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ABSTRACT

The 0-1 Knapsack Problem is an NP-hard optimization problem that has been stud-

ied extensively since the 1950s, due to its real world significance. The basic problem

is that a knapsack with a weight capacity c is to be filled with a subset of n items.

Each item i, has a weight value wi and a profit value pi. The goal is to maximize total

profit value without the having the total weight exceed the capacity.

In this thesis, the 0-1 Knapsack Problem is introduced and some of the research

and applications of the problem are given. Pisinger’s branch-and-bound algorithm

that will converge to an optimal solution is presented. One of the earliest applications

of the knapsack problem, the knapsack cryptosystems, is then discussed. The earliest

knapsack cryptosystem, the Merkle-Hellman Cryptosystem, is described along with

how Adi Shamir broke this cryptosystem. Generating functions are then used to

provide a number of solutions to a knapsack problem. Using the generating function

of the knapsack problem, the paper concludes with an application on the Electoral

College.
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1 0-1 Knapsack Problem

The family of knapsack problems requires that a subset of some given items be chosen

such that a profit sum is maximized without exceeding the capacity of the particular

knapsack. There are many different types of knapsack problems, but for this thesis

we are going to discuss the 0-1 Knapsack Problem. The 0-1 Knapsack Problem is

the problem of choosing a subset of n items, where each item has a profit pi and a

weight wi, which will fit into a knapsack with capacity c. The goal is to maximize

the profit sum without having the weight sum exceed the capacity c. This problem

is formulated as the following maximization problem:

maximize z =
n∑

i=1

pixi

subject to
n∑

i=1

wixi ≤ c

xi ∈ {0, 1}, i = 1, . . . , n,

(1.1)

where xi equals 1 if item i is chosen to be in the knapsack, and 0 if it is not.

A particular case of the 0-1 knapsack problem arises when pi = wi. The objective

of the problem is to find a subset of the weights that is closest to c without exceeding

it. This problem is generally referred to as the Subset-Sum Problem. This problem is

related to the diophantine equation

n∑
i=1

wixi = ĉ

where xi ∈ {0, 1}, i = 1, . . . , n,

(1.2)

such that the optimal solution to the Subset-Sum Problem is the largest ĉ ≤ c for
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which (1.2) has a solution.

The Knapsack Problem has been studied extensively due to its simple structure.

In some sense, knapsack problems are among the simplest integer programming prob-

lems, and also appear as subproblems in many complex programs and integer pro-

gramming algorithms. In the 1950’s, Bellman’s [2] dynamic programming theory

produced the first algorithm to exactly solve the knapsack problem. In 1957, Danzig

[5] studied the knapsack problem and created a method to determine an upper bound

on z that was used in various studies of the knapsack problem. The first branch and

bound algorithm was derived in 1967 by Kolesar [11]. The first polynomial-time ap-

proximation algorithm was proposed by Johnson [8] in 1974. The main results from

the eighties dealt with creating algorithms for large-sized problems. Throughout the

years, the knapsack problem has been vastly studied, including quite recently in 2010

by Howgrave-Graham and Joux [7]. They developed an algorithm for knapsack prob-

lems that runs in the smallest time found.

The Knapsack Problems also have been vastly studied for the past fifty years due

to their immediate applications in industry and financial management. Some of these

applications include capital budgeting, selection of financial portfolios, cargo loading,

the cutting stock problem, and the bin-packing problem. Also, the knapsack problem

has been used to solve many combinatorial and optimization problems, such as a sub-

problem in many famous optimization problems including the traveling sales-person

problem. They were also used in the first cryptosystems that we will discuss later

on in this thesis. Knapsack problems can also be used to predict which presidential

candidate will win an election, which we will show later in this thesis. The following

example demonstrates a simple application of the Knapsack Problem.
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Example 1.1 Suppose you want to invest c = $20 and you are considering 5 invest-

ment opportunities. Investment 1 costs $8 with a return of $10, investment 2 costs $9

with a return of $10, investment 3 costs $3 with a return of $5, investment 4 costs $5

with a return of $2, investment 5 costs $7 with a return of $9, and investment 6 costs

$3 with a return of $1. How can you maximize your the return on your investment

without spending more than c dollars?

This problem can be modeled as a knapsack problem as follows:

maximize z = 10x1 + 10x2 + 5x3 + 2x4 + 9x5 + x6

subject to 8x1 + 9x2 + 3x3 + 5x4 + 7x5 + 3x6 ≤ 20

xi ∈ {0, 1}, i = 1, . . . , 6,

(1.3)

where xi = investment i and equals 1 if investment i is chosen to be in the knapsack,

and 0 if it is not.

The above example is so small that we are able to solve the problem by exhaustive

search or brute force. However, on larger problems enumerating every solution is

quite time consuming and not computationally feasible. In each problem, there are

2n possible solutions. So, although the 0-1 Knapsack Problem has a very simple

structure, it cannot, as of yet, be solved in a time bounded by a polynomial. The

0-1 Knapsack problem is known as an NP−hard problems, meaning that it is very

unlikely that researchers will ever devise polynomial algorithms to solve all instances

of this problem.

