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ABSTRACT

In 1904, George Burnside [2] proved that any group G with |G| = paqb where p

and q are primes and a and b are positive integers is solvable. Burnside accomplished

this through the use of character theory, i.e., the interaction between a group and a

vector space.

Since then, group theorists began to try to prove this theorem without the use of

character theory. They wanted a proof that relied only on group theoretical principles.

This was finally achieved in 1972 by Helmut Bender [1].

However, in 1970, David M. Goldschmidt [3] supplied a group theoretic proof of

Burnside’s Theorem but only when the order of the group, G, was odd. Then in 1972,

Hiroshi Matsuyama [4] supplied a group theoretic proof of Burnside’s Theorem when

the order of the group, G, was even. Ironically, Bender’s and Matsuyama’s results

occurred independently and simultaneously. Therefore, both papers were published

even though Bender’s proof was more general.

The goal of this paper is to present the background knowledge and the more

general proof of Burnside’s Theorem.
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1 Preliminaries

In this section, we will introduce some background concepts and ideas. These

ideas will build up the tools needed for the proof of Burnside’s Theorem. We begin

by introducing the idea of a group.

Definition 1.1. A group is a nonempty set G along with a binary operation ∗ such

that

1. (closure): a ∗ b ∈ G for all a, b ∈ G;

2. (associativity): (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G;

3. (identity): there exists e ∈ G such that e ∗ a = a ∗ e = a for all a ∈ G;

4. (inverse): for all a ∈ G there exists b ∈ G such that a ∗ b = b ∗ a = e.

Definition 1.2. Let (G, ∗) be a group. A subset H ⊆ G is called a subgroup of G

if (H, ∗) is a group. We write H ≤ G.

Theorem 1.1 (Subgroup Test). Let G be a group and ∅ �= H ⊆ G. Then H ≤ G if

and only if ab−1 ∈ H for all a, b ∈ H.

Definition 1.3. Let G be group, a ∈ G, and H ≤ G. Then the following are subgroups

of G:

1. Z(G) = {g ∈ G | gx = xg for all x ∈ G}. We call this the center of G.

2. 〈a〉 = {an | n ∈ Z}. We call this the cyclic subgroup generated by a.

3. CG(a) = {g ∈ G | ag = ga}. We call this the centralizer of a.

4. NG(H) = {g ∈ G | gHg−1 ∈ H}. We call this the normalizer of H.
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Definition 1.4. Let G be a group, H ≤ G and g ∈ G. The left coset of H in G

containing g is

gH = {gh | h ∈ H}.

Theorem 1.2. Let G be a group, H ≤ G, and a, b ∈ G. Then aH = bH if and only

if b−1a ∈ H.

Definition 1.5. Let G1 and G2 be groups and φ : G1 → G2. Then φ is a homomor-

phism if

φ(ab) = φ(a)φ(b) for all a, b ∈ G.

If, in addition, φ is 1-1 and onto, we call φ an isomorphism and we write G1
∼= G2.

Theorem 1.3. Let G1, G2 be groups and φ : G1 → G2 be a homomorphism. Define

the kernel of φ by

kern φ = {g ∈ G1 | φ(g) = 1}.

Then kern φ ≤ G1.

Definition 1.6. Let G be a group and H ≤ G. Then H is a normal subgroup of

G if ghg−1 ∈ H for all g ∈ G and for all h ∈ H. We write H �G.

Theorem 1.4. Let G be a group and H �G. Define

G

H
= {gH | g ∈ G}.

Then G
H is a group under the operation

aHbH = abH for all aH, bH ∈ G

H
.
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We call G
H the quotient group.

Lemma 1.1. Let G be a group. Then G
{1} ∼= G.

Proof. Define φ : G → G
{1} by φ(g) = g{1} for all g ∈ G. We want to show that φ is

a homomorphism. Let a, b ∈ G. Then

φ(ab) = ab{1}

= a{1}b{1}

= φ(a)φ(b).

Thus, φ is a homomorphism. We want to show that φ is onto. Let g{1} ∈ G
{1} . Then

g ∈ G and φ(g) = g{1}. Thus, φ is onto. We want to show that φ is 1-1. Suppose

a, b ∈ G such that φ(a) = φ(b). Then a{1} = b{1} or b−1a ∈ {1}. So b−1a = 1 or

a = b. Thus, φ is 1-1. Therefore, φ is an isomorphism and so G
{1} ∼= G.

Lemma 1.2. Let G be a group and H ≤ G such that
|G|
|H| = 2 then H �G.

Proof. Let g ∈ G and h ∈ H. We want to show that ghg−1 ∈ H. If g ∈ H then

ghg−1 ∈ H since H ≤ G. If g �∈ H then gH �= 1H. Then since
|G|
|H| = 2 we get

G = 1H ∪ gH. Now ghg−1 ∈ G and so ghg−1 ∈ 1H or ghg−1 ∈ gH. If ghg−1 ∈ gH

then there exists h1 ∈ H such that ghg−1 = gh1. Then hg−1 = h1 or g = h−11 h ∈ H,

which contradicts g �∈ H. Therefore ghg−1 ∈ 1H = H and so H �G.

Theorem 1.5 (1st Isomorphism Theorem). Let G1, G2 be groups and φ : G1 → G2

be a homomorphism. Then

G1

kern φ
∼= φ(G1).
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Proof. Let K = kern φ. Define θ : G1
K → φ(G1) by θ(aK) = φ(a) for all aK ∈ G1

K .

We want to show that θ is a homomorphism. Let aK, bK ∈ G1
K . Then

θ(aKbK) = θ(abK)

= φ(ab)

= φ(a)φ(b)

= θ(aK)θ(bK)

and so θ is a homomorphism. We want to show that θ is 1-1. Let aK, bK ∈ G1
K such

that θ(aK) = θ(bK). Then φ(a) = φ(b) or φ(b)−1φ(a) = 1. Thus, φ(b−1)φ(a) = 1 or

φ(b−1a) = 1. Hence b−1a ∈ kern φ = K. Thus, aK = bK and so θ is 1-1. We want to

show that θ is onto. Let φ(x) ∈ φ(G1) where x ∈ G1. Then xK ∈ G1
K and θ(xK) =

φ(x). Hence, θ is onto and so θ is an isomorphism. Therefore, G1
kern φ

∼= φ(G1).

Theorem 1.6 (2nd Isomorphism Theorem). Let G be a group, N � G, and H ≤ G.

Then

HN

N
∼= H

H ∩N
.

Proof. Define φ : H → HN
N by φ(h) = hN for all h ∈ H. We want to show that φ is

a homomorphism. Let a, b ∈ H. Then

φ(ab) = abN

= aNbN

= φ(a)φ(b)
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and so φ is a homomorphism. We want to show that φ is onto. Let hnN ∈ HN
N .

Then

φ(h) = hN

= hnN as (hn)−1h = n−1 ∈ N

and so φ is onto. We claim that the kern φ = H ∩N . Now,

h ∈ kern φ ⇔ φ(h) = 1N ⇔ hN = 1N ⇔ 1−1h ∈ N ⇔ h ∈ N ⇔ h ∈ H ∩N.

Thus, kern φ = H ∩ N . By Theorem 1.5, H
kern φ

∼= φ(H). Thus, H
H ∩N

∼= φ(H)

and, since φ is onto, we get H
H ∩N

∼= HN
N .

Theorem 1.7 (3rd Isomorphism Theorem). Let G be a group, N � G, H � G such

that N ≤ H. Then

G/N

H/N
∼= G

H
.

Proof. Define φ : G
N → G

H by φ(gN) = gH for all gN ∈ G
N . We want to show that φ

is well-defined. Let aN, bN ∈ G
N such that aN = bN . Then a = a1 ∈ aN = bN and

so there exists n ∈ N such that a = bn. Then

φ(aN) = aH

= bnH

= bH

= φ(bN)
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and so φ is well-defined. We want to show that φ is a homomorphism. Let aN, bN ∈
G
N . Then

φ(aNbN) = φ(abN)

= abH

= aHbH

= φ(aN)φ(bN)

and so φ is a homomorphism. We want to show that φ is onto. Let gH ∈ G
H . Then

gN ∈ G
N and φ(gN) = gH. Thus, φ is onto. We claim that the kern φ = H

N . Then,

gN ∈ kern φ ⇔ φ(gN) = 1H ⇔ gH = 1H ⇔ g ∈ H ⇔ gN ∈ H

N
.

Thus, kern φ = H
N . By Theorem 1.5,

G/N
kern φ

∼= φ(G/N) or
G/N
H/N

∼= φ(G/N) and,

since φ is onto, we get
G/N
H/N

∼= G
H .

Theorem 1.8. Let G be a group and N �G. Define φ : G → G
N by φ(g) = gN for

all g ∈ G. We call φ the natural map. The following are true:

1. φ is a homomorphism

2. kern φ = N

3. If H ≤ G, then φ(H) = HN
N

4. If H ≤ G, then φ−1
(
HN
N

)
= HN

5. If L ≤ G
N , then L = K

N where N ≤ K ≤ G
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Proof. For (1), let a, b ∈ G. Then

φ(ab) = abN

= aNbN

= φ(a)φ(b).

Thus, φ is a homomorphism. For (2), let n ∈ kern φ. Then,

n ∈ kern φ ⇔ φ(n) = 1N ⇔ nN = 1N ⇔ 1−1n ∈ N ⇔ n ∈ N.

Thus, kern φ = N . For (3), φ(H) ⊆ HN
N . Let h ∈ H,n ∈ N , and φ(h) ∈ φ(H).

Then

φ(h) = hN

= h1N

∈ HN

N
.

Hence, φ(H) ⊆ HN
N . Next, HN

N ⊆ φ(H). Let hnN ∈ HN
N . Then

φ(h) = hN

= hnN as h−1hn ∈ N.

Hence, hnN ∈ φ(H) and so HN
N ⊆ φ(H). Therefore, φ(H) = HN

N . For (4),
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HN ⊆ φ−1
(
HN
N

)
. Let hn ∈ HN . Then

φ(hn) = hnN

∈ HN

N
.

Thus, hn ∈ φ−1
(
HN
N

)
and HN ⊆ φ−1

(
HN
N

)
. Next, we want to show that

φ−1
(
HN
N

)
⊆ HN . Let g ∈ φ−1

(
HN
N

)
. Then φ(g) ∈ HN

N or gN ∈ HN
N . Thus,

there exists h ∈ H and n ∈ N such that gN = hnN . Then g = g1 ∈ gN = hnN and

so there exists n1 ∈ N such that g = hnn1 ∈ HN . Thus, φ−1
(
HN
N

)
⊆ HN and so

φ−1
(
HN
N

)
= HN . For (5), we know φ−1(L) ≤ G. If n ∈ N then φ(n) = 1N ∈ L

and so n ∈ φ−1(L). Thus N ≤ φ−1(L). We claim that
φ−1(L)

N = L. Let gN ∈ L.

Then φ(g) ∈ L and so g ∈ φ−1(L). Hence, gN ∈ φ−1(L)
N and so L ≤ φ−1(L)

N . Let

xN ∈ φ−1(L)
N . Then x ∈ φ−1(L) and so φ(x) ∈ L. But φ(x) = xN and so xN ∈ L.

