The Effects of Housing Conditions on Anxiety-Like Behavior

by

Jade Jiang

Submitted in Partial Fulfillment of the Requirements
for the Degree of
Master of Science
in the
Biological Science

Program

YOUNGSTOWN STATE UNIVERSITY

December 2011

Digitally signed by ETD Program

DN: cn=ETD Program,
o=Youngtown State University,
ou=School of Graduate Studies
and Research,

email=etdadmin@cc.ysu.edu,
rogram::

Date: 2012.02.04 14:10:32 -05'00"



The Effects of Housing Conditions on Anxiety-Like Behavior

Jade Jiang

I hereby release this thesis to the public. I understand that this thesis will be made available from the
OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the
University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:
Jade Jiang, Student Date
Approvals:
Dr. Jill M. Tall, Thesis Advisor Date
Dr. Mark D. Womble, Committee Member Date
Dr. Diana Fagan, Committee Member Date

Dr. Peter J. Kasvinsky, Dean, School of Graduate Studies & Research ~ Date



ABSTRACT

Pain is modulated by multidimensional components. It is no longer adequate for us only
looking into nociceptive component. One factor that plays a critical role in pain modulation is
anxiety. Previous clinical studies have showed that affective pain is strongly associated with
anxiety. The current study was to investigate the effects of cage complexity and social
interaction on anxiety level. Four housing conditions as treatment groups were arranged, 1) three
rats were housed in the same cage with toys (S/E), 2) three rats were housed in the same without
toys (S/NE), 3) one rat was housed individually with toys (NS/E), 4) one rat was housed
individually without toys (NS/NE). The subjects’ anxiety level were assessed by open field test
and elevated plus-maze test. The results showed that there were no statistically significant
differences among the treatment groups, but there was a clear consistent trend demonstrated both
in open field test and elevated plus-maze test that following the baseline data collection, after the
rats (NS/E,NS/NE) were housed individually for a week, the anxiogenic profile increased that
was indicated by the decrease in the time spent in the center square in open field apparatus and
the time spent in open arms in elevated plus-maze test. And also the locomotive activities
decreased in the number of time of exploring the novel object and the number of times of rearing
events in open field apparatus. Isolation housing condition has been considered as a stress to
organism. We speculated that isolation condition induced deregulation of HPA axis, it led to

alteration of anxiety level.
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CHAPTER 1
I. Introduction
A. Perspectives on Pain

Nearly one in five Americans suffer from chronic pain and most claim that the
pain is severe enough to interfere with their daily lives. With this increased recognition of
pain and its impact on our society, many researchers have been drawn to the study of
pain. Gaining a better understanding of pain mechanisms will provide more effective
treatment to those who suffer from chronic pain conditions.

Pain is defined by the International Association for the Study of Pain (1994) as an
unpleasant sensory and emotional experience associated with actual or potential tissue
damage. It serves as a protective mechanism for the body, producing a rapid reaction to
noxious stimuli. Pain is a complex, sensory experience with subjective components
including unpleasantness, displeasure, suffering and escape. From an evolutionary
perspective, pain is believed to be the oldest sensation and there has been a debate during
the last 100 years in terms of the biological significance of pain. One view proposes that
pain is a sense similar to audition, olfaction, and vision, a component of the sensory
repertoire of most animals (Basbaum and Bushnell, 2008). The other view is that unlike
other senses, pain is a trigger of emotional states, a behavioral drive, and a highly
effective leaning tool (Basbaum and Bushnell, 2008).

It is undeniable that pain is a very complex perception for scientists to examine
not only due to the physiological qualities, but also the psychological and emotional

components. The most modern view of pain is that it is a biobehavioral experience



associated with multiple components (Moore, 2009). One of the prominent components
of pain is nociception, the sensory transmission of noxious information to the brain.
Previously the term “pain” was often, mistakenly, used interchangeably with the term
“nociception.” The distinguishing factor is that nociception is purely a sensory quality.
The other elements which are included in pain are affective, psychological, social and
environmental elements. All of the components of pain are classified into three
categories, such as sensory, affective and cognitive qualities (Nicolson, 2009), that
interact with each other in the process of pain.

In 1894 Von Frey was the first to link pain to fine nerve terminals in the skin
(Basbaum and Bushnell, 2008). The fine nerve endings of myelinated or unmyelinated
afferents are called nociceptors since they are activated by noxious or nociceptive stimuli.
By the 19"century, with increased evidence, the view of pain as a sense with a distinct
physiological basis was overwhelmingly favored. Studies revealed that there were
neurons in the spinal cord and brain driven exclusively by nociceptive stimuli. The
noxious stimulus is converted to action potentials and this electrical signal is transmitted
to the spinal cord via the Ao or C afferent nerve fibers. At the dorsal horn of the spinal
cord the first synapse occurs, and this is a site where the nociceptive information is highly
modulated. Most of the nociceptive neurons’ axons decussate at the level of the spinal
cord entry and ascend to the brain via the spinothalamic tract. At the thalamus, the second
synapse occurs and noxious information reaches the post-central gyrus of the parietal
lobe of the cerebrum, an area known as the somatosensory cortex (Fig.1).

By the 1990s, there had been a significant increase in the number of studies

conducted on the affective dimension of pain. The affective dimension of pain includes



feelings of unpleasantness and emotions. This strongly correlates to the environmental
context in which the noxious stimuli are presented and not to the intensity of the
nociceptive stimuli. In terms of pain pathways, pain has a relative separation of cerebral
structures that are involved in the affective aspects of the pain experience as compared to

the nociceptive components (Rainville, 2002).