The following proof of 0-1 Knapsack Problem being NP−hard is adapted from

Martello and Toth [13]. In order to show that a problem is NP−hard, we show

that for each problem P , its recognition version, R(P ), is NP− hard. We do this
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by showing that a basic NP−hard problem can be polynomially transformed into

R(P ). We will use the following basic NP−hard problem, known as the Partition

Problem, which is originally treated by Karp [10]. The Partition Problem is described

as follows: Given n positive integers w1, . . . , wn, is there a subset S ⊆ {1, . . . , n} such

that
∑

i∈S wi =
∑

i/∈S wi?

Theorem 1.1 0-1 Knapsack Problem is NP−hard.

Proof Consider the recognition version of the Subset-Sum Problem, i.e.: given n+2

integers w1, . . . , wn, c, and a, is there a subset S ⊆ {1, . . . , n} such that
∑

i∈S wi ≤ c

and
∑

i∈S wi ≥ a?

By setting c = a =
∑

i∈S wi/2, any instance of Partition Problem can be polynomi-

ally transformed into an instance of the recognition version of the Subset-Sum Prob-

lem. Thus, the Subset-Sum Problem is NP−hard. And since the Subset-Sum Prob-

lem is a particular case of the 0-1 Knapsack Problem when pi = wi for i ∈ {1, . . . , n},
the 0-1 Knapsack Problem is NP−hard. �

In the next section, we provide an algorithm to solve these problems. Note that

numerous methods have been developed to solve instances of 0-1 Knapsack Problems.

This algorithm is a branch-and-bound algorithm and is used because it helps us

converge to an optimal solution more efficiently without having to always enumerate

all possible solutions. Also, this algorithm is used, since it shows us certain attributes

the 0-1 knapsack problem possesses.
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1.1 Branch-and-Bound Algorithm

1.1.1 Introduction

Since Knapsack problems are NP− hard, we do not know any other exact solution

techniques than completely checking each possible solution to see which is the optimal.

However, we can reduce computational time by using a branch-and-bound algorithm.

A branch-and-bound algorithm is a search method where one has a way of computing

a lower bound on an instance of the problem and a way to divide the problem into

feasible regions to create smaller subproblems. Then, the problem is analyzed in a

systematic. A branch-and-bound algorithm is basically a complete enumeration, but

we find nodes that cannot lead to an improved solution, thus reducing computational

time.

Before proceeding with the description of the algorithm, let us define some terms

first.

Definition 1.1 The efficiency, ei, of a knapsack item i is pi/wi, where pi is the profit

of item i and wi is the weight of item i.

Definition 1.2 The profit sum p̄i and the weight sum w̄i of items up to i is defined

as

p̄i =
i∑

j=1

pj, i = 0, . . . , n,

w̄i =
i∑

j=1

wj, i = 0, . . . , n.

Definition 1.3 When we order a knapsack from greatest efficiency to the smallest

efficiency (i.e. ei > ej when i < j ) and begin to fill the knapsack in a greedy way

(i.e. items i = 0, . . . , n are put into the knapsack as long as wi ≤ c− w̄i−1), the first
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item b that cannot fit into a the knapsack, where w̄b−1 ≤ c < w̄b, is called the break

item.

Definition 1.4 The break solution x′ = {x′
1, . . . , x

′
n} is the solution which occurs

when setting x′
i = 1 for i = 0, ..., b− 1 and x′

i = 0 for i = b, . . . , n.

Also, for our algorithm, we will use the Danzig bound. This is an upper bound on

the solution of the knapsack problem that Danzig showed by linear relaxation. The

bound is

u =

⌊
p̄b−1 +

rpb
wb

⌋
. (1.4)

Pisinger[15] performed a study that provided properties of solutions to 0-1 Knap-

sack Problems that will help in our branch-and-bound algorithm. He discovered that

in most solutions of the knapsack problem, only a few variables far from b differed

from the break solution, i.e. most solutions that differed from the break solution

contained items that were generally close to the break item b. He noted that

• The branching tree of a branch-and-bound algorithm should start with the break

solution and gradually enumerate items from b outwards in a systematic way.

This ensures that the algorithm will ensure fast convergence to the optimal

solution.

• Small-weighted items are used for achieving a filled knapsack, so we should

choose branching variables that will fill the knapsack.

These will be evident in the following algorithm.
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1.1.2 Pisinger’s Algorithm

In order to start Pisinger’s Algorithm, we must first find the break item b. Knowing

this break item, we are able to calculate the Dantzig [5] bound and the break solution,

which will give us a pretty good lower bound to start our branch-and bound algorithm.

Knowing this bound also allows us to reduce the size of the problem by fixing some

variables xi at their optimal value. To find the break item b, we order the efficiencies

ei of each item largest to smallest, i.e. ei ≥ ej where i < j. Then we find b by

determining where w̄b−1 ≤ c < w̄b by filling the knapsack using a greedy method.

Thus, b would be the break item where ei ≥ eb for i = 1, . . . , b − 1 and ei ≤ eb for

i = b − 1, . . . , n. When we have the break item b, we can now determine the break

solution, x′ = (x′
1, . . . , x

′
n), which we will use as our lower bound and initial solution

to the branch-and-bound algorithm.

