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ABSTRACT

This thesis is an introduction to function spaces endowed with the topology of
pointwise convergence, abbreviated Cp-theory, and a look at a small portion of the
open questions in the field. In the introductory chapters, several different cardinal
functions are presented and then used to characterize properties of Cp-spaces. The
final chapters explore several open questions pertaining to Lindelöfness and meta-
compactness of Cp-spaces.
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Chapter 1

Basics

This thesis focuses on function spaces with the topology of pointwise convergence
or Cp-theory for short. The beginning sections provide a brief recollection of con-
cepts from general topology needed to begin studying Cp-theory. The second chapter
provides a basic understanding of the properties of a space Cp(X). The final three
chapters of the thesis consider open problems in Cp-theory and explore partial solu-
tions.

1.1 History

The study of sets, or spaces, of functions began with the works of Ascoli, Arzelà
and Hadamard. Their work proposed questions that helped to shape the work of
mathematicians such as Fréchet, Riesz, Weyl and Hausdorff.

While the contributions of all of the above mentioned mathematicians have helped
develop the field of functional analysis, it was Tychonoff who, in 1935 with Über einen
Funktionenraum [12], first began placing a topology on spaces of functions. Merging
together ideas from general topology, algebraic topology, and functional analysis,
mathematicians began studying Cp-theory [13].

Without question the first mathematician to realize the significance of studying
Cp-theory for its own sake was Alexander Arhangel’skii. Arhangel’skii was the first
to propose open questions and wrote one of the few books [1] devoted entirely to the
subject.

Since then, many mathematicians have studied Cp-theory and made significant
contributions. However, a great deal of Cp-theory remains new and it is difficult to
avoid finding open questions.

1.2 Terminology

In this section, terminology and concepts will be introduced that play an important
role in studying and understanding Cp-theory. We begin by recalling some separation

1



axioms, as all spaces throughout this thesis will be considered Tychonoff. Why this
is the case will be described more in the next chapter.

Definition 1.2.1. A topological space X is completely regular if whenever E ⊆ X is
closed and x /∈ E, there exists a continuous function f : X → [0, 1] such that f(x) = 0
and f(y) = 1 for all y ∈ E. That is, E ⊆ f−1(1).

Definition 1.2.2. A completely regular T1-space is called Tychonoff or T3 1
2
.

Definition 1.2.3. A topological space X is normal if whenever E and F are disjoint,
closed sets, there are disjoint open sets, U and V , with E ⊆ U and F ⊆ V.

Definition 1.2.4. A space is called Lindelöf if every open cover has a countable
subcover.

The following definitions will be seen throughout later chapters to describe prop-
erties of spaces. These properties are used to show results towards solving some open
problems in the theory of topological function spaces.

Definition 1.2.5. Let (X, T ) be a topological space. Then B is a base for T if for
all U ⊆ T , there exists B′ ⊆ B such that U = ∪B′.

Definition 1.2.6. Let (X, T ) be a topological space and x ∈ X. Then B ⊆ T is
called a local base at x if

i. x ∈ B for all B ∈ B; and

ii. whenever x ∈ U ∈ T , there exists B ∈ B such that x ∈ B ⊆ U.

Definition 1.2.7. A topological space with a countable base is called second count-
able.

Definition 1.2.8. A topological space X is first countable if for every x ∈ X, there
is a countable local base at x.

Definition 1.2.9. A topological space is separable if it has a countable dense subset.
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Definition 1.2.10. A topological space (X, T ) is metrizable if there is a metric d on
X such that T = Td.

Definition 1.2.11. A topological space X is scattered if for every closed subset C of
X, the set of isolated points of C is dense in C.

Definition 1.2.12. A subset of a topological space is Gδ if it is the intersection of a
countable collection of open sets.

Definition 1.2.13. A subset of a topological space is Fσ if it is the union of a
countable collection of closed sets.

This last set of definitions will briefly remind the reader of the product topology
by first recalling the topology on X × Y , then introducing infinite products.

Definition 1.2.14. Let (X, TX) and (Y, TY ) be topological spaces. Then {U × V :
U ∈ TX , V ∈ TY } is a base for X × Y and generates a topology called the product
topology on X × Y.

Definition 1.2.15. Suppose Λ is a set and Xα is a set for all α ∈ Λ. Then

∏

α∈Λ
Xα = {f : Λ →

⋃

α∈Λ
Xα|f(α) ∈ Xα for all α ∈ Λ}.

Definition 1.2.16. A basic open set in Πα∈ΛXα is of the form Πα∈ΛUα where each
Uα is open in Xα and Uα = Xα for all but finitely many α. The topology on Πα∈ΛXα

is the topology generated by this base.

1.3 Cardinal Invariants

The next definitions are an introduction to cardinal invariants. These will be used in
the same manner as the previous definitions to describe various spaces in theorems in
later chapters. Cardinal invariants are useful in many proofs and provide some dif-
ferent properties than the definitions given in the previous section. The first cardinal
invariants that will be seen are useful for describing a topological space as a whole.
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Definition 1.3.1. The Lindelöf number is the cardinal

l(X) = min{κ : every open cover of X has a subcover of power ≤ κ}.

Definition 1.3.2. Let (X, T ) be a topological space. The Suslin number of X is the
cardinal

c(X) = sup{|U| : U ⊆ T is disjoint}.

Definition 1.3.3. The weight of a space X is the cardinal

w(X) = min{|B| : B is a base of X}.

Since the weight is the minimal cardinality of a base of X, if w(X) = ω then the
space X is second countable.

Definition 1.3.4. A network in a space (X, T ) is a family N of subsets of the set X
such that for any open U ∈ T , there is N ′ ⊆ N with ∪N ′ = U.

Definition 1.3.5. The network weight is the cardinal

nw(X) = min{|N | : N is a network of X}.

Definition 1.3.6. A condensation is a bijective continuous map.

Definition 1.3.7. The i-weight of X is the cardinal

iw(X) = min{|κ| : there is a condensation of X onto a space of weight < κ}.

Definition 1.3.8. The density of a space X is the cardinal

d(X) = min{|A| : A is dense in X}.

A space X is separable if d(X) = ω.

Definition 1.3.9. The spread of a space X is the cardinal

s(X) = sup{|D| : D is a discrete subset of X}.

4



Definition 1.3.10. The extent of a space X is the cardinal

ext(X) = sup{|D| : D ⊆ X is both closed and discrete}.