Figure 1. Spinothalamic pain pathway
The information from nociceptors not only projects to the somatosensory cortex, but also
projects collaterally to the prefrontal lobes, amygadala, and anterior cingulate cortex,

which are all substructures of the limbic system. These structures form the anatomical



basis for the emotional components of pain. Interestingly, these substructures are also
brain areas associated with depression and anxiety disorders. Researchers estimate that
20% to 50% of patients with chronic pain also have depression and anxiety (Nicolson,
2009). It seems convincing that a strong link between affective pain and
anxiety/depression disorders exists. This may suggest that pain treatment can be
optimized by simultaneously treating depression and anxiety disorders.
B. Nociception

1. Nociceptor

The physiological component of pain, nociception, has been widely studied.
Nociception includes the processes from transduction of the noxious stimulus into an
action potential, to arrival of the impulse at the somatosensory cortex. The nociceptors
are specifically designed to process the sensation of pain by preferentially responding to
intense, noxious stimuli with a high threshold. The function of nociceptors is to inform
the central nervous system (CNS) of high intensity stimuli which may cause tissue
damage. Nociceptors are distinguished from innocuous touch receptors by their relatively
high threshold for activation (McMahon and Koltzenburg, 2005). Further, nociceptors are
the peripheral terminal of either thinly myelinated Ad fibers or nonmyelinated C fibers.
AJ fibers (fast pain pathway) are responsive to noxious temperature stimuli with relative
high velocity, 5-30 m/sec. C fibers (slow pain pathway) are polymodal responding to
temperature, mechanical and chemical stimuli with low velocity 0.5-2m/sec. They are
classified mainly into cutaneous nociceptors and deep tissue nociceptors (Basbaum and
Bushnell, 2008). Cutaneous nociceptors respond to noxious stimuli including mechanical,

thermal and chemical (algesic molecules) stimuli, and transducing cutaneous pain. Deep



tissue nociceptors found in muscles, joints, and viscera which respond exertion or injury
by muscle nociceptors, inflammation by joint nociceptors and overdistention, ischemia,
inflammation in viscera respectively (McMahon and Koltzenburg, 2005).

Nociception begins with depolarization of nociceptors by noxious stimuli. A
noxious stimulus will elicit the opening of voltage-gated sodium ion (Na") channels. In
order to trigger the action potential, the nocicpetor has to be depolarized to a threshold
potential (-55mV) by Na" influx. Resting membrane potential is usually -70mV, which is
established by ionic concentration gradients. The sodium/potassium (Na'/K")-ATPase
pump moves three Na' ions to the outside of the cell and two K ions to the inside of the
cell, which maintains resting membrane potential. This action potential process is a all or
none response. As long as the depolarization by Na™ channel influx reaches the threshold
potential, the transduction of pain is achieved at a functional meaning that completes the
pain received in the cerebral cortex (Pace, 2006). In the other words, Pain is not able to
be perceived in the brain until the action potential is achieved that is caused by the
noxious stimulus triggering the free nerve ending to reach the threshold.

Transient receptor potential vanilloid (TRPV) channels are embedded in the
plasma membrane of the nociceptor. This is a family of transient receptor potential ion
channels that play a role as a transducer in the nociceptive neurons. Noxious chemicals,
thermal, and mechanical stimuli are transduced by TRPV into membrane depolarization
expressed as an electrical signal (Hunt and Koltzenburg 2005). These are Na'" channels
that produce excitatory postsynaptic potentials (EPSPs). Certain agents such as protons
and capsaicin act directly on TRPV, and are regulated by the opening of TRPV channels

permeable to Na" and/or calcium ion, and lead to depolarization of the nociceptive



neurons. TRPV1, a main member of TRPV, is identified as a transducer for a wide
variety of exogenous and endogenous physical and chemical stimuli. TRPV?2 has been
discovered to be activated by high temperature, specifically when it is above 52° C (Pace,
2006).
2. Entry into the CNS

Specialized afferent neurons (A9, C) enter the spinal cord via dorsal roots. Some
fibers synapse at the spinal cord level of entry, and some ascend or descend several
segments decussating in the anterior white commissure. The nociceptive information is
carried by primary afferent fibers, specifically Ad fibers transmitting fast pain, that
synapse on second-order neurons in the lamina I marginal nucleus of the dorsal horn
(Hunt and Koltzenburg 2005). For the slow pain pathway, afferent fibers primarily are C
fibers that carry nociceptive information that synapse onto second order neurons in the
lamina II sunstantia gelatinosa, which are referred to as the superficial part of the dorsal
horn, and also synapse on lamina V nucleus proprius, located in the deep part of the
dorsal horn. AJ fibers terminate within laminas I and C fibers terminate in laminas II and
V. As the lamina I marginal nucleus plays a key role in the modulation of pain, most pain
studies focus on this specific lamina (Basbaum and Bushnell, 2008).
3. Anterolateral System Pain Pathways

The nociceptive signal from dorsal horn neurons is transmitted via ascending
pathways termed the spinothalamic tract located in the anterolateral quadrant of the spinal
cord. Spinothalamocortical pathways convey nociceptive signals to make the final
synapses on multiple areas of the brain: the primary and secondary somatosensory

cortices, the insula, and the anterior cingulate cortex. Most of the cells project to the



contralateral thalamus where the second synapse occurs (McMahon and Koltzenburg,
2005). Laterally spinothalamic neurons are more likely to be situated in lamina I and V
which is a fast pain pathway conveyed by Ad fibers, whereas medially projecting
spinothalamic neurons are more likely to be situated in lamina II the deep dorsal horn and
in the ventral horn and they are primarily conveyed by C fibers to transmit the slow pain
(Basbaum and Bushnell, 2008). Spinothalamic axons in the anterolateral quadrant of the
spinal cord are arranged somatotopically which means at the spinal cord level, each
anatomical cross section area consisted of axons corresponds to the certain parts of the
body.
C. The Pathway for Affective Pain

