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ABSTRACT

In 1961 Roger W. Carter proved a theorem about solvable groups similar to Sylow’s

theorem. He proved that if a group is solvable then it always contains a nilpotent,

self-normalizing subgroup called a Carter subgroup, and that all such subgroups are

conjugate to each other by an element of the group. The objective of this thesis is to

present a proof of Carter’s theorem.
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1 Introduction

Let G be a finite group, p be a prime, and n ∈ Z+ ∪ {0} such that pn divides |G|
but pn+1 does not divide |G|. In 1872 Ludwig Sylow proved that there is a subgroup

P of G such that |P | = pn and that all such subgroups are conjugate to each other

by an element of G. Such a subgroup P is called a Sylow p-subgroup, named after

Ludwig Sylow. If G has only one Sylow p-subgroup for each prime p, then G is called

a nilpotent group. Now if H ≤ G then it is well known that the set

NG(H) = {g ∈ G|gHg−1 = H}

is a subgroup of G.

Roger W. Carter obtained his PhD in 1960 and his dissertation was entitled ”Some

Contributions to the Theory of Finite Soluble Groups”. He worked as a professor at

the University of Warwick in the United Kingdom. He defined Carter subgroups and

wrote the standard reference Simple Groups of Lie Type. Roger W. Carter in mid

1900s wondered if all groups contained a subgroup H that was nilpotent with the

property that H is self-normalizing(ie = H = NG(H)). Well it turns out that not

all groups have a nilpotent, self-normalizing subgroup. For example, the alternating

group A5 of order 60 has no such subgroup. A group G is solvable if there exists a

subnormal series

G = G0 �G1 �G2 � ...�Gn = 1

such that the factors

Gi

Gi+1

are abelian, for all 0 ≤ i ≤ n− 1.
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In 1961 Roger W. Carter showed a theorem about these subgroups similar to

Sylow’s theorem. He proved that if a group is solvable then it always contains a

nilpotent, self-normalizing subgroup, and that all such subgroups are conjugate to

each other by an element of the group [1]. These subgroups have been named Carter

subgroups and the theorem, Carter’s theorem. The objective of this thesis is to

present a proof of Carter’s theorem.
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2 Preliminaries

Definition A group is a non empty set G along with a binary operation ∗ such that

the following axioms are satisfied:

1. Closed a ∗ b ∈ G for all a, b ∈ G.

2. Associativity (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

3. Identity There exists e ∈ G such that for all a ∈ G, e ∗ a = a ∗ e = a.

4. Inverses For all a ∈ G there exists b ∈ G such that a ∗ b = b ∗ a = e.

We will write ab instead of a ∗ b, 1 instead of e, and a−1 instead of b.

Definition A group G is called abelian if ab = ba for all a, b ∈ G.

Definition Let G be a group and H be a non empty subset of G. Then H is a

subgroup of G if H is a group. We write H ≤ G.

Theorem 2.1. (Subgroup test): Let G be a group and H be a non-empty subset of

G. Then H ≤ G if and only if ab−1 ∈ H for all a, b ∈ H.

Proof

Suppose H ≤ G. Let a, b ∈ H. Since H ≤ G and b ∈ H, we know b−1 ∈ H, and

so ab−1 ∈ H by closure. Suppose ab−1 ∈ H for all a, b ∈ H. Let a ∈ H. Then

aa−1 ∈ H, so 1 ∈ H. Now 1a−1 ∈ H and so a−1 ∈ H for all a ∈ H. Let a,b ∈ H.

Then b−1 ∈ H from above, and so a(b−1)−1 ∈ H. Thus ab ∈ H and so H is closed.

Since G is associative and H ⊆ G, we know H is associative. Therefore H is a group
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and so H ≤ G. �

Definition Let G be a group, the center of G is

Z(G) = {g ∈ G|gx = xg for all x ∈ G}

Theorem 2.2. Let G be a group. Then Z(G) ≤ G.

Proof

Now 1x = x and x1 = x and so 1x = x1 for all x ∈ G. Therefore 1 ∈ Z(G) and so

Z(G) �= ∅. Let a, b ∈ Z(G) and let x ∈ G then

xab−1 = axb−1 since a, b ∈ Z(G)

= ab−1bxb−1

= ab−1xbb−1

= ab−1x.

Thus ab−1 ∈ Z(G) and so Z(G) ≤ G by the Subgroup test. �

Definition Let G be a group and a ∈ G. Define the cyclic subgroup generated

by a by

〈a〉 = {ak|k ∈ Z}.

Theorem 2.3. Let G be a group and a ∈ G then 〈a〉 ≤ G.

Proof

Since 1 = a0 ∈ 〈a〉 then 〈a〉 �= ∅. Let am, an ∈ 〈a〉. Then am(an)−1 = ama−n =
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am−n ∈ 〈a〉 since m− n ∈ Z. Therefore 〈a〉 ≤ G by the Subgroup test. �

Definition Let G be a group, H ≤ G and g ∈ G. Then the left coset of H

in G containing g is the set

gH = {gh|h ∈ H}.

A number of theorems will be listed for (informational purposes) whose proofs are

not given here.

Theorem 2.4. Let G be a group, H ≤ G, and a, b ∈ G. Then

1. |aH| = |H|.

2. aH = bH if and only if b−1a ∈ H.

Theorem 2.5. (Lagrange): Let G be a group and H ≤ G. Then |H| divides |G| and

|G|
|H| = number of left cosets of H in G

.

Definition Let G1 and G2 be groups and φ : G1 −→ G2. Then φ is a homomor-

phism if φ(ab) = φ(a)φ(b) for all a, b ∈ G1. If, in addition, φ is one-to-one and onto,

we call φ an isomorphism and write G1
∼= G2.

Theorem 2.6. Let φ : G1 −→ G2 be a homomorphism and a ∈ G1. Then

1. φ(1) = 1.
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2. φ(a−1) = (φ(a))−1.

3. φ(an) = φ(a)n for any n ∈ Z.

4. If |a| is finite, then |φ(a)| divides |a|.

5. If H ≤ G1, then φ(H) ≤ G2.

6. If K ≤ G2, then φ−1(K) ≤ G1.

Definition Let G1 and G2 be groups and φ : G1 −→ G2 be a homomorphism.

Define the kernel of φ by

Kern φ = {g ∈ G1|φ(g) = 1}.

Theorem 2.7. Let φ : G1 −→ G2 be a homomorphism. Then Kern φ�G1.

Definition Let G be a group and H ≤ G. Then H is a normal subgroup of G

if ghg−1 ∈ H for all g ∈ G and for all h ∈ H. We write H �G.

Theorem 2.8. Let G be a group and H �G. Define the set G/H by

G/H = {gH|g ∈ G}.

Then G/H is a group under the operation aHbH = abH for all aH, bH ∈ G/H.

The group G/H is called the quotient group, the factor group, or G mod H.
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Theorem 2.9. (First Isomorphism Theorem): Let G1 and G2 be groups and φ :

G1 −→ G2 be a homomorphism with Kern φ = K. Then

G1/K ∼= φ(G1).

Proof

Define a map χ : G1/K −→ φ(G1) by χ(gK) = φ(g) for all g ∈ G. Let g1, g2 ∈
G1. Suppose g1K = g2K then g−12 g1 ∈ K = Kern φ and so φ(g−12 g1) = 1 or

φ(g−12 )φ(g1) = 1 since φ is a homomorphism. Therefore φ(g2)
−1φ(g1) = 1 and so

φ(g1) = φ(g2). Therefore χ(g1K) = χ(g2K). This implies χ is well defined. Now let

g1K, g2K ∈ G1/K. Since φ is a homomorphism

χ((g1K)(g2K)) = χ((g1g2)K) = φ(g1g2) = φ(g1)φ(g2) = χ(g1K)χ(g2K)

Implies χ is a homomorphism. Let g1K, g2K ∈ G1/K, suppose χ(g1K) = χ(g2K).