The next set of cardinal invariants helps to describe topological spaces at a given
point. These are sometimes referred to as point cardinal invariants.

Definition 1.3.11. Let κ be an infinite cardinal number and A ⊆ X. Let [A]κ =
∪{B : B ⊆ A and |B| ≤ κ}. Then the tightness of X is defined as

t(X) = min{κ : A = [A]κ for every A ⊆ X}.

Definition 1.3.12. Let (X, T ) be a topological space, A ⊆ X and

ψ(A,X) = min{|U| : U ⊆ T and ∩ U = A}.

Then ψ(A,X) is the pseudocharacter of A in X. If the set A = {x}, we use the
notation ψ(x,X).

Notice that Gδ-sets have a countable pseudocharacter.

Definition 1.3.13. The cardinal ψ(X) = sup{ψ(x,X) : x ∈ X} and is called the
pseudocharacter of X.

Definition 1.3.14. Let (X, T ) be a topological space and A ⊆ X. Then a family
B ⊆ T is an outer base of A in X if B 	= ∅, A ⊆ ∩B, and for every U ∈ T with
A ⊆ U, there is V ∈ B such that V ⊆ U.

Notice that if the subset A is a singleton, then an outer base is a local base.

Definition 1.3.15. Let X be a topological space and A ⊆ X. The minimum cardi-
nality of the outer bases of A in X is called the character of A in X and is denoted
by χ(A,X). If A = {x}, the notation χ(x,X) is used.

Definition 1.3.16. The cardinal χ(X) = sup{χ(x,X) : x ∈ X} and is called the
character of X.
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Definition 1.3.17. Let X be a space. Then the set ΔX = {(x, x) : x ∈ X} ⊆ X×X
is called the diagonal of X. The cardinal Δ(X) = ψ(ΔX , X×X) is called the diagonal
number of X.

Now that several cardinal invariants have been defined, it will be useful to see the
relationships between them. The following lemmas and theorem illustrate some of
the most basic relationships between the previously defined cardinal invariants. The
proofs in this section are adapted from [9].

Lemma 1.3.18. If a space X is second countable and A is an infinite set, then for
any Y ⊆ XA, we have that w(Y ) ≤ |A|.

Proof. Fix a countable base B in X and let a1, . . . , an ∈ A and O1, . . . , On ∈ B be
given. Let [a1, . . . , an;O1, . . . , On] = {x ∈ XA : x(ai) ∈ Oi for all i ≤ n}. Then the
family C = {[a1, . . . , an;O1, . . . , On] : n ∈ N, ai ∈ A and Oi ∈ B for all i ≤ n} is a
base for XA. Also, |C| ≤ |A| which implies that w(XA) ≤ |A|. Now let C ′ = {U ∩ Y :
U ∈ C}. Then C ′ forms a base for Y and |C ′| ≤ |C| ≤ A. Thus w(Y ) ≤ A. �

Lemma 1.3.19. There exists a set A ⊆ C(X, [0, 1]) with |A| ≤ nw(C(X, [0, 1])) = κ
such that, for any distinct x, y ∈ X, there is f ∈ A for which f(x) 	= f(y).

Proof. Let N be a network of X. Define a pair p = (N1, N2) ∈ N × N as being
marked if there is a function fp ∈ C(X, [0, 1]) such that f(N1) ⊆

[
0, 1

3

]
and f(N2) ⊆[

2
3
, 1
]
. Let A = {fp : p is a marked pair}. Now by construction, we have that |A| ≤

|N × N| ≤ κ. Let x, y ∈ X such that x 	= y. Since X is Tychonoff (and thus
completely regular), there is g ∈ C(X, [0, 1]) such that g(x) = 0 and g(y) = 1. Let
U = g−1

([
0, 1

3

))
and V = g−1

((
2
3
, 1
])
. Then x ∈ U ∈ TX and y ∈ V ∈ TX . Since N

is a network, this implies there exist N1, N2 ∈ N such that x ∈ N1 ∈ U and y ∈ N2 ∈
V. Now g(N1) ⊆

[
0, 1

3

]
and g(N2) ⊆

[
2
3
, 1
]
. Thus p = (N1, N2) is a marked pair and

so fp = g ∈ A. Hence, fp(x) ≤ 1
3
and fp(y) ≥ 2

3
and so fp(x) 	= fp(y). �

Theorem 1.3.20. For any space X,

1. c(X) ≤ d(X) ≤ nw(X) ≤ w(X);

2. c(X) ≤ s(X) and ext(X) ≤ l(X) ≤ nw(X);

3. ψ(X) ≤ χ(X) and ψ(X) ≤ iw(X) ≤ nw(X);

4. t(X) ≤ χ(X) ≤ w(X) and t(X) ≤ nw(X).
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Proof. (1) Let (X, T ) be a topological space. Let D ⊆ X be dense and let U ⊂ T
be a nonempty disjoint family. Choose y(U) ∈ U ∩D for any U ∈ U . Consider
the mapping from U → y(U). Since U is pairwise disjoint, this is a one-to-one
correspondence from U to D. Hence, c(X) ≤ d(X). Now let N be a network of
X. Choose x(N) ∈ N for some N ∈ N and consider {x(N) : N ∈ N}. Clearly,
this set is dense in X. Thus, d(X) ≤ nw(X). Finally, by definition a base is
also a network resulting in nw(X) ≤ w(X).

(2) Let U ⊆ T be a disjoint family and choose y(U) ∈ U for each U ∈ U . Then the
subspace D = {y(U) : U ∈ U} is discrete and |D| = |U|. Thus c(X) ≤ s(X).

Now, assume l(X) ≤ κ and let D ⊆ X be closed and discrete. For each d ∈ D,
choose Ud ∈ T such that d ∈ Ud with Ud ∩ D = {d}. Let U = {Ud : d ∈
D} ∪ {X \ D}. Clearly, U is an open cover of X. Since any subcover V of
X would need to contain {Ud : d ∈ D}, we see that |V| = |U|. Thus, by our
assumption that l(X) ≤ κ, we see that |D| = |U| ≤ κ, and so ext(X) ≤ l(X).
Finally, let N be a network of X, |N | = κ and U ⊆ T be an open cover of
X. Let N ′ = {N ∈ N : there exists U(N) ∈ U with N ⊆ U(N)}. Then
V = {U(N) : N ∈ N ′} is a subcover of U with cardinality < κ. To see that V
is a cover of X, let x ∈ X. Then there is U ∈ U with x ∈ U and, since N is
a network, there is N ∈ N with x ∈ N ⊆ U . But this implies that N ∈ N ′.
Thus, x ∈ N ⊆ U(N), and so V is a cover of X. Hence, l(X) ≤ nw(X).