In regards to the emotional component of pain, it is conveyed through a separate
pathway, termed the affective pain pathway. The differentiation of the affective pain
pathway from the sensory pathway begins at the dorsal horn of the spinal cord. The
sensory information follows the classical spinothalamic tract pathway. In parallel, there
are additional pathways which contribute to the emotional and cognitive aspects of pain,
termed divergent pathways, including the paleospinothalamic, spinomesencephalic, and
spinoreticular tracts. These pathways synapse on neurons located in the limbic system or
cotico-limbic system. The limbic system is used as a collective term for various brain
structures including the hippocampus, parahippocampal gyrus, amygdala, and cingulate
gyrus (anterior cingular cortex, posterior cingular cortex). All of these structures are
associated with processing emotion and cognitive information. The affective part of pain
information follows through divergent pathways to synapse on the neurons in limbic

system. Two pathways are particularly relevant, the cortico-limbic pathway and the direct



limbic pathway. Divergent fibers from part of the spinal cord go through the
paleospinothalamic tract to the dorsocaudal medulla oblongata, the subnucleus reticularis
dorsalis, then to the ventromedian nucleus of the thalamus, and finally to the dorsolateral
frontal lobes; that is classified as cortico-limbic pathway. The other fibers follow the
spinomesencephalic tract or spinoreticular tract to go to the parabrachial nucleus and
subsequently to the hypothalamus and amygdala; this is classified as the direct limbic
pathway. These two affective pathways both converge on the same anterior cingulate
cortex and subcortical structures. As we see the pain information is not only to reach the
somatosensory areas of the brain, but also it projects to the limbic system that is
responsible to process the emotional component of the pain.

D. Link between Pain and Anxiety

Up to now, the sensory component of pain related to nociception has been more
widely studied and better understood than the affective component. Since the modern
view of pain is accepted as a biobehavioral process resulting from a complex interaction
among the sensory, affective, cognitive and behavior components, a new challenge has
arisen and prompted researchers to explore the affective aspects of pain with regards to
the psychological and emotional qualities, which may be the most relevant component of
human pain.

Evidence from recent functional brain imaging studies has demonstrated the
anatomical link between pain and anxiety. Tolle (1999) reported that subject’s ratings of
pain unpleasantness were correlated with activity in the caudal anterior cingular cortex, a
primary limbic structure in the regulation of anxiety and depression. Rainville (2002)

discovered that activity within the anterior cingulate cortex and the other substructures of



the limbic system may contribute to the modulation of affective pain. An experiment
done by Rainville (1997) which provided convincing evidence of an additional pathway
involved in substructures of the limbic system responsible for the emotional aspect of the
pain experience. Positron Emission Tomography (PET) scan was used to detect the
activity in different areas of the brain in two groups of human volunteers. In group one,
the subject’s left hand was immersed in hot water maintained at constant, noxious
temperature at 47°C (under the modulation of intensity of nociception). Group two
subjects were under varied level of hypnotic suggestions (under the modulation of pain
unpleasantness). Hypnosis was used as a cognitive tool to alter the unpleasantness
component of pain. Results showed that the manipulation of pain unpleasantness
produced significant brain activity changes in the anterior cingulate cortex, specifically
the high level of unpleasantness induced high activity of the anterior cingulate cortex, but
no changes in the primary somatosensory cortex. In contrast, the manipulation of
nociceptive intensity from the sensory aspect produced changes mainly in somatosensory
cortex. Also, Neugebauer et al. demonstrated a relationship between persistent pain and
the activity level of amygdala (McMahon and Koltzenburg, 2005). The amygdala is the
structure related to a variety of psychological states such as anxiety, depression, and fear.
Interestingly, from an anatomical aspect, both the affective component of pain and
anxiety/depression are related to the same anatomical basis of the limbic system.
Kenshalo discovered clinically the activation of structures such as the insula and the
anterior cingulate cortex may enhance the affective aspect of the pain experience
(McMahon and Koltzenburg, 2005). In a reverse way, research showed that surgical

lesions of the cingulate cortex demonstrated alleviation of emotional pain, but not the



sensory component of chronic pain. Patients who were suffering from anxiety and
depression showed substantial relief after they had cingulotomies (McMahon and
Koltzenburg, 2005). And also Katja (2010) reported his research results derived from a
large sample in Germany (N=7,124) that pain was strongly associated with anxiety
disorders and seemed to be of equal or greater strength compared to the pain-depression
association. Adrienne (2008) discovered that treating anxiety and depression may, in turn,
reduce the experience of pain. This study suggests that if we treat anxiety, simultaneously
the perception of pain would be reduced. This provided the initial basis for the current
study. An ultimate question of interest is in order to treat pain effectively, if anxiety is
treated, can this reduce the perception of pain? This is a broad question, but the current
study will provide an initial step to work toward the answer.

Previous work in this laboratory has shown housing environment affects
nociceptive pain (Tall, 2009). Based on the link between pain and anxiety, the current
study will determine if cage complexity and social interaction affect anxiety-like
behaviors in rats. If the results are positive, this will provide more evidence of the
connection between pain and anxiety. Specifically, this study’s objectives include: 1)
How social interaction without cage enrichment affects the level of anxiety; 2) How
isolation without cage enrichment affects the level of anxiety; 3) How the combination of
social interaction and cage enrichment affects the level of anxiety; 4) How isolation with

cage enrichment affects the level of anxiety.

