Carter Subgroups and Carter's Theorem

by

Zakiyah Mohammed

Submitted in Partial Fulfillment of the Requirements
for the Degree of

Master of Science
in the

Mathematics

Program

May, 2011

Carter Subgroups and Carter's Theorem

Zakiyah Mohammed

I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research.

Signature:

> Zakiyah Mohammed, Student Date

Approvals:
Neil Flowers, Ph.D, Thesis Advisor Date

Thomas Wakefield, Ph.D, Committee Member Date

Eric Wingler, Ph.D, Committee Member Date

Peter J. Kasvinsky, Dean of School of Graduate Studies \& Research Date
(C)

Zakiyah Mohammed

Abstract

In 1961 Roger W. Carter proved a theorem about solvable groups similar to Sylow's theorem. He proved that if a group is solvable then it always contains a nilpotent, self-normalizing subgroup called a Carter subgroup, and that all such subgroups are conjugate to each other by an element of the group. The objective of this thesis is to present a proof of Carter's theorem.

Dedication

To my husband, Ishahu Abubakar.

Aknowledgements

My heartfelt gratitude goes to God Almighty for the opportunity, protection, wisdom, and guidance for seeing me through two years of my graduate studies. My most sincere gratitude goes to my thesis advisor Dr. Neil Flowers for his immeasurable suggestions, corrections, patience, enormous encouragement and excellent supervisory role during the entire process of this work. Again, my endless thanks go to my husband, Ishahu Abubakar, for his love, support and encouragement. To my siblings, Abdul Kadir and Sadiq Mohammed, I would like to say God bless you all for helping in one way or the other with my masters' education. In addition, I would like to thank my committee members Dr. Thomas Wakefield and Dr. Eric Wingler for their time and support. I would like to show my profound gratitude to my mum, Hajia Masaratu, my dad, Alhaji Mohammed A. Wahab, my God father, Alhaji Abubakar Musah, my only sister-in-law and her husband, Saeeda Abubakar and Abdalla Mohammed. Finally, my appreciation goes to Mukaddas Alhassan, Yakubu Tahiru, Lordlin D. Owusu, faculty and staff of the Department of Mathematics and Statistics, members of the African Students Union for their support and advice.

CONTENTS

Introduction 1
Preliminaries 3
Solvable Groups 13
Nilpotent Groups 27
The Hall and Schur-Zassenhaus Theorems 35
Carter's Theorem 38

1 Introduction

Let G be a finite group, p be a prime, and $n \in \mathbb{Z}^{+} \cup\{0\}$ such that p^{n} divides $|G|$ but p^{n+1} does not divide $|G|$. In 1872 Ludwig Sylow proved that there is a subgroup P of G such that $|P|=p^{n}$ and that all such subgroups are conjugate to each other by an element of G. Such a subgroup P is called a Sylow p-subgroup, named after Ludwig Sylow. If G has only one Sylow p-subgroup for each prime p, then G is called a nilpotent group. Now if $H \leq G$ then it is well known that the set

$$
N_{G}(H)=\left\{g \in G \mid g H g^{-1}=H\right\}
$$

is a subgroup of G.
Roger W. Carter obtained his PhD in 1960 and his dissertation was entitled "Some Contributions to the Theory of Finite Soluble Groups". He worked as a professor at the University of Warwick in the United Kingdom. He defined Carter subgroups and wrote the standard reference Simple Groups of Lie Type. Roger W. Carter in mid 1900s wondered if all groups contained a subgroup H that was nilpotent with the property that H is self-normalizing $\left(\right.$ ie $\left.=H=N_{G}(H)\right)$. Well it turns out that not all groups have a nilpotent, self-normalizing subgroup. For example, the alternating group A_{5} of order 60 has no such subgroup. A group G is solvable if there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \ldots \unrhd G_{n}=1
$$

such that the factors

$$
\frac{G_{i}}{G_{i+1}}
$$

are abelian, for all $0 \leq i \leq n-1$.

In 1961 Roger W. Carter showed a theorem about these subgroups similar to Sylow's theorem. He proved that if a group is solvable then it always contains a nilpotent, self-normalizing subgroup, and that all such subgroups are conjugate to each other by an element of the group [1]. These subgroups have been named Carter subgroups and the theorem, Carter's theorem. The objective of this thesis is to present a proof of Carter's theorem.

2 Preliminaries

Definition A group is a non empty set G along with a binary operation $*$ such that the following axioms are satisfied:

1. Closed $a * b \in G$ for all $a, b \in G$.
2. Associativity $(a * b) * c=a *(b * c)$ for all $a, b, c \in G$.
3. Identity There exists $e \in G$ such that for all $a \in G, e * a=a * e=a$.
4. Inverses For all $a \in G$ there exists $b \in G$ such that $a * b=b * a=e$.

We will write $a b$ instead of $a * b, 1$ instead of e, and a^{-1} instead of b.

Definition A group G is called abelian if $a b=b a$ for all $a, b \in G$.

Definition Let G be a group and H be a non empty subset of G. Then H is a subgroup of G if H is a group. We write $H \leq G$.

Theorem 2.1. (Subgroup test): Let G be a group and H be a non-empty subset of G. Then $H \leq G$ if and only if $a b^{-1} \in H$ for all $a, b \in H$.

Proof

Suppose $H \leq G$. Let $a, b \in H$. Since $H \leq G$ and $b \in H$, we know $b^{-1} \in H$, and so $a b^{-1} \in H$ by closure. Suppose $a b^{-1} \in H$ for all $a, b \in H$. Let $a \in H$. Then $a a^{-1} \in H$, so $1 \in H$. Now $1 a^{-1} \in H$ and so $a^{-1} \in H$ for all $a \in H$. Let $a, b \in H$. Then $b^{-1} \in H$ from above, and so $a\left(b^{-1}\right)^{-1} \in H$. Thus $a b \in H$ and so H is closed. Since G is associative and $H \subseteq G$, we know H is associative. Therefore H is a group
and so $H \leq G$.

Definition Let G be a group, the center of G is

$$
Z(G)=\{g \in G \mid g x=x g \text { for all } x \in G\}
$$

Theorem 2.2. Let G be a group. Then $Z(G) \leq G$.

Proof

Now $1 x=x$ and $x 1=x$ and so $1 x=x 1$ for all $x \in G$. Therefore $1 \in Z(G)$ and so $Z(G) \neq \emptyset$. Let $a, b \in Z(G)$ and let $x \in G$ then

$$
\begin{aligned}
x a b^{-1} & =a x b^{-1} \text { since } a, b \in Z(G) \\
& =a b^{-1} b x b^{-1} \\
& =a b^{-1} x b b^{-1} \\
& =a b^{-1} x .
\end{aligned}
$$

Thus $a b^{-1} \in Z(G)$ and so $Z(G) \leq G$ by the Subgroup test.

Definition Let G be a group and $a \in G$. Define the cyclic subgroup generated by a by

$$
\langle a\rangle=\left\{a^{k} \mid k \in Z\right\} .
$$

Theorem 2.3. Let G be a group and $a \in G$ then $\langle a\rangle \leq G$.

Proof

Since $1=a^{0} \in\langle a\rangle$ then $\langle a\rangle \neq \emptyset$. Let $a^{m}, a^{n} \in\langle a\rangle$. Then $a^{m}\left(a^{n}\right)^{-1}=a^{m} a^{-n}=$
$a^{m-n} \in\langle a\rangle$ since $m-n \in \mathbb{Z}$. Therefore $\langle a\rangle \leq G$ by the Subgroup test.

Definition Let G be a group, $H \leq G$ and $g \in G$. Then the left coset of H in G containing g is the set

$$
g H=\{g h \mid h \in H\} .
$$

A number of theorems will be listed for (informational purposes) whose proofs are not given here.

Theorem 2.4. Let G be a group, $H \leq G$, and $a, b \in G$. Then

1. $|a H|=|H|$.
2. $a H=b H$ if and only if $b^{-1} a \in H$.

Theorem 2.5. (Lagrange): Let G be a group and $H \leq G$. Then $|H|$ divides $|G|$ and

$$
\frac{|G|}{|H|}=\text { number of left cosets of } H \text { in } G
$$

Definition Let G_{1} and G_{2} be groups and $\phi: G_{1} \longrightarrow G_{2}$. Then ϕ is a homomorphism if $\phi(a b)=\phi(a) \phi(b)$ for all $a, b \in G_{1}$. If, in addition, ϕ is one-to-one and onto, we call ϕ an isomorphism and write $G_{1} \cong G_{2}$.

Theorem 2.6. Let $\phi: G_{1} \longrightarrow G_{2}$ be a homomorphism and $a \in G_{1}$. Then

1. $\phi(1)=1$.
2. $\phi\left(a^{-1}\right)=(\phi(a))^{-1}$.
3. $\phi\left(a^{n}\right)=\phi(a)^{n}$ for any $n \in \mathbb{Z}$.
4. If $|a|$ is finite, then $|\phi(a)|$ divides $|a|$.
5. If $H \leq G_{1}$, then $\phi(H) \leq G_{2}$.
6. If $K \leq G_{2}$, then $\phi^{-1}(K) \leq G_{1}$.

Definition Let G_{1} and G_{2} be groups and $\phi: G_{1} \longrightarrow G_{2}$ be a homomorphism. Define the kernel of ϕ by

$$
\text { Kern } \phi=\left\{g \in G_{1} \mid \phi(g)=1\right\} .
$$

Theorem 2.7. Let $\phi: G_{1} \longrightarrow G_{2}$ be a homomorphism. Then Kern $\phi \unlhd G_{1}$.

Definition Let G be a group and $H \leq G$. Then H is a normal subgroup of G if $g h g^{-1} \in H$ for all $g \in G$ and for all $h \in H$. We write $H \unlhd G$.

Theorem 2.8. Let G be a group and $H \unlhd G$. Define the set G / H by

$$
G / H=\{g H \mid g \in G\}
$$

Then G / H is a group under the operation $a H b H=a b H$ for all $a H, b H \in G / H$.
The group G / H is called the quotient group, the factor group, or $G \bmod H$.