Thus,
φ−1(L)

N ≤ L and so L =
φ−1(L)

N .

Theorem 1.9. Let G be any group and S ⊆ G. Define

〈S〉 = {sn1
1 sn2

2 · · · snk
k | si ∈ S, ni ∈ Z, for all 1 ≤ i ≤ k, k ∈ Z

+}.

Then 〈S〉 ≤ G and is called the subgroup generated by S.

Proof. Let s ∈ S. Then s = s1 ∈ 〈S〉 and so 〈S〉 �= ∅. Let

sn1
1 sn2

2 · · · snk
k , rm1

1 rm2
2 · · · rnl

l ∈ 〈S〉
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where si ∈ S and ri ∈ S for all i and ni ∈ Z and mi ∈ Z for all i and k, l ∈ Z
+. Then

(sn1
1 sn2

2 · · · snk
k )(rm1

1 rm2
2 · · · rnl

l )−1 = sn1
1 sn2

2 · · · snk
k r−ml

l r
−ml−1

l−1 · · · r−m1

∈ 〈S〉.

Hence 〈S〉 ≤ G by the Subgroup Test.

Definition 1.7. Let G be a group, a, b ∈ G, H ≤ G, and K ≤ G. Then

1. [a, b] = aba−1b−1 is called the commutator of a and b

2. [H,K] = 〈{[h, k] | h ∈ H and k ∈ K}〉 is called the commutator subgroup

generated by H and K

3. G′ = 〈{[a, b] | a, b ∈ G}〉 is called the commutator subgroup of G

Lemma 1.3. Let G be a group, N �G, H ≤ G, and a, b ∈ G. Then

1. [a, b] = 1 if and only if ab = ba

2. G′ �G

3. G
G′

is abelian

4. G
N is abelian if and only if G′ ≤ N

5. If G′ ≤ H then H �G

Proof. For (1),

[a, b] = 1 ⇔ aba−1b−1 = 1 ⇔ ab = ba.
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For (2), let x ∈ G′ and g ∈ G. Then, x =
k∏

i=1

[ai, bi] and so

gxg−1 = g(
k∏

i=1

[ai, bi])g
−1

=
k∏

i=1

g[ai, bi]g
−1

=
k∏

i=1

[gaig
−1, gbig−1]

∈ G′

and so G′ �G. For (3), let aG′, bG′ ∈ G
G′

. Then,

[aG′, bG′] = [a, b]G′

= 1G′ as 1−1[a, b] = [a, b] ∈ G′.

Therefore, G
G′

is abelian. For (4),

G

N
is abelian ⇔ [aN, bN ] = 1N for all a, b ∈ G

⇔ [a, b]N = 1N ⇔ [a, b] ∈ N ⇔ G′ ≤ N sinceN ≤ G.

For (5), let g ∈ G and h ∈ H. Then [h−1, g] ∈ G′ ≤ H and so [h−1, g] ∈ H. Let

[h−1, g] = h1 where h1 ∈ H. Then h−1g(h−1)−1g−1 = h1. Thus, h−1ghg−1 = h1

implying ghg−1 = hh1 ∈ H. Therefore, H �G.
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Definition 1.8. Let G be a group and p a prime. Then G is called a p-group if

|G| = pr for some r ∈ Z
+ ∪ {0}.

Lemma 1.4. Let G be a group and H �G. Then Z(H)�G.

Theorem 1.10 (Cauchy’s Theorem for Abelian Groups). Let G be abelian and p be

a prime such that p | |G|. Then G has an element of order p.

Definition 1.9. The group consisting of the set Sn of all permutations on A =

{1, 2, . . . , n}, under the operation of permutation multiplication is called the sym-

metric group of degree n.

Definition 1.10. Let G be a group and S �= {} be a set. Then G acts on S if there

exists a homomorphism φ : G → Sym(S).

Definition 1.11. Let G be a group, S be a set, and a ∈ S. The orbit of S con-

taining a is

Ga = {ga | g ∈ G}.

Definition 1.12. A group G acts transitively on a set S, if there is only one orbit;

i.e., S = Ga for all a ∈ S; i.e., for all c, d ∈ S there exists g ∈ G such that cg = d.

Definition 1.13. Let G be a group, p be a prime, and n ∈ Z
+∪{0} such that pn | |G|

but pn+1 � | |G|. Then

1. |G|p = pn is called the pth part of G.

2. A subgroup H ≤ G is called a sylow p-subgroup if |H| = |G|p.

3. Sylp(G) is the set of all sylow p-subgroups of G.
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Theorem 1.11 (Sylow’s Theorem). Let G be a group, p be any prime, H ≤ G be a

p-group, and np = |Sylp(G)|. Then

1. Sylp(G) �= {}

2. There exists P ∈ Sylp(G) such that H ≤ P . Moreover, G acts transitively on

Sylp(G) by conjugation

3. np | |G| and np ≡ 1(mod p).

2 Solvable Groups

We next need to introduce what it means for a group to be solvable and will

discover some important properties about solvability.

Definition 2.1. A group G is solvable if there exists a subnormal series

G = G0 �G1 �G2 � · · ·�Gn = 1

such that Gi
Gi+1

is abelian for all 0 ≤ i ≤ n− 1.

Example 2.1. S3 is a solvable group.

Proof. Consider the subnormal series

S3 � A3 � 1.

Now,
∣∣∣S3
A3

∣∣∣ = |S3|
|A3| =

6
3 = 2 and so S3

A3

∼= Z2 is abelian. Next,

∣∣∣∣ A3

{1}
∣∣∣∣ = |A3|

|{1}| = 3 and

so A3

{1} ∼= Z3 is abelian. Therefore S3 is solvable.

12



Lemma 2.1. Let G be an abelian group. Then G is solvable.

Proof. Consider the subnormal series

G = G0 � 1.

Then by Lemma 1.1 we know G
{1} ∼= G. Since G is abelian, G

{1} is abelian and so G

is solvable.

Example 2.2. The abelian groups Zn and Za × Zb × · · · × Zc are solvable groups by

Lemma 2.1.

Lemma 2.2. Let G be solvable and H ≤ G. Then H is solvable.

Proof. Since G is solvable we know there exists a subnormal series

G = G0 �G1 �G2 � · · ·�Gn = 1

such that Gi
Gi+1

is abelian. Consider the series

H = H0 ≥ H ∩G1 ≥ H ∩G2 ≥ · · · ≥ H ∩Gn = 1.

We want to show that H ∩Gi+1 �H ∩Gi. Let x ∈ H ∩Gi+1 and g ∈ H ∩Gi. Then

gxg−1 ∈ Gi+1 since x ∈ Gi+1 and Gi+1�Gi. Also, gxg
−1 ∈ H since g ∈ H and x ∈ H.

Thus, gxg−1 ∈ H ∩Gi+1. Hence H ∩Gi+1 �H ∩Gi for all 0 ≤ i ≤ n− 1. Therefore,
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H = H0 �H ∩G1 �H ∩G2 � · · ·�H ∩Gn = 1 is a subnormal series. Now

H ∩Gi

H ∩Gi+1

=
H ∩Gi

H ∩Gi ∩Gi+1

∼= (H ∩Gi)Gi+1

Gi+1

by 2nd Isomorphism Theorem

≤ Gi

Gi+1

.

Since Gi
Gi+1

is abelian we get H ∩Gi
H ∩Gi+1

is abelian for all 0 ≤ i ≤ n − 1. Thus H is

solvable.

Lemma 2.3. Let G be solvable and N �G. Then G
N is solvable.

Proof. Since G is solvable we know there exists a subnormal series

G = G0 �G1 �G2 � · · ·�Gn = 1

such that Gi
Gi+1

is abelian for all 0 ≤ i ≤ n− 1. Taking the image of this series under

the natural map we get

G

N
=

G0

N
≥ G1N

N
≥ G2N

N
≥ · · · ≥ GnN

N
= 1N.
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We claim that
Gi+1N
N � GiN

N . Let gi+1n1N ∈ Gi+1N
N and gin2N ∈ GiN

N . Then

(gin2N)(gi+1n1N)(gin2N)−1 = (gin2N)(gi+1n1N)(n−12 g−1i N)

= gin2gi+1n1n
−1
2 g−1i N

= gin2g
−1
i gigi+1g

−1
i gin1n

−1
2 g−1i N

= gin2g
−1
i gigi+1g

−1
i N since gin1n

−1
2 g−1i ∈ N

∈ Gi+1N

N
since gin2g

−1
i ∈ Gi+1 and gigi+1g

−1
i ∈ N

Thus,

G

N
=

G0

N
� G1N

N
� G2N

N
� · · ·� GnN

N
= 1N

is a subnormal series. Then

GiN/N

Gi+1N/N
∼= GiN

Gi+1N
by 3rd Isomorphism Theorem

=
GiGi+1N

Gi+1N

∼= Gi

GI ∩Gi+1N
by 2nd Isomorphism Theorem

∼= Gi/Gi+1

GI ∩Gi+!N/Gi+1

by 3rd Isomorphism Theorem

Since quotients of abelian groups are abelian, we get
GiN/N
Gi+1N/N

is abelian for all

0 ≤ i ≤ n− 1. Therefore, G
N is solvable.

Theorem 2.1. Let G be a p-group. Then G is solvable.

Proof. Use induction on |G|. If |G| = 1 then G = {1} is abelian and therefore

solvable. Assume the theorem holds for all p-groups of order less than |G|. Without

15



loss of generality, G �= 1. Since G is a p-group we know Z(G) �= 1. Then

∣∣∣∣ G
Z(G)

∣∣∣∣ =
|G|

|Z(G)| < |G| and G
Z(G)

is a p-group. Thus G
Z(G)

is solvable by induction and so

there exists a subnormal series

G

Z(G)
=

G0

Z(G)
� G1

Z(G)
� · · ·� Gn

Z(G)
= Z(G)

such that
Gi/Z(G)
Gi+1/Z(G)

is abelian for all 0 ≤ i ≤ n − 1. Taking the pre-image of this

series under the natural map we get

G = G0 �G1 � · · ·� Z(G)� 1.

Then Gi
Gi+1

∼= Gi/Z(G)
Gi+1/Z(G)

is abelian by the 3rd Isomorphism Theorem and
Z(G)
{1} ∼=

Z(G) which is abelian. Therefore, G is solvable and every p-group is solvable by

induction.

Definition 2.2. Let G be a group. Define the derived series of G by

G(0) = G,G(1) = (G(0))′ = G′, G(2) = (G(1))′ = G′′

and inductively define

G(n) = (G(n−1))′.

By Lemma 1.3 we have a subnormal series

G = G(0) �G(1) �G(2) �G(3) � · · ·

16



Theorem 2.2. Let G be a group. Then G is solvable if and only if there exists n ∈ Z
+

such that G(n) = 1.