(3) Let B be a local base at a point x ∈ X. Then since X is a Tychonoff space, for
any y 	= x,X \ {y} is an open neighborhood of x. Thus there is U ∈ B such
that x ∈ U ⊆ X \ {y} and so, ∩B = {x} which gives ψ(X) ≤ χ(X).

Let X, Y be topological spaces and f : X → Y be a condensation such that
w(Y ) ≤ κ. Then by definition and previously proven properties, we have ψ(Y ) ≤
χ(Y ) ≤ w(Y ) ≤ κ. Now, for x ∈ X, let y = f(x) and fix a family V ⊆ TY such
that ∩V = {y}. Let V ′ = {f−1(U) : U ∈ V}. Then V ′ ⊆ TX and ∩V ′ = {x}.
Hence, ψ(X) ≤ iw(X).

Let N be a network of X such that |N | = nw(X) = κ. Since X is regular, we
see that for N ∈ N we can take the closure of each N and {N : N ∈ N} is
a network as well. Thus, we can consider all the elements of N to be closed.
Now, let A ⊆ C(X, [0, 1]) with |A| ≤ κ. Let φ : X → [0, 1]A be defined by
φ(x)(f) = f(x) for all x ∈ X and f ∈ A. Let πf : [0, 1]A → [0, 1] be the
natural projection mapping for f ∈ A. Then πf ◦ φ = f is a continuous map
on X and so, φ is a continuous map. Let Y = φ(X). Then by Lemma 1.3.18,
we have w(Y ) ≤ |A| ≤ κ. To see that φ is one-to-one, let x, y ∈ X with
x 	= y. Then by Lemma 1.3.19, there exists f ∈ A with f(x) 	= f(y). Thus,
φ(x)(f) = f(x) 	= f(y) = φ(y)(f). Therefore, iw(X) ≤ nw(X).

(4) To see that t(X) ≤ χ(X), suppose that χ(X) ≤ κ for some infinite cardinal κ.
Let A ⊆ X such that x ∈ A. Let B be a local base at x such that |B| ≤ κ. For
each U ∈ B pick xU ∈ U ∩A. Then, let B = {xU : U ∈ B}. Clearly, B ∈ A and
|B| ≤ κ. Now, let x ∈ V ∈ T . Since B is a local base at x, there is U ∈ B such
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that U ⊆ V and so, xU ∈ V ∩ A. Thus, V ∩ A 	= ∅ for any V ∈ T with x ∈ V.
Thus, x ∈ B and t(X) ≤ χ(X).

To see that χ(X) ≤ w(X), let B be a base of X. Then for any x ∈ X, the set
Bx = {U ∈ B : x ∈ U} forms a local base at x. Since Bx ⊆ B, we have that
|Bx| ≤ |B|, proving χ(X) ≤ w(X).

Suppose nw(X) ≤ κ for some infinite cardinal κ. Let A ⊆ X and x ∈ A.
Let N be a network of X and define N ′ = {N ∈ N : N ∩ A 	= ∅}. Choose
aN ∈ N ∩ A for each N ∈ N ′. The let B = {aN : N ∈ N ′}. Clearly, B ⊆ A.
Also, |B| ≤ |N | ≤ κ. To see that x ∈ B, suppose that it is not. Then there is a
U ∈ T with x ∈ U such that U ∩ B 	= ∅. Now, B ∩ A 	= ∅ since x ∈ A. Choose
a ∈ A ∩ U and N ∈ N such that a ∈ N ⊆ U. Then N ∈ N ′. But this implies
that a ∈ B ∩ U, a contradiction. Thus, x ∈ B and t(X) ≤ nw(X). �

1.4 Compactness Properties

The following section visits several types of compactness. The goal of this section is to
familiarize the reader with these types of compactness as they will be used often in the
remainder of the thesis. In addition to these, more specific types will be introduced
throughout later chapters as necessary.

Definition 1.4.1. Let X be a topological space and A ⊆ X. Then A is compact if
every open cover of A has a finite subcover.

Definition 1.4.2. Let X be a topological space and A ⊆ X. Then A is countably
compact if every countable open cover of A has a finite subcover.

Definition 1.4.3. If U and V are covers of X, we say U refines V , and write U < V ,
if and only if each U ∈ U is contained in some V ∈ V . We say U is a refinement of V .

Definition 1.4.4. A collection U of subsets of X is locally finite if and only if each
x ∈ X has a neighborhood meeting only finitely many U ∈ U .

Definition 1.4.5. A collection U of subsets of X is point finite if and only if each
x ∈ X belongs to only finitely many U ∈ U .

Definition 1.4.6. A Hausdorff space X is paracompact if and only if each open cover
of X has an open locally finite refinement.
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Definition 1.4.7. A space is metacompact if and only if each open cover has an open
point finite refinement.

Definition 1.4.8. A space is called σ-compact (σ-countably compact) if it is the
union of a countable set of compact (countably compact) subspaces.

Definition 1.4.9. A space is called pseudocompact if every real-valued continuous
function on it is bounded.
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Chapter 2

Introduction to Cp(X)

The goal of this chapter is to introduce the reader to the basic ideas and concepts
relating to Cp-theory. As mentioned in Chapter 1, all spaces will be taken to be
Tychonoff. The reason being that Tychonoff is needed to separate points.

2.1 Definitions

The following section contains several terms that provide the reader with an intro-
duction to function spaces and various topologies that can be placed on these spaces
[1].

Definition 2.1.1. The set of all continuous maps from a space X into a space Y is
denoted by C(X, Y ).

Note that we will write C(X,R) as C(X).

Definition 2.1.2. The set of all functions, f ∈ C(X), such that f is bounded, is
denoted by C0(X).

Definition 2.1.3. Cp(X) and C0
p(X) are used to represent C(X) and C0(X) endowed

with the topology of pointwise convergence.

Definition 2.1.4. Let E be the family of all finite subsets of X. Then TE is the
topology of pointwise convergence. (C(X, Y ), TE) = Cp(X, Y ).

Definition 2.1.5. Let E be the family of all compact subsets of X. Then TE is the
compact-open topology. (C(X, Y ), TE) = Cc(X, Y ).

