x^{-1} \unlhd x M x^{-1}$ we know $H=Z_{p} x Z_{q} x^{-1}$ is a subgroup. Without loss of generality, $p>q$. Then $n_{p}=1$ and $n_{q}=1$. Hence, $Z_{p} \unlhd H$ and $x Z_{q} x^{-1} \unlhd H$. But then $\left[Z_{p}, x Z_{q} x^{-1}\right] \leq Z_{p} \cap x Z_{q} x^{-1}=1$. Thus, $x Z_{q} x^{-1} \leq C_{G}\left(Z_{p}\right) \leq N_{G}\left(Z_{p}\right)=M$ and so $x \in M_{p}$. Also, $Z_{p} \leq M_{p} \leq M$ so $x Z x^{-1}=x Z_{p} x^{-1} x Z_{q} x^{-1} \leq M$ or $Z=x^{-1} M x$ and $M=x^{-1} M x$. Thus, $x \in N_{G}(M)=M$, a contradiction.
3. Let M be a maximal subgroup of G then M cannot contain a p-central subgroup of G and a q-central subgroup of G.

By (2) we may assume $F(M)$ is a p-group. By Sylow's Theorem there exists $M_{p} \in \operatorname{Syl}_{p}(M)$ such that $F(M) \leq M_{p}$ and there exists $G_{p} \in \operatorname{Syl}_{p}(G)$ such that $M_{p} \leq G_{p}$. Thus, $F(M) \leq G_{p}$. If $C_{G}(F(M)) \not \leq M$ then $M<\left\langle C_{G}(F(M)), M\right\rangle \leq$
G. Hence, by the maximality of M we get $G=\left\langle C_{G}(F(M)), M\right\rangle$. But then $F(M) \unlhd\left\langle C_{G}(F(M)), M\right\rangle=G$, a contradiction since G is simple. Thus, $C_{G}(F(M)) \leq$ M and so $C_{G}(F(M))=C_{M}(F(M))$. Now, $Z\left(G_{p}\right) \leq C_{G}(F(M))=C_{M}(F(M)) \leq$ $F(M)$ by Theorem 3.9 since M is solvable. Hence, $Z\left(G_{p}\right) \leq M$ and $Z\left(G_{p}\right)$ is a p-central subgroup of G. Suppose $H \leq M$ such that H is a q-central subgroup of G. Then there exists $G_{q} \in \operatorname{Syl}_{q}(G)$ such that $H \leq Z\left(G_{q}\right)$. Then $G=G_{p} G_{q}$, $Z\left(G_{p}\right) \unlhd G_{p}, H \unlhd G_{q}$, and $\left\langle Z\left(G_{p}\right)^{H}\right\rangle \leq\left\langle F(M)^{H}\right\rangle \leq F(M)$ since $F(M) \unlhd M$ and $F(M)$ is a p-group. Hence $\left\langle Z\left(G_{p}\right)^{H}\right\rangle$ is a p-group. But then by Theorem 4.12 we get G is not simple, a contradiction.
4. A p-central subgroup of G cannot normalize a q-subgroup of G.

Suppose H is a p-central subgroup of G and $Q \leq G$ is a q-group such that $H \leq N_{G}(Q)$. By Sylow's Theorem, there exists $G_{q} \in \operatorname{Syl}_{q}(G)$ such that $Q \leq$ G_{q}. Since $N_{G}(Q)<G$ there exists a maximal subgroup M of G such that $N_{G}(Q) \leq M$. Now $Z\left(G_{q}\right) \leq C_{G}(Q) \leq N_{G}(Q) \leq M$. Also, $H \leq N_{G}(Q) \leq M$. But $Z\left(G_{q}\right)$ is a q-central subgroup of G and H is a p-central subgroup of G, which contradicts (3). Thus, a p-central subgroup of G cannot normalize a q-subgroup of G.
5. $|G|$ is odd.

Suppose not. Then, $2\left||G|\right.$ and so by Sylow's Theorem there exists $G_{2} \in$ $\operatorname{Syl}_{2}(G)$. Then by Theorem 3.2, $Z\left(G_{2}\right) \neq 1$. Hence, by Theorem 1.10, there exists $1 \neq x \in Z\left(G_{2}\right)$ such that $x^{2}=1$. Since G is simple we get $O_{2}(G)=1$. Hence $x \notin O_{2}(G)$. By Theorem 4.14, there exists $y \in G$ such that $x y x^{-1}=y^{-1}$ and $|y|$ is odd. Hence, we get $\langle x\rangle \leq N_{G}(\langle y\rangle)$. But $\langle x\rangle$ is a 2-central subgroup of G and $\langle y\rangle$ is a q-group, which contradicts (4). Therefore, $|G|$ is odd.
6. Let M be a maximal subgroup of G such that $F(M)$ is a p-group and $M_{p} \in$ $\operatorname{Syl}_{p}(M)$ such that $F(M) \leq M_{p}$. Then $J\left(M_{p}\right) \unlhd M$ and $M_{p} \in \operatorname{Syl}_{p}(G)$.