Proof. (⇐) Suppose there exists n ∈ Z
+ such that G(n) = 1. Consider the derived

series

G = G(0) �G(1) �G(2) � · · ·�G(n) = 1

Then G(i)

G(i+1) =
G(i)

(G(i))′
is abelian by Lemma 1.3 for all 0 ≤ i ≤ n− 1. Therefore, G is

solvable. (⇒) Suppose G is solvable. Then there exists a subnormal series

G = G0 �G1 �G2 � · · ·�Gn = 1

such that Gi
Gi+1

is abelian. We claim that G(i) ≤ Gi. Use induction on i. If i = 0 then

G(0) = G ≤ G = G0. Suppose G(i) ≤ Gi. We want to show G(i+1) ≤ Gi+1. Now

G(i+1) = (G(i))′

≤ (Gi)
′ by induction hypothesis

≤ Gi+1 since
Gi

Gi+1

is abelian and by Lemma 1.3

Thus, the claim holds. Hence G(n) ≤ Gn = 1 and so G(n) = 1.

Theorem 2.3. Let G be a group and H �G such that H and G
H are solvable. Then

G is solvable.

Proof. SinceH and G
H are solvable then there existm,n ∈ Z

+ such thatH(m) = 1 and(
G
H

)(n)

= 1H. Then G(n)H
H = 1H by the claim in Lemma 2.3. Let ahH ∈ G(n)H

H

where a ∈ G(n) and h ∈ H. Then ahH = 1H and so, by Theorem 1.2, 1−1ah = ah ∈ H

17



and so there exists h1 ∈ H such that ah = h1 or a = h1h
−1 ∈ H. Thus, G(n) ≤ H.

Now by the claim in Lemma 2.3 we get G(n+m) = (G(n))(m) ≤ H(m) = 1. Thus,

G(n+m) = 1 and so G is solvable.

Definition 2.3. Let G be a group and φ : G → G be a map. Then φ is an automor-

phism if φ is 1-1, onto, and a homomorphism. Let

Aut(G) = {φ | φ is an automorphism}.

Definition 2.4. Let G be a group and H ≤ G. Then H is a characteristic sub-

group of G if φ(H) ≤ H for all φ ∈ Aut(G). We write H char G.

Lemma 2.4. Let G be a group, H ≤ G, and K ≤ G such that H char K and K char

G. Then H char G.

Proof. Let φ ∈ Aut(G). Since K char G we know φ(K) ≤ K. If x, y ∈ K such that

φ(x) = φ(y) then since φ is 1-1 we get x = y. Thus, |φ(K)| = |K| and so φ(K) = K.

But then φ|K ∈ Aut(K) since H char K we get φ|K(H) ≤ H and so φ(H) ≤ H. Thus,

H char G.

Lemma 2.5. Let G be a group, H ≤ G, and K ≤ G such that H char K and K�G.

Then H �G.

Proof. Let g ∈ G and h ∈ H. We want to show that ghg−1 ∈ H. Define φg : K → K

by φg(k) = gkg−1 for all k ∈ K. First, we need to show that φg is a homomorphism.
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Let x, y ∈ K. Then,

φg(xy) = gxyg−1

= gxg−1gyg−1

= φg(x)φg(y).

Next, we need to show that φg is 1-1. If φg(x) = φg(y) then gxg−1 = gyg−1 implying

x = y. Finally, we need to show that φg is onto. Let x ∈ K. Since K � G we know

g−1xg = (g−1)x(g−1)−1 ∈ K and φg(g
−1xg) = g(g−1xg)g−1 = x. Thus, φg ∈ Aut(K).

Since H char K we get φg(h) ∈ H or gxg−1 ∈ H. Therefore, H �G.

Lemma 2.6. Z(G) char G.

Proof. Let φ ∈ Aut(G), z ∈ Z(G), and g ∈ G. We want to show that φ(z) ∈ Z(G).

Since φ ∈ Aut(G) there exists g1 ∈ G such that φ(g1) = g. Now,

φ(z)g = φ(z)φ(g1)

= φ(zg1) since φ ∈ Aut(G)

= φ(g1z) since z ∈ Z(G)

= φ(g1)φ(z)

= gφ(z).

Thus, φ(z) ∈ Z(G) and so Z(G) char G.
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Definition 2.5. A group G is characteristically simple if {1} and G are its only

characteristic subgroups.

Definition 2.6. Let G be a group and {Hi}ni=1 be a collection of subgroups of G. We

say G = H1 ×H2 × · · · ×Hn if

1. G =
n∏

i=1

Hi

2. Hi ∩
∏
j �=i

Hi = 1 for all 1 ≤ i ≤ n

3. Hi �G for all 1 ≤ i ≤ n

Theorem 2.4. Let G be a characteristically simple group. Then G = G1×G2×· · ·×
Gn where Gis are simple isomorphic groups.

Proof. Let 1 �= G1 �G such that |G| is minimal and H =
n∏

i=1

Gi such that

1. Gi
∼= G1 for all 1 ≤ i ≤ n

2. Gi �G for all 1 ≤ i ≤ n

3. Gi ∩
∏
j �=i

Gj = 1 for all 1 ≤ i ≤ n

4. n is maximal

Clearly, H �G since Gi �G for all 1 ≤ i ≤ n. If H is not a characteristic subgroup

of G then there exists φ ∈ Aut(G) and 1 ≤ i ≤ n such that φ(Gi) �≤ H. Since

Gi � G and φ ∈ Aut(G) we know φ(Gi) � G. Also φ(Gi) ∼= Gi
∼= G1 and so

φ(Gi) ∼= G1. Now H ∩ φ(Gi) � G and H ∩ φ(Gi) < φ(Gi). Thus, |H ∩ φ(Gi)| <
|φ(Gi)| = |Gi| = |G1|. Hence, H ∩ φ(Gi) = 1 by the minimality of |G1|. But then

φ(Gi) ∩
n∏

i=1

Gi = φ(Gi) ∩ H = 1. Therefore, the subgroups {G1, G2, · · · , Gn, φ(Gi)}
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satisfy (1), (2), and (3), a contradiction, since n is maximal. Therefore, H char G.

Since G is characteristically simple we get G = H =
n∏

i=1

Gi = G1 × G2 × · · · × Gn

where Gi’s are isomorphic groups. Suppose N �Gi for some 1 ≤ i ≤ n. If j �= i and

x ∈ Gi and y ∈ Gj then, xyx−1y−1 ∈ Gj ∩ Gi ≤ Gj ∩
n∏

i �=j

Gi = 1. Hence xy = yx.

Now let g1g2 · · · gn ∈ G where gi ∈ Gi for all 1 ≤ i ≤ n and n ∈ N . Then,

g1g2 · · · gnn(g1g2 · · · gn)−1 = g1g2 · · · gnng−1n g−1n−1 · · · g−11

= ging
−1
i

∈ N since N �Gi.

Thus, N �G. But, |N | < |Gi| = |G1|. Hence, N = 1 or N = Gi by the minimality of

|G1|. Therefore, each Gi is simple for all 1 ≤ i ≤ n.

Definition 2.7. Let G be a group and N ≤ G. Then N is a minimal normal

subgroup of G if

1. N �G

2. If there exists a L ≤ N such that L�G then L = 1 or L = N .

Definition 2.8. A group G is called an elementary abelian p-group if G ∼=
Zp × Zp × · · · × Zp where p is a prime.

Theorem 2.5. Let G be a group and N be a minimal normal subgroup of G. Then

N is an elementary abelian p-group for some prime p or N = N0 × N1 × · · · × Nn

where Nis are nonabelian simple isomorphic groups.
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Proof. If K char N , then by Lemma 2.5, since N�G we get K�G. But then, K = 1

or K = N since N is a minimal normal subgroup. Hence, N is characteristically

simple. Then, by Theorem 2.4, N = N1 × N2 × · · · × Nn where Ni’s are simple

isomorphic groups.

Case 1 Ni is nonabelian for all 0 ≤ i ≤ n. Then N = N1 ×N2 × · · · ×Nn and Nis are

nonabelian simple isomorphic groups.

Case 2 Nis are abelian for all 0 ≤ i ≤ n. Then Ni is simple and abelian for all

0 ≤ i ≤ n. Then the only subgroups of Ni are {1} and Ni for all 0 ≤ i ≤ n.

If Ni is not a p-group then there exists a prime q such that q | |Ni| and q �= p.

By Sylow’s Theorem there exists Q ∈ Sylq(Ni). Then Q ≤ Ni and Q �= 1 and

Q �= Ni. Thus, Ni is a p-group for some prime p. Let |Ni| = pn. If n > 1 then

by Cauchy’s Theorem for Abelian Groups, there exists 1 �= x ∈ Ni such that

xp = 1. Then, 〈x〉 ≤ Ni and |〈x〉| = p < |Ni|. Therefore, 〈x〉 �= 1 and 〈x〉 �= Ni.

Hence, n = 1 and |Ni| = p. Now we know that Ni is cyclic and so Ni
∼= Zp.

Thus, N ∼= Zp × Zp × · · · × Zp is an elementary abelian p-group.

Therefore, N is an elementary abelian p-group for some prime p or N = N0 × N1 ×
· · · ×Nn where Ni’s are nonabelian simple isomorphic groups.

Theorem 2.6. Let G be solvable and N be a minimal normal subgroup of G. Then

N is an elementary abelian p-group for some prime p.

Proof. By Theorem 2.5, N is an elementary abelian p-group for some prime p or

N = N1 × N2 × · · · × Nn such that Nis are simple nonabelian isomorphic groups.

Hence N1 is simple. Then the only subnormal series N1 has is N1 � 1 by simplicity.
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But, N1

{1} ∼= N is nonabelian. Therefore, N1 is not solvable. But, N1 ≤ G and G is

solvable, a contradiction. Thus, N is an elementary abelian p-group for some p.

3 Nilpotent Groups

We now introduce the idea of nilpotent groups. This allows us to explore

important properties of nilpotent groups and will let us build the structures of these

groups.

Definition 3.1. Let G is a group. Define the upper central series of G by

Z0(G) = 1, Z1(G) = Z(G),
Z2(G)

Z1(G)
= Z

(
G

Z1(G)

)
,
Z3(G)

Z2(G)
= Z

(
G

Z2(G)

)
, · · ·

and inductively define

Zn(G)

Zn−1(G)
= Z

(
G

Zn−1(G)

)
for all n ∈ Z

+.

Lemma 3.1. Let G be a group. Then Zi(G) � G for all i and Zi(G) ≤ Zi+1(G) for

all i.

Proof. Use induction on i. If i = 0, then Z0(G) = {1} � G. Assume Zn(G) � G.

Then
Zn+1(G)
Zn(G)

= Z

(
G

Zn(G)

)
� G
Zn(G)

and so taking pre-images we get Zn+1(G)�G.

Hence, Zi(G) ≤ Zi+1(G) for all i.

Definition 3.2. A group G is nilpotent if there exists n ∈ Z
+ ∪ {0} such that

G = Zn(G).
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Definition 3.3. Let G be a group. Define the lower central series of G by

K0(G) = G,K1(G) = [K0(G), G] = [G,G] = G′, K2(G) = [K1(G), G], · · ·

and inductively define

Kn(G) = [Kn−1, G].

Lemma 3.2. Let G be group. Then Ki(G) � G for all i and Ki+1(G) ≤ Ki(G) for

all i.