10



CHAPTER 2

I1. Materials & Methods
A. Animals

The subjects were male Sprague-Dawley rats (22-24 days at the time of arrival;
n=24) obtained from Charles-Rivers, Laboratories in Wilmington, MA. All animals were
naive to the experimenters and had not participated in any previous treatments. Initially

rats were housed three per cage in polycarbonate cages (20 inches long, x 16 inches wide,

x 8 inches high) with aspen chips and cob-of-corn bedding in the animal care facility.
The facility was maintained on a 12/12h light/dark cycle, with lights off at 10:00 A.M.
and lights on at 10:00 P.M. The animal facility temperature was maintained at 21+1°C
and humidity at 51%. Tap water and rodent chow (Proab RMH, MO) were provided ad
libitum. The rats were allowed to acclimate to the animal care facility for one week prior
to any type of intervention. During the second week, all rats were acclimated to the
investigators and behavioral research laboratory for three consecutive sessions. Each
session each rat was acclimated with the investigator for 5 minutes. All experimental
testing was approved by the Institutional Animal Care and Use Committee at
Youngstown State University, and followed the ethical guidelines of the International
Association for the Study of Pain. Experiments were carried out in accordance with the
National Institute of Health Guide for Care and Use of Laboratory Animals (NIH
publications No. 80-23, revised 1996).

B. Housing Conditions

11



The rats were randomly assigned to a housing treatment group by varying social
and environmental enrichment factors. Four conditions were examined: 1) In the social
enriched condition (S/E), three rats were housed in the same cage containing various
toys; 2) In the social non-enriched condition (S/NE), three rats were housed in a standard
cage without toys; 3) In the non-social enriched condition (NS/E), one rat was housed
individually in a standard cage containing various toys; 4) In the non-socially non-
enriched condition (NS/NE), one rat was housed in a standard cage without toys. The
objects used to provide cage enrichment included Nylabones, polycarbonate tunnels,
DNA flexer, Hol-ee mol-ee balls, Dental balls, crawl balls and Rodent Retreats (Bio-
Serve, Frenchtown, NJ; Fig. 2) The purpose of these items was to increase the complexity
for rats assigned to the environmental enrichment condition. The items were rotated with
clean, novel items once per week.

C. Behavioral Testing

Baseline behavioral data were collected before rats were assigned to the housing
treatment group. Before baseline data collection, all rats were housed in a group of three
in a random fashion in a standard cage. The behavioral data was collected once per week
for total of five weeks. The investigators performed the open field test first and then the
elevated plus-maze test between 11:00 AM and 5:00 PM, during the rat’s dark phase.
Both tests are useful tools to evaluate the level of anxiety by quantitively measuring the
rats’ spontaneous behavior. Previous work has shown that the elevated plus-maze test has
been used in preclinical trials for approximately a decade and validated as a tool to
identify the anxiolytic effects resulting from drugs and environmental factors. It is worth

mentioning that there are several advantages to utilizing this equipment, such as
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measuring spontaneous behaviors, removing the need for nutritional deprivation,
avoiding the use of aversive stimulation, and it is relatively inexpensive (Darwish, 2001).
The behavioral data were recorded using a video camera (HandyCam Vision, Video Hi8)
mounted on the ceiling, and files were digitized by Pinnacle software. This set up

allowed the investigators to perform real time data analysis or to view the files later.

Figure 2: Home Cage Enrichment. Rats assigned to the enriched condition (right cage)
have the inclusion of items shown in the picture in contrast to the rats assigned to non-
enriched cage without objects (left cage).

D. Assessment of Behavioral Responses in an Open Field

13



The equipment for the open field test was made of an opaque black Plexiglas
chamber (length=120 cm, width=80 cm, wall height=40 cm). The chamber consisted of
24 squares, with 16 outer squares and 8 inner squares (Fig. 3). Exploratory behaviors in
the chamber were recorded for 5 minutes from each subject. Alcohol (70%) was used to
thoroughly clean the chamber at the end of each trial to eliminate the olfactory cues for
subsequent test subjects. A novel object was placed at the center of the chamber. The
objects were rotated each week allowing exposure to a novel object. At the start, each rat
was placed into the right corner of the chamber facing the center of the open field. The
following parameters were recorded by the video camera mounted on the ceiling: time in
the center squares, the number of rearing events, the number of urination events, the
number of defecation events, and the number of times exploring the novel object. These

variables were served as measures of anxiety-related behaviors.
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Figure 3. Behavioral Assessment in an Open Field Test. Each subject’s exploratory
behavior was measured in the open field. The multiple parameters were measured
including the number of rearing events, the number of urination events, the number of
defecation events and the number of exploring the novel object. The size of opaque black
Plexiglas chamber (length120cm x width 80cm x height 40cm).
E. Assessment of Behavioral Response in Elevated Plus-Maze

The elevated plus-maze was also used to measure anxiety-like behaviors and was
made of two open arms (45x10 cm) and two closed arms (45x10x30 cm), standing 52 cm
off the floor. It was made of opaque Plexiglas walls sitting on four cylinder shape stands

(Fig. 4) The rats’ exploratory behavior in the maze was recoded by a video camera

15



mounted 145 cm above the maze. At the start, each rat was placed into the center of a
Plexiglas elevated plus-maze facing an open arm and each trial lasted 5 minutes. At the
end of each trial, the maze was thoroughly cleaned with 70% alcohol and dried to remove
olfactory cues that might affect the behavior of the subsequent trials. The following
parameters were recorded: the number of open arms entries, the number of closed arms
entries, time spent in the open arms, and the number of rearing events. The criterion for
open arm entry was at least 70% of the rat’s body had to enter the open arm; the criterion
for closed arm entry was at least 70% of rat’s body had to enter the closed arm. The
rearing behavior was defined as both front paws lifted above the floor and all weight on
the hint paws. Again, all these variables served to measure anxiety-related behavior. The
rats were transported from the animal facility to the behavioral neuroscience lab at 10:30
am, and subsequently the open field test and elevated plus-maze test were implemented

by the investigators. There was no gap between the two tests.
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Figure 4. Behavioral Assessment in Elevated Plus Maze Test. The multiple parameters

were measured, the number of open arms entries, the number of closed arms entries, time
spent in the open arms and the number of rearing events. Two open arms (45x10 cm) and
two closed arms (45x10x30 c¢m), standing 52 cm off the floor.
F. Statistics