Then φ(g1) = φ(g2) or (φ(g2))
−1φ(g1) = 1 or φ(g−12 )φ(g1) = 1 since φ is a homomor-

phism. Hence φ(g−12 )φ(g1) = φ(g−12 g1) = 1 since φ is a homomorphism. Therefore

g−12 g1 ∈ Kern φ = K; hence g1K = g2K. So χ is one-to-one. Let y ∈ φ(G1). Then

there exists x ∈ G1 such that y = φ(x). But then xK ∈ G/K and χ(xK) = φ(x) = y.

Hence χ is onto. Therefore G1/K ∼= φ(G1). �

Theorem 2.10. (Second Isomorphism Theorem): Let G be a group, H ≤ G, and

N �G. Then

HN

N
∼= H

H ∩N

Proof
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Define a map φ : H −→ HN/N by φ(h) = hN for h ∈ H. Let h1, h2 ∈ H. Then

φ(h1h2) = (h1h2)N = h1Nh2N = φ(h1)φ(h2). Hence φ is a homomorphism. Let

h1 ∈ H. Then

h1 ∈ Kern φ

if and only if φ(h1) = h1N = 1N

if and only if 1−1h1 ∈ N

if and only if h1 ∈ H ∩N.

Hence H ∩ N = Kern φ. Let hnN ∈ HN/N where h ∈ H and n ∈ N . Then

φ(h) = hN = hnN since (hn)−1h = n−1 ∈ N and so χ is onto. Now by the First

Isomorphism Theorem

H

Kern φ
∼= φ(H)

which implies

HN

N
∼= H

H ∩N
.

�

Theorem 2.11. (Third Isomorphism Theorem): Let G be a group, N ≤ H ≤ G,

N �G, and H �G. Then

G/N

H/N
∼= G/H.

Proof

Define φ : G/N −→ G/H by φ(gN) = gH for all gN ∈ G/N . Let g1N , g2N ∈ G/N

for g1, g2 ∈ G. Suppose g1N = g2N . Then g−12 g1 ∈ N . Also g−12 g1 ∈ H since N ≤ H
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and so g1H = g2H. Therefore φ(g1N) = φ(g2N) and φ is well-defined. Now let g1N ,

g2N ∈ G/N for some g1, g2 ∈ G. Then

φ(g1Ng2N) = φ(g1g2N) = g1g2H = g1Hg2H = φ(g1N)φ(g2N),

and so φ is a homomorphism. Let gH ∈ G/H. Then gN ∈ G/N and so φ(gN) = gH.

Therefore φ is onto. Let g1N ∈ G/N . Then

g1N ∈ Kernφ

if and only if φ(g1N) = 1H

if and only if g1H = 1H

if and only if 1−1g1 ∈ H

if and only if g1 ∈ H

if and only if g1N ∈ H/N.

Thus Kern φ = H/N . Now by the First Isomorphism Theorem

G/N

Kern φ
∼= φ(G/N);

hence

G/N

H/N
∼= G/H.

�

Definition Let G be a group and S ⊆ G be a nonempty subset of G. Then the
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subgroup generated by S is

〈S〉 =
⋂

S⊆H≤G
H.

Theorem 2.12. Let G be a group and S ⊆ G be a nonempty subset. Then

〈S〉 = {sn1
1 sn2

2 · · · snk
k |si ∈ S and ni ∈ Z for all 1 ≤ i ≤ k}.

Proof

Let T = {sn1
1 sn2

2 · · · snk
k |si ∈ S and ni ∈ Z for all 1 ≤ i ≤ k}. We claim that T ≤ G

Since S is nonempty there exists s1 ∈ S. Then 1 = s01 ∈ T and so T �= ∅. Now let

sn1
1 sn2

2 · · · snk
k , rm1

1 rm2
2 · · · rml

l ∈ T where si, rj ∈ S and ni, mj ∈ Z for 1 ≤ i ≤ k and

1 ≤ j ≤ l. Then

(sn1
1 sn2

2 · · · snk
k )(rm1

1 rm2
2 · · · rml

l )−1 = (sn1
1 sn2

2 · · · snk
k )(r−ml

l r
−ml−1

l−1 · · · r−m2
2 r−m1

1 )

= sn1
1 sn2

2 · · · snk
k r−ml

l r
−ml−1

l−1 · · · r−m1
1 ∈ T.

Thus T ≤ G by the subgroup test. Let s ∈ S. Then s = s1 ∈ T and so S ⊆ T ≤ G.

Therefore 〈S〉 = ⋂
S⊆H≤G H ≤ T . Let sn1

1 sn2
2 · · · snk

k ∈ T where k ∈ Z+, si ∈ S, and

ni ∈ Z for all 1 ≤ i ≤ k. Suppose that S ⊆ H ≤ G. Since si ∈ S ⊆ H for all i we

know sni
i ∈ H for all i since H ≤ G. Therefore sn1

1 sn2
2 · · · snk

k ∈ H since H ≤ G. Thus

T ≤ H and so T ≤ 〈S〉 and we have 〈S〉 = T . �
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Theorem 2.13. Let G be a group, N �G, H ≤ G and let φ : G −→ G/N be defined

by φ(g) = gN for all g ∈ G. Then

1. φ is a homomorphism;

2. Kern φ = N ;

3. φ(H) = HN/N ;

4. φ−1(HN/N) = HN ;

5. if L ≤ G/N then L = K/N where N ≤ K ≤ G.

Proof

For (1), let g1, g2 ∈ G. Then φ(g1g2) = g1g2N = g1Ng2N , so φ is a homomorphism.

For (2), let g ∈ G. Then

g ∈ Kern φ

if and only if φ(g) = 1N

if and only if gN = 1N

if and only if 1−1g ∈ N

if and only if g ∈ N.

So Kern φ = N. For (3), let hnN ∈ HN/N for h ∈ H, n ∈ N . Then hnN = hN since

(hn)−1h = n−1 ∈ N . Therefore hnN = φ(h) ∈ φ(H) and so HN/N ⊆ φ(H). Let

x ∈ φ(H). There exists h ∈ H such that x = φ(h). Then x = φ(h) = hN ∈ HN/N .

Thus

φ(H) =
HN

N
.
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For (4), let g ∈ φ−1(HN/N). Then there exists hnN ∈ HN/N such that φ(g) =

hnN = hN . Hence gN = hN and so h−1g ∈ N . But then there exists n1 ∈ N such

that h−1g = n1 and so g = hn1 ∈ HN . Hence

φ−1
(
HN

N

)
⊆ HN.

Now let hn ∈ HN . Then φ(hn) = hnN ∈ HN/N and so hn ∈ φ−1(HN/N). Thus

HN ⊆ φ−1(HN/N), so φ−1(HN/N) = HN . Finally, consider φ−1(L) = K. Since

L ≤ G/N we know φ−1(L) ≤ G. Let n ∈ N , then φ(n) = nN = 1N ∈ L since

L ≤ G/N . Hence n ∈ φ−1(L) and so N ≤ φ−1(L). We claim that

L =
φ−1(L)

N
.

Let gN ∈ L. Then φ(g) = gN ∈ L. Hence g ∈ φ−1(L) and so gN ∈ φ−1(L)/N. There-

fore L ≤ φ−1(L)/N . Let gN ∈ φ−1(L)/N . Then g ∈ φ−1(L) and so gN = φ(g) ∈ L.