Proof. Use induction on i. If i = 0 then K0(G) = G�G. Suppose Ki(G)�G. Then,

since G � G we get Ki+1(G) = [Ki(G), G] � G as conjugation is a homomorphism.

Next, we know that Ki(G)�G. Thus, Ki+1(G) = [Ki(G), G] ≤ Ki(G) for all i.

Theorem 3.1. Let G be a group. Then G is nilpotent if and only if there exists

n ∈ Z
+ ∪ {0} such that Kn(G) = 1.

Proof. (⇒) Let G be nilpotent. Then there exists n ∈ Z
+∪{0} such that Zn(G) = G.

We claim that Ki(G) ≤ Zn−i(G) for all i. Use induction on i. If i = 0 then K0(G) =

G ≤ G = Zn(G) = Zn−0(G). Suppose Ki(G) ≤ Zn−i(G). Then,

Ki+1(G) = [Ki(G), G]

≤ [Zn−i(G), G] since Ki(G) ≤ Zn−i(G)

≤ Zn−i−1(G) since
Zn−i(G)

Zn−i−1(G)
= Z

(
G

Zn−i−1(G)

)

= Zn−(i+1)(G).

Thus, the claim hold by induction. But then, Kn(G) = Zn−n(G) = Z0(G) = 1 and
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so Kn(G) = 1. (⇐) Suppose there exists a n ∈ Z
+ ∪ {0} such that Kn(G) = 1. We

claim that Kn−i(G) ≤ Zi(G) for all i. Use induction on i. If i = 0 then Z0(G) = 1 ≥
1 = Kn(G) = Kn−0(G). Suppose Kn−i(G) ≤ Zi(G). Now, [Kn−i−1, G] = Kn−i(G) ≤
Zi(G). Hence,

Kn−i−1(G)Zi(G)
Zi(G)

≤ Z( G
Zi(G)

) =
Zi+1

Zi(G)
. Taking pre-images we get

Kn−i−1(G) ≤ Kn−i−1(G)Zi(G) ≤ Zi+1(G) or Kn−(i+1)(G) ≤ Zi+1(G). Thus, the claim

holds. But then, Zn(G) ≥ Kn−n(G) = K0(G) = G and so Zn(G) = G and so G is

nilpotent.

Lemma 3.3. Let G be a group, N�G, and H ≤ G such that N ≤ H. If HN ≤ Z
(
G
N

)

if and only if [G,H] ≤ N .

Proof. H
N ≤ Z

(
G
N

)
⇔ [hN, gN ] = N for all h ∈ H and for all g ∈ G. Then

hNgN(hN)−1(gN)−1 = N ⇔ hNgNh−1g−1 = N ⇔ hgh−1g−1N = N ⇔ [h, g] = N

⇔ [h, g] ∈ N ⇔ [G,H] ≤ N .

Theorem 3.2. Let G be nilpotent. Then Z(G) �= 1.

Proof. Suppose Z(G) = 1. Since G is nilpotent there exists n ∈ Z
+ ∪ {0} such that

Zn(G) = G. Notice Z1(G) = Z(G) = 1. Suppose Zi(G) = 1. Then

Zi+1(G)

Zi(G)
= Z

(
G

Zi

)
= Z

(
G

{1}
)

∼= Z(G) = 1.

Then,

∣∣∣∣Zi+1(G)
Zi(G)

∣∣∣∣ = 1 or
|Zi+1(G)|
|Zi(G)| = 1 and so |Zi+1(G)| = |Zi(G)|. But, Zi(G) ≤

Zi+1(G) and so Zi+1(G) = Zi(G) = 1. Thus, by induction Zi(G) = 1 for all i. But

then we get G = Zn(G) = 1, a contradiction. Therefore, Z(G) �= 1.
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Theorem 3.3. Let G be nilpotent and 1 �= H �G. Then H ∩ Z(G) �= 1.

Proof. Since G is nilpotent there exists n ∈ Z
+ such that Zn(G) = G. Define

H0 = H,H1 = [H0, G] = [H,G]

and inductively define

Hn = [Hn−1, G].

Since H �G we get H = H0 ≥ H1 ≥ H2 ≥ · · · . We claim that Hi ≤ Zn−i(G) for all

i. If i = 0 then H0 = H ≤ G = Zn(G) = Zn−0(G). Assume Hi ≤ Zn−i(G). Then,

HiZn−i−1(G)

Zn−i−1(G)
≤ Zn−i(G)

Zn−i−1(G)
= Z

(
G

Zn−i−1(G)

)
.

By Lemma 3.3, [HiZn−i−1(G), G] ≤ [Zn−i−1(G)]. Hence, [Hi, G] ≤ [HiZn−i−1(G), G] ≤
Zn−i−1(G). Thus, Hi+1 = [Hi, G] ≤ Zn−i−1(G) = Zn−(i+1)(G). Therefore, the claim

holds by induction. But thenHn = [Hn−1, G] ≤ Zn−n(G) = Z0(G) = 1 and soHn = 1.

Let 0 ≤ k ≤ n be minimal such that Hk = 1. Then Hk−1 �= 1 and 1 = Hk = [Hk−1, G]

and so 1 �= Hk−1 ≤ H ∩ Z(G).

Theorem 3.4. Let G be nilpotent and H ≤ G. Then H < NG(H).

Proof. SinceG is nilpotent there exists n ∈ Z
+ such that Zn(G) = G. Let i be minimal

such that Zi(G) �≤ H. Then Zi−1(G) ≤ H. Also, [H,Zi(G)] ≤ [G,Zi(G)] ≤ Zi−1(G)

since
Zi(G)
Zi−1(G)

= Z

(
G

Zi−1(G)

)
. Thus, [H,Zi(G)] ≤ H. Hence, Zi(G) ≤ NG(H) \H

and so H < NG(H).
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Definition 3.4. Let G be a group and M ≤ G. Then M is a maximal subgroup if

1. M �= G

2. whenever there exists H ≤ G such that M ≤ H ≤ G then H = M or H = G

Theorem 3.5. Let G be nilpotent and M be a maximal subgroup of G. Then M �G.

Proof. Since M is a maximal subgroup of G we know M < G. By Theorem 3.4,

M < NG(M) ≤ G. Hence G = NG(M) by the maximality of M . Therefore, M �G.

Lemma 3.4. Let G be a group, P ∈ Sylp(G), and N �G. Then P ∩N ∈ Sylp(N).

Lemma 3.5 (Frattini Argument). Let G be a group, N � G, P ∈ Sylp(G). Then,

G = NG(P ∩N)N .

Proof. Clearly, NG(P ∩ N)N ⊆ G since G is a group. Let g ∈ G. Since N � G and

P ∈ Sylp(G) by Lemma 3.4 P ∩N ∈ Sylp(N). Since N �G and P ∩N ≤ N we get

g−1P ∩ Ng ≤ g−1Ng = N . Now, |g−1(P ∩ N)g| = |P ∩ N | and so g−1(P ∩ N)g ∈
Sylp(N). By Sylow’s Theorem there exists n ∈ N such that ng−1(P∩N)gn−1 = P∩N .

Hence ng−1 ∈ NG(P ∩N) and so there exists x ∈ NG(P ∩N) such that ng−1 = x. But

then g = x−1n ∈ NG(P ∩N)N . Thus, G ⊆ NG(P ∩N)N . Hence G = NG(P ∩N)N .

Lemma 3.6. Let G be nilpotent and P ∈ Sylp(G) then P �G.

Proof. Suppose P is not normal in G. Then NG(P ) < G. Hence, there exists a

maximal subgroup M of G such that NG(P ) ≤ M . Since G is nilpotent, by Theorem

3.5, M �G. Now, P ≤ NG(P ) ≤ M and so P ≤ M . By Lemma 3.5,

G = NG(P ∩M)M = NG(P )M = M.
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Thus, G = M , a contradiction, since M is maximal. Hence, P �G.

Lemma 3.7. Let G be a group, H � G, K � G such that H and K are nilpotent.

Then HK �G and HK is nilpotent.

Proof. Use induction on |G|. Since H �G and K �G clearly HK �G. If HK < G

then H � HK and K � HK. Also, H and K are nilpotent. Thus, by induction

HK is nilpotent. We may assume G = HK. Since H is nilpotent by Theorem 3.2,

Z(H) �= 1. Let N = [Z(H), K].

Case 1 If N = 1. Then [Z(H), K] = 1. But also [H,Z(H)] = 1. Hence, [G,Z(H)] = 1

since G = HK. Thus 1 �= Z(H) ≤ Z(G). Thus, G
Z(G)

is a group and

∣∣∣∣ G
Z(G)

∣∣∣∣ =
|G|

|Z(G)| < |G| since Z(G) �= 1. Since, H�G and K�G we get
HZ(G)
Z(G)

� G
Z(G)

and
KZ(G)
Z(G)

� G
Z(G)

. Then,

HZ(G)

Z(G)
∼= H

H ∩ Z(G)
by 2nd Isomorphism Theorem

KZ(G)

Z(G)
∼= K

K ∩ Z(G)
by 2nd Isomorphism Theorem

and
HZ(G)
Z(G)

is nilpotent by induction hypothesis.
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Case 2 If N �= 1. Since K � G we know N ≤ K. Also, since H � G by Lemma 1.4

Z(H)�G. Therefore, since K �G we get N = [Z(H), G]�G. Hence N �K.

Since N �= 1 and K is nilpotent we get 1 �= N ∩ Z(K). Now Z(H)�G implies

N ≤ Z(H). Thus, we get 1 �= N ∩ Z(K) ≤ Z(H) ∩ Z(K). Since G = HK we

have Z(H) ∩ Z(K) ≤ Z(G). Thus, Z(G) �= 1 and we get HK is nilpotent by

Case 1.

Lemma 3.8. Let G be a group and N �G such that N ≤ Zi(G) for all i ∈ Z
+. Then

Zi

(
G
N

)
=

Zi(G)
N for all i.

Theorem 3.6. Let G be nilpotent and N �G. Then G
N is nilpotent.

Proof. Since G is nilpotent there exists n ∈ Z
+∪{0} such that Zn(G) = G. We claim

that
Zi(G)N

N ≤ Zi

(
G
N

)
for all i. Use induction on i. If i = 0 then

Z0(G)N

N
=

1N

N

=
N

N

= 1N

= Z0

(
G

N

)
.

Assume the claim holds. Since Z

(
G

Zi(G)

)
=

Zi+1(G)
Zi(G)

, by Lemma 3.3, [G,Zi+1(G)] ≤

Zi(G). Then
[G,Zi+1(G)]N

N ≤ Zi(G)N
N . Since N � G we get [G,Zi+1(G)]N =

[G,Zi+1(G)N ]. But,

[
G,Zi+1(G)N

N

]
=

[
G
N ,

Zi+1(G)N
N

]
.
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Therefore,

[
G
N ,

Zi+1(G)N
N

]
≤ Zi(G)N

N ≤ Zi

(
G
N

)
. Then by Lemma 3.8,

Zi+1(G/N)N

N
Zi(G/N)

≤ Z

(
G/N

Zi(G/N)

)

or
Zi+1(G/N)N

N
Zi(G/N)

≤ Zi+1(G/N)

Zi(G/N)

and taking pre-images we get
Zi+1(G/N)N

N ≤ Zi+1(G/N). Thus the claims holds

by induction. Then Zn

(
G
N

)
≤ Zn(G)N

N = GN
N = G

N . Therefore, Zn

(
G
N

)
= G

N .

