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ABSTRACT

A program was written in the statistical software package R for conducting Monte

Carlo studies based on simulated life tables, and then used in a study to compare two

different models for predicting life table probabilities of death. A parametric proba-

bility model was used by the program to generate the cohort distribution of deaths,

based on supplied life table data. For the present study a cohort life table was con-

structed using mortality data from the Social Security Death Index, Master File. The

models evaluated in the present Monte Carlo study are alternative three-parameter

versions of the logistic force of mortality model. The models were fit to simulated life

table data for ages 80 to 99, and then used to make probability of death predictions

for ages 80 to 105. The Monte Carlo simulations were used to obtain the average val-

ues and standard deviations of the probability of death predictions generated by the

two models, which were then compared to one another and to the actual probabilities

of death based on the probability model that generated the simulated life table data.

Results of the simulations showed that the mean probabilities of death predicted by

the two models were very similar over the range of ages considered, but usually de-

viated somewhat from the actual probabilities of death. In the age range of 80-99,

the average percentage deviation was less than 2% for each model, while in the age

range of 100-105, the average percentage deviation for the models was around 5-6%.

In the age range of 100-105, both models always underestimated the true probability

of death.
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1 Introduction

In this research, a program was written in the statistical software package R for
conducting Monte Carlo studies based on simulated life tables, and then used in a
study to compare two different models for predicting life table probabilities of death.
Simulation of life tables has previously been implemented in other studies. For ex-
ample, Scherbov and Ediev (2011) used a simulation-based approach in studying life
expectancy estimation, with a special emphasis on small populations. As noted by
Scherbov and Ediev, preceding their work were other simulation-based studies related
to life expectancy, including those by Silcocks et al (2001), Toson et al (2003), Eayres
and Williams (2004), and Williams (2005). Howard (2011) used a simulation-based
approach in a study concerning the problem of completing life tables for non extin-
guished cohorts. The present study uses a Monte Carlo simulation-based approach in
comparing predictions of life table probabilities of death generated by different force
of mortality models. The models evaluated in the Monte Carlo study are alternative
three-parameter logistic force of mortality models.

A logistic force of mortality model was first empirically proposed by Wilfred Perks
in 1932 (Thatcher, 1998). He proposed a model that included a term for childhood
mortality (kc−x), as given by the following equation (Tabeau, 2001)

μx =
A+Bcx

kc−x + 1 +Dcx
.

R.E. Beard, who was a colleague of Perks, later presented a logistic model that
he referred to as a Perks model, which did not include a term for childhood mortality
(Horiuchi and Coale, 1990). Beard was also the first to derive a logistic force of mor-
tality model under theoretical assumptions, given in a 1959 paper as follows (Beard,
1959; Beard, 1971)

μk = α +
(p+ 1)βeλk

(γλ− β) + βeλk
. (1)

In Equation (1), p and γ relate to the Gamma distribution that Beard used in his
derivation of the logistic model. Beard assumed a heterogeneous population with
members belonging to groups governed by a Makeham form of the force of mortality,
μs
k = α + βseλk, where s is a “longevity” factor which is drawn from a Gamma

distribution φ(s) = κspe−γs for 0 ≤ s < ∞ (Beard 1959; Beard, 1971). It is thus
easy to understand why the logistic model that Beard derived is also known as the
gamma-Makeham model.
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The logistic model used in this thesis is of the form given in Equation (2) (Thatcher,
1999)

μx =
καeβx

1 + αeβx
+ γ . (2)

In Equation (2), the parameter γ is not the same as the γ in Equation (1), but instead
is just α with a different name, and the parameter β is just λ with a different name.
The parameter α is also not the same as the α in Equation (1).

The model can be broken down into two components which combine to give the
total force of mortality at a given age. The first quantity on the right side of Equation
(2) is called the senescent force of mortality, which depends upon the age of the
individual. The second component, which can be referred to as the background force
of mortality, is given by γ in Equation (2). This force of mortality does not vary with
age, but makes a greater relative contribution to the total force of mortality at young
adult ages, when the quantity αeβx is small (See Bongaarts, 2005; Thatcher, 1999).
All of the parameters in the model should theoretically be positive values (compare
Horiuchi and Coale, 1990, and Thatcher, 1999) .

In a study published in 1999, Thatcher proceeded under the assumption that
κ = 1 and fit historical life table data using a simpler three-parameter logistic force
of mortality model as given by

μx =
αeβx

1 + αeβx
+ γ . (3)

The force of mortality model given in Equation (3) will be referred to as the three-
parameter logistic model with gamma (G-model) in this paper. Bongaarts fit the
G-model to mortality data from 14 different countries in a study published in 2005,
and some of his results will be presented later when discussing the results of the
Monte Carlo study of the present work.

If no assumption about the parameter κ is made, but instead one assumes that
γ = 0, an alternative three-parameter logistic model is obtained, as given in
Equation (4)

μx =
καeβx

1 + αeβx
. (4)

This type of logistic model is attributed to Beard (Beard, 1959; Beard, 1964; Beard,
1971; Horiuchi and Wilmoth, 1998; Tabeau, 2001; Doray, 2008). It may also be
referred to as a gamma-Gompertz model, but in this paper it will be referred to as
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the three-parameter logistic model with kappa (K-model).
The G-model and the K-model are the focus of the Monte Carlo simulation study

conducted as part of this thesis. The life table probabilities of death predicted by the
models are compared using a Monte Carlo simulation which estimates their expected
values by the average values calculated over many simulated life tables. The standard
deviations of the predicted probabilities of death are also obtained. The Monte Carlo
simulation program developed in this thesis uses a parametric probability model to
generate the cohort distribution of deaths, providing for simulation of the life tables in
the Monte Carlo study. Actual life table data supplied to the Monte Carlo simulation
program determines the probability of death parameters for the probability model
that generates the simulated life table data. A cohort life table was constructed for
the present study using mortality data from the Social Security Death Index, Master
File (DMF) of the Social Security Administration of the United States of America.

Supporting functions employed by the Monte Carlo simulation program provide
for automated nonlinear least squares (NLS) estimation of the parameters in each of
the three-parameter logistic force of mortality models when fitting the models to the
simulated life table data for a specified range of ages. The NLS parameter estimates
are then used to determine probability of death predictions based on each of the
models, for a specified range of ages, which may differ from the range of ages used
in NLS estimation. The Monte Carlo simulation allows for calculation of the average
values and standard deviations of the probability of death predictions generated by
the two models, at all specified ages, and these average values can then be compared
to the probability of death parameters of the stochastic model used to generate the
simulated life tables.

2 Background

2.1 Probability and Statistics Review

The parametric probability model used in the Monte Carlo simulation program to
generate simulated life table data is a joint distribution of discrete binomial random
variables, which are the number of deaths at each age considered. We therefore
first review some probability theory of discrete random variables and the binomial
distribution, as follows or is adapted primarily from Casella and Berger (1990).

Define the sample space of a discrete random variable X as the set of all possible
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real-number values that X can take.
The probability mass function (pmf), denoted by fX(x), of the discrete random

variable X gives the probability that X will take on a specific value x, for all values
of x. This may be written as

fX(x) = P (X = x) ∀x .

The pmf of any discrete random variable X must be nonnegative for all values of x,
and the sum of the values of the pmf over all values of x must be unity. In other
words, the pmf must satisfy the following two properties:

1. fX(x) ≥ 0 ∀x

2.
∑

x fX(x) = 1 .

Define the support set χ of a discrete random variable X as the set of all values of X
such that fX(x) is positive, as given below

χ =
{
x : fX(x) > 0

}
.

Then the expected value of a discrete random variable X, denoted by E(X), is
given by

E(X) =
∑
x∈χ

xfX(x) .

Furthermore, the expected value of g(X), where g is a function of the discrete
random variable X, is given (if the sum exists) by

Eg(X) =
∑
x∈χ

g(x)fX(x) .

The value Eg(X) is said to not exist when E|g(X)| = ∞.
The variance of a discrete random variable X, denoted by Var(X) or σ2, is given

by

Var(X) = E[X − E(X)]2

and the standard deviation of X is then given by

σ(X) =
√

Var(X) .
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In the parametric probability model used in the Monte Carlo simulation program,
the distribution of cohort deaths at a given age is assumed to be binomial. The pmf
of a random variable having a binomial distribution is given by

fX(x) =

(
n

x

)
px(1− p)n−x x = 0, 1, . . . , n

where n is a positive integer, and p is a value in the interval [0,1].
The two parameters of a binomial distribution are thus n, the size parameter, and

p, the probability parameter. When a random variable X has a binomial distribution
with parameters n and p, we may indicate this by writing X ∼ binom(n, p). For a
random variable X ∼ binom(n, p), the expected value and variance of X are given by

E(X) = np

Var(X) = np(1− p) .

The parametric probability model used in the Monte Carlo simulation program
involves a multivariate random variable that represents the number of deaths at each
different age being considered. We therefore now extend our review of probability
theory to multivariate random variables and distributions, still following or adapting
the treatment by Casella and Berger (1990), but with the use of partitions inspired
by the treatment of Dunn and Shultis (2012).

A multivariate discrete random variable X = (X1, . . . , Xn) has a joint pmf fX(x)

given by

fX(x) = P (X1 = x1, . . . , Xn = xn) ∀x ∈ Rn .

Then fX(x) satisfies the following:

P (X ∈ A) =
∑
x∈A

f(x) ∀A ⊂ Rn .

The expected value of g(X), where g(x) is a function that is real-valued, and that
is defined on the subset of Rn that is the sample space of X, is given by

Eg(X) =
∑
x∈Rn

g(x)f(x)
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and the variance of g(X) is given by

Var[g(X)] = E[g(X)− Eg(X)]2 .

Let C = (C1, . . . , Ck) ⊂ X and D = (D1, . . . , Dn−k) ⊂ X such that
{
C,D

}
forms a partition of X. Then the marginal distribution of C is given by the pmf

f(c) =
∑

d∈Rn−k

f(x) ∀c ∈ Rk .

Given C and D as defined above, the conditional pmf of C given d is given by

f(c|d) = f(x)

f(d)
.

For example, suppose C = X1 and D = (X2, . . . , Xn). Then the marginal distri-
bution of X1 is given by

f(x1) =
∑

(x2,...,xn)∈Rn−1

f(x1, . . . , xn)

and the conditional pmf of X1 given d = (x2, . . . , xn) is given by

f(x1|x2, . . . , xn) = f(x1, . . . , xn)

f(x2, . . . , xn)

or equivalently

P (X1 = x1|X2 = x2, . . . , Xn = xn) =
P (X1 = x1, . . . , Xn = xn)

P (X2 = x2, . . . , Xn = xn)
.

Finally, two limit theorems that are significant in the theoretical basis of Monte
Carlo simulation are the Law of Large Numbers and the Central Limit Theorem
(Dunn and Shultis, 2012). We therefore present each of these below, as follows from
Rizzo (2008).

Theorem 1. Strong Law of Large Numbers. Let ε > 0 and X1, . . . , Xn be ran-
dom variables that are identically distributed such that E|X1| < ∞ and E(X1) =

μ, and such that the random variables are pairwise independent. Define Xn =
1
n

∑n
i=1Xi for n = 1, 2, . . .. Then

P ( lim
n→∞

|Xn − μ| < ε) = 1 .

6



We say that as n approaches infinity, Xn converges to μ almost surely. Thus the
sample mean approaches the population mean as the size of an appropriately chosen
sample becomes large. In the case of a Monte Carlo simulation, the sample mean is
the Monte Carlo estimate of some expected value, and based on the Strong Law of
Large Numbers this estimate approaches the expected value as the number of histories
in the simulation gets large (Dunn and Shultis, 2012).

Theorem 2. Central Limit Theorem. Let X1, . . . , Xn be random variables that are
independent and identically distributed such that E(Xi) equals μ and such that
0 < Var(Xi) < ∞, and define

Zn =
X − μ

σ/
√
n
.

Then Zn is distributed asymptotically as a normal distribution with mean zero and
variance one (Zn ∼ N(0, 1)).

This means that for any probability distribution that satisfies the variance con-
dition stated above, the mean of an appropriately chosen sample is asymptotically
distributed as N(μ, σ2/n) (Dunn and Shultis, 2012; Casella and Berger, 1990). Thus
as the sample size n gets large, the sample mean X approaches the distribution mean
μ, and the variance of X approaches σ2/n , which clearly gets smaller and smaller as
the sample size n gets larger and larger (Dunn and Shultis, 2012).

2.2 Monte Carlo Method

In her book, Statistical Computing with R, Maria Rizzo states,

“Monte Carlo methods encompass a vast set of computational tools
in modern applied statistics...[and] may refer to any method in statistical
inference or numerical analysis where simulation is used” (Rizzo, 2008).

Monte Carlo methods rely on repeated sampling, not by obtaining new samples again
and again from the actual phenomena being studied, but by obtaining simulated
samples. These samples may be generated by resampling from a real sample, or
by modeling the way that real samples are generated, and using random numbers to
obtain simulated random samples based on the model (Rizzo, 2008; Dunn and Shultis,
2012). The latter approach is the method employed in the Monte Carlo study of this
thesis.
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Sampling is at the heart of Monte Carlo methods (Gentle, 2003). Dunn and
Shultis state,

“The analysis technique called Monte Carlo is, in essence, a method-
ology to use sample means to estimate population means” (Dunn and
Shultis, 2012).

There is uncertainty in these Monte Carlo estimates of expected values, and the
variance of the sample mean can be used to estimate this uncertainty (Dunn and
Shultis, 2012).

When predicting life table probabilities of death using the three-parameter logistic
models evaluated in the Monte Carlo study of the present work, and samples of
life table data generated from the specified probability distribution, the predicted
probabilities of death obtained from a given model will vary depending on the sample
chosen, since the parameter estimates are based on the given sample, and the samples
are subject to random variation. The predicted probability of death at a given age
and for a given model is a random variable itself with some probability distribution.
If many samples are randomly drawn from the probability distribution that generates
the simulated life table data, and probability of death predictions are generated for
each sample using the estimated parameter vectors found when fitting the models
to each sample, random variates from the distributions of the probability of death
predictions at each age may be obtained (adapted from Rizzo, 2008, by extending to
a function of an estimator). Estimates of the expected values and standard deviations
of the predicted probabilities of death may then be found (Dunn and Shultis, 2012;
see also Davidian, 2005). This is the Monte Carlo approach used in the simulation
program and study presented in this thesis. The following treatment includes elements
adapted/extended or that follow from Dunn and Shultis (2012), Rizzo (2008), and
Davidian (2005).

More formally, we may observe that in a given history of the Monte Carlo simula-
tion, the probability of death prediction for age x, q̂x, is a function of the estimator,
θ̂, which estimates the parameters of either the K-model or the G-model, and we
can show this explicitly as q̂x(θ̂). In each history of the Monte Carlo simulation
we randomly draw a sample d = (d1, . . . dn) that is generated from the simulated
distribution of the multivariate random variable D, which represents the number of
deaths at each age being considered when fitting the models. Now θ̂ is a function
of D = (D1, . . . , Dn), and so we can write θ̂(D) (Rizzo, 2008). Therefore q̂x is a
function of D through θ̂ and we can show this explicitly by writing q̂x(D). Since
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D is a random variable, the function q̂x(D) is also a random variable (Casella and
Berger, 1990), and therefore its behavior is governed by some pmf. Our goal is to
estimate the expected value and variance of the random variable q̂x(D).

We may not know the pmf of q̂x(D), but we can use the Monte Carlo method to
estimate the expected value of q̂x(D), E(q̂x(D)), by the sample mean, ¯̂qx, using the
following formula

¯̂qx =
1

m

m∑
i=1

q̂x(d
i)

where m is the number of histories of the Monte Carlo simulation and q̂x(d
i) is the

predicted probability of death based on the sample di randomly drawn from the
simulated distribution of D in the ith history of the Monte Carlo simulation (Dunn
and Shultis, 2012; see also Rizzo, 2008, and Davidian, 2005).

Due to uncertainty in the Monte Carlo estimate of E(q̂x(D)), the variance of ¯̂qx

should also be calculated (Dunn and Shultis, 2012; Gentle, 2003). Since the estimate
E(q̂x(D)) is really a sample mean, being ¯̂qx, and since the samples q̂x(di), i = 1, . . . ,m

are generated independently and identically (i.e. randomly) from the distribution of
q̂x(D), the variance of ¯̂qx is given by

Var(¯̂qx) =
σ2

m

where σ2 is the variance of q̂x(D) and m is the number of samples drawn from that
distribution in the simulation (Dunn and Shultis, 2012). The Monte Carlo sample
variance s2 can be used to estimate σ2, as given by the following formula

s2 =
1

m− 1

m∑
i=1

(q̂x(d
i)− ¯̂qx)

2

(Dunn and Shultis, 2012; see also Davidian, 2005). Then the variance of ¯̂qx can be
approximated as

Var(¯̂qx) � s2

m
=

1

m

[
1

m− 1

m∑
i=1

(q̂x(d
i)− ¯̂qx)

2

]

(Dunn and Shultis, 2012; see also Davidian, 2005). The standard deviation of ¯̂qx is
then just

√
Var(¯̂qx).

By the Central Limit Theorem, the Monte Carlo sample mean, ¯̂qx, is asymptoti-
cally distributed N(μ, σ2/m), where μ = E(q̂x(D)) (Dunn and Shultis, 2012). Thus
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the Monte Carlo estimate of the variance provides a measure of the uncertainty in
how well the Monte Carlo estimate of the expected value estimates the true expected
value, and confidence intervals can be constructed about the estimate (Dunn and
Shultis, 2012).

There are other statistics that Dunn and Shultis present as also being important
in assessing the results of a Monte Carlo simulation. One such statistic is the relative
error, R, which is the ratio of the standard deviation of the mean to the mean (Dunn
and Shultis, 2012). In the present context R is given by

R ≡
√

Var(¯̂qx)
¯̂qx

.

Dunn and Shultis (2012) cite a work produced by Los Alamos National Laboratories
(MCNP, 2003) when stating that the value of R from a good simulation should usually
be no more than 0.05. Other measures for assessing the results of a Monte Carlo
simulation include the figure of merit, variance of the variance, and assessment of the
underlying probability distribution (see Dunn and Shultis, 2012, for details).

The Monte Carlo method can also be used to estimate the expected values and
standard deviations of the life table estimates of the probabilities of death, q̂x = Dx

Nx

(which are actually the maximum likelihood estimates). The Monte Carlo estimates
of the predicted probabilities of death determined from each of the three-parameter
logistic models may be compared with one another and with the actual probability
of death parameters used to generate the simulated life table data. The standard
deviations of the probabilities of death predicted by the models may also be compared
to one another and to the standard deviations of the life table (maximum likelihood)
estimates of the probabilities of death.

2.3 Random Number Generation

The “random” numbers used in Monte Carlo simulations often are not truly random
but rather pseudorandom, generated from some algorithm that produces a sequence
of numbers that appears to be random. References to random number generation in
this paper will simply use the word random, though the fact that the numbers are
only pseudorandom should still be kept in mind. The quality and properties of the
specific random number generator (RNG) used in a Monte Carlo simulation study
should also be considered. The following discussion of random number generation
and the generator used in the Monte Carlo simulation program developed as part of
this thesis follows from the work of Gentle (2003).
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Among the different types of RNGs that have been developed is the simple linear
congruential generator. This generator can be written in the form

xi ≡ (axi−1 + c)modm 0 ≤ xi < m .

It can be seen that each pseudorandom number generated is simply the modular
reduction of a linear combination of the preceding number generated in the random
sequence. We may recall that the modular reduction of a number n by a modulus m
is the remainder of the quotient n

m
. For example, 4 ≡ 9mod 5. Because the simple

linear congruential generator produces a number based on the preceding value in the
sequence, in order to begin a sequence, a seed must be supplied to the generator,
which is the initial value of xi−1. An additional fact to note is that by dividing each
xi by the modulus m, a sequence of random numbers is generated in the interval
(0, 1), and for appropriate values of the multiplier a and modulus m, an apparently
random uniform (0, 1) distribution of numbers can be generated (Gentle, 2003).

From the above equation it can be seen that if c = 0, then each random number
is simply the modular reduction of a fixed multiple of the preceding number, where
now 0 < xi ≤ m, and the RNG is a multiplicative congruential generator. It is
also possible to have what may be referred to as a multiple recursive multiplicative
congruential generator, in which each random number generated is a function of the k
preceding numbers in the random sequence, with k > 1. There are then k multipliers
(a1, . . . , ak) and the generator has order k.

One of the properties of a RNG that should be considered is the period or cycle
length of the generator. The sequence of numbers produced by a RNG will eventually
begin repeating itself, and the period of a RNG is the amount of numbers that are
produced before this occurs. Gentle states,

“For a random number generator to be useful in most practical simple
applications, the period must be of the order of at least 109 or so...”
(Gentle, 2003).

There are other properties of a RNG that are also important, and various tests have
been devised to check the quality of a generator (see Gentle, 2003, for details).