To systematically enumerate items from b, we will use a recursive algorithm. Thus,

we will either insert or remove one item of the knapsack. At each recursion s and t,

where s < b ≤ t, indicates that the variables xi, where i ∈ [s + 1, t − 1], are fixed

to some value, while the other variables may vary arbitrarily as we begin to add and

remove items. So to gradually expand from b, we first set [s, t] = [b− 1, b].

Then at any stage, we calculate the profit sum p̄ and the weight sum w̄ for our

current value of the solution vector x = (x1, . . . , xn). Note that initially our solution

will be the break solution x′. Then the succeeding iteration will try to make w̄ as

close to the capacity c as possible. That is, if w̄ ≤ c, we will insert each item, one

at a time, i ≥ t, or if w̄ > c, we will remove an item i ≤ s from the knapsack. If we

inserted an item i, set t = i+ 1, or if we removed an item i, set s = i− 1. Doing this

assures we only insert items after i or remove items before i.
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We backtrack the algorithm if the upper bound, u, does not exceed z, where

z = current p̄, i.e. if

u =

⌊
p̄+

(c− w̄pt)

wt

⌋
≤ z, when w̄ ≤ c. (1.5)

u =

⌊
p̄+

(c− w̄ps)

ws

⌋
≤ z, when w̄ > c, (1.6)

That is if our upper bound u does not exceed z, we cannot improve z on the current

branch and we must backtrack to try and improve our z. A problem occurs if no

bound stops the branching, i.e. s may grow below 1 or t may grow above n. To

prevent this from happening, we enter stop items, 0 and n+1, where (p0, w0) = (1, 0)

and (pn+1, ww+1) = (0, 1). This will ensure that if s = 0 or t = n + 1, the upper

bounds will be so bad it will force us to backtrack.

Throughout the algorithm, we do not need to keep track of our current solution

vector x, we only keep track of the items i that differ from the break solution x′, items

where xi �= x′
i. We add these items to an exception list E each time an improved

solution is found. That is, if we add an item i at a stage and (1.5) is true, we set

E = E ∪{i}, which means our solution vector x is different from x′ by including item

i. Similarly, E = E ∪ {i} if we remove item i. Thus, at the end of the algorithm, we

will have our list E that we use to add and remove variables from x′ accordingly.

If we find an optimal solution x, no bounding will stop the iteration. The process

will only stop if one of the following occurs:

E = ∅, (1.7)
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or w̄ > c and i ∈ E �= ∅ : i ≥ b, (1.8)

or w̄ ≤ c and i ∈ E �= ∅ : i < b. (1.9)

If (1.7) occurs, we cannot add and subtract anymore items from our break solution,

thus we have reached the optimal solution. If (1.8) occurs, x is not a solution since

our capacity has been exceeded. If (1.9) occurs, it implies that x is not the optimal

solution, since it can be improved by setting xi = 1 for remaining i ∈ E.

The following example will demonstrate the algorithm.

Example 1.2 In this example, we refer back to Example 1.1. In order to find the

break item b and the break solution x′, we order the knapsack items according to their

efficiencies. This is shown in the following table. Also, start and stop items are added

as discussed previously.

i 0 1 2 3 4 5 6 7

pi 1 5 9 10 10 2 1 0

wi 0 3 7 8 9 5 3 1

In this example, we find that b = 4 and x′ = (111000). Then as the algorithm states,

we initially set (p̄, w̄) = (24, 18), which is what the break solution produces, and set

(s, t) = (3, 4). Since our capacity is c = 20, we see that we need to add a knapsack

item since w̄ < c. In Figure 1, we see that if we add knapsack item 5 and 6 that

the bound u does not improve on our solution. However, when knapsack item 4 is

added, u = 26. So, we calculate our new (p̄, w̄) = (34, 27) with item 4 added to the

solution. Then we check (1.5) and see that it is true, as shown in Figure 1. So, we set

E = E ∪ {4} and continue to branch. Next, we would need to subtract an item since

w̄ > c, as shown in Figure 1. So, continuing in this manner, we find that our optimal

9



Figure 1: Branching tree for Example 1.2

solution is z = 25. In order to find our optimal solution vector x, we look at our set E

and change the x′ accordingly. Figure 1 shows us that E = {2, 4}. The 2 represents

we removed knapsack item 2 and the 4 represents when we added knapsack item 4

as indicated in Figure 1 on whether we added item i or removed item i. Thus, our

optimal solution vector x = (101100). Note that the arrows that point up on Figure

1 refers to when we check if we found an improved solution or not. Also, notice that
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when initially adding item t = 4, then removing item s = 3, and finally adding item

t = 5 to the knapsack, we see that our u does not exceed our current z, so we must

backtrack the algorithm to eventually get to our optimal solution that we found.

Although this algorithm helps to converge to an optimal solution efficiently, we

may often come across problems where a complete enumeration of the branching is

needed. This is due to the fact the Knapsack problem is NP-hard.