Hence, G
N is nilpotent.

Theorem 3.7. Let G be nilpotent. Then G =
∏

P where the product runs over all

P ∈ Sylp(G) and p | |G|.

Proof. By Lemma 3.6 P � G for all P ∈ Sylp(G). Therefore,
∏

P ≤ G where

P ∈ Sylp(G) and p | |G|. Since P∩ ∏
P �=Q

Q = 1 for all P when q �= p where Q ∈ Sylq(G)

we get |∏P | = ∏ |P | = |G|. Thus, G =
∏

P .

Definition 3.5. Let G be a group. Define the fitting group F (G) =
∏

N�G

N and N

nilpotent. Then F (G) is the unique maximal normal nilpotent subgroup of G.

Definition 3.6. Let G be a group and p be a prime. Define Op(G) by Op(G) =
∏

P�G

P

and P is a p-group. Then Op(G) is the unique maximal normal p-subgroup of G.

Definition 3.7. Let G be a group and p be a prime. Define Op′(G) =
∏

Q�G

Q and Q

is a p′-subgroup. Then Op′(G) is the unique maximal normal p′-subgroup of G.
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Theorem 3.8. Let G be a group. Then F (G) =
∏

Op(G) where p | |G|.

Proof. As p | |G| andOp(G) is a p-group, we know Op(G) is nilpotent. Since Op(G)�G

we get Op(G) ≤ F (G). By Sylow’s Theorem there exists P ∈ Sylp(F (G)) such that

Op(G) ≤ P . By Lemma 3.6 we know P � G. Hence since P is a p-group we get

P ≤ Op(G). Thus, Op(G) = P ∈ Sylp(F (G)). Since F (G) is nilpotent, by Theorem

3.7, F (G) =
∏

P =
∏

Op(G).

Lemma 3.9. Let G be a group and H �G. Then CG(H)�G.

Lemma 3.10. Let G be a group, H ≤ G, K ≤ G, and L ≤ G such that [H,K] = 1.

Then [H,KL] = [H,L].

Lemma 3.11. Let G be a group, H ≤ G, K ≤ G, and L ≤ G such that K ≤ H.

Then H ∩KL = K(H ∩ L).

Theorem 3.9. Let G be solvable. Then CG(F (G)) ≤ F (G).

Proof. Let F = F (G) and C = CG(F ). Suppose C �≤ F . By Lemma 3.9, since F �G

we know C�G. Then, CF
F � G

F . Also, since C �≤ F we know CF
F �= 1F . Then there

exists 1 �= N
F ≤ CF

F such that N
F is a minimal normal subgroup of G

F . Since G is

solvable we know G
F is solvable. Hence by Theorem 2.6, NF is an elementary abelian

p-group. Hence,
(
N
F

)′
= N ′

F = 1 and so N ′ ≤ F . Since N
F ≤ CF

F we get N ≤ CF .

But then, N = N ∩ CF = F (N ∩ C). We claim that Ki(N) ≤ Ki−1(F ) for all i ≥ 1.

Use induction on i. If i = 1 then, K1(N) = [N,N ] = N ′ ≤ F = K0(F ). Assume
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Ki(N) ≤ Ki−1(F ) for all i ≥ 1. Then

Ki+1(N) = [Ki(N), N ]

≤ [Ki−1(F ), N ]

= [Ki−1(F ), F (N ∩ C)]

= [Ki−1(F ), F ] by Lemma 3.10

= Ki(F )

Thus, the claim holds. Since F = F (G) in nilpotent there exists n ∈ Z
+ ∪ {0} such

that Kn(F ) = 1. Then Kn+1(N) ≤ Kn(F ) = 1 and so Kn+1(N) = 1. Thus N is

nilpotent. Since N
F � G

F we have N � G. Thus, N ≤ F . But then, N
F = 1, a

contradiction. Therefore, CG(F (G)) ≤ F (G).

Lemma 3.12. Let G be a group and P ∈ Sylp(F (G)). Then P �G.

Proof. Let g ∈ G. Since P ≤ F (G) we get gPg−1 ≤ gF (G)g−1. Since F (G) � G,

gF (G)g−1 ≤ F (G) and so gPg−1 ≤ F (G). Now F (G) is nilpotent implies P � F (G).

Thus by Sylow’s Theorem,

np =
|F (G)|

|NF (G)(P )| =
|F (G)|
|F (G)| = 1.

Also |gPg−1| = |P | and so gPg−1 ∈ Sylp(F (G)). Since np = 1 we get P = gPg−1

and so P �G.
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Theorem 3.10. Let G be a group, P ≤ G be a p-group, and N � G be a p′-group.

Then

NG(P )

P
= NG/N

(
PN

N

)

Proof. Let xN ∈ NG(P )
N where x ∈ NG(P ). Then

xN

(
PN

N

)
x−1N =

x(PN)x−1

N

=
xPx−1xNx−1

N

=
PN

N
since x ∈ NG(P ) and N �G

Hence, xN ∈ NG/N

(
PN
N

)
and so

NG(P )N
N ≤ NG/N

(
PN
N

)
. Let xN ∈ NG/N

(
PN
N

)
.

Then xN
(
PN
N

)
x−1N = PN

N and so as before we get xPx−1
N = PN

N Taking pre-

images we get xPx−1 = PN . Since N is a p′-group we get P, xPx−1 ∈ Sylp(PN). By

Sylow’s Theorem there exists n ∈ N such that nxPx−1n−1 = P or nxP (nx)−1 = P .

Thus, nx ∈ NG(P ). But then xN = nxN ∈ NG(P )N
N . Thus, NG/N

(
PN
N

)
≤

NG(P )N
N . Therefore,

NG(P )N
N = NG/N

(
PN
N

)
.

4 Groups Acting on Groups

We know look at how groups act on groups and will prove important Theorems

about co-prime actions.

Definition 4.1. Let G and H be groups. Then G acts on H if there exists a homo-

morphism φ such that φ : G → Aut(H).
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Theorem 4.1. Let G and H be p-groups such that G acts on H. Then there exists

1 �= h ∈ H such that G = Gh.

Proof. Since G acts on H we know G acts on S = H \ {1}. Since H is a p-group and

p � | 1 we know p � | |S|. Since G is a p-group by the Fixed Point Theorem there exists

s ∈ S such that G = Gs. But then, 1 �= s ∈ H.

Theorem 4.2. Let G be a group, A ≤ G, B ≤ G, and C ≤ G such that [A,B,C] = 1

and [B,C,A] = 1. Then [C,A,B] = 1.

Proof. Let a ∈ A, b ∈ B, and c ∈ C. Notice

b[a−1, b, c−1]b−1c[b−1, c, a−1]c−1a[c−1, a, b−1]a−1 = 1

Now, [a−1, b, c−1] = 1 and so b[a−1, b, c−1]b−1 = 1 since [A,B,C] = 1. Similarly,

c[b−1, c, a−1]c−1 = 1 since [B,C,A] = 1. Thus, a[c−1, a, b−1]a−1 = 1 and so [c−1, a, b−1] =

1. Therefore, [C,A,B] = 1.

Theorem 4.3. Let A ≤ Aut(P ) be a p′-group and P be a p-group such that there

exists a subnormal series

P � P1 � P2 � · · ·� Pn = 1

such that Pi is A-invariant and A acts trivially on Pi
Pi+1

for all 1 ≤ i ≤ n− 1. Then

A acts trivially on P .
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Proof. Use induction on |P |. Since |P1| ≤ |P | we get A acts trivially on P1. If A does

not act trivially on P there exists φ ∈ A and x ∈ P such that φ(x) �= x. Since A acts

trivially on P
P1

we get φ(xP1) = xP1 or φ(x)P1 = xP1. Hence, there exists a y ∈ P1

such that φ(x) = xy. Then,

φ(φ(x)) = φ(xy)

= φ(x)φ(y)

= xyy

= xy2.

Since A acts trivially on P1 we get x = φ|φ|(x) = xy|φ|. But then, y|φ| = 1 and so

|y| | |φ|. Since P is a p-group and A is a p′-group we get gcd(|y|, |φ|) = 1. Thus,

|y| = 1 and so y = 1. But then φ(x) = x1 = x, a contradiction. Therefore, A acts

trivially on P .

Theorem 4.4. Suppose A×B acts on P such that A is a p′-group and B and P are

p-groups. If A acts trivially on CP (B) then A acts trivially on P .

Proof. Let CP (B) ≤ Q ≤ P where Q is a maximal A × B-invariant subgroup of P

such that A acts trivially on Q. If Q < P . Now by Theorem 3.4, Q < NP (Q) = R

and Q�R. Since P and Q are A×B-invariant we know R is A×B-invariant. Thus,

A × B acts on R
Q and so B acts on R

Q . Let 1Q �= S
Q ≤ R

Q be a minimal A × B-

invariant subgroup of RQ . Now, B acts on S
Q and they are both p-groups. Therefore,

by Theorem 4.1, 1 �= CS/Q(B) ≤ S
Q . Since S

Q is A × B-invariant we get CS/Q(B)

is A × B-invariant. By the minimality of S
Q = CS/Q(B). But then, [S,B] ≤ Q.
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Now, [S,B,A] ≤ [Q,A] = 1 since A acts trivially on Q. Hence, [S,B,A] = 1.

Also, [B,A] = 1 implies [B,A, S] = 1. By Theorem 4.2, [A, S,B] = 1. Thus,

[A, S] ≤ CP (B) ≤ Q. Now we have a subnormal series S �Q� 1 and A acts trivially

on S
Q and on

Q
{1} . Since A is a p′-group and S is a p-group by Theorem 4.3, A acts

trivially on S. Now, Q < S since S
Q �= 1Q and S is A×B-invariant, this contradicts

the maximality of Q. Hence, P = Q and A acts trivially on P .

Definition 4.2. Let G be a group, A ≤ Aut(G), g ∈ G, and φ ∈ A. Then

1. [g, φ] = g−1φ(g) is the commutator of g and φ

2. [G,A] = 〈{[g, φ] | g ∈ G for all φ ∈ A}〉

3. CG(A) = {g ∈ G | φ(g) = g for all φ ∈ A}.

Theorem 4.5. Let A ≤ Aut(P ) be a p′-group and P be an abelian p-group. Then

P = CP (A)× [P,A].

Proof. Let |A| = n and writing P additively define θ = 1
n

∑
φ∈A

φ. Then θ : P → P is

a homomorphism since P is abelian. We want to show the following,

1. θφ1 = θ for all φ1 ∈ A

2. θ2 = θ

3. θ(P ) = CP (A)

4. [P,A] = {−x+ θ(x) | x ∈ P}

5. P = θ(P )× B where B = [P,A]
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For (1), let x ∈ P . Then

θφ1(X) =
1

n

∑
φ∈A

φφ1(x)

=
1

n

∑
φ∈A

φ(x) since P is abelian

= θ(x).