According to Gentle,

“... although the simple linear congruential generator forms the basis
for many good random number generators, by itself it is generally not
adequate for serious applications” (Gentle, 2003).
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One of the reportedly good generators that is based upon the simple linear congruen-
tial generator is the Wichmann-Hill Generator, which is the RNG used in the Monte
Carlo simulation program developed in this thesis. The Wichmann-Hill RNG is a
combined generator that uses three linear congruential generators as source genera-
tors. Each of these source generators produces a sequence of numbers as given by the
equations

xi ≡ 171xi−1mod 30269

yi ≡ 172xi−1mod 30307

zi ≡ 170xi−1mod 30323 .

Each triplet of numbers (xi, yi, zi) generated by the source generators is then
linearly combined and reduced modular 1 to yield a random number in the interval
(0, 1), as given by

ui ≡
(

xi
30269

+
yi

30307
+

zi
30323

)
mod 1 .

Gentle states that the Wichmann-Hill generator “...has good randomness proper-
ties...[and] is useful...for common applications” (Gentle, 2003). He also states that
the generator has a period on the order of 1012. Dunn and Shultis (2012) and Gen-
tle (2003) both cite a study by DeMatteis and Pagnutti (1993) as supporting that
the Wichmann-Hill generator has favorable higher-order autocorrelation properties.
However, it should also be noted that Gentle does not think it likely that any one
RNG is the choice for all uses, and even recommends the idea of using multiple RNGs
with multiple seeds when part of an application (Gentle, 2003). Gentle describes a
number of tests that can be utilized to test a RNG, and suggests that

“...before using a random number generator, it is wise to apply ad
hoc goodness-of-fit tests that may uncover problems in that particular
application, [though] it is desirable that the quality of the output of the
generator not be dependent on specific transformations or on a specific
seed” (Gentle, 2003).

As alluded to in the preceding quote, random samples generated from various proba-
bility distributions other than uniform(0,1) may be desired. Such is the case when life
table data is simulated in the Monte Carlo study of this thesis. The parametric prob-
ability model for generating cohort deaths requires the generation of random samples
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from the binomial distribution. The random numbers generated by a RNG can be
used in algorithms that generate random samples from various probability distribu-
tions, including the binomial. There are different approaches that can be taken when
generating such random samples (See Gentle, 2003, for details), and when consider-
ing the amount of random numbers needed in a particular Monte Carlo simulation,
it should be understood that these transformations may require many more random
numbers than the size of sample being generated.

In the Monte Carlo simulation program developed as part of this thesis, random
samples are generated from the binomial distribution using the standard rbinom func-
tion in R. The function rbinom uses what Gentle describes as an efficient method to
generate random numbers from the binomial distribution, given by Kachitvichyanukul
and Schmeiser (1988) (R Documentation; Gentle, 2003). The Monte Carlo simulation
study conducted in the present work simulated life tables that contain survival figures
for ages 80 to 106+. This required the generation of 26 random numbers from the
appropriate binomial distributions modeling the number of deaths at age 80 to 105.

By determining the expected number of uniform random variates required to gen-
erate each of the binomial random variates under the method of Kachitvichyanukul
and Schmeiser (1988), over all histories of the Monte Carlo simulation, we are able to
determine the total expected number of uniform(0,1) random variates generated by
the RNG in the Monte Carlo simulations conducted in the present study. Functions
were written in R to carry out these calculations, and this is described in Appendix
7.2. Using the functions supplied with data generated by the simulations, the ex-
pected number of random numbers generated by the RNG in the simulations was
found to be approximately 8.95E04. This is well below the period of the Wichmann-
Hill generator, which is on the order of 1012.

2.4 Nonlinear Least Squares Estimation

The following brief presentation of nonlinear regression theory follows from the treat-
ment of Bates and Watts (2007). A nonlinear regression model includes a dependent
random variable whose behavior is modeled by a deterministic component, the ex-
pectation function, and a stochastic component, which models the randomness in the
response of the dependent variable. The deterministic component is a function of
independent variables (or regressors) and parameters, and models the expected re-
sponse of the dependent variable, based on the state of the independent variables and
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the parameter values. The stochastic component models the uncertainty of the re-
sponses, as they are not exactly determined by the state of the independent variables
but experience random variation, or disturbances, about the expected responses.

A nonlinear regression model may be expressed in the following form

Y = η(θ) +Z

where Y is a vector of n dependent (or response) variables, Z is a vector of n random
variables (or disturbances) that define the stochastic behavior of Y , and where η(θ)

consists of n vectors that define the deterministic behavior of Y , given by the functions

ηi(θ) = f(X i,θ) i = 1, 2, . . . , n

with X i being a vector of independent variables and θ being the parameter vector.
The difference between the nonlinear and linear regression models is that in the

linear model the response variables are linear functions of the parameters, while in the
nonlinear model the response variables are nonlinear functions of the parameter vector
with respect to one or more parameter. Thus, the linearity versus nonlinearity of the
regression model is with respect to the parameters, not the independent variables.

Nonlinear regression allows for estimation of the parameters of the model based on
an observed sample, which provides the data vector y. The criterion for determining
the best parameter vector based on the observed data is to choose the parameter
vector that minimizes the sum of squares of the residuals, S(θ), given by

S(θ) = ||y − η(θ)||2 .

Geometrically, the nonlinear least squares estimate, θ̂, is chosen such that the point
η(θ̂) on the curved expectation surface, η(θ), is the least distance from the point
corresponding to the vector of observed data, y (Bates and Watts, 2007).

According to Bates and Watts, determination of θ̂ is a very challenging problem
mathematically, and so iterative methods are used to find it. One such method,
the Gauss-Newton method, is the default method used by the nls function in R
(R documentation). The Gauss-Newton method is based on a sequence of Taylor
series approximations of the expectation function, which approximate the curved
expectation surface as a linear surface (plane) near estimates of θ. The goal is for
estimates of θ to vary with each iteration such that the estimates progressively get
closer and closer to the true least squares estimate θ̂ until convergence is finally
reached.
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The nonlinear regression model is based on a number of assumptions related to
the expectation function, and the disturbances that define the stochastic behavior
of the response variables. For more details about nonlinear regression, including its
assumptions, and the Gauss-Newton method, see Bates and Watts (2007).

2.5 Life Table Methodology

In his book, Statistical Models and Methods for Lifetime Data, Jerry Lawless states,

“The life table is one of the oldest and most widely used methods of
portraying lifetime data...lifetimes and censoring times are grouped into
intervals” (Lawless, 2003).

A common way of grouping individuals by age in life tables that express the mortality
experience of a general human population is to use one-year intervals. In this way, all
individuals dying within a one-year period, for example during their 80th year of life,
are grouped together, and the probability of dying within that interval is estimated
based on given data.

In general, the number of surviving individuals (or simply, survivors) who are
part of a given cohort may decrease due to deaths that occur within an interval,
or due to withdrawals (also known as censoring). The latter would be the case if
individuals in the cohort migrated from one population being studied to another.
However, the cohort obtained for the Monte Carlo study performed as part of the
present work consists entirely of individuals whose deaths are recorded in the Social
Security Death Index, Master File, and thus the life table constructed for this cohort
does not include any withdrawals. Without the issue of withdrawals, analysis of
the life table is simplified. The following description of basic life table methodology,
follows in part from the treatment of Lawless (2003).

Let Nx be the number of individuals in the cohort surviving to the beginning of
their xth year of life (the number surviving to age x), and let Dx be the number of
individuals in the cohort who die during their xth year of life (the number who die at
age x). Then the probability of dying at age x given that an individual has attained
age x, is the conditional probability denoted by qx, and determined as follows

qx = Pr(death at age x|survival to age x) =
Dx

Nx

.
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If there are no withdrawals, the number of individuals in the cohort surviving to
age x+ 1, Nx+1, can be determined as follows

Nx+1 = Nx −Dx .

The probability of surviving beyond age x given that an individuals has attained
age x, the conditional probability denoted by px, is simply 1 − qx, and can also be
determined as follows

px =
Nx+1

Nx

.

While qx gives the conditional probability of dying within the one year interval
beginning at age x, given survival to age x, the force of mortality, which may be
denoted by μt, gives the instantaneous probability of death at time t given survival
to time t. Given a model for the force of mortality, the values of qx and px can be
calculated, as will be shown at the close of this section.

The conditional pmf of the random variable Dx that represents the number of
deaths at age x given survival to age x, is assumed to be a binomial distribution with
size parameter Nx and probability parameter qx (Lawless, 2003), as given by

Pr(Dx = dx|survival to age x) ∼ Binomial(Nx, qx) .

The conditional probability of death at age x given survival to age x may be calculated
accordingly as follows

Pr(Dx = dx|survival to age x) =
(
Nx

Dx

)
qDx
x pNx−Dx

x .

The probability model for the deaths of individuals over all ages in the life table
can be written as the following joint distribution

Pr(Dx = dx, Dx+1 = dx+1|survival to age x+ 1), . . . , Dx+k = dx+k|survival to age x+ k))

= Pr(Dx = dx)Pr(Dx+1 = dx+1|Dx) · · ·Pr(Dx+k = dx+k|Dx+k−1, . . . , Dx)

where x is the first age and x + k the last age considered in the life table (compare
with Lawless, 2003). Since all members of the cohort are alive at age x (the first age
of the life table), no condition on survival to age x is needed (Lawless, 2003).

We may thus generate a random sample from the joint distribution of cohort
deaths by first generating the number of deaths at age x based on a binomial distri-
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bution with size parameter Nx equal to the initial cohort size, and the appropriate
value for the probability of death parameter qx, and then generate the number of
deaths at each successive age conditional on the number of deaths generated at all
preceding ages. The size parameter Nj is determined at each successive age using the
formula Nj = Nj−1 −Dj−1, as was previously given (see also addendum on page 51).

The probability of surviving beyond age x given survival to age x, px, can be
determined from the force of mortality, based on the following equation (Thatcher,
1998)

px = e−
´ x+1
x μydy .

For the force of mortality model used in this thesis, we may thus derive an equation
for px as follows:

px = exp
{
−

x+1ˆ

x

μydy
}

= exp
{
−

x+1ˆ

x

[ καeβy

1 + αeβy
+ γ

]
dy
}

= exp
{
−

x+1ˆ

x

καeβy

1 + αeβy
dy −

ˆ x+1

x

γdy
}

= exp
{
−

x+1ˆ

x

καeβy

1 + αeβy
dy − γy

∣∣∣x+1

x

}

= exp
{
−

x+1ˆ

x

καeβy

1 + αeβy
dy − γ(x+ 1− x)

}

= exp
{
−

x+1ˆ

x

καeβy

1 + αeβy
dy − γ

}
.

Letting u = 1 + αeβy so that du = βαeβydy, and temporarily ignoring the limits of
integration we have

px = exp
{
−
ˆ

κ

β

du

u
− γ

}
.
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Integrating and then substituting back for the quantity u yields

px = exp
{
−κ

β
ln
∣∣1 + αeβy

∣∣∣∣∣x+1

x
− γ

}

= exp
{
−κ

β

(
ln
∣∣1 + αeβ(x+1)

∣∣− ln
∣∣1 + αeβx

∣∣)− γ
}
.

Assuming α > 0 and rearranging slightly yields the formula for px as derived from
the four-parameter logistic force of mortality model used in this thesis

px = exp
{κ
β

[
ln
(
1 + αeβx

)− ln
(
1 + αeβ(x+1)

)]− γ
}
.

For the G-model, which assumes κ = 1, the formula for px is then given by

px = exp
{ 1

β

[
ln
(
1 + αeβx

)− ln
(
1 + αeβ(x+1)

)]− γ
}

and for the K-model, which assumes γ = 0, the formula for px is given by

px = exp
{κ
β

[
ln
(
1 + αeβx

)− ln
(
1 + αeβ(x+1)

)]}
.

The formulas to calculate qx are then found easily, being given by 1− px. For the
four-parameter logistic model used in this thesis, the equation for qx is given by

qx = 1− exp
{κ
β

[
ln
(
1 + αeβx

)− ln
(
1 + αeβ(x+1)

)]− γ
}
.

Letting κ = 1 or γ = 0, the appropriate formulas for qx for the G-model and K-model,
respectively, are obtained.

3 Monte Carlo Simulation Program

A program was written for running Monte Carlo simulations to compare probability of
death predictions generated by two different three-parameter logistic force of mortality
models. Programming was done entirely in the R programming language, using the
standard R for Mac OS X Cocoa GUI, R version 2.10.1, GUI 1.31 Leopard build 64-
bit (5537). Along with a number of standard R functions, new functions were created
and incorporated into the coding of the simulation program. The main function of
the program calls a number of supporting functions written to carry out various tasks
related to the simulation. The main and supporting functions are described in the
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paragraphs that follow, with each supporting function described in the logical order
in which it is called by the main function. All program coding that is provided in
Appendix 7.3 is for representative purposes only. Any use of the coding for other
simulation studies should not be done without sufficient testing and adaptation with
respect to data sources, required precision and accuracy, and other considerations. A
diagram showing the overall flow of the program is given in Figure 1.

Figure 1. Overall Flow of Monte Carlo Simulation Program

3.1 User Inputs

The main function, perksMCsim (Perks Monte Carlo Simulation), allows for a num-
ber of user inputs when the simulation program is initially called in R. The user
indicates the desired number of histories of the Monte Carlo simulation, and supplies
information on the life table being used to determine the probability parameters in
the parametric model that generates the simulated life table data. This involves sup-
plying vectors of the life table ages and the number of survivors at each age. The
user also chooses the age range of life table data that will be used in estimation of
the parameters of the force of mortality models, as well as the age range for which
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probability of death predictions will be made. For the simulation study of the present
work, life table data for ages 80 to 99 was used to fit the force of mortality models,
and probability of death predictions were obtained for ages 80 through 105. The user
also can indicate the radix, which is the desired cohort size at the initial age of the
simulated life tables. The default value for the radix is the cohort size of the supplied
life table at the initial age specified for probability of death predictions. By varying
the radix, comparisons of model predictions can be made at different size levels. As
part of controlling the random number generator (RNG) involved in the Monte Carlo
simulation, the user also enters an integer value to specify the seed for the RNG.

There are two additional inputs for use if the simulation program is being called
as a continuation of one or more previous runs as part of the same Monte Carlo
simulation. The user can provide an object in which the previous state of the RNG
being used has been stored, so that the RNG can pick up where it left off at the end
of the last run. After the simulation program has completed a run, the state of the
RNG (stored in an object named “oldstate”) should be saved into another object that
may later be recalled if desired. The user also supplies a matrix of the raw simulation
data accumulated in the previous simulation runs, which will be combined by the
program with the raw simulation data from the new run, and formatted and used
together to determine Monte Carlo estimates of the expected probabilities of death
and approximate standard deviations of the estimates. This again requires that after
the simulation program has completed a run, the matrix of raw data (stored in an
object named “rawtemp”) should be saved into another object that may later be
recalled if desired. The feature of the Monte Carlo simulation program that has just
been described allows the user to carry out a lengthy Monte Carlo study in a series of
shorter runs; or, to expand upon a simulation that was initially intended to involve
fewer histories. If these optional inputs are supplied, then a seed is not required for
input.

3.2 Initial Operations

The program begins by setting the RNG kind to the Wichmann-Hill generator, and
setting and storing the initial state of the RNG, either by the seed supplied by the
user or by the prior state of the RNG supplied by the user if the simulation is a
continuation of a previous run. A number of variables are set, most based on user-
supplied values, and often involving some form of calculation or other operation. For
example, the number of deaths, probability of death, and probability of survival by
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age are calculated for the life table data supplied by the user.
One operation that occurs prior to entering the main loop of the program is the

determination of parameter values to be supplied to the supporting functions that
carry out NLS estimation of the K-model and G-model parameters when called within
the main loop. The parameter values are simply the NLS estimates for the parameters
based on the life table data supplied by the user and the range of ages specified to be
used in estimation. These NLS estimates are found using the supporting functions
startfinderG (Start Value Finder G-Model) and startfinderK (Start Value Finder K-
Model). The operation of both functions is the same except for the difference in
models, and will now be described.

The function startfinderK uses the R function nls to perform NLS estimation on
the K-model. All of the default values for the nls controls are maintained, including a
Gauss-Newton algorithm and a tolerance level of 1e-5 when determining convergence
based on the relative offset convergence criterion (R documentation). The control
warnOnly is at the default value of FALSE, so that an NLS model is returned by nls
only if the convergence criterion has been satisfied (R documentation). The maximum
number of iterations is the default value of 50, and the minimum step factor is the
default value of 1/1024 (R documentation).

The regression equation supplied to nls is the equation for determining px based
on the K-model, as was previously derived. The starting values for the parameters
as supplied to nls are determined using three while loops that vary each parameter
through a range of values. Different sets of starting values are thus supplied to nls
until convergence is obtained or the ranges of values have been exhausted. Therefore
the nls function may be called repeatedly within startfinderK while searching for a
convergent NLS model.

When the nls function is called by startfinderK, it is done so using the try function
in R, which allows for startfinderK to continue when nls fails to find an NLS model
for a particular set of starting values. When an NLS model is not found, try returns
an object of length one. Otherwise, the object returned is the nls object which has
a length greater than one. This difference in object length provides the basis of the
test startfinderK employs to determine when nls has found an NLS model. Once an
NLS model is returned by nls, the sum of squares of the residuals (SSR) is calculated,
and the parameter estimates are extracted and stored along with the SSR. The loops
are ended and startfinderK returns a vector of parameter estimates and the value of
the SSR, which are stored globally in the object “Kstart”. Kstart is not returned by
the simulation program but can be retrieved when the program finishes, before the
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program is executed again, if desired.
The operation of startfinderG is the same as for startfinderK, and after both

startfinderG and startfinderK have returned objects, which have been subsequently
stored, the program moves on the main loop. It should be noted, however, that even
if startfinderG and/or startfinderK do not return an NLS model(s), the program still
moves to the main loop, in which NLS estimation will fail and the program will end,
returning an error message, when it tries to call the function(s) that perform the NLS
estimation.

3.3 Generation of Simulation Data

3.3.1 Simulated Life Table Data

The first function to be called within the primary loop is the function that generates
the simulated life table data, LTPsim (Life Table Parametric Simulation). When
the function is called, it generates data for a single simulated life table, and thus
must be called during each cycle of the primary loop. The life table data generated
covers the same age range as was specified by the user for obtaining probability of
death predictions . LTPsim uses the standard function in R for random variate
generation from the binomial distribution, rbinom, which is based on the method
given by Kachitvichyanukul and Schmeiser (1988) (R Documentation). The rbinom
function must be called repeatedly in order to generate the number of deaths at all
ages being considered. After LTPsim finishes, returning the simulated life table data,
the program saves the state of the RNG in the object “oldstate” so that it can be
restored later if desired, as was previously described. The state of the RNG just prior
to the execution of LTPsim is also saved, in the object “oldoldstate”. Neither of these
objects is returned by the program upon completion of the simulation, and should be
saved to other objects if their preservation is desired.

LTPsim is central to the Monte Carlo simulation. It randomly generates a sample
from the joint distribution used in the simulation to model cohort deaths at the
specified ages, as was previously described. When drawing a simulated sample from
the joint distribution of deaths at the specified ages, LTPsim first generates the
number of deaths at age x, Dx, based on the predetermined values of Nx and qx, and
then calculates the value of Nx+1 using Dx and Nx. The value of Nx+1 thus found
is then used along with the value of qx+1 from the probability model, in order to
determine Dx+1. This same process is repeated as many times as needed to determine
the number of deaths at all successive ages (please see addendum on page 51).
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Thus LTPsim first generates a random variate from the distribution of deaths at
age x, which is binomial with size parameter equal to either the cohort size at age x
of the user-supplied life table, or the size specified by the user when the Monte Carlo
simulation program was initially called, and with probability parameter equal to the
probability of death at age x as determined from the life table supplied by the user.
Once the number of deaths at age x is generated by the rbinom function and stored as
the first element in a vector containing the simulated numbers of deaths, the cohort
size at age x+1 can be easily calculated and stored as the second element of a vector
containing the simulated numbers of survivors. A for loop repeats until the number of
deaths and number of survivors at all necessary ages have been determined and stored
in the corresponding vectors. The probability parameter of the binomial model at
each age is always the same as the corresponding probability of death determined from
the user-supplied life table, and the size parameter is just the number of survivors as
calculated in the previous cycle of the loop.

When finished, LTPsim returns the vectors of the number of survivors at each age
and the number of deaths at each age. Using the simulated life table data returned
by LTPsim, the probabilities of death and probabilities of survival are calculated in
the main loop, and all the vectors of simulated life table data, except the probabilities
of survival, are then stored in the appropriate row of the matrix of raw data. That
matrix is subsequently stored globally in a backup matrix that can be retrieved after
completion of the program, for later use in a subsequent simulation if desired. To store
the matrix globally for backup, the global assignment operator in R (<<-) must be
used, because the ordinary assignment operator (<-) used within the main function of
the program, or any supporting functions, only stores to temporary objects used when
the given function is being executed. The backup matrix is named “rawtemp” and
should be stored in another object after the simulation program ends, if preservation
is desired. If it is not saved to another object, the next time the simulation program
is run, the old backup matrix will be lost and replaced with a new one.