2 Cryptosystems

Included in the many applications of the knapsack problem is the ability to create

cryptosystems. Some of the earliest public key cryptosystems were ones formed from

the knapsack problem since it is NP-hard and is believed to be computationally dif-

ficult to solve. With the creation of these cryptosystems, there also came people who

wanted to break them. In this section, we discuss the earliest knapsack cryptosystem

created by Ralph C. Merkle and Martin E. Hellman [14] in 1978. Then we discuss

how, a few years later, Adi Shamir[16] broke the basic Merkle-Hellman knapsack

cryptosystem which led to the fall of the knapsack cryptosystem.

2.1 Basic Merkle-Hellman Knapsack Cryptosystem

The basic idea of the Merkle-Hellman cryptosystem is to create a knapsack problem

which appears to be hard to solve but in actuality is easy to solve. They refer to this

special knapsack as a trapdoor knapsack.
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2.1.1 Creating a Trapdoor Knapsack

First, a private super-increasing set of nonnegative integers S = {si : 1 ≤ i ≤ n},
where for all i

si >
i−1∑
j=1

sj,

is created. Then for any knapsack problem of the form
n∑

i=1

sixi = e, where e ∈ Z
+ and

xi ∈ {0, 1}, xn = 1 if and only if e−
n∑

j=i+1

sjxj ≥ si. Note that your n would have to

be large enough so that this trend will not be evident. If n were small, then we could

just enumerate all possible solutions and find the optimal one.

Example 2.1 Let S = {40, 116, 215, 458, 982, 2024} be a super-increasing set. Find

the solution to

40x1 + 116x2 + 215x3 + 458x4 + 982x5 + 2024x6 = 2279

where xi ∈ {0, 1} for 1 ≤ i ≤ 6. From above, since

2279 > 2024 ⇒ x6 = 1

2279− 2024 = 255 > 215 ⇒ x3 = 1

255− 215 = 40 ⇒ x1 = 1

Therefore, the only solution to the knapsack problem is {1, 0, 0, 1, 0, 1}.

In order to produce a trapdoor knapsack problem, you must choose a decryption

pair (m,w) which is privately known, and where
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m >
n∑

i=1

si, (2.1)

2dn ≤ m ≤ 2dn+1, (2.2)

where d ≥ 1 is called an expansion factor,

1 ≤ w < m, (2.3)

and

gcd(m,w) = 1. (2.4)

To create the trapdoor knapsack, one calculates

ai = wsi (mod m). (2.5)

This creates a pseudo-randomly distributed set A = {ai, 1 ≤ i ≤ n} that is published

publicly. Any person then could take this set A and a binary plaintext and create and

send a ciphertext that only the creator of the cryptosystem would be able to break.

The interpretation of d is that it is the measure of how much longer the ciphertext is

than the plaintext.

The idea of this is that if a person wishes to encode a binary plaintext all they

have to do is use ai, weight values, from the set A and calculate it as a solution to a

knapsack problem, i.e. calculate

n∑
i=1

aixi = e∗.
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The sum of the knapsack is now the ciphertext, e∗, that is sent to be cracked. Since

A has a psuedo-random order and n is large, this knapsack problem is quite difficult

to solve, and it is claimed that only the person who knows S,m, and w would be able

to break the code.

Notice that when calculating e∗, we assume that there may be many other solutions

that also add up to e∗. However, we chose the knapsack weights certain to ensure that

e∗ has at most one solution, so that the plaintext is uniquely recoverable.

In order to decrypt e∗, the creator of the cryptosystem first calculates w−1. Then,

e ≡ w−1e∗ (mod m) is calculated. Finally, the easy knapsack problem
n∑

i=1

sixi = e

where xi ∈ {0, 1} is solved. The solution to this knapsack is the plaintext that the

encoder sent to be decrypted. The following example demonstrates this process.

Example 2.2

Alice chooses a private m = 10015, w = 23 as her decryption pair, and the set

S in Example 2.1 (d = 2 in this case). She then uses (2.5), which creates the set

A = {920, 2668, 4945, 519, 2556, 6492}. Alice publishes A.

Bob wants to encrypt a plaintext, e = 110010, and send it to Alice. So Bob

calculates the ciphertext, 920(1) + 2668(1) + 4945(0) + 519(0) + 2556(1) + 6492(0) =

6144. He then sends Alice the ciphertext e∗ = 6144.

Alice wants to decrypt the message e∗. First, Alice calculates w−1 = 6967. Then

calculates

6144× 6967 (mod 10015),

which is 1138. Now, can Alice can use her super-increasing set S and 1138 to decrypt

Bob’s message.

1138 > 982 ⇒ x5 = 1
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1138− 982 = 156 > 116 ⇒ x2 = 1

156− 116 = 40 ⇒ x1 = 1.

Thus, Alice finds that the message is e = 110010, which is the message that Bob sent.

Therefore, the encryption and decryption were successful.

For their cryptosystem to be secure, Merkle and Hellman suggested that size of

the knapsack problem should contain at least n = 100 knapsack items, m to be chosen

uniformly from [22n+1+1, 22n+2−1], s1 be chosen uniformly from [1, 2n], s2 be chosen

uniformly from [2n +1, (2)2n], s3 be chosen uniformly from [(3)2n +1, (4)2n], and the

si where 4 ≤ i ≤ n be chosen uniformly from [(2i−1−1)2n+1, (2i−1)2n]. This method

ensures that m is still greater than the sum of si’s. Also, to make the set more secure,

one could also use a permutation σ on the set A in order to protect the corresponding

easy knapsack weights, σ would also be part of the trapdoor information.