For (2), let x ∈ P . Then,

θ2(x) = θ(
1

n

∑
φ∈A

φ(x))

=
1

n

∑
φ∈A

θφ(x)

=
1

n

∑
φ∈A

θ(x)

=
1

n
nθ(x)

= θ(x).

For (3), let θ(x) ∈ θ(P ) and φ ∈ A. Then φθ(x) = θ(x). Hence, θ(x) ∈ CP (A) and so

θ(P ) ≤ CP (A). Let x ∈ CP (A). Then,

θ(x) =
1

n

∑
φ∈A

φ(x)

=
1

n

∑
φ∈A

x

=
1

n
nx

= x.
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Hence, x ∈ θ(P ) and so CP (A) ≤ θ(P ). Thus, φ(P ) = CP (A). For (4), let x ∈ P .

Then,

−x+ θ(x) = −x+
1

n

∑
φ∈A

φ(x)

=
1

n

∑
φ∈A

−x+ θ(x) since P is abelian

∈ [P,A] since −x+ θ(x) ∈ [P,A] for all x ∈ P and φ ∈ A.

Hence, {−x+ θ(x) | x ∈ P} ⊆ [P,A]. Let x ∈ P and φ ∈ A. Then,

[x, φ] = −x+ φ(x)

= −x+ φ(x) + 0

= −x+ φ(x) + θ(x+−φ(x)) by (1)

∈ {x+ θ(x) | x ∈ P}.

Hence, [P,A] ⊆ {−x+ θ(x) | x ∈ P} since {−x+ θ(x) | x ∈ P} is closed. Therefore,

[P,A] = {−x+θ(x) | x ∈ P}. For (5), let x ∈ P . Then, x = θ(x)+x+−θ(x) ∈ θ(P )B.

Thus, P = θ(P )B. Suppose, there exists u ∈ φ(P ) ∩ B. Then, there exists x, y ∈ P
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such that u = θ(x) and u = −y + θ(y). Then,

u = θ(x)

= θ2(x) by (2)

= θ(θ(x))

= θ(u)

= θ(−y + θ(y))

= −θ(y) + θ2(y)

= −θ(y) + θ(y)

= 0.

Hence, θ(B) ∩ B = 0 and so P = θ(P )B = CP (A)[P,A] = CP (A)× [P,A].

Lemma 4.1. Let G be a group and A ≤ Aut(G). Then [G,A] � G and [G,A] is

A-invariant.

Lemma 4.2. Let G be a group, A ≤ Aut(G), and N � G be A-invariant. Then A

acts on G
N by φ(gN) = φ(g)N for all gN ∈ G

N and for all φ ∈ A.

Theorem 4.6. Let A ≤ Aut(P ) be a p′-group and P be a p-group. Then

P = CP (A)[P,A].

Proof. Let H = [P,A].
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Case 1 H ≤ Z(P ). Let φ ∈ A. Define αφ : P → [P, φ] by αφ = [x, φ] for all x ∈ P . If

x, y ∈ P then

αφ(xy) = [xy, φ]

= (xy)−1φ(xy)

= y−1x−1φ(x)φ(y)

= x−1φ(x)y−1φ(y) since x−1 ∈ φ(x) ≤ Z(P )

= [x, φ][y, φ]

= αφ(x)αφ(y).

Hence, αφ is a homomorphism. Now, Kern αφ = CP (φ) and αφ is onto. By

Theorem 1.5, P
Kern αφ

∼= αφ(P ). Thus, P
CP (φ)

∼= [P, φ] since αφ is onto. Since

[P, φ] ≤ H ≤ Z(P ) we get P
CP (φ)

is abelian. Hence, by Lemma 1.3, P ′ ≤
CP (φ). Therefore, P

′ ≤ CP (A). Now A acts on P
P ′

which is an abelian p-group.

Then, P
P ′

= CP/P ′(A)
[
P
P ′

, A
]
= CP/P ′

[P,A]P ′

P ′
. Let C

P ′
= CP/P ′(A). Then,

P
P ′

= C
P ′

[P,A]P ′

P ′
and taking pre-images we get P = C[P,A]P ′ or P = C[P,A].

Now, [P ′, C] = P ′ since C
P ′

= CP/P ′(A). Hence, we have a subnormal series

C � P ′ � 1

and A acts trivially on C
P ′

and P ′
{1} . Since A is a p′-group and C is a p-group

by Theorem 4.3, A acts trivially on C. Thus, P = C[P,A] ≤ CP (A)[P,A] ≤ P

and so P = CP (A)[P,A].

Case 2 H �≤ Z(P ). Use induction on |P |. Since P is nilpotent and H = [P,A] � P
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by Theorem 3.3, 1 �= H ∩ Z(P ). Now, K = H ∩ Z(P ) � P and so P
K is a

p-group. Also, K is A-invariant and so A acts on P
K . Also,

∣∣∣PK
∣∣∣ < |P | and so

by induction P
K = CP/K(A)

[
P
K ,A

]
= CP/K(A)

[P,A]K
K . Let C

K = CP/K(A).

Then, PK = C
K

[P,A]K
K and taking pre-images we get P = C[P,A]K = C[P,A].

If P = C then P
K = C

K = CP/K(A). Hence,
[
P
K ,A

]
= K and so [P,A] ≤ K.

But then H = [P,A] ≤ K ≤ Z(P ), a contradiction. Therefore, P �= C. Thus,

C < P and so |C| < |P |. Hence, by induction C = CC(A)[C,A]. But then,

P = CC(A)[C,A][P,A] ≤ CP (A)[P,A] ≤ P and so P = CP (A).

Theorem 4.7. Let A ≤ Aut(P ) be a p′-group, P be a p-group, and N � P be A-

invariant. Then CP/N(A) =
CP (A)N

N .

Proof. Let cN ∈ CP (A)N
N and φ ∈ A. Then, φ(cN) = φ(c)N = cN since c ∈

CP (A). Thus,
CP (A)N

N ≤ CP/N(A). Let C
N = CP/N(A). Then, N ≤ C ≤ P and

C is A-invariant. Also [C,A] ⊆ N . Hence, by Theorem 4.6, C = CP (A)[C,A] ≤
CP (A)N . Therefore, by taking pre-images we get CP/N(A) =

C
N ≤ CP (A)N

N . Hence,

CP/N(A) =
CP (A)N

N .

Definition 4.3. Let G be a group then Op′(G) =
∏

N�G

N where N is a p′-group and

is the largest normal p′-subgroup of G.

Theorem 4.8. Let G be solvable and P ≤ G be a p-subgroup. Then, Op′(NG(P )) ≤
Op′(G).

Proof. Let A = Op′(NG(P )) and B = Op′(G).
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Case 1 Op′(G) = 1. We want to show that A = 1. Suppose, A �= 1. Then, A�NG(P )

and P�NG(P ). Hence, AP�NG(P ). Since A is a p′-group and P is a p-group we

get |A∩P | = 1. Since A�NG(P ) and P�NG(P ) we get [A,P ] = 1. Since B�G

we get A×P acts on B by conjugation. Now, CB(P ) ≤ NG(P ) and A�NG(P ).

Since B �G we get [A,CB(P )] ≤ A ∩B = 1. Thus, A acts trivially on CB(P ).

By Theorem 4.4, A acts trivially on B. But then, A ≤ CG(B) and so CG(B)

is not a p-group. Since B � G we know CG(B) � G. Then,
CG(B)B

B � G
B .

If
CG(B)B

B = 1 we get CG(B) ≤ B. But then, since B is a p-group we get

CG(B) is a p-group, a contradiction. Thus, 1 �= CG(B)
B � G

B . Hence, there

exists 1 �= N
B ≤ CG(B)

B such that N
B is a minimal subgroup of G

B . Since G is

solvable by Theorem 2.3, GB is solvable. By Theorem 2.6, NB is an elementary

q-group. Suppose p = q. Since N
B � G

B we get N � G. Also, |N | = |N |
|B| and

|B| =
∣∣∣NB

∣∣∣ |B| is a power of P and so N is a p-group. Hence, N ≤ B = Op(G)

and we get N
B = 1, a contradiction. Therefore, p �= q. Let Q ∈ Sylq(N).

Then,
QB
B ∈ Sylq

(
N
B

)
. Since N

B is a p-group we get N
B =

QB
B . Taking

pre-images we get N = QB. Since N
B ≤ CG(B)

B we get N ≤ CG(B). Hence,

Q ≤ N ≤ CG(B)B and so
QCG(B)
CG(B)

≤ CG(B)B
CG(B)

. But,
CG(B)B
CG(B)

∼= B
B ∩ CG(B)

is a p-group. Thus,
QCG(B)
CG(B)

is a p-group. But,
QCG(B)
CG(B)

∼= Q
Q ∩ CG(B)

is

a q-group. Thus,
QCG(B)
CG(B)

= 1 and so Q ≤ CG(B). Since N = QB we get

Q � N . Therefore, Q is the only Sylow q-subgroup of N by Sylow’s Theorem.

Now, since N � G we get Q � G. Since p �= q we know Q is a p′-group and so

Q ≤ Op′(G) = 1 and so N = QB = B and we get N
B = B

B = 1, a contradiction.

Thus, A = 1

Case 2 Op′(G) �= 1. Then, G
Op′(G)

is solvable and
POp′(G)

Op′
≤ G

Op′
(G) is a p-group.
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Finally, Op′

(
G

Op′(G)

)
= 1 by Case 1 we get Op′

(
NG/Op′ (G)

(
POp′(G)
Op′(G)

))
= 1.

Then, Op′

(
NG(P )Op′(G)

Op′

)
= 1 by Lemma 3.10. But,

Op′(NG(P ))Op′(G)
Op′(G)

≤

Op′

(
NG(P )Op′(G)

Op′

)
and so

Op′(NG(P ))Op′(G)
Op′(G)

= 1 which impliesOp′(NG(P )) ≤
Op′(G).

Definition 4.4. Let G be a group. Define the Franttini Subgroup by Φ(G) =
⋂

M

where M is a maximal subgroup of G.

Theorem 4.9. Let P be a p-group. Then, P
Φ(P )

is an elementary abelian p-group.

In particular, if Φ(P ) = 1 then P is an elementary p-group.

Proof. Let M be a maximal subgroup of P and let x ∈ P . Since P is nilpotent we

get M � P by Theorem 3.5. Since M is maximal we know {1} and P
M are the only

subgroups of P
M . Thus, P

M
∼= Zp is abelian. Thus, P ′ ≤ M . Also, (xM)p = xpM =

1M since P
M

∼= Zp. Thus, x
p ∈ M but then, P ′ ≤ Φ(P ) and xp ∈ Φ(P ) for all x ∈ P

which implies all the elements have order p or 1. By the Fundamental Theorem of

Finite Abelian Groups we get P
Φ(P )

∼= Zp × Zp × · · · × Zp is an elementary abelian

p-group. In particular, if Φ(P ) = 1 then P ∼= P
{1} ∼= P

Φ(P )
is an elementary p-group.

Definition 4.5. A group A acts regularly on a group G if CG(α) = 1 for all 1 �=
α ∈ A.

Theorem 4.10. Suppose an elementary p-group A acts regularly on a q-group V .