Theorem 2.9. (First Isomorphism Theorem): Let G_{1} and G_{2} be groups and ϕ : $G_{1} \longrightarrow G_{2}$ be a homomorphism with Kern $\phi=K$. Then

$$
G_{1} / K \cong \phi\left(G_{1}\right)
$$

Proof

Define a map $\chi: G_{1} / K \longrightarrow \phi\left(G_{1}\right)$ by $\chi(g K)=\phi(g)$ for all $g \in G$. Let $g_{1}, g_{2} \in$ G_{1}. Suppose $g_{1} K=g_{2} K$ then $g_{2}^{-1} g_{1} \in K=\operatorname{Kern} \phi$ and so $\phi\left(g_{2}^{-1} g_{1}\right)=1$ or $\phi\left(g_{2}^{-1}\right) \phi\left(g_{1}\right)=1$ since ϕ is a homomorphism. Therefore $\phi\left(g_{2}\right)^{-1} \phi\left(g_{1}\right)=1$ and so $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$. Therefore $\chi\left(g_{1} K\right)=\chi\left(g_{2} K\right)$. This implies χ is well defined. Now let $g_{1} K, g_{2} K \in G_{1} / K$. Since ϕ is a homomorphism

$$
\chi\left(\left(g_{1} K\right)\left(g_{2} K\right)\right)=\chi\left(\left(g_{1} g_{2}\right) K\right)=\phi\left(g_{1} g_{2}\right)=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\chi\left(g_{1} K\right) \chi\left(g_{2} K\right)
$$

Implies χ is a homomorphism. Let $g_{1} K, g_{2} K \in G_{1} / K$, suppose $\chi\left(g_{1} K\right)=\chi\left(g_{2} K\right)$. Then $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$ or $\left(\phi\left(g_{2}\right)\right)^{-1} \phi\left(g_{1}\right)=1$ or $\phi\left(g_{2}^{-1}\right) \phi\left(g_{1}\right)=1$ since ϕ is a homomorphism. Hence $\phi\left(g_{2}^{-1}\right) \phi\left(g_{1}\right)=\phi\left(g_{2}^{-1} g_{1}\right)=1$ since ϕ is a homomorphism. Therefore $g_{2}^{-1} g_{1} \in \operatorname{Kern} \phi=K$; hence $g_{1} K=g_{2} K$. So χ is one-to-one. Let $y \in \phi\left(G_{1}\right)$. Then there exists $x \in G_{1}$ such that $y=\phi(x)$. But then $x K \in G / K$ and $\chi(x K)=\phi(x)=y$. Hence χ is onto. Therefore $G_{1} / K \cong \phi\left(G_{1}\right)$.

Theorem 2.10. (Second Isomorphism Theorem): Let G be a group, $H \leq G$, and $N \unlhd G$. Then

$$
\frac{H N}{N} \cong \frac{H}{H \cap N}
$$

Proof

Define a map $\phi: H \longrightarrow H N / N$ by $\phi(h)=h N$ for $h \in H$. Let $h_{1}, h_{2} \in H$. Then $\phi\left(h_{1} h_{2}\right)=\left(h_{1} h_{2}\right) N=h_{1} N h_{2} N=\phi\left(h_{1}\right) \phi\left(h_{2}\right)$. Hence ϕ is a homomorphism. Let $h_{1} \in H$. Then

$$
\begin{aligned}
h_{1} & \in \text { Kern } \phi \\
\text { if and only if } \phi\left(h_{1}\right)=h_{1} N & =1 N \\
\text { if and only if } 1^{-1} h_{1} & \in N \\
\text { if and only if } h_{1} & \in H \cap N .
\end{aligned}
$$

Hence $H \cap N=\operatorname{Kern} \phi$. Let $h n N \in H N / N$ where $h \in H$ and $n \in N$. Then $\phi(h)=h N=h n N$ since $(h n)^{-1} h=n^{-1} \in N$ and so χ is onto. Now by the First Isomorphism Theorem

$$
\frac{H}{\text { Kern } \phi} \cong \phi(H)
$$

which implies

$$
\frac{H N}{N} \cong \frac{H}{H \cap N}
$$

Theorem 2.11. (Third Isomorphism Theorem): Let G be a group, $N \leq H \leq G$, $N \unlhd G$, and $H \unlhd G$. Then

$$
\frac{G / N}{H / N} \cong G / H
$$

Proof

Define $\phi: G / N \longrightarrow G / H$ by $\phi(g N)=g H$ for all $g N \in G / N$. Let $g_{1} N, g_{2} N \in G / N$ for $g_{1}, g_{2} \in G$. Suppose $g_{1} N=g_{2} N$. Then $g_{2}^{-1} g_{1} \in N$. Also $g_{2}^{-1} g_{1} \in H$ since $N \leq H$
and so $g_{1} H=g_{2} H$. Therefore $\phi\left(g_{1} N\right)=\phi\left(g_{2} N\right)$ and ϕ is well-defined. Now let $g_{1} N$, $g_{2} N \in G / N$ for some $g_{1}, g_{2} \in G$. Then

$$
\phi\left(g_{1} N g_{2} N\right)=\phi\left(g_{1} g_{2} N\right)=g_{1} g_{2} H=g_{1} H g_{2} H=\phi\left(g_{1} N\right) \phi\left(g_{2} N\right)
$$

and so ϕ is a homomorphism. Let $g H \in G / H$. Then $g N \in G / N$ and so $\phi(g N)=g H$. Therefore ϕ is onto. Let $g_{1} N \in G / N$. Then

$$
\begin{aligned}
g_{1} N & \in \operatorname{Kern\phi } \\
\text { if and only if } \phi\left(g_{1} N\right) & =1 H \\
\text { if and only if } g_{1} H & =1 H \\
\text { if and only if } 1^{-1} g_{1} & \in H \\
\text { if and only if } g_{1} & \in H \\
\text { if and only if } g_{1} N & \in H / N .
\end{aligned}
$$

Thus Kern $\phi=H / N$. Now by the First Isomorphism Theorem

$$
\frac{G / N}{\text { Kern } \phi} \cong \phi(G / N) ;
$$

hence

$$
\frac{G / N}{H / N} \cong G / H
$$

Definition Let G be a group and $S \subseteq G$ be a nonempty subset of G. Then the
subgroup generated by S is

$$
\langle S\rangle=\bigcap_{S \subseteq H \leq G} H
$$

Theorem 2.12. Let G be a group and $S \subseteq G$ be a nonempty subset. Then

$$
\langle S\rangle=\left\{s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}} \mid s_{i} \in S \text { and } n_{i} \in \mathbb{Z} \text { for all } 1 \leq i \leq k\right\} .
$$

Proof

Let $T=\left\{s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}} \mid s_{i} \in S\right.$ and $n_{i} \in Z$ for all $\left.1 \leq i \leq k\right\}$. We claim that $T \leq G$ Since S is nonempty there exists $s_{1} \in S$. Then $1=s_{1}^{0} \in T$ and so $T \neq \emptyset$. Now let $s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}}, r_{1}^{m_{1}} r_{2}^{m_{2}} \cdots r_{l}^{m_{l}} \in T$ where $s_{i}, r_{j} \in S$ and $n_{i}, m_{j} \in \mathbb{Z}$ for $1 \leq i \leq k$ and $1 \leq j \leq l$. Then

$$
\begin{aligned}
\left(s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}}\right)\left(r_{1}^{m_{1}} r_{2}^{m_{2}} \cdots r_{l}^{m_{l}}\right)^{-1} & =\left(s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}}\right)\left(r_{l}^{-m_{l}} r_{l-1}^{-m_{l-1}} \cdots r_{2}^{-m_{2}} r_{1}^{-m_{1}}\right) \\
& =s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}} r_{l}^{-m_{l}} r_{l-1}^{-m_{l-1}} \cdots r_{1}^{-m_{1}} \in T .
\end{aligned}
$$

Thus $T \leq G$ by the subgroup test. Let $s \in S$. Then $s=s^{1} \in T$ and so $S \subseteq T \leq G$. Therefore $\langle S\rangle=\bigcap_{S \subseteq H \leq G} H \leq T$. Let $s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}} \in T$ where $k \in \mathbb{Z}^{+}, s_{i} \in S$, and $n_{i} \in \mathbb{Z}$ for all $1 \leq i \leq k$. Suppose that $S \subseteq H \leq G$. Since $s_{i} \in S \subseteq H$ for all i we know $s_{i}^{n_{i}} \in H$ for all i since $H \leq G$. Therefore $s_{1}^{n_{1}} s_{2}^{n_{2}} \cdots s_{k}^{n_{k}} \in H$ since $H \leq G$. Thus $T \leq H$ and so $T \leq\langle S\rangle$ and we have $\langle S\rangle=T$.

Theorem 2.13. Let G be a group, $N \unlhd G, H \leq G$ and let $\phi: G \longrightarrow G / N$ be defined by $\phi(g)=g N$ for all $g \in G$. Then

1. ϕ is a homomorphism;
2. $\operatorname{Kern} \phi=N$;
3. $\phi(H)=H N / N$;
4. $\phi^{-1}(H N / N)=H N$;
5. if $L \leq G / N$ then $L=K / N$ where $N \leq K \leq G$.

Proof

For (1), let $g_{1}, g_{2} \in G$. Then $\phi\left(g_{1} g_{2}\right)=g_{1} g_{2} N=g_{1} N g_{2} N$, so ϕ is a homomorphism. For (2), let $g \in G$. Then

$$
\begin{aligned}
g & \in \text { Kern } \phi \\
\text { if and only if } \phi(g) & =1 N \\
\text { if and only if } g N & =1 N \\
\text { if and only if } 1^{-1} g & \in N \\
\text { if and only if } g & \in N
\end{aligned}
$$

So Kern $\phi=N$. For (3), let $h n N \in H N / N$ for $h \in H, n \in N$. Then $h n N=h N$ since $(h n)^{-1} h=n^{-1} \in N$. Therefore $h n N=\phi(h) \in \phi(H)$ and so $H N / N \subseteq \phi(H)$. Let $x \in \phi(H)$. There exists $h \in H$ such that $x=\phi(h)$. Then $x=\phi(h)=h N \in H N / N$. Thus

$$
\phi(H)=\frac{H N}{N} .
$$

For (4), let $g \in \phi^{-1}(H N / N)$. Then there exists $h n N \in H N / N$ such that $\phi(g)=$ $h n N=h N$. Hence $g N=h N$ and so $h^{-1} g \in N$. But then there exists $n_{1} \in N$ such that $h^{-1} g=n_{1}$ and so $g=h n_{1} \in H N$. Hence

$$
\phi^{-1}\left(\frac{H N}{N}\right) \subseteq H N
$$

Now let $h n \in H N$. Then $\phi(h n)=h n N \in H N / N$ and so $h n \in \phi^{-1}(H N / N)$. Thus $H N \subseteq \phi^{-1}(H N / N)$, so $\phi^{-1}(H N / N)=H N$. Finally, consider $\phi^{-1}(L)=K$. Since $L \leq G / N$ we know $\phi^{-1}(L) \leq G$. Let $n \in N$, then $\phi(n)=n N=1 N \in L$ since $L \leq G / N$. Hence $n \in \phi^{-1}(L)$ and so $N \leq \phi^{-1}(L)$. We claim that

$$
L=\frac{\phi^{-1}(L)}{N} .
$$

Let $g N \in L$. Then $\phi(g)=g N \in L$. Hence $g \in \phi^{-1}(L)$ and so $g N \in \phi^{-1}(L) / N$. Therefore $L \leq \phi^{-1}(L) / N$. Let $g N \in \phi^{-1}(L) / N$. Then $g \in \phi^{-1}(L)$ and so $g N=\phi(g) \in L$. Thus $\phi^{-1}(L) / N \leq L$ and so $L=\phi^{-1}(L) / N$.