Definition 2.1.6. Let E be the family of all bounded subsets in X. Then

(C(X, Y ), TE) = C0(X, Y ).
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2.2 Properties

In this section we will examine some basic properties of Cp(X). These properties will
familiarize us with Cp(X) spaces and provide a better understanding of the way in
which these spaces work. The proofs in this section are modified versions of those
found in [9] and [1].

Proposition 2.2.1. LetX and Z be topological spaces and Y ⊆ Z, then the topology
of Cp(X, Y ) coincides with the topology on C(X,Z) induced from Cp(X, Y ) and so
Cp(X, Y ) ⊆ Cp(X,Z).

Proof. Let

A = {x1, x2, . . . , xn;U1, U2, . . . , Un} = {f ∈ Cp(X,Z) : f(xi) ∈ Ui for all i ≤ n}

be a basic open set in Cp(X,Z). Then

A ∩ Cp(X, Y ) = {f ∈ Cp(X, Y ) : f(xi) ∈ Ui ∩ Y for all i ≤ n}

and A ∩ Cp(X, Y ) is an open set in Cp(X, Y ).
Let

W = {x1, . . . , xn;U1, . . . , Un} = {f ∈ Cp(X, Y ) : f(xi) ∈ Ui for all i ≤ n}

be a basic open set of Cp(X, Y ). For each i ≤ n, let Oi ∈ TZ such that Ui = Oi ∩ Y.
Let

W ′ = {x1, . . . , xn;O1, . . . , On} = {f ∈ Cp(X,Z) : f(xi) ∈ Oi for all i ≤ n}.

Then W ′ = W ∩ Cp(X, Y ) and W ′ is a basic open set in Cp(X,Z). �

Proposition 2.2.2. If X,Z are topological spaces and Y ⊆ Z is closed, then
Cp(X, Y ) is a closed subspace of Cp(X,Z).

Proof. Let f ∈ Cp(X,Z) \ Cp(X, Y ). Then there exists an x ∈ X such that f(x) ∈
Z \ Y. Let Uf = {f ∈ Cp(X,Z) : f(x) ∈ Z \ Y }. Then Uf is open in Cp(X,Z).
Furthermore, f ∈ Uf ⊆ Cp(X,Z)\Cp(X, Y ). Therefore Cp(X,Z)\Cp(X, Y ) =

⋃
{Uf :

f ∈ Cp(X,Z) \ Cp(X, Y )} which is open. Thus, Cp(X, Y ) is a closed subset. �

The topological product RX is the set of all maps from X into R endowed with the
topology of pointwise convergence. By definition of Cp(X), we see that Cp(X) ⊆ RX .
Furthermore, Cp(X) is everywhere dense in RX .

The following theorems and propositions illustrate how properties of a space X
are characterized by topological properties of Cp(X).
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Theorem 2.2.3. For any infinite space X,

|X| = χ(Cp(X)) = w(Cp(X)).

Proof. Let B = {[x1, . . . , xk;U1, . . . , Uk] : k ∈ N, xi ∈ X, and Ui is a rational interval
for i ≤ k} be a base for Cp(X). Then |B| ≤ |X|, since B is a base for Cp(X) and
the topology on Cp(X) is created from the finite subsets of X. Thus, we have that
w(Cp(X)) ≤ |X|.

Now, let h : X → R be defined by h(x) = 0 for all x ∈ X, and let C be a local base
at h in Cp(X). For any V ∈ C, there is a basic open set U(V ) with h ∈ U(V ) ⊆ V.
Then {U(V ) : V ∈ C} also forms a local at h. Thus, it may be assumed without loss
of generality that the elements of C are basic. Given V = [x1, . . . , xk;U1, . . . , Uk] ∈ C,
let supp(V ) = {x1, . . . , xk} and let Y = ∪{supp(V ) : V ∈ C}, where supp(V ) is
the support. If x ∈ X \ Y, then there is V = [x1, . . . , xk;U1, . . . , Uk] ∈ C with
V ⊆ W = [x; (−1, 1)]. However, supp(V ) = {x1, . . . , xk} ⊆ Y ⊆ X \ {x}. So there
exists a function f ∈ Cp(X) such that f(xi) ∈ Ui and f(x) = 1. Then f ∈ V \ W ,
which gives a contradiction. Thus, X = Y and so |X| = |Y | ≤ χ(Cp(X)). Also, by
Theorem 1.3.20, we have that w(Cp(X)) ≤ |X| ≤ χ(Cp(X)) ≤ w(Cp(X)). Therefore,
|X| = χ(Cp(X)) = w(Cp(X)). �

Theorem 2.2.4. For a space X, nw(X) = nw(Cp(X)).

Proof. Let N be a network of the topological space X such that |N | = nw(X).
For any collection N1, . . . , Nk ∈ N and any open intervals with rational end points
I1, . . . , Ik, let M(N1, . . . , Nk; I1, . . . , Ik) = {f ∈ Cp(X) : f(Nj) ⊆ Ij for all j ≤ k}.
Now, let M = {M(N1, . . . , Nk; I1, . . . , Ik) : n ∈ N, N1, . . . , Nk ∈ N , and Ij is a
rational interval for all j ≤ k}. Clearly, |M| ≤ nw(X). To see that M is a network
of Cp(X), let f ∈ Cp(X) and f ∈ U ∈ T(Cp(X)). There is a canonical open set
V = [x1, . . . , xk;O1, . . . , Ok] with f ∈ V ⊆ U. Without loss of generality, consider
x1, . . . , xk distinct. Since f is continuous, we can choose disjoint open sets U1, . . . , Uk

such that xi ∈ Ui for each i ≤ k and rational intervals I1, . . . , Ik such that f(Uj) ⊆
Ij ⊆ Oj for all j ≤ k. Then there exist N1, . . . , Nk ∈ N such that xj ∈ Nj ⊆ Uj

for all j ≤ k. Thus, f ∈ M(N1, . . . , Nk; I1, . . . , Ik) ⊆ V ⊆ U , and M is a network of
Cp(X). Since |M| ≤ nw(X), we have nw(Cp(X)) ≤ nw(X) for any space X. Thus,
nw(Cp(Cp(X))) ≤ nw(Cp(X)) ≤ nw(X) for any space X. But, X can be embedded
in Cp(Cp(X)) which tells us nw(X) ≤ nw(Cp(Cp(X))). Combining these inequalities,
we have that nw(X) = nw(Cp(X)). �

Theorem 2.2.5. d(X) = ψ(Cp(X)) = Δ(Cp(X)) = iw(Cp(X)).
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Proof. Let Y be a topological space and γ ⊆ TY×Y be a family such that ΔY = ∩γ.
Fix y ∈ Y and for U ∈ γ, choose OU ∈ TY with y ∈ OU such that OU × OU ⊆ U .
Then ∩{OU : U ∈ γ} = {y}. Therefore, ψ(Y ) ≤ Δ(Y ).