For each behavioral measure, a repeated measures, two-way analysis of variance
(ANOVA) was conducted to determine if there was a significant difference among the
treatment groups over time (SPSS, Version 13.0). A p-value <0.05 was considered

statistically significant. The independent (grouping) variables were the four housing

17



conditions (S/E, S/NE, NS/E, NE, NE). The dependent variables were the anxiety-like
behaviors from the open field test and the elevated plus-maze. All data are expressed as

the mean = S.D.
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CHAPTER 3

I11. Results
A. ANOVA for Open Field Apparatus

A repeated measures, two-way ANOVA was conducted to determine if there was
a significant difference among the four housing conditions. The dependent variables
measured included multiple parameters such as the time spent in the center squares, the
number of times exploring novel object, the number of rearing events, the number of
urination events, the number of fecal pellets. All results are presented as the mean £ S.D.

P-values among housing conditions and among the weeks were computed (SPSS version

13.0). A P-value of £0.05 was considered statistically significant.

1. The Time Spent in the Center Squares of the Open Field Apparatus

The time spent in the center squares in the open field is illustrated in Figure 5.
The anxiety-like behavior measured by the time spent in the center squares is the
indication of the level of anxiety. The longer time spent in the center squares, the less
anxious is indicated. The results of the ANOVA showed that there were no significant
differences among the four housing conditions (P=0.28), and no significant differences
among the test weeks (P=0.23). There was a noticeable trend toward spending less time
in the center squares in the non-social groups (NS/E, NS/NE) during the first week of
behavioral data collection. The results showed that there was a trend such that an inverse
relationship was seen between social housing and an anxiogenic effect in the open field
test. In addition, the data from week 2 through week 5 showed a habituation effect that

was demonstrated by no consistent change in the time spent in the center squares.
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Figure 5: The Time Spent in the Center Squares in the Open Field Test

Comparison of the subjects placed under four different housing conditions (S/E, S/NE,
NS/E, NS/NE). The changes in anxiety-like behavior measured by the time spent in the
center squares following repeated measurement for baseline, week1, week2, week3,
week4, week5 (P1=0.28, P2=0.23, P1-among 4 housing conditions, P2- among testing
weeks). At least 70% of the rat’s body entering the center squares is considered as in the
center squares when we measured the behavior parameter “time spent in the center
squares.” S/E= Social and Enriched Group (n=6), S/NE= Social and Non Enriched Group
(n=6) ,NS/E=Non Social and Enriched Group (n=6), NS/NE= Non Social and Non
Enriched Group (n=6).

2. The Number of Events Exploring a Novel Object in the Open Field Apparatus

20



The number of events exploring a novel object in the open field test is illustrated
in Figure 6. The number of events exploring a novel object were measured as anxiety-like
behavior. The higher number of exploring a novel object, the less anxious is indicated.
The results of the ANOVA showed that there were no significant differences among four
housing conditions (P=0.09), and no significant differences among the testing weeks
(P=0.36). There was a noticeable trend in non-social groups (NS/E, NS/NE) during the
first week of behavioral data collection, following baseline. The number of events
exploring the novel object in those groups decreased after a week of living in isolated
housing conditions. The data showed the same pattern as the time spent in the center
squares which indicated an inverse relationship between social housing and an
anxiogenic effect. In social and enriched housing groups, at week 1, there was a
noticeable increase in the number of occurrences of exploring the novel object. In
addition, the data from week 2 through week 5 showed a habituation effect that was

demonstrated by no consistent change in exploratory behavior.
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Figure 6: The Number of Events Exploring the Novel Object in the Open Field Test
Comparison of the subjects placed under four different housing conditions (S/E, S/NE,
NS/E, NS/NE). The changes in anxiety-like behavior measured by the number of events
exploring the novel object following repeated measurement for baseline, week 1, week 2,
week 3, week 4, week 5 (P1=0.09, P2=0.36, P1-among 4 housing conditions, P2-among
testing Weeks). Exploring a novel object event is defined as when the rat’s nose or it’s
head touching the novel object. S/E= Social and Enriched Group (n=6), S/NE= Social
and Non Enriched Group (n=6), NS/E=Non Social and Enriched Group (n=6), NS/NE=
Non Social and Non Enriched Group (n=6).
3. The Number of Rearing Events in the Open Field Apparatus

The number of rearing events in the open field test is illustrated in Figure 7. The

number of rearing events were measured as anxiety-like behavior. The higher number of
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rearing events, the less anxious is indicated. The results of the ANOVA showed that there
were no significant differences among four housing conditions (P=0.31), and no
significant differences among the testing weeks (P=0.15). There was a noticeable trend
toward the number of rearing events decreased in nonsocial/enriched (NS/E) group ,
nonsocial/non-enriched (NS/NE) group and social non-enrichment (S/NE) group during
the first week of behavioral data collection, following baseline. The data of anxiety-like
behavior, the number of rearing events supported the same trend as those data of the time
spent in the center squares and the number of exploring the novel object. They all showed
a trend such that there was an inverse relationship was seen between social housing and
anxiogenic effect. In addition, the data from week 2 through week 5 showed a habituation
effect that was demonstrated by no consistent change in the number of rearing events in

open field test.
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Figure 7: The Number of Rearing Events in the Open Field Test
Comparison of the subjects placed under four different housing conditions (S/E, S/NE,
NS/E, NS/NE). The changes in anxiety-like behavior measured by the number of rearing
events following repeated measurement for baseline, week 1, week 2, week 3, week 4,
week 5 (P1=0.31, P2=0.15, P1-among 4 housing conditions, P2-among testing Weeks).
Rearing event is defined as both front paws lifted up above the floor. S/E= Social and
Enriched Group (n=6), S/NE= Social and Non Enriched Group (n=6), NS/E=Non Social
and Enriched Group (n=6), NS/NE= Non Social and Non Enriched Group (n=6).
4. The Number of Urination events in the Open Field Apparatus