3.3.2 Nonlinear Least Squares Estimates

With the life table data generated for the current history of the Monte Carlo simula-
tion, the program moves on within the main loop to NLS estimation of the parameters
in the K-model and G-model. The program first performs NLS regression on the K-
model, calling the supporting function nlsfinderK (Nonlinear Least Squares Finder
K-model). The function is called within the R function try, just as startfinderK and
startfinderG were. Thus, if the function fails in execution, the overall Monte Carlo
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simulation program will still continue to execute. The inputs to this program are the
vector of simulated life table probabilities of survival through each age (px) and the
vector of corresponding life table ages, the vector of parameters values as found by
startfinderK earlier in the program, and a vector of step values for determining the
increments of change when varying the parameter start values for NLS estimation
within nlsfinderK.

The heart of nlsfinderK is the same as for startfinderK, which was previously
described. NLS regression is carried out using the R function nls, with all the controls
at default values. Three while loops are used to vary the values of the three parameters
in order to provide different start values for the parameters when the nls function is
repeatedly called. If an NLS model is found, the parameter estimates are stored, and
the SSR is calculated and stored. Then the while loop terminates and the parameter
estimates and SSR are returned by nlsfinderK. The difference between nlsfinderK
and startfinderK is that nlsfinderK uses a vector of parameter estimates supplied
as input to determine the region of parameter values that will be searched when
trying different start values for the parameters, whereas startfinderK uses vectors of
minimum and maximum values of the parameters as inputs to determine the ranges
of parameter values that are searched.

If nlsfinderK finds an NLS model, returning the parameter estimates and SSR,
the program identifies that an object of length greater than one has been returned
and proceeds to store the data in the matrix of raw data and backup matrix, moving
on to NLS regression of the G-model. If an NLS model is not found by nlsfinderK, the
program identifies that the object returned by try is length one, and the current cycle
of the main loop ends without going on to try NLS regression on the G-model. The
program keeps a running tabulation of the total number of NLS convergence failures
for each model, and also stores the cycle numbers in which those failures occur.
The function called when performing NLS regression on the G-model is nlsfinderG
(Nonlinear Least Squares Finder G-model). The operation of this function is the
same as that of nlsfinderK, except for the differences in the model and parameters
being used. If either nlsfinderK or nlsfinderG fails to find an NLS model, the current
cycle of the main loop ends and the cycle begins again, with new simulated life table
data being generated. Any of the data generated in the aborted cycle is not kept in
the matrix of raw data, but is stored globally in a list named “rawfails” that holds the
data from failed cycles. This list is not returned with other output from the program,
and should be stored to another object when the program finishes in order to preserve
it, if desired.
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When both the K-model and the G-model have been successfully fit to simulated
life table data using NLS estimation, the loop index is incremented and one cycle of
the main loop has been completed. As long as there are still histories of the simulation
to complete, the next cycle of the main loop begins.

3.3.3 Probability of Death Predictions

Upon completion of all histories specified for the current run of the Monte Carlo
simulation program, the program exits the main loop and checks to see if a matrix
of raw data from a previous run of the program was supplied by the user when the
program was initially called. If so, the rbind function in R is used to join the new
matrix of data to the old, and the total number of histories is increased accordingly.

The probability of death predictions are found by calling the supporting function
qest (qx Estimator). This function computes probability of death predictions for a
single vector of parameter estimates, and thus must be called separately for each
three-parameter NLS model. The program calls qest twice (once for each model)
within a for loop for as many repetitions as there are histories of simulation data in
the matrix of raw data. The only inputs to qest are a vector of ages that corresponds
to the range of ages for which probability of death predictions will be computed (as
initially specified by the user), a vector of estimates of the model parameters, and
a value of either “K” or “G” to indicate which three-parameter model is being used
to make predictions. The equation used to compute the probability of death at a
given age is based on that derived previously for the four-parameter logistic model,
with the value of γ set to 0 when generating probability of death predictions from the
K-model, and the value of κ set to 1 when generating probability of death predictions
for the G-model. The formula for qx is given again below

qx = 1− exp
{κ
β

[
ln
(
1 + αeβx

)− ln
(
1 + αeβ(x+1)

)]− γ
}
.

Upon computing probability of death predictions for the specified ages, a vector
of the predictions is returned and stored in the appropriate row of one of two matrices
that solely contain probability of death predictions (either the matrix for the K-model
or the matrix for the G-model). Upon generating probability of death predictions for
all histories of the simulation, the program moves on to process the simulation data.
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3.4 Processing of Simulation Data

When all of the probability of death predictions have been computed, the program
moves on to call the remaining functions that format the data, compute statistics
for the probability of death predictions and standard life table probability of death
estimates, and prepare the results for output. The first function called upon leaving
the main loop is MCdata (Monte Carlo Data). This function receives the matrix
of raw data and formats it, yielding an output that is in the the R list form. The
components of the list are numbered and named as follows:

[[1]] lsim (Simulated life table data for survivors at each age)

[[2]] dsim (Simulated life table data for the number of deaths at each age)

[[3]] qsim (Simulated life table data for the probability of death at each age)

[[4]] “NLSE-K” (NLS estimate for parameters of the K-model)

[[5]] “NLSE-G” (NLS estimate for parameters of the G-model)

[[6]] qK (Probability of death predictions generated by the K-model)

[[7]] qG (Probability of death predictions generated by the G-model).

Each component in the list is a matrix, with each row being a vector of data
generated in the numbered history of the simulation. The column names of each
matrix are the ages that correspond to the data. The format of the data is the same
when listed upon completion of the program, but is present as a list within a list,
listed with the other information that the program generates and provides when a
simulation run is completed. The list of simulation data as outlined above is labeled
“simdata” in the overall list output.

With the raw data formatted as a list, the next function to be called is MCstats
(Monte Carlo Statistics). This function computes statistics for the probability of
death predictions and estimates, and is called twice–once for each model. The inputs
to MCstats are a matrix of probability of death predictions, the life table estimates
of the probabilities of death, and the vector of probabilities used in the parametric
model that generated the simulated life table data. The function MCstats uses a
while loop to compute statistics for the probability of death prediction and estimate
at each age. The mean and standard deviation of the mean are calculated for the
probability of death prediction and estimate at each age, according to the formulas
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previously given, as well as the difference between the mean predicted or estimated
probability of death and true probability of death at each age. When finished, the
function lists vectors of the computed statistics.

The last function to be called is MCcompare (Monte Carlo Comparison). This
function computes summary statistics that show the average magnitude of difference
between the observed and predicted or estimated probabilities of death across all
the ages considered, as well as the average standard deviation of the predictions or
estimates. The function also formats all the statistical results for the competing
probability of death predictions and the estimates so that they can be viewed in a
side-by-side comparison. All columns and rows are labeled appropriately. The results
are given by the function as a list of matrices (mean, stdv, difference, and summary).

When the Monte Carlo simulation program has finished processing the simulation
data, it ends by returning a list of data and results that are labeled in a list as
follows:

[[1]] data (Life table data supplied by the user)

[[2]] simdata (A list of 7 components of simulation data returned by MCdata)

[[3]] stats (Mean, standard deviation, difference, and summary statistics re-
turned by MCcompare)

[[4]] nlsKfailures (The number of cycles in which no NLS model was found for
the K-model)

[[5]] which.nlsKfailed (The cycle numbers in which NLS estimation for the
K-model failed)

[[6]] nlsGfailures (The number of cycles in which no NLS model was found for
the G-model)

[[7]] which.nlsGfailed (The cycle numbers in which NLS estimation for the
G-model failed).

4 Simulation Study

A simulation study was conducted using the Monte Carlo simulation program de-
scribed in the preceding section. Two models for predicting life table probabilities of
death were compared, the K-model and G-model, each being a three-parameter lo-
gistic force of mortality model. The performance of the models was evaluated for two
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different cohort size levels, using a simulated distribution of deaths with probability
parameters based on a life table constructed from mortality data obtained from the
U.S. Social Security Death Index, Master File (DMF) for a single birth year cohort.
The life table data used will be discussed first, followed by details of the simulation,
results, and discussion.

4.1 Source of Life Table Data

The parametric model employed by the Monte Carlo simulation program to generate
simulated life table data uses life table data supplied by the user when the program is
called in R. The supplied life table data determines the probability parameters of the
binomial distributions that generate the simulated number of cohort deaths at the
different ages. For the Monte Carlo study conducted as part of this research, the life
table data supplied to the program was a combined male and female cohort life table
of individuals born in the year 1893, constructed based on data from the DMF, which
includes records of persons who were enrolled in the Social Security program and
whose deaths were reported to the Social Security Administration. The information
included in these records that was used in the present study was month and year of
birth, and month and year of death.

In this research, the DMF records were accessed as provided in the Social Se-
curity Death Index (SSDI) available through Ancestry Library Edition (Source: an-
cestry.com, 2011). Due to the limitations of how this database could be queried,
individuals who died in the same month of the year as their birth month were sys-
tematically excluded from the cohort used in this study. This was done in order that
all individuals in the cohort who died between the ages of 80 and 109 could easily be
classified as either dying before or after attaining their birthday in their given year
of death, allowing their exact age upon death to be determined using only simple
queries from the SSDI database. All individuals dying at age 110 and above were
grouped into the single age category 110+, and so determination of exact age upon
death for those individuals was not required. With some processing of the results
in a spreadsheet, the distribution of cohort deaths by age could then be calculated.
This was done for ages 80 to 110+, for deaths in the calendar years 1973 through
2011. The methodology of querying the SSDI database and processing the data in a
spreadsheet is described in detail in Appendix 7.1.

Individuals who were born in 1893 and who died in 2011 would have been age 117
or 118, depending on whether they died before or after attaining their birthday. In
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the 1893 cohort constructed, there were 3 deaths of such individuals in 2011. Queries
of the SSDI were performed in October 2011, and therefore the number of deaths
obtained for 2011 may be incomplete. However, individuals from the 1893 cohort
surviving to 2011 would have been at least 117 years of age, so the number of deaths
missed would likely be very small. It is also possible that some of the records of
individuals with reported deaths at such old ages, as well as other ages, are the result
of incorrect reporting of information related to age upon death. Finally, it is possible
that there were errors in the present study when querying the SSDI and entering
the data. However, the primary purpose of the cohort life table constructed in this
research is to provide a realistic basis for determining the probability parameters
in the parametric model used to generate simulated life table data in the Monte
Carlo simulation program, in order to compare alternative models for predicting life
table probabilities of death. To the extent that the cohort life table constructed in
this study does not realistically represent the potential mortality experience of some
population of individuals, the results of the simulation may fail to provide an accurate
comparison of the performance of the estimators in a real-life scenario.

It is reasonable to assume that almost all of the individuals born in 1893 who will
at some point be recorded in the DMF had already died and been recorded in the
DMF by October 2011 . The number still alive would likely be a very small percentage
of the number surviving to age 99 (at least 20155 individuals), and that is the oldest
age of life table data to which the logistic models were fit in the Monte Carlo study
of this thesis. There would, however, be a greater effect on the probability of death
at older ages when the number of survivors had become significantly smaller. Thus
the decision was made to limit the oldest age considered in the Monte Carlo study to
105 when comparing probability of death predictions.

There were at least 1418 surviving individuals in the cohort at age 105, and
assuming that there were less than 15 surviving individuals born in 1893 whose deaths
would eventually be recorded in the DMF, the effect on the estimated probability of
death at age 105 would be less than 1%. It is therefore reasonable to construct a
cohort life table using a method that assumes an extinct cohort (see Vincent, 1951,
who is credited with the method of extinct generations, and Doray, 2002). Knowing
the numbers of deaths at ages 80 through 110+, the number of individuals surviving
to a given age can then be determined by summing the number of deaths at the given
age and all succeeding ages. For example, to determine the population surviving to
age 90, one can sum the numbers of deaths of individuals attaining 90, 91, ..., 110+
years of age. For an extinct cohort, individuals surviving to age 90 would all have

29



died at age 90 or above, and thus the sum just described would yield the surviving
population at age 90. In a similar manner, a cohort life table based on the SSDI
death data was constructed covering the ages 80 to 110+, and is given in Table 4.1.

Table 4.1 1893 SSDI Cohort Life Table

Age Living Deaths qx Age Living Deaths qx

80 601059 46939 0.0781 96 50189 12516 0.2494

81 554120 45989 0.0830 97 37673 9619 0.2553

82 508131 44658 0.0879 98 28054 7899 0.2816

83 463473 43316 0.0935 99 20155 5996 0.2975

84 420157 43079 0.1025 100 14159 4655 0.3288

85 377078 40340 0.1070 101 9504 3254 0.3424

86 336738 40311 0.1197 102 6250 2294 0.3670

87 296427 38294 0.1292 103 3956 1587 0.4012

88 258133 34873 0.1351 104 2369 951 0.4014

89 223260 33042 0.1480 105 1418 615 0.4337

90 190218 30653 0.1611 106 803 361 0.4496

91 159565 28286 0.1773 107 442 190 0.4299

92 131279 25209 0.1920 108 252 108 0.4286

93 106070 21731 0.2049 109 144 58 0.4028

94 84339 18956 0.2248 110+ 86 86 1

95 65383 15194 0.2324

As long as one is content to consider the cohort of individuals actually obtained
from the SSDI to be the population of interest, no assumptions about immigration
and migration must be made. Nevertheless, immigration and migration would likely
be minimal among individuals age 80 and above. In applying the method of extinct
generations to construct life tables using Canadian mortality data, Doray (2002) made
the assumption that half of the individuals reported to die at a given age in a calendar
year were part of the cohort from one birth year and half were part of the cohort from
the previous birth year. However, as already explained, a similar assumption was not
required in the present study due to the method in which the cohort was obtained
from the SSDI. Although individuals who died in the same month of the year as
the month in which they were born were excluded from the cohort, the size of the
cohort, being numbered at over 601,000 individuals alive at age 80, is still very large,
and instead of employing assumptions about the true distribution of deaths of the
individuals in the cohort, the actual number of individuals dying at a given age could
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be determined. On the other hand, if the mortality experience of individuals who die
in the same month as in which they were born differs from that of individuals who
die in non-birth months, the life table constructed in this study may systematically
fail to accurately represent the potential mortality experience of a population.

4.2 Simulation Details

The Monte Carlo method was employed to estimate the expected values of predicted
life table probabilities of death based on two alternative models, the K-model and
G-model, each being a three-parameter logistic force of mortality model. Standard
deviations of the probability of death predictions were also obtained. The equations
for predicting px were previously derived and are given again. The equation for px
based on the G-model is given by

px = exp
{ 1

β

[
ln
(
1 + αeβx

)− ln
(
1 + αeβ(x+1)

)]− γ
}

while for the K-model it is given by

px = exp
{κ
β

[
ln
(
1 + αeβx

)− ln
(
1 + αeβ(x+1)

)]}
.

The equations for qx are then easily found as 1− px.
By randomly generating samples of life table data from a simulated distribution

of deaths by age, and obtaining life table probability of death predictions for each
sample over a specified range of ages, average values of the predicted probabilities
of death could be computed for each model, as well as their standard deviations
and standard deviations of the means. A Monte Carlo simulation consisting of 1500
histories was used, and with this number of histories the mean probabilities of death
were computed to a reasonable level of precision.

The Monte Carlo study involved two separate simulations, with the radix of the
simulated life tables being varied from a larger to a smaller level so that the effect on
the probability of death predictions from the models could be explored. The actual
radix of the life table constructed from the DMF mortality data (601,059) was used
as the radix in one simulation. This radix was roughly halved to arrive at a radix of
300,000 for the second simulation. These simulations will be referred to as the 601k
and 300k simulations.

It was observed that with decreasing radix, there arose issues of NLS estimation
failures and negative values for parameter estimates for some of the samples of simu-
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lated life table data. For the 601k simulation, there were no NLS estimation failures
or negative parameter estimates. However, for the 300k simulation there were 4 NLS
estimation failures, for a failure rate of 0.3%( 4

1504
= 0.003). When the sample size

was reduced to 150k, a Monte Carlo simulation of 1500 histories included 25 NLS
estimation failures, for a failure rate of 1%( 15

1525
= 0.01). There were no negative

parameter estimates in the 300k simulation, but in the 150k simulation, the K-model
was twice fit with negative values for both κ and α, and the G-model was fit 10 times
with a negative value for γ. For a sample size of 100k and a Monte Carlo simulation
of only 100 histories, there were already 5 NLS estimation failures, for roughly a 5%
failure rate. Though few in number and small in percentage, it should be considered
that the 4 NLS estimation failures in the 300k simulation might have some effect on
the results. This will be brought up again in a later section.

The Monte Carlo simulation program allows for specification of the age range of
life table data to be used when fitting the logistic models, as well as the age range
for which the models will be used to make probability of death predictions. The
simulations carried out in this study used simulated life table data for ages 80 to 99
when estimating the parameters of the logistic models using the method of nonlin-
ear least squares, and generated life table probability of death predictions for ages
80 to 105. Although the Monte Carlo simulation program provides the capability of
varying the age range used when fitting the models, it was found that problems can
arise when trying to fit the models to certain ranges of age. For example, when the
age range of 80-90 years was used for fitting the models in a brief simulation with
only 25 histories, the NLS estimates for κ and α in the K-model were negative in all
histories. Difficulties also can arise in obtaining convergence in NLS estimation. For
the present study, the age range used in estimation did not result in any negative pa-
rameter estimates for the 601k or 300k simulations, but as was previously mentioned,
when the radix was reduced to 150k, some of the histories of the simulation yielded
negative values for some of the parameters. The potential for the models to be fit
with negative estimates for certain parameters is an issue that would seem to merit
further investigation, though this issue is deferred from the present study.

A question might be raised concerning the reliability of the NLS estimates ob-
tained in automated fashion by the Monte Carlo simulation program for the simu-
lations carried out in the present study. An investigation was made using slightly
altered versions of startfinderG and startfinderK. The testing versions of these func-
tions, startfinderGtest and startfinderKtest, do not stop when the first NLS model
is obtained, but rather continue to range through the parameter space, trying NLS
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estimation with every different set of parameter start values generated by the three
while loops. The result of every attempt is stored in a list, either NA if the particular
set of parameter start values does not yield an NLS model when the function nls is
called, or else the NLS parameter estimates and SSR if an NLS model is obtained.
It is then possible to analyze the multiple NLS models (often very many) obtained
by either startfinderGtest or startfinderKtest and examine the consistency of the re-
sults. Another function was written, nlstest, that provides for processing of the data
produced by startfinderGtest or startfinderKtest. This function counts the number
of NLS estimation failures, as well as the number of NLS models obtained, and com-
pares the value of the SSR for each NLS model. The function nlstest also generates
statistics for the NLS estimate of each parameter, including the minimum, maximum,
range, mean, and standard deviation. Coding for startfinderGtest, startfinderKtest,
and nlstest is provided in Appendix 7.5.

The testing functions just described were used to test the NLS estimates based
on the supplied life table, and selected simulated life tables generated in the 601k
and 300k simulations. Results of tests using both the K-model and G-model with the
following simulated life tables are presented in Appendix 7.4: the simulated life table
for the first history of the simulations, the simulated life table for which the minimum
NLS estimate for the parameter γ was generated in each simulation, the simulated life
table for which the maximum NLS estimate for γ was generated in each simulation,
the simulated life table for which the minimum NLS estimate of κ was generated in
each simulation, and the simulated life table for which the maximum NLS estimate
of κ was generated in each simulation (other life tables may also have been tested
but using a different version of nlstest than given in Appendix 7.4, or whose results
were not maintained). Based on the results of the tests given in Appendix 7.4, it was
found that when there was convergence in NLS estimation for a particular life table,
the NLS models always had the same SSR, to a precision of at least 7 significant
figures (10 decimal places). Furthermore, the NLS estimates of the parameters were
the same across the NLS models, with allowance for some spread in the distributions
of the estimates. These results provide a level of assurance in the validity of the NLS
estimates obtained in automated fashion during the simulations. It indeed seems to
be one benefit of using NLS estimation in the application of the present study that
either NLS estimation failed to produce an NLS model or else it apparently found
the correct one.

The 601k and 300k Monte Carlo simulations were carried out with the integer 3

supplied to the RNG as the seed in both simulations. The Monte Carlo simulation
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program was able to perform the simulations in a short period of time, requiring only
about 11 minutes for one simulation and about 12 minutes for the other. Selected data
generated by the simulation program for the 601k and 300k simulations is provided
in Appendix 7.4. The statistics generated for the probability of death predictions
and parameter estimates in both simulations are included, as well as information on
NLS estimation failures, and a sample of simulation data for the first 5 of the 1500
histories of the 601k simulation.