Definition Let G be a finite group, p be a prime, and $n \in \mathbb{Z}^{+} \cup\{0\}$ such that p^{n} divides $|G|$ but p^{n+1} does not divide $|G|$. Then

1. A subgroup $P \leq G$ is called a Sylow p-subgroup if $|P|=p^{n}$.
2. $\operatorname{Syl}_{p}(G)=\{P \leq G \mid P$ is a Sylow p-subgroup of $G\}$.

Theorem 2.14. (Sylow's) Let G be a finite group, with $|G|=p^{n} m$, where p is prime, $n \geq 1$ and p does not divide m. Then

1. For each $i, 1 \leq i \leq n$. There is a subgroup of G of order p^{i}. Every subgroup
of order p^{i} is a normal subgroup of some subgroup of order p^{i+1} for all $1 \leq i \leq$ $n-1$;
2. Any two Sylow p-subgroups of G are conjugate in G;
3. The number n_{p} of Sylow p-subgroups of G divides $|G|$ and is congruent to 1 mod p.

Theorem 2.15. Let G be a group, $H \leq G, K \leq G$ and $L \leq G$ such that $K \leq H$. Then,

$$
H \cap K L=K(H \cap L)
$$

Proof

Let $x \in K(H \cap L)$. Then there exist $k \in K \leq H$ and also $n \in H \cap L$ such that $x=k n$. Since $n \in H \cap L, n \in H$ and $n \in L$. Therefore $x=k n \in H$ by closure. Also $x=k n \in K L$. Hence $x \in H \cap K L$ and so $K(H \cap L) \subseteq H \cap K L$. Now let $y \in H \cap K L$. Then $y \in H$ and $y \in K L$. Therefore there exist $k \in K$ and $l \in L$ such that $y=k l$. Since $y \in H$ we have $k l \in H$. But since $k \in K \leq H$ and $H \leq G$ we know $k^{-1} \in H$. Thus $l=k^{-1} k l \in H$, and so $l \in H \cap L$. Thus $y=k l \in K(H \cap L)$. Therefore $H \cap K L \subseteq K(H \cap L)$ and so $H \cap K L=K(H \cap L)$.

3 Solvable Groups

Definition A subnormal series of a group G is a sequence of subgroups, each a normal subgroup of the next one. In a standard notation

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1 .
$$

Definition A group G is solvable if there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1
$$

such that the factors

$$
\frac{G_{i}}{G_{i+1}}
$$

are abelian for all $0 \leq i \leq n-1$.

Lemma 3.1. If G is an abelian group then G is solvable.

Proof
Consider the subnormal series $G=G_{0} \unrhd G_{1}=1$. Then $G_{0} / G_{1}=G / 1 \cong G$ is abelian.

Examples.

\mathbb{Z}_{n} and $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ are solvable for all $m, n \in \mathbb{Z}^{+}$by Lemma 3.1.

Lemma 3.2. If G is a p-group then G is solvable.

Proof

We use induction on $|G|$. If $|G|=p^{0}=1$ then $G=\{1\}$. Hence G is abelian and so G is solvable by Lemma 3.1. Suppose the lemma holds for all p-groups of order less than $|G|$. Since G is a p-group we know $1 \neq Z(G) \unlhd G$. Then $|G / Z(G)|<|G|$ and $G / Z(G)$ is a p-group. Hence $G / Z(G)$ is solvable and so there exists a subnormal series

$$
G / Z(G)=G_{0} / Z(G) \unrhd G_{1} / Z(G) \unrhd G_{2} / Z(G) \unrhd \cdots \unrhd G_{n} / Z(G)=1
$$

such that

$$
\frac{G_{i} / Z(G)}{G_{i+1} / Z(G)}
$$

is abelian for all $0 \leq i \leq n-1$. Taking preimages we get

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd Z(G) \unrhd 1,
$$

a subnormal series. By the Third Isomorphism Theorem

$$
\frac{G_{i}}{G_{i+1}} \cong \frac{G_{i} / Z(G)}{G_{i+1} / Z(G)}
$$

and so G_{i} / G_{i+1} is abelian for all $0 \leq i \leq n-1$. Finally, $Z(G) / 1 \cong Z(G)$ is abelian and so G is solvable.

Examples. $D_{4}, Q_{8}, \mathbb{Z}_{16} \times D_{8}$ are all solvable groups.

Theorem 3.3. Let G be a solvable group and $H \leq G$. Then H is solvable.

Proof

Since G is solvable, there exists a subnormal series

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1
$$

such that G_{i} / G_{i+1} is abelian for all $0 \leq i \leq n-1$. Now we have the series

$$
H=H \cap G \geq H \cap G_{1} \geq H \cap G_{2} \geq \cdots \geq H \cap G_{n}=1
$$

If $g \in H \cap G_{i+1}$ and $x \in H \cap G_{i}$, then $x g x^{-1} \in H$ since $g, x \in H$ and $H \leq G$. Also since $g \in G_{i+1}, x \in G_{i}$ and $G_{i+1} \unlhd G_{i}$, we get $x g x^{-1} \in G_{i+1}$. Thus $x g x^{-1} \in H \cap G_{i+1}$; so $H \cap G_{i+1} \unlhd H \cap G_{i}$ for all $0 \leq i \leq n-1$. Therefore we have a subnormal series

$$
H=H \cap G_{0} \unrhd H \cap G_{1} \unrhd H \cap G_{2} \unrhd \cdots \unrhd H \cap G_{n}=1
$$

Also

$$
\frac{H \cap G_{i}}{H \cap G_{i+1}}=\frac{H \cap G_{i}}{H \cap G_{i} \cap G_{i+1}} \cong \frac{\left(H \cap G_{i}\right) G_{i+1}}{G_{i+1}}
$$

by the Second Isomorphism Theorem. Now

$$
\frac{\left(H \cap G_{i}\right) G_{i+1}}{G_{i+1}} \leq \frac{G_{i}}{G_{i+1}}
$$

and G_{i} / G_{i+1} is abelian. Therefore $H \cap G_{i} / H \cap G_{i+1}$ is abelian and so H is solvable.

Theorem 3.4. If G is solvable and $N \unlhd G$ then G / N is solvable.

Proof

Since G is solvable, there exists a subnormal series $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1$ such that G_{i} / G_{i+1} is abelian for all $0 \leq i \leq n-1$. Taking the image of this series under the natural map $\phi: G \longrightarrow G / N$ we get

$$
\frac{G}{N}=\frac{G_{0}}{N} \unrhd \frac{G_{1} N}{N} \unrhd \cdots \unrhd \frac{G_{n} N}{N}=N .
$$

Now by the Second and Third Isomorphism Theorems,

$$
\frac{G_{i} N / N}{G_{i+1} N / N} \cong \frac{G_{i} N}{G_{i+1} N}=\frac{G_{i} G_{i+1} N}{G_{i+1} N} \cong \frac{G_{i}}{G_{i} \cap G_{i+1} N} \cong \frac{G_{i} / G_{i+1}}{\left(G_{i} \cap G_{i+1} N\right) / G_{i+1}}
$$

Since G_{i} / G_{i+1} is abelian we get

$$
\frac{G_{i} N / N}{G_{i+1} N / N}
$$

is abelian for all $0 \leq i \leq n-1$. Therefore G / N is solvable.

Theorem 3.5. Let G be a solvable group and $N \unlhd G$. If N is solvable and G / N is solvable then G is solvable.

Proof

Since N is solvable there exists a subnormal series $N=N_{0} \unrhd N_{1} \unrhd N_{2} \unrhd \cdots \unrhd N_{n}=1$ such that N_{i} / N_{i+1} is abelian for all $0 \leq i \leq n-1$. Also since G / N is solvable then there exists a subnormal series

$$
\frac{G}{N}=\frac{G_{0}}{N} \unrhd \frac{G_{1}}{N} \unrhd \frac{G_{2}}{N} \unrhd \cdots \unrhd \frac{G_{m}}{N}=N
$$

such that

$$
\frac{G_{i} / N}{G_{i+1} / N}
$$

is abelian for all $0 \leq i \leq m-1$. Taking preimages we get

$$
G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd N=N_{0} \unrhd N_{1} \unrhd N_{2} \unrhd \cdots \unrhd N_{n}=1
$$

. By the Third Isomorphism Theorem

$$
\frac{G_{i}}{G_{i+1}} \cong \frac{G_{i} / N}{G_{i+1} / N}
$$

and so G_{i} / G_{i+1} is abelian for all $0 \leq i \leq m-1$. Therefore G is solvable.

Definition Let G be a group, $H \leq G, K \leq G$ and $a, b \in G$. Then

1. $[a, b]=a b a^{-1} b^{-1}$ is called the commutator of a and b.
2. $[H, K]=\langle[h, k] \mid h \in H, k \in K\rangle$.
3. $G^{\prime}=\langle[x, y] \mid x, y \in G\rangle$ is called the commutator subgroup of G.

Theorem 3.6. Let G be a group, $N \unlhd G, H \leq G$ and $a, b \in G$. Then

1. $[a, b]=1$ if and only if $a b=b a$.
2. $G^{\prime} \unlhd G$.
3. G / G^{\prime} is abelian.
4. If $G^{\prime} \leq H$ then $H \unlhd G$.