The number of urination events in the open field test is illustrated in Figure 8. The

number of urination events were measured as anxiety-like behavior. The higher number
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of urination events, the more anxious is indicated. The results of the ANOVA showed
that there were no significant differences among the four housing conditions (P=0.22),
and no significant differences among the testing weeks (P=0.33). There was a slight
decrease in the number of urination in both nonsocial enriched group (NS/E) and
nonsocial non-enriched group (NS/NE) during the first Week behavioral data collection,
following the Baseline. In addition, the data from week 2 through week 5 showed
habituation effect that was demonstrated by no consistent change in the number of

urination events in the open field test.
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Figure 8: The Number of Urination Events in the Open Field Test
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Comparison of the subjects placed under four different housing conditions (S/E, S/NE,
NS/E, NS/NE). The changes in anxiety-like behavior measured by the number of
urination events following repeated measurement for baseline, week 1, week 2, week 3,
week 4, week 5 (P1=0.22, P2=0.33). S/E= Social and Enriched Group (n=6), S/NE=
Social and Non Enriched Group (n=6), NS/E=Non Social and Enriched Group (n=6),
NS/NE= Non Social and Non Enriched Group (n=6).
5. The Number of Fecal Pellets in the Open Field Test

The number of fecal pellets in the open field apparatus is illustrated in Figure 9.
The results of the ANOVA showed that there were no significant differences among four
housing conditions (P=0.81), and no significant differences among the testing weeks
(P=0.84).There was no any pattern or trend that was noticed. In addition, the data from
week 2 to week 5 showed habituation effect that was demonstrated by no consistent
change in the number of fecal pellets.
B. ANOVA for Elevated Plus-Maze Test

A repeated measures, two-way ANOVA was conducted to determine if there was
a significant difference among the four housing conditions. The dependent variables
measured included the time spent in the open arms, the number of rearing events and
open arms entries in the elevated plus-maze. All results are presented as the mean + S.D.

P-values among housing conditions and among the weeks were computed (SPSS version

13.0). A P-value of =0.05 was considered statistically significant.

1. The Time Spent in the Open Arms in Elevated Plus-Maze Test
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Figure 9: The Number of Fecal Pellets in the Open Field Test
Comparison of the subjects placed under four different housing conditions (S/E, S/NE,
NS/E, NS/NE). The changes in anxiety-like behavior measured by the number of fecal
pellets following repeated measurement for baseline, week 1, week 2, week 3, week 4,
week 5 (P1=0.81, P2=0.84). S/E= Social and Enriched Group (n=6), S/NE= Social and
Non Enriched Group (n=6),
NS/E=Non Social and Enriched Group (n=6), NS/NE= Non Social and Non Enriched
Group (n=6).

The time spent in open arms in the elevated plus-maze is illustrated in Figurel0.
The anxiety-like behavior measured by the time spent in the open arms is the indication

of the level of anxiety. The longer time spent in the open arms, the less anxious is
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indicated. The results of the ANOVA showed that there were no significant differences
among the four housing conditions (P=0.19), and no significant differences among the
testing weeks (P=0.17). The data showed that there was a noticeable trend toward
spending less time in the open arms in non-social groups (NS/E, NS/NE) during the first
week behavioral of data collection. The results showed there was a trend such that an
inverse relationship was seen between social housing and anxiogenic effect in the
elevated plus- maze test that was in accordance with those data in the open field test. In
addition, the data from week 2 through week 5 showed habituation effect that was

demonstrated by no consistent change in the time spent in the open arms.
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Figure 10: The Time Spent in the Open Arms in Elevated Plus-Maze Test
Comparison of the subjects placed under four different housing conditions (S/E, S/NE,
NS/E, NS/NE). The changes in anxiety-like behavior measured by the time spent in the

open arms following repeated measurement for baseline, week 1, week 2, week 3, week
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4, week 5 (P1=0.19, P2=0.17). At least 70% rat’s body entering the open arms
considered as staying in the open arms when we measured the time spent in the open
arms. S/E= Social and Enriched Group (n=6), S/NE= Social and Non Enriched Group
(n=6), NS/E=Non Social and Enriched Group (n=6), NS/NE= Non Social and Non
Enriched Group (n=6).
2. The Number of Rearing Events in Elevated Plus-Maze Test

The number of rearing events in the elevated plus-maze is illustrated in Figure 11.
The anxiety-like behavior measured by the number of rearing events in elevated plus-
maze is the indication of the level of anxiety. The higher number of rearing events, the
less anxious is indicated. The results of the ANOV A showed that there was no significant
difference among the four housing conditions (P=0.89), and no significant difference
among the testing weeks (P=0.55). The data showed that there was a noticeable trend in
non-social groups (NS/E, NS/NE) during the first week behavioral data of collection,
following baseline. For those non-social groups the number of rearing events decreased
after a week of living in isolated housing conditions. In addition, the data from week 2
through week 5 showed habituation effect that was demonstrated by no consistent change
in the number of rearing events in the elevated plus-maze.
3. The Open Arms Entries in the Elevated Plus-Maze Test