Thus φ−1(L)/N ≤ L and so L = φ−1(L)/N. �

Definition Let G be a finite group, p be a prime, and n ∈ Z+ ∪ {0} such that

pn divides |G| but pn+1 does not divide |G|. Then

1. A subgroup P ≤ G is called a Sylow p-subgroup if |P | = pn.

2. Sylp(G) = {P ≤ G|P is a Sylow p-subgroup of G}.

Theorem 2.14. (Sylow’s) Let G be a finite group, with |G| = pnm, where p is prime,

n ≥ 1 and p does not divide m. Then

1. For each i, 1 ≤ i ≤ n. There is a subgroup of G of order pi. Every subgroup

12



of order pi is a normal subgroup of some subgroup of order pi+1 for all 1 ≤ i ≤
n− 1;

2. Any two Sylow p-subgroups of G are conjugate in G;

3. The number np of Sylow p-subgroups of G divides |G| and is congruent to 1 mod

p.

Theorem 2.15. Let G be a group, H ≤ G, K ≤ G and L ≤ G such that K ≤ H.

Then,

H ∩KL = K(H ∩ L)

Proof

Let x ∈ K(H ∩ L). Then there exist k ∈ K ≤ H and also n ∈ H ∩ L such that

x = kn. Since n ∈ H ∩ L, n ∈ H and n ∈ L . Therefore x = kn ∈ H by closure.

Also x = kn ∈ KL. Hence x ∈ H ∩ KL and so K(H ∩ L) ⊆ H ∩ KL. Now let

y ∈ H ∩KL. Then y ∈ H and y ∈ KL. Therefore there exist k ∈ K and l ∈ L such

that y = kl. Since y ∈ H we have kl ∈ H. But since k ∈ K ≤ H and H ≤ G we

know k−1 ∈ H. Thus l = k−1kl ∈ H, and so l ∈ H ∩ L. Thus y = kl ∈ K(H ∩ L).

Therefore H ∩KL ⊆ K(H ∩ L) and so H ∩KL = K(H ∩ L). �
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3 Solvable Groups

Definition A subnormal series of a group G is a sequence of subgroups, each a

normal subgroup of the next one. In a standard notation

G = G0 �G1 �G2 � · · ·�Gn = 1.

Definition A group G is solvable if there exists a subnormal series

G = G0 �G1 �G2 � · · ·�Gn = 1

such that the factors

Gi

Gi+1

are abelian for all 0 ≤ i ≤ n− 1.

Lemma 3.1. If G is an abelian group then G is solvable.

Proof

Consider the subnormal series G = G0�G1 = 1. Then G0/G1 = G/1 ∼= G is abelian.

�

Examples.

Zn and Zm × Zn are solvable for all m, n ∈ Z+ by Lemma 3.1.

Lemma 3.2. If G is a p-group then G is solvable.

14



Proof

We use induction on |G|. If |G| = p0 = 1 then G = {1}. Hence G is abelian and

so G is solvable by Lemma 3.1. Suppose the lemma holds for all p-groups of order

less than |G|. Since G is a p-group we know 1 �= Z(G) � G. Then |G/Z(G)| < |G|
and G/Z(G) is a p-group. Hence G/Z(G) is solvable and so there exists a subnormal

series

G/Z(G) = G0/Z(G)�G1/Z(G)�G2/Z(G)� · · ·�Gn/Z(G) = 1

such that

Gi/Z(G)

Gi+1/Z(G)

is abelian for all 0 ≤ i ≤ n− 1. Taking preimages we get

G = G0 �G1 �G2 � · · ·� Z(G)� 1,

a subnormal series. By the Third Isomorphism Theorem

Gi

Gi+1

∼= Gi/Z(G)

Gi+1/Z(G)

and so Gi/Gi+1 is abelian for all 0 ≤ i ≤ n − 1. Finally, Z(G)/1 ∼= Z(G) is abelian

and so G is solvable. �

Examples. D4, Q8, Z16 ×D8 are all solvable groups.

Theorem 3.3. Let G be a solvable group and H ≤ G. Then H is solvable.

15



Proof

Since G is solvable, there exists a subnormal series

G = G0 �G1 �G2 � · · ·�Gn = 1

such that Gi/Gi+1 is abelian for all 0 ≤ i ≤ n− 1. Now we have the series

H = H ∩G ≥ H ∩G1 ≥ H ∩G2 ≥ · · · ≥ H ∩Gn = 1.

If g ∈ H ∩ Gi+1 and x ∈ H ∩ Gi, then xgx−1 ∈ H since g, x ∈ H and H ≤ G. Also

since g ∈ Gi+1, x ∈ Gi and Gi+1 �Gi, we get xgx
−1 ∈ Gi+1. Thus xgx

−1 ∈ H ∩Gi+1;

so H ∩Gi+1 �H ∩Gi for all 0 ≤ i ≤ n− 1. Therefore we have a subnormal series

H = H ∩G0 �H ∩G1 �H ∩G2 � · · ·�H ∩Gn = 1.

Also

H ∩Gi

H ∩Gi+1

=
H ∩Gi

H ∩Gi ∩Gi+1

∼= (H ∩Gi)Gi+1

Gi+1

by the Second Isomorphism Theorem. Now

(H ∩Gi)Gi+1

Gi+1

≤ Gi

Gi+1

and Gi/Gi+1 is abelian. Therefore H∩Gi/H∩Gi+1 is abelian and so H is solvable. �

Theorem 3.4. If G is solvable and N �G then G/N is solvable.

Proof

16



Since G is solvable, there exists a subnormal series G = G0 �G1 �G2 � · · ·�Gn = 1

such that Gi/Gi+1 is abelian for all 0 ≤ i ≤ n − 1. Taking the image of this series

under the natural map φ : G −→ G/N we get

G

N
=

G0

N
� G1N

N
� · · ·� GnN

N
= N.

Now by the Second and Third Isomorphism Theorems,

GiN/N

Gi+1N/N
∼= GiN

Gi+1N
=

GiGi+1N

Gi+1N
∼= Gi

Gi ∩Gi+1N
∼= Gi/Gi+1

(Gi ∩Gi+1N)/Gi+1

.

Since Gi/Gi+1 is abelian we get

GiN/N

Gi+1N/N

is abelian for all 0 ≤ i ≤ n− 1. Therefore G/N is solvable. �

Theorem 3.5. Let G be a solvable group and N � G. If N is solvable and G/N is

solvable then G is solvable.

Proof

Since N is solvable there exists a subnormal series N = N0 �N1 �N2 � · · ·�Nn = 1

such that Ni/Ni+1 is abelian for all 0 ≤ i ≤ n − 1. Also since G/N is solvable then

there exists a subnormal series

G

N
=

G0

N
� G1

N
� G2

N
� · · ·� Gm

N
= N

such that

Gi/N

Gi+1/N

17



is abelian for all 0 ≤ i ≤ m− 1. Taking preimages we get

G = G0 �G1 �G2 � · · ·�N = N0 �N1 �N2 � · · ·�Nn = 1

. By the Third Isomorphism Theorem

Gi

Gi+1

∼= Gi/N

Gi+1/N

and so Gi/Gi+1 is abelian for all 0 ≤ i ≤ m− 1. Therefore G is solvable. �

Definition Let G be a group, H ≤ G, K ≤ G and a, b ∈ G. Then

1. [a, b] = aba−1b−1 is called the commutator of a and b.