Not too long after Merkle and Hellman created their knapsack cryptosystem, Adi

Shamir [16] broke the cryptosystem which started a chain reaction for the failure of

various knapsack cryptosystems.

2.2 Attack on the Basic Merkle-Hellman Cryptosystem

Without the trapdoor information, m, w−1, and S , Merkel and Hellman thought

that it would be difficult to crack this cryptosystem. And since solving knapsacks are

hard, they believed that their system was secure. However in 1981, Adi Shamir [16]

discovered a strong attack on the basic Merkle-Hellman cryptosystem. The object

of this attack was to find a decryption pair (w∗,m∗), where w∗
m∗ is sufficiently close

to w−1

m . As we will see, this is possible since any basic knapsack cryptosystem has
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infinitely many decryption pairs.

The following algorithm highlights the attack that Shamir [16] provided. In his

paper, Lagarias outlined the performance of Shamir’s attack on the cryptosystem and

considered all the steps of his attack. Let us refer to this algorithm as Algorithm S,

as does Lagarias.

Step 1. Estimate the modulus m by

m̃ = max
1≤i≤n

ai (2.6)

and estimate the expansion factor d by

d∗ =
1

n
log2(n

2m̃). (2.7)

Step 2. Set

g = max{d∗ + 2, 5}. (2.8)

In this step, we want to find the ai in the public set A that correspond to the g small-

est super-increasing elements of the private set S. Since in most cases the person

creating the cryptosystem will use a permutation σ on the set A, in order to hide

the order of the elements, we must run the rest of the algorithm

(
n

g

)
times until a

solution is found.

Step 3. Solve the integer program

|kia1 − k1ai| ≤ b, 2 ≤ i ≤ g (2.9)
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1 ≤ k1 ≤ b− 1, (2.10)

where

b = �2−n+gm̃
. (2.11)

If a solution (k
(0)
1 , . . . , k

(0)
g ) is found, we create and attempt to solve two new integer

programs by replacing (2.10) by the constraints

1 ≤ k1 < k
(0)
1 (2.12)

and

k
(0)
1 < k1 ≤ b− 1, (2.13)

respectively. If solutions are found for these two new integer programs, we continue

to subdivide the k1 regions according to the values of each k
(i)
1 . For example, if a

solution (k
(1)
1 , . . . , k

(1)
g ) is found for the new constraint (2.12), we would create two

new integer programs with constraints 1 ≤ k1 < k
(1)
1 and k

(1)
1 ≤ k1 < k

(0)
1 respectively.

We continue in this manner until either n log2 n solutions are found, with at most

2n log2 n integer programs examined, or the process produces no further solutions.

Note that although the integer program in Step 3 seems hard to solve, it can

be solved in polynomial. According to Kannan [9], it takes O(g9gL logL), where

L = g log m̃, which is polynomial in terms of g.

Step 4. For each solution (k
(i)
1 , . . . , k

(i)
g ) found in Step 3, calculate the the follow-

ing rational numbers

θ
(i)
j =

k
(i)
1

ai
+

j

n72nm̃
; 1 ≤ j ≤ n7. (2.14)
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Then for each θ
(i)
j , put the rational in lowest terms and set θ

(i)
j =

w∗
j

m∗
j
. Next, we must

check to see if (w∗
j ,m

∗
j) is a decryption pair for the set A. We must see that the

properties (2.3) and (2.4) hold for w∗
j and m∗

j . If these hold, we must calculate

s∗i = aiw
∗−1
j (mod m∗

j) for 1 ≤ i ≤ n. (2.15)

Then if S∗ = {s∗1, . . . , s∗n} is a super-increasing set with 2.1 holding for m∗
j , then the

algorithm succeeds with (w∗
j ,m

∗
j) a decryption pair.

Example 2.3

Eve wants to know what Bob is trying to send to Alice in Example 2.2. All she has

access to is the set A that Alice publicly provided and the ciphertext e∗ = 6144 that

Bob created. Recall, in this example n = 6. She first estimates the modulus m by

(2.6) and d∗ by (2.7) which implies m̃ = 6492 and d∗ ≈ 2.9724. Thus, by (2.8) and

(2.11) , g = 5 and b = 3246 respectively. Now, she can start solving the integer

program that was presented in (2.9) and (2.10). Her integer program would be as

follows:

|2668k2 − 920k1| ≤ 3245

|4945k3 − 920k1| ≤ 3245

|519k4 − 920k1| ≤ 3245

|2556k5 − 920k1| ≤ 3245

(2.16)

1 ≤ k1 < 3246 (2.17)

Thus, an initial solution to the above program would be k(0) = (1, 0, 0, 0, 0, 0). Then
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replacing (2.17) with (2.10) we get a solution k(1) = (2, 0, 0, 0, 0, 0). Continuing in

the manner of Step 3, we can create new integer programs and find new solutions.

Fortunately for this example, we need only the k(1) solution.