Proof

For (1): Now $[a, b]=1$ if and only if $a b a^{-1} b^{-1}=1$ if and only if $a b=b a$. For (2) :

We know that $G^{\prime} \leq G$. Now let $g \in G$ and $\prod_{i=1}^{n}\left[a_{i}, b_{i}\right] \in G^{\prime}$. Since conjugation is a homomorphism,

$$
\begin{aligned}
g\left(\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]\right) g^{-1} & =\prod_{i=1}^{n} g\left[a_{i}, b_{i}\right] g^{-1} \\
& =\prod_{i=1}^{n}\left[g a_{i} g^{-1}, g b_{i} g^{-1}\right] \in G^{\prime}
\end{aligned}
$$

Hence $G^{\prime} \unlhd G$. For (3): Let $a G^{\prime}, b G^{\prime} \in G / G^{\prime}$. Then $(b a)^{-1} a b=a^{-1} b^{-1} a b=$ $\left[a^{-1}, b^{-1}\right] \in G^{\prime}$. Therefore $a b G^{\prime}=b a G^{\prime}$ and so $a G^{\prime} b G^{\prime}=b G^{\prime} a G^{\prime}$. Hence G / G^{\prime} is abelian. For (4): Let $h \in H$ and $g \in G$. Then $\left[h^{-1}, g\right] \in G^{\prime} \leq H$ and so $\left[h^{-1}, g\right] \in H$. Now since $h \in H$ and $H \leq G$ we get $h\left(h^{-1} g h g^{-1}\right) \in H$. Therefore $H \unlhd G$.

Lemma 3.7. Let G be a group and $N \unlhd G$ such that G / N is abelian. Then $G^{\prime} \leq N$.

Let $a, b \in G$. Then $a^{-1} N, b^{-1} N \in G / N$. Since G / N is abelian, $a^{-1} N b^{-1} N=$ $b^{-1} N a^{-1} N$ and so $a^{-1} b^{-1} N=b^{-1} a^{-1} N$. Hence $\left(b^{-1} a^{-1}\right)^{-1} a^{-1} b^{-1} \in N$ and so $a b a^{-1} b^{-1} \in N$ or $[a, b] \in N$. Now since $N \leq G$ we get $G^{\prime} \leq N$.

Definition Let G be a group. Define the derived series of G by $G^{(0)}=G, G^{(1)}=\left(G^{(0)}\right)^{\prime}=G^{\prime}, G^{(2)}=\left(G^{(1)}\right)^{\prime}=G^{\prime \prime}$, and inductively by $G^{(n)}=$ $\left(G^{(n-1)}\right)^{\prime}$.

Lemma 3.8. Let G be a group. Then

1. $G^{(i+1)} \leq G^{(i)}$ for all i.
2. $G^{(i)} \unlhd G$ for all i.
3. G is solvable if and only if there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $G^{(n)}=1$.

Proof

By definition of derived series, $G^{(i+1)}=\left(G^{(i)}\right)^{\prime} \leq G^{(i)}$ for all $i \in \mathbb{Z}^{+}$. Statement (2) is true for $i=1$ since $G^{(1)}=\left(G^{(0)}\right)^{\prime}=(G)^{\prime}=G^{\prime} \unlhd G$. Suppose the statement is true for i i.e $G^{(i)} \unlhd G$. Let $g \in G$. then

$$
\begin{aligned}
g G^{(i+1)} g^{-1} & =g\left(G^{(i)}\right)^{\prime} g^{-1} \\
& =g\left[G^{(i)}, G^{(i)}\right] g^{-1} \\
& =\left[g G^{(i)} g^{-1}, g G^{(i)} g^{-1}\right] \\
& =\left[G^{(i)}, G^{(i)}\right] \\
& =G^{(i+1)}
\end{aligned}
$$

And (2) is proven. Therefore $G^{(i+1)} \unlhd G$. Suppose $G^{(n)}=1$. Then we have

$$
G=G^{(0)} \unrhd G^{(1)} \unrhd \cdots \unrhd G^{(n)}=1
$$

Also

$$
\frac{G^{(i)}}{G^{(i+1)}}=\frac{G^{(i)}}{\left(G^{(i)}\right)^{\prime}}
$$

is abelian for $0 \leq i \leq n-1$. Thus G is solvable. Next suppose G is solvable. Then there exists a subnormal series $G=G_{0} \unrhd G_{1} \unrhd G_{2} \unrhd \cdots \unrhd G_{n}=1$ such that G_{i} / G_{i+1} is abelian for all $0 \leq i \leq n-1$. We claim that $G^{(i)} \leq G_{i}$ for all $0 \leq i \leq n-1$. If $i=0$ then $G^{(0)}=G \leq G=G_{0}$ and so $G^{(0)} \leq G_{0}$. Suppose $G^{(i)} \leq G_{i}$. Then $G^{(i+1)}=\left(G^{(i)}\right)^{\prime} \leq G_{i}^{\prime} \leq G_{i+1}$ since G_{i} / G_{i+1} is abelian. Therefore $G^{(n)} \leq G_{n}=1$ and
so $G^{(n)}=1$.

Definition Let G be a group. Then $\phi: G \longrightarrow G$ is a automorphism if ϕ is one-to-one, onto, and a homomorphism.

Definition Let G be a group and $H \leq G$. Then H is a characteristic subgroup if $\phi(H) \leq H$ for all automorphisms ϕ of G. We write H char G.

Theorem 3.9. Let G be a group. Then

1. $Z(G)$ char G.
2. G^{\prime} char G.
3. If $P \in \operatorname{Syl}_{p}(G)$ such that $P \unlhd G$, then P char G.

Proof

Let ϕ be a automorphism of $G, x \in Z(G)$, and $g \in G$. Since ϕ is onto, there exists $y \in G$ such that $\phi(y)=g$. Then

$$
\phi(x) g=\phi(x) \phi(y)=\phi(x y)=\phi(y x)=\phi(y) \phi(x)=g \phi(x)
$$

since $x \in Z(G)$ and ϕ is a homomorphism. Therefore $\phi(x) \in Z(G)$ and so $\phi(Z(G)) \leq$ $Z(G)$. Hence $Z(G)$ char G. Next let ϕ be a automorphism of G and $\prod_{i=1}^{n}\left[a_{i}, b_{i}\right] \in G^{\prime}$. Then

$$
\phi\left(\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]\right)=\prod_{i=1}^{n} \phi\left(\left[a_{i}, b_{i}\right]\right)=\prod_{i=1}^{n}\left[\phi\left(a_{i}\right), \phi\left(b_{i}\right)\right] \in G^{\prime} .
$$

Thus $\phi\left(G^{\prime}\right) \leq G^{\prime}$ and so G^{\prime} char G. Finally, since $P \unlhd G$ we know $N_{G}(P)=\{g \in$ $\left.G \mid g P g^{-1}=P\right\}=G$. Thus by Sylow's Theorem,

$$
n_{p}=\frac{|G|}{\left|N_{G}(P)\right|}=1
$$

Since ϕ is one-to-one and onto, $|\phi(P)|=|P|$. Hence $\phi(P) \in \operatorname{Syl}_{p}(G)$. Therefore $\phi(P)=P$ which implies P char G.

Definition Let G be a group and $N \unlhd G$. Then N is a minimal normal subgroup if whenever there exist $M \leq N$ such that $M \unlhd G$ then $M=1$ or $M=N$.

Example. Note $A_{3} \unlhd S_{3}$ and $\left|A_{3}\right|=3$. Hence A_{3} has no nontrivial subgroups and so A_{3} is a minimal normal subgroup of S_{3}.

Example. Let $H=\{1,(13),(24),(13)(24)\}$. Then $\left|D_{4}\right| /|H|=8 / 4=2$ and so $H \unlhd D_{4}$. But H is not a minimal normal subgroup since $1 \neq Z\left(D_{4}\right) \leq H$ and $Z\left(D_{4}\right) \unlhd D_{4}$.

Theorem 3.10. Let G be a group and $H \leq K \leq G$. If H char K and K char G. Then H char G.

Proof

Let ϕ be a automorphism of G. Then since K char G we have $\phi(K) \leq K$. Also since ϕ is one-to-one, $|\phi(K)|=|K|$ and so $\phi(K)=K$. Hence $\left.\phi\right|_{K}$ is a automorphism of K. Since H char K we get $\left.\phi\right|_{K}(H) \leq H$ or $\phi(H) \leq H$. Hence H char G.

Theorem 3.11. Let G be a group, H char K, and $K \unlhd G$. Then $H \unlhd G$.

Proof
For $g \in G$ define $\phi: K \longrightarrow K$ by $\phi(k)=g k g^{-1}$ for all $k \in K$. Then ϕ is a homomorphism and ϕ is one-to-one. If $k \in K$, and $K \unlhd G$ we have $g^{-1} k g \in K$. Also $\phi\left(g^{-1} k g\right)=g\left(g^{-1} k g\right) g^{-1}=k$ and so ϕ is onto. Thus ϕ is a automorphism of K. Since H char K we get $\phi(H) \leq H$. But $\left|g H g^{-}\right| \leq|H|$. Now since $\left|g H g^{-1}\right|=|H|$ we get $g H g^{-1}=H$ and so $H \unlhd G$.

Definition A group G is called characteristically simple if 1 and G are its only characteristic subgroups.

Theorem 3.12. Let G be a characteristically simple group. Then

$$
G \cong G_{1} \times G_{2} \times \cdots \times G_{n}
$$

such that G_{i} s are simple isomorphic groups.

Proof

Let $G_{1} \unlhd G$ such that $G_{1} \neq 1$ and $\left|G_{1}\right|$ is minimal. Also let $H=\prod_{i=1}^{s} G_{i}$ such that

1. $G_{i} \unlhd G$ for all $1 \leq i \leq s$;
2. $G_{i} \cong G_{1}$ for all $1 \leq i \leq s$;
3. $G_{i} \bigcap \prod_{j \neq i} G_{j}=1$ for all $1 \leq i \leq s$;
4. s is maximal.

Since $G_{i} \unlhd G$ for all $1 \leq i \leq s$, we get $H=\prod_{i=1}^{s} G_{i} \unlhd G$. We claim that H char G. If not, there exists an automorphism ϕ of G and $1 \leq i \leq s$ such that $\phi\left(G_{i}\right) \not \leq H$.