2. [H,K] = 〈[h, k]|h ∈ H, k ∈ K〉.

3. G′ = 〈[x, y]|x, y ∈ G〉 is called the commutator subgroup of G.

Theorem 3.6. Let G be a group, N �G, H ≤ G and a, b ∈ G. Then

1. [a, b] = 1 if and only if ab = ba.

2. G′ �G.

3. G/G′ is abelian.

4. If G′ ≤ H then H �G.

Proof

For (1): Now [a, b] = 1 if and only if aba−1b−1 = 1 if and only if ab = ba. For (2) :

18



We know that G′ ≤ G. Now let g ∈ G and
∏n

i=1[ai, bi] ∈ G′. Since conjugation is a

homomorphism,

g(
n∏

i=1

[ai, bi])g
−1 =

n∏
i=1

g[ai, bi]g
−1

=
n∏

i=1

[gaig
−1, gbig−1] ∈ G′.

Hence G′ � G. For (3): Let aG′, bG′ ∈ G/G′ . Then (ba)−1ab = a−1b−1ab =

[a−1, b−1] ∈ G′. Therefore abG′ = baG′ and so aG′bG′ = bG′aG′. Hence G/G′ is

abelian. For (4): Let h ∈ H and g ∈ G. Then [h−1, g] ∈ G′ ≤ H and so [h−1, g] ∈ H.

Now since h ∈ H and H ≤ G we get h(h−1ghg−1) ∈ H. Therefore H �G. �

Lemma 3.7. Let G be a group and N �G such that G/N is abelian. Then G′ ≤ N .

Let a, b ∈ G. Then a−1N , b−1N ∈ G/N . Since G/N is abelian, a−1Nb−1N =

b−1Na−1N and so a−1b−1N = b−1a−1N . Hence (b−1a−1)−1a−1b−1 ∈ N and so

aba−1b−1 ∈ N or [a, b] ∈ N . Now since N ≤ G we get G′ ≤ N . �

Definition Let G be a group. Define the derived series of G by

G(0) = G, G(1) = (G(0))′ = G′, G(2) = (G(1))′ = G′′, and inductively by G(n) =

(G(n−1))′.

Lemma 3.8. Let G be a group. Then

1. G(i+1) ≤ G(i) for all i.
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2. G(i) �G for all i.

3. G is solvable if and only if there exists n ∈ Z+ ∪ {0} such that G(n) = 1.

Proof

By definition of derived series, G(i+1) = (G(i))′ ≤ G(i) for all i ∈ Z+. Statement (2)

is true for i = 1 since G(1) = (G(0))′ = (G)′ = G′ �G. Suppose the statement is true

for i i.e G(i) �G. Let g ∈ G. then

gG(i+1)g−1 = g(G(i))′g−1

= g[G(i), G(i)]g−1

= [gG(i)g−1, gG(i)g−1]

= [G(i), G(i)]

= G(i+1).

And (2) is proven. Therefore G(i+1) �G. Suppose G(n) = 1. Then we have

G = G(0) �G(1) � · · ·�G(n) = 1.

Also

G(i)

G(i+1)
=

G(i)

(G(i))′

is abelian for 0 ≤ i ≤ n − 1. Thus G is solvable. Next suppose G is solvable. Then

there exists a subnormal series G = G0 �G1 �G2 � · · ·�Gn = 1 such that Gi/Gi+1

is abelian for all 0 ≤ i ≤ n − 1. We claim that G(i) ≤ Gi for all 0 ≤ i ≤ n − 1.

If i = 0 then G(0) = G ≤ G = G0 and so G(0) ≤ G0. Suppose G(i) ≤ Gi. Then

G(i+1) = (G(i))′ ≤ G′i ≤ Gi+1 since Gi/Gi+1 is abelian. Therefore G(n) ≤ Gn = 1 and
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so G(n) = 1. �

Definition Let G be a group. Then φ : G −→ G is a automorphism if φ is

one-to-one, onto, and a homomorphism.

Definition Let G be a group and H ≤ G. Then H is a characteristic subgroup if

φ(H) ≤ H for all automorphisms φ of G. We write H char G.

Theorem 3.9. Let G be a group. Then

1. Z(G) char G.

2. G′ char G.

3. If P ∈ Sylp(G) such that P �G, then P char G.

Proof

Let φ be a automorphism of G, x ∈ Z(G), and g ∈ G. Since φ is onto, there exists

y ∈ G such that φ(y) = g. Then

φ(x)g = φ(x)φ(y) = φ(xy) = φ(yx) = φ(y)φ(x) = gφ(x)

since x ∈ Z(G) and φ is a homomorphism. Therefore φ(x) ∈ Z(G) and so φ(Z(G)) ≤
Z(G). Hence Z(G) char G. Next let φ be a automorphism of G and

∏n
i=1[ai, bi] ∈ G′.

Then

φ(
n∏

i=1

[ai, bi]) =
n∏

i=1

φ([ai, bi]) =
n∏

i=1

[φ(ai), φ(bi)] ∈ G′.
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Thus φ(G′) ≤ G′ and so G′ char G. Finally, since P � G we know NG(P ) = {g ∈
G|gPg−1 = P} = G. Thus by Sylow’s Theorem,

np =
|G|

|NG(P )| = 1.

Since φ is one-to-one and onto, |φ(P )| = |P |. Hence φ(P ) ∈ Sylp(G). Therefore

φ(P ) = P which implies P char G. �

Definition Let G be a group and N � G. Then N is a minimal normal sub-

group if whenever there exist M ≤ N such that M �G then M = 1 or M = N .

Example. Note A3 � S3 and |A3| = 3. Hence A3 has no nontrivial subgroups

and so A3 is a minimal normal subgroup of S3.

Example. Let H = {1, (13), (24), (13)(24)}. Then |D4|/|H| = 8/4 = 2 and so

H � D4. But H is not a minimal normal subgroup since 1 �= Z(D4) ≤ H and

Z(D4)�D4.

Theorem 3.10. Let G be a group and H ≤ K ≤ G. If H char K and K char G.

Then H char G.

Proof

Let φ be a automorphism of G. Then since K char G we have φ(K) ≤ K. Also since

φ is one-to-one, |φ(K)| = |K| and so φ(K) = K. Hence φ|K is a automorphism of K.

Since H char K we get φ|K(H) ≤ H or φ(H) ≤ H. Hence H char G. �
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Theorem 3.11. Let G be a group, H char K, and K �G. Then H �G.

Proof

For g ∈ G define φ : K −→ K by φ(k) = gkg−1 for all k ∈ K. Then φ is a

homomorphism and φ is one-to-one. If k ∈ K, and K �G we have g−1kg ∈ K. Also

φ(g−1kg) = g(g−1kg)g−1 = k and so φ is onto. Thus φ is a automorphism of K. Since

H char K we get φ(H) ≤ H. But |gHg−| ≤ |H|. Now since |gHg−1| = |H| we get

gHg−1 = H and so H �G. �

Definition A group G is called characteristically simple if 1 and G are its only

characteristic subgroups.

Theorem 3.12. Let G be a characteristically simple group. Then

G ∼= G1 ×G2 × · · · ×Gn

such that Gis are simple isomorphic groups.

Proof

Let G1 �G such that G1 �= 1 and |G1| is minimal. Also let H =
∏s

i=1Gi such that

1. Gi �G for all 1 ≤ i ≤ s;

2. Gi
∼= G1 for all 1 ≤ i ≤ s;

3. Gi

⋂∏
j �=i Gj = 1 for all 1 ≤ i ≤ s;

4. s is maximal.