Next, Eve moves on to Step 4 to calculate (2.14), in order to find a decryption

pair. She finds that when i = 1, and j = 22687 that

w∗
30764

m∗
30764

=
7270262513

3343913902080
,

which is in lowest terms, so w∗
30764 and m∗

30764 are relatively prime to each other.

She then finds that w∗−1
30764 = 1308506319377. Eve then uses (2.15) to find that S∗ =

{16809078040, 48746326316, 90348794465, 300257634423, 628250247612, 1281714112284}.
Notice that S∗ is a super-increasing set with

m∗
30764 >

n∑
i=1

s∗i .

Therefore, Eve found a decryption pair.

Now, Eve is able to decrypt e∗ by calculating

e∗w∗−1
30764 (mod m∗

30764),

which is 693805651968. Thus,

693805651968 > 628250247612 ⇒ x5 = 1

693805651968− 628250247612 = 65555404356 > 48746326316 ⇒ x3 = 1

65555404356− 48746326316 = 16809078040 ⇒ x1 = 1.
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Therefore, Eve found that the message Bob was trying to send to Alice was e =

110010.

2.2.1 Rationale for Breaking Merkle-Hellman Cryptosystem

We will now discuss the rationale for Algorithm S. Notice that the decryption con-

gruence for 1 ≤ i ≤ n

w−1ai ≡ si (mod m) (2.18)

is equivalent to

w−1ai −mti = si (2.19)

for some ti ∈ Z
+. This implies that

w−1

m
− ti

ai
=

si
mai

, (2.20)

by multiplying (2.19) by 1
mai . Then by subtracting (2.20) and (2.20), when i = 1,

and then multiplying this difference by aia1,we get

tia1 − t1ai =
1

m
(s1ai − sia1). (2.21)

Since we know that
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s1 + s2 + · · ·+ sn < m

s1 + s2 + · · ·+ sn−1

...

s1 + s2 < s3

s1 < s2,

we are able to show that for any super-increasing set S,

0 ≤ si ≤ 2−n+im. (2.22)

We can use this to determine the following bound:

Bound 2.1 For 1 ≤ i ≤ g, |tia1 − t1ai| ≤ 2−n+gm̃.

Proof Case 1: Suppose that s1ai − sia1 ≥ 0 . Then

0 ≤ |s1ai − sia1|

≤ 2−n+1m̃

≤ 2−n+1m̃m

≤ 2−n+gm̃m
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by (2.22) and the fact that 1 ≤ g. Hence,

|tia1 − t1ai| = 1

m
|s1ai − sia1|

≤ 1

m
|2−n+gm̃m|

= |2−n+gm̃|.

Case 2: Suppose that s1ai − sia1 ≤ 0. This implies that sia1 − s1ai ≥ 0. Thus,

0 ≤ |sia1 − s1ai|

≤ 2−n+im̃

≤ 2−n+im̃m

≤ 2−n+gm̃m

by (2.22) and the fact that i ≤ g. Hence,

|tia1 − t1ai| ≤ 2−n+gm̃.

�

So in this case, the integer program in Step 3 has at least one solution, (k1, . . . , kg) =

(t1, . . . , tg).

Now suppose that Step 3 yields a solution (k
(i)
1 , . . . , k

(i)
g ) with k

(i)
1 = t1. Also,

suppose that

1

n2m ≤ a1 ≤ m. (2.23)

Under these assumptions, we can produce the following bound.
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Bound 2.2 Step 4 of Algorithm S is bound to find a pair
w∗

j

m∗
j
. with

∣∣∣∣w
∗
j

m∗
j

− w−1

m

∣∣∣∣ ≤ 2n2

2nm
.

Proof By (2.14) and (2.20),

∣∣∣∣w
∗
j

m∗
j

− w−1

m

∣∣∣∣ =
∣∣∣∣
(
t1
a1

+
j

n22nm̃

)
−

(
s1
ma1

+
t1
a1

)∣∣∣∣
=

∣∣∣∣ j

n72nm̃
− s1

ma1

∣∣∣∣

Case 1: Let
j

n72nm̃
be as large as possible, i.e with j = n7, and let s1

ma1 be as small

as possible, i.e. with s1 = 0. Then

∣∣∣∣ j

n72nm̃
− s1

ma1

∣∣∣∣ ≤ n7

n72nm̃
=

1

2nm̃
≤ 2n2

2nm
.

Case 2: Let s1
ma1 be as large as possible, i.e. with s1 = 2−n+1m by (2.22), and let

j
n72nm̃

be as small as possible. Then

∣∣∣∣ j

n72nm̃
− s1

ma1

∣∣∣∣ ≤ 2−n+1m

ma1
=

2

2na1
≤ 2n2

2nm
by (2.23)

�

Now, let (w∗,m∗) = (w∗
j ,m

∗
j) and define λ by

m∗ = λm. (2.24)
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Then from Bound 2.2, we know that

w∗

m∗ =
w−1

m
+ δ for some δ ∈ R. (2.25)

Then, by (2.24), we know that

w∗ =
w−1m∗

m
+ δm∗

= w−1λ+ δmλ.