4.3 Results

Results of the 601k Monte Carlo simulation are presented in the tables that follow.
The mean predicted qx were nearly identical for the 601k and 300k simulations, al-
though the standard deviations of the mean qx were systematically smaller for the
601k simulation, with all the values being between 68% and 74% of the magnitude
of the standard deviations obtained from the 300k simulation. Table 4.3.1 presents
first the standard deviations of the Monte Carlo estimates of the expected values
of qx, or in other words, the standard deviations of the means calculated from the
simulation. This table provides a gauge for evaluating the uncertainty of the Monte
Carlo estimates. Though not shown, the relative error, R, was also computed for the
Life Table, K-model, and G-model standard deviations for each age in the 601k sim-
ulation, as given in Table 4.3.1 and found to be well under 0.05 in all cases (between
0.00004 and 0.0008).

Table 4.3.1 Standard Deviations of the Mean qx for 601k Simulation

80 81 82 83 84 85 86 87 88

Life Table 9.0E-06 9.7E-06 1.0E-05 1.1E-05 1.2E-05 1.3E-05 1.5E-05 1.6E-05 1.7E-05

K-Model 1.0E-05 8.6E-06 6.9E-06 5.3E-06 4.3E-06 4.3E-06 5.4E-06 7.0E-06 8.7E-06

G-Model 1.1E-05 7.8E-06 5.3E-06 4.0E-06 4.7E-06 6.2E-06 7.8E-06 9.1E-06 9.9E-06

89 90 91 92 93 94 95 96 97

Life Table 2.0E-05 2.2E-05 2.4E-05 2.8E-05 3.3E-05 3.7E-05 4.4E-05 5.0E-05 5.7E-05

K-Model 1.0E-05 1.1E-05 1.2E-05 1.2E-05 1.2E-05 1.3E-05 1.5E-05 1.9E-05 2.7E-05

G-Model 1.0E-05 1.0E-05 9.7E-06 9.6E-06 1.0E-05 1.3E-05 1.6E-05 2.2E-05 2.8E-05

98 99 100 101 102 103 104 105

Life Table 7.0E-05 8.7E-05 1.0E-04 1.2E-04 1.6E-04 2.0E-04 2.6E-04 3.4E-04

K-Model 3.8E-05 5.2E-05 7.0E-05 9.0E-05 1.1E-04 1.4E-04 1.7E-04 2.1E-04

G-Model 3.5E-05 4.3E-05 5.1E-05 5.9E-05 6.8E-05 7.6E-05 8.4E-05 9.1E-05
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It may be observed that for the life table probabilities of death, the standard
deviation of the mean consistently increases with age. For the K-model and G-model
the standard deviation of the mean decreases at first, from age 80 to age 83 or 84,
but then either increases or stays steady as age increases, except for the decreases
with the G-model between ages 90 and 92. Trends in the standard deviations of the
means in the 300k simulation were similar as those described above, except that for
the life table probabilities of death, the standard deviation of the mean remained
steady at 1.3E-05 between ages 80 and 81, for the K-model the standard deviation
of the mean decreased from age 80 all the way to age 85, and for the G-model the
standard deviation of the mean remained steady at 1.4E-05 between ages 90 and 92.

Results of the 601k simulation comparing the actual values of qx with those pre-
dicted by the K-model and G-model are presented in Table 4.3.2. Estimates of the
standard deviations of the predictions, and estimates of the differences between the
true and predicted values of qx are also given. Estimates of the standard deviations
of the predictions were calculated by multiplying the standard deviations of the mean
qx by the square root of the number of histories in the simulation (

√
1500). The

standard deviations of the mean qx as given in Table 4.3.1 were used to determine
the maximum number of decimal places to which the results of the simulations are
reported in Table 4.3.2, following the method recommended by Davidian (2005). For
a result to be reported to 3 decimal places, the standard deviation of the mean was
required to be 5.0E-04 or less. For a result to be reported to 4 decimal places, the
standard deviation of the mean was required to be 5.0E-05 or less. All results in
Table 4.3.2 are reported to either 3 or 4 decimal places of precision. The goal of this
method is to place a 95% confidence interval not larger than ±1 around the digit in
the last reported decimal place (Davidian, 2005). Dunn and Shultis (2012) discuss a
statistic called the variance of the variance, which may be calculated from the results
of a Monte Carlo simulation, and which they report as having been shown in a work
produced by Los Alamos National Laboratories (MCNP, 2003) to be connected to
the reliability of the confidence intervals constructed for a Monte Carlo simulation.
However, the variance of variance was not analyzed in the present study.

Table 4.3.2 Comparison of Model Predictions in the 601k Monte Carlo Simulation
80 81 82

Mean SD Diff Mean SD Diff Mean SD Diff

TRUE 0.0781 0.0830 0.0879

Life Table 0.0781 0.0004 0.0000 0.0830 0.0004 0.0000 0.0879 0.0004 0.0000

K-Model 0.0735 0.0004 -0.0046 0.0800 0.0003 -0.0030 0.0869 0.0003 -0.0010

G-Model 0.0751 0.0004 -0.0029 0.0811 0.0003 -0.0019 0.0876 0.0002 -0.0003
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83 84 85

Mean SD Diff Mean SD Diff Mean SD Diff

TRUE 0.0935 0.1025 0.1070

Life Table 0.0935 0.0004 0.0000 0.1025 0.0005 0.0000 0.1070 0.0005 0.0000

K-Model 0.0944 0.0002 0.0009 0.1024 0.0002 -0.0001 0.1110 0.0002 0.0040

G-Model 0.0947 0.0002 0.0012 0.1024 0.0002 -0.0001 0.1107 0.0002 0.0037

86 87 88

Mean SD Diff Mean SD Diff Mean SD Diff

TRUE 0.1197 0.1292 0.1351

Life Table 0.1197 0.0006 0.0000 0.1292 0.0006 0.0000 0.1351 0.0007 0.0000

K-Model 0.1202 0.0002 0.0005 0.1300 0.0003 0.0009 0.1405 0.0003 0.0054

G-Model 0.1197 0.0003 0.0000 0.1294 0.0004 0.0002 0.1398 0.0004 0.0047

89 90 91

Mean SD Diff Mean SD Diff Mean SD Diff

TRUE 0.1480 0.1611 0.1773

Life Table 0.1480 0.0008 0.0000 0.1611 0.0009 0.0000 0.1773 0.0009 0.0000

K-Model 0.1516 0.0004 0.0036 0.1634 0.0004 0.0022 0.1758 0.0005 -0.0015

G-Model 0.1509 0.0004 0.0029 0.1627 0.0004 0.0016 0.1753 0.0004 -0.0020

92 93 94

Mean SD Diff Mean SD Diff Mean SD Diff

TRUE 0.1920 0.2049 0.2248

Life Table 0.1920 0.0011 0.0000 0.2049 0.0013 0.0000 0.2247 0.0014 0.0000

K-Model 0.1889 0.0005 -0.0031 0.2026 0.0005 -0.0023 0.2170 0.0005 -0.0078

G-Model 0.1885 0.0004 -0.0035 0.2025 0.0004 -0.0024 0.2171 0.0005 -0.0077

95 96 97

Mean SD Diff Mean SD Diff Mean SD Diff

TRUE 0.2324 0.2494 0.2553

Life Table 0.2324 0.0017 0.0000 0.2494 0.0019 0.0000 0.255 0.002 0.000

K-Model 0.2320 0.0006 -0.0004 0.2476 0.0007 -0.0018 0.2637 0.0011 0.0084

G-Model 0.2322 0.0006 -0.0001 0.2480 0.0008 -0.0014 0.2641 0.0011 0.0088

98 99 100

Mean SD Diff Mean SD Diff Mean SD Diff

TRUE 0.2816 0.297 0.329

Life Table 0.281 0.003 0.000 0.298 0.003 0.000 0.329 0.004 0.000

K-Model 0.2803 0.0015 -0.0013 0.297 0.002 0.000 0.315 0.003 -0.014

G-Model 0.2807 0.0014 -0.0009 0.298 0.002 0.0001 0.315 0.002 -0.014

101 102 103

Mean SD Diff Mean SD Diff Mean SD Diff

TRUE 0.342 0.367 0.401

Life Table 0.343 0.005 0.000 0.367 0.006 0.000 0.401 0.008 0.000

K-Model 0.333 0.003 -0.010 0.351 0.004 -0.017 0.369 0.005 -0.032

G-Model 0.332 0.002 -0.011 0.349 0.003 -0.018 0.366 0.003 -0.035
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104 105

Mean SD Diff Mean SD Diff

TRUE 0.401 0.434

Life Table 0.402 0.010 0.000 0.434 0.013 0.000

K-Model 0.387 0.007 -0.015 0.405 0.008 -0.029

G-Model 0.383 0.003 -0.019 0.399 0.004 -0.035
1This result could be reported to 4 decimal places but only 3 are used for consistency of comparison

The simulated life table qx demonstrate a very close correspondence to the true
values of qx, differing at most by one digit in the third decimal place. This provides a
gauge of how well the Monte Carlo sample of 1500 simulated life tables represents the
distribution from which they were supposed to be generated. We may also observe
that the mean predicted probabilities of death are very similar overall for the K-model
and the G-model. The ratio of K-model predicted qx to G-model predicted qx varies
only between 0.98 and 1.02, and is unity to two decimal places for 18 of the 26 ages
where predictions were made. In the age range of 80-99, the ratio varies between 0.98
and 1.01, and in the age range 100-105, the ratio ranges between 1.00 and 1.02.

For ages 80-99, the ratio of K-model to G-model standard deviation of predicted
qx ranges between 0.69 and 1.36, and gives evidence of increasing and decreasing
trends in certain age intervals. At 9 of these ages, the K-model standard deviations
are larger, with the ratio ranging between 1.09 and 1.32. At 9 of these ages, the G-
model standard deviations are larger, with the ratio of G-model to K-model standard
deviation ranging between 1.03 and 1.46. For two of these ages the ratio of K-model
to G-model standard deviation is very close to one (0.99 and 1.00). For ages 100-105,
the ratio of K-model to G-model standard deviation grows rather steadily from 1.36
at age 100 up to 2.26 at age 105, where the standard deviations of the K-model are
then more than twice as large as those of the G-model. There is in fact an increasing
trend in the ratio all the way from age 96 to 105, growing from 0.89 to 1.22 between
ages 96 and 99, and then to 2.26 by age 105. It is also interesting to observe that
the standard deviations for the life table qx are larger than for either of the models,
except at age 80.

The similarities in predicted qx for the K-model and G-model are reflected in their
generally similar deviations from the true qx, though the magnitude of the ratio of
K-model deviation to G-model deviation varies much more from unity than did the
ratio of their predictions, ranging between 0.74 and 1.6 for most of the ages, but
also reaching magnitudes of 3, 4, and 4 at ages 95, 82, and 87 respectively, where
the very close fit of the G-model stands out. At age 86, the G-model predicted qx
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did not deviate from the true qx to the reported precision of 4 decimal places, and
therefore the ratio is not included above. If that ratio were to be calculated using 7
significant digits for each of the deviations, it would be very high (1087). This points
to the extremely close fit of the G-model at that age. The ratio at age 99 is also not
included above, where the K-model predicted qx did not deviate from the true qx to
the reported precision of 3 decimal places, though the G-model deviation could have
been reported to 4 decimal places, being 0.0001. If the magnitude of the ratio were
to be calculated using 7 significant digits for each of the deviations, it would be 2.2,
again in favor of the G-model. Alternatively, we may compare the ratio of the larger
deviation to the smaller deviation at each age. These ratios vary between 1.0 and 1.6
for most of the ages, except at ages 82, 86, 87, 95, and 99, which cases were discussed
separately above. The close fit of the simulated life table qx to the true qx is readily
observed, as all deviations are zero to the reported number of decimal places of the
deviations.

4.4 Discussion

Overall, the K-model and G-model generated probabilities of death that were very
similar, but usually deviated somewhat from the true qx. When both models deviated
from the true qx at a given age (to the reported level of precision), it was in the same
direction. At age 86 the G-model did not deviate from the true qx to a precision
greater than 4 significant figures, while the K-model slightly overestimated qx. Also,
at age 99, where K-model’s predicted qx is expressed only to 3 decimal places due
to the magnitude of the standard deviation of the mean (5.2E-05), the K-model did
not deviate from the true qx to 3 decimal places while the G-model very slightly
overestimated qx in the fourth decimal place. However, if the K-model deviation were
to be reported to 4 decimal places, it would be an underestimation of qx. Excluding
those two ages, the models tended to either both underestimate or both overestimate
qx.

As a way of further analyzing the results of the 601k simulation, average values
of the magnitude of difference, percentage difference, and standard deviation of the
predicted qx were calculated for the G-model and K-model for two different age ranges:
80-99 and 100-105. The calculations were carried out using more digits than reported
in Table 4.3.2. The results are given in Table 4.4.1.
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Table 4.4.1 Comparison of Average Results of Models for Two Age Ranges

80-99 100-105

Average | Diff | % | Diff |1 SD | Diff | % | Diff | SD

K-model 0.0026 1.8 0.00055 0.019 5.0 0.0051

G-model 0.0023 1.5 0.00053 0.022 5.6 0.0028
1% | Diff | = 100[| Diff | ÷ (true qx)]

The average magnitude of difference and percentage difference are similar for the
K-model and G-model in both age ranges, as is the average standard deviation in
the age range of 80-99. However, in the age range of 100-105, the higher average
standard deviation of the K-model stands out, though the statistical significance of
the difference has not been tested. In the age range of 80-99, the average percentage
deviation is less than 2% for each model, and from the age by age results previously
given in Table 4.3.2, it can be seen that the deviations most often show up in the third
decimal place of the differences, though sometimes not until the fourth decimal place,
or not even there. In the age range of 100-105, the average percentage deviation is
5% and 5.6% for the K-model and G-model respectively, and the deviations always
show up in the second decimal place of the differences (see Table 4.3.2). This may
suggest a difference in model accuracy between the 80-99 age range and 100-105 age
range, though the statistical significance has not been tested. We may note that the
age range of 100-105 is the oldest age range as well as the age range in which the
models were extrapolated, and the extent to which these two distinct factors may
have contributed to a possibly significant increase in model inaccuracy cannot be
ascertained from the results of the present simulations alone.

By possible way of comparison with the results of the present study, we may
observe the results of Doray (2008) when fitting a simpler two-parameter logistic
model (known as the Kannisto model), expressed in a linearized form and using a
slight approximation, to Canadian mortality data. He fit the model separately to
male and female cohort life tables for the combined birth years of 1888-1892, within
the age range of 80 to 99. Results from Doray’s study and the present study are given
for comparison in Table 4.4.2, and average results for the age ranges 80-94 and 95-99
are given in Table 4.4.3.
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Table 4.4.2 Comparison of Logistic Model Fits from Two Studies−I

Doray Study Present Study

Male Female G-model K-model

Age qx Predicted Diff1 qx Predicted Diff qx Diff Diff

80 0.0959 0.0958 0.0001 0.0643 0.0641 0.0002 0.0781 -0.0029 -0.0046

81 0.1017 0.1033 -0.0016 0.0690 0.0701 -0.0011 0.0830 -0.0019 -0.0030

82 0.1125 0.1113 0.0012 0.0779 0.0767 0.0012 0.0879 -0.0003 -0.0010

83 0.1212 0.1198 0.0014 0.0859 0.0838 0.0021 0.0935 0.0012 0.0009

84 0.1308 0.1287 0.0021 0.0935 0.0914 0.0021 0.1025 -0.0001 -0.0001

85 0.1384 0.1382 0.0002 0.1009 0.0996 0.0013 0.1070 0.0037 0.0040

86 0.1483 0.1481 0.0002 0.1094 0.1084 0.0010 0.1197 0.0000 0.0005

87 0.1579 0.1586 -0.0007 0.1156 0.1178 -0.0022 0.1292 0.0002 0.0009

88 0.1648 0.1695 -0.0047 0.1240 0.1279 -0.0039 0.1351 0.0047 0.0054

89 0.1716 0.1810 -0.0094 0.1335 0.1385 -0.0050 0.1480 0.0029 0.0036

90 0.1900 0.1928 -0.0028 0.1464 0.1498 -0.0034 0.1611 0.0016 0.0022

91 0.2003 0.2051 -0.0048 0.1566 0.1618 -0.0052 0.1773 -0.0020 -0.0015

92 0.2149 0.2178 -0.0029 0.1722 0.1743 -0.0021 0.1920 -0.0035 -0.0031

93 0.2320 0.2309 0.0011 0.1851 0.1875 -0.0024 0.2049 -0.0024 -0.0023

94 0.2505 0.2443 0.0062 0.2021 0.2012 0.0009 0.2248 -0.0077 -0.0078

95 0.2705 0.2580 0.0125 0.2214 0.2154 0.0060 0.2324 -0.0001 -0.0004

96 0.2787 0.2720 0.0067 0.2371 0.2301 0.0070 0.2494 -0.0014 -0.0018

97 0.2995 0.2861 0.0134 0.2519 0.2453 0.0066 0.2553 0.0088 0.0084

98 0.3277 0.3003 0.0274 0.2729 0.2608 0.0121 0.2816 -0.0009 -0.0013

99 0.3232 0.3147 0.0085 0.3004 0.2766 0.0238 0.2975 0.0001 -0.00012

Source: Doray (2008) and present study 1Differences were not given in Doray (2008) but were

calculated to use in this table 2Four decimal places are used here for consistency with Doray study

Table 4.4.3 Average Results from Two Studies

Doray Study Present Study

Averages Male Female G-model K-model

80-94 | Diff | 0.0026 0.0023 0.0023 0.0027

% | Diff |1 1.5 1.8 1.7 2.1

95-99 | Diff | 0.014 0.011 0.0023 0.0024

% | Diff | 4.5 4.1 0.88 0.94

Source: Averages computed based on results from Doray (2008) and

present study 1% | Diff | = 100[| Diff | ÷ (true qx)]
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We may first note that the qx for the combined male and female cohort of the
present study are between the values of qx for the female and male cohorts of Doray’s
study, except at age 99. Comparing the fits of the model in Doray’s study with the
fit of the K-model and G-model in the present study, we might conclude that in the
age range 80-94 the three models appear to have an overall comparable goodness
of fit to the data. For ages 80-94, the average magnitude of difference for the two-
parameter model of Doray’s study is 0.0026 and 0.0023 respectively when fit to the
Canadian male and female life tables, while for the G-model and K-model fit to
the simulated combined life tables of the present Monte Carlo study it is 0.0027
and 0.0023, respectively. The average percentage difference for the G-model (1.7)
is between that of the two-parameter model fit to the male cohort data (1.5) and
female cohort data (1.8), though for the K-model it is somewhat higher (2.1). On the
other hand, in the older age range of 95-99, the fits of the K-model and G-model to
the simulated combined life tables are noticeably better overall than that of Doray’s
linear two-parameter model fit to either the male or female life tables in his study.
In that age range, the average magnitude of difference for the two-parameter model
fit to the male and female life tables is 0.014 and 0.011, respectively, while for the G-
model and K-model it is only 0.0023 and 0.0024, respectively. The average percentage
differences are similarly much lower for the G-model (0.88) and K-model (0.94) as
compared to the two-parameter model fit to either the male life table (4.5) or female
life table (4.1). These calculations were carried out using four decimal places for all
differences.

Unfortunately, there is no data past age 99 in Doray’s study for comparison. A
word of caution regarding the comparisons is in order, however, since in Doray’s
study the model was fit to separate life tables for males and females, using different
mortality data that involved a combined 5 year birth cohort, and in which the qx were
observed from a specific sample, whereas in the present study the models were fit to
many simulated life tables, with the reference qx being the known, true values of the
probability model used to generate the mortality data. It would be interesting in a
future study to compare the fit of the K-model and G-model with the fit of Doray’s
version of the Kannisto model, as well as the original nonlinear version, under identical
conditions, as was done with the K-model and G-model in the present study.

Further comparisons may be attempted by considering a comprehensive study
by Thatcher et al (1998) in which both a four-parameter logistic model and a two-
parameter logistic model (along with others) were fit to mortality data combined from
a number of industrialized nations for the periods of 1960-70, 1970-80, and 1980-90, as
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well as for male and female cohorts from the combined birth years of 1871-80. For the
present comparison, only the fit of the models to the cohort data will be considered.
The 1871-1880 male and female cohorts were constructed from data for 11 nations,
all in Europe except Japan, and included 3.2 million males and 4.8 million females
(Thatcher et al, 1998). Thatcher et al fit a four-parameter logistic model of the form

μx = c+
aebx

1 + σ2 a
b
(ebx − 1)

and a two-parameter (Kannisto) model of the form

μx =
aebx

1 + a(ebx − 1)
.

The models were fit to the male and female cohort life tables in the age range
of 80-98 using maximum likelihood estimation, and model predictions for qx were
generated for ages 80-120. Thatcher et al provide a table that lists the deviations of
the model predictions from the observed qx for ages 99-109. The deviations for ages
100-105 found by Thatcher et al, along with those found in the present study, are
shown in Table 4.4.4.