We want to show that $J\left(M_{p}\right) \unlhd M$. By Theorem 4.15 it is enough to show $C_{M}\left(\Omega_{1}\left(Z\left(M_{p}\right)\right)\right)=M_{p}$. Since $\Omega_{1}\left(Z\left(M_{p}\right)\right) \leq Z\left(M_{p}\right)$ we get $M_{p} \leq C_{M}\left(\Omega_{1}\left(Z\left(M_{p}\right)\right)\right)$. Let $G_{p} \in \operatorname{Syl}_{p}(G)$ such that $M_{p} \leq G_{p}$. Then $F(M) \leq M_{p} \leq G_{p}$. Thus,

$$
\begin{aligned}
Z\left(G_{p}\right) & \leq C_{G}(F(M)) \\
& =C_{M}(F(M)) \\
& \leq F(M) \quad \text { since } M \text { is solvable } \\
& \leq M_{p}
\end{aligned}
$$

Thus, $Z\left(G_{p}\right) \leq M_{p}$ and so $Z\left(G_{p}\right) \leq Z\left(M_{p}\right)$. Hence, $\Omega_{1}\left(Z\left(G_{p}\right)\right) \leq \Omega_{1}\left(Z\left(M_{p}\right)\right)$ and so $C_{M}\left(\Omega_{1}\left(Z\left(M_{p}\right)\right)\right) \leq C_{G}\left(\Omega_{1}\left(Z\left(G_{p}\right)\right)\right)$. But, by (4) $C_{G}\left(\Omega_{1}\left(Z\left(G_{p}\right)\right)\right)$ has no q-subgroups and so $C_{G}\left(\Omega_{1}\left(Z\left(G_{p}\right)\right)\right)$ is a p-group. Hence, $C_{M}\left(\Omega_{1}\left(Z\left(M_{p}\right)\right)\right)$ is a p-group. But $M_{p} \leq C_{M}\left(\Omega_{1}\left(Z\left(M_{p}\right)\right)\right)$ and $M_{p} \in \operatorname{Syl}_{p}(M)$. Hence, $M_{p}=$ $C_{M}\left(\Omega_{1}\left(Z\left(M_{p}\right)\right)\right)$ and so Theorem $4.15 J\left(M_{p}\right) \unlhd M$. If $M_{p}<G_{p}$ then since G_{p} is nilpotent, by Theorem 3.4, $M_{p}<N_{G_{p}}\left(M_{p}\right)=H$. Now, $M_{p} \unlhd H$. If $H \leq M$ then $H \leq G_{p} \cap M$. But $G_{p} \cap M=M_{p}$ and so we get $H \leq M_{p}$, a contradiction. Thus, $H \not 又 M . \mathrm{Bu}$ then $M<\langle M, H\rangle \leq G$ and so $G=\langle M, H\rangle$ by the maximality of M. Now, $J\left(M_{p}\right) \unlhd M$. also $M_{p} \unlhd H$ we get $J\left(M_{p}\right) \unlhd H$. Hence, $J\left(M_{p}\right) \unlhd\langle M, H\rangle$, a contradiction, since G is simple. Thus, $M_{p}=G_{p} \in \operatorname{Syl}_{p}(G)$.

Let

$$
C_{p}=\{M \mid M \text { is a maximal subgroup of } \mathrm{G} \text { and } F(M) \text { is a } p \text {-group }\}
$$

and

$$
C_{q}=\{M \mid M \text { is a maximal subgroup of } \mathrm{G} \text { and } F(M) \text { is a } q \text {-group }\}
$$