Let ε = δm. Then

w∗ = λ(w + ε). (2.26)

Thus, by Bound 2.2,

|ε| ≤ 2n2

2n
. (2.27)

Hence by (2.19), (2.24), and (2.26),

w∗ai −m∗ti = λ(si + εai),

where

|εai| ≤ n2

2n
m.

Then if s∗i = si + εai is a super-increasing set, then (w∗,m∗) will almost always be

a decryption pair. Notice that the λ was dropped, due to the fact that it does not

affect the super-increasing set.

Lagarias [12] then goes on to say that due to the way Algorithm S was created,

the algorithm can only fail if:
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1. The bound in (2.23) can fail to hold.

2. Step 3 may fail to find a solution (k
(i)
1 , . . . , k

(i)
g ) with k

(i)
1 = t1.

3. Step 4 may fail to find a super-increasing set.

He then proceeds to bound each of these failures, which tend to go away as n → ∞.

As we showed before, knapsack problems can not in general be solved in polynomial

time. However, when created in the Merkel-Hellman cryptosystem, they are quite

easy to solve. Although this cryptosystem was a good attempt at creating a secure

cryptosystem, Algorithm S can break the cryptosystem in polynomial time.

Theorem 2.1 Algorithm S runs to completion time in O(ng+10L logL) where L =

g log m̃.

Proof In order to perform Step 1 of Algorithm S, it has a runtime of O(n log n) find

m̃. According to Kannan [9], it takes O(g9gL logL) to solve the integer program of Step

3. And it takes a runtime of O(n7) for Step 4. And , we need to perform

(
n

g

)
,which

is O(ng), until a solution is found and solve at most 2n log2 n integer programs. Thus,

combining these runtimes, we get a total runtime of O(ng+9g9g(2 log2 n)(log n)(L logL)).

And since 2g9g is a constant and O(log2 n log n) ≤ O(n),

O(ng+9g9g(2 log2 n)(log n)(L logL)) ≤ O(ng+10(L logL)).

�

Many other attempts at creating a knapsack cryptosystems have been approached,

but their security was in question. Merkle and Hellman [14] created an iterated version

of the cryptosystem that was discussed in this thesis that appeared to be very secure.
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However, shortly after the original cryptosystem was broken by Shamir [16], Ernest

Brickell [3] broke the iterated knapsack method in 1988. Another attempt was at

the knapsack cryptostem was created by Chor and Rivest [4] in 1985. However, this

was also broken by Serge Vaudenay [18]. Many other attempts at creating a secure

knapsack cryptosystem have been approached, but have not had the power to sustain

attacks.

3 Generating Functions

In this section, we describe what is a generating function and how you can represent

a knapsack problem as a generating function. Also, we use the generating function of

a knapsack problem and apply it to the presidential race.

3.1 Introduction

Generating functions are used to solve many combinatorial problems, including selec-

tion and arrangement problems with repetition. The following gives the definition of

a generating function.

Definition 3.1 Suppose cr is the number of ways to select r objects from n objects,

then g(x) is a generating function for cr if g(x) has the polynomial expansion

g(x) = c0 + c1x+ · · ·+ crx
r + · · ·+ cnx

n.

The definition of a generating function allows us to understand the interpretation of

the generating function. Suppose we have g(x) as in Definition 3.1. Then in order to

determine the number of ways to select r objects from n objects, all we have to do is
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find the coefficient of xr (i.e. cr) and that is the number of ways to select r objects

from n objects. A famous example of a generating function is the binomial expansion,

(1 + x)n = 1 +

(
n

1

)
x+ · · ·+

(
n

r

)
xr + · · ·+

(
n

n

)
xn.

Here, g(x) = (1 + x)n is the generating function for cr = C(n, r).

The following example demonstrates a combinatorial problem than can be solved

using a generating function.

Example 3.1 Find the number of ways to select five balls from three green, three

white, and four red balls.

The desired generating function to solve this problem is

g(x) = (1 + x+ x2 + x3)2(1 + x+ x2 + x3 + x4). (3.1)

Here, the (1 + x + x2 + x3)2 term represents the number of green and white balls

available and the (1 + x+ x2 + x3 + x4) represents the number of red balls available

then expanding (3.1) , we get that

g(x) = 1 + 3x+ 13x4 + 6x2 + 10x3 + 14x5 + 13x6 + 10x7 + 6x8 + 3x9 + x10.

Thus, there are 14 ways to choose five balls from the given balls.

We can also find the number of solutions to a knapsack problem by finding a

generating function for the problem. Suppose that we have the following knapsack

problem
n∑

i=1

aixi = c,
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where xi ∈ {0, 1}. A generating function for this problem is given by

k(v) = (1 + va1)(1 + va2) · · · (1 + van).

Then in order to find the number of solutions with capacity c, we would expand k(v)

and find the coefficient of the vc term. For example, suppose we have the following

knapsack problem

8x1 + 3x2 + 4x3 + 6x4 + 2x5 + x6 = 17.

Then the generating function for this knapsack problem would be

k(v) = (1 + v8)(1 + v3)(1 + v4)(1 + v6)(1 + v2)(1 + v).

Then expanding k(v) we get

k(v) = 1 + v + v2 + 2v4 + 2v5 + 3v6 + 3v7 + 3v8

+ 4v9 + 4v10 + 4v11 + 4v12 + 4v13 + 4v14 + 4v15

+ 3v16 + 3v17 + 3v18 + 2v19 + 2v20 + 2v21

+ v22 + v23 + v24.