Table 4.4.4 Comparison of Logistic Model Fits from Two Studies−II

Thatcher et al Study Present Study

Male 4-Par 2-Par Female 4-Par 2-Par Combined G-mod K-mod

Age qx Diff Diff qx Diff Diff qx Diff Diff

100 0.4568 -0.0388 -0.0353 0.3971 -0.0148 -0.0089 0.3288 -0.014 -0.014

101 0.4622 -0.0302 -0.0261 0.407 -0.0100 -0.0031 0.3424 -0.011 -0.010

102 0.4547 -0.0092 -0.0045 0.4191 -0.0076 0.0005 0.3670 -0.018 -0.017

103 0.4941 -0.0357 -0.0304 0.4332 -0.0080 0.0013 0.4012 -0.035 -0.032

104 0.4506 0.0199 0.0259 0.4392 -0.0009 0.0097 0.4014 -0.019 -0.015

105 0.5199 -0.0379 -0.0313 0.4878 -0.0372 -0.0251 0.4337 -0.035 -0.029

Avg |Diff|1 0.029 0.026 0.013 0.008 0.022 0.019

Avg % |Diff| 6.0 5.4 2.9 1.8 5.6 5.0

Source: Thatcher et al (1998) and present study 1Average | Diff | and % | Diff | calculated using differences

expressed to four decimal places in both studies

It can be readily seen that the observed qx at ages 100-105 for both the male
cohort and the female cohort in the study by Thatcher et al are substantially higher
than those for the combined cohort constructed in the present study. Also, the fit of
the four-parameter logistic model appears to be substantially better for the female
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cohort than for the male cohort, with the same holding true for the two-parameter
logistic model.

Overall, the average magnitude of difference for the G-model (0.019) and K-model
(0.022) is between that of the four-parameter model fit to the male cohort data (0.029)
and female cohort data (0.013). The same holds true when compared to the two-
parameter model fit to the male cohort data (0.026) and female cohort data (0.008).
The average percentage difference for the G-model (5.6) and K-model (5.0) is similar
to that of the four-parameter model (6.0) and two-parameter model (5.4) fit to the
male cohort data, but is substantially higher than that of either the four-parameter
model (2.9) or two-parameter model (1.8) fit to the the female cohort data. Some
similarities in the fit of the four or two-parameter models in the study by Thatcher
et al when compared to the fit of the G-model and K-model in the present study are
shown in bold in Table 4.4.4, and described below.

The absolute deviations of the three-parameter logistic models are nearly the same
at ages 100-101 as the deviations for the four-parameter model fit to the female cohort
data, while at age 103 they are similar to the deviations of both the four-parameter
and two-parameter models fit to the male cohort data. At age 104, the magnitudes
of the deviations of the three-parameter models are similar to the deviation of the
four-parameter model fit to the male cohort data, but the three-parameter models
underestimated qx while the four and two-parameter models overestimated qx. At age
105, the deviation of the G-model is similar to the deviations of the four-parameter
models fit to either male or female cohort data, while the deviation of the K-model is
more similar to the deviations of the two-parameter model fit to the male or female
cohort data. At age 102, however, the similarities break down, as the deviations of
the three-parameter models are around 2-4 times larger than those of the four and
two-parameter models fit to the male cohort data, and very much larger than those
of the four and two-parameter models fit to the female cohort data.

It should be noted that the age by age comparisons are based on absolute de-
viations and not percentage deviations. It should also be cautioned again that the
above comparisons are limited by differences between the present study and that of
Thatcher et al, including the use of combined versus gender-specific life tables; dif-
ferences in the mortality data used to fit the models, including that Thatcher et al
used a cohort combined from 10 birth years while the present study used a cohort
from a single birth year, and that Thatcher et al combined mortality data from a
number of nations while the present study used mortality data only from the Social
Security DMF. There are other differences as well, including that Thatcher et al fit
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the models using maximum likelihood estimation to data for ages 80-98 as compared
to ages 80-99 in the present study, and found estimates based on a single male or
female life table as compared to the many simulated life tables of the present study.

Another aspect of the present Monte Carlo study that may be explored is to con-
sider the values estimated for the parameters of the K-model and G-model throughout
all histories of the simulations. Although the Monte Carlo simulation program does
not calculate statistics for the parameter estimates, it does return matrices containing
the parameter estimates for all histories of the simulation. Post-processing of the data
can thus be done to calculate summary statistics for the parameter estimates. This
was done in R for the simulations conducted in the present study, and the summary
statistics for both the 601k and 300k simulations are presented in Table 4.4.5. The
R coding used to generate the statistics is provided in Appendix 7.4.

Table 4.4.5 Statistics for Parameter Estimates Generated in Simulations

601k K-model G-model

alpha x 105 beta kappa alpha x 105 beta gamma

Minimum 2.24 0.086 0.91 0.45 0.099 0.0050

Maximum 3.56 0.101 3.56 2.59 0.117 0.0280

Range 1.32 0.015 2.64 2.14 0.017 0.0230

Mean 3.19 0.093 1.47 1.08 0.108 0.0174

SD 0.15 0.002 0.31 0.28 0.002 0.0034

300k K-model G-model

alpha x 105 beta kappa alpha x 105 beta gamma

Minimum 1.35 0.083 0.83 0.39 0.098 0.0008

Maximum 3.81 0.103 7.08 3.02 0.118 0.0297

Range 2.46 0.020 6.25 2.63 0.020 0.0290

Mean 3.13 0.093 1.52 1.13 0.108 0.0171

SD 0.25 0.003 0.55 0.39 0.003 0.0047

It may be noted that the mean values of the parameter estimates are very similar
for the 601k and 300k simulations, but that the spread of the estimates for each of
the parameters is greater in the 300k simulation. The increase in the range of α and
percentage increase in the standard deviation of α are substantially greater for the
K-model than for the G-model. The greater variability in the parameter estimates
when fitting the models to life tables with a smaller radix may be a possible reason for
the failures in NLS estimation as the radix is decreased, as was previously mentioned.
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Focusing on the 601k simulation, we may note that the parameter α shows more
variability in the G-model than in the K-model, with a standard deviation almost
twice as large for the G-model. The mean value of α, however, is about three times
greater for the K-model than for the G-model. The variability of the parameter β is
similar for the K-model and G-model, with the ranges being close to the same and
the ratio of K-model to G-model standard deviation being 0.96, but the distribution
is shifted to larger values for the G-model, in which the mean value of β is 0.108
as compared to 0.093 for the K-model. The parameter κ shows a large degree of
variability, as does the parameter γ. The standard deviation of κ is 21% of its mean,
and similarly for γ the standard deviation is 20% of its mean. Although Thatcher
(1999) states that a 1998 study by Thatcher et al found the value of κ to be near
unity (based on fitting a four-parameter logistic model as was previously given), the
simulations in the present study suggest that at least for the three-parameter K-
model, κ can vary substantially depending on the sample of life table data, and the
value may not always be close to one for a given cohort of individuals.

A comparison between the mean parameter estimates found for the G-model in the
present study and the results of a study by Bongaarts (2005) may also be explored.
In his study, Bongaarts fit the G-model to mortality data from 11 European nations,
Japan, Canada, and the U.S. He did not use combined data as in the study by
Thatcher et al (1998), but rather kept the data separate for each nation. The mortality
data used in Bongaart’s study is for the years 1950-2000, except for some missing years
for some of the countries (Bongaarts, 2005; see article for reference of the original
source of mortality data). The G-model was fit using NLS estimation, for the age
range 25-109, separately for males and females, to mortality data for each separate
year, and the average parameter estimates for each country were then calculated.
Bongaarts provides a table that includes the average values of the parameter estimates
for each country, and the average of all the means, for both males and females. The
minimum, maximum, and average over all the nations’ averages are given in Table
4.4.6, along with the values estimated for the U.S. mortality data.

Comparing the statistics for the G-model parameters in Table 4.4.5 to the val-
ues for the U.S. in Table 4.4.6, we may observe that the mean value of α in both
simulations (1.08E-05 and 1.13E-05 for 601k and 300k simulations, respectively) is
close to, but slightly higher than, the average value of α estimated for females of 14
industrialized nations (1.01E-05), but is only about half the average value for U.S.
females (2.18E-05) and well below that for U.S. males (6.36E-05). The mean value of
β for the simulations (0.108) falls between the average value of β for females (0.114)
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and males (0.105) for the 14 nations, and is very close to the average value for males,
though it is higher than the average value of β for both U.S. males (0.094) and fe-
males (0.101). The mean value of γ in both simulations (0.0174 and 0.0171 for 601k
and 300k simulations, respectively) is much larger than for either males (0.00075) or
females (0.00046) of the 14 nations, as well as for U.S. males (0.00087) and females
(0.00042).

Table 4.4.6 Statistics for Parameter Estimates of G-model

Fit to Mortality Data for 14 Industrialized Nations

alpha x 105 beta gamma

Females Males Females Males Females Males

Minimum 0.62 1.48 0.101 0.094 0.00027 0.00032

Maximum 2.18 6.36 0.120 0.112 0.00093 0.00104

Average 1.01 3.12 0.114 0.105 0.00046 0.00075

United States 2.18 6.36 0.101 0.094 0.00042 0.00087

Source: Results from Bongaarts, 2005

In making these comparisons, we must again remember that we are comparing
parameter estimates for combined male and female mortality data used in the sim-
ulation study with gender-specific mortality data used by Bongaarts. Also, the sim-
ulation study used cohort mortality data, for a single birth year, whereas the study
by Bongaarts used annual mortality data, and for a number of years. Furthermore,
the G-model was fit to a much wider age range in the study by Bongaarts (25-109).
Also, the present results are based on many simulated data sets whereas the results
in Bongaart’s study are not. The much higher values of γ estimated in the present
study do raise the question as to possible causes. The mean values of α and β both
fall between the average values of the parameter estimates for males and females of
the 14 nations, which may provide some encouragement, even though they differ from
the values specific to the U.S.

5 Conclusions

In this research, a Monte Carlo simulation program was developed and utilized in a
simulation study comparing the life table probability of death predictions generated
by two alternative three-parameter logistic force of mortality models. Based on results
from the simulations conducted in the present study, the two models were found to
generate overall very similar probability of death predictions for the range of ages
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considered, including both the age range to which the models were fit (80-99) and
an older age range (100-105) where the models were extrapolated to generate true
predictions. The average standard deviation of the predicted probabilities of death
for the two models was nearly the same in the 80-99 age range, but in the 100-105
age range the G-model appeared overall to be more precise than the K-model, though
the statistical significance of the difference was not tested. It should be noted that
the results of the present study are limited to a specific set of cohort mortality data,
and it may be fruitful in future studies to compare the three-parameter models in
multiple simulations based on several different sets of cohort data.

The model predictions of qx generally deviated somewhat from the values of qx
used in the probability model that generated the simulated life tables. In the age
range of 80-99, the average percentage deviation was less than 2% for each model,
and the deviations most often showed up in the third decimal place of the differences,
though sometimes not until the fourth decimal place or not even there. In the age
range of 100-105, the average percentage deviation for the models was around 5-6%,
and the deviations always showed up in the second decimal place of the differences.
This may suggest a difference in model accuracy between the 80-99 age range and
100-105 age range, though the statistical significance has not been tested. In the age
range of 100-105, both models always underestimated qx. It would be fruitful in a
future simulation study to fit the models to the full range of ages 80-105 and compare
their fit at ages 100-105 with their extrapolated fit found in the present study. This
would help to determine if extrapolation contributes to what may be a decreased level
of accuracy of the models at those ages.

There is room for follow-up and further investigation regarding issues that may
arise when using the Monte Carlo simulation program and fitting the three-parameter
logistic models to a sample of cohort mortality data. Those issues include the potential
for parameter estimates to be negative, and the potential for convergence failures when
the simulation program performs NLS estimation. In the 601k and 300k simulations of
the present study, however, there were no negative parameter estimates. There were
also no NLS estimation failures in the 601k simulation, though there were four in the
300k simulation, and it should be considered how these may have affected the results.
For example, four of the simulated life tables generated in the 601k simulation were
not used in the 300k simulation, due to NLS estimation failures in those cycles, and
four additional simulated life tables were generated in the 300k simulation, which
were not used in the 601k simulation. Thus when comparing the two simulations,
there is an additional factor of variation in the experimental conditions. Also, when
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considering the 300k simulation by itself, the results for the mean probabilities of
death, standard deviations, and differences, as well as the calculated statistics of the
parameter estimates may be affected by some degree of bias.

Another area that might be investigated is the differences in the estimates of
the G-model parameters found in the simulations for the 1893 cohort constructed in
the present study from the Social Security DMF, when compared to the findings by
Bongaarts (2005) for the U.S. mortality data he used, for years 1950-2000. Also, the
mean estimates of the parameter γ found in the simulations are substantially higher
than might be expected. The 1893 cohort would have been in their early twenties at
the time of World War I, and perhaps this may have contributed to the higher value
of the background force of mortality parameter γ.

It would be interesting to run the simulations of the present study using different
sources of mortality data, including separate life tables for males and females, and
compare the results. It also may be fruitful to construct life tables over a much
broader range of ages and run simulations that fit the models to an extended age
range (i.e. 30-99 years of age), and also to compare the predictions of the K-model
and G-model at ages over 105. The simulation approach presented in this work may
be extended to compare other force of mortality models, and over more extensive
age ranges. Models may be compared over different cohort data sets and evaluated
for their robustness in fitting the specific characteristics and peculiarities of different
cohorts and populations, including small populations. Models may be altered to
attempt to adjust for systematic overestimation or underestimation of qx at certain
ages, and new models may be explored.
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Addendum

The function LTPsim was written after the author viewed material on a website, in-
cluding one or two methods for simulating life table data, one of which was probably
similar to or the same as the method used in LTPsim. The author subsequently was
unable to find the website again for reference. The basic method used for simulat-
ing life tables in LTPsim is similar to the one presented in Chapter 3 of Actuarial
Mathematics and Life-Table Statistics (Slud, 2006), though Slud uses conditional
probability of survival as the probability parameter in the binomial distributions, as
opposed to conditional probability of death, and therefore generates the number of
survivors at each age more directly.

51



7 Appendices

7.1 Determining Cohort Distribution of Deaths by Age

The primary method used to obtain mortality data from the SSDI database aimed to
reduce the number of queries necessary while still providing for exact determination
of age upon death for each individual included in the cohort. The SSDI database was
systematically queried for each year of death between 1973 and 2011, for individuals
born in the year 1893.

For each year of death between 1973 and 2003, results from 55 separate queries
were used to determine how many individuals died before attaining their birthday
and how many died after attaining it. Rather than performing a separate query for
every combination of birth month/death month in a given year, which would require
12 × 12 = 144 queries per year, only 55 queries (one of which was a check) were
performed since for a given birth month, once the number of individuals who died
before attaining their birth month (or after) is determined, the number who died
after their birth month (or before) can be calculated by subtracting that number,
and the number dying in their birth month, from the total number of individuals
born in the given month and dying in the given year. One of the queries obtained the
total number of deaths in the entire year, which could be compared with the sum of
deaths in each month of the year. As already explained in this paper, individuals who
died in the same month of year as the month in which they were born were excluded
from the cohort. For the years of death between 2004 and 2011, corresponding to age
upon death of at least 110 (the final interval of the life table), only 13 queries were
performed, one for the total number of deaths in the year, and one each for deaths
that occurred in birth months, in order to exclude those individuals from the cohort.

As a representative example, Table 7.1 shows the data obtained from the SSDI for
year of death 1973. As can be seen, for the birth month of January, only two queries
were required. One query obtained the total number of individuals born in January
1893 who died in the entire year of 1973, and the other query obtained the number of
individuals born in January 1893 who died in January 1973. Those individuals were
excluded from the cohort because of the difficulty of determining which ones attained
their birthday and which did not. All the individuals born in January 1893 and dying
between February 1973 and December 1973 would have died after attaining their 80th
birthday, and that number is easily calculated.
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Table 7.1 1893 Cohorts Deaths in 1973 as Obtained from SSDI Queries

Deaths 1973

51942 Death Month

Birth Month All Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec

Jan 4559 454

Feb 4205 417 376

Mar 4650 466 431 392

Apr 4239 421 354 301 385

May 4116 393 362 320 340 340

Jun 3920 363 408 328 317 325 285

July 4386 339 346 340 357 346 389

Aug 4411 359 365 367 336 388

Sep 4625 372 380 362 411

Oct 4376 374 370 392

Nov 4138 355 371

Dec 4317 401

Total 51942

Source: Ancestry.com Social Security Death Index (accessed in Ancestry Library Edition, October 2011)

The birth months of June and July, being in the middle of the year, require the
most number of queries (7 each). All the individuals born in June 1893 and dying
between July 1973 and December 1973 would have died after attaining their 80th
birthday. We find that number by subtracting the sum of deaths of individuals born
in June 1893 and dying between January 1973 and June 1973 from the total number
of individuals born in June 1893 and dying in the year 1973. For birth month July,
we sum the number of deaths of individuals born in July 1893 and dying between
July 1973 and December 1973 and subtract this from the total number of deaths of
individuals born in July 1893 and dying throughout 1973 to obtain the number of
individuals born in July 1893 who died before attaining their birth month. Those
individuals would have died at age 79. The number of individuals born in July 1893
and dying after their birth month can then easily be calculated. Those individuals
would have died at age 80. Though this method decreases the number of queries
necessary, it may be noted that if any individuals in the DMF would happen to have
a birth month recorded but no death month recorded (only year of death), then this
could result in inaccuracies in determining the number of individuals who died before
as opposed to after their birth month, and thus the number of deaths at each age.
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Once all birth months in a given year have been queried, we can sum to find the
number of individuals born in 1893 who died before attaining their birth month in
the given year, and sum to find the number of individuals who died after their birth
month in that year. This process is conducted for all years of death in order to obtain
the cohort distribution of deaths at age 80 and above.

7.2 Estimation of Total Number of Random Variates Used in

Simulation

The number of random variates generated by the RNG in each simulation was esti-
mated based on information given by Kachitvichyanukul and Schmeiser (1988). For a
given binomial(n, p) distribution from which a binomial random variate is to be gen-
erated using their BTPE algorithm, we can determine the expected number of uni-
form(0,1) random numbers that must be supplied (Kachitvichyanukul and Schmeiser,
1988). For every iteration of the BTPE algorithm, two uniform(0,1) random numbers
are used (Kachitvichyanukul and Schmeiser, 1988). Knowing this, and the expected
number of iterations of the BTPE algorithm when generating a binomial random
variate from a binomial(n, p) distribution, one can calculate the expected number
of uniform(0,1) random numbers that are needed to generate the binomial random
variate (Kachitvichyanukul and Schmeiser, 1988).

Functions were coded in R that provide for post-processing of the data from a
simulation in order to calculate the expected number of uniform(0,1) random vari-
ates needed to generate all binomial random variates in the simulation. The function
binvar calculates the expected number of uniform(0,1) random variates needed to
generate one binomial(n, p) random variate, as directly follows from explicit infor-
mation given by Kachitvichyanukul and Schmeiser (1988). The required inputs are
n, the number of survivors at age x, and p, the conditional probability of death qx.
These parameters vary for each age of the simulated life table.

The function binvar is called within another function, totalran, which uses two
for loops to calculate the total expected number of binomial(n, p) random variates
needed for the simulation. The outer for loop ranges through all the histories of
the Monte Carlo simulation, while the inner for loop ranges through the simulated
life table in a given history of the simulation. For the simulations carried out in the
present study, there were 1500 histories, and each history generated a simulated life
table that required 26 binomial random variates (deaths at ages 80-105). The function
totalran returns the total expected number of uniform(0,1) random variates needed in
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the simulation, as well as the average number of uniform(0,1) random variates needed
to generate each binomial random variate in the simulation.