Since Gi � G for all 1 ≤ i ≤ s, we get H =
∏s

i=1Gi � G. We claim that H char G.

If not, there exists an automorphism φ of G and 1 ≤ i ≤ s such that φ(Gi) �≤ H.
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Then φ(Gi)
⋂

H < φ(Gi). Since Gi � G we get φ(Gi)� G. But then H � G implies

φ(Gi)
⋂

H�G. Since φ is an automorphism of G we get Gi
∼= φ(Gi), so |φ(Gi)

⋂
H| <

|φ(Gi)| = |Gi| = |G1|. Therefore by the minimality of G1 we get φ(Gi)
⋂

H = 1. Now

φ(Gi)�G, φ(Gi) ∼= Gi
∼= G1, and φ(Gi)

⋂∏s
i=1Gi ≤ φ(Gi)

⋂
H = 1. But then we get

H =
∏s

i=1Gi < φ(Gi)
∏s

i=1Gi a contradiction to the maximality of s. Therefore H

char G. Since G is characteristically simple, H = 1 or H = G. But 1 �= G1 ≤ H and

so H �= 1. Thus G = H =
∏s

i=1 Gi and Gis are isomorphic groups. Let 1 ≤ i ≤ s and

N�Gi. If 1 ≤ j ≤ s and j �= i then [Gj, N ] ≤ [Gj, Gi] ≤ Gj

⋂
Gi ≤ Gi

⋂∏
j �=i Gj = 1

and so [Gj, N ] = 1. Hence Gj ≤ NG(N) for all 1 ≤ j ≤ s such that j �= i. Also,

since N �Gi we know Gi ≤ NG(N). Hence G =
∏s

i=1 Gi ≤ NG(N) and so N = 1 or

|N | = |G1| by the minimality of G1. Thus N = 1 or N = Gi and so Gi is simple for

all 1 ≤ i ≤ s. But then G =
∏s

i=1 Gi
∼= G1 × G2 × · · · × Gs when we consider the

map θ : G −→ G1 ×G2 × · · · ×Gs defined by

θ(g1g2 · · · gs) = (g1, g2, · · · , gs)

Let g1g2 · · · gs, h1h2 · · ·hs ∈ G. Then

θ((g1g2 · · · gs)(h1h2 · · ·hs)) = θ(g1g2 · · · gsh1h2 · · ·hs)

= θ(g1h1g2h2 · · · gshs)

= (g1, g2, · · · , gs)(h1, h2, · · · , hs)

= θ(g1g2 · · · gs)θ(h1h2 · · ·hs).

Hence θ is homomorphism. Let g1g2 · · · gs, h1h2 · · ·hs ∈ G Now θ(g1g2 · · · gs) =

θ(h1h2 · · ·hs). This implies that (g1, g2, · · · , gs) = (h1, h2, · · · , hs) or gi = hi for
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all 1 ≤ i ≤ s. Hence θ is one-to-one. Let (g1, g2, · · · , gs) ∈ G1 × G2 × · · · × Gs.

Since gi ∈ Gi for each i we know (g1g2 · · · gs) ∈ G and θ(g1g2 · · · gs) = (g1, g2, · · · , gs).
Therefore θ is onto and so G ∼= G1×G2×· · ·×Gn where the Gis are simple isomorphic

groups. �

Theorem 3.13. Let G be a group and N be a minimal normal subgroup of G. Then

N ∼= N1 ×N2 × · · · ×Nn

such that the Nis are simple non-abelian isomorphic groups or Ni
∼= Zp for all 1 ≤

i ≤ n, and for some prime p.

Proof

If M char N then, since N � G, we get M � G. Hence M = 1 or M = N by the

minimality of N . Therefore N is characteristically simple and so by previous theorem

N ∼= N1 ×N2 × · · · ×Nn, where the Nis are simple isomorphic groups.

Case 1: Ni is abelian for all 1 ≤ i ≤ n. Since Ni is simple we get 1 and Ni as

the only subgroups of Ni. By Cauchy’s theorem there exist a prime p such that

|Ni| = pm. But then by Sylow’s theorem m = 1 and so |Ni| = p; hence Ni
∼= Zp for

all 1 ≤ i ≤ n.

Case 2: Ni is non abelian for all 1 ≤ i ≤ n. Then N ∼= N1 × N2 × · · · × Nn is

the direct product of simple non-abelian isomorphic groups. �

Definition Let G be a group. Define the lower central series of G by K0(G) =
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G,K1(G) = [K0(G), G] = [G,G] = G′, K2(G) = [K1(G), G] = [[G,G], G], and induc-

tively by Kn(G) = [Kn−1(G), G].

Theorem 3.14. Let G be a group. Then

1. Ki(G)�G for all i.

2. Ki+1(G) ≤ Ki(G) for all i.

Proof

Proceed by using induction on i. If i = 0, then K0(G) = G�G. Assume Ki(G)�G

and let g ∈ G. Then

gKi+1(G)g−1 = g[Ki(G), G]g−1

= [gKi(G)g−1, gGg−1]

= [Ki(G), G]

= Ki+1(G).

Thus, Ki+1(G) � G and we have (1) by induction. Now Ki+1(G) = [Ki(G), G] ≤
Ki(G), since Ki(G)�G. Hence we get Ki+1(G) ≤ Ki(G) for all i. �
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4 Nilpotent Groups

Definition A group G is called nilpotent if there exists n ∈ Z+ ∪ {0} such that

Kn(G) = 1.

Lemma 4.1. If G is abelian, then K1(G) = [K0(G), G] = [G,G] = 1. Hence G is

nilpotent.

Example Z10, Z8 × Z12, R, Q are nilpotent groups.

Theorem 4.2. Let G be a p-group. Then G is nilpotent.

Proof

We use induction on |G|. If |G| = p then G is cyclic. It fellows that G is abelian

and by Lemma 4.1 G is nilpotent. Suppose all p-groups of order less than |G| are
nilpotent. We claim G is nilpotent. Since G is a p-group, we know 1 �= Z(G)�G. So

G/Z(G) is a p-group and |G/Z(G)| < |G|. Then by assumption G/Z(G) is nilpotent.

So there exists n ∈ Z+ ∪ {0} such that

Kn

(
G

Z(G)

)
= 1.

We claim

Ki(G)Z(G)

Z(G)
≤ Ki

(
G

Z(G)

)
for all i

Use induction on i. If i = 0 then

K0(G)Z(G)

Z(G)
=

GZ(G)

Z(G)
=

G

Z(G)
≤ K0

(
G

Z(G)

)
=

G

Z(G)
.
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Suppose Ki(G)Z(G)/Z(G) ≤ Ki(G/Z(G)). Then

Ki+1(G)Z(G)

Z(G)
=

[Ki(G), G]Z(G)

Z(G)

≤
[
Ki(G)Z(G)

Z(G)
,

G

Z(G)

]

≤
[
Ki(

G

Z(G)
),

G

Z(G)

]

= Ki+1

(
G

Z(G)

)
.

Thus

Ki(G)Z(G)

Z(G)
≤ Ki

(
G

Z(G)

)

for all i. Hence

Kn(G)Z(G)

Z(G)
≤ Kn

(
G

Z(G)

)
= 1Z(G)

. And so Kn(G) ≤ Z(G). Then Kn+1(G) = [Kn(G), G] ≤ [Z(G), G] = 1. Therefore

Kn+1(G) = 1 and so G is nilpotent. �

Theorem 4.3. Let G be a nilpotent group and H ≤ G. Then H is nilpotent.