Then A ∼= Zp.
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Proof. Use contradiction. Suppose A ∼= Zp × Zp. Then all elements of A have order

P . Hence, H =
p+1⋃
i=1

Ai such that |Ai| = p for all i and Ai ∩ Aj = 1 for all i �= j. Let

1 �= v ∈ V and 1 �= a0 ∈ A. Then a0(
∏
a∈A

av) =
∏
a∈A

a0av =
∏
a∈A

av since as a runs

over A so does a0a and V is abelian. Since A acts regular on V we get
∏

av = 1.

Similarly,
∏

ai∈Ai

aiv = 1. Hence,

1 =

p+1∏
i=1

∏
ai∈Ai

aiv

= vp
∏
a∈A

av since V is abelian

= vp1

= vp.

Hence, vp = 1 and so |v| = p since v �= 1. But then, p = |v| | |V | which implies p | qa,
a contradiction. Thus, A ∼= Zp.

Theorem 4.11. Let G = BV be a group such that B � G is a p-group and V is an

elementary abelian q-group. Then

B = 〈CB(U) | U ≤ V,
|V |
|U | = q〉

Proof. Use induction on |G|. Let A = 〈CB(U) | U ≤ V,
|V |
|U | = q〉. If A < B then

since B is nilpotent we get A < NB(A). Since V ≤ NG(B) and V is abelian we know

V ≤ NG(A). Hence, V ≤ NB(NB(A)) and so V NB(A) ≤ G. If V NB(A) < G then

by induction we get NB(A) = 〈CNB(A)(U) | U ≤ V,
|V |
|U | = q〉 ≤ A, a contradiction.
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Hence, G = V NB(A) and so A � G. Thus, G
A = B

A
V A
A is a group. If A �= 1,

then
∣∣∣GA

∣∣∣ < |G| and B
A � G

A is a p-group and V A
A is an elementary q-group. Hence,

by induction B
A = 〈CB/A(

U
A ) | U

A ≤ V A
A ,

|V A|
|U | = q〉. Since A < B we know

B
A �= 1A. Hence, there exists U

A ≤ V A
A such that

|V A|
|U | = q and CB/A(

U
A ) �= 1A.

Let U0 ∈ Sylq(U). Then U0A
A ∈ Sylq(

U
A ). Since U

A is a q-group we get U
A = U0A

A

Hence, CB/A(
U0A
A ) �= 1A. Since U0 and U0A

A act on B
A in the same way we get

CB(U0) �= 1 by Theorem 4.7 the q-group U0 acts on the p-group B
A and we get

1 �= CB/A(U0) =
CB(U0)A

A . Hence, CB(U0) �≤ A. Now,

q =
|V A|
|U |

=
|V A|
|U0A|

=
|V U0A|
|U0A|

=

|V ||U0A|
|V ∩ U0A|
|U0A|

=
|V |

|V ∩ U0A| .

Hence,
|V |

|V ∩ U0A| = q. Now, V ∩ U0A ≤ U0A and V ∩ U0A is a q-group. Since

U0 ∈ Sylq(U0A) by Sylow’s Theorem there exists a ∈ A such that V ∩U0A ≤ aU0a
−1.

Then V ∩ U0A ≤ V ∩ aU0a
−1. But V ∩ aU0a

−1 ≤ V ∩ U0A and so V ∩ U0A =

V ∩aU0a
−1. Hence, |V |

|V ∩ aU0a
−1| = q and so CB(V ∩aU0a

−1) ≤ A. Now, CB(U0) �≤ A,

a contradiction. Hence, A = 1. As, Φ(B) < B and B � G, we get Φ(B) � G. Then

Φ(B)V < BV = G. Hence, |Φ(B)| < |G| and so, by induction, Φ(B) = 〈CΦ(B)(U) |
U ≤ V,

|V |
|U | = q〉 ≤ A = 1. Thus, Φ(B) = 1 which implies by Theorem 4.9 B is

an elementary abelian p-group. Let 1 �= b ∈ B and 〈bG〉 = 〈gbg−1 | g ∈ G〉. Then
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〈bG〉�G and so V acts on 〈bG〉 by conjugation. Now, since G = BV and B is abelian

we get 〈bG〉 = 〈bV 〉. Moreover, since V is abelian, V
CV (b)

acts on 〈bV 〉 regularly

by conjugation. Then, by Theorem 4.10, V
CV (b)

∼= Zq and so | V
CV (b)

| = q. Now,

1 �= b ∈ CB(CV (b)) ≤ A = 1, a contradiction. Thus, B = A = 〈CB(U) | U ≤ V,
|V |
|U | 〉.

Theorem 4.12. Let G = AB where A is a p-group and B is a q-group. Further

suppose there exists 1 �= A0 � A and 1 �= B0 � B such that 〈AB0
0 〉 is a p-group. Then

G is not simple.

Proof. Let 〈AB0
0 〉 ≤ P0 ≤ G such that P0 is maximal with respect to P0 being a

p-group, P0 generated by conjugates of A0, and B0 ≤ NG(P0). By Sylow’s Theorem

there exists P ∈ Sylp(G) such that P0 ≤ P . We want to show that P0 � P . Suppose

not. Then, NP (P0) < P . Since P is nilpotent we get NP (P0) < NP (NP (P0)). Let

x ∈ NP (NP (P0)) \ NP (P0). Then xP0x
−1 �= P0 and so xP0x

−1 �≤ P0. Hence, there

exists g ∈ G such that xgA0(xg)
−1 �≤ gA0g

−1 ≤ P0. Let H = 〈P0(xgA0(xg)
−1)B0〉.

Then P0 ≤ H. Also, H is generated by conjugates of A0 and since B0 ≤ NG(P0)

we know B0 ≤ NB(H). Now, gA0g
−1 ≤ P0 ≤ NP (P0) and so xgA0(xg)

−1 ≤
NP (P0) since x ∈ NP (NP (P0)). Thus, (xgA0(xg)

−1)B0 ≤ NG(P0). Therefore, H =

〈P0, (xgA0(xg)
−1)B0〉 = P0〈(xgA0(xg)

−1)B0〉. Now, since A0 � A and B0 � B and

G = AB we get 〈(xgA0(xg)
−1)B0〉 ≤ 〈AB0

0 〉b since g = ba and b ∈ B and a ∈ A. But

since 〈AB0
0 〉 is a p-group we get 〈AB0

0 〉b is a p-group. Therefore, 〈(xgA0(xg)
−1)B0〉 is a

p-group. Since P0 is a p-group we get H = P0〈(xgA0(xg)
−1)B0〉 is a p-group, a con-

tradiction to the maximality of P0. So, P0�P . Now since G = AB and P ∈ Sylp(G)

we get G = PB so then since B0 � B, B0 ≤ NP (P0), and P ≤ NG(P0) we get

1 �= B0 ≤ ⋂
b∈B

bNG(P0)b
−1 =

⋂
g∈G

gNG(P0)g
−1 � G. If

⋂
g∈G

gNG(P0)g
−1 �= G we get G
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is not simple. If G =
⋂
g∈G

gNG(P0)g
−1 then G = NG(P0). But then 1 �= P0 � G and

P0 = G since P0 is a p-group. Hence, G is not simple.

Definition 4.6. Let G be a group and p be a prime. Define

Ω1(G) = 〈x ∈ G | xp = 1〉.

Definition 4.7. Let G be group and P ≤ G be a p-group. Define

J(P ) = 〈A | A ≤ P is abelian and |A| is maximal〉.

Then J(P ) is called the Thompson Subgroup.

Theorem 4.13 (Baer). Let G be a group and H ≤ G such that 〈H, gHg−1〉 is a

p-group for all g ∈ G. Then H ≤ Op(G).

Theorem 4.14. Let G be a group and x �∈ O2(G) such that x2 = 1. Then there exists

y ∈ G such that |y| is odd and xyx−1 = y−1.

Theorem 4.15. Let G be a group such that |G| = paqb for odd primes p and q and

P ∈ Sylp(G) such that CG(Ω1(Z(P ))) = P . Then J(P )�G.

Definition 4.8. Let G be a group and H ≤ G. Then H is a p-central subgroup

of G is there exists P ∈ Sylp(G) such that H ≤ Z(P ). We write H p-central ≤ G.

5 Burnsides paqb Theorem

We now have all the group theoretical tools needed to begin our proof of

Burnside’s Theorem.
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Theorem 5.1 (Burnside’s Theorem). Let G be a group such that |G| = paqb. Then

G is solvable.

Proof. Assume the theorem is false and let G be a minimal counterexample. We to

prove the following about G,

1. G is simple.

Assume not. There exists 1 �= N � G and N �= G. Then G
N is a group such

that
∣∣∣GN

∣∣∣ < |G| and N is a group such that |N | < |G| and they are both pq

groups. Hence, by the minimality of G we get G
N and N are solvable and so by

Theorem 2.3, G is solvable, a contradiction. Thus, G is simple.

2. If M is a maximal subgroup of G then F (M) is a p or q group.

Suppose p | |F (M)| and q | |F (M)|. Let Z = ZpZq where Zp = Ω1(Z(Op(M)))

and Zq = Ω1(Z(Oq(M))). Then Zp � M and so M ≤ NG(Zp) ≤ G. By the

maximality of M we get M = NG(Zp) or G = NG(Zp). If G = NG(Zp) then

we get Zp �G, a contradiction since G is simple. Therefore, M = NG(Zp) and

similarly M = NG(Zq). We claim that M is the unique maximal subgroup of G

such that Z ≤ M . Suppose Z ≤ H and H is a maximal subgroup of G. Then

Op(M) ∩H �M ∩H is a q-group. But then,

Op(M) ∩H ≤ Op(M ∩H)

= Op(NG(Zq) ∩H)

= Op(NH(Zq))

≤ Op(H).
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Similarly, using M = MG(Zp) we get Oq(M) ∩H ≤ Oq(H). Hence,

F (M) ∩H = Op(M)Oq(M) ∩H

= (Op(M) ∩H)(Oq(M) ∩H)

≤ Op(H)Oq(H)

= F (H).

Thus, F (M) ∩ H ≤ F (H). Now, Z = ZqZq ≤ F (M) ∩ H ≤ F (H). Hence,

by Sylow’s Theorem Zp ≤ Op(H) and Zq ≤ Oq(H). Now, [Zp, Oq(H)] ≤
[Op(H), Oq(H)] ≤ Op(H) ∩Oq(H) = 1 and so [Zp, Oq(H)] = 1. Thus, Oq(H) ≤
CG(Zp) ≤ NG(Zp) = M . Similarly, Op(H) ≤ M and so F (M) = Op(H)Oq(H) ≤
M . Since Zp ≤ Op(H) and Zq ≤ Oq(H) we get p | |F (H)| and q | |F (H)|.
Similarly, since H is maximal subgroup, using Z∗p = Ω1(Z(Op(H))) and Z∗q =

Ω1(Z(Oq(H))) we get F (M) ∩M ≤ F (M) and F (M) ≤ H. But then F (M) =

F (M)∩H ≤ F (H) = F (H)∩M ≤ F (M). Thus, F (M) = F (H). Now since M

and H are maximal and G is simple we get M = NG(F (M)) = NG(F (H)) = H.