Using totalran, the expected number of uniform(0,1) random variates required
from the RNG for the 601k simulation was found to be 89,480.03, with about 2.29
required on average for each binomial random variate generated. For the 300k simu-
lation, the total expected number of uniform(0,1) random variates required was found
to be 89,460.03, with about 2.29 required on average. R coding for totalran only is
provided below.
totalran <- function(data){

lx <- data$simdata$lsim
qx <- data$stats$mean[1,]
num <<- matrix(NA,length(lx[,1]), length(qx))
total <- 0
for(i in 1: length(lx[ ,1])){

for(j in 1: length(qx)){
num[i,j] <<- binvar(lx[i,j],qx[j])
total <- total + num[i,j]
}

}
avg <- total/(length(num[,1])*length(num[1,]))
return(total=total ,avg=avg)
}
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7.3 R Coding for Monte Carlo Simulation Program

Note 1: Lines that were too long to fit onto the page were split into multiple lines
in the coding shown below , and might need adjusted when running the code in R.
Note 2: Any comments present in original coding have been removed from the coding below.

perksMCsim <- function(reps ,table.ages ,table.pop ,est.ages ,pred.ages ,size="default",
rng="Wich",seed ,state="fresh",olddata="empty"){

RNGkind("Wich")
if(state == "fresh"){

set.seed(seed)
oldstate <<- .Random.seed
}

else .Random.seed <<- state
n <- x <- l <- i <- m <- NA
d <- q <- p <- k <- begin <- NA
end <- ll <- dl <- ql <- pl <- xl <- NA
nlsGstart <- nlsKstart <- NA
n <- reps
x <- table.ages
l <- table.pop
j <- length(l)
d <- l[1:(j-1)]-l[2:j]
q <- d/l[1:(j-1)]
p <- 1-q
k <- length(est.ages)
begin.est <- est.ages[1]-x[1]+1
end.est <- est.ages[k]-x[1]+2
ll <- l[begin.est:end.est]
if(size=="default"){

l1 <- ll[1]
}

else l1 <- size
dl <- ll[1:( end.est -1)]-ll[2:end.est]
ql <- q[begin.est:(end.est -1)]
pl <- 1-ql
xl <- est.ages
m <- length(pred.ages)
begin.pred <- pred.ages[1]-x[1]+1
end.pred <- begin.pred + (m-1)
qp <- q[begin.pred:end.pred]
raw <- matrix(NA ,n,(3*m+9))
rawtemp <<- NA
s <- 1
t <- 0
nlsGfail <<- 0
nlsKfail <<- 0
nlsGfails <<- c(NA)
nlsKfails <<- c(NA)
rawfails <<- vector("list")
min <- c(1e-6 ,0.04 , -0.2)
max <- c(1e-3 ,0.14 ,0.1)
step <- c(2 ,0.01 ,0.05)
nlsGstart <- try(startfinderG(xl ,pl,min ,max ,step))
Gstart <<- nlsGstart
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min <- c(0.5 ,1e-6 ,0.04)
max <- c(3,1e-3 ,0.14)
step <- c(0.1 ,2 ,0.01)
nlsKstart <- try(startfinderK(xl ,pl,min ,max ,step))
Kstart <<- nlsKstart
while(s <= n){

t <- t + 1
sl <- sd <- sq <- sp <- qG <-NA
NLSEG <- NLSEK <- qK <- NA
simLT <- LTPsim(l1,qp)
oldoldstate <<- oldstate
oldstate <<- .Random.seed
sl <- simLT$survivors
sd <- simLT$deaths
sq <- sd/sl[1:m]
sp <- 1-sq
raw[s,1:(m+1)] <- sl
raw[s,(m+2):(2*m+1)] <- sd
raw[s,(2*m+2):(3*m+1)] <- sq
rawtemp <<- raw
step <- c(0.1 ,0.0001 ,0.005)
nlseK <- try(nlsfinderK(xl,sp[1:k],nlsKstart$par ,step))
if(length(nlseK) != 1){

raw[s,(3*m+2):(3*m+5)] <- c(nlseK$par ,nlseK$val)
rawtemp <<- raw
step <- c(0.0001 ,0.005 ,0.05)
nlseG <- try(nlsfinderG(xl,sp[1:k],nlsGstart$par ,step))
if(length(nlseG) != 1){

raw[s,(3*m+6):(3*m+9)] <- c(nlseG$par ,nlseG$val)
s <- s + 1
rawtemp <<- raw
}

else {
nlsGfail <<- nlsGfail + 1
nlsGfails[nlsGfail] <<- t
rawfails [[( nlsGfail+nlsKfail )]] <<- raw[s,]
}

}
else {

nlsKfail <<- nlsKfail + 1
nlsKfails[nlsKfail] <<- t
rawfails [[( nlsGfail+nlsKfail )]] <<- raw[s,]
}

}
if(olddata != "empty"){

raw <- rbind(olddata ,raw)
rawtemp <<- raw
n <- length(raw[,1])
}

qK <- matrix(NA,n,m)
qG <- matrix(NA,n,m)
for(i in 1:n){

qK[i,] <- qest(pred.ages ,raw[i,(3*m+2):(3*m+5)],p="K")
qG[i,] <- qest(pred.ages ,raw[i,(3*m+6):(3*m+9)],p="G")
}
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simdata <<- MCdata(raw ,qK ,qG,est.ages ,pred.ages)
nlsKstats <<- MCstats(simdata$qsim ,simdata$qK,qp)
nlsGstats <<- MCstats(simdata$qsim ,simdata$qG,qp)
results <<- MCcompare(qp,pred.ages ,nlsKstats ,nlsGstats)
list(data=l,simdata=simdata ,stats=results ,nlsKfailures=nlsKfail ,which.nlsKfailed=

nlsKfails ,nlsGfailures=nlsGfail ,which.nlsGfailed=nlsGfails)
}

Note: Above coding is given as was used to run simulations in present study , though
several items will be noted for correction:
1. rng="Wich" is not needed with inputs since "Wich" is declared in program as RNGkind
2. begin ,end were initialized to NA instead of begin.est ,end.est ,begin.pred ,end.pred
3. qp , nlsGstart , nlsKstart , Gstart , and Kstart were not initialized to NA
4. NLSEG and NLSEK were initialized to NA rather than nlseG and nlseK

LTPsim <- function(l1,q) {
k <-length(q)+1
ls <- rep(0,times=k)
ds <- rep(0,times=(k-1))
ls[1] <- l1
for (i in 1:(k-1)) {

ds[i] <- rbinom(1,ls[i],q[i])
ls[i+1] <- ls[i]-ds[i]
}

list(survivors=ls,deaths=ds)
}

startfinderG <- function(x,p,min ,max ,step){
mo <- min[2]
A <- max [1]
M <- max [2]
G <- max [3]
astep <- step [1]
mstep <- step [2]
gstep <- step [3]
par <- c(NA,NA,NA)
val <- 1e7
nlse <<- vector("list")
i <- 1
while(mo <= M){

ao <- min[1]
while(ao <= A){

go <- min[3]
while(go <= G){

snls <- try(nls(p ~ I(exp((1/m)*(log(1+a*exp(m*x))-
log (1+a*exp(m*(x+1)))) -g)),start=list(a=ao,m=mo,g=go)),

silent=TRUE)
if(length(snls) != 1){

ssr <- sum(resid(snls )^2)
nlse[[i]] <<- c(( summary(snls))$par[,1],ssr)
par <- nlse[[i]][1:3]
go <- G
ao <- A
mo <- M
}

58



else nlse[[i]] <<- NA
go <- go + gstep
i <- i+1
}

ao <- ao * astep
}

mo <- mo + mstep
}

list(par=par ,val=ssr)
}

startfinderK <- function(x,p,min ,max ,step){
mo <- min[3]
K <- max [1]
A <- max [2]
M <- max [3]
kstep <- step [1]
astep <- step [2]
mstep <- step [3]
par <- c(NA,NA,NA)
val <- 1e7
nlse <<- vector("list")
i <- 1
while(mo <= M){

ko <- min[1]
while(ko <= K){

ao <- min[2]
while(ao <= A){

snls <- try(nls(p ~ I(exp((k/m)*(log(1+a*exp(m*x))-
log (1+a*exp(m*(x+1)))))) , start=list(k=ko,a=ao ,m=mo)),

silent=TRUE)
if(length(snls) != 1){

ssr <- sum(resid(snls )^2)
nlse[[i]] <<- c(( summary(snls))$par[,1],ssr)
par <- nlse[[i]][1:3]
ao <- A
ko <- K
mo <- M
}

else nlse[[i]] <<- NA
ao <- ao * astep
}

ko <- ko + kstep
}

mo <- mo + mstep
}

list(par=par ,val=ssr)
}

nlsfinderG <- function(x,p,theta ,step){
mo <- theta [2] -0.02
A <- theta [1]+0.0005
M <- theta [2]+0.02
G <- theta [3]+0.02
astep <- step [1]
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mstep <- step [2]
gstep <- step [3]
par <- c(NA,NA,NA)
val <- 1e7
nlse <<- vector("list")
i <- 1
while(mo <= M){

ao <- theta [1] -0.0005
while(ao <= A){

go <- theta [3] -0.02
while(go <= G){

snls <- try(nls(p ~ I(exp((1/m)*(log(1+a*exp(m*x))-
log (1+a*exp(m*(x+1)))) -g)),start=list(a=ao,m=mo,g=go)),

silent=TRUE)
if(length(snls) != 1){

ssr <- sum(resid(snls )^2)
nlse[[i]] <<- c(( summary(snls))$par[,1],ssr)
par <- nlse[[i]][1:3]
go <- G
ao <- A
mo <- M
}

else nlse[[i]] <<- NA
go <- go + gstep
i <- i+1
}

ao <- ao + astep
}

mo <- mo + mstep
}

list(par=par ,val=ssr)
}

nlsfinderK <- function(x,p,theta ,step){
ko <- theta [1] -0.5
K <- theta [1]+0.5
A <- theta [2]+0.0005
M <- theta [3]+0.02
kstep <- step [1]
astep <- step [2]
mstep <- step [3]
par <- c(NA,NA,NA)
val <- 1e7
nlse <<- vector("list")
i <- 1
while(ko <= K){

mo <- theta [3] -0.02
while(mo <= M){

ao <- theta [2] -0.0005
while(ao <= A){

snls <- try(nls(p ~ I(exp((k/m)*(log(1+a*exp(m*x))-
log (1+a*exp(m*(x+1)))))) , start=list(k=ko,a=ao ,m=mo)),

silent=TRUE)
if(length(snls) != 1){

ssr <- sum(resid(snls )^2)
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nlse[[i]] <<- c(( summary(snls))$par[,1],ssr)
par <- nlse[[i]][1:3]
ao <- A
ko <- K
mo <- M
}

else nlse[[i]] <<- NA
ao <- ao + astep
}

mo <- mo + mstep
}

ko <- ko + kstep
}

list(par=par ,val=ssr)
}

qest <- function(x,theta ,p){
if(p == "G"){

k <- 1
a <- theta [1]
m <- theta [2]
g <- theta [3]
}

else{
k <- theta [1]
a <- theta [2]
m <- theta [3]
g <- 0
}

q <- rep(NA,length(x))
q <- 1-exp((k/m)*(log(1+a*exp(m*x))-log(1+a*exp(m*(x+1)))) -g)
return(q)
}

MCdata <- function(raw ,qK,qG,est.ages ,pred.ages){
k <- length(est.ages)
m <- length(pred.ages)
lsim <- raw[,1:(m+1)]
colnames(lsim) <- c(pred.ages ,"+")
dsim <- raw[,(m+2):(2*m+1)]
colnames(dsim) <- pred.ages
qsim <- raw[,(2*m+2):(3*m+1)]
colnames(qsim) <- pred.ages
nlseK <- raw[,c((3*m+3):(3*m+4),(3*m+2),(3*m+5))]
colnames(nlseK) <- c("alpha","beta","kappa","vqlue")
nlseG <- raw[,(3*m+6):(3*m+9)]
colnames(nlseG) <- c("alpha","beta","gamma","value")
colnames(qK) <- pred.ages
colnames(qG) <- pred.ages
list(lsim=lsim , dsim=dsim , qsim=qsim , "NLSE -K"=nlseK , "NLSE -G"=nlseG ,

qK=qK , qG=qG)
}

MCstats <- function(sim.data ,model.data ,true.data){
sim <- sim.data
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mod <- model.data
q <- true.data
n <- length(sim[,1])
m <- length(sim[1,])
MCmean.sim <- rep(NA,times=m)
MCmean.mod <- rep(NA,times=m)
MCstdv.sim <- rep(NA,times=m)
MCstdv.mod <- rep(NA,times=m)
MCdif.sim <- rep(NA,times=m)
MCdif.mod <- rep(NA,times=m)
i <- 1
while(i <= m){

MCmean.sim[i] <- sum(sim[,i])/n
MCmean.mod[i] <- sum(mod[,i])/n
MCstdv.sim[i] <- sqrt ((1/n)*(1/(n-1))*sum((sim[,i]-MCmean.sim[i])^2))
MCstdv.mod[i] <- sqrt ((1/n)*(1/(n-1))*sum((mod[,i]-MCmean.mod[i])^2))
MCdif.sim[i] <- MCmean.sim[i]-q[i]
MCdif.mod[i] <- MCmean.mod[i]-q[i]
i <- i + 1
}

list(mean.sim=MCmean.sim ,mean.model=MCmean.mod ,stdv.sim=MCstdv.sim ,
stdv.mod=MCstdv.mod ,dif.sim=MCdif.sim ,dif.mod=MCdif.mod)

}

MCcompare <- function(q,pred.ages ,stats1 ,stats2 ){
mean <- rbind(q,stats1$mean.sim ,stats1$mean.mod ,stats2$mean.mod)
rownames(mean) <- c("True","Simulated","K-Model","G-Model")
colnames(mean) <- pred.ages
stdv <- rbind(stats1$stdv.sim ,stats1$stdv.mod ,stats2$stdv.mod)
rownames(stdv) <- c("Simulated(ML)","K-Model","G-Model")
colnames(stdv) <- pred.ages
difference <- rbind(stats1$dif.sim ,stats1$dif.mod ,stats2$dif.mod)
rownames(difference) <- c("Simulated(ML)","K-Model","G-Model")
colnames(difference) <- pred.ages
n <- length(q)
summary <- matrix(NA ,3,2)
summary [1,1] <- sum(abs(stats1$dif.sim))/n
summary [2,1] <- sum(abs(stats1$dif.mod))/n
summary [3,1] <- sum(abs(stats2$dif.mod))/n
summary [1,2] <- sum(stats1$stdv.sim)/n
summary [2,2] <- sum(stats1$stdv.mod)/n
summary [3,2] <- sum(stats2$stdv.mod)/n
colnames(summary) <- c("avg␣difference","avg␣stdv")
rownames(summary) <- c("Simulated(ML)","K-Model","G-Model")
list(mean=mean ,stdv=stdv ,difference=difference ,summary=summary)
}
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7.4 Simulation Data (Selected)

601k Simulation Data (histories 1-5 only , simulation statistics , and other information)

> l93 #Supplied Life Table Data , 1893 Cohort Survivors (Ages 80 -110+)
[1] 601059 554120 508131 463473 420157 377078 336738 296427 258133 223260 190218 159565 131279 106070 84339 65383
50189 37673 28054 20155 14159 [22] 9504 6250 3956 2369 1418 803 442 252 144 86

> system.time(sim <- perksMCsim(reps =1500, table.ages =80:110 , table.pop=l93 ,est.ages =80:99 , pred.ages =80:105 , seed =3))
user system elapsed

643.925 5.488 646.423 #Time in seconds to complete simulation
#Note: Any warning messages (if they were present) are not shown

> sim$simdata$lsim [1:5,]
80 81 82 83 84 85 86 87 88

[1,] 601059 554151 508348 463937 420380 377404 336945 296679 258067
[2,] 601059 554218 508364 463892 420826 377783 337181 296532 258285
[3,] 601059 553638 508093 463389 419782 376751 336313 296201 257849
[4,] 601059 554271 507938 463330 420028 376460 336387 295832 257332
[5,] 601059 554143 507952 463435 420214 377144 336677 296479 258636

89 90 91 92 93 94 95 96 97 98
[1,] 223357 190069 159734 131313 106029 84571 65710 50479 37912 28188
[2,] 223321 190358 159840 131742 106378 84653 65533 50281 37728 28133
[3,] 223009 190117 159648 131523 106220 84282 65511 50374 37754 28016
[4,] 222605 189782 159233 131016 105767 84117 65131 49795 37465 27826
[5,] 223630 190346 159525 131059 106151 84123 65248 49921 37608 27914

99 100 101 102 103 104 105 +
[1,] 20139 14142 9485 6132 3823 2265 1372 752
[2,] 20197 14139 9500 6286 3945 2341 1371 779
[3,] 19959 13877 9330 6131 3916 2290 1337 756
[4,] 19930 13949 9401 6207 3877 2344 1398 765
[5,] 19984 14031 9441 6210 3944 2291 1393 782

> sim$simdata$dsim [1:5,]
80 81 82 83 84 85 86 87 88 89 90

[1,] 46908 45803 44411 43557 42976 40459 40266 38612 34710 33288 30335
[2,] 46841 45854 44472 43066 43043 40602 40649 38247 34964 32963 30518
[3,] 47421 45545 44704 43607 43031 40438 40112 38352 34840 32892 30469
[4,] 46788 46333 44608 43302 43568 40073 40555 38500 34727 32823 30549
[5,] 46916 46191 44517 43221 43070 40467 40198 37843 35006 33284 30821

91 92 93 94 95 96 97 98 99 100 101 102
[1,] 28421 25284 21458 18861 15231 12567 9724 8049 5997 4657 3353 2309
[2,] 28098 25364 21725 19120 15252 12553 9595 7936 6058 4639 3214 2341
[3,] 28125 25303 21938 18771 15137 12620 9738 8057 6082 4547 3199 2215
[4,] 28217 25249 21650 18986 15336 12330 9639 7896 5981 4548 3194 2330
[5,] 28466 24908 22028 18875 15327 12313 9694 7930 5953 4590 3231 2266

103 104 105
[1,] 1558 893 620
[2,] 1604 970 592
[3,] 1626 953 581
[4,] 1533 946 633
[5,] 1653 898 611

> sim$simdata$qsim [1:5,]
80 81 82 83 84 85

[1,] 0.07804226 0.08265437 0.08736338 0.09388559 0.1022313 0.1072034
[2,] 0.07793079 0.08273640 0.08748062 0.09283626 0.1022822 0.1074744
[3,] 0.07889575 0.08226495 0.08798389 0.09410452 0.1025080 0.1073335
[4,] 0.07784261 0.08359268 0.08782174 0.09345823 0.1037264 0.1064469
[5,] 0.07805557 0.08335574 0.08764017 0.09326227 0.1024954 0.1072985

86 87 88 89 90 91
[1,] 0.1195032 0.1301474 0.1345000 0.1490350 0.1595999 0.1779271
[2,] 0.1205554 0.1289810 0.1353698 0.1476037 0.1603190 0.1757883
[3,] 0.1192698 0.1294796 0.1351178 0.1474918 0.1602645 0.1761688
[4,] 0.1205605 0.1301414 0.1349502 0.1474495 0.1609689 0.1772057
[5,] 0.1193963 0.1276414 0.1353485 0.1488351 0.1619209 0.1784423

92 93 94 95 96 97
[1,] 0.1925476 0.2023786 0.2230197 0.2317912 0.2489550 0.2564887
[2,] 0.1925278 0.2042246 0.2258632 0.2327377 0.2496569 0.2543204
[3,] 0.1923846 0.2065336 0.2227166 0.2310604 0.2505261 0.2579329
[4,] 0.1927169 0.2046952 0.2257094 0.2354639 0.2476152 0.2572801
[5,] 0.1900518 0.2075157 0.2243738 0.2349038 0.2466497 0.2577643
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98 99 100 101 102 103
[1,] 0.2855470 0.2977804 0.3293028 0.3535055 0.3765492 0.4075334
[2,] 0.2820887 0.2999455 0.3280996 0.3383158 0.3724149 0.4065906
[3,] 0.2875857 0.3047247 0.3276645 0.3428725 0.3612787 0.4152196
[4,] 0.2837634 0.3001004 0.3260449 0.3397511 0.3753826 0.3954088
[5,] 0.2840868 0.2978883 0.3271328 0.3422307 0.3648953 0.4191176

104 105
[1,] 0.3942605 0.4518950
[2,] 0.4143528 0.4318016
[3,] 0.4161572 0.4345550
[4,] 0.4035836 0.4527897
[5,] 0.3919686 0.4386217

> sim$simdata$"NLSE -K"[1:5,]
alpha beta kappa vqlue

[1,] 3.198626e-05 0.09031280 1.745187 0.0002293891
[2,] 3.190883e-05 0.09156278 1.583020 0.0002885656
[3,] 2.271590e-05 0.08584234 3.476106 0.0002302841
[4,] 3.177180e-05 0.09121374 1.639365 0.0002643820
[5,] 3.134874e-05 0.09311467 1.425920 0.0002298626

> sim$simdata$"NLSE -G"[1:5,]
alpha beta gamma value

[1,] 8.189119e-06 0.1107811 0.02086594 0.0002029090
[2,] 8.987983e-06 0.1099005 0.01931545 0.0002622820
[3,] 4.504687e-06 0.1167289 0.02803281 0.0002024522
[4,] 8.337937e-06 0.1106777 0.02043647 0.0002344362
[5,] 9.693885e-06 0.1092162 0.01804526 0.0002008135

> sim$simdata$qK[1:5,]
80 81 82 83 84 85

[1,] 0.07383620 0.08020683 0.08706986 0.09445309 0.1023841 0.1108898
[2,] 0.07356338 0.07997112 0.08687563 0.09430435 0.1022843 0.1108415
[3,] 0.07450280 0.08074880 0.08747870 0.09472299 0.1025129 0.1108800
[4,] 0.07385502 0.08027234 0.08718695 0.09462655 0.1026184 0.1111890
[5,] 0.07336972 0.07983537 0.08680409 0.09430287 0.1023580 0.1109945