Suppose that f : Z → Y is a condensation and B is a base for Y such that |B| =
κ = iw(X). Then l((Y ×Y )\ΔY ) ≤ w((Y ×Y )\ΔY ) ≤ κ. For each z ∈ (Y ×Y )\ΔY ,
choose Uz ∈ TY×Y with z ∈ Uz such that Uz∩ΔY = ∅. Let U = {Uz : z ∈ (Y ×Y )\ΔY }
be an open cover of the (Y × Y ) \ ΔY with a subcover V such that |V| ≤ κ. Then,
(Y × Y ) \ ΔY = ∪{U : U ∈ V} is a union of less than or equal to κ closed set.
Thus, ψ(ΔY , Y × Y ) ≤ κ. Since f is a condensation, ψ(ΔZ , Z × Z) ≤ κ and so,
Δ(Z) ≤ iw(Z).

Given a basic set V = [x1, . . . , xn;O1, . . . , On] ∈ TCp(X), let supp(V ) = {x1, . . . , xn}.
Let γ be any subset of TCp(X) such that {u} = ∩γ, where u ≡ 0 and |γ| = κ. For each
U ∈ γ let OU = [x1, . . . , xn;O1, . . . , On] be a basic open set such that u ∈ OU ⊆ U.
Then Y = ∪{supp(OU) : U ∈ γ} and |Y | ≤ κ. If X 	= Y , choose x ∈ X \ Y and
f ∈ Cp(X) such that f(x) = 1 and f(Y ) ⊆ {0}. Then f ∈ ∩γ, a contradiction
to f 	= u and ∩γ = {u}. Thus Y is dense in X and d(X) ≤ |Y | ≤ κ. Therefore,
d(X) ≤ ψ(Cp(X)), and so we have d(X) ≤ ψ(Cp(X)) ≤ Δ(Cp(X)) ≤ iw(Cp(X)).

To see that iw(Cp(X)) ≤ d(X), fix Y ⊆ X such that |Y | = d(X) and X = Y . Let
πY : Cp(X) → Z = πY (Cp(X)) ⊆ Cp(Y ) be the restriction map (πY (f) = f |Y ). Then
πY is a condensation and w(Z) ≤ w(Cp(Y )) = |Y | = d(X). Therefore, iw(Cp(X)) ≤
d(X). �

Using the definitions of our cardinal invariants, and the result proved above, we
can summarize the previous theorem as Cp(X) condenses onto a second countable
space if and only if X is separable.

Theorem 2.2.6. iw(X) = d(Cp(X))

Proof. Note thatX embeds Cp(Cp(X)). So, we have that iw(X) ≤ iw(Cp(Cp(X))) ≤
d(Cp(X)) by that and the result proved in the previous theorem.

To see that d(Cp(X)) ≤ iw(X), suppose iw(X) ≤ κ. Then take a condensation
f : X → Y such that w(Y ) ≤ κ. Then the dual mapping f ∗ embeds Cp(Y ) into Cp(X)
as a dense subspace. Let Z = f ∗(Cp(Y )). Then d(Z) ≤ nw(Z) = nw(Cp(Y )) =
nw(Y ) ≤ w(Y ) ≤ κ. Therefore, d(Cp(X)) ≤ d(Z) ≤ κ, and so d(Cp(X)) ≤ iw(X). �

Using the definitions and the result of the preceding theorem, we can summarize
that Cp(X) is separable if and only if X condenses onto a second countable space.
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2.3 Examples

In this section, we will look at three familiar spaces - the real line, the Sorgenfrey line
and the Moore-Niemytzki Plane - and some of the properties of their corresponding
Cp-spaces. The proofs in this section are modified versions of the ones in [9].

Theorem 2.3.1. The set of all increasing functions is closed in Cp(R).

Proof. Let I ⊆ Cp(R) be the set of all of increasing functions. For f ∈ Cp(R) \ I
there are x, y ∈ X such that x < y and f(x) > f(y). Let d = f(x) − f(y). Let
U = [x, y; (f(x) − d

3
, f(x) + d

3
), (f(y) − d

3
, f(y) + d

3
)]. Then U is open in Cp(R) and

f ∈ U. Let g ∈ U . Then g(y) < f(y) + d
3
< f(x) − d

3
< g(x). Thus g(y) < g(x) and

so g is not increasing. Also, U ∩I = ∅. Since each f ∈ Cp(R) \ I has a neighborhood
that is also contained in Cp(R) \ I, Cp(R) \ I is open and I is closed. �

Using a nearly identical proof as the theorem above, we get the following result.

Corollary 2.3.2. The set of all decreasing functions is closed in Cp(R).

The following theorem will provide a further look into Cp(R), comparing density
and network weight.

Theorem 2.3.3. There exists a countable A ⊆ Cp(R) such that A = Cp(R).

Proof. Let B = {{O1, . . . , On} : n ∈ N, Oi = (ai, bi) is a rational open interval for all
i ≤ n and [ai, bi] ∩ [aj, bj] = ∅ if i 	= j}. Given that O = {O1, . . . , On} ∈ B, let
m(O) = n. If q = (q1, . . . , qn) is an n-tuple of rational numbers, fix fO,q ∈ Cp(R) such
that fO,q(Oi) = {qi} for all i ≤ n. Then the set A = {fO,q : O ∈ B and q is an m(O)−
tuple of rationals} is countable. To see that A = Cp(R), given a basic open set
W = [x1, . . . , xn;U1, . . . , Un] choose qi ∈ Ui ∩Q for all i ≤ n and let q = (q1, . . . , qn).
Then, there exists O = {O1, . . . , On} ∈ B such that xi ∈ Oi for all i ≤ n. Then
fO,q ∈ W ∩ A. Thus, A = Cp(R). �

Another way of looking at the preceding theorem is that

d(Cp(R)) ≤ nw(Cp(R)) ≤ nw(R) = ℵ0.

The following two corollaries focus on subsets of the reals, namely, the rationals
and natural numbers.

14



Corollary 2.3.4. Cp(Q) has a countable base.