The open arms entries in elevated plus-maze is illustrated in Figure 12. The
anxiety-like behavior measured by the open arms entries in the elevated plus-maze is the
indication of the level of anxiety. The higher number of open arms entries, the less
anxious is indicated. The results of the ANOVA showed that there was no significant

difference among the four housing conditions (P=0.33), and no significant difference

29



significance among the testing weeks (P=0.25). In addition, the data from week 2
through week 5 showed habituation effect that was demonstrated by no consistent change

in the open arms entries in the elevated plus-maze.
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Figure 11: The Number of Rearing Events in the Elevated Plus-Maze Test
Comparison of the subjects placed under four different housing conditions (S/E, S/NE,
NS/E, NS/NE). The changes in anxiety-like behavior measured by the number of rearing
events in elevated plus-maze following repeated measurement for baseline, week 1, week
2, week 3, week 4, week 5 (P1=0.19, P2=0.17). Rearing event is defined as both front

paws lifted up above the floor. S/E= Social and Enriched Group (n-6), S/NE= Social and
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Non Enriched Group (n=6), NS/E=Non Social and Enriched Group (n=6), NS/NE= Non

Social and Non Enriched Group (n=6).
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Figure 12: The Open Arms Entries in the Elevated Plus-Maze Test

Comparison of the subjects placed under four different housing conditions (S/E, S/NE,
NS/E, NS/NE). The changes in anxiety-like behavior measured by the open arms entries
following repeated measurement for baseline, week 1, week 2, week 3, week 4, week 5
(P1=0.33,

P2=0.25). The open arms entries is defined as when more than 70% of the rat’s body

entering into open arm. S/E= Social and Enriched Group (n=6), S/NE= Social and Non
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Enriched Group (n=6), NS/E=Non Social and Enriched Group (n=6), NS/NE= Non

Social and Non Enriched Group (n=6).
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CHAPTER 4
IV. Discussion

The modern strategy for pain treatment has been developed over the course time,
due to advances in pain research. Now, a multifactoral approach to treatment has been
widely accepted in patients’ pain care. The scientific evidence indicates that it is not
adequate to only look at the sensory component of pain; the affective and cognitive
components must also be considered. As Katz (1998) pointed out, pain relief is not the
only need of patients who suffer from lower back pain attacks. Psychological
reassurances are equally important. Anxiety is proposed to be an important factor
associated with the affective component of pain (Mok, 2008). Pain and anxiety disorders
all reveal associations with social interaction and environmental variables (Katja 2010,
Bao 2003, Jacobi 2004). Chronic pain has a negative affective component and is closely
related to anxiety (Blier, 2001). Treating anxiety may, in turn, reduce the experience of
pain (Adrienne, 2008). Edwards (2007) reported that clinic patients with high levels of
anxiety suffered more symptoms of pain. Pain-related anxiety has been well documented
in the clinic, but is not well understood.

In this study, we looked at how environmental cage complexity and social
interaction affected anxiety level. As being understood, anxiety is linked to the affective
pain that is supported by the clinical studies, and evidence of affective pain component
and anxiety share the same anatomical structures known as the limbic system (Tatiana,
2004). We believe that the reduction of anxiety would lead to relief of affective pain. The
results from this study indicate that there was no statistically significant correlation

between environmental cage complexity and anxiety. The results of previous studies on

33



animal model research were varied in terms of the anxiogenic effect caused by cage
complexity. Cage complexity has been shown to have a positive effect on attenuating
anxiety level (Hughes, 2010). In contrast, other studies reported the opposite result, that
there were no statistically significant effects on anxiety level as a function of differing
cage complexity (Elliot, 2005). Thus, attempting to determine if cage complexity has a
significant influence on anxiogenic effects has been controversial. As each lab used
different strain that made it impossible to compare the results. And also It would be
possible that cage enrichment is not the critical factor to alter the anxiety level. In order
to confirm how the cage complexity affects the anxiety level, more researches need to be
conducted in a consistent manner in terms of the strain used and procedures.

The important finding in the current study was that the male rats under isolation
for a week demonstrated increased anxieogenic profile supported by the results from both
open field test and elevated plus-maze test. In the open field test, anxiety-like behavior
variables, such as the time spent in the center squares, the number of occurrences of
exploring a novel object, and the number of occurrences of rearing events, all
consistently demonstrated a noticeable decrease at the first week of behavioral data, after
living in isolated housing conditions. The decrease in the time spent in the center square
and the decrease in locomotive activities in open field all indicated higher anxiety levels.
In the elevated plus-maze test, the data were consistent with the open field test results.
The time spent in the open arms, as an index of anxiety level, also decreased.
Interestingly, the data from open field test and elevated plus-maze test, they all support
the trend that the rats housed in an isolated condition for a week demonstrated higher

anxiety level than the ones in social groups. Social isolation has been understood to be a
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big stress factor affecting the animals’ anxiety-like behavior (Hall, 1998). Social isolation
has been proposed as a model for anxiety (Parker, 1986). This current finding concurs
with results of previous studies. It seems isolation housing condition promotes the higher
anxiety level that is linked to the affective pain. Wilkinson (1994) claimed that being
raised in isolation produced long-term behavioral alterations that were characterized by
increased expression of anxiety-like behavior. Rodgers (1993) also reported results
consistent with our data in terms of social housing condition attenuating the anxiety level.
Prior research also has demonstrated a link between anxiety and chronic pain and utilized
social factor to reduce the anxiety level. Magni (1990) found a positive correlation
between anxiety and musculoskeletal pain. Gallagher (1999) found a moderate
correlation between anxiety and arthritic pain. Nicholson (2004) proposed the vicious
cycle of anxiety, muscle tension and pain. Our studies discovered the trend that there is
an inverse relationship between social interaction of anxiogenic effect. Therefore, due to
the link between pain and anxiety, we speculate that if we decrease the level of anxiety
by altering social interaction, the affective pain would be attenuated. The results of the
current study on social condition, supported by prior research, could inform research
dealing with chronic pain.