We claim M does not contain a Sylow p-subgroup of G. Let Mp ∈ Sylp(M).

If Mp ∈ Sylp(G) then by Sylow’s Theorem there exists Gq ∈ Sylq(G) such

that Oq(M) ≤ Gq. Then G = MpGq. Now since Oq(M) � M we get 1 �=
Oq(M) ≤ ⋂

x∈Mp

xGqx
−1 =

⋂
x∈G

xGqx
−1 � G. Thus, 1 �= ⋂

x∈G
xGqx

−1 � G but
⋂
x∈G

xGqx
−1 ≤ Gq < G, a contradiction since G is simple. Hence, M does

not contain a Sylow p-subgroup of G and similarly M does not contain a Sy-

low q-subgroup of G. Let Mp ∈ Sylp(M). Then there exists Gp ∈ Sylp(G)

such that Mp < Gp. Since G is nilpotent, by Theorem 3.4, Mp < NGp(Mp).

Let x ∈ NGp(Mp) \ Mp. Since Zp � M is a p-group by Sylow’s Theorem
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Zp ≤ Mp. Hence, Zp ≤ Mp = xMpx
−1 ≤ xMx−1. Now since Zq � M we get

xZqx
−1 � xMx−1. Since Z(Op(M)) is abelian we know Zp = Ω1(Z(Op(M))) is

an elementary abelian p-group. From the action of Zp and xZqx
−1, by Theorem

4.11, we get xZqx
−1 = 〈CxZqx−1(U) | U ≤ Zp,

|Zp|
|U | = p〉. Let U ≤ Zp such that

|Zp|
|U | = p. Since Z is abelian we get Zp ≤ CG(U) < G. By the uniqueness of M

we have CG(U) ≤ M . Thus, since M CxZqx−1(U) ≤ CG(U) we get xZqx
−1 ≤ M .

But then Zq ≤ x−1Mx. Hence, Z = ZpZq ≤ x−1Mx. Again by the unique-

ness of M we get M = x−1Mx. Hence, x ∈ NG(M). But since M is maximal

and G is simple we have M = NG(M). Thus, x ∈ M and so x ∈ M ∩ Gp.

Now by Sylow’s Theorem there exists m ∈ M such that Gp ∩M ≤ mMpm
−1.

Hence we get Mp ≤ Gp ∩ M ≤ mMpm
−1. and so Mp = Gp ∩ M . Thus we

get x ∈ Gp ∩ M = Mp, a contradiction. Hence, Zp
∼= Zp and {1} is the only

subgroup of Zp with index p thus Zp is cyclic. Similarly, Zq
∼= Zq is cyclic.

Since Zp ≤ xMx−1 and xZqx
−1 � xMx−1 we know H = ZpxZqx

−1 is a sub-

group. Without loss of generality, p > q. Then np = 1 and nq = 1. Hence,

Zp � H and xZqx
−1 � H. But then [Zp, xZqx

−1] ≤ Zp ∩ xZqx
−1 = 1. Thus,

xZqx
−1 ≤ CG(Zp) ≤ NG(Zp) = M and so x ∈ Mp. Also, Zp ≤ Mp ≤ M

so xZx−1 = xZpx
−1xZqx

−1 ≤ M or Z = x−1Mx and M = x−1Mx. Thus,

x ∈ NG(M) = M , a contradiction.

3. Let M be a maximal subgroup of G then M cannot contain a p-central subgroup

of G and a q-central subgroup of G.

By (2) we may assume F (M) is a p-group. By Sylow’s Theorem there exists

Mp ∈ Sylp(M) such that F (M) ≤ Mp and there exists Gp ∈ Sylp(G) such that

Mp ≤ Gp. Thus, F (M) ≤ Gp. If CG(F (M)) �≤ M then M < 〈CG(F (M)),M〉 ≤
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G. Hence, by the maximality of M we get G = 〈CG(F (M)),M〉. But then

F (M)�〈CG(F (M)),M〉 = G, a contradiction sinceG is simple. Thus, CG(F (M)) ≤
M and so CG(F (M)) = CM(F (M)). Now, Z(Gp) ≤ CG(F (M)) = CM(F (M)) ≤
F (M) by Theorem 3.9 since M is solvable. Hence, Z(Gp) ≤ M and Z(Gp) is a

p-central subgroup of G. Suppose H ≤ M such that H is a q-central subgroup

of G. Then there exists Gq ∈ Sylq(G) such that H ≤ Z(Gq). Then G = GpGq,

Z(Gp)�Gp, H�Gq, and 〈Z(Gp)
H〉 ≤ 〈F (M)H〉 ≤ F (M) since F (M)�M and

F (M) is a p-group. Hence 〈Z(Gp)
H〉 is a p-group. But then by Theorem 4.12

we get G is not simple, a contradiction.

4. A p-central subgroup of G cannot normalize a q-subgroup of G.

Suppose H is a p-central subgroup of G and Q ≤ G is a q-group such that

H ≤ NG(Q). By Sylow’s Theorem, there exists Gq ∈ Sylq(G) such that Q ≤
Gq. Since NG(Q) < G there exists a maximal subgroup M of G such that

NG(Q) ≤ M . Now Z(Gq) ≤ CG(Q) ≤ NG(Q) ≤ M . Also, H ≤ NG(Q) ≤ M .

But Z(Gq) is a q-central subgroup of G and H is a p-central subgroup of G,

which contradicts (3). Thus, a p-central subgroup of G cannot normalize a

q-subgroup of G.

5. |G| is odd.
Suppose not. Then, 2 | |G| and so by Sylow’s Theorem there exists G2 ∈
Syl2(G). Then by Theorem 3.2, Z(G2) �= 1. Hence, by Theorem 1.10, there

exists 1 �= x ∈ Z(G2) such that x2 = 1. Since G is simple we get O2(G) = 1.

Hence x �∈ O2(G). By Theorem 4.14, there exists y ∈ G such that xyx−1 = y−1

and |y| is odd. Hence, we get 〈x〉 ≤ NG(〈y〉). But 〈x〉 is a 2-central subgroup

of G and 〈y〉 is a q-group, which contradicts (4). Therefore, |G| is odd.
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6. Let M be a maximal subgroup of G such that F (M) is a p-group and Mp ∈
Sylp(M) such that F (M) ≤ Mp. Then J(Mp)�M and Mp ∈ Sylp(G).

We want to show that J(Mp) � M . By Theorem 4.15 it is enough to show

CM(Ω1(Z(Mp))) = Mp. Since Ω1(Z(Mp)) ≤ Z(Mp) we getMp ≤ CM(Ω1(Z(Mp))).

Let Gp ∈ Sylp(G) such that Mp ≤ Gp. Then F (M) ≤ Mp ≤ Gp. Thus,

Z(Gp) ≤ CG(F (M))

= CM(F (M))

≤ F (M) since M is solvable

≤ Mp.

Thus, Z(Gp) ≤ Mp and so Z(Gp) ≤ Z(Mp). Hence, Ω1(Z(Gp)) ≤ Ω1(Z(Mp))

and so CM(Ω1(Z(Mp))) ≤ CG(Ω1(Z(Gp))). But, by (4) CG(Ω1(Z(Gp))) has

no q-subgroups and so CG(Ω1(Z(Gp))) is a p-group. Hence, CM(Ω1(Z(Mp)))

is a p-group. But Mp ≤ CM(Ω1(Z(Mp))) and Mp ∈ Sylp(M). Hence, Mp =

CM(Ω1(Z(Mp))) and so Theorem 4.15 J(Mp)�M . If Mp < Gp then since Gp is

nilpotent, by Theorem 3.4, Mp < NGp(Mp) = H. Now, Mp�H. If H ≤ M then

H ≤ Gp∩M . But Gp∩M = Mp and so we get H ≤ Mp, a contradiction. Thus,

H �≤ M . Bu then M < 〈M,H〉 ≤ G and so G = 〈M,H〉 by the maximality of

M . Now, J(Mp)�M . also Mp�H we get J(Mp)�H. Hence, J(Mp)� 〈M,H〉,
a contradiction, since G is simple. Thus, Mp = Gp ∈ Sylp(G).
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Let

Cp = {M | M is a maximal subgroup of G and F (M) is a p-group}

and

Cq = {M | M is a maximal subgroup of G and F (M) is a q-group}

Let M1,M2 ∈ Cp and P1 ∈ Sylp(M1) and P2 ∈ Sylp(M2). By (6) P1, P2 ∈ Sylp(G).

By Sylow’s Theorem there exists g ∈ G such that gP1g
−1 = P2. If gM1g

−1 �= M2 then

M2 < 〈gM1g
−1,M2〉 ≤ G. Hence we get G = 〈gM1g

−1,M2〉 since M2 is maximal.

By (6) we know J(P2) = J(gP1g
−1) � 〈gM1g

−1,M2〉 = G, a contradiction since G

is simple. Thus, gM1g
−1 = M2 and so G acts transitively on Cp by conjugation.

Similarly, G acts transitively on Cq by conjugation. Let M1,M2 ∈ Cp such that

|M1∩M2|p is maximal. If |M1∩M2|p �= 1 then let P ∈ Sylp(M1∩M2). If P ∈ Sylp(M1)

then, by (6), we get P ∈ Sylp(G). Hence, since P ≤ M2 we get P ∈ Sylp(M2). Now,

by (6), we get J(P ) � 〈M1,M2〉 = G, a contradiction since G is simple. Hence,

P �∈ Sylp(M1) and similarly P �∈ Sylp(M2). Therefore, P < NM1(P ) ≤ NG(P ) and

P < NM2(P ) ≤ NG(P ). Since NG(P ) < G, there exists a maximal subgroup R of

G such that NG(P ) ≤ R. If F (R) is a q-group let Gp ∈ Sylp(G) such that P ≤ Gp.

Then, Z(Gp) ≤ CG(P ) ≤ NG(P ) ≤ R and F (R) � R. Hence Z(Gp) ≤ NG(F (R)),

but Z(Gp) is a p-central subgroup of G and F (R) is a q-group, a contradiction of (4).
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Thus, F (R) is a p-group and R ∈ Cp. Now

|M1 ∩R|p ≥ |M1 ∩NG(P )|p
= |NM1(P )|p
> |P |

= |M1 ∩M2|p.

Hence, by the maximality of |M1 ∩ M2|p we get R = M1. Also, similarly R = M2.

Thus, M1 = R = M2, a contradiction since M1 and M2 are distinct. Therefore,

|M1 ∩M2|p = 1 and similarly |H1 ∩ H2|q = 1 for all H1, H2 ∈ Cq. Suppose pa > qb.

Let M1,M2 ∈ Cp be distinct and P1 ∈ Sylp(M1) and P2 ∈ Sylp(M2). Then P1 ∩P2 ≤
M1 ∩M2 is a p-group and |M1 ∩M2|p = 1. Hence |P1 ∩ P2| = 1. But then we get

paqb = |G|

≥ |P1P2|

=
|P1||P2|
|P1 ∩ P2|

=
papa

1

= p2a

> paqb

a contradiction. Similarly, we get a contradiction if qb > pa. Therefore, G is solvable.
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