86 87 88 89 90 91
[1,] 0.1199960 0.1297270 0.1401047 0.1511485 0.1628742 0.1752933
[2,] 0.1200007 0.1297847 0.1402136 0.1513045 0.1630705 0.1755199
[3,] 0.1198563 0.1294735 0.1397627 0.1507541 0.1624764 0.1749562
[4,] 0.1203635 0.1301653 0.1406151 0.1517308 0.1635263 0.1760112
[5,] 0.1202356 0.1301022 0.1406121 0.1517795 0.1636140 0.1761200

92 93 94 95 96 97
[1,] 0.1884127 0.2022332 0.2167498 0.2319499 0.2478137 0.2643131
[2,] 0.1886560 0.2024756 0.2169689 0.2321186 0.2478996 0.2642784
[3,] 0.1882172 0.2022799 0.2171602 0.2328690 0.2494112 0.2667851
[4,] 0.1891896 0.2030597 0.2176130 0.2328337 0.2486979 0.2651738
[5,] 0.1892960 0.2031338 0.2176177 0.2327246 0.2484228 0.2646723

98 99 100 101 102 103
[1,] 0.2814115 0.2990638 0.3172165 0.3358076 0.3547675 0.3740199
[2,] 0.2812131 0.2986532 0.3165399 0.3348070 0.3533811 0.3721827
[3,] 0.2849808 0.3039804 0.3237563 0.3442711 0.3654772 0.3873161
[4,] 0.2822206 0.2997893 0.3178224 0.3362543 0.3550124 0.3740178
[5,] 0.2814246 0.2986230 0.3162031 0.3340933 0.3522163 0.3704898

104 105
[1,] 0.3934826 0.4130688
[2,] 0.3911280 0.4101295
[3,] 0.4097188 0.4326059
[4,] 0.3931865 0.4124306
[5,] 0.3888284 0.4071447

> sim$simdata$qG[1:5,]
80 81 82 83 84 85

[1,] 0.07549317 0.08131682 0.08768852 0.09464443 0.1022198 0.1104479
[2,] 0.07518479 0.08107516 0.08751263 0.09453246 0.1021688 0.1104540
[3,] 0.07645660 0.08199035 0.08808733 0.09478981 0.1021397 0.1101778
[4,] 0.07558434 0.08145123 0.08786852 0.09487224 0.1024974 0.1107771
[5,] 0.07507010 0.08102846 0.08753416 0.09462169 0.1023244 0.1106736

86 87 88 89 90 91
[1,] 0.1193595 0.1289811 0.1393344 0.1504342 0.1622880 0.1748936
[2,] 0.1194173 0.1290841 0.1394746 0.1506026 0.1624739 0.1750855
[3,] 0.1189424 0.1284680 0.1387841 0.1499134 0.1618700 0.1746578
[4,] 0.1197416 0.1294172 0.1398247 0.1509787 0.1628857 0.1755429
[5,] 0.1196975 0.1294205 0.1398615 0.1510330 0.1629397 0.1755774
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92 93 94 95 96 97
[1,] 0.1882388 0.2022998 0.2170404 0.2324116 0.2483515 0.2647859
[2,] 0.1884241 0.2024651 0.2171718 0.2324952 0.2483738 0.2647339
[3,] 0.1882688 0.2026815 0.2178598 0.2337519 0.2502905 0.2673925
[4,] 0.1889373 0.2030441 0.2178262 0.2332340 0.2492046 0.2656630
[5,] 0.1889316 0.2029770 0.2176762 0.2329797 0.2488258 0.2651413

98 99 100 101 102 103
[1,] 0.2816287 0.2987843 0.3161485 0.3336118 0.3510619 0.3683863
[2,] 0.2814908 0.2985502 0.3158101 0.3331632 0.3504995 0.3677090
[3,] 0.2849606 0.3028850 0.3210456 0.3393153 0.3575636 0.3756602
[4,] 0.2825229 0.2996879 0.3170538 0.3345110 0.3519473 0.3692507
[5,] 0.2818420 0.2988345 0.3160182 0.3332873 0.3505337 0.3676495

104 105
[1,] 0.3854756 0.4022262
[2,] 0.3846851 0.4013262
[3,] 0.3934786 0.4109003
[4,] 0.3863124 0.4030293
[5,] 0.3845298 0.4010754

> sim$stats $mean
80 81 82 83 84

True 0.07809383 0.08299466 0.08788679 0.09345960 0.1025307
Simulated 0.07808807 0.08299489 0.08789883 0.09347356 0.1025448
K-Model 0.07352346 0.07997371 0.08692308 0.09439807 0.1024244
G-Model 0.07514969 0.08111399 0.08761998 0.09470131 0.1023904

85 86 87 88 89 90
True 0.1069805 0.1197103 0.1291853 0.1350970 0.1479979 0.1611467
Simulated 0.1069802 0.1197138 0.1291654 0.1350773 0.1479962 0.1610996
K-Model 0.1110265 0.1202270 0.1300463 0.1405015 0.1516063 0.1633698
G-Model 0.1107177 0.1197108 0.1293930 0.1397827 0.1508920 0.1627253

91 92 93 94 95 96
True 0.1772695 0.1920261 0.2048741 0.2247596 0.2323846 0.2493774
Simulated 0.1772587 0.1919883 0.2048504 0.2247197 0.2323766 0.2494001
K-Model 0.1757961 0.1888834 0.2026233 0.2170006 0.2319923 0.2475674
G-Model 0.1752783 0.1885369 0.2024763 0.2170600 0.2322399 0.2479559

97 98 99 100 101 102
True 0.2553288 0.2815641 0.2974944 0.3287662 0.3423822 0.3670400
Simulated 0.2554398 0.2814804 0.2975301 0.3288422 0.3426388 0.3672333
K-Model 0.2636871 0.2803041 0.2973636 0.3148030 0.3325532 0.3505395
G-Model 0.2641365 0.2807000 0.2975553 0.3146042 0.3317435 0.3488674

103 104 105
True 0.4011628 0.4014352 0.4337094
Simulated 0.4010161 0.4017543 0.4339996
K-Model 0.3686822 0.3868987 0.4051043
G-Model 0.3658703 0.3826494 0.3991069

$stdv
80 81 82 83

Simulated(ML) 9.042200e-06 9.660727e-06 1.013104e-05 1.079579e-05
K-Model 1.030349e-05 8.633915e-06 6.920447e-06 5.336612e-06
G-Model 1.090722e-05 7.794569e-06 5.257486e-06 4.028598e-06

84 85 86 87
Simulated(ML) 1.194735e-05 1.298040e-05 1.457043e-05 1.622078e-05
K-Model 4.269470e-06 4.284669e-06 5.385466e-06 6.990773e-06
G-Model 4.677492e-06 6.241398e-06 7.828131e-06 9.098781e-06

88 89 90 91
Simulated(ML) 1.694901e-05 1.985240e-05 2.207561e-05 2.408871e-05
K-Model 8.663078e-06 1.015423e-05 1.130076e-05 1.199752e-05
G-Model 9.918947e-06 1.024514e-05 1.012320e-05 9.746246e-06

92 93 94 95
Simulated(ML) 2.800992e-05 3.338797e-05 3.684535e-05 4.399797e-05
K-Model 1.223569e-05 1.222324e-05 1.261361e-05 1.460970e-05
G-Model 9.562835e-06 1.030054e-05 1.258124e-05 1.647755e-05

96 97 98 99
Simulated(ML) 5.031962e-05 5.748981e-05 7.001114e-05 8.682020e-05
K-Model 1.934310e-05 2.720156e-05 3.817134e-05 5.224940e-05
G-Model 2.171915e-05 2.801611e-05 3.513000e-05 4.285319e-05

100 101 102 103
Simulated(ML) 1.005955e-04 1.247377e-04 1.555834e-04 1.967618e-04
K-Model 6.950270e-05 9.002577e-05 1.139025e-04 1.411820e-04
G-Model 5.098891e-05 5.934298e-05 6.772328e-05 7.594332e-05
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104 105
Simulated(ML) 2.575644e-04 3.363375e-04
K-Model 1.718629e-04 2.058849e-04
G-Model 8.382757e-05 9.121727e-05

$difference
80 81 82 83

Simulated(ML) -5.765380e-06 2.347862e-07 1.204395e-05 1.396684e-05
K-Model -4.570367e-03 -3.020947e-03 -9.637051e-04 9.384687e-04
G-Model -2.944145e-03 -1.880667e-03 -2.668021e-04 1.241710e-03

84 85 86 87
Simulated(ML) 1.403943e-05 -2.853535e-07 3.473843e-06 -0.0000198581
K-Model -1.063415e-04 4.045952e-03 5.167220e-04 0.0008609925
G-Model -1.403075e-04 3.737216e-03 4.755542e-07 0.0002076925

88 89 90 91
Simulated(ML) -1.977266e-05 -1.654243e-06 -4.712268e-05 -1.074205e-05
K-Model 5.404476e-03 3.608453e-03 2.223142e-03 -1.473341e-03
G-Model 4.685663e-03 2.894115e-03 1.578571e-03 -1.991173e-03

92 93 94 95
Simulated(ML) -3.780004e-05 -0.0000237638 -3.989624e-05 -8.007708e-06
K-Model -3.142776e-03 -0.0022508236 -7.759009e-03 -3.923142e-04
G-Model -3.489226e-03 -0.0023978640 -7.699606e-03 -1.446965e-04

96 97 98 99
Simulated(ML) 2.272622e-05 0.0001110130 -8.376266e-05 3.565934e-05
K-Model -1.809941e-03 0.0083583256 -1.260001e-03 -1.308549e-04
G-Model -1.421499e-03 0.0088077747 -8.641416e-04 6.084968e-05

100 101 102 103
Simulated(ML) 7.604973e-05 0.0002566015 0.0001932721 -0.0001466694
K-Model -1.396318e-02 -0.0098289100 -0.0165005162 -0.0324805864
G-Model -1.416198e-02 -0.0106386796 -0.0181725833 -0.0352924455

104 105
Simulated(ML) 0.0003191141 0.0002901565
K-Model -0.0145365522 -0.0286051613
G-Model -0.0187858384 -0.0346025854

$summary
avg difference avg stdv

Simulated(ML) 6.897891e-05 6.756834e-05
K-Model 6.490456e-03 4.135572e-05
G-Model 6.850320e-03 2.698274e-05

> sim$nlsKfailures
[1] 0
> sim$nlsGfailures
[1] 0
> sim$which.nlsKfailed
[1] NA
> sim$which.nlsGfailed
[1] NA

#Calculation of Parameter Estimate Statistics (601k Simulation)

> min(sim$simdata$"NLSE -K"[,1])
[1] 2.239933e-05
> max(sim$simdata$"NLSE -K"[,1])
[1] 3.56165e-05
> min(sim$simdata$"NLSE -K"[,2])
[1] 0.08573302
> max(sim$simdata$"NLSE -K"[,2])
[1] 0.1005873
> min(sim$simdata$"NLSE -K"[,3])
[1] 0.9121363
> max(sim$simdata$"NLSE -K"[,3])
[1] 3.556584
> (sum(sim$simdata$"NLSE -K"[,1]))/1500
[1] 3.193059e-05
> (sum(sim$simdata$"NLSE -K"[,2]))/1500
[1] 0.0927975
> (sum(sim$simdata$"NLSE -K"[,3]))/1500
[1] 1.469800
> min(sim$simdata$"NLSE -G"[,1])
[1] 4.504687e-06
> max(sim$simdata$"NLSE -G"[,1])
[1] 2.589645e-05
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> min(sim$simdata$"NLSE -G"[,2])
[1] 0.09944492
> max(sim$simdata$"NLSE -G"[,2])
[1] 0.1167289
> min(sim$simdata$"NLSE -G"[,3])
[1] 0.005006144
> max(sim$simdata$"NLSE -G"[,3])
[1] 0.02803281
> (sum(sim$simdata$"NLSE -G"[,1]))/1500
[1] 1.084922e-05
> (sum(sim$simdata$"NLSE -G"[,2]))/1500
[1] 0.1083512
> (sum(sim$simdata$"NLSE -G"[,3]))/1500
[1] 0.01743935
> sqrt ((1500/1499)*(((sum((sim$simdata$"NLSE -K"[ ,1])^2))/1500) -((( sum(sim$simdata$"NLSE -K"[ ,1]))/1500)^2)))
[1] 1.46533e-06
> sqrt ((1500/1499)*(((sum((sim$simdata$"NLSE -K"[ ,2])^2))/1500) -((( sum(sim$simdata$"NLSE -K"[ ,2]))/1500)^2)))
[1] 0.002397061
> sqrt ((1500/1499)*(((sum((sim$simdata$"NLSE -K"[ ,3])^2))/1500) -((( sum(sim$simdata$"NLSE -K"[ ,3]))/1500)^2)))
[1] 0.3102828
> sqrt ((1500/1499)*(((sum((sim$simdata$"NLSE -G"[ ,1])^2))/1500) -((( sum(sim$simdata$"NLSE -G"[ ,1]))/1500)^2)))
[1] 2.794988e-06
> sqrt ((1500/1499)*(((sum((sim$simdata$"NLSE -G"[ ,2])^2))/1500) -((( sum(sim$simdata$"NLSE -G"[ ,2]))/1500)^2)))
[1] 0.002486274
> sqrt ((1500/1499)*(((sum((sim$simdata$"NLSE -G"[ ,3])^2))/1500) -((( sum(sim$simdata$"NLSE -G"[ ,3]))/1500)^2)))
[1] 0.003430238

300k Simulation (simulation statistics and NLS estimation failures)

> system.time(sim300 <- perksMCsim(reps =1500, table.ages =80:110 , table.pop=l93 ,est.ages =80:99 , pred.ages =80:105 ,
size =300000 , seed =3))

user system elapsed
704.545 6.172 706.977 #Time in seconds to complete simulation
#(Note: Warning messages not shown)

> sim300$stats
$mean

80 81 82 83 84
True 0.07809383 0.08299466 0.08788679 0.09345960 0.1025307
Simulated 0.07810270 0.08295835 0.08788679 0.09346357 0.1025084
K-Model 0.07350215 0.07995712 0.08691170 0.09439227 0.1024244
G-Model 0.07511437 0.08109050 0.08760760 0.09469913 0.1023973

85 86 87 88 89 90
True 0.1069805 0.1197103 0.1291853 0.1350970 0.1479979 0.1611467
Simulated 0.1069792 0.1197170 0.1291623 0.1351299 0.1480114 0.1611818
K-Model 0.1110324 0.1202385 0.1300630 0.1405225 0.1516305 0.1633955
G-Model 0.1107325 0.1197318 0.1294186 0.1398110 0.1509210 0.1627528

91 92 93 94 95 96
True 0.1772695 0.1920261 0.2048741 0.2247596 0.2323846 0.2493774
Simulated 0.1772554 0.1920202 0.2049374 0.2247118 0.2323640 0.2493816
K-Model 0.1758211 0.1889052 0.2026390 0.2170067 0.2319851 0.2475430
G-Model 0.1753020 0.1885544 0.2024851 0.2170578 0.2322243 0.2479247

97 98 99 100 101 102
True 0.2553288 0.2815641 0.2974944 0.3287662 0.3423822 0.3670400
Simulated 0.2552872 0.2814607 0.2974318 0.3288318 0.3424881 0.3671674
K-Model 0.2636414 0.2802332 0.2972637 0.3146710 0.3323865 0.3503364
G-Model 0.2640878 0.2806318 0.2974661 0.3144927 0.3316089 0.3487091

103 104 105
True 0.4011628 0.4014352 0.4337094
Simulated 0.4008473 0.4018857 0.4330940
K-Model 0.3684420 0.3866219 0.4047927
G-Model 0.3656881 0.3824434 0.3988778

$stdv
80 81 82 83

Simulated(ML) 1.295237e-05 1.322055e-05 1.475680e-05 1.564757e-05
K-Model 1.467446e-05 1.233523e-05 9.916383e-06 7.643427e-06
G-Model 1.525099e-05 1.098523e-05 7.476005e-06 5.663803e-06

84 85 86 87
Simulated(ML) 1.740495e-05 1.878968e-05 2.000516e-05 2.243458e-05
K-Model 6.029634e-06 5.896809e-06 7.365751e-06 9.625728e-06
G-Model 6.385240e-06 8.464733e-06 1.064752e-05 1.243950e-05
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88 89 90 91
Simulated(ML) 2.469515e-05 2.736950e-05 3.104865e-05 3.517117e-05
K-Model 1.202806e-05 1.421250e-05 1.594830e-05 1.708747e-05
G-Model 1.364971e-05 1.422062e-05 1.421924e-05 1.390575e-05

92 93 94 95
Simulated(ML) 4.069431e-05 4.704556e-05 5.251796e-05 6.239946e-05
K-Model 1.760857e-05 1.776324e-05 1.835458e-05 2.090794e-05
G-Model 1.385250e-05 1.495147e-05 1.798492e-05 2.311708e-05

96 97 98 99
Simulated(ML) 7.076429e-05 8.285561e-05 9.787397e-05 1.180788e-04
K-Model 2.701651e-05 3.739086e-05 5.209881e-05 7.114093e-05
G-Model 3.006142e-05 3.845461e-05 4.797693e-05 5.834386e-05

100 101 102 103
Simulated(ML) 1.416807e-04 0.0001755828 2.215190e-04 0.0002768915
K-Model 9.459768e-05 0.0001225914 1.552362e-04 0.0001926025
G-Model 6.928527e-05 0.0000805354 9.183218e-05 0.0001029218

104 105
Simulated(ML) 0.0003723230 0.0004850114
K-Model 0.0002346958 0.0002814423
G-Model 0.0001135657 0.0001235482

$difference
80 81 82 83

Simulated(ML) 8.866723e-06 -0.0000363039 1.131972e-09 3.972379e-06
K-Model -4.591686e-03 -0.0030375369 -9.750862e-04 9.326734e-04
G-Model -2.979461e-03 -0.0019041573 -2.791831e-04 1.239534e-03

84 85 86 87
Simulated(ML) -2.234246e-05 -1.270734e-06 6.680394e-06 -2.292332e-05
K-Model -1.063192e-04 4.051833e-03 5.282625e-04 8.777024e-04
G-Model -1.333776e-04 3.751951e-03 2.151288e-05 2.333342e-04

88 89 90 91
Simulated(ML) 3.286352e-05 1.353815e-05 3.507677e-05 -1.401112e-05
K-Model 5.425524e-03 3.632621e-03 2.248787e-03 -1.448311e-03
G-Model 4.714026e-03 2.923148e-03 1.606078e-03 -1.967497e-03

92 93 94 95
Simulated(ML) -5.925756e-06 6.327744e-05 -4.784234e-05 -2.059394e-05
K-Model -3.120912e-03 -2.235120e-03 -7.752861e-03 -3.994481e-04
G-Model -3.471765e-03 -2.389030e-03 -7.701798e-03 -1.602461e-04

96 97 98 99
Simulated(ML) 4.248692e-06 -4.153931e-05 -0.0001034016 -6.264250e-05
K-Model -1.834308e-03 8.312685e-03 -0.0013308813 -2.306741e-04
G-Model -1.452620e-03 8.759039e-03 -0.0009323169 -2.832379e-05

100 101 102 103
Simulated(ML) 6.564642e-05 0.0001059137 0.0001273670 -0.0003155113
K-Model -1.409517e-02 -0.0099956273 -0.0167036487 -0.0327207849
G-Model -1.427341e-02 -0.0107732738 -0.0183309011 -0.0354746667

104 105
Simulated(ML) 0.0004504638 -0.0006154977
K-Model -0.0148133037 -0.0289167170
G-Model -0.0189917637 -0.0348316445

$summary
avg difference avg stdv

Simulated(ML) 8.568162e-05 9.610517e-05
K-Model 6.550711e-03 5.677735e-05
G-Model 6.897079e-03 3.691306e-05

> sim300$nlsKfailures
[1] 4
> sim300$nlsGfailures
[1] 0
> sim300$which.nlsKfailed
[1] 3 503 875 1503
> sim300$which.nlsGfailed
[1] NA

#Calculation of Parameter Estimate Statistics (300k Simulation)

> min(sim300$simdata$"NLSE -K"[,1])
[1] 1.353612e-05
> max(sim300$simdata$"NLSE -K"[,1])
[1] 3.808734e-05
> min(sim300$simdata$"NLSE -K"[,2])
[1] 0.08277397