Proof. Let U be the family of all open intervals in R that have rational endpoints.
Consider the family B of all sets [x1, . . . , xn;O1, . . . , On] where n ∈ N, xi ∈ Q and
Oi ∈ U for all i ≤ n. Then B forms a countable base for Cp(Q). �

Corollary 2.3.5. Cp(N) has a countable base.

Proof. Let U be the family of all open intervals in R that have rational endpoints.
Consider the family B of all sets [x1, . . . , xn;O1, . . . , On] where n ∈ N, xi ∈ N and
Oi ∈ U for all i ≤ n. Then B forms a countable base for Cp(N). �

The following examples deal with two common spaces: the Sorgenfrey line and
the Moore-Niemytzki Plane.

Definition 2.3.6. The real line with the topology generated by {[a, b) : a, b ∈ R, a <
b} is called the Sorgenfrey line. We will denote the Sorgenfrey line by the notation
(S, T ).

Proposition 2.3.7. Let X be a separable space with ext(X) ≥ c. Then X is not
normal.

Proof. Let S ⊆ X be closed discrete with |S| = c. Since X is separable, we know
there is a countable dense D ⊆ X. Then |P(D)| = c < |P(S)|. Thus, by Jones’
Lemma, X is not normal. �

Proposition 2.3.8. The space S × S has a closed discrete subspace of cardinality
continuum.

Proof. Let D = {(t,−t) : t ∈ R} ⊆ S × S. Now for any d = (t,−t) ∈ D, the set
U = [t, t+1)× [−t,−t+1) is open in S×S. Also, U ∩D = {d}, and so D is discrete.
Now if z = (x, y) /∈ D, then there is ε = |x+ y| > 0. Thus, W = [x, x+ ε

2
)× [y, y+ ε

2
)

is an open neighborhood of S × S with W ∩D = ∅. Thus, D is closed in S × S and
ext(S × S) = c. �

15



Proposition 2.3.9. Let X, Y be topological spaces. Given a continuous map r :
X → Y, define the dual map r∗ : Cp(X) → Cp(Y ) by r∗(f) = f ◦r for any f ∈ Cp(Y ).
If r(X) = Y, then r∗(Cp(Y )) is dense in Cp(X) if and only if r is a condensation.

Proof. Suppose r : X → Y is a condensation. Let f ∈ Cp(X), x1, . . . , xn ∈ X and
ε > 0 be given. Then there exists g ∈ Cp(Y ) such that g(r(xi)) = f(xi) for all i ≤ n.
Then r∗(g) = g◦r is an element of the basic open neighborhood OX(f, x1, . . . , xn, ε) =
{h ∈ Cp(X) : |h(xi) − f(xi)| < ε for all i ≤ n}. Thus, f ∈ r∗(Cp(Y )) for each

f ∈ Cp(X). Thus, r∗(Cp(Y )) = Cp(X).
To see that if r∗(Cp(Y )) is dense in Cp(X) then r is a condensation, suppose r

is not one-to-one. Let x, y ∈ X with x 	= y such that r(x) = r(y). Then UX =
[x, y; (0, 1), (2, 3)] is a non-empty open set in Cp(X). However, UX ∩ r∗(Cp(Y )) = ∅.
Thus r∗(Cp(Y )) is not dense in Cp(X). �

Theorem 2.3.10. Cp(S) is not normal.

Proof. Let r : R → R be the identity mapping for all t ∈ R. Then r : S → R is a
condensation. Thus, r(Cp(R)) is a dense subspace of Cp(S) which is homeomorphic
to Cp(R). If A is a countable dense subspace of Cp(R), then r∗(A) is a countable dense
subspace of Cp(S). Hence Cp(S) is separable.

Let [a, b) ⊆ S. Let f(t) = t − a and g(t) = 1
b−a · t for all t ∈ R. Then h = g ◦ f :

S → S is a homeomorphism. Also, h([a, b)) = [0, 1). Thus, any two clopen intervals
in S are homeomorphic subspaces. Now S = ∪{Ak : k ∈ ω} where A2i = [−i− 1,−i)
and A2i+1 = [i, i + 1) for all i ∈ ω. Thus, since S can be represented as a union of a
family {Ak : k ∈ ω} of pairwise disjoint open subsets of S, then S is homeomorphic
to

⊕
{Ak : k ∈ ω}. Notice that similarly, we can write [0, 1) = ∪{[pi, qi) : i ∈ ω}

where pi = i
i+1

and qi = i+1
i+2

for all i ∈ ω. Thus, [0, 1) =
⊕

{Bk : k ∈ ω} where
Bk = [pk, qk). This implies that S is homeomorphic to any of its clopen intervals. Let
us take S ′ = [0, 1) for the remainder of the proof.

Now, for each t ∈ (0, 1], let ft(x) = 1 if 0 ≤ x < t and ft(x) = 0 for all x ∈ [t, 1).
Then ft ∈ Cp(S

′) for all t ∈ [0, 1).

Claim 1. The set F = {ft : t ∈ (0, 1]} is closed in Cp(S
′).

Proof. Given that f /∈ F, suppose f(x) /∈ {0, 1} for some x ∈ S ′. Then for
ε = min{|f(x)|, |f(x) − 1|} the set [x; (f(x) − ε, f(x) + ε)] is an open neighborhood
of f that does not meet F. If f(S ′) ⊆ {0, 1} and f ∈ F , then if f(x) = 1 then
f(y) = 1 for y < x. For if f(y) = 0 for some y < x, then [y, x : (−1

2
, 1
2
), (1

2
, 3
2
)]

is an open neighborhood of f that does not meet F since all functions from F are
non-increasing. By similar reasoning, f(x) = 0 tells us f(y) = 0 for y > x. Then,
there exists t ∈ S ′ such that f(x) = 1 for all x < t and f(x) = 0 for all x > t. If
f(t) = 1, then f is discontinuous, so f(t) = 0 and f = ft ∈ F. Therefore, F is closed
in Cp(S

′).
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Claim 2. The map φ : S ′ → F defined by φ(s) = f1−s is a homeomorphism.

Proof. Clearly, φ is one-to-one and onto. To prove the continuity of φ, it suffices
to show that ht = πt ◦ φ is continuous for each πt defined by πt(f) = f(t) for all
f ∈ Cp(S

′) and t ∈ [0, 1), since Cp(S
′) is a subspace of RS′

. Since ht(s) = f1−s(t) = 1
for s < 1 − t and ht(s) = f1−s(t) = 0 for s ≥ 1 − t, ht is continuous for all t ∈ S ′.
Finally, to see that φ is a homeomorphism, it need only be shown that φ is open. Since
the clopen intervals form a base of S ′, it suffices to show that φ(U) is open in F for any
U = [a, b) ⊆ S ′. Now, φ(U) = {ft : 1−b < t ≤ 1−a} = [1−b, 1−a; (1

2
, 3
2
), (−1

2
, 1
2
)]∩F

which is open in F . Thus, the mapping φ is a homeomorphism.