Then $\phi\left(G_{i}\right) \bigcap H<\phi\left(G_{i}\right)$. Since $G_{i} \unlhd G$ we get $\phi\left(G_{i}\right) \unlhd G$. But then $H \unlhd G$ implies $\phi\left(G_{i}\right) \bigcap H \unlhd G$. Since ϕ is an automorphism of G we get $G_{i} \cong \phi\left(G_{i}\right)$, so $\left|\phi\left(G_{i}\right) \bigcap H\right|<$ $\left|\phi\left(G_{i}\right)\right|=\left|G_{i}\right|=\left|G_{1}\right|$. Therefore by the minimality of G_{1} we get $\phi\left(G_{i}\right) \bigcap H=1$. Now $\phi\left(G_{i}\right) \unlhd G, \phi\left(G_{i}\right) \cong G_{i} \cong G_{1}$, and $\phi\left(G_{i}\right) \bigcap \prod_{i=1}^{s} G_{i} \leq \phi\left(G_{i}\right) \bigcap H=1$. But then we get $H=\prod_{i=1}^{s} G_{i}<\phi\left(G_{i}\right) \prod_{i=1}^{s} G_{i}$ a contradiction to the maximality of s. Therefore H char G. Since G is characteristically simple, $H=1$ or $H=G$. But $1 \neq G_{1} \leq H$ and so $H \neq 1$. Thus $G=H=\prod_{i=1}^{s} G_{i}$ and G_{i} s are isomorphic groups. Let $1 \leq i \leq s$ and $N \unlhd G_{i}$. If $1 \leq j \leq s$ and $j \neq i$ then $\left[G_{j}, N\right] \leq\left[G_{j}, G_{i}\right] \leq G_{j} \bigcap G_{i} \leq G_{i} \cap \prod_{j \neq i} G_{j}=1$ and so $\left[G_{j}, N\right]=1$. Hence $G_{j} \leq N_{G}(N)$ for all $1 \leq j \leq s$ such that $j \neq i$. Also, since $N \unlhd G_{i}$ we know $G_{i} \leq N_{G}(N)$. Hence $G=\prod_{i=1}^{s} G_{i} \leq N_{G}(N)$ and so $N=1$ or $|N|=\left|G_{1}\right|$ by the minimality of G_{1}. Thus $N=1$ or $N=G_{i}$ and so G_{i} is simple for all $1 \leq i \leq s$. But then $G=\prod_{i=1}^{s} G_{i} \cong G_{1} \times G_{2} \times \cdots \times G_{s}$ when we consider the map $\theta: G \longrightarrow G_{1} \times G_{2} \times \cdots \times G_{s}$ defined by

$$
\theta\left(g_{1} g_{2} \cdots g_{s}\right)=\left(g_{1}, g_{2}, \cdots, g_{s}\right)
$$

Let $g_{1} g_{2} \cdots g_{s}, h_{1} h_{2} \cdots h_{s} \in G$. Then

$$
\begin{aligned}
\theta\left(\left(g_{1} g_{2} \cdots g_{s}\right)\left(h_{1} h_{2} \cdots h_{s}\right)\right) & =\theta\left(g_{1} g_{2} \cdots g_{s} h_{1} h_{2} \cdots h_{s}\right) \\
& =\theta\left(g_{1} h_{1} g_{2} h_{2} \cdots g_{s} h_{s}\right) \\
& =\left(g_{1}, g_{2}, \cdots, g_{s}\right)\left(h_{1}, h_{2}, \cdots, h_{s}\right) \\
& =\theta\left(g_{1} g_{2} \cdots g_{s}\right) \theta\left(h_{1} h_{2} \cdots h_{s}\right) .
\end{aligned}
$$

Hence θ is homomorphism. Let $g_{1} g_{2} \cdots g_{s}, h_{1} h_{2} \cdots h_{s} \in G$ Now $\theta\left(g_{1} g_{2} \cdots g_{s}\right)=$ $\theta\left(h_{1} h_{2} \cdots h_{s}\right)$. This implies that $\left(g_{1}, g_{2}, \cdots, g_{s}\right)=\left(h_{1}, h_{2}, \cdots, h_{s}\right)$ or $g_{i}=h_{i}$ for
all $1 \leq i \leq s$. Hence θ is one-to-one. Let $\left(g_{1}, g_{2}, \cdots, g_{s}\right) \in G_{1} \times G_{2} \times \cdots \times G_{s}$. Since $g_{i} \in G_{i}$ for each i we know $\left(g_{1} g_{2} \cdots g_{s}\right) \in G$ and $\theta\left(g_{1} g_{2} \cdots g_{s}\right)=\left(g_{1}, g_{2}, \cdots, g_{s}\right)$. Therefore θ is onto and so $G \cong G_{1} \times G_{2} \times \cdots \times G_{n}$ where the G_{i} s are simple isomorphic groups.

Theorem 3.13. Let G be a group and N be a minimal normal subgroup of G. Then

$$
N \cong N_{1} \times N_{2} \times \cdots \times N_{n}
$$

such that the N_{i} s are simple non-abelian isomorphic groups or $N_{i} \cong \mathbb{Z}_{p}$ for all $1 \leq$ $i \leq n$, and for some prime p.

Proof

If M char N then, since $N \unlhd G$, we get $M \unlhd G$. Hence $M=1$ or $M=N$ by the minimality of N. Therefore N is characteristically simple and so by previous theorem $N \cong N_{1} \times N_{2} \times \cdots \times N_{n}$, where the $N_{i} \mathrm{~s}$ are simple isomorphic groups.

Case 1: N_{i} is abelian for all $1 \leq i \leq n$. Since N_{i} is simple we get 1 and N_{i} as the only subgroups of N_{i}. By Cauchy's theorem there exist a prime p such that $\left|N_{i}\right|=p^{m}$. But then by Sylow's theorem $m=1$ and so $\left|N_{i}\right|=p$; hence $N_{i} \cong \mathbb{Z}_{p}$ for all $1 \leq i \leq n$.

Case 2: N_{i} is non abelian for all $1 \leq i \leq n$. Then $N \cong N_{1} \times N_{2} \times \cdots \times N_{n}$ is the direct product of simple non-abelian isomorphic groups.

Definition Let G be a group. Define the lower central series of G by $K_{0}(G)=$
$G, K_{1}(G)=\left[K_{0}(G), G\right]=[G, G]=G^{\prime}, K_{2}(G)=\left[K_{1}(G), G\right]=[[G, G], G]$, and inductively by $K_{n}(G)=\left[K_{n-1}(G), G\right]$.

Theorem 3.14. Let G be a group. Then

1. $K_{i}(G) \unlhd G$ for all i.
2. $K_{i+1}(G) \leq K_{i}(G)$ for all i.

Proof

Proceed by using induction on i. If $i=0$, then $K_{0}(G)=G \unlhd G$. Assume $K_{i}(G) \unlhd G$ and let $g \in G$. Then

$$
\begin{aligned}
g K_{i+1}(G) g^{-1} & =g\left[K_{i}(G), G\right] g^{-1} \\
& =\left[g K_{i}(G) g^{-1}, g G g^{-1}\right] \\
& =\left[K_{i}(G), G\right] \\
& =K_{i+1}(G) .
\end{aligned}
$$

Thus, $K_{i+1}(G) \unlhd G$ and we have (1) by induction. Now $K_{i+1}(G)=\left[K_{i}(G), G\right] \leq$ $K_{i}(G)$, since $K_{i}(G) \unlhd G$. Hence we get $K_{i+1}(G) \leq K_{i}(G)$ for all i.

4 Nilpotent Groups

Definition A group G is called nilpotent if there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $K_{n}(G)=1$.

Lemma 4.1. If G is abelian, then $K_{1}(G)=\left[K_{0}(G), G\right]=[G, G]=1$. Hence G is nilpotent.

Example $\mathbb{Z}_{10}, \mathbb{Z}_{8} \times \mathbb{Z}_{12}, \mathbb{R}, \mathbb{Q}$ are nilpotent groups.

Theorem 4.2. Let G be a p-group. Then G is nilpotent.

Proof

We use induction on $|G|$. If $|G|=p$ then G is cyclic. It fellows that G is abelian and by Lemma $4.1 G$ is nilpotent. Suppose all p-groups of order less than $|G|$ are nilpotent. We claim G is nilpotent. Since G is a p-group, we know $1 \neq Z(G) \unlhd G$. So $G / Z(G)$ is a p-group and $|G / Z(G)|<|G|$. Then by assumption $G / Z(G)$ is nilpotent. So there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that

$$
K_{n}\left(\frac{G}{Z(G)}\right)=1 .
$$

We claim

$$
\frac{K_{i}(G) Z(G)}{Z(G)} \leq K_{i}\left(\frac{G}{Z(G)}\right) \text { for all } i
$$

Use induction on i. If $i=0$ then

$$
\frac{K_{0}(G) Z(G)}{Z(G)}=\frac{G Z(G)}{Z(G)}=\frac{G}{Z(G)} \leq K_{0}\left(\frac{G}{Z(G)}\right)=\frac{G}{Z(G)} .
$$

Suppose $K_{i}(G) Z(G) / Z(G) \leq K_{i}(G / Z(G))$. Then

$$
\begin{aligned}
\frac{K_{i+1}(G) Z(G)}{Z(G)} & =\frac{\left[K_{i}(G), G\right] Z(G)}{Z(G)} \\
& \leq\left[\frac{K_{i}(G) Z(G)}{Z(G)}, \frac{G}{Z(G)}\right] \\
& \leq\left[K_{i}\left(\frac{G}{Z(G)}\right), \frac{G}{Z(G)}\right] \\
& =K_{i+1}\left(\frac{G}{Z(G)}\right)
\end{aligned}
$$

Thus

$$
\frac{K_{i}(G) Z(G)}{Z(G)} \leq K_{i}\left(\frac{G}{Z(G)}\right)
$$

for all i. Hence

$$
\frac{K_{n}(G) Z(G)}{Z(G)} \leq K_{n}\left(\frac{G}{Z(G)}\right)=1 Z(G)
$$

. And so $K_{n}(G) \leq Z(G)$. Then $K_{n+1}(G)=\left[K_{n}(G), G\right] \leq[Z(G), G]=1$. Therefore $K_{n+1}(G)=1$ and so G is nilpotent.

Theorem 4.3. Let G be a nilpotent group and $H \leq G$. Then H is nilpotent.

Proof

Since G is nilpotent there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $K_{n}(G)=1$. Claim: $K_{i}(H) \leq$ $K_{i}(G)$ for all i. We use induction on i. If $i=0$ then $K_{0}(H)=H \leq G=K_{0}(G)$. Suppose $K_{i}(H) \leq K_{i}(G)$. Then $K_{i+1}(H)=\left[K_{i}(H), H\right] \leq\left[K_{i}(G), G\right]=K_{i+1}(G)$, which implies $K_{i+1}(H) \leq K_{i+1}(G)$, and so $K_{i}(H) \leq K_{i}(G)$ for all i. Hence $K_{n}(H) \leq$ $K_{n}(G)=1$ and so H is nilpotent.