68



> max(sim300$simdata$"NLSE -K"[,2])
[1] 0.1031677
> min(sim300$simdata$"NLSE -K"[,3])
[1] 0.831647
> max(sim300$simdata$"NLSE -K"[,3])
[1] 7.07855
> (sum(sim300$simdata$"NLSE -K"[ ,1]))/1500
[1] 3.128497e-05
> (sum(sim300$simdata$"NLSE -K"[ ,2]))/1500
[1] 0.0929523
> (sum(sim300$simdata$"NLSE -K"[ ,3]))/1500
[1] 1.524542
> min(sim300$simdata$"NLSE -G"[,1])
[1] 3.921753e-06
> max(sim300$simdata$"NLSE -G"[,1])
[1] 3.021972e-05
> min(sim300$simdata$"NLSE -G"[,2])
[1] 0.0980972
> max(sim300$simdata$"NLSE -G"[,2])
[1] 0.1180489
> min(sim300$simdata$"NLSE -G"[,3])
[1] 0.0007588245
> max(sim300$simdata$"NLSE -G"[,3])
[1] 0.02974393
> (sum(sim300$simdata$"NLSE -G"[ ,1]))/1500
[1] 1.134860e-05
> (sum(sim300$simdata$"NLSE -G"[ ,2]))/1500
[1] 0.1081735
> (sum(sim300$simdata$"NLSE -G"[ ,3]))/1500
[1] 0.01709246
> sqrt ((1500/1499)*(((sum(( sim300$simdata$"NLSE -K"[ ,1])^2))/1500) -((( sum(sim300$simdata$"NLSE -K"[,1]))/1500)^2)))
[1] 2.518693e-06
> sqrt ((1500/1499)*(((sum(( sim300$simdata$"NLSE -K"[ ,2])^2))/1500) -((( sum(sim300$simdata$"NLSE -K"[,2]))/1500)^2)))
[1] 0.003336701
> sqrt ((1500/1499)*(((sum(( sim300$simdata$"NLSE -K"[ ,3])^2))/1500) -((( sum(sim300$simdata$"NLSE -K"[,3]))/1500)^2)))
[1] 0.553546
> sqrt ((1500/1499)*(((sum(( sim300$simdata$"NLSE -G"[ ,1])^2))/1500) -((( sum(sim300$simdata$"NLSE -G"[,1]))/1500)^2)))
[1] 3.939578e-06
> sqrt ((1500/1499)*(((sum(( sim300$simdata$"NLSE -G"[ ,2])^2))/1500) -((( sum(sim300$simdata$"NLSE -G"[,2]))/1500)^2)))
[1] 0.003369207
> sqrt ((1500/1499)*(((sum(( sim300$simdata$"NLSE -G"[ ,3])^2))/1500) -((( sum(sim300$simdata$"NLSE -G"[,3]))/1500)^2)))
[1] 0.004700127

#Testing of NLS Estimates

#Determination of the Simulation Histories which Produced Minimum or Maximum NLS Estimates for Gamma and Kappa

> which.min(sim$simdata$"NLSE -G"[,3])
[1] 1482
> which.min(sim$simdata$"NLSE -K"[,3])
[1] 1482
> which.max(sim$simdata$"NLSE -G"[,3])
[1] 3
> which.max(sim$simdata$"NLSE -K"[,3])
[1] 714
> which.min(sim300$simdata$"NLSE -G"[,3])
[1] 628
> which.min(sim300$simdata$"NLSE -K"[,3])
[1] 628
> which.max(sim300$simdata$"NLSE -G"[,3])
[1] 1233
> which.max(sim300$simdata$"NLSE -K"[,3])
[1] 153

#Example of Coding to Run NLS Test

> startfinderGtest(x=80:99 ,p=1-sim$stats$mean [1,1:20],min = c(1e-7,0.04,-0.2),max = c(1e-3 ,0.19 ,0.1) ,
step = c(2 ,0.01 ,0.05))

$par
a m g

1.059062e-05 1.082720e-01 1.740749e-02

$val [1] 0.0002221272
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There were 50 or more warnings (use warnings () to see the first 50)

#Example of warning messages (first two)

Warning messages:
1: In log(1 + a * exp(m * x)) : NaNs produced
2: In log(1 + a * exp(m * (x + 1))) : NaNs produced

> g6s <- nlstest(nlse ,"G")
> g6s
$na
[1] 1220
$converged
[1] 250
$ssr
0.0002221272
$same.ssr
[1] 250
$different.ssr
[1] 0
$stats

alpha beta gamma
min 1.059025e-05 1.082718e-01 1.740699e-02
max 1.059094e-05 1.082724e-01 1.740805e-02
range 6.870679e-10 6.187148e-07 1.056722e-06
mean 1.059066e-05 1.082720e-01 1.740742e-02
SD 1.160886e-10 1.043506e-07 1.786258e-07

#Tests of NLS Estimates for Selected Life Tables in 601k Simulation

#Test Using Supplied Life Table and G-model
> g6s
$na
[1] 1220
$converged
[1] 250
$ssr
0.0002221272
$same.ssr
[1] 250
$different.ssr
[1] 0
$stats

alpha beta gamma
min 1.059025e-05 1.082718e-01 1.740699e-02
max 1.059094e-05 1.082724e-01 1.740805e-02
range 6.870679e-10 6.187148e-07 1.056722e-06
mean 1.059066e-05 1.082720e-01 1.740742e-02
SD 1.160886e-10 1.043506e-07 1.786258e-07

#Test Using Supplied Life Table and K-model
> k6s
$na
[1] 7743
$converged
[1] 2757
$ssr
0.0002484908
$same.ssr
[1] 2757
$different.ssr
[1] 0
$stats

alpha beta kappa
min 3.259700e-05 9.286452e-02 1.403434e+00
max 3.259750e-05 9.286512e-02 1.403484e+00
range 4.977609e-10 6.017056e-07 5.010287e-05
mean 3.259724e-05 9.286477e-02 1.403463e+00
SD 6.588756e-11 7.323917e-08 5.956308e-06

#Test Using Simulated Life Table History 1 and G-model
> g61
$na
[1] 1233
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$converged
[1] 237
$ssr
0.0002029090
$same.ssr
[1] 237
$different.ssr
[1] 0
$stats

alpha beta gamma
min 8.188760e-06 1.107807e-01 2.086537e-02
max 8.189427e-06 1.107815e-01 2.086662e-02
range 6.665852e-10 7.802038e-07 1.253209e-06
mean 8.189092e-06 1.107811e-01 2.086600e-02
SD 8.936285e-11 1.044205e-07 1.682129e-07

#Test Using Simulated Life Table History 1 and K-model
> k61
$na
[1] 7780
$converged
[1] 2720
$ssr
0.0002293891
$same.ssr
[1] 2720
$different.ssr
[1] 0
$stats

alpha beta kappa
min 3.198615e-05 9.031257e-02 1.745145e+00
max 3.198647e-05 9.031305e-02 1.745218e+00
range 3.175892e-10 4.803478e-07 7.255962e-05
mean 3.198630e-05 9.031276e-02 1.745191e+00
SD 4.883453e-11 6.801819e-08 1.020385e-05

#Test Using Simulated Life Table History 1482 and G-model
#(NLS estimates for both gamma and kappa were minimum in this history)
> g61482
$na
[1] 1166
$converged
[1] 304
$ssr
0.0002608029
$same.ssr
[1] 304
$different.ssr
[1] 0
$stats

alpha beta gamma
min 2.589531e-05 9.944465e-02 5.005565e-03
max 2.589721e-05 9.944534e-02 5.007006e-03
range 1.901898e-09 6.880867e-07 1.441032e-06
mean 2.589628e-05 9.944499e-02 5.006265e-03
SD 3.028044e-10 1.096416e-07 2.278051e-07

#Test Using Simulated Life Table History 1482 and K-model
#(NLS estimates for both gamma and kappa were minimum in this history)
> k61482
$na
[1] 7814
$converged
[1] 2686
$ssr
0.0002613421
$same.ssr
[1] 2686
$different.ssr
[1] 0
$stats

alpha beta kappa
min 2.948215e-05 9.971361e-02 9.121275e-01
max 2.948301e-05 9.971421e-02 9.121465e-01
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range 8.589166e-10 5.963737e-07 1.893942e-05
mean 2.948258e-05 9.971391e-02 9.121376e-01
SD 1.409543e-10 1.006792e-07 3.142929e-06

#Test Using Simulated Life Table History 3 and G-model
#(NLS estimate for gamma was maximum in this history)
> g63
$na
[1] 1224
$converged
[1] 246
$ssr
0.0002024522
$same.ssr
[1] 246
$different.ssr
[1] 0
$stats

alpha beta gamma
min 4.504533e-06 1.167287e-01 2.803247e-02
max 4.504798e-06 1.167293e-01 2.803328e-02
range 2.649568e-10 5.655665e-07 8.151867e-07
mean 4.504647e-06 1.167290e-01 2.803293e-02
SD 4.349238e-11 9.298556e-08 1.337949e-07

#Test Using Simulated Life Table History 3 and K-model
#(NLS estimate for gamma was maximum in this history)
> k63
$na
[1] 9297
$converged
[1] 1203
$ssr
0.0002302841
$same.ssr
[1] 1203
$different.ssr
[1] 0
$stats

alpha beta kappa
min 2.271475e-05 8.584189e-02 3.4745782585
max 2.272173e-05 8.584466e-02 3.4764041298
range 6.981545e-09 2.771206e-06 0.0018258713
mean 2.271763e-05 8.584303e-02 3.4756503574
SD 8.532821e-10 3.389376e-07 0.0002237596

#Test Using Simulated Life Table History 714 and K-model
#(NLS estimate for kappa was maximum in this history)
> k6714
$na
[1] 9289
$converged
[1] 1211
$ssr
0.0002747723
$same.ssr
[1] 1211
$different.ssr
[1] 0
$stats

alpha beta kappa
min 2.239445e-05 8.573116e-02 3.5556195140
max 2.240292e-05 8.573442e-02 3.5578781073
range 8.473681e-09 3.258340e-06 0.0022585933
mean 2.239876e-05 8.573280e-02 3.5567348244
SD 9.527776e-10 3.675027e-07 0.0002546896

#Test Using Simulated Life Table History 714 and G-model
#(NLS estimate for kappa was maximum in this history)
> g6714
$na
[1] 1208
$converged
[1] 262
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$ssr
0.0002631026
$same.ssr
[1] 262
$different.ssr
[1] 0
$stats

alpha beta gamma
min 4.894183e-06 1.159403e-01 2.679214e-02
max 4.894440e-06 1.159408e-01 2.679288e-02
range 2.574420e-10 5.063781e-07 7.411405e-07
mean 4.894308e-06 1.159406e-01 2.679252e-02
SD 4.649097e-11 9.145381e-08 1.338916e-07

#Selected Tests of NLS Estimates for 300k Simulation

#Test Using Simulated Life Table History 1 and G-model
> g31
$na
[1] 1231
$converged
[1] 239
$ssr
0.0002119951
$same.ssr
[1] 239
$different.ssr
[1] 0
$stats

alpha beta gamma
min 7.339825e-06 1.118514e-01 2.228472e-02
max 7.340384e-06 1.118521e-01 2.228588e-02
range 5.594923e-10 7.284534e-07 1.156002e-06
mean 7.340107e-06 1.118518e-01 2.228529e-02
SD 8.284462e-11 1.080830e-07 1.704972e-07

#Test Using Simulated Life Table History 1 and K-model
> k31
$na
[1] 7822
$converged
[1] 2678
$ssr
0.0002374287
$same.ssr
[1] 2678
$different.ssr
[1] 0
$stats

alpha beta kappa
min 3.106537e-05 8.924798e-02 1.952034e+00
max 3.106589e-05 8.924852e-02 1.952143e+00
range 5.249559e-10 5.398806e-07 1.093047e-04
mean 3.106563e-05 8.924825e-02 1.952090e+00
SD 7.897073e-11 8.447395e-08 1.708820e-05

#Test Using Simulated Life Table History 628 and G-model
#(NLS estimates for both gamma and kappa were minimum in this history)
> g3628
$na
[1] 1209
$converged
[1] 261
$ssr
0.0003455593
$same.ssr
[1] 261
$different.ssr
[1] 0
$stats

alpha beta gamma
min 3.021916e-05 9.809628e-02 7.567470e-04
max 3.022271e-05 9.809737e-02 7.592336e-04
range 3.545729e-09 1.087678e-06 2.486578e-06
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mean 3.022093e-05 9.809683e-02 7.580093e-04
SD 5.472817e-10 1.685656e-07 3.781061e-07

#Test Using Simulated Life Table History 628 and K-model
#(NLS estimates for both gamma and kappa were minimum in this history)
> k3628
$na
[1] 7850
$converged
[1] 2650
$ssr
0.0003324193
$same.ssr
[1] 2650
$different.ssr
[1] 0
$stats

alpha beta kappa
min 2.431854e-05 1.031675e-01 8.316332e-01
max 2.431957e-05 1.031683e-01 8.316517e-01
range 1.027278e-09 7.883184e-07 1.848967e-05
mean 2.431908e-05 1.031679e-01 8.316426e-01
SD 1.551351e-10 1.219374e-07 2.981000e-06

#Test Using Simulated Life Table History 153 and K-model
#(NLS estimate for kappa was maximum in this history)
> k3153
$na
[1] 10445
$converged
[1] 55
$ssr
0.0003212777
$same.ssr
[1] 55
$different.ssr
[1] 0
$stats

alpha beta kappa
min 1.349490e-05 8.332777e-02 7.082472679
max 1.353009e-05 8.333582e-02 7.105471983
range 3.519600e-08 8.042900e-06 0.022999304
mean 1.351822e-05 8.333311e-02 7.090212834
SD 7.288417e-09 1.661521e-06 0.004758876

#Test Using Simulated Life Table History 153 and G-model
#(NLS estimate for kappa was maximum in this history)
> g3153
$na
[1] 1219
$converged
[1] 251
$ssr
0.0003145003
$same.ssr
[1] 251
$different.ssr
[1] 0
$stats

alpha beta gamma
min 3.982493e-06 1.178829e-01 2.951353e-02
max 3.982700e-06 1.178834e-01 2.951424e-02
range 2.069064e-10 5.009775e-07 7.007243e-07
mean 3.982604e-06 1.178831e-01 2.951386e-02
SD 4.071274e-11 9.852932e-08 1.389695e-07

#Test Using Simulated Life Table History 1233 and G-model
#(NLS estimate for gamma was maximum in this history)
> g31233
$na
[1] 1217
$converged
[1] 253
$ssr
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0.0002995457
$same.ssr
[1] 253
$different.ssr
[1] 0
$stats

alpha beta gamma
min 3.921624e-06 1.180485e-01 2.974339e-02
max 3.921910e-06 1.180492e-01 2.974437e-02
range 2.862205e-10 7.047185e-07 9.831405e-07
mean 3.921757e-06 1.180489e-01 2.974391e-02
SD 4.664711e-11 1.147380e-07 1.612726e-07

#Test Using Simulated Life Table History 1233 and K-model
#(NLS estimate for gamma was maximum in this history)
> k31233
$na
[1] 10471
$converged
[1] 29
$ssr
0.0003081616
$same.ssr
[1] 29
$different.ssr
[1] 0
$stats

alpha beta kappa
min 1.362392e-05 8.336110e-02 7.001938017
max 1.366398e-05 8.337026e-02 7.027624898
range 4.005624e-08 9.166772e-06 0.025686880
mean 1.363976e-05 8.336471e-02 7.017461731
SD 8.523240e-09 1.955909e-06 0.005467799
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7.5 R Coding for Testing of NLS Estimates

Testing Functions

Note 1: Results of attempts at NLS estimation are not returned by startfinderGtest
or startfinderKtest but are stored globally in a list named nlse , which is supplied
to the function nlstest following the completion of startfinderGtest or startfinderKtest.
Note 2: The following vectors of minimum , maximum , and step values were supplied to
startfinderGtest and startfinderKtest for each test:
For startfinderGtest , min=c(1e-7,0.04,-0.2),max=c(1e-3 ,0.19 ,0.1) , step=c(2 ,0.01 ,0.05)
For startfinderKtest , min=c(0.1,1e-7 ,0.04) ,max=c(5,1e-3,0.19), step=c(0.1 ,2 ,0.01)
Note 3: Lines that were too long to fit onto the page were split into multiple lines
in the coding shown below , and might need adjusted when running the code in R.

startfinderGtest <- function(x,p,min ,max ,step){
mo <- min[2]
A <- max [1]
M <- max [2]
G <- max [3]
astep <- step [1]
mstep <- step [2]
gstep <- step [3]
par <- c(NA,NA,NA)
val <- 1e7
nlse <<- vector("list")
i <- 1
while(mo <= M){

ao <- min[1]
while(ao <= A){

go <- min[3]
while(go <= G){

snls <- try(nls(p ~ I(exp((1/m)*(log(1+a*exp(m*x))-
log (1+a*exp(m*(x+1)))) -g)),start=list(a=ao,m=mo,g=go)),

silent=TRUE)
if(length(snls) != 1){

ssr <- sum(resid(snls )^2)
nlse[[i]] <<- c(( summary(snls))$par[,1],ssr)
par <- nlse[[i]][1:3]
}

else nlse[[i]] <<- NA
go <- go + gstep
i <- i+1
}

ao <- ao * astep
}

mo <- mo + mstep
}

list(par=par ,val=ssr)
}

startfinderKtest <- function(x,p,min ,max ,step){
mo <- min[3]
K <- max [1]
A <- max [2]
M <- max [3]
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kstep <- step [1]
astep <- step [2]
mstep <- step [3]
par <- c(NA,NA,NA)
val <- 1e7
nlse <<- vector("list")
i <- 1
while(mo <= M){

ko <- min[1]
while(ko <= K){

ao <- min[2]
while(ao <= A){

snls <- try(nls(p ~ I(exp((k/m)*(log(1+a*exp(m*x))-
log (1+a*exp(m*(x+1)))))) , start=list(k=ko,a=ao ,m=mo)),

silent=TRUE)
if(length(snls) != 1){

ssr <- sum(resid(snls )^2)
nlse[[i]] <<- c(( summary(snls))$par[,1],ssr)
par <- nlse[[i]][1:3]
}

else nlse[[i]] <<- NA
ao <- ao * astep
i <- i+1
}

ko <- ko + kstep
}

mo <- mo + mstep
}

list(par=par ,val=ssr)
}

nlstest <- function(nlse ,model ){
j <- k <- h <- l <- s <- 0
ssr <- NA
t <- vector("list")
best <<- matrix(NA ,1,4)
for(i in 1: length(nlse )){

if(is.na(nlse[[i]][1])) {h <- h + 1}
if(!is.na(nlse[[i]][1])){

if(is.na(ssr)){
ssr <- nlse[[i]][4]
}

best <<- rbind(best ,c(nlse[[i]][1], nlse[[i]][2] , nlse[[i]][3] , nlse[[i]][4]))
l <- l + 1
}

if(!is.na(nlse[[i]][1]) && round(nlse[[i]][4], digits =10) == round(ssr ,digits =10))
{j <- j + 1}

if(!is.na(nlse[[i]][1]) && round(nlse[[i]][4], digits =10) != round(ssr ,digits =10))
{k <- k + 1}

}
n <- length(best [,1])
best <- best [2:n,]
n <- n-1
stats <- matrix(NA ,5,3)
rownames(stats) <- c("min","max","range","mean","SD")
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if(model=="G"){
colnames(stats) <- c("alpha","beta","gamma")
amin <- min(best [,1])
amax <- max(best [,1])
arange <- amax -amin
amean <- sum(best [,1])/n
astd <- sqrt((n/(n-1))*(((sum((best [ ,1])^2))/n)-(((sum(best [,1]))/n)^2)))
stats[,1] <- c(amin ,amax ,arange ,amean ,astd)
bmin <- min(best [,2])
bmax <- max(best [,2])
brange <- bmax -bmin
bmean <- sum(best [,2])/n
bstd <- sqrt((n/(n-1))*(((sum((best [ ,2])^2))/n)-(((sum(best [,2]))/n)^2)))
stats[,2] <- c(bmin ,bmax ,brange ,bmean ,bstd)
gmin <- min(best [,3])
gmax <- max(best [,3])
grange <- gmax -gmin
gmean <- sum(best [,3])/n
gstd <- sqrt((n/(n-1))*(((sum((best [ ,3])^2))/n)-(((sum(best [,3]))/n)^2)))
stats[,3] <- c(gmin ,gmax ,grange ,gmean ,gstd)
}

if(model=="K"){
colnames(stats) <- c("alpha","beta","kappa")
amin <- min(best [,2])
amax <- max(best [,2])
arange <- amax -amin
amean <- sum(best [,2])/n
astd <- sqrt((n/(n-1))*(((sum((best [ ,2])^2))/n)-(((sum(best [,2]))/n)^2)))
stats[,1] <- c(amin ,amax ,arange ,amean ,astd)
bmin <- min(best [,3])
bmax <- max(best [,3])
brange <- bmax -bmin
bmean <- sum(best [,3])/n
bstd <- sqrt((n/(n-1))*(((sum((best [ ,3])^2))/n)-(((sum(best [,3]))/n)^2)))
stats[,2] <- c(bmin ,bmax ,brange ,bmean ,bstd)
kmin <- min(best [,1])
kmax <- max(best [,1])
krange <- kmax -kmin
kmean <- sum(best [,1])/n
kstd <- sqrt((n/(n-1))*(((sum((best [ ,1])^2))/n)-(((sum(best [,1]))/n)^2)))
stats[,3] <- c(kmin ,kmax ,krange ,kmean ,kstd)
}

list(na=h,converged=l,ssr=ssr ,same.ssr=j,different.ssr=k,stats=stats)
}
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