Proof

Since G is nilpotent there exists n ∈ Z+∪{0} such that Kn(G) = 1. Claim: Ki(H) ≤
Ki(G) for all i. We use induction on i. If i = 0 then K0(H) = H ≤ G = K0(G).

Suppose Ki(H) ≤ Ki(G). Then Ki+1(H) = [Ki(H), H] ≤ [Ki(G), G] = Ki+1(G),

which implies Ki+1(H) ≤ Ki+1(G), and so Ki(H) ≤ Ki(G) for all i. Hence Kn(H) ≤
Kn(G) = 1 and so H is nilpotent. �
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Theorem 4.4. Let G be a nilpotent group and N �G. Then G/N is nilpotent.

Proof

Since G is nilpotent there exists n ∈ Z+ ∪ {0} such that Kn(G) = 1. As before

Ki

(
G

N

)
≤ Ki(G)N

N
for all i.

Thus

Kn

(
G

N

)
≤ Kn(G)N

N
=

1N

N
= 1N.

Hence G/N is nilpotent. �

Lemma 4.5. Let G be a nilpotent group and H < G. Then H < NG(H)

Proof

Clearly H ≤ NG(H). Since G is nilpotent there exists n ∈ Z+ such that Kn(G) = 1.

Since H �= G there exists a maximal i such that Ki(G) is not contained in H. Then

[Ki(G), H] ≤ [Ki(G), G] = Ki+1(G) ≤ H

by the maximality of i. Let k ∈ Ki(G) and h ∈ H. Then [k, h] ∈ [Ki(G), H] ≤ H

and so [k, h] ∈ H. But h ∈ H and so [k, h]h = khk−1 ∈ H. Thus, Ki(G) ≤ NG(H).

Therefore, since Ki(G) is not contained in H, H < NG(H). �

Definition Let G be a group and M ≤ G. Then M is a maximal subgroup

of G if M �= G and, whenever there exists a subgroup H of G such that M ≤ H ≤ G,

then H = M or H = G.
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Example 〈(12)〉, 〈(13)〉, 〈(23)〉, and 〈(123)〉 are all maximal subgroups of S3.

Lemma 4.6. Let G be a nilpotent group and M be a maximal subgroup of G. Then

M �G.

Proof

Now since M is maximal we know M < G. Hence, by Lemma 4.5 M < NG(M) ≤ G.

Thus, G = NG(M) by the maximality of M . Hence M �G. �

Theorem 4.7. Frattini’s argument Let G be a group, H �G, and P ∈ Sylp(H),

then G = NG(P )H.

Proof

Clearly, NG(P )H ⊆ G. Let g ∈ G. Then since P ≤ H we get gPg−1 ≤ gHg−1. But

since H � G, we have gHg−1 = H. Thus, gPg−1 ≤ H. Now since P ∈ Sylp(H) and

|gPg−1| = |P | we get gPg−1 ∈ Sylp(H). Then by Sylow’s theorem gPg−1 = hPh−1

for some h ∈ H. So h−1gPg−1h = P , or hgP (hg)−1 = P . But then hg ∈ NG(P ) and

so g ∈ NG(P )H. Therefore G = NG(P )H. �

Lemma 4.8. Let G be a nilpotent group and P ∈ Sylp(G). Then P �G.

Proof

If P is not normal in G then NG(P ) < G. Let M be a maximal subgroup of G such

that NG(P ) ≤ M . Since G is nilpotent, by maximality of M , we know M �G. Now

P ≤ NG(P ) ≤ M and P ∈ Sylp(G) implies P ∈ Sylp(M). Therefore by the Frattini

Argument G = NG(P )M = M . This is a contradiction to the maximality of M .
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Therefore P �G. �

Theorem 4.9. Let G be a nilpotent group. Then G is solvable.

Proof

Since G is a nilpotent group, there exists n ∈ Z+ ∪ {0} such that Kn(G) = 1. We

know from Theorem 3.15 that Ki(G) � G for all i and Ki+1(G) ≤ Ki(G) for all i.

Then we have a subnormal series

G = K0(G)�K2(G)� · · ·�Kn(G) = 1.

We claim that Ki(G)/Ki+1(G) is abelian for all 1 ≤ i ≤ n− 1. Let x−1, y−1 ∈ Ki(G).

Now Ki(G)/Ki+1(G) is abelian if and only if

x−1Ki+1(G)y−1Ki+1(G) = y−1Ki+1(G)x−1Ki+1(G)

x−1y−1Ki+1(G) = y−1x−1Ki+1(G)

xyx−1y−1 = [x, y] ∈ Ki+1(G)

[Ki(G), Ki(G)] ≤ Ki+1(G)

Ki(G)′ = [Ki(G), Ki(G)] ≤ Ki+1(G)

So by Theorem 3.6 Ki+1(G) �Ki(G) and Ki(G)/Ki+1(G) is abelian for all 0 ≤ i ≤
n− 1. �

Lemma 4.10. Let G be a nilpotent group such that G �= 1. Then Z(G) �= 1.

Proof
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Since G is nilpotent, there exists a minimal n ∈ Z+ such that Kn(G) = 1. Then

1 = Kn(G) = [Kn−1(G), G],

and soKn−1(G) ≤ Z(G). But 1 �= Kn−1(G) by the minimality of n and so Z(G) �= 1.�

Lemma 4.11. Let G be a nilpotent group and 1 �= N �G. Then N ∩ Z(G) �= 1.

Proof

Since G is nilpotent, there exists n ∈ Z+ such that Kn(G) = 1. Define N0 = N,N1 =

[N0, G] = [N,G], and inductively by Nk = [Nk−1, G] for all k ∈ Z+ ∪ {0}. Then we

have a normal series

N = N0 �N1 �N2 � · · ·

Claim Ni ≤ Ki(G) for all i ∈ Z+ ∪ {0}. We use induction on i. If i = 0, then

N0 = N ≤ G = K0(G). Now suppose Ni ≤ Ki(G). Then Ni+1 = [Ni, G] ≤
[Ki(G), G] = Ki+1(G). Hence the claim holds by induction. Thus,

Nn ≤ Kn(G) = 1 and so Nn = 1.

Let m ∈ Z+ be minimal such that Nm = 1. Then 1 = Nm = [Nm−1, G] and so

Nm−1 ≤ Z(G). But Nm−1 ≤ N and Nm−1 �= 1 by the minimality of m. Thus,

1 �= Nm−1 ≤ N ∩ Z(G). �

Lemma 4.12. Let G = HK be a group such that H � G,K � G and H and K are

nilpotent. Then G is nilpotent.
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Proof

Use induction on |G|. If |G| = 1 then K0(G) = G = 1 and so G is nilpotent. Assume

|G| > 1 and that the theorem holds for all groups of order less than |G|. We want to

show the theorem holds for G. Since H is nilpotent, by Lemma 4.9 Z(H) �= 1. Let

N = [Z(H), K]. If N = 1 then [Z(H), K] = 1. Thus

1 �= Z(H) ≤ CG(H) ∩ CG(K) = Z(G).

Now Z(G)�G and so

G

Z(G)
=

HZ(G)

Z(G)

KZ(G)

Z(G)

is a group. Since H �G and K �G we know

HZ(G)

Z(G)
� G

Z(G)
and

KZ(G)

Z(G)
� G

Z(G)
.

Also since H is nilpotent,
HZ(G)

Z(G)
∼= H

H ∩ Z(G)
is nilpotent and similarly

KZ(G)

Z(G)
is nilpotent.