Theorem 4.4. Let G be a nilpotent group and $N \unlhd G$. Then G / N is nilpotent.

Proof

Since G is nilpotent there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $K_{n}(G)=1$. As before

$$
K_{i}\left(\frac{G}{N}\right) \leq \frac{K_{i}(G) N}{N} \text { for all } i .
$$

Thus

$$
K_{n}\left(\frac{G}{N}\right) \leq \frac{K_{n}(G) N}{N}=\frac{1 N}{N}=1 N .
$$

Hence G / N is nilpotent.

Lemma 4.5. Let G be a nilpotent group and $H<G$. Then $H<N_{G}(H)$

Proof

Clearly $H \leq N_{G}(H)$. Since G is nilpotent there exists $n \in \mathbb{Z}^{+}$such that $K_{n}(G)=1$. Since $H \neq G$ there exists a maximal i such that $K_{i}(G)$ is not contained in H. Then

$$
\left[K_{i}(G), H\right] \leq\left[K_{i}(G), G\right]=K_{i+1}(G) \leq H
$$

by the maximality of i. Let $k \in K_{i}(G)$ and $h \in H$. Then $[k, h] \in\left[K_{i}(G), H\right] \leq H$ and so $[k, h] \in H$. But $h \in H$ and so $[k, h] h=k h k^{-1} \in H$. Thus, $K_{i}(G) \leq N_{G}(H)$. Therefore, since $K_{i}(G)$ is not contained in $H, H<N_{G}(H)$.

Definition Let G be a group and $M \leq G$. Then M is a maximal subgroup of G if $M \neq G$ and, whenever there exists a subgroup H of G such that $M \leq H \leq G$, then $H=M$ or $H=G$.

Example $\langle(12)\rangle,\langle(13)\rangle,\langle(23)\rangle$, and $\langle(123)\rangle$ are all maximal subgroups of S_{3}.

Lemma 4.6. Let G be a nilpotent group and M be a maximal subgroup of G. Then $M \unlhd G$.

Proof

Now since M is maximal we know $M<G$. Hence, by Lemma $4.5 M<N_{G}(M) \leq G$. Thus, $G=N_{G}(M)$ by the maximality of M. Hence $M \unlhd G$.

Theorem 4.7. Frattini's argument Let G be a group, $H \unlhd G$, and $P \in \operatorname{Syl}_{p}(H)$, then $G=N_{G}(P) H$.

Proof

Clearly, $N_{G}(P) H \subseteq G$. Let $g \in G$. Then since $P \leq H$ we get $g P g^{-1} \leq g H g^{-1}$. But since $H \unlhd G$, we have $g H g^{-1}=H$. Thus, $g P g^{-1} \leq H$. Now since $P \in \operatorname{Syl}_{p}(H)$ and $\left|g P g^{-1}\right|=|P|$ we get $g P g^{-1} \in \operatorname{Syl}_{p}(H)$. Then by Sylow's theorem $g P g^{-1}=h P h^{-1}$ for some $h \in H$. So $h^{-1} g P g^{-1} h=P$, or $h g P(h g)^{-1}=P$. But then $h g \in N_{G}(P)$ and so $g \in N_{G}(P) H$. Therefore $G=N_{G}(P) H$.

Lemma 4.8. Let G be a nilpotent group and $P \in \operatorname{Syl}_{p}(G)$. Then $P \unlhd G$.

Proof

If P is not normal in G then $N_{G}(P)<G$. Let M be a maximal subgroup of G such that $N_{G}(P) \leq M$. Since G is nilpotent, by maximality of M, we know $M \unlhd G$. Now $P \leq N_{G}(P) \leq M$ and $P \in \operatorname{Syl}_{p}(G)$ implies $P \in \operatorname{Syl}_{p}(M)$. Therefore by the Frattini Argument $G=N_{G}(P) M=M$. This is a contradiction to the maximality of M.

Therefore $P \unlhd G$.

Theorem 4.9. Let G be a nilpotent group. Then G is solvable.

Proof

Since G is a nilpotent group, there exists $n \in \mathbb{Z}^{+} \cup\{0\}$ such that $K_{n}(G)=1$. We know from Theorem 3.15 that $K_{i}(G) \unlhd G$ for all i and $K_{i+1}(G) \leq K_{i}(G)$ for all i. Then we have a subnormal series

$$
G=K_{0}(G) \unrhd K_{2}(G) \unrhd \cdots \unrhd K_{n}(G)=1
$$

We claim that $K_{i}(G) / K_{i+1}(G)$ is abelian for all $1 \leq i \leq n-1$. Let $x^{-1}, y^{-1} \in K_{i}(G)$. Now $K_{i}(G) / K_{i+1}(G)$ is abelian if and only if

$$
\begin{aligned}
x^{-1} K_{i+1}(G) y^{-1} K_{i+1}(G) & =y^{-1} K_{i+1}(G) x^{-1} K_{i+1}(G) \\
x^{-1} y^{-1} K_{i+1}(G) & =y^{-1} x^{-1} K_{i+1}(G) \\
x y x^{-1} y^{-1}=[x, y] & \in K_{i+1}(G) \\
{\left[K_{i}(G), K_{i}(G)\right] } & \leq K_{i+1}(G) \\
K_{i}(G)^{\prime}=\left[K_{i}(G), K_{i}(G)\right] & \leq K_{i+1}(G)
\end{aligned}
$$

So by Theorem $3.6 K_{i+1}(G) \unlhd K_{i}(G)$ and $K_{i}(G) / K_{i+1}(G)$ is abelian for all $0 \leq i \leq$ $n-1$.

Lemma 4.10. Let G be a nilpotent group such that $G \neq 1$. Then $Z(G) \neq 1$.

Proof

Since G is nilpotent, there exists a minimal $n \in \mathbb{Z}^{+}$such that $K_{n}(G)=1$. Then

$$
1=K_{n}(G)=\left[K_{n-1}(G), G\right]
$$

and so $K_{n-1}(G) \leq Z(G)$. But $1 \neq K_{n-1}(G)$ by the minimality of n and so $Z(G) \neq 1$. \square

Lemma 4.11. Let G be a nilpotent group and $1 \neq N \unlhd G$. Then $N \cap Z(G) \neq 1$.

Proof

Since G is nilpotent, there exists $n \in \mathbb{Z}^{+}$such that $K_{n}(G)=1$. Define $N_{0}=N, N_{1}=$ $\left[N_{0}, G\right]=[N, G]$, and inductively by $N_{k}=\left[N_{k-1}, G\right]$ for all $k \in \mathbb{Z}^{+} \cup\{0\}$. Then we have a normal series

$$
N=N_{0} \unlhd N_{1} \unlhd N_{2} \unlhd \cdots
$$

Claim $N_{i} \leq K_{i}(G)$ for all $i \in \mathbb{Z}^{+} \cup\{0\}$. We use induction on i. If $i=0$, then $N_{0}=N \leq G=K_{0}(G)$. Now suppose $N_{i} \leq K_{i}(G)$. Then $N_{i+1}=\left[N_{i}, G\right] \leq$ $\left[K_{i}(G), G\right]=K_{i+1}(G)$. Hence the claim holds by induction. Thus,

$$
N_{n} \leq K_{n}(G)=1 \text { and so } N_{n}=1
$$

Let $m \in \mathbb{Z}^{+}$be minimal such that $N_{m}=1$. Then $1=N_{m}=\left[N_{m-1}, G\right]$ and so $N_{m-1} \leq Z(G)$. But $N_{m-1} \leq N$ and $N_{m-1} \neq 1$ by the minimality of m. Thus, $1 \neq N_{m-1} \leq N \cap Z(G)$.

Lemma 4.12. Let $G=H K$ be a group such that $H \unlhd G, K \unlhd G$ and H and K are nilpotent. Then G is nilpotent.

Proof

Use induction on $|G|$. If $|G|=1$ then $K_{0}(G)=G=1$ and so G is nilpotent. Assume $|G|>1$ and that the theorem holds for all groups of order less than $|G|$. We want to show the theorem holds for G. Since H is nilpotent, by Lemma 4.9 $Z(H) \neq 1$. Let $N=[Z(H), K]$. If $N=1$ then $[Z(H), K]=1$. Thus

$$
1 \neq Z(H) \leq C_{G}(H) \cap C_{G}(K)=Z(G)
$$

Now $Z(G) \unlhd G$ and so

$$
\frac{G}{Z(G)}=\frac{H Z(G)}{Z(G)} \frac{K Z(G)}{Z(G)}
$$

is a group. Since $H \unlhd G$ and $K \unlhd G$ we know

$$
\frac{H Z(G)}{Z(G)} \unlhd \frac{G}{Z(G)} \text { and } \frac{K Z(G)}{Z(G)} \unlhd \frac{G}{Z(G)}
$$

Also since H is nilpotent, $\frac{H Z(G)}{Z(G)} \cong \frac{H}{H \cap Z(G)}$ is nilpotent and similarly $\frac{K Z(G)}{Z(G)}$ is nilpotent.
Finally,

$$
\left|\frac{G}{Z(G)}\right|=\frac{|G|}{|Z(G)|}<|G|
$$

and so $G / Z(G)$ is nilpotent by induction. Therefore there exists $n \in \mathbb{Z}^{+}$such that $K_{n}(G / Z(G))=1$. But then

$$
\frac{K_{n}(G) Z(G)}{Z(G)}=K_{n}\left(\frac{G}{Z(G)}\right)=1 \text { and so } K_{n}(G) \leq Z(G)
$$

Hence

$$
K_{n+1}(G)=\left[K_{n}(G), G\right] \leq[Z(G), G]=1 \text { and so } G \text { is nilpotent. }
$$

If $N \neq 1$, as $K \unlhd G$, we know $N \leq K$. Also since $H \unlhd G, Z(H) \unlhd G$. Thus, $N=[Z(H), K] \unlhd K$. Now since K is nilpotent $N \cap Z(K) \neq 1$ by Lemma 4.10. Hence since $Z(H) \unlhd G$ we get $1 \neq N \cap Z(K) \leq Z(H) \cap Z(K) \leq Z(G)$. Therefore $Z(G) \neq 1$ again and so G is nilpotent using the above argument.

Definition A group G is called an elementary abelian p-group if $G \cong \mathbb{Z}_{p} \times$ $\mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}$ for some prime p.

Theorem 4.13. Let G be a solvable group and N be a minimal normal subgroup of G. Then N is an elementary abelian p-group for some prime p.