The underlying mechanisms involved in the effects of social interaction on
anxiety-like behaviors remain to be determined. The concept of social isolation
functioning as “stress” was introduced by Hatch in the early 1960s (Hatch, 1963).
Abnormal reactive behaviors of isolated rats were described for the first time. In his
studies, socially isolated rats demonstrated very reactive behavior in response to human

handling. The rats appeared nervous, aggressive and hyper-emotional (Hatch, 1963). The
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early life isolation from social counterparts has been reported to constitute a stressful
experience and as such, has consequences on adult anxious behaviors and hormonal
reactions (Holson, 1991). Based on previous studies, the results of link between social
isolation and behavior studies, and hormonal response from Hatch (1963) and Holson
(1991) indicated that the social isolation variable was one of the most employed
experimental stress models, which affects the hypothalamic-pituitary-adrenocortical axis
(HPA) due to the increased basal level of adronocoticotropic hormone (ACTH) and
Corticosterone (CORT) in plasma (Weiss, 2004). It has been proven that abnormalities in
the behavioral response, including the anxiety-like behavior of isolated rats are associated
with functional changes in the endocrine response (Serra, 2005). There are abundant
evidences indicate early life social isolation affecting brain development and subsequent
changes in endocrine system, resulting in alternation of anxiety level. The association
between social isolation and anxiogenic effect is potent. A few of hypotheses can be
proposed to explain the outcome of this study. We speculate that the aggregated
anxieogenic profile induced by the social isolation housing condition may be partly
attributed to the hyperactivity of the HPA axis. This is known to be a major endocrine
system responsible for the adaptive response to stress. The HPA axis is a negative
feedback system that involves interaction among the hypothalamic, pituitary, and adrenal
glands. The hypothalamus links the nervous system to the endocrine system via the
pituitary gland. The HPA negative feedback loop acts as checks-balances system. Stress
triggers the production and secretion of corticotropic-releasing factor (CRF). Like a chain
reaction, CRF stimulates the pituitary gland to secrete ATCH. The production of ACTH

leads to the release of cortisol, referred to as “stress hormone”. Cortisol initiates a
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negative feedback of the HPA axis system by sending a signal to the hypothalamus and
the pituitary gland to inhibit the production of CRF. That decreases ACTH production,
finally leading to stable levels of cortisol in the blood. It is possible that when the rats
were housed in an isolated condition, it caused the excessive production of ACTH and
cotisol and impaired the negative feedback regulation of the HPA axis system, which
would alter the behavioral response. It is possible that as higher ACTH and cortisol in the
plasma reach the certain level that the HPA axis is not able to function as negative
feedback system, and impair its ability to decrease the ACTH and cortisol production.
The dysfunction of the HPA axis system is hypothesized. This hypothesis is supported by
the studies done by (Weiss, 2004 & Serra, 2005). The evidence from their studies showed
that increased anxiety in the rats housed in isolated conditions were accompanied by
altered hormonal response, such as higher basal levels of ACTH and Corticosterone
(CORT).

Further, we propose the second hypothesis based on the studies demonstrated that
stress decreased the number of SHT1 receptors in the hippocampus (Popva and Petkov,
1990). The hippocampus is known as one of the important component of the limbic
system that is responsible for anxiety. It is possible that dysfunction of the limbic system
caused by the decreased the number of SHT1 receptors in the hippocampus, resulting in
behavioral alteration, specifically increasing anxiety level. In agreement, Guimaraes
(1993) reported that social isolation reduced the SHT1 receptors in the hippocampus,
which led to limbic system dysfunction, and eventually leading to alternation of anxiety.
This might provide evidence to support one of the explanations, suggesting an increased

anxiogenic effect resulting from the isolation housing condition.
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In the current study, all behavioral data in results of week 2 through week 5
showed the habituation effect. Habituation is a decrease in response to a stimulus after
repeated exposure to the same stimulus. It is a gradual adaptation process to the
environment that was demonstrated in our study by no consistent changes in anxiety-like
behavior when the subjects were repeatedly placed in the open field apparatus and the
elevated plus-maze from week 2 to week 5.

There were limitations in this study, which need to be addressed in future
research. The sample size was small, which may be the cause of the relatively high
variability in the data. Due to this limitation, sample size may potentially account for why
we only see the clear trend instead of statistically significant differences in the results.
Also, future research may need to conduct the open field test and the elevated plus maze
test in a randomized fashion. This may possibly minimize random chance statistically. In
the future we may increase the sample size. In addition, we may employ the reverse
design to confirm the results. For example, the subjects would be housed in group first,
and later, when the design is reversed, they would be housed individually. Further, fine
manipulation of the parameter can be employed by extending the duration of the isolation
condition, which may amplify the effect of social factors in influencing the anxiety level.

In summary, The present study sought to determine if environmental cage
complexity and social interaction affected anxiety-like behavior. Although there were no
significant differences between the cage complexity housing conditions and anxiety-like
behavior, there was a noticeable trend between the nonsocial housing condition and
anxiety-like behavior. The data consistently showed that the isolation condition

promoted anxiety-like behavior in both the open field test and the elevated plus-maze
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test. The finding of the present study may provide additional evidence for understanding
the relationship between social isolation and anxiety-like behaviors. Realizing that social
factors are very important in the regulation of anxiety disorders suggest that we may
decrease affective pain by enhancing social interaction. This study suggests that we might
need to look into the correlation between anxiety-like behavior and the hormonal

response of endocrine system in the future study.
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