Finally, ∣∣∣∣ G

Z(G)

∣∣∣∣ = |G|
|Z(G)| < |G|

and so G/Z(G) is nilpotent by induction. Therefore there exists n ∈ Z+ such that

Kn(G/Z(G)) = 1. But then

Kn(G)Z(G)

Z(G)
= Kn

(
G

Z(G)

)
= 1 and so Kn(G) ≤ Z(G).

Hence

Kn+1(G) = [Kn(G), G] ≤ [Z(G), G] = 1 and so G is nilpotent.
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If N �= 1, as K � G, we know N ≤ K. Also since H � G,Z(H) � G. Thus,

N = [Z(H), K] � K. Now since K is nilpotent N ∩ Z(K) �= 1 by Lemma 4.10.

Hence since Z(H) � G we get 1 �= N ∩ Z(K) ≤ Z(H) ∩ Z(K) ≤ Z(G). Therefore

Z(G) �= 1 again and so G is nilpotent using the above argument. �

Definition A group G is called an elementary abelian p-group if G ∼= Zp ×
Zp × · · · × Zp for some prime p.

Theorem 4.13. Let G be a solvable group and N be a minimal normal subgroup of

G. Then N is an elementary abelian p-group for some prime p.

Proof

By Theorem 3.9, N ∼= N1 × N2 × · · · × Nn where the Nis are non-abelian simple

isomorphic groups or Ni
∼= Zp for all 1 ≤ i ≤ n. If Ni is nonabelian for some

1 ≤ i ≤ n then 1 �= N ′
i � Ni and so N ′

i = N
(1)
i = Ni. Suppose N

(k)
i = Ni. Then

N
(k+1)
i = (N

(k)
i )′ = N ′

i = Ni. Thus, N
(k)
i = Ni for all k by induction. But then Ni

is not solvable. Now G is solvable and Ni ≤ G which implies that Ni is solvable, a

contradiction. Hence there exists a prime p such that Ni
∼= Zp for all i and so

N ∼= Zp × Zp × · · · × Zp

is a elementary abelian p-group. �
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5 The Hall and Schur-Zassenhaus Theorems

Definition Let G be a group and π be a set of primes. Then

1. π′ = {p|p is prime and p �∈ π}.

2. π(G) = {p|p is prime and p||G|}.

3. G is called a π-group if π(G) ⊆ π.

4. A subgroupH ≤ G is called aHall π-subgroup ifH is a π-group and π(S) ⊆ π′

where S = {gH|g ∈ G}.

5. Hallπ(G) = {H ≤ G|H is a Hall π − subgroup of G}.

Example 1 |S3| = 3= 3 · 2 and π(S3) = {2, 3}. Now |A3| = 3; so A3 is a 3-group and

π(S3/A3) ⊆ {3}′. Hence A3 ∈ Hall{3}(S3).

Example 2 |A5| = 5!/2 = 5 · 4 · 3 · 2 · 1/2 = 22 · 3 · 5. Let H = (A5)1. Then H ∼= A4

and |H| = 4!/2 = 22 · 3. Therefore H is a {2, 3}-group. Also π(A5/H) = 5 ∈ {2, 3}′.
Hence H ∈ Hall{2,3}(A5).

Example 3 If G is a group, p is a prime, and π = {p}, then Sylp(G) = Hallπ(G).

For some groups G and certain sets of primes π, Hallπ(G) = ∅.

Example Hall{2,5}(A5) = ∅.
Proof

Suppose H ∈ Hall{2,5}(A5). Then H is a {2, 5}-group and π(A5/H) ⊆ {2, 5}′. Since
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|A5| = 22 · 3 · 5 we get |H| = 22 · 5. Let A5 act on S = {gH|g ∈ A5} by left mul-

tiplication via φ : A5 −→ Sym(S), where φ is defined by φ(g)(xH) = gxH for all

g ∈ A5 and for all xH ∈ S. Now by Lagrange’s Theorem |S| = |A5|/|H| = 3 and so

Sym(S) ∼= S3. Now K = Kern φ� A5. Since A5 is simple either K = 1 or K = A5.

If K = A5 then

A5 = K =
⋂
x∈A5

xHx−1 ≤ H

and we get A5 = H, a contradiction. If K = 1 then, by the First Isomorphism

Theorem,

A5
∼= A5

1
=

A5

K
∼= φ(A5) ≤ Sym(S).

But then we get 60 = |A5| = |φ(A5)| divides |Sym(S)| = 6, a contradiction. Thus

Hall{2,5}(A5) = ∅. �

Theorem 5.1. (Hall’s): Let G be a solvable group and π be a set of primes. Then

1. Hallπ(G) �= ∅

2. G acts transitively on Hallπ(G) by conjugation.

Definition Let G be a group and H ≤ G. Then G splits over H if there exists K < G

such that G = HK and H ∩K = 1. The subgroup K is called the complement of H

in G.

Example: S3 splits over A3 since S3 = A3〈(12)〉 and A3 ∩ 〈(12)〉 = 1.

Theorem 5.2. Let G be a solvable group, H ∈ Hallπ(G), and suppose NG(H) ≤
K ≤ G. Then K = NG(K).
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Proof

Clearly K ≤ NG(K). Let g ∈ NG(K) . Then H ≤ NG(H) ≤ K; so H ∈ Hallπ(G),

so H ∈ Hallπ(K). Now H ≤ K implies gHg−1 ≤ gKg−1 = K. But |gHg−1| = |H|
and so gHg−1 ∈ Hallπ(K). Now since G is solvable, K is also solvable. Thus by

Hall’s theorem there exists k ∈ K such that kgHg−1k−1 = H or kgH(kg)−1 = H.

But then kg ∈ NG(H) and so g ∈ K. Therefore K = NG(K). In this case we say K

is self-normalizing. �

Theorem 5.3. (Schur-Zassenhaus) Let G be a group and H ∈ Hallπ(G) such that

H � G. Then G splits over H. In addition if either H or G/H is solvable, then G

acts transitively on the complements of H in G by conjugation.
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6 Carter’s Theorem

Definition Let G be a group and H ≤ G. Then H is a Carter subgroup of G if

1. H is nilpotent;

2. NG(H) = H.

In this case we writeH cartG. When condition (2) holds, we sayH is self-normalizing.

Example Any nilpotent group G has a Carter subgroup, namely, G itself is a Carter

subgroup since NG(G) = G, and G is nilpotent.

Example 〈(12)〉 cart S3 since 〈(12)〉 is abelian implies 〈(12)〉 is nilpotent. Also

〈(12)〉 ≤ NS3(〈(12)〉) ≤ S3 and so 2 = |〈(12)〉| which divide |NS3(〈(12)〉)| divides |S3| =
6. Hence |NS3(〈(12)〉)| = 2. But NS3(〈(12)〉) �= S3 since 〈(12)〉 is not a normal sub-

group of S3. And so 〈(12)〉 = |NS3(〈(12)〉)|.
But not all groups have Carter subgroups.

Example A5 has no Carter subgroups. |A5| = 5!
2
= 60 = 22 · 3 · 5. A table showing

57 subgroups of A5 is below.

Structure Subgroup,H Number Reason

Z2 {1, (12)(34)} 15 (13)(24) ∈ NA5(H) \H
Z3 {1, (123), (132)} 10 (23)(45) ∈ NA5(H) \H

Z2 × Z2 {1, (12)(34), (14)(23), (13)(24)} 5 (123) ∈ NA5(H) \H
Z5 {1, (12345), (13524), (14253), (15432)} 6 (15)(24) ∈ NA5(H) \H
S3 {1, (123), (132), (12)(45), (13)(45), (23)(45)} 10 Not nilpotent n2 = 3

D5 〈(12345), (15)(24)〉 6 Not nilpotent n2 = 5

A4 (A5)1 5 Not nilpotent n3 = 4
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Theorem 6.1. (Carter): Let G be a solvable group. Then

1. G has a Carter subgroup;

2. If N �G and H cart G then HN/N cart G/N ;

3. If H1 cart G and H2 cart G then there exists g ∈ G such that H2 = gH1g
−1.

Proof

We will use induction on |G|. If |G| = 1 then {1} cart G and (1), (2) and (3) hold.