Proof

By Theorem 3.9, $N \cong N_{1} \times N_{2} \times \cdots \times N_{n}$ where the N_{i} s are non-abelian simple isomorphic groups or $N_{i} \cong \mathbb{Z}_{p}$ for all $1 \leq i \leq n$. If N_{i} is nonabelian for some $1 \leq i \leq n$ then $1 \neq N_{i}^{\prime} \unlhd N_{i}$ and so $N_{i}^{\prime}=N_{i}^{(1)}=N_{i}$. Suppose $N_{i}^{(k)}=N_{i}$. Then $N_{i}^{(k+1)}=\left(N_{i}^{(k)}\right)^{\prime}=N_{i}^{\prime}=N_{i}$. Thus, $N_{i}^{(k)}=N_{i}$ for all k by induction. But then N_{i} is not solvable. Now G is solvable and $N_{i} \leq G$ which implies that N_{i} is solvable, a contradiction. Hence there exists a prime p such that $N_{i} \cong \mathbb{Z}_{p}$ for all i and so

$$
N \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \cdots \times \mathbb{Z}_{p}
$$

is a elementary abelian p-group.

5 The Hall and Schur-Zassenhaus Theorems

Definition Let G be a group and π be a set of primes. Then

1. $\pi^{\prime}=\{p \mid p$ is prime and $p \notin \pi\}$.
2. $\pi(G)=\{p \mid p$ is prime and $p \| G \mid\}$.
3. G is called a π-group if $\pi(G) \subseteq \pi$.
4. A subgroup $H \leq G$ is called a Hall π-subgroup if H is a π-group and $\pi(S) \subseteq \pi^{\prime}$ where $S=\{g H \mid g \in G\}$.
5. $\operatorname{Hall}_{\pi}(G)=\{H \leq G \mid H$ is a Hall $\pi-$ subgroup of $G\}$.

Example $1\left|S_{3}\right|=3=3 \cdot 2$ and $\pi\left(S_{3}\right)=\{2,3\}$. Now $\left|A_{3}\right|=3$; so A_{3} is a 3-group and $\pi\left(S_{3} / A_{3}\right) \subseteq\{3\}^{\prime}$. Hence $A_{3} \in \operatorname{Hall}_{\{3\}}\left(S_{3}\right)$.

Example $2\left|A_{5}\right|=5!/ 2=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 / 2=2^{2} \cdot 3 \cdot 5$. Let $H=\left(A_{5}\right)_{1}$. Then $H \cong A_{4}$ and $|H|=4!/ 2=2^{2} \cdot 3$. Therefore H is a $\{2,3\}$-group. Also $\pi\left(A_{5} / H\right)=5 \in\{2,3\}^{\prime}$. Hence $H \in \operatorname{Hall}_{\{2,3\}}\left(A_{5}\right)$.

Example 3 If G is a group, p is a prime, and $\pi=\{p\}$, then $\operatorname{Syl}_{p}(G)=\operatorname{Hall}_{\pi}(G)$. For some groups G and certain sets of primes $\pi, \operatorname{Hall}_{\pi}(G)=\emptyset$.

Example $\operatorname{Hall}_{\{2,5\}}\left(A_{5}\right)=\emptyset$.
Proof
Suppose $H \in \operatorname{Hall}_{\{2,5\}}\left(A_{5}\right)$. Then H is a $\{2,5\}$-group and $\pi\left(A_{5} / H\right) \subseteq\{2,5\}^{\prime}$. Since
$\left|A_{5}\right|=2^{2} \cdot 3 \cdot 5$ we get $|H|=2^{2} \cdot 5$. Let A_{5} act on $S=\left\{g H \mid g \in A_{5}\right\}$ by left multiplication via $\phi: A_{5} \longrightarrow \operatorname{Sym}(S)$, where ϕ is defined by $\phi(g)(x H)=g x H$ for all $g \in A_{5}$ and for all $x H \in S$. Now by Lagrange's Theorem $|S|=\left|A_{5}\right| /|H|=3$ and so $\operatorname{Sym}(S) \cong S_{3}$. Now $K=\operatorname{Kern} \phi \unlhd A_{5}$. Since A_{5} is simple either $K=1$ or $K=A_{5}$. If $K=A_{5}$ then

$$
A_{5}=K=\bigcap_{x \in A_{5}} x H x^{-1} \leq H
$$

and we get $A_{5}=H$, a contradiction. If $K=1$ then, by the First Isomorphism Theorem,

$$
A_{5} \cong \frac{A_{5}}{1}=\frac{A_{5}}{K} \cong \phi\left(A_{5}\right) \leq \operatorname{Sym}(S)
$$

But then we get $60=\left|A_{5}\right|=\left|\phi\left(A_{5}\right)\right|$ divides $|\operatorname{Sym}(S)|=6$, a contradiction. Thus $\operatorname{Hall}_{\{2,5\}}\left(A_{5}\right)=\emptyset$.

Theorem 5.1. (Hall's): Let G be a solvable group and π be a set of primes. Then

1. $\operatorname{Hall}_{\pi}(G) \neq \emptyset$
2. G acts transitively on $\operatorname{Hall}_{\pi}(G)$ by conjugation.

Definition Let G be a group and $H \leq G$. Then G splits over H if there exists $K<G$ such that $G=H K$ and $H \cap K=1$. The subgroup K is called the complement of H in G.

Example: S_{3} splits over A_{3} since $S_{3}=A_{3}\langle(12)\rangle$ and $A_{3} \cap\langle(12)\rangle=1$.

Theorem 5.2. Let G be a solvable group, $H \in \operatorname{Hall}_{\pi}(G)$, and suppose $N_{G}(H) \leq$ $K \leq G$. Then $K=N_{G}(K)$.

Proof

Clearly $K \leq N_{G}(K)$. Let $g \in N_{G}(K)$. Then $H \leq N_{G}(H) \leq K$; so $H \in \operatorname{Hall}_{\pi}(G)$, so $H \in \operatorname{Hall}_{\pi}(K)$. Now $H \leq K$ implies $g H g^{-1} \leq g K g^{-1}=K$. But $\left|g H g^{-1}\right|=|H|$ and so $g H^{-1} \in \operatorname{Hall}_{\pi}(K)$. Now since G is solvable, K is also solvable. Thus by Hall's theorem there exists $k \in K$ such that $k g \mathrm{Kg}^{-1} k^{-1}=H$ or $k g H(k g)^{-1}=H$. But then $k g \in N_{G}(H)$ and so $g \in K$. Therefore $K=N_{G}(K)$. In this case we say K is self-normalizing.

Theorem 5.3. (Schur-Zassenhaus) Let G be a group and $H \in \operatorname{Hall}_{\pi}(G)$ such that $H \unlhd G$. Then G splits over H. In addition if either H or G / H is solvable, then G acts transitively on the complements of H in G by conjugation.

6 Carter's Theorem

Definition Let G be a group and $H \leq G$. Then H is a Carter subgroup of G if

1. H is nilpotent;
2. $N_{G}(H)=H$.

In this case we write H cart G. When condition (2) holds, we say H is self-normalizing. Example Any nilpotent group G has a Carter subgroup, namely, G itself is a Carter subgroup since $N_{G}(G)=G$, and G is nilpotent.

Example $\langle(12)\rangle$ cart S_{3} since $\langle(12)\rangle$ is abelian implies $\langle(12)\rangle$ is nilpotent. Also $\langle(12)\rangle \leq N_{S_{3}}(\langle(12)\rangle) \leq S_{3}$ and so $2=|\langle(12)\rangle|$ which divide $\left|N_{S_{3}}(\langle(12)\rangle)\right|$ divides $\left|S_{3}\right|=$ 6. Hence $\left|N_{S_{3}}(\langle(12)\rangle)\right|=2$. But $N_{S_{3}}(\langle(12)\rangle) \neq S_{3}$ since $\langle(12)\rangle$ is not a normal subgroup of S_{3}. And so $\langle(12)\rangle=\left|N_{S_{3}}(\langle(12)\rangle)\right|$.

But not all groups have Carter subgroups.
Example A_{5} has no Carter subgroups. $\left|A_{5}\right|=\frac{5!}{2}=60=2^{2} \cdot 3 \cdot 5$. A table showing 57 subgroups of A_{5} is below.

Structure	Subgroup, H	Number	Reason
\mathbb{Z}_{2}	$\{1,(12)(34)\}$	15	$(13)(24) \in N_{A_{5}}(H) \backslash H$
\mathbb{Z}_{3}	$\{1,(123),(132)\}$	10	$(23)(45) \in N_{A_{5}}(H) \backslash H$
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	$\{1,(12)(34),(14)(23),(13)(24)\}$	5	$(123) \in N_{A_{5}}(H) \backslash H$
\mathbb{Z}_{5}	$\{1,(12345),(13524),(14253),(15432)\}$	6	$(15)(24) \in N_{A_{5}}(H) \backslash H$
S_{3}	$\{1,(123),(132),(12)(45),(13)(45),(23)(45)\}$	10	Not nilpotent $n_{2}=3$
D_{5}	$\langle(12345),(15)(24)\rangle$	6	Not nilpotent $n_{2}=5$
A_{4}	$\left(A_{5}\right)_{1}$	5	Not nilpotent $n_{3}=4$

Theorem 6.1. (Carter): Let G be a solvable group. Then

1. G has a Carter subgroup;
2. If $N \unlhd G$ and H cart G then $H N / N \operatorname{cart} G / N$;
3. If H_{1} cart G and H_{2} cart G then there exists $g \in G$ such that $H_{2}=g H_{1} g^{-1}$.