Claim 3. The spaces Cp(S
′) and Cp(S

′)× Cp(S
′) are homeomorphic.

Proof. Now S ′ = [0, 1
2
) ∪ [1

2
, 1) and since S ′ is homeomorphic to every arrow, we

know that the space S ′ is homeomorphic to S ′ ⊕ S ′. Then Cp(S
′) is homeomorphic

to Cp(S
′ ⊕ S ′). But, Cp(S

′ ⊕ S ′) is homeomorphic to Cp(S
′ × S ′) and so Cp(S

′) is
homeomorphic to Cp(S

′ × S ′).

From Claims 1 and 2, we see that F is a closed subspace of Cp(S
′) homeomorphic

to S ′. And so, Cp(S) has some closed subspace T that is homeomorphic to S. Then,
the space T × T is closed subspace of Cp(S)×Cp(S). Now, we know there is a closed
discreteD ⊆ T×T with |D| = c. ThenD is a closed discrete subspace of Cp(S)×Cp(S)
as well. By Claim 3, we know that Cp(S) is homeomorphic to Cp(S)× Cp(S). Thus,
Cp(S) has a closed discrete subspace with cardinality of the continuum and so is not
normal. �

Definition 2.3.11. Let Γ = R× [0,∞) and S = R×{0}. Also, let d denote the usual
metric on R× R. For each x ∈ Γ \ S, let Bx = {Bd(x, r) : r < d(x, S)}. Now suppose
that x = (s, 0) ∈ S. Then Bx = {Bd((s, r), r) ∪ {x} : r > 0}. Let B = ∪x∈ΓBx. Let
T be the topology on Γ generated by B. Then (Γ, T ) is called the Moore-Niemytzki
Plane.

The proof of the following theorem can be found in full in [9].

Theorem 2.3.12. Cp(Γ) is not normal.
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Chapter 3

Cp(X) and Lindelöfness

In this chapter, we will explore two open questions in Cp-theory originally posed
by Arhangel’skii in [1]. The results provided in this chapter are the work of many
mathematicians. The first question:

Question. Does there exist a natural topological property of Cp(X) which would
characterize whether the space X is Lindelöf?

The second question is again a Lindelöf question, however, this one pertains to
the product topology:

Question. Suppose Cp(X) is Lindelöf. Is it true that the space Cp(X) × Cp(X) is
Lindelöf?

Unfortunately, the answers to these questions for general spaces do not exist. In
the following chapter, we will take a look at specific spaces in regards to the above
mentioned questions.

For the theorems we will be discussing in the remaining chapters, we will often
need to leave ZFC and explore other models of set theory. We begin by mentioning a
consequence of the Continuum Hypothesis, namely, Luzin’s Axiom which states that
2ω1 > c.

The following theorem and corollary were proven by Tkachenko and Tkachuk and
can be found in [11] with complete proofs in [8].

Theorem 3.0.13. If X is Lindelöf and w(X) < c, then under Luzin’s Axiom every
compact continuous image of Cp(X) is metrizable.

Corollary 3.0.14. Under Luzin’s Axiom, if X is a Lindelöf first countable space,
then every compact continuous image of Cp(X) is metrizable.
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In ZFC, the above theorem and corollary is not obtained, even if the conditions
are changed to include a compact first countable space.

Next we look at a theorem which can be found in [9].

Theorem 3.0.15. t(Cp(X)) = sup{l(Xn) : n ∈ N}. In particular, the tightness of
Cp(X) is countable if and only if Xn is a Lindelöf space for any n ∈ N.

This theorem is the motivation behind a question first asked by Arhangel’skii in
[2].

Question. Let X be a Lindelöf space. Is it true that Cp(X) condenses onto a space
of countable tightness?

Going back to the second question presented in the chapter, we have the following
two theorems proved by Okunev [6] and Reznichenko [1], respectively. Notice that
both theorems are not ZFC, and instead MA + ¬CH which is taken to be Martin’s
Axiom with the negation of the Continuum Hypothesis.

Definition 3.0.16. A space X is said to be ω-monolithic if nw(A) ≤ ω for every
A ⊆ X such that |A| ≤ ω.

Theorem 3.0.17. (MA+¬CH) If Xn is Lindelöf, for each n ∈ ω, then every compact
subspace of Cp(X) is ω-monolithic.

Theorem 3.0.18. (MA+¬CH) If X is compact, and Cp(X) is Lindelöf, then Cp(X)
is ω-monolithic.

This section will end with a conjecture made by Arhangel’skii in [2].

Conjecture. If X is compact, and Cp(X) is Lindelöf, then Cp(X)×Cp(X) is also
Lindelöf.
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Chapter 4

Lindelöfness of Cp(X) Examples

In the previous chapter, a general look was taken at two specific open questions
originally asked by Arhangel’skii. In this chapter, we will consider more specific
questions by putting constraints on the space X. The three spaces we will look at
occur when X has a single non-isolated point, when X is a Michael space, and finally,
when X is a Mrówka space [5].

4.1 X has a Single Non-Isolated Point

In this section, we take a look at the case when X is a space with all but one of
its points isolated. We begin by trying to find properties of this space X that will
make Cp(X) Lindelöf. We begin with the following theorem and corollary proven by
Malykhin and Leiderman in [4].

Theorem 4.1.1. Let X be a space with a single non-isolated point. The following
properties are equivalent:

1. X is Lindelöf and for any finite n the tightness of Xn is countable.

2. Cp(X) is Lindelöf.

3. Cp(X,M) is Lindelöf for any separable metrizable space M .

A corollary to the preceding theorem considers the countable product of Cp(X).

Corollary 4.1.2. Let X be a topological space with a single non-isolated point. If
Cp(X) is Lindelöf, then the countable product Cp(X)ω is also Lindelöf.

Finally, we consider the possibility of Cp(X)×Cp(Y ) where X and Y are different
spaces. To do so, we use different models of set theory besides ZFC.

The following theorem assuming the model of ZFC obtained by adding one Cohen
real can also be found in [4].
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Theorem 4.1.3. There are two spaces with a single non-isolated point X and Y
such that both Cp(X) and Cp(Y ) are Lindelöf but the product Cp(X)×Cp(Y ) is not
Lindelöf.