Let $M_{1}, M_{2} \in C_{p}$ and $P_{1} \in \operatorname{Syl}_{p}\left(M_{1}\right)$ and $P_{2} \in \operatorname{Syl}_{p}\left(M_{2}\right)$. By (6) $P_{1}, P_{2} \in \operatorname{Syl}_{p}(G)$. By Sylow's Theorem there exists $g \in G$ such that $g P_{1} g^{-1}=P_{2}$. If $g M_{1} g^{-1} \neq M_{2}$ then $M_{2}<\left\langle g M_{1} g^{-1}, M_{2}\right\rangle \leq G$. Hence we get $G=\left\langle g M_{1} g^{-1}, M_{2}\right\rangle$ since M_{2} is maximal. By (6) we know $J\left(P_{2}\right)=J\left(g P_{1} g^{-1}\right) \unlhd\left\langle g M_{1} g^{-1}, M_{2}\right\rangle=G$, a contradiction since G is simple. Thus, $g M_{1} g^{-1}=M_{2}$ and so G acts transitively on C_{p} by conjugation. Similarly, G acts transitively on C_{q} by conjugation. Let $M_{1}, M_{2} \in C_{p}$ such that $\left|M_{1} \cap M_{2}\right|_{p}$ is maximal. If $\left|M_{1} \cap M_{2}\right|_{p} \neq 1$ then let $P \in \operatorname{Syl}_{p}\left(M_{1} \cap M_{2}\right)$. If $P \in \operatorname{Syl}_{p}\left(M_{1}\right)$ then, by (6), we get $P \in \operatorname{Syl}_{p}(G)$. Hence, since $P \leq M_{2}$ we get $P \in \operatorname{Syl}_{p}\left(M_{2}\right)$. Now, by (6), we get $J(P) \unlhd\left\langle M_{1}, M_{2}\right\rangle=G$, a contradiction since G is simple. Hence, $P \notin \operatorname{Syl}_{p}\left(M_{1}\right)$ and similarly $P \notin \operatorname{Syl}_{p}\left(M_{2}\right)$. Therefore, $P<N_{M_{1}}(P) \leq N_{G}(P)$ and $P<N_{M_{2}}(P) \leq N_{G}(P)$. Since $N_{G}(P)<G$, there exists a maximal subgroup R of G such that $N_{G}(P) \leq R$. If $F(R)$ is a q-group let $G_{p} \in \operatorname{Syl}_{p}(G)$ such that $P \leq G_{p}$. Then, $Z\left(G_{p}\right) \leq C_{G}(P) \leq N_{G}(P) \leq R$ and $F(R) \unlhd R$. Hence $Z\left(G_{p}\right) \leq N_{G}(F(R))$, but $Z\left(G_{p}\right)$ is a p-central subgroup of G and $F(R)$ is a q-group, a contradiction of (4).

Thus, $F(R)$ is a p-group and $R \in C_{p}$. Now

$$
\begin{aligned}
\left|M_{1} \cap R\right|_{p} & \geq\left|M_{1} \cap N_{G}(P)\right|_{p} \\
& =\left|N_{M_{1}}(P)\right|_{p} \\
& >|P| \\
& =\left|M_{1} \cap M_{2}\right|_{p} .
\end{aligned}
$$

Hence, by the maximality of $\left|M_{1} \cap M_{2}\right|_{p}$ we get $R=M_{1}$. Also, similarly $R=M_{2}$. Thus, $M_{1}=R=M_{2}$, a contradiction since M_{1} and M_{2} are distinct. Therefore, $\left|M_{1} \cap M_{2}\right|_{p}=1$ and similarly $\left|H_{1} \cap H_{2}\right|_{q}=1$ for all $H_{1}, H_{2} \in C_{q}$. Suppose $p^{a}>q^{b}$. Let $M_{1}, M_{2} \in C_{p}$ be distinct and $P_{1} \in \operatorname{Syl}_{p}\left(M_{1}\right)$ and $P_{2} \in \operatorname{Syl}_{p}\left(M_{2}\right)$. Then $P_{1} \cap P_{2} \leq$ $M_{1} \cap M_{2}$ is a p-group and $\left|M_{1} \cap M_{2}\right|_{p}=1$. Hence $\left|P_{1} \cap P_{2}\right|=1$. But then we get

$$
\begin{aligned}
p^{a} q^{b} & =|G| \\
& \geq\left|P_{1} P_{2}\right| \\
& =\frac{\left|P_{1}\right|\left|P_{2}\right|}{\left|P_{1} \cap P_{2}\right|} \\
& =\frac{p^{a} p^{a}}{1} \\
& =p^{2 a} \\
& >p^{a} q^{b}
\end{aligned}
$$

a contradiction. Similarly, we get a contradiction if $q^{b}>p^{a}$. Therefore, G is solvable.

References

[1] Bender, Helmut: A Group Theoretic Proof of Burnside's $p^{a} q^{b}$ Theorem. Math. Z. 126, (1972), 327-338.
[2] Burnside, William: On Groups of Order $p^{a} q^{b}$. Proc. London Math Soc. (1904), 2, 388-391.
[3] Goldschmidt, David: A Group Theoretic Proof of the $p^{a} q^{b}$ Theorem for Odd Primes. Math. Z. 113, (1970), 373-375.
[4] Matsuyama, Hiroshi: Solvability of Groups of Order $2^{a} p^{b}$. Osaka J. Math. 10, (1973), 375-378.
[5] Papantonopoulou, Aligli: Algebra Pure and Applied. Prentice-Hall, (2002).