Thus, by looking at the v17 term, we get there are three solutions to the presented

knapsack problem.

In the next section, we will use the knapsack problem and its generating functions

to help us predict a presidential race using electoral votes.
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3.2 Predicting the Presidential Election

Throughout the history of the United States of America, there have been four times

that the elected president did not receive a majority of the popular vote, in 1824, 1876,

1888 and 2000. In each of these elections, the Electoral College elected a president

whom the majority of the people did not support. This can happen since that each

citizen’s vote does not count directly toward the presidential candidate, each vote

goes toward an electoral candidate. Each state and Washington D.C. is allowed a

different number of votes toward the presidency, equal to the amount of senators and

representatives that they have. This way, smaller states are not lost in the vote and

large states get the representation due to their population. There are a total of 538

Electoral College Votes. Table 1 shows the number of votes that each state has for

the 2012 election. In each state other than Maine and Nebraska, the winner takes

all Electoral College votes. A winner of the election is determined if the candidate

receives a majority of the electoral votes, i.e. at least 270 of the votes. There is a

chance of a tie, which will be demonstrated. If a tie does occur, then another election

system process is set off in the House and Senate.

We set up a knapsack problem to help us determine the probability that the

Electoral College vote produces a tie. Let xj be equal to one if the Republican

candidate is chosen and zero otherwise, for j = 1, ..., 51. And we must find the number

of solutions to

55x1 + 38x2 + · · ·+ 3x49 + 3x50 + 3x51 = 269,

which will determine the possible number of ties. From our section on generating

functions, we can easily determine this number. The generating function for this
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State Vote Proj. State Vote Proj. State Vote Proj.
CA 55 O MO 10 U UT 6 R
TX 38 R MD 10 O NE 5 O
NY 29 O MN 10 O NM 5 U
FL 29 U WI 10 U WV 5 R
PA 20 U AL 9 R HI 4 O
IL 20 O CO 9 U ID 4 R
OH 18 U SC 9 R ME 4 O
MI 16 U LA 8 R NH 4 U
GA 16 R KY 8 R RI 4 O
NC 15 U CT 7 O AK 3 R
NJ 14 O OK 7 R DE 3 O
VA 13 U OR 7 O DC 3 O
WA 12 O IA 6 U MT 3 R
MA 11 O AR 6 R ND 3 R
IN 11 R KS 6 R SD 3 R
AZ 11 R MS 6 R VT 3 U
TN 11 R NV 6 U WY 3 R

Table 1: Number of electoral votes for 2012 and the projected states for (O)bama,
(R)epublican, and (U)ndecided [1].

problem is

k(v) = (1 + v55)(1 + v38) · · · (1 + v3)(1 + v3)(1 + v3).

Then expanding the solution and finding the coefficient of the v269 term. We determine

that there are t = 16, 976, 480, 564, 070 ways to have a tie. And since there are 251

possible solutions to this knapsack problem,

P (tie) =
t

251
≈ 0.0075.

We can also predict the probability that President Obama or the Republican

candidate will win the 2012 presidential election as of the time of this document. Table

1 shows which states the two candidates are predicted to win and which states are
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undecided, as of April 19, 2012. According to the polling data [1], President Obama

currently predicted to have 198 electoral votes, so he needs at least 62 votes from the

remaining 14 undecided states. We can determine President Obama’s probability of

winning the 2012 election by creating the following knapsack problem. Let xj, where

1 ≤ j ≤ 14, be one if Obama wins the undecided state j and zero otherwise. We must

then determine the number of solutions to the equation

29x1+20x2+18x3+16x4+15x5+13x6+10x7+10x8+9x9+6x10+6x11+5x12+4x13+3x14

that is greater than or equal to 62. Therefore, we create the generating function

k(v) = (1 + v29)(1 + v20) · · · (1 + v4)(1 + v3).

After expanding and summing all the coefficients to the vk terms, where k ≥ 62, we

find that there are 12781 solutions to this problem. Thus assuming each candidate

has the same probability of winning an undecided state, the probability of President

Obama winning the 2012 presidential election is

P (ObamaWinning) =
12781

214
≈ 0.78.

Therefore, as of April 19, 2012, President Obama has a high probability of being

reelected. Of course, these numbers may change as new information affects polling

data and a person’s preference.

As demonstrated, the knapsack problem has many real world applications, includ-

ing being used to see the probability of a candidate winning a presidential election.
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4 Conclusion

As you can see, the 0-1 Knapsack Problem is a surprising and powerful problem. In

spite of its simple structure, it has a vast amount of applications. Recall, we provided

just a few applications of this problem, although there are many. There are many

algorithms to obtain an optimal solution to the problem; we provided a branch-and

bound algorithm to perform this task. New ways to solve the knapsack problem and

improve on existing ways will continue to be developed. Of course, until theNP−hard

issue is resolved, these will always be knapsack problems that are simply too large to

solve. The 0-1 Knapsack Problem has been studied extensively throughout the past

fifty years and will continue to be analyzed.
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