Our final theorems for this space involve the PFA or proper forcing axiom model
of set theory. Both theorems are attributed to Todorcevic and can be found in [5].

Theorem 4.1.4. (PFA) Let X and Y be two spaces with at most one non-isolated
point. If the spaces Cp(X) and Cp(Y ) are Lindelöf, then the product Cp(X)×Cp(Y )
is Lindelöf.

Theorem 4.1.5. (PFA) Let X be a space with a single non-isolated point. The
following properties are equivalent:

1. X is Lindelöf and t(X) is countable.

2. Cp(X) is Lindelöf.

4.2 X is a Michael Space

The following specific case that we will examine considers a spaceX which is a Michael
space.

Definition 4.2.1. Let X be a topological space and A ⊆ X. Let X(A) be obtained by
retaining the topology at each point of A and by taking the points of X \A isolated.
Then X(A) is referred to as a Michael space.

The following are a few properties of Michael spaces that are required before
considering questions of Lindelöfness in Cp(X).

Proposition 4.2.2. Let A and B be two subsets of a topological space X. Then,
there exists a one-to-one mapping i : X(A) → X(B), where i is the identity mapping
on X. If A ⊆ B, this mapping is continuous.

Proposition 4.2.3. The diagonal in X(A) × X(B) is closed and homeomorphic to
X(A∩B).

The following definitions are necessary to understand the findings for Michael
spaces.
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Definition 4.2.4. Let X be a topological space and A ⊆ X. Then, A is a holding if
the countable power (X(A))

ω is Lindelöf.

Definition 4.2.5. A separable completely metrizable topological space is called a
Polish space. Equivalently, a Polish space is a topological space which is homeomor-
phic to a complete metric space with a countable dense subset.

In [7], Okunev and Tamano proved the following:

Theorem 4.2.6. If A is a set in a Polish space X such that |X \A| < 2ω, then A is
a holding.

Theorem 4.2.7. Let X be an uncountable Polish space. Then there exists a family
of pairwise disjoint holding subsets {Aα : α < 2ω}.

The constructions of the previous two theorems would lead Okunev and Tamano
to the following results:

Theorem 4.2.8. There exist separable, scattered, σ-compact spaces X and Y such
that Cp(X)ω and Cp(Y )ω are Lindelöf but the product Cp(X)×Cp(Y ) is not Lindelöf.

Theorem 4.2.9. (CH) Let D = {0, 1} denote the discrete space consisting of two
points. There is a separable, scattered, σ-compact space X such that for any finite n
Cp(X,D)n is Lindelöf, but Cp(X,D)ω is not Lindelöf.

4.3 X is a Mrówka Space

The final example we will look at in this chapter revolves around Cp(X) when X is
a Mrówka space. To begin, we recall the following definitions.

Definition 4.3.1. Two countable infinite sets are said to be almost disjoint if their
intersection is finite.

Definition 4.3.2. A maximal almost disjoint family is a maximal element in the
family of all almost disjoint families ordered by inclusion.
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With the previous definitions in mind, we are able to define a Mrówka space.

Definition 4.3.3. Let A be a maximal family of pairwise, almost disjoint, infinite
subsets of N. We place a topology on the union N ∪ A by letting sets of the form

Un(A) = (A \ {1, 2, . . . , n}) ∪ {A}, n ∈ N,

be basic neighborhoods of A ∈ A and declaring points of N to be isolated. The
resulting space N ∪ A is called a Ψ-space or Mrówka space and is denoted Ψ(A).

Some properties of the space X = Ψ(A) are considered below.

Proposition 4.3.4. For every almost disjoint family A, the space X = Ψ(A) is a
zero-dimensional, locally compact, first countable space. Additionally, A is a closed
discrete subspace of Ψ(A) and ω is dense.

Theorem 4.3.5. Ψ(A) is not normal if A is a maximal almost disjoint family.

An important result with Mrówka spaces was proven in a 2005 paper by Hrusak,
Szeptycki and Tamariz- Mascarua [3]. The following theorem is stated assuming CH.

Theorem 4.3.6. There is a maximal almost disjoint family A such that for X =
Ψ(A) the finite power Cp(X,D)n is Lindelöf for every finite n, but the countable
product Cp(X,D)ω is not normal.
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Chapter 5

Cp(X) and Metacompactness

In this chapter we will look at the spaces Cp(X) and the property of metacompactness.
Several open questions on the topic are presented in this section. However, despite the
numerous questions presented on this subject, there are very few answers available to
date. We begin with some of these unanswered questions.

Question. Does metacompactness of Cp(X) imply that Cp(X) is Lindelöf?

This question, first asked by Arhangel’skii in [1], is often considered to be a part
of Cp-theory folklore. While we do not have a complete answer, there is a potential
one due to a theorem by Reznichenko [2]. First we begin with a definition.

Definition 5.0.7. A space X is called collectionwise normal if, for any discrete
{Ft : t ∈ T} of closed subsets of X, there exists a discrete family {Ut : t ∈ T} of open
subsets of X such that Ft ⊆ Ut for each t ∈ T.

Theorem 5.0.8. If the space Cp(X) is normal, then it is collectionwise normal.

This previous theorem, gives an important result [1]:

Theorem 5.0.9. If Cp(X) is normal and metacompact, then Cp(X) is Lindelöf.

The next question follows naturally from the above, and questions the necessity
of Cp(X) being normal [10].

Question. (open reference) Suppose that Cp(X) is metacompact. Must it be Lin-
delöf?
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In a contradiction to the conjecture from [2] stated at the end of Chapter 3,
Tkachuk in [11] believes that there are counterexamples that exist to that conjecture.
He does however, believe that the Lindelöf property of Cp(X) effects Cp(X)×Cp(X)
as illustrated in the question below.

Question. Suppose that Cp(X) is Lindelöf. Must Cp(X)×Cp(X) be metacompact?

The following question naturally follows from the preceding question, but first we
must define metalindelöf [10].

Definition 5.0.10. A space X is metalindelöf if every open cover U of X has a
point-countable open refinement.

Question. Suppose Cp(X) is Lindelöf. Must Cp(X)× Cp(X) be metalindelöf?

Finally, we end with an open question that involves putting more constraints on
the space X [10].

Question. Suppose that X is compact Cp(X) is Lindelöf. Must the space Cp(X)×
Cp(X) be metacompact?
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