Also if G is nilpotent, then G cart G and (1), (2) and (3) hold. Without loss of

generality, assume that |G| > 1, G is not nilpotent, and the result holds for all groups

of order less than |G|. For (1): Let N be a minimal normal subgroup of G. Since

G is solvable, N is an elementary p-group for some prime p. Since G is solvable, by

Theorem 3.4 we know G/N is solvable. Also

|G/N | = |G|
|N | < |G|

and so by induction there exists K/N cart G/N . Now let S/N ∈ Sylp(K/N). Since

K/N cart G/N , we know K/N is nilpotent. Thus by Lemma 4.7, S/N �K/N . But

then S �K. Now

|K|
|S| =

|K|/|N |
|S|/|N | =

|K/N |
|S/N |

39



and so p does not divide |K|/|S| since S/N ∈ Sylp(K/N). Also,

|S| = |S|
|N | |N | = |S/N ||N |

is a power of p since S/N ∈ Sylp(K/N) and N is an elementary p-group. Hence

S ∈ Sylp(K) and so K splits over S by the Schur-Zassenhaus Theorem. But then

there existsR ≤ K such thatK = RS andR∩S = 1. Now by the Second Isomorphism

Theorem

R ∼= R

1
=

R

R ∩ S
∼= RS

S
=

K

S
.

From the above, p does not divide |K/S| and so p does not divide |R|. Also

|K|
|R| =

|RS|
|R| =

|S|
|R ∩ S| = |S|

is a power of p. Thus R ∈ Hallp′(K). Let H = NK(R) and g ∈ NG(H). Now

NK(R) ≤ HN ≤ K, R ∈ Hallp′(K), and K is solvable. Thus by Theorem 5.2

HN = NK(HN). But then

HN

N
=

NK(HN)N

N
= NK/N

(
HN

N

)
.

Now HN/N ≤ K/N and K/N is nilpotent. Hence we get K/N = HN/N and so

K = HN . Since N � G and g ∈ NG(H) we have g ∈ NG(HN) = NG(K). Hence

gN ∈ NG/N(K/N). But K/N = NG/N(K/N) since K/N cart G/N . Therefore gN ∈
K/N and so g ∈ K. But then g ∈ NK(H). Also NK(R) ≤ H ≤ K, R ∈ Hallp′(K),

and K is solvable. Thus by Theorem 5.2, H = NK(H). Therefore g ∈ H and so
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H = NG(H). Now

H = H ∩K = H ∩RS = R(H ∩ S).

Since S �K and H ≤ K we know S ∩H �H. Also since R ≤ H ≤ NG(R) we know

R�H. Since S is a p-group we know S∩H is a p-group. Therefore S∩H is nilpotent.

Also by the Second and Third Isomorphism Theorems,

R ∼= R

1
=

R

R ∩ S
∼= RS

S
=

K

S
∼= K/N

S/N
.

But since

K

N
cart

G

N

K/N is nilpotent. Thus R is nilpotent by Theorem 4.4. Therefore H = R(H ∩ S) is

nilpotent by Lemma 4.11 and so H cart G.

For (2) : Let H cart G and N �G. Then

HN

N
≤ G

N
.

Also since H is nilpotent,

HN

N
∼= H

H ∩N

is nilpotent. Clearly

HN

N
≤ NG/N

(
HN

N

)
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Let gN ∈ NG/N(HN/N). Then g−1N ∈ NG/N(HN/N) and also

HN

N
= g−1N(

HN

N
)gN =

g−1(HN)g

N

=
g−1HgN

N
.

By taking preimages we get g−1HgN = HN. If G = HN then G/N = HN/N. Hence

HN

N
=

G

N
= NG/N

(
G

N

)
= NG/N

(
HN

N

)
.

Therefore we may assume HN < G. Now g−1Hg ∼= H and so g−1Hg is nilpotent.

Also,

NG(g
−1Hg) = g−1NG(H)g = g−1Hg since H cart G.

Thus, g−1Hg cart HN and H cart HN . Therefore by induction there exists n ∈ N

such that ng−1Hgn−1 = H. But then ng−1 ∈ NG(H) = H since H cart G. So gn−1 ∈
H since H ≤ G. Then gN = gn−1N ∈ HN/N and so

HN

N
= NG/N

(
HN

N

)
and so

HN

N
cart

G

N
.

For (3): Let H1 cart G and H2 cart G. Let N be a minimal normal subgroup of G.

Since G is solvable, by Theorem 3.6, N is an elementary p-group. By (2),

H1N

N
cart

G

N
and

H2N

N
cart

G

N
.

42



Since |G/N | < |G|, by induction there exists gN ∈ G/N such that

H2N

N
= gN

(
H1N

N

)
g−1N =

gH1g
−1N

N
.

Therefore gH1g
−1N = H2N . If H2N < G then gH1g

−1 cart H2N and H2 cart

H2N. Hence by induction there exists g1 ∈ H2N such that g1gH1g
−1g−11 = H2. We

may assume G = gH1g
−1N = H2N. Since gH1g

−1 and H2 are nilpotent, there exist

gR1g
−1 ∈ Hallp′(gH1g

−1) and R2 ∈ Hallp′(H2). Now

|G|
|R2| =

|G|
|H2| ·

|H2|
|R2| =

|H2N |
|H2| · |H2|

|R2| =
|N |

|N ∩H2| ·
|H2|
|R2|

is a power of p. Thus R2 ∈ Hallp′(G) and similarly gR1g
−1 ∈ Hallp′(G). Since G

is solvable, by Hall’s Theorem, there exists g2 ∈ G such that g2gR1g
−1g−12 = R2.

Now gR1g
−1 and H2 are nilpotent implies gR1g

−1 � gH1g
−1 and R2 � H2. Thus

g2gR1g
−1g−12 � g2gH1g

−1g−12 and so

g2gH1g
−1g−12 ≤ NG(g2gR1g

−1g−12 ) = NG(R2) ≥ H2.

Let K = NG(R2). Now R2 �K and so K/R2 is a group. Since g2gH1g
−1g−12 cart K,

by part (2)

g2gH1g
−1g−12 R2

R2

cart
K

R2

and
H2

R2

cart
K

R2

.

If R2 = 1 then H2 is a p-group. Since N is a p-group, we get G = H2N is a p-group.

Thus, G is nilpotent and so G = H1 = H2. We may assume R2 �= 1 and |K/R2| < |G|.
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So by induction there exists kR2 ∈ K/R2 such that

H2

R2

= kR2

(
g2gH1g

−1g−12 R2

R2

)
k−1R2 =

kg2gH1g
−1g−12 k−1R2

R2

.

Thus

kg2gH1g
−1g−12 k−1R2 = H2.

Now kR2 ∈ K/R2 implies k ∈ K = NG(R2). But

R2 = g2gR1g
−1g−12 ≤ g2gH1g

−1g−12

and so

R2 = kR1k
−1 ≤ kg2gH1g

−1g−12 k−1.

Therefore

kg2gH1g
−1g−12 k−1R2 = H2 = kg2gH1g

−1g−12 k−1 = H2

and so we have (3). �
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