Proof

We will use induction on $|G|$. If $|G|=1$ then $\{1\}$ cart G and (1), (2) and (3) hold. Also if G is nilpotent, then G cart G and (1), (2) and (3) hold. Without loss of generality, assume that $|G|>1, G$ is not nilpotent, and the result holds for all groups of order less than $|G|$. For (1): Let N be a minimal normal subgroup of G. Since G is solvable, N is an elementary p-group for some prime p. Since G is solvable, by Theorem 3.4 we know G / N is solvable. Also

$$
|G / N|=\frac{|G|}{|N|}<|G|
$$

and so by induction there exists K / N cart G / N. Now let $S / N \in \operatorname{Syl}_{p}(K / N)$. Since K / N cart G / N, we know K / N is nilpotent. Thus by Lemma 4.7, $S / N \unlhd K / N$. But then $S \unlhd K$. Now

$$
\frac{|K|}{|S|}=\frac{|K| /|N|}{|S| /|N|}=\frac{|K / N|}{|S / N|}
$$

and so p does not divide $|K| /|S|$ since $S / N \in \operatorname{Syl}_{p}(K / N)$. Also,

$$
|S|=\frac{|S|}{|N|}|N|=|S / N||N|
$$

is a power of p since $S / N \in \operatorname{Syl}_{p}(K / N)$ and N is an elementary p-group. Hence $S \in \operatorname{Syl}_{p}(K)$ and so K splits over S by the Schur-Zassenhaus Theorem. But then there exists $R \leq K$ such that $K=R S$ and $R \cap S=1$. Now by the Second Isomorphism Theorem

$$
R \cong \frac{R}{1}=\frac{R}{R \cap S} \cong \frac{R S}{S}=\frac{K}{S}
$$

From the above, p does not divide $|K / S|$ and so p does not divide $|R|$. Also

$$
\frac{|K|}{|R|}=\frac{|R S|}{|R|}=\frac{|S|}{|R \cap S|}=|S|
$$

is a power of p. Thus $R \in \operatorname{Hall}_{p^{\prime}}(K)$. Let $H=N_{K}(R)$ and $g \in N_{G}(H)$. Now $N_{K}(R) \leq H N \leq K, R \in \operatorname{Hall}_{p^{\prime}}(K)$, and K is solvable. Thus by Theorem 5.2 $H N=N_{K}(H N)$. But then

$$
\frac{H N}{N}=\frac{N_{K}(H N) N}{N}=N_{K / N}\left(\frac{H N}{N}\right) .
$$

Now $H N / N \leq K / N$ and K / N is nilpotent. Hence we get $K / N=H N / N$ and so $K=H N$. Since $N \unlhd G$ and $g \in N_{G}(H)$ we have $g \in N_{G}(H N)=N_{G}(K)$. Hence $g N \in N_{G / N}(K / N)$. But $K / N=N_{G / N}(K / N)$ since K / N cart G / N. Therefore $g N \in$ K / N and so $g \in K$. But then $g \in N_{K}(H)$. Also $N_{K}(R) \leq H \leq K, R \in \operatorname{Hall}_{p^{\prime}}(K)$, and K is solvable. Thus by Theorem $5.2, H=N_{K}(H)$. Therefore $g \in H$ and so
$H=N_{G}(H)$. Now

$$
H=H \cap K=H \cap R S=R(H \cap S)
$$

Since $S \unlhd K$ and $H \leq K$ we know $S \cap H \unlhd H$. Also since $R \leq H \leq N_{G}(R)$ we know $R \unlhd H$. Since S is a p-group we know $S \cap H$ is a p-group. Therefore $S \cap H$ is nilpotent. Also by the Second and Third Isomorphism Theorems,

$$
R \cong \frac{R}{1}=\frac{R}{R \cap S} \cong \frac{R S}{S}=\frac{K}{S} \cong \frac{K / N}{S / N}
$$

But since

$$
\frac{K}{N} \operatorname{cart} \frac{G}{N}
$$

K / N is nilpotent. Thus R is nilpotent by Theorem 4.4. Therefore $H=R(H \cap S)$ is nilpotent by Lemma 4.11 and so H cart G.

For (2) : Let H cart G and $N \unlhd G$. Then

$$
\frac{H N}{N} \leq \frac{G}{N}
$$

Also since H is nilpotent,

$$
\frac{H N}{N} \cong \frac{H}{H \cap N}
$$

is nilpotent. Clearly

$$
\frac{H N}{N} \leq N_{G / N}\left(\frac{H N}{N}\right)
$$

Let $g N \in N_{G / N}(H N / N)$. Then $g^{-1} N \in N_{G / N}(H N / N)$ and also

$$
\begin{aligned}
\frac{H N}{N}=g^{-1} N\left(\frac{H N}{N}\right) g N & =\frac{g^{-1}(H N) g}{N} \\
& =\frac{g^{-1} H g N}{N}
\end{aligned}
$$

By taking preimages we get $g^{-1} H g N=H N$. If $G=H N$ then $G / N=H N / N$. Hence

$$
\frac{H N}{N}=\frac{G}{N}=N_{G / N}\left(\frac{G}{N}\right)=N_{G / N}\left(\frac{H N}{N}\right) .
$$

Therefore we may assume $H N<G$. Now $g^{-1} H g \cong H$ and so $g^{-1} H g$ is nilpotent. Also,

$$
N_{G}\left(g^{-1} H g\right)=g^{-1} N_{G}(H) g=g^{-1} H g \text { since } H \text { cart } G .
$$

Thus, $g^{-1} H g$ cart $H N$ and H cart $H N$. Therefore by induction there exists $n \in N$ such that $n g^{-1} H g n^{-1}=H$. But then $n g^{-1} \in N_{G}(H)=H$ since H cart G. So $g n^{-1} \in$ H since $H \leq G$. Then $g N=g n^{-1} N \in H N / N$ and so

$$
\frac{H N}{N}=N_{G / N}\left(\frac{H N}{N}\right) \text { and so } \frac{H N}{N} \operatorname{cart} \frac{G}{N} .
$$

For (3): Let H_{1} cart G and H_{2} cart G. Let N be a minimal normal subgroup of G. Since G is solvable, by Theorem 3.6, N is an elementary p-group. By (2),

$$
\frac{H_{1} N}{N} \text { cart } \frac{G}{N} \text { and } \frac{H_{2} N}{N} \operatorname{cart} \frac{G}{N} .
$$

Since $|G / N|<|G|$, by induction there exists $g N \in G / N$ such that

$$
\frac{H_{2} N}{N}=g N\left(\frac{H_{1} N}{N}\right) g^{-1} N=\frac{g H_{1} g^{-1} N}{N}
$$

Therefore $g H_{1} g^{-1} N=H_{2} N$. If $H_{2} N<G$ then $g H_{1} g^{-1}$ cart $H_{2} N$ and H_{2} cart $H_{2} N$. Hence by induction there exists $g_{1} \in H_{2} N$ such that $g_{1} g H_{1} g^{-1} g_{1}^{-1}=H_{2}$. We may assume $G=g H_{1} g^{-1} N=H_{2} N$. Since $g H_{1} g^{-1}$ and H_{2} are nilpotent, there exist $g R_{1} g^{-1} \in \operatorname{Hall}_{p^{\prime}}\left(g H_{1} g^{-1}\right)$ and $R_{2} \in \operatorname{Hall}_{p^{\prime}}\left(H_{2}\right)$. Now

$$
\frac{|G|}{\left|R_{2}\right|}=\frac{|G|}{\left|H_{2}\right|} \cdot \frac{\left|H_{2}\right|}{\left|R_{2}\right|}=\frac{\left|H_{2} N\right|}{\left|H_{2}\right|} \cdot \frac{\left|H_{2}\right|}{\left|R_{2}\right|}=\frac{|N|}{\left|N \cap H_{2}\right|} \cdot \frac{\left|H_{2}\right|}{\left|R_{2}\right|}
$$

is a power of p. Thus $R_{2} \in \operatorname{Hall}_{p^{\prime}}(G)$ and similarly $g R_{1} g^{-1} \in \operatorname{Hall}_{p^{\prime}}(G)$. Since G is solvable, by Hall's Theorem, there exists $g_{2} \in G$ such that $g_{2} g R_{1} g^{-1} g_{2}^{-1}=R_{2}$. Now $g R_{1} g^{-1}$ and H_{2} are nilpotent implies $g R_{1} g^{-1} \unlhd g H_{1} g^{-1}$ and $R_{2} \unlhd H_{2}$. Thus $g_{2} g R_{1} g^{-1} g_{2}^{-1} \unlhd g_{2} g H_{1} g^{-1} g_{2}^{-1}$ and so

$$
g_{2} g H_{1} g^{-1} g_{2}^{-1} \leq N_{G}\left(g_{2} g R_{1} g^{-1} g_{2}^{-1}\right)=N_{G}\left(R_{2}\right) \geq H_{2} .
$$

Let $K=N_{G}\left(R_{2}\right)$. Now $R_{2} \unlhd K$ and so K / R_{2} is a group. Since $g_{2} g H_{1} g^{-1} g_{2}^{-1}$ cart K, by part (2)

$$
\frac{g_{2} g H_{1} g^{-1} g_{2}^{-1} R_{2}}{R_{2}} \text { cart } \frac{K}{R_{2}} \text { and } \frac{H_{2}}{R_{2}} \operatorname{cart} \frac{K}{R_{2}} .
$$

If $R_{2}=1$ then H_{2} is a p-group. Since N is a p-group, we get $G=H_{2} N$ is a p-group. Thus, G is nilpotent and so $G=H_{1}=H_{2}$. We may assume $R_{2} \neq 1$ and $\left|K / R_{2}\right|<|G|$.

So by induction there exists $k R_{2} \in K / R_{2}$ such that

$$
\frac{H_{2}}{R_{2}}=k R_{2}\left(\frac{g_{2} g H_{1} g^{-1} g_{2}^{-1} R_{2}}{R_{2}}\right) k^{-1} R_{2}=\frac{k g_{2} g H_{1} g^{-1} g_{2}^{-1} k^{-1} R_{2}}{R_{2}} .
$$

Thus

$$
k g_{2} g H_{1} g^{-1} g_{2}^{-1} k^{-1} R_{2}=H_{2} .
$$

Now $k R_{2} \in K / R_{2}$ implies $k \in K=N_{G}\left(R_{2}\right)$. But

$$
R_{2}=g_{2} g R_{1} g^{-1} g_{2}^{-1} \leq g_{2} g H_{1} g^{-1} g_{2}^{-1}
$$

and so

$$
R_{2}=k R_{1} k^{-1} \leq k g_{2} g H_{1} g^{-1} g_{2}^{-1} k^{-1} .
$$

Therefore

$$
k g_{2} g H_{1} g^{-1} g_{2}^{-1} k^{-1} R_{2}=H_{2}=k g_{2} g H_{1} g^{-1} g_{2}^{-1} k^{-1}=H_{2}
$$

and so we have (3).

References

[1] Carter, Roger W., Nilpotent self-normalizing subgroups of soluble groups, Math. Zeitschr, 75 (1961), 136-139.
[2] Papantonopoulou, Aigli, "Algebra: Pure and Applied". Upper Saddle River, NJ: Prentice Hall, 2002.
[3] W.R. Scott, "Group Theory". Dover Books in Science and Mathematics, 1987.

